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In this dissertation, we introduce a novel accelerated-stochastic simulation

method, known as the ‘partitioned-leaping algorithm’ (PLA), for efficiently sim-

ulating chemical reaction networks. The technique is multiscale in that it con-

siders dynamics at scales ranging from the discrete-stochastic to the continuous-

deterministic. It is particularly useful when considering nanoscale-sized systems

that exhibit fluctuating dynamics and contain species with large disparities in

populations. We present the theoretical foundations of the PLA, discuss various

extensions and variants of the method and provide illustrative examples demon-

strating its practical utility in chemistry, biology and materials science.

In Chapter 1, we provide a general overview of the origins and consequences

of stochastic “noise” in nanoscale-sized systems. We elucidate the implications of

this phenomenon, which arises because of the discrete and probabilistic nature of

molecular interactions, in both biological and materials settings and discuss math-

ematical approaches that have been applied previously to model such behaviors.

The shortcomings of these methods provide the primary motivation for the work

presented in this dissertation.

In Chapter 2, we present the theoretical foundations of so-called “exact”

stochastic simulation approaches. This material lays the foundation for all that is

to follow. It can be seen as a review/tutorial of the subject at the level of advanced

undergraduate and beginning graduate students. Our presentation closely follows



the work of Gillespie ca. 1976. Though many equivalent formalisms have been

presented in the literature, Gillespie’s has the advantage of being developed within

the language of chemistry and, thus, being more accessible to chemical engineers

than other approaches that are often cited, e.g., within the physics literature.

In Chapter 3, we present the main contribution of this dissertation, the

partitioned-leaping algorithm. Building upon the work of Gillespie ca. 2000 and

concepts presented in Chapter 2, we develop an accelerated-stochastic simulation

approach that efficiently describes stochastic effects in chemical reaction networks

with very little loss in accuracy relative to exact methods. The method is sim-

ple, relatively easy to implement and is based on firm theoretical grounds. We

also consider numerous variants of the method and discuss areas of possible future

extension.

In Chapter 4, we proceed to select applications of the PLA. We consider ex-

ample systems inspired by chemistry, biology and materials science. We begin

with various toy problems and then advance to simple, yet relevant, biochemical

networks. In all cases, we compare the performance characteristics of the PLA, in

terms of accuracy and efficiency, to exact approaches. We also identify conditions

where the method does not perform particularly well, investigate the underlying

reasons for this and discuss possible strategies for overcoming them.

Finally, we conclude in Chapter 5 by summarizing the main results of this

dissertation and laying out a vision for the future.
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Chapter 1

Origins and Importance of Stochasticity

in Nanoscale-Sized Reactive Systems

A field of study that has widespread use in a variety of scientific disciplines is pop-

ulation dynamics . Population-dynamical models consider how the populations of

certain entities evolve in time by following the natural logic of a set of prespecified

interaction rules. The entities in question can be almost anything, from interact-

ing galaxies (cosmology) to financial institutions (economics), animals (ecology),

atoms and molecules (chemistry) or sub-atomic particles (particle physics). Simi-

larly, the interaction channels can be of almost any form. The simplest cases are

“mass-action” rules, where the interaction rates are directly proportional to the

population levels of the interacting species (see Appendix B). Other examples

include Michaelis-Menten or Hill rules in biochemical kinetics or the Langmuir-

Hinshelwood mechanism in surface physics. In this dissertation, we will focus our

attention on atoms, molecules and chemical reactions as this is the natural lan-

guage of chemical engineering. It should be remembered throughout, however, that

the methods discussed within are applicable to a much wider range of problems in

the general area of population dynamics.

Historically, the mathematical methods used to analyze population-dynamical

models assume that (i) the populations are continuous quantities and (ii) the time-

evolution behavior is deterministic in nature. These assumptions are the basis for

analysis methods based on ordinary and partial differential equations (ODEs and

PDEs) that consider spatially homogenous and heterogenous systems, respectively.

In reality, however, both assumptions are false. By definition, populations are
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collections of discrete entities and the physics that govern their interactions are

fundamentally probabilistic, or stochastic. Recognition of this fact goes as far back

as the advent of the atomic theory and the seminal work by Einstein on Brownian

motion. Nevertheless, the continuous and deterministic assumptions of classical

population dynamics tend to work exceedingly well in practice. This is because the

“noise” characteristics of a collection of interacting entities scales as 1/
√

Ω, where

Ω is a measure of the system size. Thus, in the common chemical scenario where

interactions take place between molecules numbering on the order of Avogadro’s

number, e.g., in a laboratory beaker or a chemical reactor, stochastic effects are

effectively absent.

The current state of technology is beginning to change this situation. Advances

in experimental techniques are increasingly giving scientific investigators access to

the dynamical behaviors of exceedingly small systems. Examples include minia-

turized silicon technologies, nanofluidic devices and individual biological cells. It is

now possible to probe the behaviors of just a handful, or even an individual, atom

or molecule in the laboratory. A profound, albeit not unexpected, result of such

experimentation has been the observation that the dynamics of nanoscale-sized

systems are highly stochastic and often do not follow the predictions of classical

continuum theories.

As a result, a renewed interest in stochastic theory and simulation methods

has arisen. A well-developed approach within population dynamics that has at

its roots the works on Brownian motion is that of stochastic differential equations

(SDEs). SDEs are essentially modified ODEs that have an added noise term in-

cluded. An immense amount of literature exists on the theory of SDEs and many

advanced computational methods have been developed to analyze them. A his-
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torical shortcoming of SDEs, however, within the context of population dynamics,

concerns the origin of the noise term and the functional form that it should take.

There has been much debate on this issue with confusing conclusions. Moreover,

while SDEs lift the assumption of determinism in the system dynamics they retain

the continuum description of populations.

An alternative stochastic analysis method that has become particularly popular

recently is kinetic Monte Carlo (kMC). kMC is a generic term that refers to any

numerical simulation method that acts to evolve a system of interacting entities

forward in time by randomly firing events via the generation of random numbers.

Within this framework, both the deterministic and continuum assumptions that

underly ODE/PDE-based approaches are lifted. There are countless flavors of

kMC, some heuristic and some with a firm footing in theory. Perhaps the most well-

known and commonly-used kMC method in the chemical literature is Gillespie’s

stochastic simulation algorithm, or SSA. The SSA is an “exact” stochastic method,

based firmly in Markov process theory, that operates by generating random samples

of event sequences and firing times. The primary shortcoming of the SSA, and all

kMC methods in general, is the fact that each and every event firing in a system

is explicitly simulated. If one or more species exist in large numbers or if the

rate parameters vary widely between event channels the efficiency of the approach

is significantly hindered. Basically, kMC methods tend to spend most of their

effort simulating frequently occurring events and only infrequently sample the rare

events which are often of the most interest. As such, kMC approaches are primarily

restricted to only the smallest of systems.

The time is thus ripe for the development of stochastic simulation methods that

can bridge the divide between kMC, SDE and ODE/PDE-type approaches. Such
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multiscale methods should be capable of accurately and efficiently simulating the

behaviors of systems characterized by wide disparities in both species populations

and rate parameters. In this dissertation, we propose just such a method, termed

the “partitioned-leaping algorithm” (PLA). Built upon recent work by Gillespie

on accelerated-stochastic simulation approaches and drawing on prior theoretical

developments within the kMC realm, the PLA provides a theoretically-sound and

easy-to-implement platform for performing multiscale simulations of reaction dy-

namics in chemical, biological and materials settings.

In Chapter 2, we lay the theoretical groundwork for the PLA by reviewing in

detail the foundations of exact-stochastic simulation. We go well beyond the usual

treatment, considering the general case of both intrinsic sources of stochasticity,

i.e., those associated with the probabilistic nature of molecular interactions, and

extrinsic sources associated with fluctuations in the reaction environment. We

also consider different variations of the approach that will be important in later

stages of our development, various optimization strategies that are commonly em-

ployed and extensions to the method that allow for, e.g., the treatment of spatially-

inhomogeneous systems.

In Chapter 3, we introduce the PLA. We begin by reviewing the multiscale

theoretical framework recently developed by Gillespie and discussing the associated

“τ -leaping” approach. We then merge these ideas with ones presented in Chapter 2

to produce the PLA. Various implementation details are discussed and an in-

depth presentation of the critical time step-selection procedure is provided. We

then compare and contrast the PLA to various related approaches that have been

proposed in literature, explaining why we believe the PLA to be superior and

discussing which aspects of those methods can be incorporated into the PLA,
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before concluding with a presentation of possible future extensions.

In Chapter 4, we apply the PLA to various example systems inspired by biology

and materials science to demonstrate the applicability of the approach. We show

that the method can achieve significant computational savings relative to kMC

methods under the right circumstances and expound upon those scenarios in which

the method does not perform particularly well. This provides the motivation for

the future directions discussed in Chapter 3.

Finally, we conclude in Chapter 5 by summarizing the contributions advanced

in this dissertation and offering an eye towards the future.
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Chapter 2

Significant Previous Work: Theoretical

Foundations of Exact-Stochastic

Simulation Methods

2.1 Introduction, terminology and syntax

The scenario that we are interested in in this dissertation involves N inter-

acting species S = {S1, . . . , SN} participating in M interaction channels R =

{R1, . . . , RM}. In general, the system in which the species interact can be of fixed

or time-varying volume, temperature or any other such “environmental” quantity.

Furthermore, the reactive entities can be homogenously or heterogeneously dis-

tributed throughout the domain. However, if they are heterogeneously distributed,

then the system must be divided into multiple homogeneously-distributed subdo-

mains in order to apply the simulation methods discussed in this dissertation (see

Secs. 2.5 and 3.6.2 for further discussion).

Within the chemistry literature, stochastic simulation is most often discussed

within the framework developed by Gillespie [41, 44, 49]. The starting point for

discussing the theoretical foundations of stochastic simulation methods is thus

Gillespie’s “fundamental postulate” of stochastic chemical kinetics [41]:

aµ(t)dt = aµ (X(t),Θ(t)) dt (2.1)

≡ probability, at time t, that one instance of

reaction Rµ will fire within the next in-

finitesimal time interval dt.
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Here, aµ(t) is known as the reaction “propensity” and is analogous to the reaction

“rate” of deterministic chemical kinetics.1 X(t) is the vector of species populations

at time t and Θ(t) is the vector of environmental quantities that can, in general,

vary in time. Written this way, postulate (2.1) expresses the time dependence of

aµ(t) in terms of intrinsic quantities (species populations) and extrinsic quantities

(environmental variables). Importantly, intrinsic quantities are constant between

reaction firings while extrinsic quantities need not be.

Throughout this dissertation, when referring to quantities associated with re-

actions we will use Greek characters such as µ, ν and τ . This will distinguish them

from those associated with species, which will be labeled with Latin characters

such as i, j and T . Sets of quantities will be placed within curly braces ({·})

and the quantity inside will generally be labeled with the subscript ν for reactions

and j for species. These labels will imply ν = 1, . . . ,M and j = 1, . . . , N unless

otherwise specified. The labels µ and i will be reserved for specific reactions and

species, respectively. At times, we will also denote collections of values in vector

and matrix notation. Vectors will be denoted as bold characters in Times New

Roman font (e.g., A—as above) while matrices will be denoted as bold Sans Serif

characters (e.g., A).

In what follows, we will discuss the implications of postulate (2.1) in terms

of approaches for simulating stochastic population dynamics. In the remainder

of Chapter 2 we will discuss “exact” methods that are useful in the case of small

numbers of interacting entities. In Chapter 3, we will present accelerated methods,

including a novel approach developed by the author, that build upon the founda-

tions laid in this chapter. Along the way, we will also discuss numerous variants

1Since our system is stochastic, this terminology more accurately reflects the inherent ran-

domness of the interactions.
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and consider an assortment of possible extensions.

2.2 Foundational theory

The most general approach to the problem of stochastic population dynamics is

that of the “master equation” [45, 76]. The master equation describes the time

evolution of the probabilistic state-space of a system. In other words, we think of

the state vector X(t) and ask: “What is the probability that the system will be in

the state X(t)=xt at time t given that it began in state x0 at time t0?” Using the

definition of the propensity in postulate (2.1), the master equation can be written

as

∂

∂t
P (xt, t|x0, t0) =

M∑
ν=1

[aν(xt − zν , θt)P (xt − zν , t|x0, t0)

− aν(xt, θt)P (xt, t|x0, t0)] . (2.2)

P (xt, t|x0, t0) is known as the “grand probability function” while the vector zµ =

{zµ1, . . . , zµN} holds the stoichiometric coefficients for each species in reaction Rµ

(note that most of the entries in zµ are zero since, generally speaking, only a few

species participate in any given reaction). In words, Eq. (2.2) states that the rate

of change of the probability of being in state xt at time t, given that the system

was in state x0 at time t0, is equal to the probability that the system is a single

reaction firing away from state xt at time t multiplied by the propensity of moving

into xt [with Θ(t)=θt], less the probability that it is in state xt at time t multiplied

by the propensity of moving away from xt.

In general, if one can solve Eq. (2.2) then one has all of the information that one

could ever hope for regarding the time evolution of a system. With an expression

for P (xt, t|x0, t0) in hand, mean values, standard deviations and all higher-order
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moments can, in principle, be calculated for every species in the system at all times

> t0. Unfortunately, this is only possible for the simplest of systems, meaning

that the master equation approach is generally infeasible for problems of practical

interest [41].

As a result, Gillespie took an alternative approach, deriving a simulation

scheme, known as the “stochastic simulation algorithm” (SSA) [41], that produces

time-evolution trajectories consistent with the grand probability function of the

master equation. The SSA is derived from the same fundamental hypothesis (2.1)

that led us to Eq. (2.2), meaning that in the limit of an infinite number of sample

trajectories, the SSA “exactly” reproduces P (xt, t|x0, t0) [45]. The SSA thus pro-

vides a means by which a solution to the master equation (2.2) can be obtained

without actually solving Eq. (2.2).

The theoretical construct that underlies the SSA is known as the “next-reaction

probability density function,” p(τ, µ|xt, t), defined as [41]

p(τ, µ|xt, t)dτ ≡ probability, at time t, that the next reac-

tion to fire in the system will occur within

the infinitesimal time interval [t+τ, t+τ+dτ)

and will be of type Rµ.

(2.3)

p(τ, µ|xt, t) is evidently a joint-probability density function that governs the firing

times, τ , and reaction types, µ, of the next reaction to fire in the system given the

current state xt at time t. Thus, if we can derive an expression for p(τ, µ|xt, t) we

could simulate the temporal evolution of a system by repeatedly sampling values

of τ and µ from the density function (using one of various sampling techniques—

see Secs. 2.3–2.5) and updating the system accordingly. The resulting trajectory

would represent a random sample of the grand probability function P (xt, t|x0, t0).
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This, very simply, is the essence of the SSA, a beautifully simple, and yet powerful,

simulation algorithm that almost anyone can implement.

Algorithm 1 (Gillespie, 1976 [41]):

Stochastic simulation algorithm.

1. Initialize: Define reaction network, rate parameters, initial species popula-

tions, set t= tstart.

2. Calculate propensities {aν} for all reactions.

3. Generate sample values {τ, µ} from p(τ, µ|xt, t) (see Secs. 2.3–2.5).

4. Advance the clock to t + τ and enact reaction Rµ by updating the populations

of the species involved in the reaction.

5. If a stopping criterion has been reached then terminate, else go to step 2.

In Fig. 2.1, we provide a simple illustration of the SSA in action. Though developed

in 1976, the SSA has become immensely popular only recently, particularly in the

field of computational systems biology where stochastic interactions between small

numbers of biological molecules within cells are of particular interest.

Our first goal in this chapter is to derive an expression for p(τ, µ|xt, t). To do

so, we follow the approach of Gillespie [44] (note that the following is more general

than the original derivation given in [41]). We begin by “conditioning” the density

function p(τ, µ|xt, t) as follows,

p(τ, µ|xt, t)dτ = Pr{0, τ |xt, t} × P1(µ|t + τ)dτ. (2.4)

Here, Pr{0, τ |xt, t} is the probability that no reactions of any kind fire within

[t, t + τ) while P1(µ|t + τ)dτ is the probability, at time t + τ , that reaction Rµ
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Conc.

Figure 2.1: Simple illustration of the SSA in action. The blue and red traces
signify individual realizations of the temporal evolution of a par-
ticular species population (concentration). The solid black curve
represents the mean obtained from multiple SSA simulations
while the dashed curves represent the spread (e.g., standard de-
viation). In the limit of an infinite number of simulations, the
SSA provides an exact solution to Eq. (2.2).

fires once within the next dτ . Note that we are implicitly assuming here that it is

impossible for more than one reaction firing to occur within dτ , which is valid in

the limit dτ→0.

Given the definition of the propensity in postulate (2.1), we immediately know

that

P1(µ|t + τ)dτ = aµ(t + τ)dτ = aµ(xt, θt+τ )dτ. (2.5)

Note that in the second equality, xt+τ has been replaced with xt because P1(µ|t+τ)

has been defined in Eq. (2.4) under the assumption that no reactions fire within

[t, t + τ). Thus, the species populations cannot change during this period. In gen-

eral, however, the environmental quantities Θ(t) can change, hence the dependency

upon θt+τ .

It follows from Eq. (2.5) that the probability that reaction Rµ will not fire
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within [t+τ, t+τ +dτ) is 1−aµ(xt, θt+τ )dτ . Therefore, by the multiplication law

of probability theory, the probability that no reactions of any kind fire during

[t+τ, t+τ +dτ) is

Pr{0, dτ |xt+τ =xt, t + τ} =
M∏

ν=1

[1− aν(xt, θt+τ )dτ ] = 1−
M∑

ν=1

aν(xt, θt+τ )dτ, (2.6)

where the second equality holds for dτ → 0 (i.e., upon expansion of
∏M

ν=1[1−

aν(xt, θt+τ )dτ ], all terms of O(dτ 2) fall out).

Using Eq. (2.6) and the multiplication law of probability theory, we can then

obtain an expression for the probability that zero reactions of any kind fire within

the interval [t, t+τ +dτ),

Pr{0, τ + dτ |xt, t} = Pr{0, τ |xt, t} × Pr{0, dτ |xt+τ =xt, t + τ}

= Pr{0, τ |xt, t} ×

(
1−

M∑
ν=1

aν(xt, θt+τ )dτ

)
. (2.7)

Subtracting Pr{0, τ |xt, t} from both sides and dividing through by dτ gives the

simple first-order differential equation

Pr{0, τ + dτ |xt, t} − Pr{0, τ |xt, t}
dτ

≡ d Pr{0, τ |xt, t}
dτ

= −

(
M∑

ν=1

aν(xt, θt+τ )

)
Pr{0, τ |xt, t}. (2.8)

Upon separation of variables and integration from 0 to τ , we get

Pr{0, τ |xt, t} = exp

[
−
∫ τ

0

M∑
ν=1

aν(xt, θt+τ ′)dτ ′

]
. (2.9)

Finally, substituting Eqs. (2.5) and (2.9) into (2.4) gives our desired expression,

p(τ, µ|xt, t)dτ = aµ(xt, θt+τ ) exp

[
−
∫ τ

0

M∑
ν=1

aν(xt, θt+τ ′)dτ ′

]
dτ. (2.10)

Equation (2.10) represents the major result of this section and is the expression

that lies at the heart of the SSA. With this expression in hand, the problem now
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becomes one of generating random sample pairs {τ, µ} that are consistent with

Eq. (2.10). In Secs. 2.3 and 2.4, we present two alternative approaches for doing

so. Both are due to Gillespie [41] and provide simple analytical expressions and

procedures for generating random samples of τ and µ.

2.3 Direct method

The most commonly-used approach for obtaining random samples {τ, µ} from

Eq. (2.10) is known as the direct method (DM) [41]. The DM is “direct” in the

sense that the next-reaction probability function in Eq. (2.10) is conditioned into

two one-variable probability functions, one for τ and one for µ, that are then

sampled independently. We condition Eq. (2.10) as follows,

p(τ, µ|xt, t)dτ = P1(τ |xt, t)dτ × P2(µ|t + τ). (2.11)

P1(τ |xt, t)dτ is the probability that the next reaction firing in the system will occur

within [t + τ, t + τ + dτ), regardless of type, while P2(µ|t + τ) is the probability

that the next reaction to fire will be of type Rµ, given that a firing will next occur

within [t + τ, t + τ + dτ).

Using the addition property of probability theory, it is easy to derive an ex-

pression for P1(τ |xt, t)dτ by simply summing Eq. (2.10) over all reactions,

P1(τ |xt, t)dτ =
M∑

ν=1

p(τ, ν|xt, t)dτ

= a0(xt, θt+τ ) exp

[
−
∫ τ

0

a0(xt, θt+τ ′)dτ ′
]

dτ, (2.12)

where a0(xt, θt+τ ) ≡
∑M

ν=1 aν(xt, θt+τ ). An expression for P2(µ|t+ τ) can then

obtained by substituting Eq. (2.12) into (2.11), rearranging, and substituting from
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Eq. (2.10),

P2(µ|t + τ) = p(τ, µ|xt, t)

/
M∑

ν=1

p(τ, ν|xt, t)

= aµ(xt, θt+τ ) /a0(xt, θt+τ ) . (2.13)

Random samples τ can now be obtained from Eq. (2.12), and samples µ from

Eq. (2.13), by using the continuous and discrete versions of the “inversion generat-

ing technique” [41, 44] (see Appendix C), respectively. In the case of Eq. (2.13), we

show in Appendix C that application of the technique is straightforward, yielding

µ as the integer that satisfies the relationship

µ−1∑
ν=1

aν(xt, θt+τ ) ≤ r2 × a0(xt, θt+τ ) <

µ∑
ν=1

aν(xt, θt+τ ), (2.14)

where r2 is a unit-uniform random number on [0, 1) [from this point forward, we

will denote the unit-uniform distribution as U(0, 1)].

In the case of Eq. (2.12), the approach can, in general, be applied with an

arbitrary dependence of a0(xt, θt+τ ) on τ . If the dependence is not simple, how-

ever, numerical integration is necessary, which may or may not be practical. The

most common implementation of the SSA, however, is in the case of τ -independent

propensity functions. τ independence implies constancy during [t, t+ τ), which

is different from time independence. Thus, the species populations X(t), which

remain constant between successive reaction firings (as discussed above), are τ

independent. The environmental quantities Θ(t) need not be, however. τ in-

dependence thus implies that environmental quantities, such as temperature and

volume, do not vary in time, i.e., a0(xt, θt+τ ) = a0(xt, θt) = a0(t). As shown in

Appendix C, random samples τ can be obtained from Eq. (2.12) in this special

case as

τ = − ln(r1)

a0(t)
, (2.15)
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where r1 is another random sample from U(0, 1). Equation (2.15) is used exten-

sively throughout the literature and is the expression most commonly associated

with the DM. It is important to recognize, however, that it is formally valid only

in the case of τ -independent propensities. Note, however, that Eq. (2.14) is valid

in either case.

2.3.1 Optimized versions

Optimizations of the DM generally focus on reducing the number of operations

required in selecting the reaction type µ via the inequality Eq. (2.14) [49]. The

standard approach, known as a “linear search,” is to progressively sum the values

of the propensities until the partial sum
∑µ

ν=1 aν(xt, θt+τ ) exceeds r2×a0(xt, θt+τ ).

The number of iterations required in this procedure has been termed the “search

depth” S [22]. For (hypothetical) reaction systems in which all of the propensities

are equal , the average search depth 〈S〉= M/2. In practical situations, however,

some reactions will invariably have larger propensities than others, meaning that

they will be selected more often. Thus, 〈S〉 will be skewed towards the index of

the reaction with the largest propensity.

Recognizing this, Cao et al. [22] proposed ordering the reactions from largest

propensity to smallest in order to minimize the number of iterations required to

select µ. However, because propensities change as the system evolves, one cannot

simply base the ordering on the initial state of the system. Their strategy, there-

fore, is to run a pre-simulation and collect statistics on the frequencies with which

each reaction fires and then order the reactions accordingly for subsequent simu-

lation runs. For the example systems that they considered, Cao et al. [22] showed

that this simple procedure can result in significant computational savings over a
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Figure 2.2: Illustration of the basic idea underlying optimized versions of
the DM. By ordering the reactions from largest propensity to
smallest, the average number of iterations required in selecting
the reaction type µ from Eq. (2.14) is minimized. The opti-
mized DM of Cao et al. [22] calls for a pre-simulation in order
to determine the appropriate ordering. The methods of McCol-
lum et al. [75] and Fricke and Wendt [39] employ dynamic sorting
in order to account for the fact that the species populations, and
hence propensities, can change significantly during the course of
a simulation.

naive implementation of the DM. In Fig. 2.2, we illustrate the difference between

a naive ordering of reactions and an optimized ordering based on the values of the

propensities.

The main shortcoming of the approach of Cao et al. [22] lies in its reliance on

the pre-simulation. As pointed out by McCollum et al. [75], there is no guarantee

that the pre-simulation will explore all possible behaviors of a network. Thus,

situations can arise where the pre-simulation-based ordering is significantly sub-

optimal, particularly in biochemical networks where gene expression dynamics can

result in dramatic changes in population levels. It makes sense, therefore, to sort
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the reactions dynamically as the simulation proceeds. McCollum et al. [75] pro-

posed a simple and efficient method for doing this: every time a reaction fires move

it up one spot in the reaction list, if possible. Repeating this procedure at each

step of a simulation will tend to congregate reactions with large propensities at

the top of the list and those with small propensities at the bottom, thus minimiz-

ing 〈S〉. Moreover, the ordering will adjust as the simulation proceeds to reflect

any changes in the propensities. McCollum et al. [75] showed, via various exam-

ple systems, that this “bubble-up” procedure imposes very little overhead on the

algorithm, making it always comparable to, and in some cases significantly more

efficient than, the method of Cao et al. [22]. The methods of Cao et al. [22] and

McCollum et al. [75], among others [68], have been reviewed recently by Gillespie

[49].

It is important to note that the idea of sorting reactions from fastest to slowest

in order to minimize the expense of event selection in kinetic Monte Carlo algo-

rithms is not a new one. Fricke and Wendt [39], for example, proposed over a

decade ago a bubble-up procedure very similar to that of McCollum et al. [75].

The difference is that during the linear search they compare the propensity of the

current reaction to that of the former (if there is one) and exchange the order of the

reactions if the current is larger than the former. Recent articles by Schulze [101]

and Slepoy et al. [107] also make clear that these types of optimizations are not

new. Thus, the values of the works of Cao et al. [22] and McCollum et al. [75] lie

in introducing these approaches within the context of Gillespie’s SSA.
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2.4 First-reaction method

In Gillespie’s seminal article on the SSA [41], an alternative to the DM was pro-

posed, dubbed the first-reaction method (FRM). The FRM operates on a very

different premise than the DM but, as we shall see, is formally equivalent in that

it also produces sample values {τ, µ} that are consistent with Eq. (2.10).

The basic idea behind the FRM is to ask the question: “If reaction Rµ were

the only reaction present in the system, when would it next fire?” The probability

function that governs the answer comes directly from Eq. (2.10) with M =1,

pµ(τ |xt, t)dτ = aµ(xt, θt+τ ) exp

[
−
∫ τ

0

aµ(xt, θt+τ ′)dτ ′
]

dτ, (2.16)

where we have used the subscript µ to signify that this is specific to reaction Rµ.

As in the DM, sample values τµ, termed “tentative next-reaction times,” can be

obtained from Eq. (2.16) using the inversion generating technique (Appendix C).

In the τ -independent case, the sampling formula is

τµ = − ln(rµ)

aµ(t)
, (2.17)

which follows directly from Eq. (2.15) with M = 1. rµ is again a random sample

from U(0, 1).

The FRM operates by generating one value of τµ for each reaction in the system,

choosing as τ the smallest of these and µ as the corresponding reaction. A simple

schematic illustrating the procedure is shown in Fig. 2.3. Intuitively, we can explain

why this procedure works by noting that, as far as the reaction with the smallest

τµ is concerned, it is the only reaction in the system. In other words, Eq. (2.16)

holds for Rµ as long as no other reactions fire first. The reaction with the smallest

τµ is thus the only one for which this assumption actually holds.
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Figure 2.3: Schematic representation of the FRM. A “tentative next-reaction
time,” τµ, is calculated for each reaction in the system and τ set
to the smallest of these. µ is set to the corresponding reaction.
Here, τ = τ3 and µ = 3. Also shown are the “residuals” τµ−τ .

Mathematically speaking, we can prove that the FRM correctly samples

Eq. (2.10) by first defining

p̃(τ, µ|xt, t)dτ ≡ probability, in the FRM, that the next re-

action to fire in the system will do so within

[t + τ, t + τ + dτ) and will be of type Rµ.

(2.18)

Our goal is then to derive an expression for p̃(τ, µ|xt, t) and show that it is equiv-

alent to p(τ, µ|xt, t) from Eq. (2.10). (Note that what follows is a more general

proof than that given in [41]; it is based on the work in Ref. [43].)

We begin by conditioning p̃(τ, µ|xt, t) as follows,

p̃(τ, µ|xt, t)dτ = Pr{τ < τµ < τ + dτ} × Pr{τν > τ, for all ν 6= µ}. (2.19)

The first term, Pr{τ < τµ < τ +dτ}, is simply pµ(τ |xt, t)dτ , i.e., Eq. (2.16). The
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second term can be written as

Pr{τν > τ, for all ν 6= µ} =
M∏

ν=1
ν 6=µ

Pr{τν > τ} (2.20)

=
M∏

ν=1
ν 6=µ

Pr{F−1
ν (rν |xt, t) > τ}

=
M∏

ν=1
ν 6=µ

Pr{rν > Fν(τ |xt, t)}

=
M∏

ν=1
ν 6=µ

[1− Fν(τ |xt, t)].

The first equality is due to the fact that tentative next-reaction times are sta-

tistically independent, the second utilizes the inversion formula Eq. (C.2) in Ap-

pendix C, the third uses the identity F (F−1(r)) = r, and the fourth comes from

the fact that the probability that a unit-uniform random number is greater than

x∈ [0, 1) is simply 1− x.

Using Eqs. (2.16) and (C.1), the probability distribution function Fν(τ |xt, t) in

Eq. (2.20) can be written as

Fν(τ |xt, t) =

∫ τ

0

aν(xt, θt+τ ′) exp

(
−
∫ τ ′

0

aν(xt, θt+τ ′′)dτ ′′

)
dτ ′. (2.21)

We now make the following variable substitution [43],

bν(τ ′) ≡
∫ τ ′

0

aν(xt, θt+τ ′′)dτ ′′, (2.22)

which gives

dbν(τ ′) = aν(xt, θt+τ ′)dτ ′. (2.23)

This allows us to evaluate Eq. (2.21) as

Fν(τ |xt, t) =

∫ bν(τ)

0

e−bν(τ ′)dbν(τ ′)

= 1− exp

[
−
∫ τ

0

aν(xt, θt+τ ′)dτ ′
]

. (2.24)
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Equation (2.20) can then be written as

Pr{τν > τ, for all ν 6= µ} =
M∏

ν=1
ν 6=µ

exp

[
−
∫ τ

0

aν(xt, θt+τ ′)dτ ′
]

. (2.25)

Substituting Eqs. (2.16) and (2.25) into Eq. (2.19) gives

p̃(τ, µ|xt, t)dτ = aµ(xt, θt+τ )
M∏

ν=1

exp

[
−
∫ τ

0

aν(xt, θt+τ ′)dτ ′
]

dτ (2.26)

= aµ(xt, θt+τ ) exp

[
−
∫ τ

0

M∑
ν=1

aν(xt, θt+τ ′)dτ ′

]
dτ

= p(τ, µ|xt, t)dτ.

Thus, we see that the FRM does indeed correctly sample Eq. (2.10). �

The obvious downfall of the FRM, as originally formulated [41], is that it

requires M random number generations at each simulation step, one for each re-

action in the system. Since the DM requires only two random numbers at each

step, regardless of network size, the FRM is clearly inferior. As such, the FRM

was initially relegated to nothing more than an academic curiosity, useful for il-

luminating the concepts underlying the SSA [41] but largely ignored for practical

purposes. By implementing some simple modifications, however, we will see that

the FRM can be transformed into a much more efficient version, comparable to,

and sometimes superior to, the DM. We will discuss these modifications in the

subsequent subsections. Moreover, the idea of considering reactions individually

(though not independently), which underlies the FRM, is the key ingredient neces-

sary for seamlessly incorporating the SSA into an accelerated-stochastic simulation

framework known as the “partitioned-leaping algorithm” (PLA), which is the main

contribution of this dissertation. The PLA will be presented in Chapter 3.
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2.4.1 Simple optimization

Towards the end of the presentation of the FRM in Ref. [41], Gillespie discusses

the temptation to extend the idea to allow the “second next” reaction to fire in the

system to be that with the second smallest τµ, a “second-reaction method” as it

were. He rightly points out, however, that this is an illegitimate approach because

it (i) precludes the possibility that the reaction with the smallest τµ could itself

fire again before any other reaction, and (ii) ignores the fact that molecules were

created or destroyed in the first reaction (the propensities would not be updated

to reflect this).

Obviously, a naive implementation of this idea is illegitimate, but it turns out

that it is not as bad an idea as one might think. To see this, let us consider

Fig. 2.3, a hypothetical step of the FRM. Here, we see that τ3 is the minimum

of the set {τν}, ν = 1–5. Thus, following the procedure proposed in Ref. [41], we

would (i) change the system time from t to t+τ with τ =τ3, (ii) update the species

populations to reflect the firing of R3, (iii) calculate new values of {aν(t+τ)} for

all reactions, and (iv) generate five samples from U(0, 1) and use them to calculate

new values of {τν}.

Consider for a moment, however, that invariably one or more of the reactions in

Fig. 2.3 will be completely independent of R3, i.e., none of the species either created

or destroyed in R3 act as reactants in those reactions. For these reactions we clearly

need not generate new random numbers and calculate new values of τµ, as called

for in step (iv) above; the times at which these reactions are next scheduled to

fire are unaffected by the firing of R3. Put another way, Eq. (2.16) still holds for

those reactions because no reactions have yet fired that alter their propensities. It

would be completely legitimate, therefore, to set the new tentative next-reaction
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times for all unaffected reactions equal to their “residuals” (see Fig. 2.3), i.e.,

τµ = τ ◦µ − τ̃ , µ 6= µ◦ ∈ unaffected reactions , (2.27)

where τ ◦µ is the tentative next-reaction time from the previous simulation step (the

“old” value, hence the superscript ‘◦’) and τ̃ =min{τ ◦ν }. However, for the affected

reactions, including that which just fired (i.e., µ=µ◦), we would still generate new

τµ values by sampling from Eq. (2.16) [i.e., using Eq. (2.17) in the τ -independent

case].

Let us take this idea a step further. Imagine that instead of keeping track of

the relative times between reaction firings, we instead thought in terms of absolute

time, i.e., from the start of the simulation. Our tentative next-reaction times would

then be defined on an absolute basis as

τ̂µ ≡ τµ + t. (2.28)

If we were to do this, then there would be no need to update the values of τ̂µ for

any of the unaffected reactions. The scheduled firing times would remain exactly

as before, i.e., τ̂µ = τ̂ ◦µ.

What we have done in this thought experiment is basically demonstrate how

something akin to a “second-reaction method” can be implemented. Clearly, upon

the firing of a reaction, the propensities of all reactions affected by that firing must

be updated to reflect the changes in the species populations. If we are clever,

however, we have shown that we can greatly reduce the computational expense

of our approach by (i) only generating new random numbers for those reactions

affected by the last reaction firing, and (ii) changing our frame of reference from

relative to absolute time. By doing this, not only do we reduce the number of

random number generations required at each simulation step, we also eliminate

the need to evaluate Eq. (2.27) for all unaffected reactions.
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Implementing these modifications is quite easy. The change to absolute time is

straightforward and simple, requiring nothing more than modifying the appropriate

equation for τµ [e.g., Eq. (2.17) in the τ -independent case] by adding to it the

current time t, as in Eq. (2.28). Selective updating of only the affected reactions

can be carried out by generating, at the outset of a simulation, a data structure

which stores which reactions affect which. This object, termed a “dependency

graph” in [40], would be accessed at every simulation step.

By implementation these changes, the main improvement that we make to the

FRM is in reducing the number of random number generations required at each

simulation step. Because most reaction networks are sparse, i.e., most reactions

affect only a small subset of all reactions, the number of random numbers required

per step can generally be reduced to a number �M . In the subsequent subsection,

we show how making one additional modification can reduce this number to exactly

one (subsequent to the first step). The resultant method, due to Gibson and Bruck

[40], is known as the next-reaction method (NRM).

2.4.2 Next-reaction method

In an attempt to improve the efficiency of the SSA, Gibson and Bruck [40] did what

few investigators had thought to do in the preceding 25 years, revisit the FRM.

The method that they developed, the next-reaction method, can be thought of

as an enhanced version of the FRM with three primary modifications: the two

constituting the simple optimization described in the previous subsection and an

additional variable transformation, which we will discuss here, that allows random

samples to be reused at each simulation step.
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In this dissertation, we have separated the first two modifications from the

latter in order to more clearly convey what exactly constitutes the NRM and what,

we believe, is the main contribution of Ref. [40], i.e., the variable transformation

formula. It is not that we believe the modifications of the previous subsection to be

unimportant. Quite to the contrary, the FRM reformulated in this simple way is

much more amenable to efficient methods of computer science, which is extremely

significant in and of itself. However, they are not novel innovations, per se. The

variable transformation formula on the other hand, which reduces the number of

random number generations required at each simulation step to a single one, is

novel and is what makes the NRM a non-trivial extension of the FRM.

The general approach of all Monte Carlo sampling techniques is to take a

random sample from a simple distribution for which standard sampling approaches

exist, e.g., the unit-uniform distribution U(0, 1), and transform it, in some way,

into a sample from a different distribution that is not so easily, or feasibly, sampled.

Equation (2.17) is an example of this, where a sample rµ from U(0, 1) is transformed

into a sample τµ from Eq. (2.16). The great insight that Gibson and Bruck had in

[40] was recognizing that the same approach can be used for generating random

samples of τµ from Eq. (2.16) at time t by transforming the “leftover” samples τ ◦µ

obtained from Eq. (2.16) at time t− τ̃ . The formula for doing so is known as the

next-reaction transformation theorem.

Next-reaction transformation theorem [40]. Let τ ◦µ be a sample from

Eq. (2.16) at time t − τ̃ and let τ ◦µ 6= τ̃ , where τ̃ = min{τ ◦ν }, ν = 1, . . . ,M . New

tentative next-reaction times {τν} at time t can be obtained for all reactions, other

than the one that just fired, by applying the transformation formula

τµ = F−1
µ

[(
Fµ(τ ◦µ|xt−eτ , t− τ̃)− Fµ(τ̃ |xt−eτ , t− τ̃)

1− Fµ(τ̃ |xt−eτ , t− τ̃)

)∣∣∣∣xt, t

]
. (2.29)
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To see how this works, consider the common case of τ -independent propensities

where Eq. (2.16) can be written as

pµ(τ |xt, t)dτ = aµ(t) exp [−aµ(t)τ ] dτ. (2.30)

Using Eq. (C.1) in Appendix C, we can get the distribution function

Fµ(τ |xt, t) =

∫ τ

0

pµ(τ ′|xt, t)dτ ′ = 1− exp [−aµ(t)τ ] , (2.31)

and the associated inverse function

F−1
µ (r|xt, t) =

− ln(1− r)

aµ(t)
. (2.32)

Now, using Eqs. (2.31) and (2.32) in concert with Eq. (2.29), we get

τµ = F−1
µ

[ (
1− e−aµ(t−eτ)τ◦µ

)
−
(
1− e−aµ(t−eτ)eτ

)
1− (1− e−aµ(t−eτ)eτ )

∣∣∣∣∣xt, t

]
= F−1

µ

[
1− e−aµ(t−eτ)(τ◦µ−eτ)

∣∣xt, t
]

=
aµ(t− τ̃)

aµ(t)
(τ ◦µ − τ̃). (2.33)

Thus, we see that the variable transformation amounts, in this case, to a simple

rescaling of the residuals (τ ◦µ− τ̃) (see Fig. 2.3) that accounts for the changes in

the reactant species populations due to the last reaction firing.2 If the reaction is

unaffected by the last firing, we see that Eq. (2.33) reduces to Eq. (2.27), just as

we expected based on intuitive arguments. The variable transformation theorem

Eq. (2.29) puts this intuition on firm theoretical ground.

A typical NRM simulation proceeds by first generating M random samples

{rν} from U(0, 1) and using them to generate M values of {τν}, just as in the

original FRM. The clock is then advanced by τ = min{τν} and the corresponding

2Note that Eq. (2.33) is slightly different from the expression given in Ref. [40] in that it is

a relative time version of the transformation formula. The relation in Ref. [40] is recovered by

simply adding to Eq. (2.33) the current time t.
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reaction enacted by changing the species populations associated with that reaction

and updating the propensities of all affected reactions. The latter operation can

be performed by accessing the dependency graph [40]. For the reaction that just

fired, a new value of τµ is then generated, as before, using a new sample of U(0, 1).

For all other reactions, however, Eq. (2.29) is used [Eq. (2.33) in the τ -independent

case]. If we operate in absolute time, then Eq. (2.29) need only be evaluated for

the affected reactions (again, the dependency graph can be used for this). If we

operate in relative time, then it must be evaluated for all reactions, although, as

discussed above, it reduces to Eq. (2.27) for all unaffected reactions.

An important implementation detail that deserves discussion here is what to

do if a reaction becomes inactive. In this situation, aµ = 0 and τµ =∞. Clearly,

when the reaction becomes active again we cannot use these values in Eq. (2.29)

to generate a new value of τµ. What we can do, however, is use the values from

the last simulation step at which the reaction was active. Thus, at each step of

a NRM simulation, values of aµ, τµ and τ are stored for each reaction and used

in Eq. (2.29) at the next step at which the reaction is active. Usually this is the

subsequent step, but sometimes it is not.3

With the transformation formula (2.29) in hand and the implementation of the

NRM outlined, our final task in this subsection is to prove that Eq. (2.29) does, in

fact, produce valid sample values of Eq. (2.16). To do this, we must first recognize

that once the time step τ̃ (from the previous simulation step) has been chosen

as min{τ ◦ν }, the leftover values of {τ ◦ν } can be viewed as random samples from a

density function that governs the probability, at time t − τ̃ , that τ ◦µ lies within

[τ ◦, τ ◦ + dτ ◦) given that τ ◦µ >τ̃ . Basically, this is different from Eq. (2.16) because

we now have additional information regarding the values of {τ ◦ν }, i.e., that they

3This issue was briefly addressed in notes 11 and 14 of Ref. [40].
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are all larger than τ̃ .

This probability can be expressed using the multiplication law of probability

theory as

Pr{τ ◦ < τ ◦µ < τ ◦ + dτ ◦|τ ◦µ > τ̃} =
Pr{τ ◦ < τ ◦µ < τ ◦ + dτ ◦ ∩ τ ◦µ > τ̃}

Pr{τ ◦µ > τ̃}
(2.34)

(note that ∩ denotes ‘and ’). The numerator can then be written as

Pr{τ ◦ < τ ◦µ < τ ◦ + dτ ◦ ∩ τ ◦µ > τ̃} =

 0 for τ ◦ ≤ τ̃

pµ(τ ◦|xt−eτ , t− τ̃)dτ ◦ for τ ◦ > τ̃

= H(τ ◦ − τ̃)pµ(τ ◦|xt−eτ , t− τ̃)dτ ◦, (2.35)

where H(·) is the Heaviside step function [Eq. (A.3)]. The denominator can be

written as

Pr{τ ◦µ > τ̃} = Pr{F−1
µ (r◦µ|xt−eτ , t− τ̃) > τ̃}

= Pr{r◦µ > Fµ(τ̃ |xt−eτ , t− τ̃)}

= 1− Fµ(τ̃ |xt−eτ , t− τ̃), (2.36)

where again we have used Eqs. (C.1) and (C.2) from Appendix C. Substituting

Eqs. (2.35) and (2.36) into Eq. (2.34) then gives

Pr{τ ◦ < τ ◦µ < τ ◦ + dτ ◦|τ ◦µ > τ̃} = H(τ ◦ − τ̃)
pµ(τ ◦|xt−eτ , t− τ̃)

1− Fµ(τ̃ |xt−eτ , t− τ̃)
dτ ◦. (2.37)

In Eq. (2.37) we now have the probability density function that governs the

random samples {τ ◦ν }, which are leftover tentative next-reaction times from time

t − τ̃ . We also have the expression for calculating new random samples {τν} at

time t from these, i.e., Eq. (2.29). Thus, we have all the information that we need

to determine the (unknown) probability density function Qµ(τ) that governs the

{τν}. Let us see if it, in fact, corresponds to pµ(τ |xt, t) from Eq. (2.16).
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We apply the random variable transformation (RVT) theorem [44] (Ap-

pendix A) to Eq. (2.37) using Eq. (2.29),

Qµ(τ) =

∫ ∞

eτ

dτ ◦
pµ(τ ◦|xt−eτ , t− τ̃)

1− Fµ(τ̃ |xt−eτ , t− τ̃)
(2.38)

× δ

{
τ − F−1

µ

[(
Fµ(τ ◦|xt−eτ , t− τ̃)− Fµ(τ̃ |xt−eτ , t− τ̃)

1− Fµ(τ̃ |xt−eτ , t− τ̃)

)∣∣∣∣xt, t

]}
.

Here, δ(·) is the Dirac delta function, defined in Eq. (A.1) of Appendix A. It

is important to recognize that the quantities τ and τ ◦ that appear in the delta

function are random variables , of which τµ and τ ◦µ are random samples . The

former are abstract quantities while the latter, which appear in Eq. (2.29), are

literal numbers. Also note that the effect of H(τ ◦ − τ̃) in Eq. (2.37) is to change

the lower limit of integration in Eq. (2.38).

At first glance, Eq. (2.38) looks imposing. However, we can simplify things

greatly by making the following variable substitution,

u ≡ Fµ(τ ◦|xt−eτ , t− τ̃)− Fµ(τ̃ |xt−eτ , t− τ̃)

1− Fµ(τ̃ |xt−eτ , t− τ̃)
, (2.39)

which leads to

du =

(
dFµ(τ ◦|xt−eτ , t− τ̃)/dτ ◦

1− Fµ(τ̃ |xt−eτ , t− τ̃)

)
dτ ◦ =

pµ(τ ◦|xt−eτ , t− τ̃)

1− Fµ(τ̃ |xt−eτ , t− τ̃)
dτ ◦, (2.40)

and allows us to rewrite Eq. (2.38) as

Qµ(τ) =

∫ 1

0

du× δ
{
τ − F−1

µ (u|xt, t)
}

. (2.41)

We can then simplify things even more by defining

w ≡ F−1
µ (u|xt, t), (2.42)

which implies that

u = Fµ(w|xt, t),

du =

(
dFµ(w|xt, t)

dw

)
dw = pµ(w|xt, t)dw.

(2.43)
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Finally, substituting Eqs. (2.42) and (2.43) into Eq. (2.41) gives

Qµ(τ) =

∫ ∞

−∞
dw × pµ(w|xt, t)δ(τ − w) (2.44)

= pµ(τ |xt, t),

where the last equality is due to the “sifting property” of the Dirac delta function

[Eq. (A.2)]. Thus, we see that the values of τµ given by Eq. (2.29) do, indeed,

correspond to random samples of Eq. (2.16) at time t. �

2.5 Spatial extensions and diffusion—Next-subvolume

method

The DM and FRM of Secs. 2.3 and 2.4 are mathematically equivalent methods for

sampling the next-reaction probability density function of Eq. (2.10). Conceptu-

ally, however, the two approaches are obviously quite different. On the one hand,

the DM can be seen as considering all of the reactions in the system as a group.

The time to the next firing within the group is determined via, e.g., Eq. (2.15), and

the identity of the firing reaction within the group is determined via Eq. (2.14).

The FRM, on the other hand, considers each reaction in the system individually ,

i.e., as a group of one. A tentative next-reaction time is calculated for each reac-

tion using, e.g., Eq. (2.17), which is simply Eq. (2.15) with M = 1. The reaction

to fire is then chosen as that corresponding to the smallest of these values.

If we think of these two approaches as representing two ends of a spectrum with

regard to the grouping of reactions, the fact that they are both mathematically-

sound procedures for sampling Eq. (2.10) implies that any method intermediate

between them is also a mathematically-sound procedure. In other words, we can
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group reactions into subgroups if we like and then apply successive iterations of

the DM, the FRM, or a combination of the two in order to determine τ and µ. The

choice of approach will depend on the system being investigated and the preference

of the investigator.

An example of such a hybrid SSA implementation is the next-subvolume

method (NSM) of Elf and Ehrenberg [31, 60]. These authors were specifically

concerned with stochastic simulations of coupled reaction and diffusion processes

in inhomogeneous systems. In order to account for the inhomogeneity, they dis-

cretize the system into multiple homogeneous subvolumes. Identical copies of each

reaction can then fire in each subvolume and species can diffuse between neighbor-

ing subvolumes. Diffusion is modeled in this regard as a type of chemical reaction,

often as a first-order process though it can take on other forms as well (e.g., assisted

diffusion through a membrane via a Michaelis-Menten mechanism). In Fig. 2.4,

we show an example of such a spatial discretization.

Discretizing space in this way leads to a natural grouping of reaction and dif-

fusion events based on their physical location within the system. The approach of

Elf and Ehrenberg [31] is to sum the propensities of each subvolume, which we will

denote as al
0, l = 1, . . . , L (L being the number of subvolumes), and then choose

the subvolume within which the next reaction will fire as in the FRM, i.e., using

Eq. (2.17) with aµ replaced with al
0. Once the subvolume has been chosen, the

identity of the firing reaction is determined as in the DM, i.e., using Eq. (2.14)

with aν replaced with al
ν (the propensity of the local copy of Rν) and a0 replaced

with al
0. This procedure parses out the computational load into two stages and

can result in significant savings relative to straightforward implementations of the

SSA to inhomogeneous systems (e.g., [55]), particularly if optimized variants of
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Figure 2.4: Example of a discretization of an inhomogeneous reaction vol-
ume into numerous homogeneous subvolumes. Within each sub-
volume local versions of each reaction can fire. Species can also
diffuse between neighboring subvolumes. In principle, each sub-
volume has an underlying microscopic structure which is coarse-
grained out at the mesoscopic level.

the DM [22, 39, 75] and FRM [40] are utilized.

It is important to recognize that strategies for improving the performance of

kMC algorithms by grouping reactions appear throughout the literature, though

often in different guises. For example, Gillespie describes in a recent review [49] an

approach that he terms the first-family method, which is exactly equivalent to the

NSM except that the groupings are arbitrary, i.e., they are done for convenience

and need not be based on physical location, though they certainly can be. Other

examples include Blue et al. [9], who proposed grouping pairs of reactions, and then

pairs of pairs of reactions, and so on, in a binary tree-like structure, and Fricke

and Wendt [39], who employed a three-tiered approach that involves grouping

by process (e.g., reaction and diffusion) and then by subvolume. Blue et al. [9]

32



basically apply the DM at each level of their tree but since each level consists of

only two choices the procedure is simple and fast. The technique has been used

by Bernstein [6] within a spatial context. Fricke and Wendt [39] use the DM at

the level of processes and for choosing reactions within subvolumes but employ

an acceptance-rejection method, which is an alternative sampling procedure not

discussed in this dissertation, at the level of subvolumes. Interestingly, similar

approaches have been proposed recently by Schulze [101] and Slepoy et al. [107],

the latter of which is specifically concerned with applications to the SSA.
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Chapter 3

Development of a Novel

Accelerated-Stochastic Simulation

Approach: The Partitioned-Leaping

Algorithm

By construction, the exact-stochastic simulation approach of Chapter 2, along

with all of its variants, is fundamentally limited in applicability because of its

“one reaction at a time” nature. In the SSA, one reaction firing is simulated at

every simulation step, with the time step τ being inversely proportional to the

propensity of the fastest reaction in the system. For example, in the DM version

of the SSA (Sec. 2.3), this propensity contributes the most to the sum a0≡
∑

ν aν

in Eq. (2.15). In the FRM variant (and the NRM by extension—Sec. 2.4), this

reaction will most often correspond to min{τν}, since 〈τµ〉 = 1/aµ. As such, if

one reaction is much faster than all the rest, either because it has larger reactant

populations or rate parameters, then most of the computational effort will be spent

repeatedly simulating firings of that reaction. This severely limits the utility of

the method, especially in situations where rare events are of interest.

This limitation of the SSA has been well known since its inception [41]. Inter-

est in developing methods for overcoming it, however, has only become prevalent

recently, driven primarily by the ever-increasing interest in the role and conse-

quences of stochastic noise in biological systems, where large disparities in dy-

namical timescales are common [34, 35, 61, 69, 74, 89, 90, 99, 100]. Indeed, a

multitude of approximate approaches have been proposed in recent years aimed at

accurately capturing stochastic effects in (bio)chemical reaction networks at sig-
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nificantly reduced computational cost relative to the SSA. These approaches have

been wide-ranging in scope, from methods for solving simplified versions of the

master equation [Eq. (2.2)] [79, 80], to techniques for systematically reducing the

complexity of reaction networks [27, 38, 64], to strategies that ignore the exact

times at which reactions fire and group multiple firings into a single simulation

step [3, 14, 20, 21, 25, 47, 50, 56, 83, 84, 91, 92, 109, 114]. This latter class of

technique, due originally to Gillespie [46, 47], is known as “leaping,” and is the

focus of this chapter.

In what follows, we will present the underlying theory laid down by Gillespie

[46, 47] on which all leaping methods are based. We will then discuss the original

and modified versions of the “τ -leaping” method [20, 47, 50] and present a novel

leaping variant known as “partitioned leaping” [56], developed by the author of

this dissertation. We will conclude by discussing a number of alternative leaping

strategies that have been proposed in the literature and consider various extensions

that can expand the utility of the approach.

3.1 Building a bridge to the continuum1

The fundamental idea underlying the leaping approach is if a species has a large

population then a single firing of a reaction involving that species will only change

the reaction rate, or propensity, minimally [46, 47]. As such, if we choose to ignore

the exact moments at which reactions fire, which is usually not of great interest,

we can achieve significant computational accelerations by assuming that the re-

action dynamics obey Poissonian statistics . Simply put, the Poisson distribution

1The material in this subsection has been adapted from Ref. [56].
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[see Appendix A, Eqs. (A.8)–(A.10)] governs the probability of discrete events oc-

curring over continuous intervals, where the probability of an event occurring is

constant throughout the interval. In our case, the number of reaction firings is the

discrete quantity, τ is the continuous interval of time, and we are positing that aµ,

the reaction probability, or propensity, remains constant throughout τ . Defining

Kµ(τ |xt, t) as the number of times reaction Rµ fires within τ given the state xt at

time t, we can express the Poissonian assumption as

Kµ(τ |xt, t) ≈ Pµ(aµ(t)τ), (3.1)

where the Poisson random variable Pµ(aµ(t)τ) has mean and variance aµ(t)τ

[Eq. (A.10)].

The advantages of implementing a simulation method based on Eq. (3.1) are

clear: assuming that a “suitable” time interval τ can be obtained over which all

reaction propensities remain essentially constant, we can simulate multiple firings

of every reaction in a system at every simulation step by generating Poisson random

deviates for each reaction based on the current values of the propensities.2 Contrast

this with the single reaction firing simulated at each step of a SSA simulation.

Furthermore, if we are careful in our selection of τ , then the error introduced by

this procedure will be minimal. This, in its simplest form, is the leaping approach.

Of course, obtaining a suitable time step is a non-trivial task, and one that has

received significant attention in the literature [20, 47, 50]. We will discuss various

such “τ -selection” procedures in Sec. 3.4.

In Ref. [47], Gillespie went a step further, noting that it is a well-known prop-

erty of the Poisson distribution that it can be approximated by a normal , or

Gaussian, distribution [see Appendix A, Eqs. (A.11)–(A.14)], with the same mean

2Standard methods exist for doing this, e.g., Ref. [86].
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and variance, when the mean value (aµτ in this case) is “large” (i.e., �1). Thus,

in this case, we can make the additional assumption

Kµ(τ |xt, t) ≈ Nµ(aµ(t)τ, aµ(t)τ)

= aµ(t)τ +
√

aµ(t)τ ×N (0, 1), (3.2)

where the second line is due to the “linear combination theorem” for normal ran-

dom variables [46, 47], i.e., N (m,σ2) = m + σN (0, 1), where m is the mean and

σ2 the variance. Written this way, Eq. (3.2) has the form of a Langevin equa-

tion, a stochastic differential equation (SDE) comprised of a “deterministic” term

(aµτ) and a fluctuating “noise” term (
√

aµτ ×N (0, 1)). This is significant as much

confusion exists regarding the source of, and proper functional form for, the noise

term in SDEs [46]. Equation (3.2) resolves much of this confusion, at least with

regards to intrinsic noise.

Finally, Gillespie went one step further and noted that as aµτ →∞ the noise

term in Eq. (3.2) can be neglected relative to the deterministic term (i.e., when

their ratio aµτ/
√

aµτ =
√

aµτ � 1). This gives the “deterministic” approximation

Kµ(τ |xt, t) ≈ aµ(t)τ. (3.3)

Equations (3.1)–(3.3) represent a significant contribution to the field of chemi-

cal kinetics, amounting to a derivation of the deterministic reaction-rate equation

approach from first principles. Deterministic kinetics is commonly presented to

undergraduate chemistry and chemical engineering students from a phenomeno-

logical point of view within an ODE context. However, Eqs. (3.1)–(3.3), and the

conditions identified by Gillespie for transitioning between them, provide a deeper

understanding, illustrating that chemical kinetics is neither phenomenological nor

continuous and deterministic by nature. Rather, it has a firm theoretical founda-

tion based on probabilistic interactions between discrete molecular entities, with
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the common approach of treating the dynamics continuously and deterministically

being an approximation in the large-number limit. This physically-based view of

chemical kinetics has significant educational value. We will see in what follows

that it has great practical utility as well.

3.2 τ-leaping

Strictly speaking, the method known as τ -leaping [18, 20, 47, 50] utilizes only the

discrete-stochastic Poisson approximation of Eq. (3.1) (as alluded to above) along

with a proviso for switching to the SSA when the expected number of reaction

firings within the interval τ is “small” (typically . 10). Moreover, numerous re-

finements and modifications have been made to the approach since its inception

in Ref. [47]. In particular, attempts to apply the original τ -leaping algorithm

to prototypical biochemical reaction networks encountered problems with species

populations becoming negative [25, 109]. This is due to the fact that the Poisson

distribution is positive unbounded and can give rise to unphysical numbers of reac-

tion firings.3 As a result, numerous strategies have been proposed for overcoming

this problem. These include replacing the Poisson description with one based on a

bounded binomial distribution [25, 109] and a somewhat ad hoc procedure for dis-

tinguishing “critical” reactions in danger of exhausting their reactant populations

3In fact, given a long enough simulation, this will invariably occur in any reaction system.

However, it is important to note that the difficulties experienced in Refs. [25] and [109] appear

to have been due to a specific type of biochemical reaction, gene-protein binding and unbinding.

Since there is only a single gene, these reactions can only occur once in a simulation step. It

appears, however, that Poisson random deviates were generated in Refs. [25] and [109] that were

larger than unity, causing the gene populations to go negative. Note that the method presented

in Sec. 3.3 naturally overcomes this problem.
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from non-critical ones [18].

Another important point is that a distinction has been made between “explicit”

leaping methods that utilize the value of the propensity at the beginning of the

time step, i.e., aµ(t) (the original τ -leaping algorithm is explicit), and “implicit”

methods that incorporate the value at the end of the time step, i.e., aµ(t + τ). In-

deed, in analogy with methods used in the numerical solution of ODEs, Petzold and

co-workers have introduced various implicit τ -leaping methods [24, 92, 93]. These

methods have been shown to maintain numerical stability in situations where ex-

plicit methods cannot. The cost, however, is that fluctuations are dampened. In

the case of ODEs, this is a desirable property of a method since any fluctuations

that are seen are purely numerical in nature. This is not true in the case of stochas-

tic simulations, however, because the fluctuations have physical significance, being

intrinsic to the probabilistic nature of the interactions. To address this problem,

a strategy for intermixing explicit and implicit τ -leaping has been proposed [21].

Nevertheless, the legitimacy of implicit leaping remains somewhat questionable at

the current time [49].

In this dissertation, we will not delve into these modifications in any great

detail. An overview of these methods and other leaping approaches is provided

in Sec. 3.5. For a deeper discussion, the interested reader can consult Ref. [20]

for the latest incarnation of explicit τ -leaping and Refs. [24, 92, 93] for a discus-

sion of implicit τ -leaping. However, for the sake of subsequent comparison with

the partitioned-leaping algorithm (PLA) [56] (Sec. 3.3), we present here a simpli-

fied algorithm for explicit , Poisson-based τ -leaping that implements a simple “try

again” procedure [18] for avoiding negative species populations.
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Algorithm 2 (Gillespie and co-workers, 2001–2006 [18, 20, 47, 50]):

Explicit Poisson τ-leaping with simple negative population check.

1. Initialize: Define reaction network, rate parameters, initial species popula-

tions.

2. Determine an “appropriate” time step τ (see Sec. 3.4).

3. If a0τ , the total number of expected reaction firings within τ , is >10, deter-

mine how many times each reaction fires within τ by generating M Poisson

random deviates {kν} using, e.g., the method in Ref. [86].

4. If a0τ ≤ 10, use your favorite SSA approach to determine the time and type

of the next reaction firing in the system (this results in a new value of τ).

5. Fire all reactions, update the species populations and propensities, and ad-

vance the clock to time t + τ .

6. If any Xi(t + τ) < 0, reverse all updates, set τ = τ/2 and return to step 3

(i.e., try again).

7. If the stopping criterion has been met then terminate, otherwise go to step 2.

3.3 Considering reactions individually—The ‘partitioned-

leaping algorithm’

3.3.1 The idea

In the view of the author of this dissertation, there are three main shortcomings

of Algorithm 2, the simple τ -leaping algorithm: (i) the incorporation of the SSA

is somewhat forced and unnatural, (ii) it does not utilize the entire theoretical
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framework developed in Ref. [47], and reviewed in Sec. 3.1, for bridging from the

discrete-stochastic regime to the continuous-deterministic, and (iii) the simple pro-

cedure for avoiding negative populations, while successful, can be inefficient [18],

particularly when considering reactions involving species with very small popula-

tions, such as genes (see footnote 3).

It turns out, however, that by making one simple adjustment to our thinking all

three of these shortcomings can be resolved. Specifically, we follow the example of

the FRM variant of the SSA (Sec. 2.4) and consider each reaction in the system on

an individual basis. This is not to say that we consider the reactions independently,

we do not. The interconnectivity of the network is accounted for in the process of

selecting τ (see Sec. 3.4). However, by definition, τ is the time interval over which

each reaction in the system can be considered to be a statistically independent

Poisson process. Thus, the primary change that we make to τ -leaping is to classify

each reaction in the system into one of four categories once the time step τ has been

determined. The categories correspond to the three levels of description discussed

in Sec. 3.1, i.e., Eqs. (3.1)–(3.3), as well as a proviso, analogous to Gillespie’s [47],

for treating a reaction at the exact-stochastic level if it is expected to fire on the

order of once or less within τ .

This procedure amounts to a theoretically justifiable procedure for partitioning

reactions into ‘very slow,’ ‘slow,’ ‘medium,’ and ‘fast’ subsets based on the propen-

sity values, the calculated time step τ , and the criteria identified by Gillespie [47]

for transitioning between the descriptions Eqs. (3.1)–(3.3). The classifications are

made as follows.

• If aµτ . 1 → exact stochastic (very slow).

• If aµτ > 1 but 6� 1 → Poisson (slow).
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• If aµτ � 1 but
√

aµτ 6� 1 → Langevin (medium).

• If
√

aµτ � 1 → deterministic (fast).

These classifications constitute the foundation of the partitioned-leaping ap-

proach. At each simulation step, a time step τ is calculated (see Sec. 3.4) and

each reaction classified in the manner outlined above. The numbers of firings of

each reaction are then determined based on these classifications and the system

is evolved accordingly. For reactions classified at the exact-stochastic (ES) level,

a tentative-next reaction time, which we will subsequently denote as τES
µ , can be

calculated in the manner discussed in Sec. 2.4 [e.g., using Eqs. (2.17) and (2.33)]

and the reaction deemed to fire if τES
µ ≤τ . For reactions classified at coarser levels,

Eqs. (3.1), (3.2) and (3.3) are used.

This procedure resolves the three shortcomings of τ -leaping discussed above

because: (i) being analogous to the FRM, the SSA is naturally and seamlessly

incorporated into the algorithmic framework, (ii) classifying reactions individually

(rather than classifying the entire system, as in the original τ -leaping algorithm

[47]) allows the entire theoretical framework of Sec. 3.1 to be utilized, and (iii) the

ES classification provides a natural mechanism by which reactions with very small

reactant populations are prevented from firing multiple times within a simulation

step.

Before the approach can be implemented in a practical sense, however, numer-

ous technical issues must be addressed, some of which are quite subtle. In the

following subsection we discuss these issues and strategies for overcoming them.
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3.3.2 Technical issues

The first technical issue that we must consider involves the inclusion of the ES

classification into the algorithm and the random nature of tentative next-reaction

times. As explained above, the procedure that we propose is to classify each

reaction in the system into one of four categories based on the values {aντ}. If

aµτ . 1, reaction Rµ is to be classified as ES and a tentative next-reaction time

τES
µ calculated. If τES

µ ≤ τ , then we can say that Rµ fires at least once within the

interval. However, we must recognize that if we simply fire the reaction once and

advance the clock to t+τ , then we are precluding the possibility that Rµ fires again

within the interval (τ−τES
µ ). The error introduced by doing so might be small.

However, in the opinion of this author, the mere fact that the ES classification is

being included at all indicates that maintaining detailed accuracy is desired. Thus,

this shortcoming should be resolved in a rigorous manner. If one is not interested

in maintaining such detailed accuracy then the ES classification can be excluded

from the algorithm altogether, leaving “Poisson” as the finest level of description.

To overcome this complication we employ an iterative procedure that involves

(i) calculating τ , (ii) classifying reactions, (iii) calculating {τES
ν } values for any

ES reactions, (iv) identifying the smallest of these, (v) changing τ to min{τES
ν }

if min{τES
ν } < τ , (vi) reclassifying reactions based on the new value of τ , and

(vii) repeating as necessary.4 Step (vi) is necessary because with a smaller τ

some reactions may become classified as ES that previously were not. Step (vii)

is necessary because the smallest of these new tentative next-reaction times may,

again, be smaller than the new τ .

4The number of iterations required in this procedure is definitively finite. In extreme sit-

uations, if τ is continually reduced, at some point all reactions will become classified as ES.

Reclassifications will then no longer be necessary and the iterative loop will terminate.
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A couple of important points deserve mention here. First, it is always valid to

decrease τ , as in step (v) above, because if the Poisson approximation Eq. (3.1) is

valid for a given τ then it is assured to be valid for any time interval smaller than

τ . Second, if all reactions are classified as ES, then the algorithm will revert to the

FRM or NRM variant (depending on how one chooses to implement the method)

of the SSA. In this situation, it is legitimate to jump to the time at which the

next reaction fires in the system even if this happens to be larger than the initial

calculated value of τ . Finally, although there are cases where it is valid to increase

τ even if all reactions are not classified as ES, it is difficult to distinguish these

from the cases in which it is not valid to do so, especially when considering large,

complex reaction networks. Thus, in general, one should never increase τ unless

all reactions are classified as ES.

Another technical issue that we must consider concerns the proper use of

Eq. (2.29), the next-reaction transformation formula, in our algorithm. Recall

that Eq. (2.29) provides a recipe for calculating new tentative next-reaction times

from the old values of τES
µ , aµ and τ . In the NRM, the “old” values are usually

those from the previous simulation step. However, in the case of partitioned leap-

ing, it will often happen that a reaction that was classified as ES at the previous

simulation step will not be so at the current step. Thus, there is no need to use

Eq. (2.29) at the current step. Nevertheless, we can still use Eq. (2.29) at the next

step that the reaction is classified as ES provided that we store the values of τES
µ , aµ

and τ from the current step. In fact, we discussed this issue in the ‘Next-reaction

method’ subsection of Sec. 2.4 in a different context, when reactions become inac-

tive (see footnote 3). Thus, we simply extend the approach of “carrying over” the

values of τES
µ , aµ and τ used in the NRM to the leaping algorithm.
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We must also consider the problem of negative populations, which has received

extensive mention in the literature [18, 25, 109]. One of the great strengths of

the method proposed here, in fact, is that this problem is largely overcome simply

via the structure of the algorithm. If any reaction has a reactant population that

is very small, say on the order of unity, then that reaction will automatically be

flagged as ES because even one firing of the reaction will change the propensity

“appreciably.” Thus, there will be no chance of the reaction firing multiple times

in a step and resulting in negative populations. However, it is important to recog-

nize (as discussed in footnote 3 above) that because the Poisson distribution (and

the Gaussian for that matter) is positively unbounded, it is still possible that an

unphysical number of reaction firings can be generated in a simulation step. In our

case, however, this should be exceedingly rare. Thus, we can protect against this

rare occurrence by employing the simple “try again” procedure that was proposed

in Ref. [18] and included in the simple τ -leaping algorithm above (Algorithm 2).

Finally, the last issue that we must consider is the fact that using Eqs. (3.2)

and (3.3) for Langevin and deterministic reactions, respectively, will result in val-

ues that are real numbers rather than integers. Since it is difficult to determine at

what point a continuous population description is acceptable in lieu of an integer

description, we choose to round these values before updating the species popula-

tions. In Ref. [47], Gillespie argued that the use of Eq. (3.2), when appropriate, as

opposed to Eq. (3.1), is an improvement computationally because generating nor-

mal random deviates is faster than generating Poisson random deviates. Clearly,

therefore, some of this improvement is negated by including the rounding oper-

ation, although we have yet to quantify to what extent this matters (intuitively

speaking, it probably matters little). The same argument could be made with

regards to deterministic reactions. However, the elimination of the random num-
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ber generation operation for these reactions should more than compensate for the

added cost of rounding.

3.3.3 The algorithm

With the technical issues of the previous subsection accounted for, we now present

the partitioned-leaping algorithm (PLA), which represents the major contribution

of this dissertation.

Algorithm 3 (Harris and Clancy, 2006 [56]):

Partitioned-leaping algorithm (PLA).

1. Initialize: Define reaction network, rate parameters, initial species popula-

tions, define �1, ≈1 and �1.5

2. Determine the initial time step τ (see Sec. 3.4).

3. Classify all reactions (not already classified as ES) using the criteria pre-

sented above.

4. For all (newly classified) ES reactions, calculate tentative next-reaction

times, τES
µ , using, e.g., Eqs. (2.17) and (2.33).6

5. If min{τES
ν } 6= τ and all reactions are classified as ES, set τ = min{τES

ν }.

6. If min{τES
ν } < τ , set τ = min{τES

ν } and return to step 3.

5The parameter ‘�1’ quantifies the concept of “essentially constant” and is used in τ -selection

(Sec. 3.4), ‘≈ 1’ is used for classifying reactions at the ES level and ‘� 1’ is used for classifying

reactions at the Langevin and deterministic levels (see Sec. 3.1). Typical values that we use are

0.01–0.05, 3 and 100, respectively.
6In the τ -dependent case, the more general approach outlined in Sec. 2.4 must be used.
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7. Determine the set of reaction firings {kν(τ)} using the appropriate formulas

and update the species populations.7

8. If any Xi(t + τ) < 0, reverse all population updates, set τ = τ/2 and return

to step 3 (i.e., try again).

9. Advance the clock to t + τ and return to step 2 if stopping criterion not met.

An important aspect of this approach is the minimal amount of user interven-

tion required for implementation. Indeed, once the reaction network is defined and

the associated rate parameters set, one need only define three model-independent

parameters quantifying the concepts ≈1, �1 and �1 (see footnote 5) before in-

stantiating a simulation. The algorithm will then automatically and dynamically

partition the reactions into various subsets, correctly accounting for stochastic

noise and “leaping” over unimportant reaction events. This ease of use is a par-

ticular strength of the method and differentiates it from other leaping approaches

that have been proposed (see Sec. 3.5 for a more detailed discussion).

One final element is missing, however, before the algorithm above can be imple-

mented in full: calculation of the time step τ . We address this issue in the following

subsection, presenting three alternative approaches that have been proposed in the

literature. Each have their strengths and weaknesses and, in the opinion of this au-

thor, none of them are ideal. τ -selection turns out to be the most time-consuming

aspect of the leaping approach and, hence, represents an area where significant

improvements in efficiency can be obtained from novel innovations. In Sec. 3.6, we

will briefly address this issue and discuss some possible strategies.

7Standard techniques exist for generating Poisson and normal random deviates (e.g.,

Ref. [86]). For ES reactions, if τES
µ = τ then kµ(τ) = 1, otherwise zero.
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3.4 Time step calculation—‘τ-selection’ procedures

Though largely glossed over up until this point, calculation of the time step τ

is probably the single most important component of the leaping algorithm. In-

deed, the entire approach is reliant upon the validity of the Poisson approximation

Eq. (3.1). In Ref. [47], Gillespie provided the basis for all τ -selection procedures.

The “leap condition,” as he termed it, quantifies the concept of “essentially con-

stant” on which the Poisson approximation depends. It is a constraint imposed on

the magnitude of the change of each reaction propensity,∣∣∆aµ(τ leap
µ )

∣∣
ξ

≤ ε, (0 < ε � 1), (3.4)

where ∆aµ(τ leap
µ ) ≡ aµ(t + τ leap

µ )− aµ(t) and ξ is an appropriate scaling factor (see

below for further discussion). In applying this constraint, one seeks to identify

the time interval τ leap
µ over which the propensity aµ for reaction Rµ is expected to

remain essentially constant (i.e., within a factor of ε) assuming that the propensi-

ties for all other reactions also remain essentially constant (we will illustrate this

assumption explicitly below). One can then set τ equal to the smallest of {τ leap
ν }

as this is the only one for which the Poisson approximation actually holds for all

reactions. This is analogous to the manner in which the time step is generated

in the FRM and NRM variants of the SSA (Sec. 2.4) and thus provides a simple

means by which the SSA can be seamlessly integrated into the leaping algorithm.

In what follows, we will discuss three alternative strategies for calculating time

steps τ that satisfy the leap condition (3.4). The first uses Eq. (3.4) directly, and

is what we term a “reaction-based” (RB) approach. RB τ -selection was initially

introduced by Gillespie in Ref. [47] and later modified by Gillespie and Petzold [50],

Cao et al. [20] and Harris and Clancy [56]. The second approach is a “species-

based” (SB) τ -selection procedure that places constraints, analogous to that in
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Eq. (3.4), on the relative changes of each species population such that Eq. (3.4)

is satisfied for each reaction. The technique, valid in the case of τ -independent

propensities (recall the definition of τ independence in Chapter 2), was introduced

in Ref. [20] and further modified in Ref. [56]. Finally, we briefly discuss a more

recent innovation [1] that involves choosing a time step, generating reaction firings

and then checking to see whether or not Eq. (3.4) has been violated. If it has, the

simulation is “backed up” in a way that avoids introducing bias into the sampling

procedure. This “postleap checking” method is reminiscent of a predictor-corrector

approach used in the solution of ODEs and is considered by the author of this

dissertation to be an important innovation for the future development of more

efficient τ -selection strategies.

3.4.1 Reaction-based τ-selection8

Underlying theory . The RB τ -selection procedure has been briefly outlined

above. The idea is to calculate a “tentative leap time” τ leap
µ (in analogy with the

tentative next-reaction times τES
µ of the FRM and NRM variants of the SSA—

Sec. 2.4) for each reaction directly from Eq. (3.4) and then set τ =min{τ leap
ν }. The

calculation is accomplished by Taylor expanding the numerator in Eq. (3.4) out to

first order in order to obtain an expression involving τ leap
µ , which is then solved for

via algebraic manipulation.

To do this, we first write

aµ(t + τ leap
µ ) = aµ

(
X(t) + ∆X(τ leap

µ ),Θ(t + τ leap
µ )

)
, (3.5)

8This subsection contains material that has been presented, in highly condensed form, in

Ref. [56].
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where ∆X(τ leap
µ ) represents the changes in the species populations over the time

interval τ leap
µ . Note that we have taken into account here both the time dependence

of the propensity with respect to the species populations X(t) and the environ-

mental quantities Θ(t).9 We then perform a Taylor expansion around aµ(t) as

follows,

aµ(t + τ leap
µ ) ≈ aµ(t) +

N∑
j=1

∂aµ(t)

∂Xj

∆Xj(τ
leap
µ ) + τ leap

µ

Q∑
q=1

∂aµ(t)

∂θq

θ̇q(t). (3.6)

Here, θ̇q(t) ≡ dθq(t)/dt is the time derivative of the qth environmental variable

(e.g., temperature, volume) and Q is the total number of environmental variables

being considered. Equation (3.6) is written assuming that the environmental quan-

tities are continuous and differentiable in time whereas the species populations are

not, i.e., they change discontinuously at the moment of each reaction firing.

Next, we write the state-change element ∆Xi(τ
leap
µ ) (recall that the subscript i

is used for specific species while j is used for summations—Sec. 2.1) as

∆Xi(τ
leap
µ ) =

M∑
ν=1

zνiKν(τ leap
µ |xt, t). (3.7)

Note that this is an exact expression, not an approximation.10 Substituting

Eq. (3.7) into (3.6) then gives us an approximate expression for the propensity

change ∆aµ(τ leap
µ ),

∆aµ(τ leap
µ ) ≈

M∑
ν=1

fµν(t)Kν(τ leap
µ |xt, t) + τ leap

µ

Q∑
q=1

∂aµ(t)

∂θq

θ̇q(t), (3.8)

where

fµν(t) ≡
N∑

j=1

zνj
∂aµ(t)

∂Xj

. (3.9)

9As such, the derivation given here is quite different from those in Refs. [47] and [50] where

only the dependence of the propensity on the species populations was considered.
10Also note the distinction between the subscripts µ and ν in Eq. (3.7). µ is used in τ leap

µ

because we are considering the leap condition applied specifically to reaction Rµ, whereas ν is

used when summing over all the reactions in the system (see Sec. 2.1).
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Equation (3.8) evidently expresses the random variable ∆aµ(τ leap
µ ) as a

linear combination of random variables {Kν(τ leap
µ |xt, t)} and {θ̇q(t)}. The

{Kν(τ leap
µ |xt, t)} are random variables because of the random nature of the species

interactions while the {θ̇q(t)} are random variables due to fluctuations in the envi-

ronmental quantities. Furthermore, these random variables can be correlated. The

number of times reaction Rµ fires can depend on the number of times Rµ′ fires, and

vice versa. It can also depend on any fluctuations in the environmental quantities

and the environmental variables can depend upon each other (e.g., fluctuations in

temperature can be related to fluctuations in volume, and vice versa).

As such, we can obtain expressions for both the mean and variance of ∆aµ(τ leap
µ )

by applying to Eq. (3.8) the “linear combination theorem” for random variables

[44], i.e., Eqs. (A.15) and (A.16) of Appendix A, giving

〈
∆aµ(τ leap

µ )
〉
≈

M∑
ν=1

fµν(t)
〈
Kν(τ leap

µ |xt, t)
〉

+ τ leap
µ

Q∑
q=1

∂aµ(t)

∂θq

〈
θ̇q(t)

〉
, (3.10)

var{∆aµ(τ leap
µ )} ≈

M∑
ν=1

f 2
µν(t)var

{
Kν(τ leap

µ |xt, t)
}

+
(
τ leap
µ

)2 Q∑
q=1

(
∂aµ(t)

∂θq

)2

var{θ̇q(t)}

+ 2
M−1∑
ν=1

M∑
ν′=ν+1

fµν(t)fµν′(t)cov
{
Kν(τ leap

µ |xt, t), Kν′(τ
leap
µ |xt, t)

}
+ 2τ leap

µ

M∑
ν=1

Q∑
q=1

fµν(t)
∂aµ(t)

∂θq

cov
{

Kν(τ leap
µ |xt, t), θ̇q(t)

}

+ 2
(
τ leap
µ

)2 Q−1∑
q=1

Q∑
q′=q+1

∂aµ(t)

∂θq

∂aµ(t)

∂θq′
cov

{
θ̇q(t), θ̇q′(t)

}
. (3.11)

Here, the first two terms on the right-hand side of Eq. (3.11) account for the

variances of the two sets of random variables {Kν(τ leap
µ |xt, t)} and {θ̇q(t)}, the

third term accounts for the covariances among the reaction firings, the fourth for

the covariances between the reaction firings and the environmental quantities, and
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the last for the covariances among the environmental quantities.

With these expressions in hand, the approach to τ selection proposed by Gille-

spie and Petzold [50] is to approximate

∆aµ(τ leap
µ ) ≈

〈
∆aµ(τ leap

µ )
〉
± sdev

{
∆aµ(τ leap

µ )
}

(3.12)

and then obtain an expression for τ leap
µ by substituting Eqs. (3.10) and (3.11) into

Eq. (3.12) and then Eq. (3.12) into (3.4). Of course, in general, this can be difficult,

if not impossible, to accomplish analytically. By making certain assumptions,

however, we can reduce the expressions in Eqs. (3.10) and (3.11) down to more

manageable levels that are amenable to analytical treatment.

The simplest and most useful of these assumptions is the Poisson approxima-

tion of Eq. (3.1). It is critical to recognize that implicit in this assumption is the

stipulation that the reaction firings are statistically independent Poisson processes,

i.e., cov
{
Pν

(
aν(t)τ leap

µ

)
,Pν′

(
aν′(t)τ

leap
µ

)}
= 0.11 Thus, by making this assump-

tion, and using the fact that
〈
Pν

(
aν(t)τ leap

µ

)〉
= var

{
Pν

(
aν(t)τ leap

µ

)}
= aν(t)τ leap

µ

11Note that the goal of implicit leaping methods [24, 92] is to take time steps over which

the Poisson approximation Eq. (3.1) does not hold. Clearly, this complicates matters as in this

case the covariances among the reaction firings do not fall out. It should be of no surprise,

therefore, that τ selection procedures for implicit τ -leaping have been conspicuously absent from

the literature.
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[Eq. (A.10)], we can simplify Eqs. (3.10) and (3.11) to〈
∆aµ(τ leap

µ )
〉
≈ τ leap

µ

(
M∑

ν=1

fµν(t)aν(t) +

Q∑
q=1

∂aµ(t)

∂θq

〈
θ̇q(t)

〉)
, (3.13)

var{∆aµ(τ leap
µ )} ≈ τ leap

µ

M∑
ν=1

f 2
µν(t)aν(t)

+
(
τ leap
µ

)2 Q∑
q=1

(
∂aµ(t)

∂θq

)2

var
{

θ̇q(t)
}

+ 2τ leap
µ

M∑
ν=1

Q∑
q=1

fµν(t)
∂aµ(t)

∂θq

cov
{
Pν

(
aν(t)τ leap

µ

)
, θ̇q(t)

}

+ 2
(
τ leap
µ

)2 Q−1∑
q=1

Q∑
q′=q+1

∂aµ(t)

∂θq

∂aµ(t)

∂θq′
cov

{
θ̇q(t), θ̇q′(t)

}
.(3.14)

It is here where we are explicitly making the assumption that all of the reaction

propensities remain essentially constant within the interval τ leap
µ (i.e., because of

the sums over ν = 1. . .M), which is why τ must be chosen as the smallest of

{τ leap
ν }. Also note that the covariances involving the environmental variables [the

fourth and fifth terms in Eq. (3.11)] do not fall out of Eq. (3.14) since the Poisson

approximation has no bearing on these quantities.

This leads us to our next possible assumption: statistical independence among

all random variables. This causes the rest of the covariance terms to drop out of

Eq. (3.14), leaving

var{∆aµ(τ leap
µ )} ≈ τ leap

µ

M∑
ν=1

f 2
µν(t)aν(t) +

(
τ leap
µ

)2 Q∑
q=1

(
∂aµ(t)

∂θq

)2

var
{

θ̇q(t)
}

.

(3.15)

If we then choose to ignore any fluctuations in the environmental quantities, we

get 〈
∆aµ(τ leap

µ )
〉
≈ τ leap

µ

(
M∑

ν=1

fµν(t)aν(t) +

Q∑
q=1

∂aµ(t)

∂θq

θ̇q(t)

)
, (3.16)

var{∆aµ(τ leap
µ )} ≈ τ leap

µ

M∑
ν=1

f 2
µν(t)aν(t), (3.17)
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where the ‘overline’ in θ̇q(t) indicates that θ̇q(t) is no longer a random variable

but a sure value, the evaluation of dθq(t)/dt at time t. Finally, if we assume that

the propensities do not depend on the environmental quantities Θ(t), i.e., the

τ -independent case, then we can reduce Eq. (3.16) even further, giving

〈
∆aµ(τ leap

µ )
〉
≈ τ leap

µ

M∑
ν=1

fµν(t)aν(t). (3.18)

Equation (3.18) alone [i.e., with sdev
{

∆aµ(τ leap
µ )

}
=0 in Eq. (3.12)] constitutes

the original τ -selection procedure proposed by Gillespie in Ref. [47]. Inclusion of

Eq. (3.17) along with (3.18) into Eq. (3.12) constitutes the improved τ -selection

procedure of Gillespie and Petzold [50] (as well as the modified versions presented

in Refs. [20] and [56]—see below). As of this writing, τ -selection procedures ac-

counting for the effects of the environmental quantities have yet to be proposed.

Before writing out in detail the original and improved τ -selection formulas of

Refs. [47] and [20, 50, 56], however, we deviate momentarily to address an issue

that we have forestalled up until this point, the scaling factor ξ in Eq. (3.4).

The scaling factor ξ. Equation (3.4) has been written in terms of the abstract

scaling factor ξ because the proper scaling for the leap condition was a matter

of debate for some time. In the original τ -leaping work [47], Gillespie proposed

that ξ ≡ a0(t), the sum of all of the reaction propensities at time t. Though

not stated explicitly, it appears that the reason for this choice was two-fold: (i)

it draws an analogy with the DM variant of the SSA [cf., Eq. (2.15)], and (ii)

there is no chance that a0(t)=0 (for the simulation would terminate in this case)

and, hence, no chance that Eq. (3.4) diverges to infinity. The issue was briefly

revisited in subsequent work [50] but largely brushed aside as it was considered

of secondary importance to the improved τ -selection procedure that was proposed
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in that article. In Ref. [20], however, the authors revisited the issue once again

and modified the approach by making the more intuitive choice of ξ ≡ aµ(t) and

devising a strategy for overcoming the problem that arises when aµ(t)→ 0 (more

on this below). This approach was subsequently improved upon by Harris and

Clancy [56].12 As such, we rewrite here the leap condition with ξ≡aµ(t), which is

now the consensus choice for the scaling factor,∣∣∆aµ(τ leap
µ )

∣∣
aµ(t)

= ε, (0 < ε � 1). (3.19)

Note that this choice has no bearing on the theoretical foundation for RB τ selec-

tion that has been presented above [Eqs. (3.6)–(3.18)].

Now, the source of the problem that arises when aµ(t)→0 is, very simply, that

as the species populations become small even a single reaction firing can lead to a

violation of Eq. (3.19). For example, if we consider the first-order decay reaction

Si→∅ with Xi =10, then a single firing will change the propensity by 10%. Since

we generally set ε = 0.01–0.05, we see that this would violate the leap condition.

However, there is nothing in what we have presented so far ([Eqs. (3.6)–(3.18)])

that would account for this fact. Thus, a naive RB τ -selection procedure utilizing

the theoretical framework above will produce a value of τ leap
µ that corresponds to

an unphysical change in the reaction propensity. Considering our simple example

again, if we set ε = 0.01, then the τ leap
µ generated will correspond to the time

necessary for the reaction to fire 1/10th of a time, i.e., τ leap
µ =

〈
τES
µ

〉
/10. Clearly,

12Actually, our approach was developed independently from Cao et al. [20] and published in an

early version of Ref. [56] on the arXiv preprint server (http://arxiv.org/abs/physics/0601217v1).

Reference [20] appeared while our article was under review, however, forcing us to modify our

article and acknowledge Cao et al. as the first to propose the idea of using ξ≡aµ(t). Nevertheless,

as will be shown subsequently, our approach is somewhat different from that in Ref. [20] and, in

certain situations, can significantly improve the efficiency of the algorithm.
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this will adversely affect the efficiency of the algorithm because the time steps will

be much smaller than they need be.13

Thus, the modifications proposed in Refs. [20] and [56] for overcoming this prob-

lem involve including machinery that assures that the minimum possible propensity

change is respected. This is done by again recasting the leap condition as

∣∣∆aµ(τ leap
µ )

∣∣ = max {εaµ(t), βµ(t)} ≡ εµ(t), (0 < ε � 1), (3.20)

where βµ(t) is the minimum possible change in aµ at time t and is calculated for

each reaction in the system at each simulation step [56]. The idea here is that if

the minimum change possible is larger than what we have defined as “essentially

constant” (basically ε) then we need to change our definition of essentially constant

for reaction Rµ.

But what is the proper expression for βµ? In determining this, it is important

to recognize that because of the interconnectivity of reaction networks, it is pos-

sible that a reaction’s propensity can be affected more so by the firing of other

reactions in the system than by its own firings. For simple first-order reactions

following mass-action kinetics (see Appendix B) this is of little consequence since

incrementing and decrementing the reactant population has an equal effect on the

propensity change (in an absolute sense, of course). It becomes important, how-

ever, when considering higher-order and non-mass-action type reactions, where

incrementing and decrementing the reactant population(s) can have unequal ef-

fects, or reactions can fire that change one of the reactant populations but not the

13Of course, in this simple example this will be of no consequence since the reaction will be

classified as ES and a value of τES
µ generated. However, for interconnected reaction networks this

can be a significant problem, as other reactions in the network can be limited by the small time

step. Remember that in the PLA (Algorithm 3) the time step is not allowed to increase unless

all reactions are classified as ES.
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other(s). In principle, we must take into account all of these different possibilities

when calculating βµ(t).

The approach taken in Ref. [56] is to simplify the situation by ignoring all

correlations and only considering how the propensity is affected by changes in

each of the individual reactant populations, i.e., we set

βµ(t) =


min

j=1...N

{∥∥∥∥∂aµ(t)

∂Xj

∥∥∥∥} if min
j=1...N

{∥∥∥∥∂aµ(t)

∂Xj

∥∥∥∥} < ∞

amin
µ otherwise

, (3.21)

where ∥∥∥∥∂aµ(t)

∂Xi

∥∥∥∥ ≡
 ∂aµ(t)/∂Xi if ∂aµ(t)/∂Xi > 0

∞ otherwise
. (3.22)

In words, all that we are saying here is that βµ(t) is the smallest non-zero element

of {∂aµ(t)/∂Xj}. If all of the elements of {∂aµ(t)/∂Xj} equal zero, however, then

βµ(t) should be set to the smallest possible value of aµ, i.e., that with all of the

reactant populations set to unity.

Two issues deserve discussion here. First, the related approach proposed by

Cao et al. [20] basically amounts to defining βµ(t) = βµ≡ amin
µ , our lower limit on

βµ(t) in Eq. (3.21).14 Although this choice eliminates the time dependence of βµ,

and hence means that it need not be calculated at every simulation step (as ours

does), a major drawback is that amin
µ will often be an unnecessarily restrictive choice

that will lead to small times steps and significantly diminished computational

performance. In many cases, we believe that this cost will outweigh the benefit.

Nevertheless, continued research into this issue is warranted. Second, the reason

for choosing βµ(t) as the minimum (non-zero) element of {∂aµ(t)/∂Xj}, as opposed

14Since Cao et al. [20] only consider elementary reaction types, they actually define βµ(t)≡cµ,

the rate, or propensity, constant. amin
µ is a generalization of this, which is valid for non-elementary

reaction types.
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to, say, the maximum, is that this conservative choice assures us that we do not

violate the leap condition. Consider a simple second-order reaction Si +Sj → ∅

with Xi = 10 and Xj = 1000. With aµ = cµXiXj, we see that changing Xi±1

changes aµ by 10% while changing Xj±1 results in a 0.1% change. We must

choose βµ(t) = ∂aµ(t)/∂Xj, therefore, because to not do so would allow for the

possibility that aµ changes by 10% due to changes in Xj. In other words, we

would allow Xj to change by more than we should (and, hence, reactions involving

Xj to fire more than they should) because there is no simple way to distinguish

between changes in aµ arising from changes in Xi vs. changes in Xj.

Two simple τ-selection procedures. With the addition of Eqs. (3.20)–(3.22),

we are now in position to write out the two simple RB τ -selection procedures that

have been proposed in the literature [20, 47, 50, 56]. The original τ -selection

procedure of Gillespie [47] assumes ∆aµ(τ leap
µ ) =

〈
∆aµ(τ leap

µ )
〉

and uses Eq. (3.18)

in conjunction with Eq. (3.20) to give

τ leap
µ =

εµ(t)

|mµ(t) |
, (3.23)

where

mµ(t) ≡
M∑

ν=1

fµν(t)aν(t). (3.24)

The second approach uses Eq. (3.17) in addition to (3.18) to generate an ex-

pression for τ leap
µ via Eq. (3.12). There are a number of complications that we must

overcome to do this, however. The first is that, in principle, we should account for

both signs of the ‘±’ in Eq. (3.12). This is difficult to do. We can simplify things,

however, by making the conservative choice [50]

∣∣∆aµ(τ leap
µ )

∣∣ . ∣∣〈∆aµ(τ leap
µ )

〉∣∣+ sdev
{

∆aµ(τ leap
µ )

}
. (3.25)
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We could then try substituting this into Eq. (3.20) and deriving an expression for

τ leap
µ using Eqs. (3.17) and (3.18). We can see from Eqs. (3.17) and (3.18), however,

that the result would be a quadratic equation; a factor of
(
τ leap
µ

)1/2
would come

from Eq. (3.17) while Eq. (3.18) would contribute a factor of τ leap
µ . To circumvent

this complication, Gillespie and Petzold [50] proposed an additional simplification,

placing constraints on each term in Eq. (3.25) separately. Basically, if we constrain

∣∣〈∆aµ(τ leap
µ )

〉∣∣ = sdev
{

∆aµ(τ leap
µ )

}
= εµ(t)/2 (3.26)

then we will assure that
∣∣∆aµ(τ leap

µ )
∣∣≤εµ(t).15 Doing this gives us two expressions

for τ leap
µ , from which we can choose the smaller. Thus, the improved τ -selection

procedure of Gillespie and Petzold [50], as modified by Cao et al. [20] [ξ≡ aµ(t)]

and later by Harris and Clancy [56] [introduction of βµ(t)], can be written as

τ leap
µ = min

{
εµ(t)/2

|mµ(t) |
,
ε2
µ(t)/4

σ2
µ(t)

}
, (3.27)

where

σ2
µ(t) ≡

M∑
ν=1

f 2
µν(t)aν(t). (3.28)

As mentioned above, no τ -selection procedures have yet been proposed that ac-

count for the effects of the environmental variables Θ(t), either as random variables

15In Ref. [50], Gillespie and Petzold actually propose constraining each term in Eq. (3.25)

by ε, not ε/2 [since they were still using ξ ≡ a0(t), there was no concept of εµ(t) yet]. Though

not explained explicitly, the reason for this seems to be because in that work the parameter ε

lacked a physical meaning, i.e., because ξ≡a0(t). Without a true physical meaning, factors like

1/2 are basically irrelevant since the parameter is tunable anyway. In fact, we believe that this

is why Gillespie refers to ε as the “error control parameter,” a purposely vague and abstract

terminology, in his early works on τ -leaping [47, 50]. With ξ ≡ aµ(t), however, ε takes on the

physical meaning as the relative change in the propensity aµ. This means that we should be

careful when considering ε vs. fractional counterparts like ε/2, since not doing so can introduce

unintended additional sources of error.
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or as simple time-varying functions. In principle, this should be straightforward

to do. In practice, however, it is likely to be more difficult, perhaps requiring nu-

merical techniques in many cases. In this dissertation, we will not proceed in this

direction any further. Suffice it to say, however, that this is an area of continued

interest and that the framework that we have laid out in this subsection should

prove invaluable in our future endeavors towards this end.

3.4.2 Species-based τ-selection16

In Ref. [20], in addition to proposing the modified RB τ -selection procedure dis-

cussed in the preceding subsection, Cao et al. also proposed a different approach,

a τ -selection scheme that is based on constraining the relative changes in each

species population. The underlying idea of SB τ selection is very simple: If the

propensities depend on time only via their dependence on the species populations

(this is an important distinction from RB τ selection, which can, in principle,

be applied in all cases), then it should be possible to impose a constraint on the

changes in each species population such that the leap condition (3.20) will be sat-

isfied for all reactions. The trick is identifying, for each species, what constraint

will simultaneously satisfy the leap condition for all of the reactions in which the

species participates in. In general, these can be of different orders and types.

In developing the approach, we begin by imposing the following constraint [20],∣∣∣∆Xi(T
leap
i )

∣∣∣ = max {εXi(t)/gi(t), 1} ≡ ei(t), (0 < gi(t) < ∞), (3.29)

which is written analogously to the leap condition Eq. (3.20): T leap
i is the quantity

16This subsection contains material that has been presented, in highly condensed form, in

Ref. [56].
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that we are looking for, the time interval over which Xi is expected to remain

essentially constant; gi(t) is a scaling factor that, in general, is a function of the

species population Xi(t) (see below) and will assure that Eq. (3.20) is satisfied for

each reaction in which Si appears as a reactant; and the minimum possible change

in Xi is unity. The idea then is to calculate a value of T leap
i for each species in the

system and set τ =min{T leap
j }.

To do this, we follow a very similar procedure to that of RB τ selection: We

(i) obtain a general expression for
∣∣∣∆Xi(T

leap
i )

∣∣∣ [actually, we already have an

exact expression in Eq. (3.7)], (ii) assume that all reactions in the system obey

Poissonian statistics [Eq. (3.1)], and (iii) obtain expressions for the mean and vari-

ance of
∣∣∣∆Xi(T

leap
i )

∣∣∣ using the linear combination theorem for random variables

[Eqs. (A.15) and (A.16)]. These expressions can then be substituted into an equa-

tion analogous to Eq. (3.12) to derive an expression for T leap
i . The procedure is

greatly simplified as compared to RB τ selection, however, by the fact that SB

τ selection assumes, by definition, that the propensities do not depend on time

through the environmental quantities Θ(t). Thus, in the general case, we have

T leap
i = min

{
ei(t)/2

| m̃i(t) |
,
e2

i (t)/4

σ̃2
i (t)

}
, (3.30)

where

m̃i(t) ≡
M∑

ν=1

zνiaν(t), (3.31)

σ̃2
i (t) ≡

M∑
ν=1

z2
νiaν(t). (3.32)

These are clearly analogous to the improved RB τ -selection equations of the pre-

ceding subsection [Eqs. (3.27), (3.24) and (3.28), respectively]. Furthermore, if one

wishes to ignore the fluctuations in ∆Xi(T
leap
i ), a simplified τ -selection procedure

is to, as in Eq. (3.23), use just the first term in the brackets on the right-hand side
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of Eq. (3.30), less the factor of 1/2, i.e.,

T leap
i =

ei(t)

| m̃i(t) |
. (3.33)

The main advantage to using Eqs. (3.30) or (3.33) in lieu of their RB counter-

parts Eqs. (3.27) and (3.23), is that, in general, the SB expressions require fewer

computational operations. In particular, we need not calculate any derivatives in

SB τ selection [compare Eqs. (3.24) and (3.28) with Eqs. (3.31) and (3.32)]. Thus,

each T leap
i calculation is generally faster than each τ leap

µ . Moreover, in many cases

there are far fewer species than reactions, meaning that fewer total calculations

must be carried out to determine τ . The one drawback, however, is that the con-

straint that we impose in Eq. (3.29) often turns out to be more restrictive than

that in Eq. (3.20) (see below). This means that SB τ -selection time steps are of-

ten smaller than those calculated via the RB approach. However, the advantages

of SB τ -selection discussed above often outweigh these costs, though not always

(see examples in Chapter 4). In any event, SB τ -selection represents an impor-

tant milestone in the continued quest for improving the efficiency, and hence the

practicality, of the leaping approach.

The only question that remains, therefore, is how to determine the scaling

factor gi(t) in Eq. (3.29). In general, it is useful to think of each reaction in the

system as having associated with it a different value of gi for each species in the

system. Basically, changes in Xi might affect the propensity aµ of reaction Rµ

differently than aµ′ of Rµ′ . Thus, it may be necessary, depending on the details

of the reactions, to more or less strongly constrain ∆Xi(T
leap
i ) in Rµ relative to

Rµ′ . As such, we can think in terms of a matrix G(t) with elements {gνj(t)}j=1...N
ν=1...M ,

where, for a given species i, each gνi(t) can be different. For species that are not

present in the rate expression for aµ(t) (for elementary reactions, this just means
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that they are not reactant species), we have gµi(t)=0, i.e., we place no constraint

on their changes [ei(t)=∞ in Eq. (3.29)]. For species that are present in the rate

expression, gµi(t) depends strongly on the details of the reaction (see below). In

Eq. (3.29), we see that ∆Xi(T
leap
i ) is inversely proportional to gi(t), meaning that

the larger the value of gi(t) the tighter the constraint on ∆Xi(T
leap
i ). In order to

assure that all of the reactions in which Si participates in obey the leap condition

(3.20), it is necessary, therefore, to choose gi(t) as

gi(t) = max
ν=1...M

{gνi(t)}. (3.34)

This requirement is why the SB τ selection approach often produces smaller time

steps than the RB approach. Equation (3.34) implies that we will often over-

constrain |∆aµ| /aµ for certain reactions in order to assure that the leap condition is

not violated for other reactions. Nevertheless, as discussed above, the advantages,

in terms of computational speed, of the SB approach often outweigh this cost.

So, how do we calculate the individual elements of G(t)? The basic strategy is

to derive an expression of the following form for ∆aµ/aµ [20]:

∆aµ

aµ

≈
N∑

j=1

αµj(Xj)
∆Xj

Xj

, [αj(Xj) ≥ 0], (3.35)

where the αµj(Xj) are non-negative coefficients that can, in general, be functions of

Xj.
17 It is important to recognize that in writing this expression, we are neglecting

any correlations between the ∆Xj’s [20] [just as we did in Eq. (3.21)]. Then, in an

approach reminiscent of what we did in going from Eq. (3.12) to (3.25) to (3.26),

we say that

|∆aµ|
aµ

.
N∑

j=1

αµj(Xj)
|∆Xj|

Xj

= εµ, (3.36)

17Since only a few species are involved in any given reaction, most of the values of αµj(Xj)

are zero.
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and place constraints on each individual term such that the relationship is satisfied,

i.e.,

αµi(Xi)
|∆Xi|

Xi

= εµ/ζµi, (ζµi ≥ 1), (3.37)

where the values of the scaling factors are constrained by the condition

N∑
j=1

1

ζµj

= 1. (3.38)

For species that do not act as reactants in Rµ (i.e., are not present in the rate

expression), we simply choose ζµi =∞. This causes the right-hand side of Eq. (3.37)

to equal zero, which is consistent with the left-hand side since αµi(Xi)=0 for these

species (see footnote 17). For reactant species, we often choose ζµi equal to the

number of non-zero terms in Eq. (3.35). For example, this is what we did in going

from Eq. (3.25) to Eq. (3.26) above. Since there are two terms in Eq. (3.25), we

chose to constrain each term in Eq. (3.26) by εµ(t)/2, i.e., we chose ζµi = 2. In

some cases, however, it might be preferable to weight each term differently.18

In any case, we see from Eq. (3.37) that the elements of G(t) are given by

gµi(t) = ζµiαµi (Xi(t)) . (3.39)

In Appendix D, we derive expressions for gµi(t) for various elementary and non-

elementary reaction types. We also demonstrate how, in many cases, it is advanta-

geous, in terms of computational efficiency, to eliminate the dependence on Xi(t)

18For example, for the third-order “elementary” reaction Si + 2Sj → products, Cao et al. [20]

doubled the weight on the ∆Xj term relative to the ∆Xi term. Basically, they constrained the

∆Xi term by ε/3 and the ∆Xj term by 2ε/3 (see Appendix D). In our notation, they used

ζµi = 3 and ζµj = 3/2. Intuitively, this makes sense given the stoichiometry of the reaction. If

we want to automate this procedure, however, it is not clear how, in the general case, we can

determine such differential weights, especially when considering non-elementary reaction types.

This remains an open area of interest.
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in Eq. (3.39) by considering the values of gµi in the limits Xi→0 and Xi→∞ and

then choosing gµi as the larger of the two. Doing this means that the scaling factor

gi in Eq. (3.29) loses its time dependence and, hence, need only be calculated once

during the initialization stage of a simulation.

3.4.3 Post-leap checking

In Ref. [47], while pondering possible strategies for selecting values of τ in τ -

leaping, Gillespie alluded to the possibility of performing post-leap checks on the

values of {|∆aν(τ)|}. The basic idea would be to pick a τ , update the system

and then check to see whether any of the {|∆aν(τ)|} violated the leap condition

Eq. (3.20). If so, then a smaller value of τ would be chosen and the leap attempted

again. Conversely, if all the values satisfied the leap condition by a wide margin

then a larger value of τ could be selected. However, Gillespie concluded, rightly so,

that this procedure would introduce bias into the system as rare, yet legitimate,

large fluctuations would be rejected without cause. This led Gillespie on the path

to developing the pre-leap approaches of Secs. 3.4.1 and 3.4.2.

Recently, however, Anderson [1] has revisited the idea of performing post-leap

checks in τ -leaping and has provided a theoretically-justified procedure for doing

so. The idea underlying his method is surprisingly simple: τ can be reduced to

τ ∗ upon a post-leap check so long as the information gathered in τ is used in

determining the numbers of firings in τ ∗. In more technical language, the random

deviates {k∗ν} must be determined by conditioning upon the already-generated

values of {kν}. By doing this, no information is discarded and, hence, no bias is

introduced.
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0 ττ∗

kµ∗

kµ

Figure 3.1: Illustration of the basic idea underlying the post-leap checking
procedure of Anderson [1]. Red arrows indicate individual firing
times of reaction Rµ. If the leap condition Eq. (3.20) is deemed
to have been violated due to the kµ firings of Rµ over the time
interval τ , then a smaller interval τ ∗<τ is chosen and the num-
ber of firings k∗µ over this interval is extracted with the correct
statistics. k∗µ happens to be a binomial random variable with
success probability p = τ ∗/τ for the n = kµ trials [see text and
Appendix A, Eqs. (A.4)–(A.7)].

To make the idea clearer, a simple illustration is presented in Fig. 3.1. The

red arrows represent individual firings of a given reaction Rµ over the time inter-

val [t, t + τ) under the assumption that aµ remains constant during the interval.

Hence, these firings are not physical but, rather, are random samples that faith-

fully describe reality only if the assumption that aµ remains essentially constant

during the interval is upheld. We assume here that this assumption is not upheld

over the interval [t, t+ τ), i.e., the leap condition is violated. However, it is upheld

over the shorter interval [t, t + τ ∗). Therefore, we can legitimately reduce τ to τ ∗

so long as we extract, with the correct statistics, the numbers of firings over the

shorter interval given those over the longer interval.

This is actually quite easy to do. Each firing in Fig. 3.1 either falls to the left

or to the right of τ ∗. Moreover, they are equally likely to land anywhere in the
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interval [0, τ). Thus, the numbers falling to either side of τ ∗ are binomial random

variables [see Appendix A, Eqs. (A.4)–(A.7)]. The probability of falling to the left

of τ ∗, which is what we are interested in, is simply τ ∗/τ . Thus, given the total

number of firings kµ over [t, t + τ), the number of firings k∗µ over [t, t + τ ∗) is the

binomial random variable Bµ(kµ, τ
∗/τ). This is easily proved mathematically [1]:

Pr{k∗µ, τ ∗|kµ, τ} (3.40)

= Pr{k∗µ, τ ∗ ∩ kµ, τ}/ Pr{kµ, τ}

= Pr{kµ, τ |k∗µ, τ ∗}Pr{k∗µ, τ ∗}/ Pr{kµ, τ}

= Pr{kµ − k∗µ, τ − τ ∗}Pr{k∗µ, τ ∗}/ Pr{kµ, τ}

=

[
(aµ(τ − τ ∗))kµ−k∗µ e−aµ(τ−τ∗)

(kµ − k∗µ)!

] [
(aµτ

∗)k∗µe−aµτ∗

k∗µ!

] [
kµ!

(aµτ)kµe−aµτ

]
=

(
kµ!

k∗µ!(kµ − k∗µ)!

)
(τ − τ ∗)kµ−k∗µτ ∗k∗µ

τ kµ
×
(

τ k∗µ

τ k∗µ

)

=

kµ

k∗µ

(τ ∗

τ

)k∗µ
(

1− τ ∗

τ

)kµ−k∗µ

= Bµ(kµ, τ
∗/τ),

where, for simplicity, we have used the shorthand Pr{k∗µ, τ ∗|kµ, τ}≡Pr{Pµ(aµτ
∗)=

k∗µ|Pµ(aµτ)=kµ}. �

The post-leap checking procedure of Anderson [1] thus amounts to choosing a

value of τ (either using the pre-leap formulas of Secs. 3.4.1 and 3.4.2 or otherwise),

checking to see whether the leap condition has been violated, and if so choosing

a smaller value of τ and determining the new numbers of firings by generating M

binomial random deviates conditioned on the old random deviates. This procedure

is repeated until a value of τ is identified for which the leap condition is satisfied

for all reactions. This greatly improves the accuracy of the approach since the

leap condition is assured to be satisfied at all times. The process of “backing up”
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can be quite expensive, however, due to the high expense of generating binomial

random numbers. This can be attenuated to some extent by clever choices of τ .

Anderson [1] proposes a τ -selection strategy whereby if the leap condition is: (i)

violated then the step is rejected and τ is reduced by some pre-specified amount,

(ii) barely satisfied then the step is accepted but τ is reduced for the subsequent

step, albeit by an amount less than for case (i), and (iii) strongly satisfied then

the step is accepted and τ increased by some pre-specified amount. Step (ii)

increases the probability that the subsequent leap will be accepted, thus reducing

the computational burden associated with backing up. Of course, the trick lies in

determining the parameters that optimize this procedure.

As of this writing, no articles have yet been published that use the post-leap

checking approach of Anderson [1] and we have yet to implement it in the PLA.

However, we have included it here because it is the opinion of the author of this

dissertation that the approach is a particularly important innovation that will

lead to much more efficient τ -selection procedures in the near future. τ selection

is by far the most computationally intensive aspect of the leaping approach and

advancements in this area are sure to have a tremendous impact on its practical

utility. In Secs. 3.6.1 and 3.6.2, we discuss some preliminary ideas regarding τ -

selection procedures that incorporate post-leap checking.

3.5 Relation to other leaping approaches

Obviously, the PLA, the central contribution of this dissertation, extends

and builds upon the ideas laid out in Gillespie’s seminal works on τ leap-

ing [46, 47]. Since the publication of those works, numerous other exten-
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sions have been published as well, both from within Gillespie’s direct collab-

oration [18, 20, 21, 24, 50, 92, 93] and from outside contributors [1, 3, 12–

14, 25, 67, 70, 83, 84, 91, 94, 109, 114, 116], such as ourselves [56].

It is important, therefore, to understand the motivations behind these exten-

sions in order to ascertain where the PLA fits in and what its contribution is to

the field. Therefore, we provide below a mini-review of various leaping methods

that have been proposed in the literature to date. We divide these methods into

five categories: (i) extensions per Gillespie, Petzold and co-workers, (ii) binomial

τ -leaping methods, (iii) K-leaping methods, (iv) higher-order leaping methods,

and (v) miscellaneous leaping approaches. We conclude with a discussion compar-

ing and contrasting these methods with the PLA and elaborating on what we see

as being the primary contribution of the PLA. Note that some of these methods

[18, 24, 25, 92, 93, 109] have been discussed briefly in Sec. 3.2 above. Furthermore,

reviews covering some, but not all, of the methods discussed below can be found

in Refs. [49] and [81].

Extensions by Gillespie, Petzold and co-workers [18, 20, 21, 24, 50, 92,

93]. Two years after publication of the original τ -leaping article [47], two articles

from Gillespie, Petzold and co-workers appeared proposing extensions to the ap-

proach [50, 92]. Gillespie and Petzold [50] presented an improved RB τ -selection

formula [on which Eq. (3.27) is based] while Rathinam et al. [92] proposed an

“implicit” formulation of τ leaping. These articles can be seen as the progenitors

of two related yet separate series of works by this group, one focused on enhance-

ments to explicit τ -leaping [18, 20] and the other on the theoretical foundations

and alternative formulations of implicit τ leaping [24, 93]. Culmination of both

series of works was realized in Ref. [21], where a hybrid explicit/implicit τ -leaping
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approach was proposed.

In Ref. [18], Cao et al. proposed a strategy for avoiding the occurrence of neg-

ative populations during the course of a τ -leaping simulation. This article was

in direct response to a shortcoming of the original τ -leaping method [47] identi-

fied, simultaneously and independently, by Tian and Burrage [109] and Chatter-

jee et al. [25] (see below). As discussed briefly in Sec. 3.2 above, the approach

proposed in [18] involves partitioning reactions into “critical” and “non-critical”

subsets. Reactions in the critical subset have small populations and, hence, are

treated using the DM variant of the SSA. As such, they cannot fire more than once

in a simulation step and cannot give rise to negative populations. The partitioning

process, however, is somewhat ad hoc, although the authors do attempt to provide

some justification for it by utilizing ideas proposed in Ref. [109].

Subsequently, in Ref. [20] Cao et al. proposed a new variation of RB τ selec-

tion [identical to Eq. (3.27) except with βµ(t) replaced by cµ—see Sec. 3.4.1] and

the SB τ -selection procedure of Sec. 3.4.2 (which we subsequently improved upon

[56]). Integrating the method proposed in Ref. [18] with these two new τ -selection

approaches, Cao et al. [20] enumerated what can be considered to be the current

formulation of explicit τ leaping.

The implicit τ -leaping approach proposed by Rathinam et al. [92] was mo-

tivated by the realization in [47] that the simplest formulation of τ leaping is

analogous to the explicit forward Euler method for solving deterministic ODEs.

Indeed, Gillespie recognized that using the values of the propensities at the ini-

tial time t, i.e., {aν(t)}, to generate Poisson random deviates for the time interval

[t, t+τ) will invariably introduce error into the method. Thus, in addition to the

simple approach, Gillespie also proposed in [47] a higher-order explicit method
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based on estimating the state of the system at the time t+τ/2 and then using

the estimated propensities at that time to generate the required Poisson random

deviates. This approach, termed the “estimated midpoint” τ -leap method (see

below for further discussion), is analogous to a second-order Runge-Kutta method

used in the solution of ODEs [47].

The implicit τ -leaping methods proposed in Refs. [24, 92, 93] can be seen as

attempts to extend and generalize this idea. In Ref. [92], Rathinam et al. proposed

a τ -leaping approach based on the following assumption,

Kµ(τ |xt, t) ≈ Pµ(aµ(t)τ) + round {[aµ(t + τ)− aµ(t)] τ} . (3.41)

This equation can be seen as a modification to Eq. (3.1) that includes a correction

to account for the change in the propensity over the time interval [t, t+τ). If the

propensity increases over the interval then the number of firings is increased to

reflect this, and vice versa. The rounding operation is needed because, in general,

[aµ(t + τ)− aµ(t)] τ is not integer-valued. Equation (3.41) is implicit in the sense

that Kµ(τ |xt, t) is dependent on the unknown propensity aµ(t + τ) at the end of

the time step. However, aµ(t + τ) can be written in terms of the set of quantities

{Kν(τ |xt, t)} [Eq. (3.8)]. Thus, there are M coupled algebraic equations that can

be solved numerically using, e.g., Newton’s method. This is the same approach

used in implicit ODE solvers [92].

The motivation behind Eq. (3.41) is the fact that for aµ(t)τ�1, it reduces to

Kµ(τ |xt, t) ≈ aµ(t + τ)τ +
√

aµ(t)Nµ(0, 1)τ 1/2. (3.42)

This is equivalent to the semi-implicit Euler method used in the solution of stochas-

tic differential equations (SDEs) [92]. Furthermore, for aµ(t)τ →∞, Eq. (3.42)

reduces to

Kµ(τ |xt, t) ≈ aµ(t + τ)τ, (3.43)
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which is equivalent to the implicit, or backwards, Euler method used in the solution

of ODEs [92]. Thus, just as in the case of Eqs. (3.1)–(3.3), we have in Eqs. (3.41)–

(3.43) a hierarchy of descriptions that converges to an approach well known at the

deterministic level.

The utility of the implicit τ -leaping method of Eq. (3.41) was demonstrated

in Ref. [92] on two simple example systems. Both systems contained reactions

with very large rate constants so as to render them “stiff.” Rathinam et al. [92]

demonstrated, using fixed time steps, that the implicit method can retain stability

in situations where the explicit approach [Eq. (3.1)] cannot. The primary short-

coming of the method, however, is that it tends to dampen fluctuations. This is

particularly concerning because fluctuations are of critical importance in stochastic

simulations (i.e., they are not numerical artifacts). To overcome this problem, the

authors proposed a rather ad hoc strategy, termed “downshifting,” that involves

interlacing intermittent bursts of short time steps in with the long time steps of

the implicit simulation. The short time steps are simulated using the SSA or the

explicit τ -leaping procedure. By doing this, one hopes to obtain sufficient statistics

on the fluctuations while retaining the efficiency afforded by the implicit approach.

In Ref. [24], Cao et al. investigated the numerical stability properties of the

explicit τ -leaping approach of Eq. (3.1), the implicit approach of Eq. (3.41), and

an additional method that they termed “trapezoidal” τ -leaping. The trapezoidal

method is also implicit and is based on the following assumption,

Kµ(τ |xt, t) ≈ Pµ(aµ(t)τ) + round

{
1

2
[aµ(t + τ)− aµ(t)] τ

}
. (3.44)

For aµ(t)τ�1, this reduces to

Kµ(τ |xt, t) ≈
1

2
[aµ(t + τ) + aµ(t)] τ +

√
aµ(t)Nµ(0, 1)τ 1/2, (3.45)
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and for aµ(t)τ→∞, we have

Kµ(τ |xt, t) ≈
1

2
[aµ(t + τ) + aµ(t)] τ, (3.46)

which is equivalent to the well-known trapezoidal method for solving ODEs.

Cao et al. [24] considered how each of the three methods behave when applied

to the simple test system S1 
 S2 as t→∞ for a fixed time step τ , a property

known as “absolute stability.” In particular, they were interested in assessing (i)

whether the methods converge to a stable solution and (ii) whether that solution

corresponds to the theoretical solution [48]. Because the methods are stochastic

they considered not only the mean but the variance and all higher-order moments

as well.

In all three cases, the authors derived the conditions required for the leaping

methods to retain stability. These amounted to constraints on the allowable sizes

of τ for each method. They showed that for the implicit methods (backwards and

trapezoidal) stability is retained for arbitrarily large values of τ , as is the case

for implicit ODE methods. Conversely, there is a well-defined upper limit on τ

in the explicit method. The authors also showed that, for values of τ within the

region of stability, the mean values obtained from all three methods converge to

the theoretical mean. In the case of the variance, however, they showed that the

explicit method provides an over approximation while the implicit (backwards)

method under approximates it. The latter result explains the damping effect seen

in Ref. [92]. Interestingly, Cao et al. [24] also showed that the variance obtained

from the trapezoidal method does converge to the theoretical value. This begged

the question whether all higher-order moments of the trapezoidal method converge

to the theoretical values. However, this was shown not to be the case.

In a complementary work, Rathinam et al. [93] performed a more extensive
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stability analysis of the explicit and backwards τ -leaping methods [Eqs. (3.1) and

(3.41)]. They confirmed the absolutely stability results of Cao et al. [24] and

showed that both methods also retain stability as τ → 0, a property known as

“0-stability.” Furthermore, they proved that both methods are accurate in their

means and variances up to terms of O(τ) (first-order consistency) and provided

formulas for the O(τ 2) components of the errors (the dominant contributions).

These results were subsequently verified via application to three simple example

systems. Finally, in the special case of purely linear propensities (systems of first-

order elementary reactions) the authors showed that all moments of both methods

are first-order consistent.

In Ref. [21], Cao et al. proposed an approach for integrating the explicit and

implicit τ -leaping methods in an adaptive way. It can be seen as the culmination

of the two series of works comprised of Refs. [18, 20, 50] and Refs. [24, 92, 93].

The method relies on the presence of small reaction subnetworks (e.g., reversible

reaction pairs) that can be deemed to be in rapid equilibrium. If this is the case,

the authors argue that the equilibrated reactions can be ignored in the τ -selection

process because the slow reactions see only the mean effects of the fast. They

propose a simple criterion for determining whether specified sets (pairs) of reactions

are in rapid equilibrium. If so, they calculate two time steps, one including all of

the reactions in the system, τ explicit, and one excluding the equilibrated reactions,

τ implicit. If τ implicit�τ explicit (e.g., 100-fold) then they set τ =τ implicit and determine

the set of reaction firings {kν(τ)} using either the backwards or trapezoidal implicit

method. Importantly, this includes the equilibrated reactions as well, i.e., they are

not reduced out of the system they are only ignored in the τ -selection procedure.

It is for this reason that Cao et al. [21] argue that an implicit method is re-
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quired. Since the equilibrated reactions do not satisfy the leap condition Eq. (3.20)

in [t, t+τ implicit) the implicit method is necessary to maintain stability. Conse-

quently, however, the fluctuations in the fast reactions are damped and they again

propose using downshifting to rectify the problem. Finally, if τ implicit 6� τ explicit,

then τ = τ explicit and the explicit method is used because it is less computation-

ally expensive than the implicit method. In this way the algorithm automatically

switches between explicit and implicit τ leaping based on the state of the system.

When applied to two simple example systems containing fast-reversible reaction

pairs the approach was shown to significantly reduce computational time [21]. Note

that one shortcoming of the method is that it is unable to handle fast reactions

involving small-population species (e.g., genes) because these are always classified

as critical and, hence, are not excluded from the τ -selection process [21].

Binomial τ leaping [25, 67, 83, 84, 109]. As mentioned above, a shortcoming

of Gillespie’s original τ -leaping algorithm [47], which was recognized relatively

early on, is its potential to generate negative population levels. The reason for

this is that the Poisson random variable is positively unbounded. As such, there

is a 100% chance, given a long enough simulation run, that an outlier random

deviate will be generated that will push a reactant population negative [25]. In

practice, the problem seems to arise most commonly in cases where a species

with a small population (e.g., a gene) interacts with a large-population species

(e.g., transcription factors) [25, 57, 109]. The small population limits the number

of times that the reaction can fire but the large population results in a large

propensity that can lead to an unphysical Poisson random deviate.

This flaw was first pointed out, simultaneously and independently, by Tian

and Burrage [109] and Chatterjee et al. [25] who both advocated using binomial
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random variables rather than Poisson for approximating Kµ(τ |xt, t). Binomial

random variables are characterized by two quantities: the number of trials, n, and

the success probability, p (see Appendix A). The former places an upper limit on

the number of times a reaction can fire during τ and an appropriate choice should,

therefore, eliminate the possibility of producing negative populations.

The basic idea behind the methods proposed by both Tian and Burrage [109]

and Chatterjee et al. [25] is the same: for each reaction Rµ choose a value of nµ(t)

(the maximum number of allowed firings at time t) and approximate

Kµ(τ |xt, t) ≈ Bµ

(
nµ(t), pµ(t) ≡ aµ(t)τ/nµ(t)

)
, (3.47)

a binomial random variable with mean aµ(t)τ [Eq. (A.6)] and variance

aµ(t)τ [1−aµ(t)τ/nµ(t)] [Eq. (A.7)]. We see that the mean is equivalent to that

of the Poisson random variable Pµ(aµ(t)τ) while the variance is also equivalent if

aµ(t)τ/nµ(t)→ 0. The primary challenge, therefore, to implementing a successful

binomial τ -leaping algorithm is in choosing appropriate values of nµ(t) that both

eliminate the possibility of producing negative populations and retain the correct

statistics of the dynamical process.

In the case of a single first-order elementary reaction Si→products , the choice is

simple: nµ(t)=Xi(t). Equally simple relations exist for other elementary reaction

types [25, 109]. Complications arise, however, when considering non-elementary

reaction types and networks of reactions where species appear as reactants and/or

products in multiple reactions. Tian and Burrage [109] and Chatterjee et al. [25]

proposed different strategies for handling the latter situation. Both are somewhat

limited in their applicability and neither is based on strong theoretical grounds.

We refer the reader to the original articles for the specifics.

Subsequent work by Peng et al. [83] and Leier et al. [67] aimed at refining and
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generalizing the procedure for choosing nµ(t). A good overview of both methods

and their relation to the method of Tian and Burrage [109] is given in Ref. [67].

Briefly, Peng et al. [83] recognized that the approach proposed in Ref. [109] often

gives overly conservative values of nµ(t), reducing the efficiency of the method.

Moreover, it is unable to handle complex couplings between reactions. They pro-

posed an alternative approach that is significantly more computationally expensive

but can handle generic reaction networks and allows for the use of larger time steps.

Leier et al. [67] proposed a somewhat simpler approach for handling generic reac-

tion couplings. They also discussed the problem of non-elementary reaction types

[Hill reactions in particular; see Appendix D, Eq. (D.24)] and extended the method

to handle time-delayed reactions (as are often used for modeling, e.g., transcription

and translation).

In all cases [25, 67, 83, 109], the authors demonstrated through simple examples

that the binomial τ -leaping methods are comparable in accuracy to the Poisson-

based methods. However, there is some variability in the results (i.e., sometimes

binomial τ leaping is more accurate and sometimes it is less) that is likely due to the

choices of example systems and parameters. Less attention was given to efficiency

although the general theme was that larger time steps could be employed which

obviously reduced computational effort.

Finally, Pettigrew and Resat [84] proposed an extension to the binomial τ -

leaping approach that they termed multinomial τ leaping. The primary modifica-

tion that they made is to group reactions and sample the total number of firings of

the group from a binomial distribution, rather than those for individual reactions.

The firings of individual reactions are then allocated from the total by sampling

from a multinomial distribution, which is simply a generalization of the binomial
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distribution with more than two possible outcomes. The approach can be seen as a

generalization of that proposed by Tian and Burrage [109] for handling the special

case where a species appears as a reactant in exactly two reactions.

Pettigrew and Resat [84] assemble groups by identifying sets of reactions where

no reactant species appear as reactants in any other group, a condition known as

“reactant closure.” In the simplest case, one can consider the entire network of

reactions as a single group. An upper bound, nG(t), on the number of firings

within each group G is then chosen and the actual number of firings is sampled

from the binomial distribution BG(nG(t), aG(t)τ/nG(t)) where aG(t)≡
∑

ν∈G aν(t).

The authors provide two procedures for selecting nG(t): a conservative approach

that ensures that no populations become negative and a more aggressive trial-and-

error strategy that often gives larger values of nG(t) in practice and converges to

the conservative approach in the worst-case scenario. The authors also offer an

alternative τ -selection strategy that involves choosing a value of τ (some multiple

of the previous τ), estimating the state of the system at t+τ by assuming that each

reaction fires aµ(t)τ times (the mean of the associated Poisson random variable),

and checking to see whether the leap condition has been violated for any reaction.

If so, τ is reduced and the procedure repeated until an acceptable value is found.

This approach is similar in spirit to, but lacks the rigorous theoretical foundation

of, Anderson’s post-leap checking procedure (Sec. 3.4.3).

K leaping [3, 14]. In Gillespie’s original τ -leaping article [47], yet another sim-

ulation approach was offered dubbed the kα-leap method. The basic idea of this

approach is that instead of calculating τ and generating random samples for the

firings of all reactions, one calculates the number of times, kα, that a given reaction

Rα can fire before violating the leap condition Eq. (3.20). The time step τ is then
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drawn from a Gamma distribution (essentially the inverse of the Poisson distribu-

tion; see Appendix in Ref. [47]) with parameters aα(t) and kα and the numbers of

firings of all other M−1 reactions during τ are drawn from Poisson distributions

as in standard τ leaping. The procedure proposed for selecting kα is very similar

to that proposed for selecting τ [47].

Although the practical utility of kα leaping is minimal (it offers little advan-

tage over τ leaping) the basic idea behind the approach motivated two subsequent

works by Auger et al. [3] and Cai and Xu [14]. These authors, simultaneously and

independently, proposed leaping methods based on calculating the total number

of reaction firings within the next simulation step (in a manner analogous to the

τ -selection procedures of Sec. 3.4), drawing τ from a Gamma distribution and then

allocating the firings amongst the individual reactions according to a multinomial

distribution. The latter procedure is essentially the same approach taken by Pet-

tigrew and Resat [84]. The focus on the total number of firings, rather than that

for an individual reaction, is what differentiates these methods from the kα-leap

method of Ref. [47]. For the sake of simplicity and to retain consistency with

the terminology used in this dissertation, we refer to these methods as K-leaping

approaches, with K≡
∑M

ν=1 kν(τ).

In essence, the K-leaping approach is the inverse to the τ -leaping approach. It

is based on the same fundamental concepts as τ leaping (i.e., the near invariance

of all {aν(t)} during τ and the Poisson approximation for reaction firings) but it

treats τ as the random variable and calculates K as the deterministic quantity.

The question then is: What is the advantage, if any, of K leaping over τ leaping?

Auger et al. [3] and Cai and Xu [14] argue that the advantages are two-fold: (i)

focusing on K rather than τ makes it easier to ensure satisfaction of the leap con-
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dition Eq. (3.20) (including avoiding negative populations), and (ii) computational

effort can be reduced by ordering the reactions from largest propensity to smallest

during the allocation phase.

Point (i) is valid to an extent in that K represents an upper bound on the

possible number of firings of an individual reaction Rµ in the same vein as nµ(t) in

the binomial τ -leaping approach (see above). In principle, therefore, it is possible

to choose a value of K that ensures that no reaction can fire enough times so

as to cause a violation of the leap condition. However, this is far too restrictive

a criterion for any practical simulation method. Alternatively, one could loosen

the criterion to simply ensure that negative populations do not arise. Doing so

erodes the ability to ensure satisfaction of the leap condition for all reactions

but this may be acceptable in some situations. Still, even this approach will be

overly restrictive in many cases [14]. Thus, it is preferable in practice to choose

K in a manner analogous to the τ -selection approaches of Sec. 3.4 and provide a

mechanism for avoiding negative populations. Of course, just as in the binomial

τ -leaping case, this can be a challenging task in general. We refer the reader to

Refs. [3] and [14] for a more detailed discussion of this issue and the specific K-

selection procedures proposed by the authors. The important point here, however,

is that the contention that K leaping is better at ensuring satisfaction of the leap

condition than τ leaping is largely untrue. The one caveat is that K leaping does

avoid the extreme outlier deviates that can arise in τ leaping.

The ability to reduce computational effort by ordering reactions is a more

intriguing characteristic of K leaping and is reminiscent of the approach used

to optimize the linear search phase of the DM variant of the SSA [22, 39, 75]

(see Sec. 2.3.1). In principle, both τ leaping and K leaping require a total of M
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random number generations at each step: M Poisson random deviates in the case

of τ leaping, M−1 binomial random deviates [because kM(τ)=K−
∑M−1

ν=1 kν(τ)] and

one Gamma random deviate (for τ) in the case of K leaping. However, by ordering

the reactions in K leaping from largest propensity to smallest one increases the

chances that the K total firings will be completely allocated in M ′<M−1 trials.

This is analogous to reducing the search depth S in the linear search phase of the

DM and the ordering methods discussed in Sec. 2.3.1 can thus be employed in this

context. Through various example systems, both Auger et al. [3] and Cai and Xu

[14] demonstrated modest, yet not insignificant, improvements in the efficiency of

K leaping relative to τ leaping due to the ordering of reactions.

Other higher-order leaping methods [12, 13, 116]. Another proposed ex-

tension to the τ -leaping approach are the so-called Poisson Runge-Kutta (PRK)

methods of Burrage and Tian [12] (also see Burrage et al. [13]). Like Rathi-

nam et al. [92], Burrage and Tian [12] were motivated to develop higher-order

leaping methods by Gillespie’s work on the midpoint τ -leaping approach [47]. As

discussed above, the idea behind the estimated-midpoint approach is to estimate

the state of the system at the time t+τ/2 and then approximate

Kµ(τ |xt, t) ≈ Pµ (ãµ(t + τ/2)τ) , (3.48)

where the estimated midpoint propensities ãµ(t + τ/2) are calculated (in the case

of τ -independent propensity constants) as

ãµ(t + τ/2) = aµ(t) + 〈∆aµ(τ/2)〉

= aµ(t) +
τ

2

M∑
ν=1

fµν(t)aν(t). (3.49)

Here, the second equality follows from Eq. (3.18). We see in Eq. (3.49) that the

estimated-midpoint method is an explicit approach since all of the required terms
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are evaluated at the current time t.

Burrage and Tian [12] proposed a generalization of this scheme based on S

intermediate approximation points, i.e.,

Kµ(τ |xt, t) ≈ Pµ

(
S∑

s=1

φsãµ(t + θsτ)τ

)
, (3.50)

S∑
s=1

φs = 1,

θs ≤ 1.

As in Eq. (3.49), the intermediate propensities are estimated as

ãµ(t + θsτ) ≈ aµ(t) + θsτ
M∑

ν=1

fµν(t)aν(t). (3.51)

This is a straightforward extension of τ leaping that retains the original explicit

approach (S =1, φ=1, θ =0) and the estimated-midpoint approach (S =1, φ=1,

θ=1/2) as special cases.

In Ref. [12], Burrage and Tian advanced two new higher-order approaches that

they termed the Heun and R2 PRK methods. Both are two-stage methods (S =2).

The Heun method considers the propensity at the current time t and the estimated

propensity at the end of the step, t+τ , giving equal weight to each. This means

that φ1 = φ2 = 1/2, θ1 = 0 and θ2 = 1. The R2 method considers the propensity

at the current time t (θ1 = 0) and the estimated propensity at the time t+2τ/3

(θ2 = 2/3), giving added weight to the latter. Specifically, φ1 = 1/4 and φ2 = 3/4.

These choices are optimal in the sense that they minimize the local error for a

two-stage PRK method [12].

When applied to a simple example system, Burrage and Tian [12] showed that

the higher-order methods (midpoint, Heun and R2) are significantly more accurate
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than the explicit τ -leaping approach for a given error control parameter ε. The R2

method performed the best, followed by the midpoint method and then the Heun.

These results are consistent with the local error characteristics of the corresponding

ODE methods.

Another method that can be considered to be a higher-order leaping approach

is the “unbiased” τ -leaping method of Xu and Cai [116]. These authors propose

solving approximate chemical master equations for the mean and variance of each

Kµ(τ |xt, t) and then using them to generate Poisson [if 〈Kµ(τ |xt, t)〉 < 10] or

Gaussian [if 〈Kµ(τ |xt, t)〉 ≥ 10] random deviates for the reaction firings. The

overhead associated with such a procedure is obviously high. However, Xu and Cai

[116] show through various example systems that the procedure produces much

more accurate results than either the simple explicit τ -leaping approach or the

estimated-midpoint method.

Miscellaneous leaping methods [1, 70, 91, 94, 113, 114]. Additional leap-

ing methods that have been proposed in the literature include Anderson’s post-

leap checking procedure [1] (see Sec. 3.4.3), the spatial τ -leaping approaches of

Marquez-Lago and Burrage [70] and Rossinelli et al. [94] (see Sec. 3.6.2), the con-

trollable approximative stochastic (COAST) algorithm of Wagner et al. [114], the

reversible-equivalent-monomolecular τ -leaping (REMM-τ) approach of Rathinam

and El Samad [91], and the particle-based τ -leaping method of Vlachos [113].

The COAST algorithm [114] is particularly interesting because it bears strong

similarities to the PLA and appears to be based on the same basic principles. As

in the PLA, reactions in COAST are dynamically classified during the course of

a simulation into various categories and the numbers of firings are subsequently
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determined by sampling from appropriate probability distributions based on the

classifications. The categories in COAST correspond to the ES, Langevin and de-

terministic classifications of the PLA (i.e., the Poisson classification is omitted—

see below) and ES reactions are treated using a modified version of the FRM,

again similar to the PLA. Wagner et al. [114] also present a τ -selection procedure

that is reminiscent of the RB τ -selection approach of Sec. 3.4.1 in that charac-

teristic time intervals τCOAST
µ are calculated for each reaction in the system and

τ =min{τCOAST
ν }, ν∈{1. . .M}.

A primary difference between the COAST algorithm and the PLA is that Wag-

ner et al. [114] assume that the base-level description of reaction dynamics is

binomial in nature rather than Poissonian. As such, a central theme of Ref. [114]

is deriving the conditions under which a binomial distribution can be well approx-

imated by a Gaussian. This is why the Poisson classification is omitted in the

algorithm. It is unclear why the authors make this assumption and we can only

speculate that they were influenced by the works on binomial τ leaping [25, 109].

Other differences between COAST and the PLA include how ES reactions are

handled, the details of the τ -selection procedure and how the species updates are

performed. With regard to ES reactions, the procedure in COAST is to calculate

successive values of τES
µ for each ES reaction, updating the reactant populations

after each firing, until
∑J

j=1 τES
µ,j > τ . The number of firings is then kµ(τ) =J−1.

This means that multiple ES reactions can fire during τ and each reaction can fire

multiple times. This is contrary to the situation in the PLA where an iterative pro-

cedure is employed to ensure that at most one ES reaction fires in τ (see Sec. 3.3.2).

The τ -selection approach proposed by Wagner et al. [114] involves calculating the

number of times, lµ, that each reaction can fire before the leap condition is vio-
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lated and then calculating the mean time
〈
τCOAST
µ (lµ)

〉
it takes for these firings

to occur. τ is then set to the minimum of these. The procedure for calculating

lµ is reminiscent of the procedures proposed for calculating nµ(t) in the binomial

τ -leaping methods [67, 83, 109] and takes into account the number of different

reaction channels that the reactants participate in. Finally, during the population

update phase in COAST, the reactions are ordered from smallest
〈
τCOAST
µ (lµ)

〉
to

largest. It is not entirely clear why this is done; perhaps it pertains to the speed of

the reactions, fastest to slowest. The populations of the reactant species only are

then updated by looping over all reactions. Not until all reactant populations have

been updated are the product populations updated. Again, it is not entirely clear

why this approach is necessary although the authors state that “. . . this splitting

of updates is in accordance with the assumption that no particle reacts twice in

[t0, T )” [114]. In the PLA, such a splitting of updates is unnecessary.

The REMM-τ method of Rathinam and El Samad [91] is based on an entirely

different premise than all other leaping methods discussed up until now. Indeed,

it is the opinion of the author of this dissertation that it is probably better char-

acterized as a model reduction approach (see Sec. 3.6.3) than a leaping method.

Nonetheless, it is an intriguing method that deserves mention here. The basic

idea of the REMM-τ approach is to partition a system of reactions into multiple

small subsystems and then assume that each subsystem behaves independently

of all others. The validity of this assumption increases with decreasing τ . The

subsystems should be of a type, or “motif,” that can be analyzed either exactly

or approximately. In Ref. [91], Rathinam and El Samad focus exclusively on re-

versible pairs of elementary reactions, either monomolecular or bimolecular. They

derive exact solutions for the elementary monomolecular reactions S1 
 S2 and

S 
∅ and then derive conditions under which various elementary bimolecular re-
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actions (e.g., S1+S2 
S3, etc.) can be approximated by a monomolecular reaction

and, hence, analyzed using the exact solutions. Moreover, non-reversible reac-

tions can be thought of as reversible reaction pairs with a backwards rate constant

equal to zero. Thus, the entire reaction network is recast as a set of independent,

reversible, monomolecular reaction pairs (hence the name “reversible-equivalent-

monomolecular” τ leaping) and the system is evolved by approximating the state

changes due to each pair during τ .

The main results of Ref. [91] can be summarized as follows. For the elementary

reversible reaction pair S1

c1−⇀↽−
c2

S2, the system state at time t+τ can be written as

Xi(t + τ) = Xi(t)−∆Xi→j(τ) + ∆Xj→i(τ), i = 1, 2, (3.52)

where ∆Xi→j(τ) represents the number of molecules identified as Si at time t that

are observed to be of type Sj at time t+τ . Rathinam and El Samad [91] show that,

in isolation,

∆Xi→j(τ) ∼ B (Xi(t), pi(τ)) , (3.53)

pi(τ) ≡ ci

c1 + c2

(
1− e−(c1+c2)τ

)
, (3.54)

where ‘∼’ denotes “distributed according to.” Thus, after selecting a value of τ , one

simply generates two binomial random deviates and updates the system according

to Eq. (3.52). For the elementary birth-death process S
c1−⇀↽−
c2
∅, Rathinam and

El Samad [91] show that

∆XS→∅(τ) ∼ B
(
X(t), 1− e−c1τ

)
, (3.55)

∆X∅→S(τ) ∼ P
(

c2

c1

(
1− e−c1τ

))
. (3.56)

Thus, in this case, one generates one binomial19 and one Poisson random deviate

19Notice that Eq. (3.55) follows directly from Eqs. (3.53) and (3.54) with c2 =0.
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and updates the system according to

X(t + τ) = X(t)−∆XS→∅(τ) + ∆X∅→S(τ). (3.57)

Rathinam and El Samad [91] also consider five different types of reversible, elemen-

tary, bimolecular reaction pairs and show how they can be approximated as one of

these two types of monomolecular reaction pairs. The above results can then be

applied to those reactions with some modifications to the basic parameters (e.g.,

c1 and c2). We refer the reader to Ref. [91] for further details.

The basic idea of the REMM-τ approach, i.e., proceeding by coarse time in-

tervals and describing the reaction dynamics in terms of probability distributions

rather than simulating each and every reaction firing, is certainly in the same spirit

as all other leaping methods discussed in this dissertation. However, as mentioned

above, we believe that the method is probably better characterized as a model re-

duction approach than a leaping method. Our reasoning is that the philosophy of

identifying small network motifs that can be considered largely independent of the

rest of the network and then treating them in some approximate way is the same

that underlies model reduction methods based on rapid-equilibrium assumptions.

A well-known example is the Michaelis-Menten approximation, where a set of three

reactions is collapsed into one effective reaction with modified rate parameters (see

Sec. 3.6.3). Often, the species involved participate in other reactions in the system

as well. However, the motif is considered to act independently of the rest of the

network because the dynamics are usually much faster than the other reactions in

which the species participate.

This is essentially the same situation that the REMM-τ method was designed

for. Indeed, Rathinam and El Samad [91] advertise the approach as a way to

handle “small number and stiff” reaction networks, i.e., fast reaction subsystems
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involving small numbers of molecules, and discuss extending it beyond the simple

reversible-reaction-pair motif. They do not provide a procedure for selecting τ

nor do they discuss how to deem whether the independence assumption is valid,

only that it is expected to hold for small values of τ . In truth, the validity of the

assumption likely relies on a rapid-equilibrium condition, again emphasizing the

connection to model reduction. However, regardless of which category of approach

the REMM-τ method falls in, it is an important advancement in that it addresses

what is perhaps the biggest shortcoming of the leaping methods, the inability

to handle small-number-and-stiff reaction subnetworks (as also pointed out by

Cao et al. [21]). We discuss this issue further in Sec. 3.6.3 and provide an example

of this shortcoming and the use of model reduction to overcome it in Sec. 4.2.3.

Finally, Vlachos [113] recently proposed a particle-based version of τ leaping

with a focus on surface science applications. The idea is quite simple: describe

the system in terms of the basic processes that can take place (e.g., adsorption,

desorption, site-to-site hopping), calculate a τ and determine the set of firings

{kν(τ)} as in standard τ leaping, and then randomly apply the firings to individual

particles in the system. In essence, the only difference between this approach and

standard τ leaping is the latter application to individual particles.

Interestingly, an analogous situation exists between Gillespie’s SSA [41, 42] and

a method known as the N -fold way of Bortz et al. [10], another highly-cited method

in the kMC literature. For all practical purposes, the SSA and the N -fold way are

the same method. However, the N -fold way was developed within the context

of Ising spin system models where the states of lattice sites change with rates

dependent upon their local environments. Each lattice site is essentially a particle

and complex models can contain thousands to millions of such sites. Instead of
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looping through all sites in the system, Bortz et al. [10] proposed grouping sites into

categories of which there are usually far fewer than individual sites. An example is

the category {↑; ↓↓↓↓}, which corresponds to a lattice site in state ↑ (e.g., up-spin)

surrounded by four lattice sites in the ↓ state (i.e., a two-dimensional lattice with

first-nearest neighbor interactions). Essentially, {↑; ↓↓↓↓} is a “species” with a

population and we can represent transitions between states within the language of

chemical kinetics as, e.g.,

{↑; ↓↓↓↓}
c↑;↓↓↓↓−−−−→ {↓; ↓↓↓↓}.

The approach then is to count up the number of sites within each category, deter-

mine the type and time of the next transition using Eqs. (2.14) and (2.15) (i.e.,

identical to the DM variant of the SSA), and then randomly select which site will

undergo the transition.

Given the obvious connection between the SSA and the N -fold way and the

fact that τ -leaping can be seen as an extension to the SSA, the particle-based

approach of Vlachos [113] is a natural extension to τ leaping. However, a major

complication that must be addressed in any practical application of the method

is the possibility of conflicts in the selection of particles. Basically, it is possible

to choose particles to undergo transitions that are no longer feasible because of

the firing of another transition in the same simulation step. For example, when

considering site-to-site hopping, one may determine that multiple hopping events

will occur in the next simulation step. One randomly chooses a particle and moves

it to a neighboring site. Now, assume that the next particle chosen happens to be

adjacent to the site just occupied by the previous migrating particle. Obviously,

the newly chosen particle cannot hop to that site. However, when calculating the

hopping rates at the beginning of the step the site was unoccupied and hence

contributed to the rate. Simply disallowing an attempted hop to that site may,
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therefore, skew the statistics of the process and introduce error. There is thus a

fundamental complication here that does not arise in the N -fold approach because

of its one-reaction-at-a-time nature. Simply put, in the τ -leaping framework we are

sacrificing knowledge of the order of events for the sake of efficiency and, hence, we

cannot say that one process occurs prior or subsequent to any other. Allowing for

attempted moves and then disallowing them if they are no longer feasible while still

including them amongst the firing count (i.e., introducing null events) may be the

solution to the problem but further investigation is necessary. Vlachos addresses

this issue briefly at the end of Ref. [113] but his arguments are speculative and

non-rigorous.

Comparisons to partitioned leaping [56]. The methods discussed above that

are most closely related to the PLA are the explicit τ -leaping approach of Gille-

spie, Petzold and co-workers [18, 20, 47, 50] and the COAST algorithm of Wag-

ner et al. [114]. It is our opinion that the PLA is superior to both methods for

the following reasons. First, the PLA utilizes the entire theoretical multiscale

framework laid out by Gillespie in Refs. [46] and [47]. The explicit τ -leaping

method lacks this feature and thus does not capitalize on the advantages of a mul-

tiscale approach. Specifically, it cannot treat reactions at the less computationally-

demanding Langevin and deterministic levels and it cannot force continuum simu-

lations for comparison purposes. The COAST algorithm is a multiscale approach

but Wagner et al. [114] do not utilize the rigorous theoretical foundation developed

by Gillespie, instead choosing to derive their own framework based on a binomial

distribution-based description of reaction dynamics. As stated above, it is unclear

why they chose this path and whether various aspects of their approach are the-

oretically sound (i.e., the treatment of ES reactions, the τ -selection approach and
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the population update procedure).

More importantly, however, the PLA is significantly simpler in construction and

much easier to implement than both the explicit τ -leaping method and COAST.

In particular, the SSA is naturally incorporated into the PLA because of its anal-

ogous relationship to the FRM (and NRM by extension). In the explicit τ -leaping

algorithm, incorporation of the SSA is somewhat forced due to the desire by the

authors to utilize the DM variant. The incorporation is somewhat more natural

in COAST although the procedure proposed in Ref. [114] is less rigorous than

the iterative approach employed in the PLA (see Sec. 3.3.2). Furthermore, again,

various aspects of the COAST algorithm are confusing and not well motivated.

Conversely, the basic principles of the PLA are simple and straightforward, being

based on the well-formulated ideas of Gillespie [46, 47] and drawing on an analogy

with the well-known FRM/NRM variants of the SSA [40–42].

Cao et al. [18] have also added additional machinery, and hence complexity,

to the explicit τ -leaping method in order to deal with the problem of negative

populations. Negative populations are mostly avoided in the PLA by the con-

struction of the algorithm (see below for further discussion). Reactions with small

reactant populations are automatically detected by the PLA and classified as ES,

thus preventing them from firing multiple times in τ . This is analogous to the

critical/non-critical approach proposed in Ref. [18] but without the need for the

added machinery presented there. Overall, we believe that the PLA represents

the ideal explicit leaping approach and is the natural progeny to the foundational

ideas laid out in Refs. [46] and [47].

The implicit τ -leaping methods proposed by Gillespie, Petzold and co-workers

[24, 92, 93] and the higher-order PRK methods of Burrage and Tian [12, 13]
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offer important direction and motivation for future enhancements to the PLA. In

principle, it should be relatively straightforward to implement implicit and Runge-

Kutta variants of the PLA based on Eqs. (3.41), (3.44) and (3.50). As discussed

above, each of these [including Eq. (3.50)] have analogous forms at the SDE and

ODE levels. The higher-order approach proposed by Xu and Cai [116] is likely too

computationally intensive to employ as a practical simulation method. However,

it may provide a good benchmark against which the accuracy of the envisioned

PLA extensions can be compared.

Similarly, it should be relatively straightforward to implement a K-leaping

[3, 14] variant of the PLA, although it will require some thought to ascertain

the appropriate procedure for including the continuous-stochastic and continuous-

deterministic descriptions into the framework. As explained, the only true advan-

tage to the K-leaping approach is the potential to reduce computational effort

by ordering reactions during the allocation phase. Whether this has a significant

impact on the practicability of the PLA will require further investigation.

The REMM-τ approach of Rathinam and El Samad [91] offers another intrigu-

ing possibility for extending the PLA. We can envision an approach similar in spirit

to the hybrid explicit/implicit τ -leaping method of Cao et al. [21] but that uses

the methods presented in Ref. [91] [e.g., Eqs. (3.52)–(3.57)] for describing the dy-

namics of fast reversible reaction pairs rather than the implicit τ -leaping methods.

This is a more theoretically-sound approach that avoids the ad hoc downshifting

strategy proposed in [92] and is also capable of handling the small-number-and-stiff

reactions that the method of Cao et al. [21] cannot.

Furthermore, it should be possible to derive the conditions under which the

binomial and Poisson descriptions in Eqs. (3.53), (3.55) and (3.56) can be well-
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approximated by Gaussian distributions and Dirac delta functions, just as is done

in the PLA. This opens the door to the possibility of a multiscale model reduc-

tion framework that can be integrated with the multiscale leaping framework of

the PLA, an exciting prospect. However, two critical developments will be nec-

essary to make this approach practicable. First, a procedure for determining the

time interval over which the model reduction is valid (analogous to the τ -selection

procedures of Sec. 3.4) will need to be developed. Rathinam and El Samad [91]

provide no such guidance and we are unaware of any such theory. Secondly, the

theoretical framework presented in Ref. [91] will need to expanded to motifs other

than reversible reaction pairs, ideally to the general case. A recent article by

Sinitsyn et al. [106] may provide the necessary theoretical foundation for this. In

Sec. 3.6.3, we discuss further the possibility of integrating model reduction methods

with the PLA.

It should also be possible to develop a particle-based variant of the PLA in the

spirit of Vlachos [113], provided that the problem of conflicts in the selection of

particles can be resolved. This would be an important development, expanding

the applicability of the PLA to a much wider range of problems. While Vlachos’

focus was on surface science applications [113], particle-based kMC approaches

are utilized in a wide variety of disciplines, including the ever-important field of

computational biology. For example, Yang et al. [117] recently proposed a “rule-

based” implementation of the SSA that applies transitions to complex biological

molecules. Because the numbers of states that the molecules can exist in are

combinatorially large, molecules and molecular complexes are treated as particles

(or “agents”) rather than as populations. A particle-based version of the PLA

would thus prove particularly useful in the simulation of such models.
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Extending the PLA to handle spatially-inhomogeneous reaction-diffusion sys-

tems in the same vein as the methods proposed by Marquez-Lago and Burrage

[70] and Rossinelli et al. [94] is another important area of future investigation. In

Sec. 3.6.2, we address this issue in detail, discussing the shortcomings present in

the methods of Refs. [70] and [94] and the challenges associated with implementing

an accurate and efficient spatial leaping approach.

Finally, as explained above, the motivation behind the development of the bino-

mial τ -leaping methods [25, 67, 83, 84, 109] was to avoid the occurrence of negative

populations. Doing so requires replacing the Poisson description of the reaction dy-

namics by a binomial description and including various non-trivial procedures for

calculating the associated parameters of the binomial distributions. However, as

also explained above, the PLA mostly prevents the occurrence of negative popula-

tions simply by its construction, i.e., through the inclusion of the ES classification.

Furthermore, Anderson’s post-leap checking procedure [1] (Sec. 3.4.3) is a rigorous

and relatively simple approach for ensuring satisfaction of the leap condition for

all reactions in a system and, hence, also avoids negative populations by defini-

tion. As such, integrating post-leaping checking into the PLA to handle those rare

instances where negative populations do arise is, in the opinion of the author of

this dissertation, a much more simple and preferable approach for dealing with the

problem (see Sec. 3.6.1 for further discussion regarding integrating post-leap check-

ing into the PLA). Thus, one could argue that the PLA coupled with post-leap

checking essentially renders the binomial τ -leaping methods obsolete.

This is a somewhat provocative statement and it may, in fact, be the case that

certain aspects of the binomial τ -leaping methods will prove important and useful

in future extensions of the PLA and other leaping methods. Indeed, it is argued by
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various authors that binomial τ -leaping is more accurate and more efficient than

its Poisson-based counterparts [25, 67, 83, 84, 109], at least in some cases. The idea

of grouping reactions in a leaping algorithm, as proposed by Pettigrew and Resat

[84], is also intriguing. Thus, further investigation into these issues is certainly

warranted. However, from the perspective of avoiding negative populations, we

stand by our statement that the use of binomial random deviates in τ -leaping is

unnecessary and unwarranted in light of the developments of the PLA and post-

leap checking, especially considering the added complexity and overhead associated

with doing so.

3.6 Future directions

3.6.1 Improved τ selection by intermixing pre-leap calcu-

lations and post-leap checks

By far, the most computationally expensive aspect of the PLA, and leaping algo-

rithms in general, is the procedure for selecting the time step τ . In Sec. 3.4, we de-

scribed three procedures for accomplishing this that have been proposed in the lit-

erature to date: the pre-leap RB τ -selection procedure (Sec. 3.4.1) [20, 47, 50, 56],

the pre-leap SB approach (Sec. 3.4.2) [20, 56] and post-leaping checking (Sec. 3.4.3)

[1]. RB τ selection is, generally speaking, the most computationally expensive of

the pre-leap approaches.20 This is because (i) there is added cost associated with

calculating the quantities fµν(t) [Eq. (3.9)] for use in, e.g., Eq. (3.27) [contrast with

the simpler quantities for SB τ selection in Eq. (3.30)], and (ii) there are often far

20As we will see in Chapter 4, however, this is not always true.
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more reactions in a system than there are species; the RB approach requires a τ leap
µ

calculation for each reaction while the SB approach requires a T leap
i calculation for

each species.

The post-leap checking procedure of Anderson [1] can, in principle, be quite

computationally expensive as well since every time the leap condition Eq. (3.20) is

violated one binomial random number must be generated for each reaction in the

system (see Sec. 3.4.3). The potential benefit of the approach, therefore, in terms of

computational speed, is if one can minimize the number of violations of Eq. (3.20)

realized during the course of a simulation. There would still be some overhead

associated with the process of checking post-leap but it would almost certainly be

small, if not negligible, compared to the costs of random number generation or

pre-leap calculations.21

The trick, then, is to develop a low-cost strategy that minimizes the frequency

with which the leap condition is violated while concurrently maximizing the average

size of the time steps taken (obviously, we can avoid violating the leap condition

by choosing very small time steps but then we would suffer in terms of efficiency).

In [1], Anderson proposed a simple strategy along these lines (see Sec. 3.4.3). In

a direct comparison with the τ -leap method of Cao et al. [20], implemented using

the SB τ -selection formula Eq. (3.30), for a simple model system (investigated in

Sec. 4.1.1 of this dissertation), Anderson showed that for a given level of accuracy

his post-leap checking procedure outperformed SB τ leaping in terms of speed [1].

However, he also showed that for a given ε, post-leap checking was slower than

τ leaping, though significantly more accurate.

21It might also be possible to reduce the cost of checking even further by sorting reactions based

on their propensity to violate Eq. (3.20), similar to the procedure adopted by McCollum et al. [75]

in their optimized DM.
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In general, these results indicate the potential advantages associated with post-

leap checking. They also suggest, however, that the approach may not be sufficient

on its own; violations of the leap condition occurred often enough to make the

method only marginally faster than SB τ leaping [1]. Thus, we propose developing

a new τ -selection strategy based primarily on post-leap checking but with pre-

leap calculations mixed in intermittently. The basic idea would be to monitor the

propensity changes in relation to the leap condition and to perform a pre-leap

calculation whenever the algorithm appears to be struggling to find optimal time

steps. This would occur if the leap condition were being violated frequently or,

conversely, if it were being overly satisfied (i.e, unnecessarily small time steps). The

pre-leap calculation would act to rectify these problems by putting the algorithm

“back on track,” as it were. We note that Anderson actually follows this strategy

to some extent in that in the algorithm proposed in [1] the initial value of τ is

calculated pre-leap using Eq. (3.30). Thus, our idea is to extend this approach to

steps in the simulation other than the initial.

It is unclear whether this strategy will have significant impact when applied to

simple systems under “normal” conditions, e.g., the example systems considered in

Chapter 4. However, we do believe that it will prove to be of great importance in

more advanced settings, such as extensions to spatial domains (Sec. 3.6.2) or when

considering time-varying environmental quantities. We anticipate that in such

situations the simple procedure proposed by Anderson [1] might prove insufficient.

Yet, it will be infeasible to employ a τ -selection procedure based purely on pre-leap

calculations. Thus, intermixing an occasional expensive pre-leap calculation with

multiple inexpensive post-leap checks might prove to be the optimal approach.

Work in this direction will be undertaken in the near future.
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3.6.2 Spatial extension

The most natural extension to the PLA is one that introduces spatial extent and

diffusion. In both materials science [85, 95] and biology [15, 32, 111, 118], situations

in which the reactive environment cannot be considered homogeneous and well-

mixed are common. In Sec. 2.5, we discussed approaches used in such situations

at the exact-stochastic level. Thus, a spatial PLA (SPLA) implementation should

naturally extend these methods.

In keeping with the schematic of Fig. 2.4, we envision discretizing an inho-

mogeneous reaction environment into numerous homogeneous subvolumes loosely

coupled through diffusive transport. The SPLA will then simulate multiple reac-

tion firings and diffusion events at each simulation step, representing a significant

improvement over spatial-SSA methods such as the NSM (Sec. 2.5), which fire only

one reaction or diffusion event at each step.

However, the implementation of such an approach is not trivial. First, as

explained in Sec. 3.3 of this dissertation, a particularly attractive feature of the

PLA is its seamless transition to the FRM/NRM variants of the SSA (Sec. 2.4)

in the limit of small populations. In the spatial case, we would like a similar

transition to occur, perhaps to the NSM. However, there is a fundamental difficulty

in achieving this: it is not, in principle, permissible to arbitrarily group reactions

in leaping algorithms as is done in spatial-SSA methods. This is because the leap

condition Eq. (3.4), on which the leaping approach is based, applies to individual

reactions (and diffusion events), not groups. Basically, there is no guarantee that

a negligible change in al
0 will correspond to negligible changes in the individual

values of al
µ that comprise the sum. Indeed, in many, if not most, cases it will

not. Thus, it is very possible that the leap condition will be violated for individual
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events in the group even when it is satisfied for the group as a whole.

Second, as explained in Sec. 3.6.1, τ selection is the most computationally-

expensive aspect of the PLA. In the case of RB τ selection (Sec. 3.4.1), one τ leap
µ

calculation is required for each reaction in the system; in SB τ selection (Sec. 3.4.2),

one T leap
i calculation is required for each species. For spatially-discretized systems,

this problem is intensified. In general, each subvolume is assigned local copies

of each reaction and species, essentially multiplying the numbers of each by a

factor of L. Furthermore, events describing diffusive transport are added to each

subvolume, further increasing the number of events that must be considered. Thus,

it is not hard to imagine situations where the computational load associated with

τ selection renders the method infeasible.

We note that to date two attempted applications of spatial τ leaping have

been proposed in the literature, those of Marquez-Lago and Burrage [70] and

Rossinelli et al. [94]. The method in Ref. [70] is a leaping analogue of the NSM. It

is based on grouping reactions and diffusion events by subvolume and calculating a

leap time interval for the group. The global τ is then chosen as the smallest over all

subvolumes. However, as explained above, τ selection cannot be applied to groups

as a whole. Thus, an individual τ -selection calculation must still be performed for

each event or species in the system. As a result, the reduction in computational

effort seen in spatial-SSA implementations such as the NSM is largely absent in the

method of Marquez-Lago and Burrage. Furthermore, the authors neglect diffusion

incoming into subvolumes in the τ -selection procedure and employ an outdated τ -

selection approach [47]. The approach of Rossinelli et al. [94] is somewhat similar

but differs in spirit in that it does not attempt to emulate a spatial-SSA approach.

In fact, there is no mechanism for transitioning to a spatial-SSA method in the
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limit of small populations. A more serious shortcoming is that reactions and diffu-

sion events are considered independently of each other in τ selection. There is no

justifiable reason for doing this. Indeed, the firings of reactions are intimately tied

to the rates at which entities diffuse into and out of subvolumes, and vice versa.

Work is currently ongoing to develop a spatial version of the PLA that over-

comes each of these shortcomings. Specifically, both incoming and outgoing dif-

fusion are accounted for in the τ -selection process, reactions and diffusion events

are considered together in τ selection and, being built upon the PLA, the method

segues to an exact-stochastic method for small populations. The approach can be

seen as a straightforward and accurate implementation of spatial leaping against

which future enhancements can be tested. The approach does not, however, ad-

dress the fundamental problem of the high cost of τ selection. We believe that

incorporating post-leap checking [1] (Secs. 3.4.3 and 3.6.1) might provide a partial

solution. Grouping events and performing a single τ -selection calculation on the

group would also be a great benefit. Work is currently underway to determine how

this might be accomplished in a theoretically-sound manner.

3.6.3 Dynamic model reduction

The stated goal of leaping methods such as the PLA is to address the general prob-

lem of timescale disparity in population-dynamical systems [46, 47]. However, the

characteristic timescale of a reaction is dependant upon two factors: the popula-

tions of the reactant species and the rate parameters. Leaping methods specifically

target only the former, the effects of population size. As explained in Sec. 3.1, the

basis of the leaping methodology is to advance forward in time by intervals τ over

which many reaction firings can occur without the propensities changing “appre-
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ciably.” This is a tacit statement regarding population size; reactant populations

must be large in order for a single reaction firing to have a negligible impact on its

propensity.

It is not uncommon, however, for timescale disparities to arise because of dis-

parities in rate constants. Moreover, fast reactions can often be associated with

small reactant populations. For example, in cellular biology, the binding and un-

binding of transcription factors to genes, of which there is usually but one copy

(never more than a few), occurs much more rapidly than other processes in the cell,

such as transcription and translation [61, 69, 73, 74, 89, 90, 100]. In materials fab-

rication, the diffusion of adatoms on a surface is often orders of magnitude faster

than the deposition rate, especially at low coverage [71, 72]. In situations such as

these, the PLA, and leaping algorithms in general, will “bog down” computation-

ally. Especially in the case of small populations, a small number of firings, or even

a single one, will significantly alter the propensity, and if the rate constants are

large, then the time interval over which this will occur, i.e., the time step, will be

small. In Chapter 4 (Sec. 4.2.3), we consider an example system under just such

conditions.

A commonly-used strategy in chemical kinetics to overcome problems like this

is model reduction. There are various flavors of model reduction, but most rely

on some form of rapid-equilibrium assumption [89]. The basic idea is to remove

explicit consideration of fast reactions by collapsing them down into a smaller set

of slow reactions with effective rate expressions. A well-known example of this in

biology is the Michaelis-Menten mechanism, where a “substrate” S is converted

into a product P through the action of an enzyme E. The full set of reactions
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describing the process is

E + S
c1−−⇀↽−−
c−1

{E·S} ccat−→ E + P,

where the rate parameters are given in units of [time−1]. By assuming that the

enzyme-substrate complex {E·S} is in quasi-equilibrium, this set of reactions can

be reduced to a single one,

S
aµ−→ P,

with an effective rate expression

aµ =
ccatET XS

CM + XS

,

where ET ≡XE +X{E·S} and CM≡(c−1+ccat)/c1.

Removing, in this way, the fast, reversible binding/unbinding reactions E+S 


{E·S} from explicit consideration and incorporating their effects into a single,

effective reaction S→P can greatly accelerate the simulation process, especially

for large, complex reaction networks that contain numerous such subnetworks. In

the case of the PLA, and leaping algorithms in general, the primary improvement

is in the calculation of larger time steps . This is an important point. Reducing the

number of reactions to be explicitly considered certainly helps, but this is not the

primary advantage to using model reduction in the context of a leaping algorithm.

Rather, model reduction acts to remove the aspects of a network that constitute

the primary bottleneck in τ selection. Leaping and model reduction are thus

complementary approaches, the former specifically handling timescale disparities

associated with disparate species populations while the latter targets those due

to disparities in rate constants. Integrating the PLA with some form of model

reduction is thus an area of fundamental importance and great future interest.

In Chapter 4 (Secs. 4.2.2 and 4.2.3), we illustrate the advantages of such an

integration using simple model reductions similar to that outlined above. However,
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there is a fundamental shortcoming to such an approach: the model reduction is

static, i.e., it is imposed at the outset of a simulation and remains in effect for

the duration. Species populations change in time, however, and, in principle,

rate parameters can change as well (i.e., if they are dependent on environmental

quantities such as volume or temperature). It is entirely possible, therefore, for the

conditions under which the reduction is valid to be violated at some point during

the course of a simulation due to the time evolution of the system. Moreover, the

process can be cyclic, with the conditions being met and then violated and then

met again, and so on. Static model reductions either ignore such situations or

simply disallow them. Thus, it is advantageous and preferable to employ a model

reduction scheme that is dynamic, automatically reducing out fast reactions when

the conditions permit but reinserting them when the opposite is true.

Recently, a number of methods implementing strategies along these lines have

been proposed [30, 97, 98]. Although differing in various implementation details,

the basic idea is the same. First, the system is partitioned into fast and slow

subsets. The full system is then evolved until such time that the fast subsystem

is deemed to be in quasi-equilibrium. During the equilibration phase, data is

collected for the species involved in the fast reactions and probability distribution

functions are generated for each. The fast reactions are then removed from explicit

consideration and the system is advanced to the time of the next slow reaction

firing. The slow subsystem is updated and the populations in the fast subsystem

are drawn from the probability distributions generated during equilibration. The

fast reactions are then updated and the system re-equilibrated. The process is

repeated as necessary. In Fig. 3.2, we provide a simple schematic illustrating this

procedure.
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Figure 3.2: Simple illustration of the “brute force” dynamic model reduction
schemes of Refs. [30, 97, 98]. Illustrated here are time courses
for two species, one belonging to the “fast” subsystem and the
other to the “slow.” A sampling window of size tw is defined and
data is collected for the fast subsystem until it is deemed to be
in quasi-steady-state (QSS). Probability distributions are then
generated for all fast species and the system is advanced to the
time of the next slow reaction firing. At that point, populations
for the fast species are drawn from the generated distributions
and the procedure is repeated. Note that slow reactions can fire
during the equilibration phase. This may or may not affect the
equilibration process.

The approaches in Refs. [30, 97, 98] can be thought of as “brute force” dynamic

model reduction schemes. They are somewhat clumsy and difficult to implement

and rely on a heuristic partitioning into fast and slow subsystems. Nevertheless,

they illustrate in a straightforward way the general approach that we wish to

integrate with the PLA. We seek a scheme where reactions are included or excluded

“on the fly” based on the conditions present within the system. Reactions that are
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retained are simulated using the PLA with appropriately-modified rate expressions

that account for the effects of the reactions (and species) that are excluded.

We note that the field of model reduction is an extremely active one, with multi-

tudes of approaches having been proposed to treat complex systems in, e.g., biology

[11, 16, 17, 19, 54, 63, 78, 88, 105] and combustion science [110], to name just a

few. It might be the case, therefore, that we can accomplish our goal by simply

perusing the literature. Alternatively, we might develop a novel method based on

aspects of existing methods. In this regard, the methods of Cao et al. [16, 17, 19],

Goutsias [54] and Rathinam and El Samad [91] (see Sec. 3.5) look particularly

promising. Work in this direction is currently underway and will be expanded

upon in the near future.
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Chapter 4

Select Applications of Partitioned

Leaping

In this chapter, we present results of various applications of the partitioned-leaping

algorithm (PLA), which was introduced in Chapter 3 of this dissertation. We

begin in Sec. 4.1 by examining various simple systems that exemplify, in a general

way, the utility of the PLA. We then proceed in Sec. 4.2 to consider prototypical

biochemical networks, systems that are more complex than those in Sec. 4.1 but

are still simple enough to understand from an intuitive standpoint. These are

particularly useful in ascertaining the strengths and limitations of the method.

In all cases, we compare the performance of the PLA to the SSA in terms of

computational efficiency and accuracy. In some of the cases, we also compare to

deterministic predictions in order to quantify the extent of stochastic effects. PLA

simulations are performed with the parameters ‘≈1’=3 and ‘�1’= 100 and using

both the reaction-based (RB) and species-based (SB) τ -selection procedures of

Secs. 3.4.1 and 3.4.2, respectively. For the RB calculations, Eq. (3.27) is used, while

for the SB we use Eq. (3.30). Furthermore, SSA and deterministic simulations are

performed by manipulating the classification parameters of the PLA. Specifically,

setting ‘≈1’=∞ forces all reactions to be classified at the ES level at all steps of

a simulation. The algorithm then becomes an implementation of the NRM variant

of the SSA. Similarly, setting ‘� 1’= 0 forces a fully deterministic description,

and the algorithm becomes a simple forward Euler method for solving ordinary

differential equations (ODEs).1

1Note that we must also turn rounding off when performing deterministic simulations. Recall

that the standard implementation of the PLA involves rounding the numbers of reactions firings,
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4.1 Simple systems

We begin by considering three simple systems that exemplify the utility of the PLA.

The first is the “decaying-dimerizing” reaction set, a toy network that has been

utilized numerous times by Gillespie and co-workers [20, 21, 47, 50, 92], as well as

others [3, 14, 83, 97, 109], to demonstrate the utility of various leaping and hybrid

algorithms. Next, we consider a simple model of clustering that is motivated by

problems in various fields, including materials and atmospheric sciences, polymer

chemistry and biology. Finally, we investigate a biologically-inspired model system

that includes a crude description of gene expression dynamics along with protein-

protein interactions.

4.1.1 Decaying-dimerizing

The decaying-dimerizing reaction set is comprised of the following four reactions:

R1 : S1
c1−→ ∅, (4.1)

R2 : 2S1
c2−→ S2,

R3 : S2
c3−→ 2S1,

R4 : S2
c4−→ S3,

where ∅ represents a sink. Very simply, species S1 either degrades or is converted

into S3 through the unstable dimer S2. In all that follows, we use the values of the

rate constants and initial populations from Ref. [47]: c1 = 1.0, c2 = 0.002, c3 = 0.5,

c4 =0.02 (all in arbitrary units of [time−1]), X1(0)=105, X2(0)=0 and X3(0)=0.

In Fig. 4.1, we show an example time course for this system. In Fig. 4.1(a), we

{kν}, before updating the species populations (Sec. 3.3.2).
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Figure 4.1: Example decaying-dimerizing time course. Initial populations
are X1(0)=105, X2(0)=0 and X3(0)=0. In (a), the time course
is shown on standard axes, while in (b) the time axis (x-axis)
is given on a log scale, providing visual access to the short-time
behavior of the initial transient.

see that the system experiences an initial transient whereby approximately one-

half of the S1 entities are converted into S2. Most of the action occurs within the

first 0.1 time units, as evident in Fig. 4.1(b) where the time axis is shown on a log

scale for convenience. Upon completion of the transient, the populations of both

S1 and S2 steadily decrease while that for S3 increases. Exhaustion of all reactant

entities occurs by ∼45 time units.

To illustrate the practical advantage of using the PLA to simulate this sys-

tem, we present in Fig. 4.2 results of a step and timing analysis comparing the

performance of the PLA to the SSA. We consider both the SB (Sec. 3.4.2) and

RB (Sec. 3.4.1) τ -selection variants of the PLA with ε = 0.01, 0.03 and 0.05. In

Fig. 4.2(a), we see that the PLA requires far fewer simulation steps for each run

than does the SSA, by about an order of magnitude at ε = 0.01 and nearly three

orders of magnitude at ε = 0.05. We also see that the PLA-RB consistently re-

quires fewer steps than the PLA-SB, which is consistent with the tighter constraint

implicit in the SB τ calculation (see Sec. 3.4.2). Interestingly, however, we see in

Fig. 4.2(b) that both τ -selection procedures perform almost identically in terms
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Figure 4.2: Average numbers of steps from (a) and total CPU times for (b)
10 000 PLA and SSA simulation runs of the decaying-dimerizing
reaction set. PLA results are shown for both the RB and SB τ -
selection variants (Secs. 3.4.1 and 3.4.2, respectively) for various
values of ε. All simulations were run on a 3.60 GHz Pentium
Xeon processor.

of CPU run time. This is because each SB τ calculation is computationally less

expensive than each RB calculation (Sec. 3.4.2).

In Fig. 4.3, we plot the classifications achieved for each reaction at each step

of typical PLA-RB and PLA-SB simulations with ε = 0.03. These plots can be

cross-referenced with Fig. 4.4, which shows the elapsed time at each simulation

step of these runs, and the time course in Fig. 4.1, to understand how the PLA

operates and why it outperforms the SSA.

In Fig. 4.4(a), four regimes of system behavior are identified. The first, the ini-

tial transient, is magnified in Fig. 4.4(b). We see from this plot that around 1/10th

of the total simulation steps, between 1000 and 1400, are spent traversing the first

0.1 time units. Cross-referencing with Fig. 4.3, we see that the classifications for

reactions R1, R2 and R3 fluctuate during this period between ES and coarser de-

scriptions, up to Langevin in the case of R2. R4, however, remains at the ES level

throughout.2 Regime II is characterized by extensive leaping of all reactions. In an

2For the purposes of classification, the only difference between R3 and R4 is the value of the
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PLA-RB (b) simulation run with ε=0.03. The classifications are:
(1) exact stochastic, (2) Poisson, (3) Langevin, (4) deterministic.
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approximately equal number of steps to regime I, we see in Fig. 4.4(a) that about

20 time units are traversed during this period. This is because the populations of

S1 and S2 reach their highest points (Fig. 4.1), leading to non-fluctuating coarse

classifications for all reactions (Fig. 4.3). As the population levels fall, however,

the system moves into regime III, characterized by a return to fluctuating classi-

fications and, hence, an increase in the slopes in Fig. 4.4(a). This behavior arises

because the populations of S1 and S2 fall to low enough levels where not much

leaping can take place but are still large enough so that the time intervals between

reaction firings are relatively short. Basically, the system is transitioning from con-

ditions where coarse descriptions dominate to those where a fully ES description

is necessary. This conflict persists until the reactant populations fall below a few

hundred, at which point the conditions call for a fully ES treatment (Fig. 4.3).

Thus, in regime IV, the PLA automatically segues into the SSA (NRM variant)

and the final 10 time units or so are traversed in only a handful of simulation steps

because of the large time intervals between successive reaction firings.

Finally, in Fig. 4.5, we quantify the accuracy of the PLA through comparisons

to the SSA. Following Gillespie and Petzold [50], we perform 10 000 simulation runs

up until time t=12 using both the PLA and the SSA and compare histograms of the

distributions of all three species. We generate smoothed histograms using Eq. (F.3)

and quantify their differences using the histogram distance, D, of Eq. (F.4) and the

SSA self distance, Dself
SSA, of Eq. (F.5). Very simply, if D<2×

〈
Dself

SSA

〉
[Eq. (F.11)],

then the PLA histogram cannot be statistically distinguished from the correspond-

ing SSA histogram, indicating maximal accuracy (see Appendix F).

rate constant. Thus, the fact that different classifications are seen for these reactions illustrates

how population size alone is not sufficient for determining appropriate levels of description within

a reaction network.
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Figure 4.5: Accuracy analysis for simulations of the decaying-dimerizing re-
action set. (top row): Smoothed histograms for all three species
at t = 12 obtained from 10 000 simulation runs of the SSA and
the PLA-SB with ε = 0.01, 0.03 and 0.05. (middle row): Same
as the top row but using the PLA-RB. (bottom row): Histogram
distances quantifying the differences between the PLA results
and the SSA results. The dashed lines denote twice the expected
values of the SSA self distances [Eq. (F.11)]. Points that lie be-
low this threshold cannot be statistically distinguished from the
corresponding SSA histogram [56].

The results in Fig. 4.5 indicate good accuracy on the part of the PLA, though

statistically significant deviations are seen at larger values of ε. In general, we see

that the PLA-SB results are more accurate than the PLA-RB at given values of

ε. This is largely as expected, however, given that the SB τ -selection procedure

implicitly imposes a tighter constraint on the propensity changes than does the RB

procedure (Sec. 3.4.2). It is also interesting to note how deviations from the SSA

manifest themselves differently for the different species. For S1, the distributions

broaden but the mean is maintained. Conversely, the distributions for S2 and S3

largely maintain their shape but shift to the left for S2 and to the right for S3.

We also see that deviations seem to be more pronounced for S2 than for the other
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species. All in all, these results indicate that error propagation in the PLA, and

leaping algorithms in general, is a non-trivial matter and that a trade-off exists

between accuracy and efficiency (cf. Fig. 4.2), as one might expect.

4.1.2 Simple clustering3

Clustering phenomena arise in a variety of settings, from defect clustering in ma-

terials to droplet coalescence in clouds to chemical polymerization and biological

oligomerization. The process of clustering is inherently multiscale: small num-

bers of large clusters generally coexist within a system of large numbers of small

clusters. As such, clustering provides an ideal setting in which to demonstrate

the utility of the PLA when applied to systems with large disparities in species

populations.

Here, we consider a very simple model of clustering comprised of the following

nine reactions:

R1 : 2S1
c1=c−−→ S2, (4.2)

R2 : S1 + S2
c2=c−−→ S3,

R3 : S1 + S3
c3=c−−→ S4,

...

R9 : S1 + S9
c9=c−−→ S10.

For simplicity, we have neglected dissociation reactions and we assume that

monomers (S1) are the only mobile species in the system (i.e., larger clusters

cannot interact with each other).

3The content of this subsection has been adapted from Ref. [56].
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Furthermore, we confine the multiscale effects to variations in the species pop-

ulations alone by choosing equivalent propensity constants for all reactions, i.e.,

ci = c for all i = 1, . . . , 9. However, in this example, we want to investigate the

performance characteristics of the PLA over a wide range of system sizes. Thus,

we choose “deterministic” rate constants, ki, that are on a per molar basis and

then calculate the appropriate propensity constants by dividing by NAΩ, Avo-

gadro’s number times the system volume (see Table B.1 of Appendix B). For R1,

we choose k1 = 3×106 M−1 s−1 and for all other reactions ki = 6×106 M−1 s−1,

i=2, . . . , 9.4 We set the initial monomer concentration [S1](0)=1.66×10−6 M (all

other species begin with zero concentration) and consider various system volumes

Ω ranging from 10−15 to 10−9 l. This corresponds to initial monomer populations

X1(0)=103 to 109 and propensity constants c=10−2 to 10−8 s−1. All simulations

are run until the consumption of all monomers is complete.

In Fig. 4.6, we show an example time course obtained for a system volume

Ω = 10−9 l. In Fig. 4.6(a), we see a steady decline in the monomer population

accompanied by offset increases in the populations of clusters up to size 10. Con-

sumption of all monomers is complete by ∼ 6 s, at which point the cluster pop-

ulations vary by as many as four orders of magnitude. In Fig. 4.6(b), the time

axis is shown on a log scale so that the short-time behavior of the system can be

visualized.

In Fig. 4.7, we compare average numbers of steps and total CPU times required

for PLA and SSA simulations of this system at all system sizes considered. In

Fig. 4.7(a), we see that the numbers of steps for PLA and SSA simulations are

virtually identical at the smallest volumes considered. The utility of the PLA is

4Because R1 involves two entities of the same species, k1 must be one-half the value of all

other rate constants in order for all the ci to be equivalent (see Table B.1 of Appendix B).
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Figure 4.6: Example time course of the simple clustering model for Ω=10−9 l.
In (a), the time course is shown as a semi-log plot, while in (b)
both axes are shown on a log scale in order to provide visual
access to the short-time behavior of the system.

clearly demonstrated at larger volumes, however. It is also interesting to note how

the computational expense of the PLA actually decreases for volumes & 10−11 l.5

Furthermore, we see that the PLA-SB consistently requires fewer simulation steps

than the PLA-RB for given ε. This is a curious result and contrary to what was

seen in Fig. 4.2 of the preceding subsection. This illustrates that the performance

characteristics of the PLA are non-trivial and can be system specific (more on this

below). In Fig. 4.7(b), the trends in the CPU times generally coincide with those

of the simulation steps. The only exception is the elevated expense of the PLA-RB

5We envision two competing effects: (i) system size, which increases the computational load

by increasing the population levels, and (ii) leaping, which decreases the computational load by

allowing multiple reaction firings at each simulation step. For small systems, leaping effects are

minimal but the computational cost in Fig. 4.7 is low because the populations are small. As

the system size increases leaping effects increase, but initially they are not significant enough to

overcome the effects of system size. Thus, we see an increase in computational effort in Fig. 4.7

up to Ω = 10−11 l, albeit to a lesser extent than for the SSA. Above this point, however, the

computational cost begins to decrease. We interpret this as being due to the effects of leaping

overtaking those of system size. Of course, this cannot continue indefinitely and, thus, we see a

plateauing of the cost at very large volumes.
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Figure 4.7: Average numbers of steps from (a) and CPU times for (b) 10 000
PLA and SSA simulation runs of the simple clustering model at
various system volumes. PLA results are shown for both the RB
and SB τ -selection variants with ε = 0.01 (solid lines) and 0.03
(dashed lines). Note that in (a) the SSA values at 10−10 and
10−9 l are extrapolations (not based on actual data). As such, no
CPU times are plotted for these volumes in (b). All simulations
were run on a 1.80 GHz Athlon processor.

relative to the SSA even at small volumes where the numbers of steps are identical.

This indicates a significant computational overhead associated with RB τ selection.

We see that the PLA-SB, however, does not suffer from this shortcoming.

In Fig. 4.8, we show the classifications achieved for each reaction of the simple

clustering model at each step of a typical PLA-RB-3% (i.e., ε = 0.03) simulation

for a system size Ω = 10−9 l. These show leaping in action and illustrate the

multiscale nature of the network. The reactions involving the smallest cluster

sizes (e.g., R1–R4) experience extensive amounts of leaping throughout much of

the simulation, with the classifications fluctuating between exact stochastic (ES),

Poisson, Langevin and, at times, deterministic. Reactions involving larger cluster

sizes, however, experience much less leaping because of the smaller populations

of these species (Fig. 4.6). Reactions R7–R9, for example, experience only small

amounts of leaping up into the Langevin regime.
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[X1(0) = 109]. Classifications are: (1) exact stochastic, (2) Pois-
son, (3) Langevin, (4) deterministic.

In Fig. 4.9, we show the elapsed time at each step of the simulation depicted

in Fig. 4.8. As before, this allows us to relate the classifications seen in Fig. 4.8

to the time course in Fig. 4.6. In Fig. 4.9(a), we see behavior reminiscent of that

in Fig. 4.4 of the preceding subsection: (i) an initial period in which much of

the computational effort is spent traversing a small amount of simulated time [a

magnified view is shown in Fig. 4.9(b) for convenience], (ii) a period of extensive

leaping associated with large species populations, (iii) a period of transition from

coarse to finer-level descriptions, and (iv) a small-population period where a large

amount of time is traversed in a small number of steps. As before, this is a

stark illustration of the capabilities of the PLA. When possible, the algorithm

fires multiple reactions simultaneously in order to accelerate the simulation. It

maintains accuracy, however, by doing so only when the conditions permit.
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Similar to Fig. 4.4, we see four regimes of system behavior (see
text). A magnified view of the initial regime is shown in (b) for
convenience.

This accuracy is illustrated in Fig. 4.10, where we plot histogram distances for

the final populations (i.e., at time t= tf ) of selected cluster sizes (S2, S5, S8 and S10)

for a system volume Ω=10−9 l. These results are assumed to be representative of

the full spectrum of cluster sizes at all volumes considered. We see from these plots

that the PLA achieves good accuracy, though statistically significant deviations

are seen in some cases, particularly for ε=0.03. Interestingly, we also see that the

PLA-RB is consistently more accurate than the PLA-SB. This is contrary to what

was seen previously (Fig. 4.5) but is consistent with the smaller time steps [i.e,

larger number of steps—Fig. 4.7(a)] realized by the PLA-RB in this case.

4.1.3 Stochastic gene expression6

The role and consequences of stochasticity in biological systems is a subject of

great current interest [2, 34, 37, 61, 73, 74, 89, 90]. In cellular systems, the primary

source of “intrinsic” stochastic noise is gene expression, where the small numbers

of regulatory molecules involved in the process result in proteins being produced in

6The content of this subsection has been adapted from Ref. [56].
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Figure 4.10: Histogram distances comparing the results of PLA simulations
of the simple clustering model to those of SSA simulations.
Results are shown for the final populations (at t = tf ) of se-
lected cluster sizes for Ω = 10−9 l. Dashed lines denote twice
the expected values of the SSA self distances [Eq. (F.11)]. All
histograms were obtained from 10 000 PLA or SSA simulation
runs.

“bursts” rather than continuously [61, 73, 74]. Other cellular processes, however,

such as metabolism, often involve large numbers of molecules and, as such, are

commonly treated deterministically. Nevertheless, it has been shown that stochas-

tic fluctuations in gene expression can quantitatively affect these dynamics [87].

In principle, therefore, they cannot not be considered independently of each other.

However, fully stochastic treatments of biological systems containing both gene

expression dynamics and metabolic processes are generally infeasible [35]. There

is great motivation, therefore, to develop multiscale simulation methods (such as

the PLA) that are capable of handling systems containing both large- and small-

number dynamics.
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Here, we apply the PLA to a simple biologically-inspired model system that

contains a crude description of gene expression along with protein-protein interac-

tions. The network is as follows:

R1 : G
c1−→ G∗, (4.3)

R2 : G∗ c2−→ G + nP,

R3 : P + Q
c3−→ {P ·Q},

R4 : {P ·Q} c4−→ R + Q,

R5 : R
c5−→ ∅.

The first two reactions constitute the gene expression part of the network, where

the single gene G spontaneously converts into an active conformation G∗ that

produces proteins P in bursts of n. The third and fourth reactions constitute the

protein-protein enzymatic part of the network where P interacts with Q to form an

enzyme-substrate complex {P ·Q} that subsequently produces R and reconstitutes

Q. The final reaction models the degradation of R.

Rate constants for the five reactions are chosen as: k1 = k2 = 750 s−1,

k3 = 6×108 M−1 s−1, k4 = 100 s−1 and k5 = 50 s−1.7 We set the initial enzyme

concentration [Q](0)=1.66×10−7 M and define the burst parameter n=0.2XQ(0),

where XQ(0) is the initial population of Q.8 Investigations are carried out for

system sizes ranging from 10−15 to 10−7 l, corresponding to initial enzyme pop-

ulations XQ(0) ranging from 102 to 1010. In all cases, the system begins with a

single entity of G and null populations of G∗, {P ·Q} and R. All simulations are

7For the first-order reactions we have ci = ki, i=1, 2, 4, 5. For the second-order reaction we

have c3 =k3/NAΩ (see Table B.1).
8Our reason for doing this is primarily for convenience, to exemplify the utility of the PLA.

Nevertheless, by allowing the number of proteins produced per expression event to change we are

effectively varying the degree of “translational efficiency” [61].
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Figure 4.11: Example time course of the simple gene expression system for a
system volume Ω=10−11 l. Despite having a larger population,
the dynamics of P are significantly noisier than those for Q,
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linked to those of G, of which there is but a single copy.

run until t = 1 s.

In Fig. 4.11, we show an example time course for this system obtained for a

system volume Ω=10−11 l. This plot illustrates the stochastic nature of the gene

expression dynamics, apparent in the noisy time evolution of the gene product P .

Smoother trajectories are seen for the species Q, {P :Q} and R which, interestingly,

have smaller populations than P . This is a clear illustration, therefore, of the

shortcoming of using the population size alone as a metric for predicting levels of

stochasticity. Though the population of P is large in this case, the dynamics are

noisier than might be expected because the behavior of P is intimately tied to that

of the gene G, of which there is but a single copy. Thus, the dynamics of P are,

in fact, small-number in nature.

In Fig. 4.12, we present results of a step and timing analysis comparing the

performance of the PLA to the SSA. Here, as before, we see that the PLA achieves

significant computational savings relative to the SSA, particularly at large volumes.
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Figure 4.12: Average numbers of steps from (a) and CPU times for (b) 10 000
PLA and SSA simulation runs of the simple gene expression
model at various system volumes. PLA results are shown for
both the RB and SB τ -selection variants with ε = 0.01 (solid
lines) and 0.03 (dashed lines). Note that in (a) the SSA values
for Ω > 10−12 l are extrapolations (not based on actual data).
As such, no CPU times are plotted for these volumes in (b). All
simulations were run on a 1.80 GHz Athlon processor.

We also see that the PLA-RB consistently requires fewer steps and less CPU time

than does the PLA-SB for given ε. This is in direct contrast to the results of the

preceding subsection (Fig. 4.7) though generally consistent with those of Sec. 4.1.1

(Fig. 4.2), except for the CPU times. Indeed, in the course of three simple example

systems, we have now seen cases where the PLA-RB requires: (i) fewer steps than

the PLA-SB but an equivalent amount of CPU time, (ii) more steps and more

CPU time, and (iii) fewer steps and less CPU time. This system-specific behavior

is particularly intriguing and is a subject deserving of further inquiry in the future.

In Fig. 4.13, we take a closer look at the step requirements of the PLA when

applied to this system. Here, we plot not only the average numbers of steps

required for different variants of the PLA but also the “envelopes” within which

95% of all the data points lie. Doing so reveals some interesting behavior that is

not apparent in Fig. 4.12. Specifically, we see in Fig. 4.13 that the distributions

in the numbers of steps differ greatly with system size. The lower bound on the
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Figure 4.13: Averages (solid lines) and 95% envelopes (dashed lines) on the
numbers of simulation steps required for PLA-SB-1% (a) and
PLA-RB-1% (b) simulations at various values of Ω. For 10−11≤
Ω≤10−9 l, the stochastic nature of the gene expression dynamics
results in a significant portion of simulations requiring a large
number of steps.

distributions remains essentially constant for Ω ≥ 10−13 l but the upper bound

varies dramatically, reaching its largest value at around 10−10 l. Basically, the

stochastic nature of the gene expression dynamics gives rise to a wide variety of

time-evolution trajectories, particularly for 10−11≤Ω≤10−9 l, a portion of which

require many more simulation steps to complete than others. The ability of the

PLA to adapt and correctly capture the dynamics of such a “variable fate” system is

a particular strength of the method. Bistable switching and other forms of variable-

fate decision making are common to many biological systems and understanding

the role that stochasticity plays in this process is a subject of great current interest

[2, 26, 58, 89].

To illustrate this adaptive capability of the PLA, we present in Fig. 4.14 classifi-

cation profiles for reaction R3 (P+Q→{P ·Q}) obtained from typical PLA-RB-3%

simulations at three different system sizes.9 At Ω=10−14 l, we see that the classi-

9Similar behavior is seen for reactions R4 and R5 while reactions R1 and R2 are always

classified as ES because the populations of G and G∗ can obviously never exceed unity (data not
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variability in numbers of simulations steps seen in Fig. 4.13 at
similar volumes.

fications never reach beyond the Poisson level. At Ω=10−11 l, we see a coarsening

of the classifications approximately midway through the simulation. This occurs

because of the firing of multiple successive gene expression bursts in this particular

run. It is this type of behavior that leads to the large variability in the numbers

of steps seen in Fig. 4.13 at similar volumes. Finally, at Ω = 10−7 l, deterministic

status is achieved quickly and maintained almost exclusively throughout. This

explains the narrower distributions seen at large volumes in Fig. 4.13.

Finally, in Fig. 4.15, we quantify the accuracy of the PLA via histogram dis-

tances for the species P , Q, {P ·Q} and R obtained at t=1 s for a system volume

Ω = 10−13 l. Again, we assume these results to be indicative of all system sizes

considered. In this case, we see exceptional accuracy, with all histogram distances

falling well below the SSA self-distance thresholds.

shown).

124



0

0.02

0.04

0.06

0.08

0.01 0.03

XP(t=1 s)

PLA-SB
PLA-RB
SSAD

ε
0

0.02

0.04

0.06

0.08

0.01 0.03

XQ(t=1 s)

D

ε

0

0.02

0.04

0.06

0.08

0.01 0.03

XP:Q(t=1 s)

D

ε
0

0.02

0.04

0.06

0.08

0.01 0.03

XR(t=1 s)

D
ε
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4.2 Prototypical biochemical networks10

In this section, we use the PLA to systematically investigate the effects of stochas-

ticity in two model biochemical reaction networks. The systems that we consider

are a core model for calcium oscillations in hepatocytes (liver cells) introduced by

Kummer et al. [66] (Sec. 4.2.2) and the three-gene “repressilator” of Elowitz and

Leibler [33] (Sec. 4.2.3). These systems are relatively simple, yet they differ from

those of Sec. 4.1 in that they are not “toy” problems. They contain non-trivial

features that are ubiquitous to biochemical systems, such as enzyme catalysis and

feedback control. Moreover, both systems emit large-amplitude oscillations which

10The content of this section has been adapted from Ref. [57].
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give rise to the kinds of wide disparities in species populations that leaping algo-

rithms are specifically designed to cope with [47, 56]. All in all, these networks

provide an ideal testbed for investigating the practical utility of the PLA in com-

putational systems biology.

Our investigation involves using the PLA to probe behavioral changes that arise

in these systems due to changes in various system properties. In particular, we

investigate the transition from stochastic to deterministic behavior that accompa-

nies increases in the system volume in the calcium-oscillations model and increases

in the gene-protein binding and unbinding rate constants in the repressilator. The

salient feature of our investigation is that we are able to ascertain, in a systematic

way, the performance characteristics of the PLA over a wide spectrum of condi-

tions. Thus, we identify cases where leaping proves particularly beneficial, where

it “bogs down,” and various points in between.

We begin in Sec. 4.2.1 by discussing the details of our investigation, including

the particulars of the PLA implementation, the time series analysis tool and the

statistical tests employed in this work. We then present in Secs. 4.2.2 and 4.2.3

the models and results for the calcium-oscillations and repressilator systems, re-

spectively. We conclude in Sec. 4.2.4 with a discussion of these results and their

implications for future applications of the PLA.

4.2.1 Computational details

As previously, all PLA simulations reported in this section were performed with the

parameters ‘≈1’= 3 and ‘�1’= 100 and utilizing both the RB and SB τ -selection

formulas of Eqs. (3.27) and (3.30), respectively. In the case of SB τ -selection,
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derivations of the gi values used for the Michaelis-Menten and Adair reactions of

Tables 4.1 and 4.3, respectively, are given in Appendix D.

In order to account for the noisy time-evolution trajectories generated by the

PLA, we use in-house time-domain peak-analysis software. Borrowing ideas from

the automated identification of peaks in mass spectral data [62, 115], the software

identifies “significant” peaks within a time series and fits Gaussians to the data in

order to wash out the noise. An example calcium-oscillations time series and the

Gaussian fits achieved using the peak-analysis software are shown in Fig. 4.16.

Using this tool, we collect large amounts of peak amplitude and peak-to-peak

distance data from simulated time series and perform various statistical analyses.

We calculate averages and variances from long-time PLA and deterministic simu-
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lation runs11 and perform z-tests on the differences in means and F-tests on the

ratios of variances [77]. We also calculate coefficients of variation (COVs), defined

as the ratio of the standard deviation to the mean [61], in order to quantify the rel-

ative importance of the noise. Finally, we put the data into the form of smoothed

histograms and calculate histogram distances, D, and self distances, Dself
Ref [23, 56]

(Appendix F), so as to account for any particulars in the shapes of the distribu-

tions (e.g., long tails, bimodal features, etc.). We do all of this for various system

properties (i.e., volumes, telegraph factors) in order to quantify changes in the

system behavior and identify points of transition to determinism.

4.2.2 Calcium oscillations

Intracellular calcium is an important second messenger for the functioning of many

cell types, both in plants and in animals. It is involved in a multitude of functions

during the lifetime of a cell, including fertilization, development and death [7]. The

dynamics of intracellular calcium are not smooth and continuous, however. Rather,

they are driven by small numbers of receptors and ion channels that can give

rise to highly stochastic behavior. Indeed, experiments have shown that calcium

waves are triggered by elementary stochastic events known as “blips” and “puffs”

[36]. Incorporating stochasticity into models of calcium oscillations is thus of high

interest.

11Obviously, deterministic simulations should exhibit zero variance in their results. However,

due to sampling and curve-fitting inaccuracies we do see slight variations. It is these variations

that we use as the criteria for determining when a system attribute has converged to the de-

terministic limit. Clearly, if the PLA results show equal or less variation than the deterministic

results then we can deem that the property has converged to determinism.
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The network

Many theoretical models have been proposed to describe the oscillatory dynamics

of intracellular calcium [36, 102]. Kummer et al. [66] proposed a model for calcium

oscillations in hepatocytes (liver cells) that displays a rich variety of behaviors.

The model features self-enhanced activation of the Gα subunit of the receptor

complex and is able to capture many aspects of experimentally-observed behavior

that eluded previous models. The authors also presented a simplified version of the

model that displays the same basic behaviors as the full model, thus emphasizing

the “core” mechanisms driving the oscillations [66].

In Table 4.1, we show the Kummer et al. [66] core model for calcium oscilla-

tions in hepatocytes. Note that the model is in a reduced form, with degradation

processes described in terms of Michaelis-Menten kinetics. Reaction 2, which is

the prime feature of this model, describes the agonist-initiated (e.g., ATP) auto-

catalytic activation of the Gα subunit. The parameter k2 thus amounts to the

product of the second-order association constant and the agonist concentration

and is a primary determinant of the system behavior. Kummer et al. showed that

with increasing k2 the system behavior transitions from simple Ca2+ spiking os-

cillations, to complex oscillations, to chaotic behavior and, finally, to an elevated

steady state [65, 66].

We also see in Table 4.1 that the model contains various feedback loops which

drive the oscillatory behavior of the network. Specifically, PLC∗ and Ca are

created autocatalytically in reactions 5 and 7, respectively, through the action of

Gα. In reactions 3 and 4, however, Gα is degraded enzymatically by the actions of

PLC∗ and Ca, respectively. Thus, in the correct parameter range, increased levels

of Gα lead to increased levels of PLC∗ and Ca which, in turn, lead to increased
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degradation of Gα, which leads to decreased levels of PLC∗ and Ca, and so on

and so forth.

In Ref. [65], Kummer et al. compared the deterministic behavior of this model

to results of stochastic simulations performed using the SSA. The goal was to

determine points of transition to determinism for various dynamical regimes of

the model (e.g., “periodic spiking,” “periodic bursting,” “chaos”) and to provide

general insight as to when a deterministic treatment is applicable and when a

stochastic approach is necessary. SSA simulations were performed at various sys-

tem sizes (with fixed concentrations) and the point of transition to determinism

was estimated via visual comparison of stochastic and deterministic time courses.

Visual inspection was necessary because of the high computational expense of the

SSA [65].

Here, we extend the analysis of Kummer et al. [65] for the “periodic-bursting”

regime, a main focus of Ref. [65]. The regime is characterized by complex Ca2+

oscillations comprised of three-peak complexes (see below), behavior that is remi-

niscent of that seen experimentally in hepatocytes stimulated by ATP [29, 65, 66].

Using the PLA and the peak-analysis tool described in Sec. 4.2.1, we collect large

amounts of peak amplitude and peak-to-peak distance data at various system vol-

umes and quantify the relationship between stochasticity and system size, some-

thing that was not feasible in Ref. [65] because of the limitations of the SSA. This

allows us to pinpoint, from a statistical perspective, the points of transition to

determinism. As we shall see, these differ, to some extent, from those reported in

[65].
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Figure 4.17: Example periodic-bursting Ca2+ time courses and associated
classifications for Gα + Ca → Ca (Table 4.1, reaction 4) ob-
tained using the PLA-SB with ε=0.03 at three different system
volumes. Classifications are: (1) exact stochastic, (2) Poisson,
(3) Langevin, (4) deterministic. Also shown (top-left panel)
are the three system attributes investigated: First-peak ampli-
tudes, first-to-second intra-complex distances and first-to-first
inter-complex periods.

Statistical analysis

The periodic-bursting regime of the Kummer et al. [66] calcium-oscillations model

(Table 4.1) is characterized by large-amplitude complex oscillations in which the

Ca2+ repeating unit is a three-peak complex. In Fig. 4.17, we show example

time courses at three different system volumes spanning four orders of magnitude

obtained using the PLA. Also shown in Fig. 4.17 are the classifications achieved

along the time courses for the reaction Gα +Ca → Ca (Table 4.1, reaction 4). The

classifications range from 1–4, with 1 being the finest level of description (exact

stochastic) and 4 the coarsest (deterministic).

The plots in Fig. 4.17 starkly illustrate why this system is ideally suited for

treatment via the PLA: The classifications oscillate in time along with the reactant
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species populations . When the Ca2+ population is small we see that the reaction

is classified at the exact-stochastic level, while coarser descriptions are employed

when the population is large (similar behavior is seen for other reactions in the

system as well—data not shown). As a result, the PLA is able to accurately capture

stochastic effects that arise in this system when the species populations become

small without suffering from the characteristic inefficiency of the SSA when the

populations become large.

This is evident in Fig. 4.18, where we show results of a step and timing analysis

comparing the performance of the PLA (SB variant with ε=0.03) to the SSA. As

expected, we see a linear increase in the computational expense of the SSA with

increasing system size (see Fig. 4.18, caption) [41, 42, 49]. The PLA, on the

other hand, exhibits more complex behavior, with the expense initially remaining

constant, then increasing slightly, going through a maximum at ∼Ω=10−18 l and

then dropping off sharply before finally leveling off. Interestingly, this behavior is

similar to that seen for the simple example systems of Secs. 4.1.2 (Fig. 4.7) and

4.1.3 (Fig. 4.12), which were specifically constructed to showcase the strengths of

the algorithm. Most importantly, however, is that Fig. 4.18 clearly illustrates that

for all but the smallest system size considered the PLA far outperforms the SSA,

by as many as eight orders of magnitude in simulation steps at Ω = 10−15 l. It is

these types of accelerations that make quantifying stochastic effects in this system

possible, something that was unachievable in Ref. [65] because of the limitations

of the SSA.

Our statistical results are shown in Fig. 4.19. In all cases, we compare re-

sults obtained from both PLA and SSA simulations to deterministic predictions

for the three attributes considered, namely, first-peak amplitudes, first-to-second
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Figure 4.18: Average numbers of steps from (a) and total CPU times for
(b) 10 000 PLA-SB-3% and SSA simulation runs of 20 s for
the Kummer et al. [66] core model for calcium oscillations (Ta-
ble 4.1). SSA values at Ω = 10−20 and 10−19 l are based on
1000 and 100 simulations runs, respectively. SSA values at
Ω≥10−18 l are extrapolations (not based on actual data). Note
that the PLA steps and CPU times go through maxima at
∼ Ω = 10−18 l. Similar behavior was observed for the exam-
ple systems of Secs. 4.1.1–4.1.3. Also note that in the case of
the SSA, the linear relationship between computational expense
and system size [41, 42, 49], which has the form y = mx, with
m being the slope (the y-intercept is zero since, obviously, a
system of zero size requires zero computational effort), appears
here as a line with a slope of unity and y-intercept of log10(m).
All simulations were performed on a 3.60 GHz Pentium Xeon
processor.
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intra-complex distances, and first-to-first inter-complex periods (see Fig. 4.17, top-

left panel). In the case of the SSA, we were only able to obtain data for the

three smallest system sizes considered because of the computational expense of

the method.

In Figs. 4.19a–4.19c, we compare averages and modes obtained from the PLA

and SSA to deterministic predictions. The results are shown as percent deviations

from determinism. In all cases, we see small yet statistically significant deviations

from determinism at small volumes and, in the case of the PLA, a rapid convergence

to the deterministic limit with increasing system size. Close inspection reveals

that full convergence is achieved for all attributes by Ω = 10−18 l. It is also clear

in Figs. 4.19a and 4.19b that there are discrepancies between the PLA results

and the SSA results. The discrepancies are small, however, on the order of 1% or

less in all cases, and decrease with decreasing ε (data not shown). Interestingly,

there are virtually no discrepancies between the PLA results and the SSA results

in Fig. 4.19c, the inter-complex periods. We cannot at present explain why the

PLA achieves greater accuracy for this attribute over the others. Understanding

the sources of error in the algorithm and attenuating them is an area of current

interest. Suffice it to say for now that the PLA achieves very good to excellent

accuracy for these quantities.

In Figs. 4.19d and 4.19e, we consider the distributions of the attributes. Fig-

ure 4.19d shows data for standard deviations, a simple point statistic, while

Fig. 4.19e considers the shapes of the distributions through the histogram dis-

tance [23, 56] (Appendix F). In Fig. 4.19d , we see almost perfect correspondence

between the PLA and the SSA results. In Fig. 4.19e, however, we see discrepancies

in the histogram distances for the amplitude and the intra-complex distance (see
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Figure 4.19: Statistical results for the Ca2+ periodic-bursting regime. Re-
sults of PLA and SSA simulations are compared to determinis-
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are shown as disconnected symbols in shades of grey. PLA
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10 000 data points were collected for Ω = 10−21 and 10−20 l
and ∼ 1000 were collected for Ω = 10−19 l. No SSA results are
given for Ω ≥ 10−18 l due to computational expense. (a)–(c):
Deviations from determinism, shown as percentages [({PLA or
SSA}−DET)÷DET×100%], for averages and modes of Ca2+

first-peak amplitudes (Amp 1), first-to-second intra-complex
distances (Intra 1-2), and first-to-first inter-complex periods (In-
ter 1-1), respectively (see Fig. 4.17, top-left panel). Dashed lines
denote 95% confidence intervals on the PLA averages [difficult
to see in (b) and (c)]. Note that long-tailed distributions lead
to averages and modes on opposite sides of the deterministic
predictions at small volumes in (b) and (c). (d): Ratios of stan-
dard deviations ({PLA or SSA}÷DET) for the three attributes
in (a)–(c). Dashed lines denote 80% confidence intervals (be-
cause of the relative weakness of the F-test [77]). (e): Histogram
distances ({PLA or SSA} vs. DET) for the three attributes in
(a)–(c). The dashed line denotes twice the deterministic self dis-
tance (2×

〈
Dself

Det

〉
—Appendix F). The self distances for all three

attributes are essentially identical in this case. (f ): Coefficients
of variation (COVs) obtained from PLA and SSA simulations,
shown as percentages (standard deviation÷average×100%), for
the three attributes in (a)–(c). Deterministic limits are given as
dashed lines.
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inset). Taken together along with Figs. 4.19a and 4.19b, this indicates that the

PLA is accurately capturing the shapes of the distributions but they are shifted

slightly relative to those obtained with the SSA.

As far as convergence to determinism, both Figs. 4.19d and 4.19e give the same

result: the different attributes converge to the deterministic limit at different rates

and with different transition points . The intra-complex distance converges the

fastest, followed by the peak amplitude and finally the inter-complex period. The

amplitude and intra-complex distance statistically converge to the deterministic

limit at Ω = 10−17 l while the period converges at 10−15 l. These convergence

points differ from those for the averages by one to three orders of magnitude (cf.

Figs. 4.19a–4.19c) and indicate a persistence of noise in this system at volumes

much larger than expected based on the analysis of Ref. [65].

Finally, in Fig. 4.19f we consider the relative “importance” of the noise through

the coefficient of variation (COV). The idea is that even if noise in an attribute

is significant from a statistical perspective it might be so subtle as to be of little

practical import. For example, in this case we see that for Ω≥ 10−20 l the COVs

for all attributes are less than a few percent (the discrepancies between the PLA

and the SSA seen in Figs. 4.19a and 4.19b are virtually indiscernible on this scale).

The noise effects clearly persist up until 10−17 l (as seen in Figs. 4.19d and 4.19e

as well) but it seems unlikely that in any realistic setting, e.g, an embedding

within a larger “whole-cell” model, they would be of much practical consequence.

Whether or not this is true (it is debatable [99, 100]), it is certainly the case

that it would be difficult, if not impossible, to perceive these effects visually. This

explains, therefore, why Kummer et al. [65] reported the stochastic-to-deterministic

transition point for this model to be at ∼10−20 l (tens of thousands of Ca2+ ions).
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Their claim that a deterministic treatment is justified for volumes larger than this

is thus largely corroborated by our results.

RB vs. SB τ selection

In Fig. 4.20, we expand the step analysis of Fig. 4.18a in order to compare the

performance of the PLA-SB when applied to this system to that of the PLA-RB.

Our reason for doing so is to illustrate a curious occurrence that takes place at

large volumes. For Ω≤ 10−17 l, we see in Fig. 4.20 the behavior that we expect:

the PLA-SB requires more steps than the PLA-RB for given ε. This is consistent

with the tighter constraint implicit in the SB τ -selection procedure (Sec. 3.4.2),

as discussed previously, and coincides with the behavior seen for the decaying-

dimerizing (Fig. 4.2) and simple gene expression (Fig. 4.12) models of Secs. 4.1.1

and 4.1.3, respectively. However, at larger volumes we see a reversal of fortunes.

The cost curves cross , indicating that the SB procedure begins producing larger

time steps than the RB procedure. This counterintuitive behavior is consistent

with that seen for the simple clustering model of Sec. 4.1.2 (Fig. 4.7). Thus, in

addition to the differential behavior seen for the simple systems of Secs. 4.1.1–

4.1.3, we now have a case where the behavior switches based on the conditions

under which the network is being considered. This further emphasizes the non-

trivial nature of τ selection in the PLA. We will revisit this issue in the subsequent

subsection and hypothesize as to its origin.
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Figure 4.20: Detailed step analysis comparing the performance of the PLA-
SB to the PLA-RB for simulations of the Kummer et al. [66]
calcium-oscillations model of Table 4.1. Results are shown for
ε = 0.01 (solid lines) and 0.03 (dashed lines). At Ω = 10−16 l,
the cost curves cross, indicating a reversal in the relative per-
formances of the methods.

4.2.3 Repressilator

Synthetic biology is a relatively new and rapidly growing scientific field [5, 58,

59, 108]. In analogy with electrical circuit design, synthetic biologists attempt to

use their knowledge of fundamental biological principles to design and construct

artificial biological “circuits” that confer novel function unto their host. In this way,

one can isolate and control specific aspects of a biological process and circumvent

the immense complexity of natural biological systems, providing a means by which

current theoretical understanding can be tested and scrutinized. Moreover, the

long-term goal is to develop protocols for logical control. One can envision a time

when microorganisms are “programmed” at the genetic level to carry out important

functions, such as cleaning up oil spills or delivering tumor-suppressing drugs to

specific locations within the body [58, 59].
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Figure 4.21: Schematic diagram of the repressilator. Each gene (lacI , tetR,
λ-cI ) produces a protein which binds to the operator site of the
promoter driving expression of the next gene in the sequence,
thus repressing it. Within the correct region of parameter space
the repressilator oscillates, a so-called “ring oscillator” [58].

The network

Numerous artificial biological circuits have been constructed in bacteria and

demonstrated to perform as designed. One such network is the repressilator,

a three-gene synthetic genetic regulatory network developed by Elowitz and

Leibler [33]. Each gene in the repressilator produces a protein which represses

the next gene in the sequence; the protein product of the last gene represses the

first gene, thus closing the loop. This construct is known in microelectronics as

a “ring oscillator” [58]. As implemented experimentally in Escherichia coli [33],

the repressilator consists of the genes lacI , tetR, and λ-cI ; LacI protein represses

tetR, etc. (Fig. 4.21).12

Under the right conditions, i.e., within the correct region of parameter space,

the repressilator oscillates, acting as a biological clock. However, determining

12Biological convention is to denote genes in italicized font and beginning with a lower-case

letter (e.g., lacI ), mRNA transcripts by the same name, also beginning with a lower-case letter,

but unitalicized (e.g., lacI), and proteins by the same name, unitalicized, but beginning with a

capital letter (e.g., LacI).
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the conditions for oscillation is nontrivial and theoretical modeling was employed

to identify the appropriate design criteria [33]. Once functional, a particularly

interesting experimental observation was the significant fluctuations in amplitude

and period exhibited by the circuit. Natural oscillators, such as circadian clocks,

do not exhibit such variability [51–53] and subsequent modeling indicated that

Nature must employ some form of regulatory control in order to overcome this

problem [4, 112]. The repressilator thus succeeded in providing valuable insight

regarding the design principles underlying an important biological process.

The extensive use of modeling in the design and analysis of the repressilator,

as well as the highly stochastic behavior exhibited by the network, motivates our

investigation using the PLA. In Table 4.2, we show the basic form of one-third of the

repressilator model (all three genes are considered equivalent). This corresponds to

the “stochastic” model of Elowitz and Leibler [33]. Here, all reactions are treated as

elementary using simple mass-action kinetics (i.e., rates are directly proportional

to the reactant population levels—see Appendix B). Each gene is assumed to

have two binding sites for repressor protein, with binding occurring sequentially,

and the unbound gene transcribes mRNA 1000 times faster than the singly- or

doubly-bound gene. mRNA also translates protein autocatalytically and mRNA

and protein degrade with half-lives of 120 and 600 s, respectively [33].

We also include in Table 4.2 various multiplicative factors: a “telegraph factor”

γ, an “RNA factor” η and a “protein factor” ρ [103, 104]. These factors allow us to

control and tune the various sources of noise in the system. For example, increasing

η increases the rates of gene transcription, resulting in larger mRNA populations

and less mRNA-related “shot noise,” i.e., noise arising from the fact that the

system is comprised of discrete numbers of interacting entities (in electrical circuits,
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Table 4.2: Basic form of one-third of the full repressilator model [33] (all three
genes are considered equivalent). gX represents one of the three
repressilator genes (lacI, tetR or λ-cI ) and pR the corresponding
repressor protein (LacI for tetR, etc.). mX and pX represent the
mRNA and protein products of gX, respectively. All reactions
are treated using simple mass-action kinetics (Appendix B) and
all parameters with inverse molar units (M−1) are divided by NAΩ
prior to runtime. k1, k2 are rate constants for forward repressor
binding while k−1, k−2 are for the reverse reactions. Also shown
(see text for explanation) are the “telegraph factor” γ, the “RNA
factor” η, and the “protein factor” ρ (equivalent for all genes)
[103, 104]. Here, we set η=ρ=1000 and vary 10−4≤γ≤1.

Reaction Parameter Value

⇀

1,
↽

2. gX + pR 
 {gX·pR}

k1 = 109γ/ρ M−1s−1

k−1 = 224.0γ s−1

⇀

3,
↽

4. {gX·pR}+ pR 
 {gX·pR2}

k2 = 109γ/ρ M−1s−1

k−2 = 9.0γ s−1

5. gX → gX + mX k3 = 0.5η s−1

6. {gX·pR} → {gX·pR}+ mX k4 = 5×10−4η s−1

7. {gX·pR2} → {gX·pR2}+ mX k5 = 5×10−4η s−1

8. mX → mX + pX k6 = 0.167ρ/η s−1

9. mX → ∅ k7 = ln(2)/120 s−1

10. pX → ∅ k8 = ln(2)/600 s−1

Initial conditions:

[mTetR] = 3.8 µM; [mCI] = 8.1 µM; [mLacI] = 0.15 µM;

[pTetR] = 0.22 mM; [pCI] = 2.4 mM; [pLacI] = 0.20 mM;

gTetR = gCI = gLacI = 1 (molecule);

All {gX·pR} and {gX·pR2} = 0.
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shot noise arises from discrete numbers of charge carriers; in optical devices, from

discrete numbers of photons) [103, 104]. The translation rate is divided by η,

however, thus cancelling out the effect of increased mRNA levels on the protein

production rates. Protein-related shot noise is controlled similarly through the

protein factor ρ while the amount of “telegraph noise,” i.e., that associated with

the random switching between the ON and OFF states of the genes (reminiscent of

an electronic telegraph transmitting Morse code) [103, 104], is controlled through

the parameter γ.

Here, we focus primarily on the telegraph factor γ. We do so because the

performance of the leaping algorithm is strongly affected by this parameter: at

small values the method performs exceptionally well but falters as it is increased,

approaching the performance of the SSA (see subsequent subsection). With the

system volume Ω=1.4×10−15 l (the volume of a typical E. Coli cell) and η and ρ

set to high values (i.e., 1000) in order to dampen the mRNA- and protein-related

noise sources, we investigate how the system behavior changes for 10−4≤γ≤1. We

thus observe how the actual values of the gene-protein binding and unbinding rate

constants, as opposed to simply their ratios, affect the overall dynamical behavior

of the system as well as the performance of the PLA.

We also find it convenient to investigate a reduced form of the repressilator

model obtained by applying the “partial equilibrium assumption” (PEA) to the

first four reactions in Table 4.2. Assuming each reversible reaction to be in rapid

equilibrium, simple algebra leads to effective rate expressions of the Adair form

[28] for mRNA production from the free, singly-bound and doubly-bound genes

(see Appendix E for derivations). These expressions are strictly valid in the limit

γ→∞. Doing so reduces the 30 reactions of Table 4.2 to 18 in Table 4.3. Note that
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Table 4.3: Basic form of one-third of the reduced repressilator model. Pa-
rameter values are the same as in Table 4.2. The Adair func-
tional forms [28] describing mRNA production are similar to the
well-known Hill forms, but are formally correct for γ →∞ (see
Appendix E).

Reaction Rate Expression

1. gX → gX + mX k3K1K2/f([pR])

2. {gX·pR} → {gX·pR}+ mX k4K2[pR]/f([pR])

3. {gX·pR2} → {gX·pR2}+ mX k5[pR]2/f([pR])

4. mX → mX + pX k6[mX]

5. mX → ∅ k7[mX]

6. pX → ∅ k8[pX]

Ki≡k−i/ki, (i=1, 2)

f([pR])≡K1K2 + K2[pR] + [pR]2

the reduced model in Table 4.3 differs from the “deterministic” model of Elowitz

and Leibler [33] in that the expressions in Table 4.3 are directly derivable from the

reactions in Table 4.2 via application of the PEA while those in Ref. [33] are not.

Statistical analysis

Our analysis of the repressilator focuses on behavioral changes that arise when the

intermittent rates of switching between the transcriptional ON and OFF states

of the genes are varied. The parameter that controls this is the telegraph factor

γ. From an intuitive standpoint, we expect to observe large deviations from de-

terminism at small values of γ and a convergence towards deterministic behavior

with increasing γ because of the “averaging out” of the states of the genes [61].

Moreover, by making the RNA and protein factors, η and ρ, large we minimize
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the effects of shot noise. However, we cannot eliminate it completely, and thus we

expect to encounter some residual effects. Finally, we also expect that the PLA

simulations will begin to bog down as γ is increased because of the growing dis-

parities between the gene-protein binding and unbinding rates and the rates of all

other reactions in the system [56].

In Figs. 4.22–4.25, these expectations are realized. In Fig. 4.22, we show exam-

ple time courses for TetR protein (taken as representative of the system behavior)

that illustrate how “deviant effects” [99] arise in the repressilator at small values

of γ. With γ = 10−4, we see in Fig. 4.22 that the true behavior of the system, as

captured by both the PLA and the SSA, differs markedly from that predicted de-

terministically. Rather than emitting smooth and regular oscillations, the system

produces large-amplitude intermittent “bursts” of (mRNA and) protein produc-

tion. This is a direct consequence of the slow stochastic switching between the ON

and OFF states of the genes and is consistent with gene-expression behavior often

observed in eukaryotes [8, 61]. Note that due to stochasticity the PLA and SSA

traces differ from each other. As we shall see, however, they are virtually identical

from a statistical perspective.

In Fig. 4.23, we present results of our statistical analyses of the repressilator.

At various values of γ, as well as at the Adair limit (γ →∞), we compare the

stochastic behavior of the system, as captured by both the PLA and the SSA,

to deterministic predictions. In Figs. 4.23a and 4.23b, we consider averages and

modes for the TetR-protein peak amplitude and period, respectively. In both cases,

the PLA and SSA results coincide almost perfectly and show large deviations from

determinism at small values of γ and a convergence towards the deterministic

limit with increasing γ. Close inspection of the PLA results reveals that statistical

145



0

5

10

15

3 3.25 3.5 3.75 4

x 106

PLA SSA DET

Te
tR

 p
op

ul
at

io
n

Time (s)
x 105

Figure 4.22: Example time courses (TetR protein) illustrating “deviant ef-
fects” [99] in the repressilator at small values of γ. With γ =10−4

and η = ρ = 1000, stochastic realizations (PLA and SSA) differ
markedly from the deterministic prediction.

convergence to the deterministic limit is achieved for both attributes by γ = 1. It

is also evident from these plots that the behavior of the full model (Table 4.2)

approaches that of the reduced model (Table 4.3) with increasing γ, as we would

expect.

In Figs. 4.23c and 4.23d , we consider the distributions of the amplitude and the

period. Again, we look at ratios of standard deviations and histogram distances

and again we see a convergence towards determinism with increasing γ. However,

in this case the deterministic limit is never reached; even at the Adair limit we

see considerable deviation from determinism. Furthermore, we see very good cor-

respondence between the PLA and the SSA results. In fact, the only significant

differences that we see are the small discrepancies in the histogram distances at

the Adair limit in Fig. 4.23d . This is interesting in light of the discrepancies seen

between the PLA and the SSA in Figs. 4.19a and 4.19b for the calcium-oscillations

model which also contains reduced reaction types (see Table 4.1). Though mere

speculation at this point, this suggests that reduced reactions might be to blame
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Figure 4.23: Statistical results for the repressilator. At various values of the
telegraph factor γ, and at the Adair limit (γ →∞), results of
both PLA and SSA simulations are compared to deterministic
(DET) predictions. As in Fig. 4.19, PLA results are shown as
colored symbols connected by lines, SSA results are shown as
disconnected symbols in grey scale, and PLA and SSA points
designated with the same symbol correspond to the same quan-
tity. All PLA and deterministic values are based on over 10 000
collected data points while all SSA values are based on ∼1000
collected data points. Note that the only clearly discernible
discrepancies between the PLA and the SSA results are the his-
togram distances in (d) at the Adair limit. (a),(b): Averages
and modes for the TetR-protein peak amplitude and period, re-
spectively. In the main plots, results are given as percent devi-
ations from determinism (95% confidence intervals on the PLA
averages are difficult to see). In the insets, results are shown
in absolute form, illustrating the dependencies of the amplitude
and period on γ. (c): Ratios of standard deviations ({PLA or
SSA}÷DET) for the TetR-protein peak amplitude and period.
Dashed lines denote 80% confidence intervals. (d): Histogram
distances ({PLA or SSA} vs. DET). Note that the self distances
are off the chart. (e): Coefficients of variation, given as percent-
ages, obtained from both PLA and SSA simulations. In princi-
ple, the deterministic limits (dashed lines) vary with γ [see (a)
and (b), insets ], though here they are very nearly constant.
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for the various inaccuracies that we see in the PLA results in Figs. 4.19 and 4.23.

We plan to investigate this issue further in the future.

In Fig. 4.23e, we consider the noise strength through the COV. Here, as in

Figs. 4.23c and 4.23d , we see almost perfect agreement between the PLA and the

SSA results and an incomplete convergence towards the deterministic limit with

increasing γ. It is clear, therefore, that significant shot noise effects persist in

this system even as γ→∞. Moreover, it is interesting to note the elevated levels

of noise in the amplitude as compared to the period. We see an approximately

order-of-magnitude difference in the COVs for these two attributes at all values of

γ > 10−4 and at the Adair limit. Contrast this with Fig. 4.19f , which shows no

appreciable difference between the COVs for the amplitude and the period in the

calcium-oscillations model. This is an example of the type of fine-level insight that

we can garner by using the leaping algorithm.

It is clear from Figs. 4.23c–4.23e that the repressilator never behaves in a fully

deterministic manner under the conditions that we consider. However, it is also

clear that the behavior does approach that of the reduced model with increasing γ.

Therefore, in Fig. 4.24 we quantify this convergence to the Adair limit by repeating

the statistical tests of Figs. 4.23c and 4.23d but using the PLA (or SSA) results for

the reduced model, rather than the deterministic results at each γ, as our reference.

The results clearly confirm the (near) convergence of the system behavior to the

Adair limit at γ =1.

Finally, in Fig. 4.25 we present results of a step and timing analysis comparing

the performance of the PLA to the SSA for simulations of both the full (Table 4.2)

and reduced (Table 4.3) repressilator models. For the full model, we see the con-

vergence in computational expense of the PLA and the SSA that we anticipated
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Figure 4.24: Convergence of the full repressilator model to the Adair limit
with increasing γ. At each value of γ, PLA and SSA results
of the full model (Table 4.2) are compared to PLA and SSA
results, respectively, of the reduced model (Table 4.3). In all
cases, the PLA and SSA values (colored and grey-scale symbols,
respectively) coincide almost perfectly. (a): Ratios of standard
deviations (full÷reduced) for the TetR-protein peak amplitude
and period. Dashed lines denote 80% confidence intervals. (b):
Histogram distances (full vs. reduced). Dashed lines denote
twice the Adair self distances.

[56]. In Fig. 4.25a, the numbers of steps required for PLA and SSA simulations

converge asymptotically with increasing γ. In Fig. 4.25b, we see a similar trend for

the CPU times, although interestingly the curves here cross at γ =1 because each

PLA step is more computationally expensive than each SSA step. Also of note is

that both plots indicate that the expense of the SSA decreases with increasing γ

while the opposite is true for the PLA. This is because the protein (and mRNA)

populations, which are the prime bottleneck for the SSA, tend to be larger at small

values of γ (cf. Figs. 4.22 and 4.23a). Leaping algorithms are not affected by popu-

lation sizes, having been developed specifically to cope with this problem [46, 47].
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Figure 4.25: Average numbers of steps (a) and total CPU times (b) required
for 1000 PLA and SSA simulation runs of 30 000 s of the full
(Table 4.2) and reduced (Table 4.3) repressilator models. All
SSA points are based on 100 simulation runs (due to compu-
tational expense). Note that the CPU curves in (b) cross at
γ = 1 because each PLA step is more expensive than each SSA
step. At the Adair limit, results are given for PLA simulations
that both include and exclude the exact-stochastic (ES) classi-
fication (see footnote 13). All simulations were performed on a
3.60 GHz Pentium Xeon processor.

Hence, we see that when stochastic effects in this system are most pronounced

(small γ) the PLA far outperforms the SSA.

In Ref. [56], it was posited that large disparities in rate constants would prove

to be prime hindrances for leaping algorithms. This is confirmed in Fig. 4.25 by

the declining performance of the PLA with increasing γ. It is for exactly this

reason that we consider the reduced model of Table 4.3. In Figs. 4.23 and 4.24, we

have seen that the behavior of the full model approaches that of the reduced model
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with increasing γ. Now, in Fig. 4.25 we see that the performance of the PLA is

greatly enhanced by the model reduction. Depending on exactly how we choose

to implement the PLA,13 we can achieve gains of between one and four orders of

magnitude in both simulation steps and run times. Additionally, it is important to

note that reducing the model has very little effect on the performance of the SSA.

In fact, we see in Fig. 4.25 that while the numbers of simulation steps required

for the SSA remain virtually unchanged upon reducing the model, the CPU time

actually increases by ∼ 50% because of the higher complexity rate expressions

in Table 4.3 which impose additional computational burdens on the algorithm.

Our results indicate, therefore, that there is a distinct advantage to using model

reduction in conjunction with leaping which is absent with regards to the SSA.

RB vs. SB τ selection

As in Sec. 4.2.2, we expand here in Fig. 4.26 the step analysis of Fig. 4.25a in order

to compare the performance of the PLA-SB to the PLA-RB when applied to both

13We found that significant speed-ups could be achieved in the PLA simulations of the reduced

repressilator model (Table 4.3) if we removed the ES classification. The problem lies in the

iterative τ -selection procedure (Sec. 3.3.2) designed to account for randomness in the ES reactions.

In this specific case, we experienced an unexpected “classification cascade,” whereby reactions

classified as ES led to a reduced τ , which then led to more ES reactions (via reclassification),

which further reduced τ , and so on and so forth. Removing the ES classification eliminated this

problem with no noticeable effect on the accuracy. However, this cannot be done in all cases.

Removing the ES classification when simulating the full model led to numerous instances of

negative populations, particularly for the species gX, {gX·pR} and {gX·pR2}, which can have

populations of only zero or unity. These required costly reversals which significantly increased

the run time. Further investigation of this issue is warranted and will be undertaken in the near

future.
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Figure 4.26: Detailed step analysis comparing the performance of the PLA-
SB to the PLA-RB for simulations of the full (Table 4.2) and
reduced (Table 4.3) repressilator models. Results are shown for
ε = 0.01 (solid lines) and 0.03 (dashed lines). For the reduced
model, results are shown with and without the ES classification
included in the PLA implementation. For γ < 1, the PLA-
RB requires far more simulation steps than the PLA-SB, an
unexpected result.

the full and reduced repressilator models of Tables 4.2 and 4.3, respectively. For

the full model, we see significant differences in the performances of the two methods

for both values of ε considered. The PLA-RB requires far more simulation steps

than does the PLA-SB for γ<1, by as many as an order of magnitude. Again, this

is counterintuitive given the tighter constraint implicit in the SB τ -selection proce-

dure (Sec. 3.4.2). Furthermore, for the reduced model, we see that both τ -selection

procedures perform essentially identically, both with and without the ES classifi-

cation included (see footnote 13). This suggests, therefore, that the unexpected

behavior of the PLA-RB is somehow related to the binding/unbinding reactions

in Table 4.2 (reactions 1–4) which are reduced out of the model in Table 4.3.

Based on this fact, we believe that we can explain the origin of this unexpected

behavior, which is also seen for the simple clustering model of Sec. 4.1.2 (Fig. 4.7)
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and the calcium-oscillations model of Sec. 4.2.2 at large Ω (Fig. 4.18). It appears to

be due to the fact that variations in the propensities (the focus of RB τ selection)

of second-order (or higher) reactions tend to be greater than the variations in

the populations (the focus of SB τ selection) of the associated reactant species.

This is particularly true when the population of one species is very small and the

other is very large. For example, in the case of the repressilator, the gene-protein

binding/unbinding reactions of Table 4.2 describe the interactions between a single

gene and a potentially very large pool of proteins. In a given τ , one can expect

that the populations of the gene species gX, {gX·pR} and {gX·pR2} will fluctuate

between zero and unity. The protein populations, on the other hand, can reach

levels on the order of millions (Fig. 4.22) with fluctuations on the order of hundreds

or thousands. Thus, taken together, the propensities of the binding/unbinding

reactions can be expected to fluctuate, in a given τ , between zero and the order of

millions , a much larger variation than for either of the individual reactant species

populations.

In terms of τ selection, what this means is that much more variability is as-

sociated with the random variable ∆aµ(τ leap
µ ) [Eq. (3.12)], which is the focus of

RB τ selection, than ∆Xi(T
leap
i ) [Eq. (3.29)], which is the focus of SB τ selec-

tion. The variability in these quantities manifests in the ‘σ2’ terms [Eqs. (3.28)

and (3.32)] of the associated τ -selection formulas [Eqs. (3.27) and (3.30)]. Thus,

increased variability in ∆aµ(τ leap
µ ) means that values of τ leap

µ will, with increasing

frequency, be based on the second term in Eq. (3.27) rather than the first. Our

intuitive expectation that RB τ selection should result in larger time steps than

SB τ selection is based on “average” considerations. It is these “variance” effects

that lead to the unexpectedly small time steps for the PLA-RB simulations seen

here and in Secs. 4.1.2 and 4.2.2.
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These effects are most pronounced for the repressilator because of the pres-

ence of but a single gene copy, the extreme lower limit on the population scale.

This results in extreme variability in the propensities of the binding/unbinding

reactions, especially when the protein populations are large. The effect is not as

pronounced for the simple clustering model of Sec. 4.1.2 because the populations of

the larger clusters grow in time, reducing the variabilities in the associated propen-

sities. Finally, the anomalous behavior seen for the calcium-oscillations model of

Sec. 4.2.2 at large Ω is due to the fact that the differences in the populations of

the species Gα, PLC∗ and Ca, which oscillate out of phase with each other, reach

extreme levels at large volumes (the troughs are always around zero but the peaks

increase with increasing volume). The propensities of the second-order Michaelis-

Menten reactions that govern the interactions between these species (Table 4.1)

thus experience increased variability with increasing volume.

4.2.4 Discussion

The networks that we have considered in this section provide tangible examples

of the potential utility of the PLA in computational systems biology. For both

the calcium-oscillations model (Sec. 4.2.2) and the repressilator (Sec. 4.2.3), we

have observed orders-of-magnitude accelerations relative to the SSA (Figs. 4.18

and 4.25) that have made quantifying stochastic effects in these systems possible.

In the calcium-oscillations case, this gave us access to subtle effects of stochasticity

that would have been indiscernible otherwise (Fig. 4.19). For the repressilator,

we actually saw the greatest gains in situations where the stochastic effects were

most prevalent (small γ—Fig. 4.23). This is a particularly intriguing result. Gene

regulation is a common feature of many biological models, and our results indicate
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a great potential advantage to using leaping in cases of slow transcription-factor

binding and unbinding, such as is common in eukaryotes [8, 61].

Another critical aspect of this investigation has been our ability to identify

conditions under which the leaping algorithm does not perform particularly well.

We have seen that the PLA clearly falters when applied to the full repressilator

model (Table 4.2) with large telegraph factor γ (Fig. 4.25). Intuitively, it is easy to

understand why this is. As explained in Chapter 3, the basic strategy underlying

all leaping algorithms is to allow, at each simulation step, as many reaction firings

as possible without the reaction rates in the system changing “appreciably” [46,

47, 49]. However, in the case of the repressilator, there is only a single copy of each

gene. Thus, only a single binding/unbinding event is possible at each simulation

step; one firing changes the binding/unbinding rates from either finite values to

zero or vice versa, which is obviously appreciable. When γ is small, this is not a

problem because the time interval between successive binding and unbinding events

is large enough so that many transcription, translation and degradation reactions

can fire. When γ is large, however, this is no longer the case. The numbers of

reaction firings become limited due to the high frequency of binding and unbinding,

and in the extreme limit the effect is such that the performance of the algorithm

approaches that of the SSA (i.e., one reaction firing per step—Fig. 4.25). We

can generalize this observation by saying that small reaction subnetworks (pairs

of reversible reactions in this case) that have small populations and large rate

constants are prime bottlenecks for the PLA.

Fortunately, our results also illustrate how one can surmount such problems.

By applying a simple rapid-equilibrium assumption to the first four reactions of

Table 4.2, we were able to recover the behavior of the full model for γ≥1 (Fig. 4.24)
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at significantly reduced computational cost (Fig. 4.25; see footnote 13). This

includes accurately capturing stochastic effects associated with finite numbers of

mRNAs and proteins. Interestingly, we have also shown that reducing the model

has little effect on the performance of the SSA (Fig. 4.25). Thus, the chief benefit

to using model reduction in this case is not in reducing the number of reactions that

have to be considered, but rather in increasing the size of the time step that can be

traversed at each simulation step. This is a different perspective on the issue than is

usual and strongly suggests that leaping and model reduction should be viewed, not

as alternative approaches to the problem of timescale separation (as is common),

but as complementary . As discussed in Sec. 3.6.3 of Chapter 3, integrating leaping

with advanced model-reduction schemes (e.g., [11, 19, 30, 54, 78, 97, 98, 105])

is an area of great future interest. As a final note, we did observe some (small)

disagreement between the PLA and the SSA results (Figs. 4.19a, 4.19b and 4.23d)

which may be due to the inclusion of the reduced reaction types. This is an issue

that will be investigated further in the future.

Finally, our investigation has also helped to uncover the origins of some un-

expected behavior regarding the performance of the RB τ -selection procedure

(Sec. 3.4.1) in relation to the SB approach (Sec. 3.4.2). Specifically, it was believed

that the RB approach would always produce larger time steps than the SB, though

it was recognized that each RB step is generally more computationally expensive

than each SB step. However, it is now evident that this is not always the case. In

particular, when considering reactions involving multiple interacting species that

have large disparities in their populations, the size of the RB time step can de-

pend more so on the variability in the reaction rates than on the mean behaviors.

This is much less of an issue in the SB case because the variability in the species

populations is generally much less pronounced than for the reaction rates. This
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provides further evidence regarding the superiority of the SB τ -selection procedure

over the RB procedure, though further inquiry into the matter is warranted.14

14Remember that SB τ -selection can only be applied in the special case that the rate constants

are time independent (see Sec. 3.4.2). However, there are many situations (e.g., growing cells,

temperature ramps) where this requirement will not hold. Thus, understanding the shortcomings

of RB τ selection is crucial if we are to develop efficient variants applicable in all cases.
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Chapter 5

Conclusions and the Road Ahead

The central contribution of this dissertation is the introduction in Chapter 3 of the

partitioned-leaping algorithm, a novel multiscale simulation approach that is based

firmly in Markov process theory and is generally easy to implement by non-experts.

The PLA was developed by merging the ideas underlying Gillespie’s τ -leaping ap-

proach (Sec. 3.1) with the FRM/NRM variants of the SSA (Sec. 2.4). This results

in an intuitive and seamless integration of exact-stochastic simulation into the mul-

tiscale framework, a significant achievement. The main elements of the algorithm

are: (i) τ selection, (ii) reaction classification, (iii) generation of reaction firings,

and (iv) system update. We have provided in Sec. 3.4 the theoretical foundation

for τ selection and presented three different computational strategies. These in-

clude the reaction-based and species-based τ -selection variants and the post-leap

checking procedure. The classification of reactions is simple and straightforward,

being based on the criteria presented by Gillespie for approximating a Poisson

distribution by a Gaussian distribution and, subsequently, by a Dirac delta func-

tion. Reaction firings are generated based on the reaction classifications. Exact-

stochastic reactions are handled using the methods of the FRM/NRM. Poisson and

Langevin-type reactions require the generation of Poisson and Gaussian random

deviates, respectively, while deterministic reactions simply require multiplying the

reaction propensity aµ(t) by τ .

In Sec. 3.3.2, we discussed some technical issues that must be taken into account

when implementing the PLA. These include rounding the firings of Langevin- and

deterministic-type reactions and applying an iterative approach to account for the

randomness associated with the firing times of ES reactions. These issues only
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slightly complicate the approach and add minimal computational overhead. The

iterative procedure does, however, lead to a “classification cascade” problem in

some cases which can significantly hinder the approach, as alluded to briefly in

Sec. 4.2.3. This issue will be further investigated in the near future. Once imple-

mented, application of the PLA requires nothing more than a system description,

with associated rate parameters, and the definition of three model-independent

parameters: ≈ 1, � 1 and � 1 (i.e., ε). These parameters are intuitively simple

and straightforward; typical values are 3, 100 and 0.01–0.05, respectively. The

algorithm will then automatically and dynamically determine during the course of

a simulation the appropriate level at which to treat each reaction in the system.

For systems with large disparities in species populations, or those in which pop-

ulations oscillate between low and high levels, the method can achieve significant

computational savings relative to the SSA while still capturing essential stochastic

effects associated with small-population species.

Chapter 2 of this dissertation provides a detailed treatment of exact-stochastic

simulation approaches. Besides being essential foundational material for the de-

velopment of the PLA, the chapter also serves as a review/tutorial of the subject

at a level accessible to advanced undergraduates or beginning graduate students

in chemical engineering and associated disciplines. Our presentation goes well be-

yond the standard treatment, considering the general case of both intrinsic and

extrinsic sources of noise and time-dependent rate parameters. The traditional

kMC formulations are shown as special cases of the more general theory. We also

discuss various extensions and optimizations of the approach, some of which can

be incorporated into future enhancements of the PLA. These include optimization

strategies in the DM based on ordering reactions from largest propensity to small-

est and spatial SSA variants that utilize the general principle of grouping reactions
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and choosing over and within the groups using a SSA method of one’s choosing.

In Chapter 3, we introduced the PLA, provided a review of related leaping and

multiscale simulation approaches and provided thoughts on various possible future

extensions to the method (see below for further discussion). We followed this in

Chapter 4 by applying the PLA to various example systems that demonstrate the

utility of the approach and also elucidate some shortcomings. We considered var-

ious toy problems inspired by chemistry, biology and materials science and then

advanced to more realistic biological problems that highlight some of the challenges

that remain in developing a practical simulation approach based on the PLA. Our

primary conclusions are that (i) the PLA can achieve orders-of-magnitude accel-

erations relative to exact-stochastic methods for systems with large disparities in

species populations and similar rate parameters, and (ii) the method bogs down

when faced with large disparities in rate parameters (i.e., stiffness). The latter

effect is particularly prevalent for cases involving small-population species (e.g.,

genes) that participate in large-rate-parameter processes (e.g., transcription factor

binding/unbinding). We demonstrated, however, that the problem can be over-

come by utilizing a model reduction strategy that removes explicit consideration

of the fast processes. In Sec. 4.2.3, we applied a simple rapid-equilibrium reduc-

tion approach as a proof-of-principle demonstration. In Sec. 3.6.3, we discussed

more advanced model reduction strategies that could be combined with the PLA.

Importantly, we showed that the primary benefit of integrating model reduction

with the PLA lies in increasing the size of the time step τ , as opposed to reducing

the number of reactions being considered.

The material presented in Secs. 3.5 and 3.6 of this dissertation provides a

practical guide for extensions and modifications to the PLA that can be under-
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taken in the short- and mid-term. For example, higher-order Runge-Kutta and

implicit formulations of the PLA can be implemented relatively quickly as they

are straightforward extensions to the method. These will be particularly important

in extending the utility of the approach to more realistic systems. Incorporating

post-leap checking into the PLA is another area of great importance that can be

accomplished relatively easily in the short-term, as is extending the method to

spatially-inhomogeneous systems. Progress has been made recently with respect

to the latter with promising results. However, challenges remain, particularly with

regard to the high expense of τ selection. As emphasized in Sec. 3.6.1, in fact,

τ selection is by far the most computationally expensive aspect of the PLA, and

all leaping methods in general, and developing improved τ -selection procedures

will be the innovation that will have the greatest impact in the mid-term. Future

τ -selection procedures will likely include some form of post-leap checking, perhaps

coupled with the RB and SB τ -selection variants presented in Secs. 3.4.1 and 3.4.2,

respectively, or some yet-to-be developed alternative approach. Finally, integrat-

ing some form of dynamic model reduction with the PLA is a critical mid-term

task. Many practical systems in biology and materials science, as demonstrated in

Sec. 4.2.3, contain fast processes involving small numbers of interacting entities.

Devising a strategy for handling such situations will thus be crucial for bringing

to bear on systems of practical import the full power of the PLA.

In the long-term, we see the PLA as being but one component of a larger model-

ing and simulation framework for analyzing large-scale population-dynamical mod-

els of physical systems in both time and space. We hope to merge the method with

modern model building and specification platforms at the front end, such as rule-

based languages that have been recently introduced to succinctly describe complex

biochemical networks, and at the back end with stochastic parameter estimation
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and model checking techniques that are prevalent in computer science. Adaptive

meshing techniques will also be critically important for spatial simulations, as will

visualization methods for providing an intuitive understanding of system behavior.

In sum, the PLA is a small yet significant innovation in the field of computational

simulation methodologies that moves us one step closer to the ultimate goal of

understanding the internal mechanisms by which many chemical, biological and

materials systems operate.
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APPENDIX A

Some useful functions and theorems

Dirac delta function.

Definition (two parts).

(i) δ(x− a) = 0 for x 6= a,

(ii)

∫ ∞

−∞
δ(x− a)dx = 1

(A.1)

Sifting property.

∫ ∞

−∞
f(x)δ(x− a)dx = f(a) (A.2)

Heaviside step function.

Definition. H(x) =

 0 for x ≤ 0

1 for x > 0
(A.3)

Binomial distribution.

Random variable : B(n, p) (A.4)

Distribution : Pr{B(n, p) = k} =
n!

k!(n− k)!
pk(1− p)n−k (A.5)

Mean : np (A.6)

Variance : np(1− p) (A.7)

Poisson distribution.

Random variable : P(at) (A.8)

Distribution : Pr{P(at) = k} =
(at)ke−at

k!
(A.9)

Mean and variance : at (A.10)
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Gaussian (normal) distribution.

Random variable : N (m,σ2) (A.11)

Distribution : Pr{x<N (m, σ2)<x+dx} = (A.12)

1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
dx

Mean : m (A.13)

Variance : σ2 (A.14)

Linear combination theorem [44]. For any set of random variables

{X1, . . . , XN} and any set of constants {c1, . . . , cN},〈
N∑

i=1

ciXi

〉
=

N∑
i=1

ci 〈Xi〉 , (A.15)

var

{
N∑

i=1

ciXi

}
=

N∑
i=1

c2
i var{Xi}+ 2

N−1∑
i=1

N∑
j=i+1

cicj cov{Xi, Xj} . (A.16)

Random variable transformation (RVT) theorem [44] (single-variable ver-

sion). If the random variable X has the density function P (x), and if the random

variable Y is defined via Y = f(X), then the density function Q(y) of Y is given

by

Q(y) =

∫ ∞

−∞
dxP (x)δ(y − f(x)). (A.17)
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APPENDIX B

Mass-action kinetics

The simplest and most common type of interaction rule used in chemical kinet-

ics (population dynamics in general) is that based on the “law of mass action.”

This law states, very simply, that the rate (propensity, in the stochastic jargon)

of a chemical reaction is directly proportional to the “amount(s)” of the reactant

species present in the system. Often, amounts are thought of in terms of concen-

trations, particularly when considering dynamics in the deterministic limit. It is

important to recognize, however, that the law of mass action is not synonymous

with determinism. In fact, it is better viewed from a probabilistic perspective, as

Gillespie did in his seminal work on the SSA [41].

In Ref. [41], Gillespie cast the SSA in terms of elementary reactions with in-

teraction probabilities obeying the law of mass action. In particular, the original

version of the fundamental hypothesis, Eq. (2.1), was posited as

cµ(t)dt = cµ (Θ(t)) dt ≡ probability, at time t, that a partic-

ular reactant entity, or set of enti-

ties, of reaction Rµ will react within

the next infinitesimal time interval

dt.

(B.1)

The difference between this and Eq. (2.1) is the emphasis placed above on ‘partic-

ular.’ With this definition, the probability that any reactant entity (as opposed to

a particular entity), or set of entities, of reaction Rµ will react in dt is then cµ(t)dt

multiplied by the number of combinations of potential Rµ reactant interactions.

The latter quantity, denoted as hµ(t)=hµ(X(t)) [41], can be determined for differ-
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Table B.1: Propensity constants and degeneracies for different elementary re-
action types [41]. Reactions up to third order are shown. Propen-
sity constants are given as functions of the associated determin-
istic rate constants kµ. NA is Avogadro’s number (6.022×1023

molecules/mol) and Ω is the system volume. The first reaction is a
creation event with ∅ representing a source. Although third-order
reactions are (virtually) impossible in nature, they are included
here for completeness and to better illustrate the combinatorics
underlying the degeneracy formulas.

Reaction cµ(Θ(t)) hµ(X(t))

∅ kµ−→ products kµ ×NAΩ 1

Si
kµ−→ products kµ Xi

2Si
kµ−→ products 2kµ/NAΩ Xi(Xi − 1)/2

Si + Sj
kµ−→ products kµ/NAΩ XiXj

3Si
kµ−→ products 6kµ/(NAΩ)2 Xi(Xi − 1)(Xi − 2)/6

2Si + Sj
kµ−→ products 2kµ/(NAΩ)2 Xi(Xi − 1)Xj/2

Si + Sj + Sk
kµ−→ products kµ/(NAΩ)2 XiXjXk

ent reaction types from simple combinatorics (Table B.1). We term this quantity

the reaction “degeneracy.” The propensity can thus be written in this case as

aµ (X(t),Θ(t))=cµ(Θ(t))× hµ(X(t)). (B.2)

This is, in fact, a statement of the law of mass action. The number of ways in

which Rµ reactant entities can interact, hµ, provides the “mass” dependence while

cµ is the proportionality constant.

Written this way, Eq. (B.2) is clearly reminiscent of the phenomenological ex-

pression for the reaction rate of deterministic chemical kinetics. Indeed, we will

term cµ the “propensity constant” in keeping with the analogy. Gillespie pointed

this out in [41], noting that the expressions in both cases are essentially identical

except for a trivial factor of volume and small differences when multiple instances of
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the same species are involved. For example, consider the monomolecular dimeriza-

tion 2Si→products . In counting the number of ways that this reaction can occur,

one must (i) not allow entities to interact with themselves, and (ii) not double

count equivalent interactions (i.e., molecule x reacting with molecule y is the same

as y reacting with x). Thus, in Table B.1 we see that hµ =Xi(Xi − 1)/2 (contrast

this with the bimolecular reaction Si +Sj → products , where hµ = XiXj). In the

deterministic case, the expression for the rate of this reaction is rµ =kµ[Si]
2, where

kµ is the rate constant and [·] denotes concentration. The relationship between Xi

and [Si] is trivial, i.e., Xi =[Si]×(NAΩ), with NA being Avogadro’s number and Ω

the volume. In the limit of large Xi, we have Xi(Xi − 1)→X2
i . Thus, we see that

aµ→rµ as Xi→∞ with cµ =2kµ/(NAΩ) (note that the factor of 1/2 in hµ has been

absorbed into kµ and must be accounted for when converting kµ to cµ). Similar

formulas for the propensity constants of other elementary reactions are shown in

Table B.1.

What Gillespie did in [41], therefore, is to provide a physical explanation for

the long-standing phenomenological rate expressions commonly used in chemical

kinetics. Rather than being a simple proportionality constant, for example, Gille-

spie showed that the rate constant is, in fact, an interaction probability [Eq. (B.1)].

Since the probability of, e.g., an encounter between two objects, clearly increases

as the populations of those objects increases, the law of mass action becomes, in

hindsight, intuitively obvious. From an educational point of view, this is extremely

enlightening.

The consequence, however, of introducing the SSA in this way, both in [41]

and in the highly-cited article [42], has been, as mentioned in Sec. 2.1, that there

appears to be a common misperception in the literature today that the SSA is only
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applicable to elementary reaction types that obey the law of mass action (this is not

true in every case, but it is prevalent). The truth, however, is that the SSA is much

more general than this. The algorithm is, by construction, indifferent as to the

functional forms of the transition probabilities aµ, so long as they are Markovian in

nature. This means that common reduction methods, such as Michaelis-Menten,

can be used in concert with the SSA. It is important to recognize, however, that

the conditions under which certain assumptions hold (rapid equilibrium in the case

of Michaelis-Menten) may be different in the small-number case (the realm of the

SSA) than in the deterministic limit. This must be carefully considered in order

to obtain meaningful results when applying the SSA in such situations.
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APPENDIX C

Inversion generating technique

The inversion generating technique is a commonly-used method for obtaining ran-

dom samples from either discrete or continuous probability functions [44]. In the

continuous case, given a probability density function P (x), the procedure involves

calculating the associated probability distribution function F (x) (also known as the

cumulative distribution function), defined as

F (x) ≡
∫ x

−∞
P (x′)dx′. (C.1)

A representative sample x from P (x) can then be obtained by setting F (x)=r, a

unit uniform random number on [0, 1), and inverting the expression to solve for x.

Symbolically, the inversion procedure is written as

F−1(r) = x. (C.2)

The procedure works because F (x) lies on [0, 1) [i.e., F (−∞)=0 and F (∞)=1]

and thus maps P (x) onto this interval. To understand this, consider Fig. C.1. In

the top row we have plotted two normalized Gaussian probability density functions,

both with mean 10. The standard deviation for the narrow Gaussian on the left

is 0.5 while that for the wider one on the right is 2.0. In the bottom row we have

plotted the associated distribution functions F (x). The blue dotted lines illustrate

the idea behind the inversion generating technique. Upon generating a random

number r on [0, 1), the same range as F (x), the value of x associated with F (x)=r

is then determined. For the distribution on the left, these values will lie close to

the mean of the associated Gaussian because of the steep transition from F (x)=0

to 1. More variability will be seen for the values obtained from the distribution on

the right, however, consistent with the broader density function.
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Figure C.1: Graphical illustration of the inversion generating technique.
Gaussian probability density functions P (x) are shown along
with their associated distribution functions F (x). (Left column):
mean=10, standard deviation=0.5; (right column): mean=10,
standard deviation=2.0. The blue dotted lines illustrate the con-
cept behind the inversion generating technique. Upon drawing
a random number r on [0, 1), the value of x associated with
F (x) = r is determined. For the narrow Gaussian on the left,
most of the values will lie close to the mean, while larger devia-
tions will be seen for the Gaussian on the right.

Application of the inversion generating technique obviously requires being able

to evaluate the integral Eq. (C.1). In general, this can be done numerically, iter-

atively adjusting the upper bound x until a value is found at which the integral

equals r (within a small tolerance) [96]. Ideally, however, the integral can be eval-

uated analytically, yielding a simple expression for x from Eq. (C.2). This happens

to be the case for the τ -independent propensity functions of Chapter 2.

Consider Eq. (2.12), the continuous probability function governing next-
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reaction times τ within the direct method of the SSA. In the τ -independent case,

we have a0(xt, θt+τ )=a0(xt, θt)=a0(t), and hence

P1(τ |xt, t)dτ = a0(t) exp

[
−
∫ τ

0

a0(t)dτ ′
]

dτ

= a0(t) exp [−a0(t)τ ] dτ. (C.3)

We can then obtain an analytical expression for τ that is consistent with this

expression by evaluating the distribution function,

F1(τ |xt, t) ≡
∫ τ

0

P1(τ
′|xt, t)dτ ′

= 1− exp [−a0(t)τ ] (C.4)

[note that the lower integration bound is set to zero because P1(τ |xt, t) = 0 for

τ <0]. Setting Eq. (C.4) equal to r∈ [0, 1) and rearranging gives

τ = − ln(1− r)

a0(t)
= − ln(r)

a0(t)
, (C.5)

where the second equality notes that 1−r is, itself, a random number on [0, 1).

Equation (C.5) is used extensively throughout the literature. It is important

to recognize, however, that it is formally valid only in the case of τ -independent

propensities. Since the species populations X(t) remain constant between succes-

sive reaction firings, τ dependency can only manifest itself via time-varying envi-

ronmental quantities Θ(t), such as volume or temperature. (Note that in some

cases, concentrations of “fast” species, treated as continuous and deterministic,

can be included in Θ(t) in order to account for their effects on reactions involving

“slow” species [96].)

There is also an integer version of the inversion generating technique that is

a simple extension of the continuous version [44]. Instead of an integration, the
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distribution function F (n), n∈Z, the set of all integers, is defined as

F (n) ≡
n∑

n′=−∞

P (n′). (C.6)

A random sample n of P (n) is then the value of n that satisfies the double inequality

F (n− 1) ≤ r < F (n), (C.7)

with r again is a unit-uniform random number on [0, 1).

As a simple example, consider Eq. (2.13), the discrete probability function

governing next-reaction types µ within the direct method of the SSA,

P2(µ|t + τ) = aµ(xt, θt+τ ) /a0(xt, θt+τ ) . (C.8)

Note that in this case, whether the propensities are τ dependent or not is irrelevant.

Using Eqs. (C.6) and (C.7), a sample value µ is then the integer that satisfies

µ−1∑
ν=1

aν(xt, θt+τ ) ≤ r × a0(xt, θt+τ ) <

µ∑
ν=1

aν(xt, θt+τ ). (C.9)

Again, this expression is widely used in the literature.
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APPENDIX D

Calculation of gµi(t) for various reaction

types in SB τ selection

The species-based τ -selection procedure presented in Sec. 3.4.2 of this dissertation

was first proposed by Cao et al. in Ref. [20]. In that work, the authors considered

only elementary reaction types (i.e., those obeying the law of mass action—see

Appendix B) and derived gµi(t) expressions for reactions up to third order. In

this Appendix, we will reproduce these derivations along with some simplifications

that we proposed in Ref. [56] and also derive expressions for some non-elementary

reaction types that we considered in Ref. [57] and Sec. 4.2 above.

Elementary 1st order. In the species-based τ -selection procedure of Sec. 3.4.2,

the scaling factor gi(t) [Eq. (3.29)], associated with species Si, is determined by

calculating individual factors {gνi(t)} for Si in each reaction (i.e., ν =1. . .M), and

then choosing gi(t) as the largest of these [Eq. (3.34)]. Our job here, therefore, is

to determine expressions for gµi(t) for various types of reactions.

The simplest type of reaction to consider is the elementary first-order reaction

Si
cµ−→ products ,

which has the propensity

aµ = cµXi.

The general procedure for determining gµi(t) is given by Eqs. (3.35)–(3.39) of

Sec. 3.4.2. Thus, we begin by deriving an expression for ∆aµ/aµ of the form given
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in Eq. (3.35), which, in this case, is easy to do,1

∆aµ

aµ

=
daµ

dXi

∆Xi

aµ

=
∆Xi

Xi

.

In terms of Eq. (3.35), this means that αµi = 1 and {αµj = 0}j 6=i. We now obtain

an expression for |∆aµ| /aµ using Eq. (3.36), which is trivial in this case,

|∆aµ|
aµ

=
|∆Xi|

Xi

= εµ.

Following Eq. (3.37), we must now place a constraint on |∆Xi| /Xi that is tighter

than, or equal to, that placed on |∆aµ| /aµ. In this case, it is obvious from the

above expression that the constraint is the same. Thus, the scaling factor ζµi = 1

in Eq. (3.37). This choice is intuitively obvious, but one could also say that it is

required by the condition in Eq. (3.38). Finally, using Eq. (3.39), we get the result

gµi = 1. (D.1)

In the following examples, we will follow this same procedure, though less

verbosely. Where complications and/or subtleties arise we will address them, and

where simplifications can be made we will suggest them.

Elementary bimolecular 2nd order. For a second-order elementary reaction

involving the interaction between two different molecular species

Si + Sj
cµ−→ products ,

we have

aµ = cµXiXj.

1In all that follows, we will continue this practice of expressing ∆aµ in terms of derivatives

of aµ with respect to species populations, multiplied by the changes in the species populations.
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Following the same procedure as above, we can write ∆aµ/aµ as

∆aµ

aµ

≈ ∂aµ

∂Xi

∆Xi

aµ

+
∂aµ

∂Xj

∆Xj

aµ

=
∆Xi

Xi

+
∆Xj

Xj

,

which means that αµi =αµj =1. Note that we are neglecting here the correlations

between ∆Xi and ∆Xj [20]. Using Eq. (3.36), we then write

|∆aµ|
aµ

.
|∆Xi|

Xi

+
|∆Xj|

Xj

= εµ.

Thus, if we constrain |∆Xi| /Xi = |∆Xj| /Xj = εµ/2, then we assure that

|∆aµ| /aµ .εµ. This means that ζµi =ζµj =2 and, hence,

gµi = gµj = 2. (D.2)

Elementary monomolecular 2nd order. For a second-order reaction involv-

ing the interaction between two entities of the same species

2Si
cµ−→ products ,

we have

aµ = cµXi(Xi − 1)/2,

which leads to

∆aµ

aµ

=
daµ

dXi

∆Xi

aµ

=

(
2 +

1

Xi − 1

)
∆Xi

Xi

,

|∆aµ|
aµ

=

(
2 +

1

Xi − 1

)
|∆Xi|

Xi

= εµ.

This means that αµi is the term in the parentheses in the above expressions and,

since there is only a single term, ζµi =1. Thus,

gµi(t) = 2 +
1

Xi(t)− 1
. (D.3)
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This is our first example where gµi is time dependent and, hence, would need

to be calculated at each step of a leaping simulation. However, the expression in

Eq. (D.3) has clear upper and lower bounds,

gµi(Xi = 2) = 3,

gµi(Xi →∞) = 2.

The lower bound is at Xi = 2 because the reaction cannot fire if the population

is less than this. The fact that this range is so small led us to argue in Ref. [56]

that it is not worth the effort to calculate gµi(t) at every simulation step. Thus,

for simplicity, we suggested that one simply choose the upper bound,

gµi(t) = gµi = 3. (D.4)

This simplifies the τ -selection procedure significantly with very little loss in effi-

ciency.

Elementary trimolecular 3rd order. Although extremely rare in nature,

third-order reactions are often considered for completeness [20] and because they

have long been used as approximations for more complex mechanisms, especially

in systems that exhibit oscillations [41].

If we consider a third-order reaction of the type

Si + Sj + Sk
cµ−→ products ,

and assume that it obeys the law of mass action (Appendix B), i.e.,

aµ = cµXiXjXk,

then we have

∆aµ

aµ

≈ ∂aµ

∂Xi

∆Xi

aµ

+
∂aµ

∂Xj

∆Xj

aµ

+
∂aµ

∂XK

∆XK

aµ

=
∆Xi

Xi

+
∆Xj

Xj

+
∆XK

XK

,

176



|∆aµ|
aµ

.
|∆Xi|

Xi

+
|∆Xj|

Xj

+
|∆XK |

XK

= εµ.

Thus, we have αµi = αµj = αµk = 1, and if we constrain |∆Xi| /Xi = |∆Xj| /Xj =

|∆XK | /XK =εµ/3, then we assure that |∆aµ| /aµ .εµ. This means that ζµi =ζµj =

ζµk =3 and

gµi = gµj = gµk = 3. (D.5)

Elementary bimolecular 3rd order. If we consider a third-order reaction that

involves only two interacting species

Si + 2Sj
cµ−→ products ,

and obeys the law of mass action

aµ = cµXiXj(Xj − 1)/2,

then we have

∆aµ

aµ

≈ ∂aµ

∂Xi

∆Xi

aµ

+
∂aµ

∂Xj

∆Xj

aµ

=
∆Xi

Xi

+

(
2 +

1

Xj − 1

)
∆Xj

Xj

,

|∆aµ|
aµ

.
|∆Xi|

Xi

+

(
2 +

1

Xj − 1

)
|∆Xj|

Xj

= εµ.

This means that αµi = 1 and αµj is the quantity in parentheses in the above ex-

pressions. With regards to the scaling factors ζµi and ζµj, we have an interesting

situation. Since the above expression is comprised of two terms, one’s first instinct

might be to set ζµi =ζµj =2. However, being a third-order reaction, Cao et al. [20]

proposed instead that ζµi =3 and ζµj =3/2. This is the first example in which de-

termining these scaling factors is not immediately obvious. Using these quantities,

we have

gµi = 3, (D.6)

gµj(t) =
3

2

(
2 +

1

Xj(t)− 1

)
. (D.7)
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Now, again we have a situation where there are clear upper and lower bounds

on the latter of these expressions,

gµj(Xj = 2) = 9/2,

gµj(Xj →∞) = 3.

Thus, for simplicity, we suggested in [56] that one use the upper bound

gµj(t) = gµj = 9/2. (D.8)

Elementary monomolecular 3rd order. The last elementary reaction that

we consider is the third-order reaction involving three entities of the same species,

3Si
cµ−→ products ,

which has the propensity

aµ = cµXi(Xi − 1)(Xi − 2)/6.

Following the same procedure as above, we have

∆aµ

aµ

=
daµ

dXi

∆Xi

aµ

=

(
3 +

1

Xi − 1
+

2

Xi − 2

)
∆Xi

Xi

,

|∆aµ|
aµ

=

(
3 +

1

Xi − 1
+

2

Xi − 2

)
|∆Xi|

Xi

= εµ.

αµi is thus the quantity in parentheses and, since there is only one term, ζµi = 1.

Therefore,

gµi(t) = 3 +
1

Xi(t)− 1
+

2

Xi(t)− 2
. (D.9)

Again, this expression has clear upper and lower bounds,

gµi(Xi = 3) = 11/2,

gµi(Xi →∞) = 3.
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The lower bound is at Xi =3 because the reaction cannot fire if the population is

less than this. In Ref. [56], we argued, for simplicity, that one simply choose the

upper bound,

gµi(t) = gµi = 11/2. (D.10)

Michaelis-Menten.2 Enzyme-catalyzed reactions are ubiquitous throughout bi-

ology [28]. Perhaps the most well-known of these is the Michaelis-Menten mecha-

nism, where a substrate S is converted into a product P though the action of an

enzyme E. The transformation involves the three elementary reactions,

E + S
c1−−⇀↽−−
c−1

{E·S} ccat−→ E + P

(note that we have written these in terms of propensity constants , i.e., the rate

parameters have units of [time−1]). The Michaelis-Menten approximation is to

assume that the enzyme-substrate complex {E·S} is in quasi-equilibrium, meaning

that the rate (or probability) of its production equals its rate of consumption, i.e.,

c1XEXS = (c−1 + ccat)X{E·S}. (D.11)

This is known as the quasi-steady state assumption (QSSA).

The rate (propensity) of product formation can then be written as

aP = ccatX{E·S} =
ccat

CM

XEXS, (D.12)

where the “Michaelis constant”

CM ≡ c−1 + ccat

c1

. (D.13)

If we then write the total enzyme population as

ET ≡ XE + X{E·S}, (D.14)

2The material in this subsection has been adapted from Ref. [57].

179



we can derive an expression for XE by substituting Eq. (D.14) into Eq. (D.11) and

rearranging, which allows us to rewrite Eq. (D.12) as

aP =
ccatET XS

CM + XS

. (D.15)

“1st-order.” If we assume that the total enzyme population ET is constant

(which is the usual approach), then we can think of the transformation of substrate

S into product P as a simple first-order reaction

S
aµ=aP−−−−→ P,

with an effective propensity given by Eq. (D.15).3

In determining the scaling factor gµS for species S in this “reduced” reaction

type, we follow the same approach as previously.

∆aµ

aµ

=
daµ

dXS

∆XS

aµ

=
∆XS

XS

− ∆XS

CM + XS

=

(
CM

CM + XS

)
∆XS

XS

,

|∆aµ|
aµ

=

(
CM

CM + XS

)
|∆XS|

XS

= εµ.

This means that αµS is the quantity in parentheses in the above expressions and

ζµS =1 because there is only a single term. Thus, in general, we have

gµS(t) =
CM

CM + XS(t)
. (D.16)

However, it is also evident that

gµS(XS = 1) =
CM

CM + 1
,

gµS(XS →∞) = 0.

3Reactions 6 and 8 of Table 4.1 are of this type, with the total enzyme population ET

absorbed into the rate parameters k8 and k11, respectively.
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Thus, we can assure that |∆aµ| /aµ≤εµ by choosing the upper bound,

gµS(t) = gµS =
CM

CM + 1
. (D.17)

Furthermore, if CM�1, we can make the further simplification

gµS ≈ 1, (D.18)

which is, interestingly, the same as for the corresponding elementary first-order

reaction [cf., Eq. (D.1)].

It is important to recognize that this is the first example in which we have a gµi

value that can be less than unity. When this is the case, it means that to effect a

(ε×100)% change in aµ requires a larger change in Xi (XS in this case). In fact, in

this case, we have shown above that when Xi is very large a much larger change in

Xi is required, to the point where, in the limit as Xi→∞, changing Xi has virtually

no effect on aµ. This means that, in principle, a large time step can be taken in

such circumstances [cf., Eq.(3.30)]. However, by imposing Eq. (D.17) or (D.18), we

are negating this possibility. It is not as clear as in previous examples, therefore,

whether or not these simplifications should be used. Obviously, this will depend

on the value of CM and how XS changes in time. In general, the appropriateness

of using these simplifications will have to be determined on a case-by-case basis.

“2nd-order.” If one assumes that (i) the total enzyme population ET is not

a constant, and (ii) that the lifetime of the enzyme-substrate complex {E·S} is nil

(i.e., X{E·S} = 0), then the Michaelis-Menten mechanism can be thought of as a

second-order reaction

E + S
aµ=aP (ET =XE)−−−−−−−−−→ E + P,

with an effective propensity

aµ =
ccatXEXS

CM + XS

. (D.19)
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This is just Eq. (D.15) with ET =XE.4

Following the same procedure as above, we then have

∆aµ

aµ

≈ ∂aµ

∂XS

∆XS

aµ

+
∂aµ

∂XE

∆XE

aµ

=

(
CM

CM + XS

)
∆XS

XS

+
∆XE

XE

,

|∆aµ|
aµ

.

(
CM

CM + XS

)
|∆XS|

XS

+
|∆XE|

XE

= εµ.

Thus, αµS is the quantity in parentheses in the above expressions and αµE = 1.

Moreover, we choose ζµS = ζµE = 2 because there are two terms in the above

expression and because the reaction is effectively of second order. This gives us

gµS(t) =
2CM

CM + XS(t)
, (D.20)

gµE = 2. (D.21)

Again, however, gµS(t) has clear upper and lower bounds,

gµS(XS = 1) =
2CM

CM + 1
,

gµS(XS →∞) = 0.

Thus, in the right circumstances, we can choose

gµS(t) = gµS =
2CM

CM + 1
. (D.22)

Moreover, if CM�1, we can choose

gµS ≈ gµE = 2, (D.23)

which corresponds to those for the associated elementary second-order bimolecu-

lar reaction [cf., Eq. (D.2)]. Again, whether or not to use the simplifications in

Eqs. (D.22) and (D.23) needs to be determined on a case-by-case basis.

4Reactions 3 and 4 of Table 4.1 are of this type, with the enzyme E being PLC∗ and Ca,

respectively.
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Hill. Another type of enzymatic process that is common in biological systems is

gene transcription. Transcription is the process by which messenger RNA (mRNA)

molecules are synthesized from DNA sequences, or genes, through interaction with

RNA polymerase. In general, transcription is driven by the action of “transcription

factors,” proteins that bind to the DNA and either enhance or inhibit the rate of

mRNA production.

In modeling gene transcription, a common approach is to collapse the compli-

cated machinery of the process down into a simplified view in terms of an enzymatic

reaction

g
aµ(Xp)−−−−→ g + m,

where g is the gene, m is mRNA, and Xp is the population of the transcription-

factor protein p. The propensity for the reaction then takes the functional form

aµ(Xp) =
c̄Xh

p

Ch
0.5 + Xh

p

, (D.24)

which is known as the Hill equation [28]. c̄ and C0.5 are analogous to ccat (really

ccatET ) and CM , respectively, of the Michaelis-Menten reaction discussed above.5

Indeed, the above expression reduces to the Michaelis-Menten form when h = 1.

h is known as the Hill coefficient and can, in general, take on any real value,

i.e., h ∈ R [28]. If h > 1, then the action of the protein p is to enhance the rate

of mRNA production, which is known as positive cooperativity . If h < 1, then p

inhibits transcription, which is known as negative cooperativity .

Since the propensity of this reaction depends on the population of the protein

p, our job here is to derive an expression for gµp(t). To do this, we again follow

5C0.5 is labeled as such because when Xp =C0.5, aµ =0.5c̄. When h> 0, c̄ is the maximum

possible value of aµ [i.e., Xh
p /(Ch

0.5 + Xh
p )→1 as Xp→∞]. Thus, C0.5 is often referred to as the

population (concentration) of half-maximal velocity.
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the same procedure as previously. First, we have

∆aµ

aµ

=
daµ

dXp

∆Xp

aµ

= h
∆Xp

Xp

− h
Xh

p

Ch
0.5 + Xh

p

∆Xp

Xp

= h

(
Ch

0.5

Ch
0.5 + Xh

p

)
∆Xp

Xp

,

|∆aµ|
aµ

= |h|
(

Ch
0.5

Ch
0.5 + Xh

p

)
|∆Xp|

Xp

= εµ.

This means that αµp is |h| times the term in parentheses and ζµp =1 since there is

only a single term. Thus,

gµp(t) =
|h|Ch

0.5

Ch
0.5 + Xh

p (t)
. (D.25)

We also have two sets of upper and lower bounds, depending on whether h>0 or

h<0,

gµp(Xp = 1) = h
Ch

0.5

Ch
0.5+1

gµp(Xp →∞) = 0

 if h > 0,

gµp(Xp = 1) = |h| 1

C
|h|
0.5+1

gµp(Xp →∞) = |h|

 if h < 0.

Since C0.5 is positive definite, when h>0, Ch
0.5/(Ch

0.5+1)>0. Thus, we can choose

gµp(t) = gµp = h
Ch

0.5

Ch
0.5 + 1

if h > 0. (D.26)

For the same reason, when h<0, 1/(C
|h|
0.5+1)<1, meaning that we can choose

gµp(t) = gµp = |h| if h < 0. (D.27)

We also see that if Ch
0.5 � 1, then Ch

0.5/(Ch
0.5 +1) → 1, meaning that the upper

bounds for h > 0 and h < 0 converge to the same value (obviously, h = |h| when

h>0). Thus, in this circumstance, we can use, regardless of whether h is positive

or negative,

gµp ≈ |h| if Ch
0.5 � 1. (D.28)

Again, whether or not we can use these simplifications must be determined on a

case-by-case basis.
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Adair.6 Although the Hill equation is widely used to model enzymatic processes

in biology, including gene transcription, it is, in principle, a purely empirical and

phenomenological equation [28], originally devised by Hill to fit data regarding the

cooperative binding of oxygen to hemoglobin. As such, it cannot be derived. How-

ever, there do exist physically-based models of cooperative enzyme binding that

reduce to the Hill equation in certain limits, thus providing a type of derivation.

One such mechanism is that of Adair [28]. In Appendix E of this dissertation, we

derive the Adair equation and discuss its relation to the Hill equation. Here, we

simply present it and derive the exact and approximate expressions for gµp.

We use the Adair equation when considering gene transcription from a set of

protein-bound (and unbound) gene complexes {g, g·p, g·p2, . . . , g·pq}, where q is

the total number of binding sites on the gene. The transcription reactions that we

are concerned with are

g
a0,q

µ (Xp)−−−−−→ g + m,

g·p a1,q
µ (Xp)−−−−−→ g·p + m,

...

g·pq
aq,q

µ (Xp)−−−−−→ g·pq + m.

In general, we can think of the rates of mRNA production from n-bound genes

containing q binding sites (0≤n≤q). The Adair equation is then

an,q
µ (Xp) =

ct
ngT Xn

p

∏q−1
j=n Cj∑q

i=0 X i
p

∏q−1
j=i Cj

, (D.29)

where gT is the total number of genes (usually unity, not more than a few) and the

Cj are dissociation constants,7 i.e., Cj ≡ c−j/cj (j = 0, . . ., q−1) for the reversible

6The material in this subsection has been adapted from Ref. [57].
7Note that dissociation constants are usually denoted as Kj and given in molar units. In our

case, we are simply removing the molar units and defining Cj≡Kj×NAΩ.
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reaction

g·pj + p
cj−−⇀↽−−
c−j

g·pj+1.

To clarify the connection to the Hill equation, consider

a2,2
µ (Xp) =

ct
2gT X2

p

C0C1 + C1Xp + X2
p

,

which is essentially a Hill equation with h = 2, c̄ = ct
2gT and C0.5 =

√
C0C1 except

for the second term in the denominator, which goes to zero as Xp → 0 and is

small compared to X2
p as Xp →∞. In other words, except for a small range of

intermediate values of Xp, this expression gives very similar values to the associated

Hill equation.8

Now, following the same procedure as above, we have9

|∆an,q
µ |

an,q
µ

=

∣∣∣∣dan,q
µ

dXp

∆Xp

an,q
µ

∣∣∣∣
=

∣∣∣∣∣n− q

∑q
i=1

i
q
X i

p

∏q−1
j=i Cj∏q−1

j=0 Cj +
∑q

i=1 X i
p

∏q−1
j=i Cj

∣∣∣∣∣ |∆Xp|
Xp

.

With ζn,q
µp =1, this means that

gn,q
µp (t) =

∣∣∣∣∣n− q

∑q
i=1

i
q
X i

p(t)
∏q−1

j=i Cj∏q−1
j=0 Cj +

∑q
i=1 X i

p(t)
∏q−1

j=i Cj

∣∣∣∣∣ . (D.30)

8This is not necessarily true for larger values of q. Moreover, while there is an Adair equation

for each protein-bound complex, Hill equations are usually the only equation used to describe

the transcription dynamics. In other words, they attempt to account for transcription from all

of the complexes simultaneously. This is why the Hill coefficient h, unlike n, is generally not an

integer.
9We have pulled a factor of q out of the numerator in this equation in order to make more

clear the value of |∆an,q
µ |/an,q

µ in the infinite limit (see below).
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We also have the upper and lower bounds10

gn,q
µp (Xp = 1) =

∣∣∣∣∣n− q

∑q−1
i=1

i
q

∏q−1
j=i Cj + 1∑q−1

i=0

∏q−1
j=i Cj + 1

∣∣∣∣∣ ,
gn,q

µp (Xp →∞) = |n− q| .

Analogous to before, we also have if all {Cj�1},11

gn,q
µp (Xp = 1) ≈ n.

In general, therefore, it may be possible, in the right circumstance, to use

gn,q
µp (t) = gn,q

µp = max
{
gn,q

µp (Xp = 1), |n− q|
}

. (D.31)

10For gn,q
µp (Xp =1), we have changed the upper limit on the summations to avoid confusion (i.e.,

we have changed q to q−1 and added a ‘+1’ to the end). Also, the value of gn,q
µp (Xp→∞) is as such

because as Xp→∞ the terms in the summations at i=q dominate (i.e., Xq
p�Xq−1

p �Xq−2
p , etc.),

meaning that, in this limit, the numerator and denominator are approximately equal.
11By pulling a factor of q out of the numerator and leaving behind a factor of i/q within

the summation, it becomes clear that the denominator will always exceed the numerator if all

{Cj >1}. Thus, in the limit that all {Cj→∞}, this term goes to zero.
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APPENDIX E

The Adair reduction—Rapid equilibrium

in gene expression1

As discussed briefly in Appendix D of this dissertation, gene transcription dy-

namics are often modeled in a coarse-grained manner using Hill equations. The

Hill equation is phenomenological in nature, however, and cannot, in principle,

be derived [28]. In this Appendix, we present the Adair reduction [28], a coarse-

grained description of transcription dynamics that is derivable by applying the

rapid-equilibrium assumption to a realistic reaction network that describes the

transcription process. In the correct limits, the Adair equation reduces to the Hill

equation, providing a type of derivation of the latter.

The specific problem that we are concerned with involves a gene g that has

multiple binding sites, q in total, for the transcription-factor protein p. We assume

that p binds as a monomer (i.e., it does not oligomerize in solution, which may not

be realistic in many cases) and that successive binding and unbinding events can

occur with different rates. The binding/unbinding reaction network thus looks like

g + p
c0−−⇀↽−−
c−0

g·p,

g·p + p
c1−−⇀↽−−
c−1

g·p2,

...

g·pq−1 + p
cq−1−−−−⇀↽−−−−

c−(q−1)

g·pq.

In principle, the unbound gene and each of the protein-bound gene complexes can

transcribe mRNA at different rates.2 The transcription process is often modeled

1The material in this Appendix is a generalized version of that presented in Ref. [57].
2If the action of p is to suppress transcription upon binding, then the rate of transcription from
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as a simple enzymatic creation event. Thus, we consider the following reactions,

g
ct
0−→ g + m,

g·p
ct
1−→ g·p + m,

...

g·pq

ct
q−→ g·pq + m.

Obviously, the rate at which mRNA is produced strongly depends on the amount

of time that the unbound gene and each of the gene complexes is populated, which,

in turn, depends on the relative rates of gene-protein binding and unbinding.

The Adair approximation is to assume that each reversible binding and un-

binding reaction pair is in equilibrium. This is known as the partial equilibrium

assumption (PEA),3 and allows us to derive effective expressions for the “occu-

pancy probabilities” of each of the “gene species” {g, g·p, . . . , g·pq}. This means

that we can remove explicit consideration of the gene-protein binding and unbind-

ing reactions and only consider the transcription reactions with effective rate ex-

pressions that account for gene-protein binding and unbinding in a coarse-grained

manner. These effective expressions are known as the Adair equations [28].

a bound complex may be significantly lower than that for the unbound gene but not necessarily

zero. This phenomenon is known as transcriptional “leakage,” and is often included in models of

gene transcription (e.g., Ref. [33]).
3The PEA is different from the quasi-steady state assumption (QSSA) in that the PEA

pertains to reaction rates while the QSSA pertains to species populations [16]. In particular,

applying the PEA here to the reaction g+p
cb
0−−⇀↽−−

cb
−0

g·p means that cb
0[g][p]=cb

−0[g·p]. Conversely, in

Appendix D, we used the QSSA to derive the Michaelis-Menten equation, which assumes that the

population of the enzyme-substrate complex {E·S} does not change in time. This implies that

the rate of its production via the reaction E+S
c1−→ {E·S} is equal to the rate of its consumption

via the two reactions {E·S} c−1−−→E+S and {E·S} ccat−−→E+P .
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In deriving the Adair equations, we begin by applying the PEA to the bind-

ing/unbinding reactions above, which gives us the q equations

[g] = C0[g·p]/Xp,

[g·p] = C1[g·p2]/Xp,

...

[g·pq−2] = Cq−2[g·pq−1]/Xp,

[g·pq−1] = Cq−1[g·pq]/Xp.

Here, we have defined, for an n-bound gene, Cn ≡ c−n/cn (n = 0, . . . , q−1) and

[·] denotes the occupancy probability.4 By successive substitution, we can then

express each of these as functions of [g·pq],

[g] = C0C1C2 . . . Cq−1[g·pq]X
−q
p ,

[g·p] = C1C2 . . . Cq−1[g·pq]X
1−q
p ,

...

[g·pq−2] = Cq−2Cq−1[g·pq]X
−2
p ,

[g·pq−1] = Cq−1[g·pq]X
−1
p .

In general, therefore, we can write

[g·pn] = [g·pq]X
n
p X−q

p

q−1∏
j=n

Cj, n = 0, . . . , q − 1. (E.1)

Now, the total number of genes, gT , is

gT = [g] + [g·p] + . . . + [g·pq] =

q∑
i=0

[g·pi]. (E.2)

4Since there is often only a single copy of each gene, and never more than a few, we cannot

really think in terms of “populations” of the gene species. Thus, for convenience, we use the

notation [·]. This is traditionally used to denote concentration, which is similar, in some sense,

to probability. Note, however, that we retain the notation Xp for the population of p.
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Substituting Eq. (E.1) into (E.2) and rearranging thus gives us an expression for

[g·pq],

[g·pq] =
gT∑q

i=0 X i
pX

−q
p

∏q−1
j=i Cj

. (E.3)

It is clear from the transcription reactions above that the rate of mRNA production

from an n-bound gene with q binding sites is

an,q
µ = ct

n[g·pn]. (E.4)

Thus, the Adair expression that we are looking for is obtained by substituting

Eq. (E.3) into (E.1) and then Eq. (E.1) into (E.4). This gives us

an,q
µ (Xp) =

ct
ngT Xn

p

∏q−1
j=n Cj∑q

i=0 X i
p

∏q−1
j=i Cj

, (E.5)

which is the same as Eq. (D.29) of Appendix D.

Let us consider a gene with two binding sites, i.e., q =2. In this circumstance,

we have three gene species: g, g·p and g·p2. We have already shown in Appendix D

that for g·p2 we can write

a2,2
µ (Xp) =

ct
2gT X2

p

C0C1 + C1Xp + X2
p

, (E.6)

which is reminiscent of a Hill equation with a Hill coefficient h= 2 except for the

second term in the denominator. For the unbound gene g, we have, similarly,

a0,2
µ (Xp) =

ct
0gT C0C1

C0C1 + C1Xp + X2
p

=
ct
0gT X−2

p

(C0C1)−1 + (C0Xp)−1 + X−2
p

, (E.7)

which, written in the latter manner, is reminiscent of a negative-cooperativity Hill

equation with a Hill coefficient h = −2. Thus, we see that the Adair formalism

is able to capture the effects of both positive and negative cooperative binding.

Interestingly, for g·p we have

a1,2
µ (Xp) =

ct
1gT C1Xp

C0C1 + C1Xp + X2
p

, (E.8)
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which is intermediate between Eqs. (E.6) and (E.7) and does not have an analogous

Hill form. As alluded to in Appendix D, this is why the Hill coefficient h is generally

not an integer. Hill equations are often used as approximate descriptions of the

combined effects of Eqs. (E.6), (E.7) and (E.8).
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APPENDIX F

Histogram smoothing, histogram

distance and self distance1

For a set of N data points {x1, x2, . . . , xN}, the total number falling within a

discrete interval [x, x + ∆) can be formally written as
∑N

i=1

∫ x+∆

x
δ(xi − x′)dx′,

where δ(xi − x′) is the Dirac delta function (Appendix A) and the integral equals

unity if xi lies within [x, x + ∆) and zero otherwise. A “histogram density” can be

obtained by dividing this quantity by N∆ and taking the limit as ∆ → 0,

ĥ(x) = lim
∆→0

1

N∆

N∑
i=1

∫ x+∆

x

δ(xi − x′)dx′. (F.1)

The ‘hat’ in ĥ(x) signifies that this quantity is a statistical estimator of the true

histogram density

h(x) = lim
N→∞

ĥ(x). (F.2)

A “smoothed” histogram can be obtained by approximating the delta function

in (F.1) by a finite-width Gaussian κ exp
(
−(xi−x′)2

2σ2

)
, where κ is a normalization

constant and σ2 is the (user-defined) variance. Substituting into (F.1), noting that

to first order
∫ x+∆

x
e−u2

du = ∆e−x2
, and normalizing, gives

ĥ(x) ≈ 1√
2πσN

N∑
i=1

exp

(
−(xi − x)2

2σ2

)
. (F.3)

All smoothed histograms presented in this dissertation have been obtained using

this expression.2

1The material in this Appendix is adapted from Ref. [56].
2Equation (F.3) is also known as kernel density estimation or the Parzen window method

[82].
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In order to quantitatively compare results obtained via different simulation

methods (i.e., PLA, SSA, etc.), we use the “histogram distance” discussed by Cao

and Petzold [23]. We first define the quantity δhx≡h1(x)−h2(x). The histogram

distance, D, is then defined as

D ≡ 1

2

∫
x

|δhx|dx, (F.4)

where the factor of 1/2 assures that D lies within [0,1), with 0 constituting a

perfect fit and 1 a complete mismatch.

It is important to recognize that D is defined in Eq. (F.4) in terms of the true

histogram densities h1(x) and h2(x). In practice, we only have their estimators

and can thus only calculate an estimated value of D. As a result, a certain amount

of statistical uncertainty is associated with the comparison of histograms. In order

to quantify this uncertainty, Cao and Petzold [23] introduced the “self distance,”

Dself , which can be thought of as the distance between the estimator ĥ(x) and the

true density h(x). Expressions for the upper bounds on the mean and variance

of Dself are presented in Ref. [23] in terms of the number of bin intervals K used

to generate the histograms. However, since we are using Eq. (F.3) to generate

histograms rather than a counting procedure, we must derive alternate expressions.

We begin by defining, as before, δhself
x ≡ ĥ(x)−h(x). The self distance is then

Dself ≡ 1

2

∫
x

|δhself
x |dx. (F.5)

Following Cao and Petzold [23], we then note that the number of points falling

within the interval [x, x + ∆) is a binomial random variable B(px, N), where px is

the success probability. ĥ(x) can thus be written as

ĥ(x) = lim
∆→0

B(px, N)/N∆ = B(dpx, N)/Ndx. (F.6)
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Since the mean 〈B(px, N)〉= Npx and the variance var{B(px, N)}= Npxqx (qx≡

1−px), the mean and variance of ĥ(x) are dpx/dx and dpxdqx/Ndx2, respectively.

With dpx =h(x)dx and dqx =1−h(x)dx, the mean and variance of δhself
x are thus〈

δhself
x

〉
= 0, (F.7)

var{δhself
x } = [h(x)dx][1− h(x)dx]/Ndx2 ≈ ĥ(x)/Ndx, (F.8)

where the last line utilizes the histogram density estimator ĥ(x) and assumes that

ĥ(x)dx� 1. For large N , δhself
x can thus be approximated as a normal random

variable with mean zero and variance ĥ(x)/Ndx. This means that

δhself
x√

ĥ(x)/Ndx

is approximately standard normal and

|δhself
x |√

ĥ(x)/Ndx

is approximately chi distributed with one degree of freedom (DOF). Since the mean

and variance of a chi random variable with one DOF are
√

2/π and (π−2)/π,

respectively, we have

〈
|δhself

x |
〉
≈

√
2

Nπ

ĥ(x)

dx
, (F.9)

var
{
|δhself

x |
}

≈
(

π − 2

Nπ

)
ĥ(x)

dx
. (F.10)

Finally, using the identities [44]〈∫
x
f(x)dx

〉
=

∫
x

〈f(x)〉 dx,

var
{∫

x
f(x)dx

}
≤

(∫
x

√
var{f(x)}dx

)2

,

we get 〈
Dself

〉
≈ 1

2

√
2

Nπ

∫
x

√
ĥ(x)dx, (F.11)

var
{
Dself

}
.

1

4

(
π − 2

Nπ

)(∫
x

√
ĥ(x)dx

)2

(F.12)
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[note that the dx are within the square-roots in Eqs. (F.11) and (F.12)]. In prac-

tice, we calculate
〈
Dself

ref

〉
, the mean self distance for a reference histogram, gen-

erally obtained using the SSA. This value then tells us that any histogram with

a distance D < 2
〈
Dself

ref

〉
cannot be distinguished, statistically speaking, from the

reference histogram.3 Note that the expression for var{Dself} is included here for

completeness but it is of little practical value.

3The reason why we use 2
〈
Dself

ref

〉
as the criterion for statistical indistinguishability is that

two sample histograms can have identical self distances but from opposite sources. For example,

one can be slightly taller and thinner, and the other slightly shorter and wider, than the true

histogram. Thus, two sample histograms can be as dissimilar as twice the mean self distance and

still be indistinguishable from the true histogram. In the Appendix of Ref. [56], it was incorrectly

stated that two histograms can be considered distinct if they differ by only a single
〈
Dself

ref

〉
.
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