A suitable test dose of virus is selected, for example $300 \mathrm{D}_{50}$, and falling dilutions of serum are added in equal amounts to the appropriate virus dilution. The lesions in the inoculated eggs are recorded and the neutralizing endpoint is expressed as that dilution of serum which "protects" 50% of the eggs against the test dose of virus used.

Dilution	Number of Eggs Tested	Number of Eggs Infected	Proportion of Eggs Infected
10^{x}	n_{0}	r_{0}	r_{0} / n_{0}
10^{d+x}	n_{1}	r_{1}	r_{1} / n_{1}
$10^{2 d+x}$	n_{2}	r_{2}	r_{2} / n_{2}
\vdots	\vdots	\vdots	\vdots
$10^{(m-1) d+x}$	n_{m-1}	r_{m-1}	r_{m-1} / n_{m-1}
$10^{m d+x}$	n_{m}		r_{m} / n_{m}

Then the 50% endpoint is found using the formula below:
$\log 50 \%$ endpoint $=x+d(m+1 / 2-s)$
where
x is $\log _{10}$ of the lowest dilution
d is $\log _{10}$ of the dilution factor
m is one less than the number of dilutions used
S is the sum of proportion of eggs infected

Example: (equal numbers of eggs at each dilution)

Dilution	-2-		Proportion of Eggs Infected
	Number of Eggs Tested	Number of Eggs Infected	
10^{-1}	5	0	0/5
10^{-2}	5	2	$2 \neq 5$
10^{-3}	5	4	4/5
10^{-4}	5	5	5/5
			$s=11 / 5$

Here we have:

$$
x=-1, d=-1, d=3
$$

so

$$
\begin{aligned}
\log 50 \% \text { endpoint } & =-1-\left(3 * \frac{1}{2}-\frac{11}{5}\right) \\
& =-1-(3.5-2.2)=-2.3
\end{aligned}
$$

Therefore, the 50% endpoint is $10^{-2.3}$.
Suppose there are unequal numbers of eggs at the different dilutions as

Dilution	Number of Eggs	Number of Eggs Infected	Proportion of Eggs Infected
10^{-1}	3	0	$0 / 3$
10^{-2}	5	1	$1 / 5$
10^{-3}	4	3	$3 / 4$
10^{-4}	5	5	$5 / 5$
			$S=39 / 20$

Here

$$
x=-1, d=-1, m=3
$$

so

$$
\begin{aligned}
\log 50 \% \text { endpoint } & =-1-\left(3+\frac{1}{2}-S\right) \\
& =-2.55
\end{aligned}
$$

For two-fold dilutions the same procedure is used; we might have, for example:

Dilution	Number of Egge Tested	Number of Eggs Infected	Proportion of Eggs Infected
$1 / 2$	5	0	$0 / 5$
$1 / 4$	5	1	$1 / 5$
$1 / 8$	5	3	$3 / 5$
$1 / 16$	5	4	$4 / 5$
$1 / 32$	5	5	$5 / 5$
			$\overline{S=13 / 5}$

We have:

$$
x=-.3, d=-.3, m=4
$$

so

$$
\begin{aligned}
\log 50 \% \text { endpoint } & =-.3-.3\left(4+\frac{1}{2}-2.6\right) \\
& =-.87
\end{aligned}
$$

For ID_{50} titer for virus dilutions the same procedure is used except the number of eggs showing no lesions are used.

Evample:

Dilution	Number of Eggs Fested	Number of Eggs Not Infected	Proportion of Eggs Not Infected
10^{-1}	5	0	$0 / 5$
10^{-2}	5	2	$2 / 5$
10^{-3}	5	4	$4 / 5$
10^{-4}	5	5	$5 / 5$
			$S=11 / 5$

Here

$$
x=-1, d=-1, m=3
$$

so

$$
\begin{aligned}
\log 50 \% \text { endpoint } & =-1-\left(3+\frac{1}{2}-2.2\right) \\
& =-2.30
\end{aligned}
$$

In general we have:

| Dilution | log Dilution | Number of
 Eggs | Number
 Tested |
| :--- | :--- | :--- | :--- | | Proportion of |
| :---: |
| Egg Infected |\quad| Eggs Infected |
| :--- |

Y_{1}	x_{1}	n_{1}	r_{1}	r_{1} / n_{1}
Y_{2}	x_{2}	n_{2}	r_{2}	r_{2} / n_{2}
Y_{3}	x_{3}	n_{3}	r_{3}	r_{3} / n_{3}
\vdots	\vdots	\vdots	\vdots	\vdots
Y_{k}	x_{k}	n_{k}	r_{k}	r_{k} / n_{k}

Then we have
$\log 50 \%$ endpoint $=$

$$
\frac{x_{k}+x_{x-1}}{2}-\frac{1}{2}\left[\frac{r_{2}}{n_{2}}\left(x_{3}-x_{1}\right)+\frac{r_{3}}{n_{3}}\left(x_{4}-x_{2}\right)+\frac{r_{4}}{n_{4}}\left(x_{5}-x_{3}\right)+\cdots+\frac{r_{k-1}}{n_{k-1}}\left(x_{k}-x_{k-2}\right)\right]
$$

If the dilutions are equally spaced on the log scale then this reduces to the formula previously given. If the dilutions are unequally spaced, as, for example, when all eggs at one dilution die, then the above formula must be used.

Dilution	log Dilution			
x_{i}	Number of Eggs Tested n_{i}	Number of Eggs Infected r_{i}	Proportion of Eggs Infected r_{i} / n_{i}	
10^{-1}	-1	4	0	$0 / 4$
10^{-2}	-2	5	1	$1 / 5$
10^{-4}	-4	4	2	$1 / 2$
10^{-5}	-5	3	2	$2 / 3$
10^{-6}	-6	5	5	$5 / 5$

log 50\% endpoint

$$
\begin{aligned}
& =\frac{-5-6}{2}-\frac{1}{2}\left[\frac{1}{5}(-4+1)+\frac{1}{2}(-5+2)+\frac{2}{3}(-6+4)\right] \\
& =\frac{-11}{2}+\frac{1}{2}\left[\frac{3}{5}+\frac{3}{2}+\frac{4}{3}\right] \\
& =\frac{-11}{2}+\frac{103}{60}=\frac{-227}{60}=-3.78
\end{aligned}
$$

Reference:

Finney, D. J., 1952. Statistical Method in Biological Assay. New York: Hafner Publishing Company.

