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This thesis studies the problem of sentiment classification at both the doc-

ument and sentence level using statistical learning methods. In particular, we

develop computational models that capture useful structure-based intuitions

for solving each task, treating the intuitions as latent representations to be dis-

covered and exploited during learning.

For document-level sentiment classification, we exploit structure in the form

of informative sentences — those sentences that exhibit the same sentiment as

the document, thus explain or support the document’s sentiment label. We

first show that incorporating automatically discovered informative sentences in

the form of additional constraints for the learner improves performance on the

document-level sentiment classification task. Next, we explore joint structured

models for this task: our final proposed model does not need sentence-level

sentiment labels, and directly optimizes document classification accuracy using

inferred sentence-level information. Our empirical evaluation on two publicly

available datasets shows improved performance over strong baselines.

For phrase-level sentiment classification, we investigate the compositional

linguistic structure of phrases. We investigate compositional matrix-space mod-

els, learning matrix-space word representations and modeling composition

as matrix multiplication. Using a publicly available dataset, we show that

the matrix-space model outperforms the standard bag-of-words model for the

phrase-level sentiment classification task.
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CHAPTER 1

INTRODUCTION

Understanding opinions, attitudes, emotions of people towards objects and to-

wards each other is important for making decisions (e.g., which movie to watch,

which camera to buy) and building a mental picture of the world and interper-

sonal relationships (e.g., who likes whom, who likes what). Sentiment analysis

is a research area of natural language processing that aims to understand these

types of private mental and emotional states in text.

There has been a great burst of interest in sentiment analysis research in re-

cent years (Pang and Lee (2008), Liu (2012)). This interest is due to a number

of factors. First, and most importantly, there are numerous practical applica-

tions of opinion analysis for corporate business intelligence, political analysis

and personal decision-making. Second, there have been developments in ma-

chine learning and statistical natural language processing that allow for proper

computational treatment of these real-world application scenarios. Third, since

people often post their opinions on forums and various websites and access to

user-generated content has become easier, it is now possible to create datasets

to support the study of sentiment analysis using statistical methods.

Research in sentiment analysis can be roughly split into two main threads:

coarse-grained sentiment analysis (e.g., Pang et al. (2002), Turney (2002)) and

fine-grained sentiment analysis (e.g., Wiebe et al. (2005)). Coarse-grained senti-

ment analysis is concerned with analysing the overall sentiment of a document

or larger snippet of text, while fine-grained sentiment analysis studies opinions

at the sentence or phrase level, identifying the polarity, topic, and sometimes

even the source of the opinion.
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Sentiment classification, one of the subtasks of sentiment analysis, identifies

whether a given text carries positive or negative polarity. This thesis studies

the task of supervised sentiment classification at both the document and sen-

tence level. In document-level sentiment classification (or categorization), we

are given a set of documents with document-level sentiment labels, the goal is

to learn a statistical model, so that it can predict the sentiment labels for previ-

ously unseen documents. The same question of sentiment categorization could

be posed at a much finer level as well — for example, at the sentence or phrase

level. Though the question is the same, the intuitions for figuring out the an-

swer in each of these settings could be different. For example, the sentiment

of a document generally revolves around a few phrases and sentences that are

subjective and that express the feelings of the author towards the topic under

consideration, while the rest of the document might describe the topic itself.

Thus, correctly identifying phrases and sentences that explain the document’s

sentiment label might improve document-level sentiment classification. In con-

trast, deciding the sentiment of a phrase requires accounting for more of the

linguistic structure of the phrase: since phrases usually have many fewer words

than documents, the exact way the words combined matters a lot.

As a result, in this thesis we develop computational models that capture useful

intuitions for solving document-level and phrase-level sentiment classification. We fur-

thermore treat these intuitions as latent representations to be discovered and exploited

during learning.

For document-level sentiment classification, for example, our proposed

methods rely on the intuition outlined above — that the overall sentiment is

based on just a subset of the sentences or phrases in the document, i.e., the

sentiment-bearing sentences or phrases. For phrase-level classification, our pro-
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posed approach relies instead on the principle of semantic compositionality,

which states that the meaning of a phrase is composed from the meaning of

its words via a set of rules that combine them (Frege (1892), Montague (1974),

Dowty et al. (1981)). We describe our approach to, and the intuitions behind,

each in the sections below.

1.1 Document-Level Sentiment Classification: Beyond Con-

ventional Models

A conventional approach to the document-level sentiment classification task is

to treat it as a standard text categorization task: use a bag-of-words representa-

tion that treats all words in the document equally, and, thus, does not account

for the structure of the document; and then apply off-the-shelf machine learning

classifiers such as SVMs or Naive Bayes to create the sentiment classifier (Pang

et al. (2002)). Now the natural question of interest is: How can we do better than

that? To improve the performance of the document-level sentiment classifier,

one option is to exploit the structure of the document. In particular, documents are

comprised of sentences, and sentences, of phrases. And as discussed earlier, the

sentiment of a document usually revolves around just a few sentences or even

a few phrases that express the overall sentiment of the writer. We can see from

the example in Table 1.1 that in a positive movie review not all sentences are

sentiment-bearing (or subjective); instead, subjective sentences are interleaved

with objective sentences that describe, for example, the plot. Moreover, negative

sentences could be present as well.

The idea of using sentence-level information to aid document-level senti-

ment classification was first proposed by Pang and Lee (2004), who suggested

3



Table 1.1: Example of a positive movie review from the Movie Reviews dataset
split by sentences. Positive sentences are denoted in bold, negative sentences
are in italics.

”Being John Malkovich” is the type of film we need to see more. Today’s
films are either blockbusters that entertain us with tiresome formula, or those that
have similar themes. Malkovich falls under none of these categories , and
it’s quite refreshing to see that occur. This strangely provoking story, is
actually somewhat understandable. John Cusack plays a puppeteer trying to
make it to the big time. His wife (Cameron Diaz) supports the both of them
by working at a petstore, which explains the obscure pets they keep in their
apartment.

...

I don’t want to give away too much, but Cusack becomes too attached with
his discovery. In my opinion, this idea is absolutely brilliant. It’s really
quite scary to think that someone could become you, control you, be you. It makes
you wonder why we act like we do , and why sometimes we blurt out things
or act out something out of the blue.

...

”Being John Malkovich” isn’t an excellent film, but it is definitly entertain-
ing and will eaisly become a cult favorite. What’s even better is the film’s
puzzling message... am I Nick Lyons ?

filtering out objective sentences and keeping only the subjective ones and then

using the resulting subjective extracts as the training set for the classifier. How-

ever, the authors note that unless the filtering step is done carefully, the result-

ing system does not always lead to improved performance. Zaidan et al. (2007)

instead proposed relying on annotator rationales — text segments identified by

human annotators that support or explain the annotator’s decision about the

sentiment label of the document. The authors subsequently modify the ma-

chine learning algorithm to make use of annotator rationales. In this thesis we

rely on automatically identified rationales, which we refer to as the informative

sentences in the sense that they exhibit the same sentiment as the document.

Thus, these sentences are not only subjective, but also support the sentiment la-
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bel (positive or negative) of the document, i.e., for documents with overall pos-

itive sentiment, sentences that exhibit positive sentiment are considered infor-

mative; for documents with overall negative sentiment, sentences that exhibit

negative sentiment are considered informative.

In this thesis we use the set of informative sentences as latent structure for the

document-level sentiment classification task and investigate two ways to incorpo-

rate them into a sentiment classifier: first, as additional constraints for an SVM

classifier, and, second, as latent variables in a two-level joint structured model.

We provide a high-level description of each approach below.

Incorporating informative sentences as additional constraints. Zaidan et al.

(2007) show that the use of manually annotated informative snippets of text can

improve the performance of document-level sentiment classifiers. They incor-

porate the informative text segments as constraints for the SVM learner that aim

to ensure that the resulting classifier is less confident in its classification of train-

ing documents that have the annotator rationales removed vs. the original doc-

ument (that contained the rationales). The addition of these constraints leads

to performance gains over an SVM learner without the constraints. Of course,

obtaining the text snippets that support the sentiment label requires more time

from human annotators than simply labeling the document as positive or neg-

ative. Ideally, we would like to have the best of both worlds: improved perfor-

mance and a small annotation effort.
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Contribution 1. In this thesis we investigate ways to use available senti-

ment analysis resources to automatically discover informative sentences for

document-level sentiment classification. As in Zaidan et al. (2007) we incor-

porate them in the learning procedure in the form of additional constraints

for an SVM classifier. Empirical results on a standard movie review corpus

indicate that the automatically discovered informative sentences are just as

helpful as human rationales. Furthermore, using both the human annotator

rationales and automatically discovered informative sentences boosts perfor-

mance even further for this domain.

Using informative sentences in a joint structured model. Though automat-

ically discovered informative sentences are cheap to obtain, they are less than

perfect: the automatic methods can miss some informative sentences or mistak-

enly include non-informative ones. Therefore, one option is to develop statisti-

cal models that jointly learn to predict both the sentiment of the document and

the set of informative sentences, thus controlling the error propagation due to

noisy sentence-level labels (Tsochantaridis et al. (2004), Yu and Joachims (2009)).

Contribution 2. In this thesis, we also investigate structured models for

document-level sentiment classification. We introduce a two-level joint ap-

proach for document-level sentiment classification that simultaneously ex-

tracts informative sentences and predicts document-level sentiment based on

the extracted sentences. The proposed approach (1) does not rely on gold

standard sentence-level subjectivity annotations (which may be expensive to

obtain), and (2) optimizes directly for document-level performance. Empiri-

cal evaluations on movie reviews and U.S. Congressional floor debates show

improved performance over previous approaches.

6



1.2 Phrase-level Sentiment Classification

Phrase-level sentiment classification is the task of identifying the polarity of a

phrase. It is an important step in systems that aim to summarize the opinions

of people or entities toward each other or toward a particular topic as expressed

throughout a document or a corpus (Stoyanov and Cardie (2011)). It is also im-

portant in the analysis of social media sources, where the sentiment expressed

in short sentences or phrases (e.g., from Twitter) has been used to predict the

results of political polls (O’Connor et al. (2010)) and find the sentiment w.r.t.

various topics (Jiang et al. (2011)).

Though the task of phrase-level sentiment classification somewhat resem-

bles document-level sentiment classification, there are certain differences be-

tween the two. The biggest difference is the length of the text: a phrase contains

substantially fewer words than a document. As a result, we go about inter-

preting its sentiment differently: for example, instead of glancing through the

document in a search of informative phrases or sentences that might explain

the label of the document, one instead should try to understand the meaning of

the phrase by looking at the how the words are combined. Thus, the computa-

tional treatment of this task will rely on intuitions from the linguistic study of

compositional semantics.

1.2.1 Semantic Compositionality for Sentiment Analysis

The semantic compositionality principle states that the meaning of a phrase is com-

posed from the meaning of its words and the rules that combine them. A key ef-

fect of semantic compositionality in the context of sentiment analysis is a polar-

ity change (e.g., flip, increase, decrease) when combining one word with other
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words. Consider the following examples:

• prevent war

• limiting freedom

• absolutely delicious

In all of these phrases we observe changes in sentiment w.r.t. underlined word

when the preceding word is considered. In the first example, “war” has a neg-

ative sentiment; however, the word “prevent” essentially flips the polarity of

the phrase to positive (i.e., preventing war is good). In the second, “freedom”

has positive sentiment; however, “limiting freedom” makes the resulting senti-

ment of the phrase negative. And in the final third example, the presence of the

adverb “absolutely” strengthens the already positive sentiment of “delicious”.

The bottom line is that the computation of phrase-level sentiment follows com-

positional rules.

1.2.2 Modeling Semantic Compositionality

According to the semantic compositionality principle in the context of sentiment

analysis, the sentiment of a phrase depends on the sentiment of the words used in

the phrase and the rules to combine them. The sentiment of individual words could

be determined by using a sentiment lexicon (Wilson et al. (2005b)) — a list of

words with their corresponding sentiment. The next question is: What are these

compositional rules? One might look at a number of sentiment-bearing phrases

and provide a set of hand-written compositional rules for a sentiment analysis

system, similar to Choi and Cardie (2008). However, writing the rules by hand

could be a tedious process. For example, to obtain a set of rules such as “IF the

8



syntactic pattern is ’VB NP’ and the verb is ’prevent’ and noun phrase has a neg-

ative sentiment, THEN the resulting sentiment of a phrase is positive”, one has

to consider various syntactic patterns and observe how the resulting sentiment

changes when composing with certain lexical items.

Contribution 3. In this thesis we develop a model that learns latent semantic

representations for words and is compositional: each word is represented by a matrix

and the composition of words is modeled as matrix multiplication. Thus, there is

no need to hand-write the compositional rules: combinations of words are

represented as the successive multiplication of the matrix corresponding to

each word with that of its successor. Each word itself acts as a linear operator.

We present an algorithm for learning matrix-space word representations for

semantic composition from sentiment-labeled phrases. The empirical results

indicate statistically significant improvements in performance over a bag-of-

words model for the phrase-level classification task.

1.3 Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 we discuss related

work in the sentiment analysis area, focusing on document-level and phrase-

level classification tasks. Chapter 3 describes our work on automatically dis-

covering and employing informative sentences for document-level sentiment

classification in the form of additional constraints to the learner. Chapter 4 then

introduces a joint structured model for document-level sentiment classification.

In Chapter 5 we propose the compositional matrix-space model for phrase-level

classification. Finally, we conclude and summarize our work in Chapter 6.
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CHAPTER 2

RELATED WORK

In this chapter we give an overview of research done in sentiment analysis

and opinion mining. In particular, we begin the chapter with an overview of

the sentiment analysis area and then describe prior research in sentiment clas-

sification both at the document level and at the sentence level. We specifically

focus on research that is directly related to the contributions of this thesis. We

further discuss (compare and contrast) the related work in the context of thesis

contributions in the appropriate chapters.

2.1 Overview of Sentiment Analysis

As we mentioned in Chapter 1, there has been a great interest in recent years

in the sentiment analysis area. Pang and Lee (2008) provide a very insightful

and comprehensive overview of the area. Liu (2012) provides a more recent

survey as well as introductory text about the area. Both surveys trace the very

first work on detecting opinions and sentiment using statistical methods to be

around 2001: Wiebe (2000), Das and Chen (2001), Tateishi et al. (2001), Tong

(2001), Morinaga et al. (2002), Pang et al. (2002), Turney (2002). We briefly de-

scribe the early work in the area according to the domains and/or genres of the

texts under study.

Reviews. A lot of research in sentiment analysis and opinion mining area has

been done on movie and product reviews (e.g., Pang et al. (2002), Dave et al.

(2003), Hu and Liu (2004b), Blitzer et al. (2007)). As discussed in Chapter 1,

the burst of interest in analysing product reviews is in part due to the creation

of publicly available sentiment-labeled review datasets. These datasets were created
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using websites such as Amazon.com, Imdb.com, Epinions.com, etc., whose in-

terface for writing a review typically requires a user to provide a star-rating

as well as the textual description of the user’s opinion about a certain product

or movie. The star ratings are normally used during system development to

infer whether the given review is positive or negative (Pang et al. (2002)). In

this thesis we use publicly available sentiment-labeled corpora to evaluate the

statistical methods that we develop.

Some of the work on product reviews falls into the category of coarse-

grained sentiment analysis (e.g., Pang et al. (2002), Blitzer et al. (2007)) and tries

to answer the question ”is the review for the product positive or negative?”.

But there is a great body of research on product reviews that is trying to an-

swer more fine-grained questions such as ”what feature(s) of the product do

customers like?”, ”what feature(s) of the product do customers not like?” (e.g.,

Hu and Liu (2004b), Mei et al. (2007), Snyder and Barzilay (2007), Titov and

McDonald (2008)). This interest in fine-grained sentiment analysis of product

reviews lead to the rapid formation of a sub-area of sentiment analysis called

aspect-based (or feature-based) sentiment analysis (Liu (2012)). One of the crucial

assumptions in this line of work is that the product is known in advance and

that there are a few important aspects, or facets, of the product, that are also

sometimes known in advance (e.g., Hu and Liu (2004b), Snyder and Barzilay

(2007), Titov and McDonald (2008)).

Changing the domain of a product review might cause a performance drop:

a classifier trained on movie reviews might not do well on reviews of kitchen ap-

pliances. Due to influential work by Blitzer et al. (2007), sentiment classification

became one of the attractive tasks for developing domain adaptation algorithms

(e.g., Glorot et al. (2011)). In this thesis we will not focus on the domain adap-
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tation problem; however, we will use the product review datasets provided by

Blitzer et al. (2007) for some of our experiments.

Newswire. In around 2003 a different group of researchers started thinking

about other real-world needs and scenarios that involve fine-grained sentiment

analysis (e.g., Cardie et al. (2003), Wiebe et al. (2003), Bethard et al. (2004), Stoy-

anov et al. (2005)). Researchers started looking at the newswire domain, where

one wants to extract the opinions in each story, including the identification of the

opinion holder, the opinion expression itself, its polarity, and the topic/target

of the opinion. The early efforts in facilitating research in fine-grained senti-

ment analysis resulted in the creation of an annotation scheme together with the

sentiment-annotated MPQA (Multi-Perspective Question Answering) dataset

(Wiebe et al. (2005)). This became a test-bed for fine-grained sentiment analy-

sis tasks and provided a framework for developing statistical methods for those

tasks (e.g., Choi et al. (2005), Breck et al. (2007), Nakagawa et al. (2010), Stoyanov

and Cardie (2011), Johansson and Moschitti (2011)). Furthermore, the output of

fine-grained sentiment analysis system could be used to construct aggregate

opinion summaries (Stoyanov (2009)). This type of summary is crucial for ap-

plications such as opinion-oriented question answering, for example finding the

answers for the queries of the form: ”What is X’s opinion toward Y?” or ”What do

people think about Z?” (Stoyanov et al. (2005), Somasundaran et al. (2007)).

Fine-grained sentiment analysis for the newswire articles domain poses dif-

ferent challenges compared to product reviews domain (e.g., Bethard et al.

(2004), Kim and Hovy (2005), Wiebe et al. (2005), Stoyanov et al. (2005), Choi

et al. (2006), Somasundaran et al. (2007)). First, the opinion topic in case of

product reviews is a pre-specified product, for example a movie or a camera. In

contrast, a news article could be covering any event. Therefore, the lexical items
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and syntactic structures and patterns involved in identifying and characterizing

opinions in newswire domain vary substantially. Also the opinion topic could

be changing throughout the news article and multiple topics could be discussed

in the same article (Stoyanov and Cardie (2008)). Second, in contrast with the

product reviews where the user usually expresses his/her opinion about a prod-

uct, a news article could be covering a political event, where the opinions are

expressed by multiple opinion sources (opinion holders) (Choi et al. (2005), Kim

and Hovy (2005)).

Political debates. Another interesting domain for sentiment analysis pro-

posed by work of Thomas et al. (2006) is Congressional floor debates. The

speaker for each Congressional floor-debate speech is known, the votes of all

speakers for the bills under discussion are known too; therefore the sentiment

of the speaker towards the bill under discussion could be inferred assuming

that the speaker’s speech is motivated by his/her vote. This provides a simple

means for obtaining speech-level gold standard sentiment labels. The NLP task,

then, is to predict that sentiment of each speech towards the bill under discus-

sion given its transcript. To do this, Thomas et al. (2006) exploit an agreement

structure between speeches using minimum cuts. The graph is constructed as

follows: the speeches are the nodes, and the edges model the same-speaker

constraints and the agreements between different speakers. The authors train

two classifiers: one is to predict the speech labels in isolation, and the other —

to predict the agreement weights. A high agreement weight between different

speeches encourages the assignment of the same label to those speeches. Infer-

ence is performed by finding the minimum cut which partitions the speeches in

two groups: support or oppose. The experimental results show improved per-

formance over a model that does not take into account agreement information.
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In follow-up work, Bansal et al. (2008) take into account information about both

agreement and disagreement between speakers. In our work, we use the Congres-

sional floor-debates dataset for evaluation; however, we exploit a different and

complementary structure in the form of informative sentences.

Other domains. There are a few other domains in which sentiment analysis

has been applied. Niu et al. (2005) study the sentiment analysis problem for the

medical domain, predicting outcomes for patients. Sentiment analysis has also

been applied to conversations (e.g., Murray and Carenini (2009), Wang and Liu

(2011), Murray and Carenini (2011)), blogs (e.g., Chesley et al. (2006), Kale et

al. (2007), Godbole et al. (2007), Bautin et al. (2008)), financial news and reports

(e.g., Das et al. (2005), Devitt and Ahmad (2007)).

2.2 Document-Level Sentiment Classification

Some of the pioneering work on sentiment classification started by tackling the

document-level sentiment classification task (Turney (2002), Pang et al. (2002)).

The two main approaches to this task are: (1) lexicon-based (e.g., Turney (2002),

Hu and Liu (2004a)); and (2) machine learning based (e.g., Pang et al. (2002),

Mao and Lebanon (2006), McDonald et al. (2007)). Real-world commercial sys-

tems use a hybrid approach that combines (1) and (2) (e.g., Blair-Goldensohn et

al. (2008)).

Seminal work by Turney (2002) develops a lexicon-based method for un-

supervised document-level sentiment classification. The method developed in that

paper first identifies phrases with adjectives or adverbs in a review and then

assigns a sentiment label to a review based on the average semantic orientation of

those phrases. Semantic orientation of a phrase represents whether the phrase
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is semantically associated with positive or negative words. Turney proposes

to calculate it as a difference between the PMI-IR (Pointwise Mutual Informa-

tion defined by search engine) w.r.t a known positive word (“excellent”) and

the PMI-IR w.r.t a known negative word (“poor”). The evaluation is performed

on 410 reviews from Epinions.com from four different domains: automobiles,

banks, movies and travel destinations. The average accuracy that is achieved

by the proposed method is 74%, varying from 66% to 84%, depending on the

domain. Other work that computes the semantic orientation of words includes

Turney and Littman (2003), Takamura et al. (2005), etc.

Work by Pang et al. (2002) was the first to consider the task of supervised

document-level sentiment classification. They start by creating a sentiment-

labeled dataset of movie reviews, which facilitated research in the sentiment

analysis area. The movie reviews were obtained from the Imdb website and

automatically labeled as “thumbs up” (positive) or “thumbs down” (negative),

by utilizing heuristic rules based on the user assigned star rating; the reviews

with mixed sentiment, i.e., with the rating at the middle of the star rating scale

were skipped. Then the authors employ various supervised machine learning

methods such as Naive Bayes, maximum entropy and support-vector machines

and use bag-of-features representation of the documents, with features such as

unigrams, bigrams, trigrams, unigrams with part-of-speech tags, etc. Pang et

al. (2002) conclude that the support-vector machine classifier that uses unigram

features works the best, achieving performance of around 83% accuracy and

outperforming the human-produced baselines.

Back in 2002, Pang et al. (2002) as well as Turney (2002) note that the task of

classifying reviews is hard, compared to topic-based text categorization, since

the reviews might contain a “thwarted expectations” narrative, when the author
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uses a contrast to previous discussions (example from Pang et al. (2002)):

“This film should be brilliant. It sounds like a great plot, the ac-

tors are first grade, and the supporting cast is good as well, and Stal-

lone is attempting to deliver a good performance. However, it can’t

hold up.”

The existence of words like “great”, “brilliant”, “good”, in this review passage

could be misleading for the machine learning classifier that uses bag-of-words

representation of a document. As a result, Pang et al. (2002) hypothesize that

a document-level sentiment classifier potentially could benefit from sentence-

level analysis, which would identify whether the author is expressing his/her

opinion about the topic of interest or not. Thus, the subsequent work on the

document-level sentiment classification task tries various ways of incorporating

the sentence-level information in the final model. We will describe it in detail in

Section 2.2.1 and 2.2.2, since it is directly related to the contributions described in

Chapter 3 and Chapter 4.

2.2.1 Document-Level Sentiment Classification: Using Sentence-

Level Information

Pang and Lee (2004) noted that an opinionated text usually consists of evalu-

ative sub-parts (phrases or sentences) that express the sentiment of the author

towards a topic of interest, as well as non-evaluative sub-parts. Consider the

following example sentence (Pang and Lee (2004)):

The protagonist tries to protect her good name.

The presence of the word “good” does not tell us anything about the author’s
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sentiment towards the topic (movie); it simply states the fact and potentially

could be a part of a negative movie review.

Pang and Lee (2004) address this problem by trying to operate only on the

subjective sentences from a movie review and, thus, reduce the influence of

potentially objective sentences for the document-level sentiment classification.

They employ a two-step approach: (1) they label the sentences in the document

as subjective vs. objective using minimum cuts; (2) apply machine-learning

techniques to the subjective extracts. For step (1), the authors first classify the

sentences in a document as subjective or objective using a classifier trained on

an automatically labeled set of subjective-objective sentences (from plot sum-

maries and reviews, respectively) and then construct a graph. The nodes of this

graph are the sentences and the edges are determined by the proximity of sen-

tences to each other. They further use a minimum cut algorithm which assumes

that subjective sentences, as well as objective ones, are usually grouped together,

transitions between subjective and objective and vice-versa are preferable when

the classifier is confident on the sentence label. The experimental results show

that when employing a Naive Bayes classifier, the use of subjectivity extracts

leads to improved accuracy compared to the full reviews from 83% to 86%, but

for the SVM classifier there is no significant difference. So, the resulting set

of subjective sentences can be noisy, providing less than ideal support for the

document-level sentiment categorization.

Another notable work by Mao and Lebanon (2006) incorporates the dis-

course structure of the document into the statistical model. Their approach

operates in two stages. First, given the training data with ordinal sentence-

level sentiment labels the isotonic conditional random fields model is learned,

so that given an unseen document from the test set, it can predict the sequence of
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sentence-level sentiment labels. Next, this sequence is converted to a local senti-

ment flow, which is in essence a smooth length-normalized representation of the

whole document. Finally, the authors use the local sentiment flow representa-

tion of the document for k-nearest neighbour classification. The experimental

results on small set of 249 movie reviews show that the sentiment flow repre-

sentation outperforms the bag-of-words representation. The advantage of their

proposed model is that it outperforms a conventional model for the document-

level sentiment prediction. However, their model needs sentence-level senti-

ment annotations, obtaining which requires significant human annotator effort.

The other drawback is that the model works in two stages and there is no feed-

back between those two stages to control the error propagation from the first

stage to the second one.

The work by McDonald et al. (2007) proposed a joint structured fine-to-

coarse model for document-level sentiment classification. The proposed model

is a graphical model that has a linear chain of sentence-level sentiment vari-

ables each of which is connected to the respective sentence, as well as an ad-

ditional variable that represents the document-level sentiment. The document-

level variable is connected to all sentence-level sentiment variables. The au-

thors used the MIRA learning algorithm (Crammer and Singer (2003)) for train-

ing their joint structured model and the predictions were made using an algo-

rithm based on Viterbi inference. The advantage of the presented model is that

training of the model is done jointly, i.e., the sentence-level decisions affect the

document-level decisions and vice versa. However, the proposed method op-

timizes a loss function that is composed of sentence-level and document-level

parts, which can potentially hurt document-level performance in order to com-

pensate for poor sentence-level performance. Also the proposed model requires
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training data with sentence-level and document-level sentiment labels, which

might be expensive to acquire.

2.2.2 Annotator Rationales

The notion of ”annotator rationales” was first introduced by work of Zaidan et

al. (2007). The key idea proposed in that work was to use a different kind of

training label: document-level sentiment annotation with “rationales”. The an-

notator rationales are in essence those text spans, highlighted by the human annotators

in support of (i.e., as an explanation of) the sentiment label they select for a document

as a whole. Since these annotator rationales can provide performance gains only

if incorporated somehow into a learning framework capable of exploiting them,

Zaidan et al. (2007) propose to modify a standard SVM classifier by incorporat-

ing the annotator rationales in the form of additional constraints for the learning

procedure. The role of the additional constraints is to ensure that the final clas-

sifier is more confident in a document from the training set than the same doc-

ument but without the rationales (i.e., the rationale text spans are deleted). The

authors conduct an extensive annotation study of rationales by providing the

annotation guidelines and exploring inter-annotator agreements, and conclude

that annotator rationales can be helpful regardless of the fact that different anno-

tators might identify different text spans as supporting the document label; the

number of annotator rationales could vary as well. The authors argue that their

framework is useful for all text categorization domains, however they only con-

sider the sentiment categorization task for evaluation. In this thesis, we use the

proposed approach to handle automatically discovered rationales (Chapter 3).

In their follow-up work Zaidan and Eisner (2008) propose a generative

model for learning from annotator rationales, that aims not only to predict
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document-level sentiment but also to generate rationales. Though their ap-

proach learns to predict the document label and the rationales jointly, it assumes

that the human annotator is consistent in marking rationales.

Annotator rationales for other tasks. Interestingly, there has been some re-

search in using annotator rationales in computer vision (Donahue and Grauman

(2011)), more specifically for the image classification task.

2.3 Phrase-level Sentiment Classification

In this section we will discuss work on the phrase-level sentiment classification

task. Since a lot of work on computing phrase-level sentiment relies on word-

level sentiment, we start with a brief overview of research on constructing sen-

timent lexica — lists of words with their corresponding polarities — and then

continue with the discussion of previous approaches to phrase-level sentiment

classification.

Sentiment lexica. There has been a lot of research in determining the senti-

ment of words and constructing sentiment dictionaries (e.g., Hatzivassiloglou

and McKeown (1997), Turney and Littman (2003), Rao and Ravichandran (2009),

Mohammad et al. (2009), Velikovich et al. (2010)). Some of the proposed ap-

proaches for sentiment lexicon construction (e.g., Wilson et al. (2005b), Esuli

and Sebastiani (2006)) rely on manually built lexical resources such as General

Inquirer (Stone et al. (1966))1, WordNet (Fellbaum (1998)), etc. Mohammad et

al. (2009) constructed a high-coverage sentiment lexicon using a Roget-like the-

saurus and affix rules. Other approaches to sentiment lexicon induction build

it from corpora typically using machine learning methods and starting with

1http://www.wjh.harvard.edu/˜inquirer/
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a small set of seed words with known sentiments (e.g., Hatzivassiloglou and

McKeown (1997), Turney and Littman (2003), Rao and Ravichandran (2009), Ve-

likovich et al. (2010)).

Sentiment of a phrase: accounting for word composition. Work by Polanyi

and Zaenen (2004) was one of the first in computational linguistics to point out

that local interactions between words are very important for identifying the sen-

timent of a text snippet, while most previous research (e.g., Hatzivassiloglou

and McKeown (1997), Turney and Littman (2003)) focused on identifying sen-

timent overall sentiment by considering individual lexical items. Polanyi and

Zaenen (2004) considered various lexical phenomena that can change the va-

lence of lexical items, such as sentence-based and discourse-based contextual

valence shifters, and proposed a way of calculating the final sentiment of the

text that accounts for local interactions. The authors showed on a few exam-

ples that their proposed method can lead to improved performance over simple

counting of positive and negative words.

Accounting for local interactions between lexical items in automatic senti-

ment classifiers was done by using features such as bigrams, trigams, etc. as

well as features derived by from syntactic or semantic patterns (e.g., Kennedy

and Inkpen (2006), Shaikh et al. (2007), Wilson et al. (2005b)). One of the draw-

backs of these methods is that they heavily rely on heuristically defined interac-

tions and sentiment lexica. Another drawback is that though these models can

account for certain word interactions, the final model still uses the flat bag-of-

words feature representation and thus the structural nature of the interactions

may not be accounted for.

In their influential work “Sentiment composition”, Moilanen and Pulman

(2007) proposed to account for the structural nature of word composition.
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The authors rely on the Principle of Compositionality (Frege (1892), Montague

(1974), Dowty et al. (1981)) to compute the sentiment of a phrase. They develop

rules based on syntactic dependency parse trees to compute the resulting senti-

ment of a phrase or a sentence in a bottom-to-the-top manner by starting from

the sentiments of the individual lexical items and subsequently computing sen-

timent values in the intermediate nodes of the dependency tree and, finally, in

the root. While the proposed method accounts for the structural nature of inter-

actions, the rules used in their system are hand-written, which might require a

significant effort and time of a domain expert to develop.

Choi and Cardie (2008) proposed a learning-based method for binary

phrase-level sentiment classification that is also based on ideas from composi-

tional semantics. The developed model starts with a sentiment lexicon that con-

tains prior (out of context) polarities of words; a set of hand-written composi-

tional rules; and a set of sentiment-labeled phrases. The proposed feature-based

algorithm with compositional inference identifies the sentiment of the phrase by

learning the appropriate assignments of intermediate hidden variables given

the features, including the prior polarities of lexical items in a phrase and the

phrase-level sentiment label. Though their method can account for complex

structural interactions in a phrase or sentence, it, too, relies on a set of hand-

written rules.

Nakagawa et al. (2010) introduced a learning-based model that uses compo-

sitional inference similar to Choi and Cardie (2008), but also learns rules for sen-

timent composition from the data. The authors proposed the Tree-CRF model

— a model that uses conditional random fields (CRFs) with hidden variables,

where the structure of the model is defined by the dependency tree of a phrase

or a sentence. The polarities of the dependency sub-trees are represented as
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hidden variables, since they are not observed at the training time, the only ob-

served sentiment label is a phrase-level sentiment. The advantage of the model

proposed by Nakagawa et al. (2010), is that it does not require hand-written

rules for sentiment composition and can learn the rules from the data; however,

it heavily relies on sentiment lexica and various carefully hand-crafted features,

which might be expensive to compute during inference.

Different levels of sentiment. Though most of the work in the sentiment anal-

ysis area has considered binary sentiment labels (positive and negative), in real-

world settings, sentiment values stretch out across a polarity spectrum. Some of

the previous work (e.g., Pang and Lee (2005), Goldberg and Zhu (2006)) consid-

ered the task of predicting star ratings at the document level. Wilson et al. (2004)

tackles the problem of classifying phrases from the MPQA dataset according to

their subjective strength but not polarity. In this thesis, we propose to use a

single ordinal sentiment scale that combines both the polarity and the strength

annotations from the MPQA corpus.

Work by Liu and Seneff (2009) considers the task of classifying the reviews

on a five-level sentiment scale. It models the compositional effects of combin-

ing adverbs, adjectives and negators. The authors suggest ways of computing

the sentiment of adjectives from data; and compute the effect of combining an

adjective with an adverb as a multiplicative effect; and the effect of combining

adjective with a negator as an additive effect. The proposed method requires

the knowledge of part-of-speech tag for each word, the list of negators (since

the negator is an adverb as well), and it models only very specific compositions.

Taboada et al. (2011) considered ten levels for word-level sentiments and

proposed a lexicon-based method for binary document-level sentiment classi-

fication. The proposed method develops a lexicon for the words with various
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part-of-speech tags and handles compositional effects for certain syntactic pat-

terns using predefined compositional rules. Similar to work by Liu and Seneff

(2009), it models negation as an additive effect rather than a polarity flip. The

drawback of the proposed method is that it relies on the creation of the extensive

hand-ranked dictionaries.

In this thesis we propose a compositional matrix-space model for phrase-

level ordinal sentiment classification that does not rely on sentiment lexica or

hand-written compositional rules.

2.4 Summary of the Chapter

In this chapter we gave an overview of the related work in sentiment analy-

sis. We started our discussion by describing the sentiment analysis research in

various domains motivated by real-world applications. Then we describe in

more detail the related work on document-level sentiment classification. We

started by describing the conventional approaches to this task. We continued

with an overview of work that goes beyond conventional models and incorpo-

rates knowledge about the structure of the document in statistical classification

models. Then we describe work on “annotator rationales” that goes beyond

conventional sentiment classification models by relying on additional informa-

tion from human annotators. Finally, we describe related work on phrase-level

sentiment classification.
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CHAPTER 3

USING AUTOMATICALLY DISCOVERED INFORMATIVE SENTENCES

TO IMPROVE DOCUMENT-LEVEL SENTIMENT CLASSIFICATION

As described in Chapter 1, the task of document-level sentiment classification —

automatically identifying whether a given document has an overall positive or

overall negative sentiment — can be treated as standard text categorization task

(Pang et al. (2002)). One of the central challenges in sentiment-based text cat-

egorization, however, is that not every portion of a given document is equally

informative for inferring its overall sentiment. More specifically, (1) subjective

documents are often comprised of objective and subjective parts (Pang and Lee

(2004)) and (2) the subjective parts may consist of sentences with polarities op-

posite that of the document (Pang et al. (2002)). These issues complicate the task

of sentiment classification (see example in Table 1.1).

Pang and Lee (2004) address (1) by employing the minimum cut algorithm

to mitigate the effect of potentially objective sentences for document-level sen-

timent classification. More specifically, they suggest a two-stage approach: first,

to filter out objective sentences and keep only the subjective ones; then use the re-

sulting documents as the training examples for the classifier. One advantage of

the approach proposed by Pang and Lee (2004) is that it does not require explicit

manual annotations to filter out the objective sentences. However, the resulting

subjective extracts could be noisy, and might not always lead to performance

gains for document-level sentiment classification task.

Zaidan et al. (2007) address both (1) and (2) by asking human annotators

to mark (at least some of) the relevant text spans that support (or explain) each

document-level sentiment decision. The text spans of these “rationales” (or infor-
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mative text spans)1 are then used to construct additional training examples that

can guide the learning algorithm toward better categorization models (we pro-

vide the details in Section 3.1).

But could we perhaps enjoy the performance gains of rationale-enhanced learning

models without any additional human effort whatsoever (beyond the document-level

sentiment label)? We hypothesize that in the area of sentiment analysis, where

there has been a great deal of recent research attention given to various aspects

of the task (Pang and Lee (2008), Liu (2012)), this might be possible: using exist-

ing resources for sentiment analysis, we might be able to automatically identify

the informative segments. In this chapter, we explore a number of methods to

automatically acquire informative segments for document-level sentiment clas-

sification. For simplicity, we consider informative text spans only at the sentence-level.

In particular, we investigate the use of off-the-shelf sentiment analysis compo-

nents and lexicons for this purpose. Our approaches for acquiring informative

sentences can be viewed as mostly unsupervised in that we do not require manu-

ally annotated informative text spans for training.

Roadmap of the Chapter. The work described in this chapter is based on

Yessenalina et al. (2010a). The rest of this chapter is organized as follows. We

first briefly summarize the SVM-based learning approach of Zaidan et al. (2007)

that allows the incorporation of informative text spans (Section 3.1). We next

introduce three methods for the automatic acquisition of informative sentences

(Section 3.2). The experimental results are presented in Section 3.3, followed by

related work (Section 3.4) and summary of contributions (Section 3.5).

1In this chapter we will use the term ”rationales” and ”informative text spans” interchange-
ably.
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3.1 Background: Incorporating Informative Text Spans as Ad-

ditional Constraints

Zaidan et al. (2007) first introduced the notion of informative text spans (anno-

tator rationales) — text spans highlighted by human annotators as support or

evidence for each document-level sentiment decision. These spans, of course,

are only useful if the sentiment categorization algorithm can be extended to ex-

ploit them effectively. With this in mind, Zaidan et al. (2007) propose the follow-

ing extension to the standard SVM learning algorithm2 (Joachims (1997)). They

assume that the documents of interest are movie reviews. They also assume a

standard text categorization approach in which each document xi is represented

as a bag-of-words feature vector, that has 1 if a certain word from the active lex-

icon is present in a document, and 0 otherwise.

Let ~xi be movie review i, and let {~rij} be the set of annotator rationales that

support the positive or negative sentiment decision for ~xi. For each such ratio-

nale ~rij in the set, construct a contrast training example ~vij , by removing the text

span associated with the rationale ~rij from the original review ~xi. Intuitively, the

contrast example ~vij should not be as “easy” for the learning algorithm as the

original review ~xi, since one of the supporting regions identified by the human

annotator has been deleted. That is, the correct learned model should be less

confident of its classification of a contrast example vs. the corresponding origi-

nal example, and the classification boundary of the model should be modified

accordingly.

Zaidan et al. (2007) formulate exactly this intuition as SVM constraints as

follows:

(∀i, j) : yi (~w~xi − ~w~vij) ≥ µ(1− ξij)
2We assume that the reader is familiar with SVM learning.
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where yi ∈ {−1,+1} is the negative/positive sentiment label of document i, ~w

is the weight vector, µ ≥ 0 controls the size of the margin between the original

examples and the contrast examples, and ξij are the associated slack variables.

After some re-writing of the equations, the resulting objective function and con-

straints for the SVM are as follows:

1

2
||~w||2 + C

∑
i

ξi + Ccontrast
∑
ij

ξij (3.1)

subject to constraints:

(∀i) : yi ~w · ~xi ≥ 1− ξi, ξi ≥ 0

(∀i, j) : yi ~w · ~xij ≥ 1− ξij ξij ≥ 0

where ξi and ξij are the slack variables for ~xi (the original examples) and ~xij (~xij

are named as pseudo examples and defined as ~xij =
~xi−~vij
µ

), respectively. Intu-

itively, the pseudo examples (~xij) represent the difference between the original

examples (~xi) and the contrast examples (~vij), weighted by a parameter µ. C

and Ccontrast are parameters to control the trade-offs between training errors and

margins for the original examples ~xi and pseudo examples ~xij respectively. As

noted in Zaidan et al. (2007), Ccontrast values are generally smaller than C for

noisy rationales.

We will similarly employ the extension by Zaidan et al. (2007) to SVM learn-

ing to incorporate automatically, rather than manually, identified rationales for

document-level sentiment categorization.

3.2 Automatically Acquiring Informative Sentences

Our goal is to automatically acquire informative sentences that will approxi-

mate human annotator rationales. For this, we rely on the following two as-

sumptions:
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(1) Regions marked as informative sentences are more subjective than un-

marked regions.

(2) The sentiment of each informative sentence coincides with the document-

level sentiment.

Note that assumption (1) was not observed in the Zaidan et al. (2007) work:

annotators were asked only to mark a few rationales, leaving other (also subjec-

tive) rationale sections unmarked.

And at first glance, assumption (2) might seem too obvious. But it is im-

portant to include as there can be subjective regions with seemingly conflicting

sentiment in the same document (Pang et al. (2002)). For instance, an author for

a movie review might express a positive sentiment toward the movie, while also

discussing a negative sentiment toward one of the fictional characters appear-

ing in the movie. This implies that not all subjective regions will be relevant for

the document-level sentiment classification — rather only those regions whose

polarity matches that of the document should be considered.

In order to extract regions that satisfy the above assumptions, we first look

for subjective regions in each document, then filter out those regions that exhibit

a sentiment value (i.e., polarity) that conflicts with polarity of the document.

Because our ultimate goal is to reduce human annotation effort as much as

possible, we do not employ supervised learning methods to directly learn to

identify good rationales from human-annotated rationales. Instead, we opt for

methods that make use of only the document-level sentiment and off-the-shelf

utilities that were trained for slightly different sentiment classification tasks us-

ing a corpus from a different domain and of a different genre. Although such

utilities might not be optimal for our task, we hypothesized that these basic re-

sources from the research community would constitute an adequate source of
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sentiment information for our purposes.

We next describe three methods for the automatic acquisition of rationales.

3.2.1 Contextual Polarity Classification

The first approach employs OpinionFinder (Wilson et al. (2005a)), an off-the-

shelf opinion analysis utility.3 In particular, OpinionFinder identifies phrases

expressing positive or negative opinions. Because OpinionFinder models the

task as a word-based classification problem rather than a sequence tagging task,

most of the identified opinion phrases consist of a single word. In general, such

short text spans cannot fully incorporate the contextual information relevant

to the detection of subjective language (Wilson et al. (2005b)). Therefore, we

conjecture that good rationales should extend beyond short phrases.4 For sim-

plicity, we choose to extend OpinionFinder phrases to sentence boundaries.

In addition, to be consistent with our second operating assumption, we keep

only those sentences whose polarity coincides with the document-level polarity.

In sentences where OpinionFinder marks multiple opinion words with opposite

polarities we perform a simple voting — if words with positive (or negative) po-

larity dominate, then we consider the entire sentence as positive (or negative).

We ignore sentences with a tie. Each selected sentence is considered as a sepa-

rate rationale.
3www.cs.pitt.edu/mpqa/opinionfinderrelease/
4This conjecture is indirectly confirmed by the fact that human-annotated rationales are

rarely a single word.
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3.2.2 Polarity Lexicons

Unfortunately, domain shift as well as task mismatch could be a problem with

any opinion utility based on supervised learning. It is worthwhile to note that

OpinionFinder is trained on a newswire corpus whose prevailing sentiment is

known to be negative (Wiebe et al. (2005)). Therefore, we next consider an ap-

proach that does not rely on supervised learning techniques but instead ex-

plores the use of a manually constructed polarity lexicon. In particular, we

use the lexicon constructed for Wilson et al. (2005b), which contains about 8000

words. Each entry is assigned one of three polarity values: positive, negative,

neutral. We construct rationales from the polarity lexicon for every instance

of positive and negative words in the lexicon that appear in the training cor-

pus. As in the OPINIONFINDER rationales, we extend the words found by the

POLARITYLEXICON approach to sentence boundaries to incorporate potentially

relevant contextual information. We retain as rationales only those sentences

whose polarity coincides with the document-level polarity as determined via

the voting scheme of Section 3.2.1.

3.2.3 Random Rationales

Finally, we acquire informative sentences randomly, selecting 25% of the sen-

tences from each document and treating each as a separate rationale. We chose

the value of 25% to match the percentage of sentences per document, on aver-

age, that contain human-annotated rationales in our dataset (24.7%). Note, that

the percent of the informative sentences found by the OPINIONFINDER, POLAR-

ITYLEXICON, RANDOM RATIONALES are 22.8% 38.7% and 25.0% respectively.
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Table 3.1: Comparison of Automatically Acquired Informative Sentences vs.
Human-annotated Rationales.

Precision Recall F-Score
Method All Pos Neg All Pos Neg All Pos Neg

OPINIONFINDER 54.9 56.1 54.6 45.1 22.3 65.3 49.5 31.9 59.5
POLARITYLEXICON 45.2 42.7 48.5 63.0 71.8 55.0 52.6 53.5 51.6
RANDOM RATIONALES 28.9 26.0 31.8 25.9 24.9 26.7 27.3 25.5 29.0

3.2.4 Comparison of Automatically Acquired Informative Sen-

tences vs. Human Annotated Sentences

Before evaluating the performance of the automatically acquired informative

sentences, we summarize in Table 3.1 the differences between automatic vs.

human-annotated rationales. All computations were performed on the same

movie review dataset of Pang and Lee (2004) used in Zaidan et al. (2007). Note

that the Zaidan et al. (2007) annotation guidelines did not insist that annotators

mark all rationales, only that some were marked for each document. Neverthe-

less, we report precision, recall, and F-score based on overlap with the human-

annotated rationales of Zaidan et al. (2007), so as to demonstrate the degree to

which the proposed approaches align with human intuition. Overlap measures

were also employed by Zaidan et al. (2007).

As shown in Table 3.1, the annotator rationales found by OPINIONFINDER

(F-score 49.5%) and POLARITYLEXICON (F-score 52.6%) match the human ratio-

nales much better than those found by RANDOM RATIONALES (F-score 27.3%).

Also as expected, OPINIONFINDER’s positive rationales match the human ra-

tionales at a significantly lower level (F-score 31.9%) than negative rationales

(59.5%). This is due to the fact that OpinionFinder is trained on a dataset biased

toward negative sentiment (see Section 3.2.2). In contrast, all other approaches
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show a balanced performance for positive and negative rationales vs. human

rationales.

3.3 Experiments

For our experiments with contrast examples we use SVM light (Joachims (1999)).

We evaluate the usefulness of automatically acquired informative sentences on

five different datasets. The first is the movie review data of Pang and Lee (2004),

which was manually annotated with rationales by Zaidan et al. (2007)5; the re-

maining are four product review datasets from Blitzer et al. (2007).6 Only the

movie review dataset contains human annotator rationales. We replicate the

same feature set and experimental set-up as in Zaidan et al. (2007) to facilitate

comparison with their work.

• We use binary unigram features corresponding to the unstemmed words

or punctuation marks with count greater or equal to 4 in the full 2000 doc-

uments, then we normalize the examples to the unit length. When com-

puting the pseudo examples ~xij =
~xi−~vij
µ

we first compute (~xi − ~vij) using

the binary representation. As a result, features (unigrams) that appeared

in both vectors will be zeroed out in the resulting vector. We then normal-

ize the resulting vector to a unit vector.

As discussed in Section 3.1 the framework for learning with contrast exam-

ples introduced in Zaidan et al. (2007) requires three parameters: (C, µ, Ccontrast),

where C and Ccontrast are parameters to control the trade-off between training

error and margins for the original examples and pseudo examples respectively;

µ controls the size of a margin between the original examples and the contrast

5Available at http://www.cs.jhu.edu/∼ozaidan/rationales/.
6http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/.
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examples. To set the parameters, we use a grid search with step 0.1 for the range

of values of each parameter around the point (1,1,1). In total, we try around 3000

different parameter triplets for each type of rationales.

3.3.1 Experiments with Movie Review Data

We follow Zaidan et al. (2007) for the training/test data splits. The top half of

Table 3.2 shows the performance of a system trained with no annotator ratio-

nales vs. two variations of human annotator rationales. The NORATIONALES

system is trained on the full text for each document.

Table 3.2: Experimental results for the movie review data.

Method Accuracy
NORATIONALES 88.56
HUMANR 91.61•

HUMANR@SENTENCE 91.33• †

OPINIONFINDER 91.78• †

POLARITYLEXICON 91.39• †

RANDOM RATIONALES 90.00∗

OPINIONFINDER+HUMANR@SENTENCE 92.50• 4

– The numbers marked with • (or ∗) are statistically significantly better than
NORATIONALES according to a paired t-test with p < 0.001 (or p < 0.01).
– The numbers marked with 4 are statistically significantly better than HU-
MANR according to a paired t-test with p < 0.01.
– The numbers marked with † are not statistically significantly worse than the
human rationales (HUMANR) according to a paired t-test with p > 0.1.

HUMANR treats each rationale in the same way as Zaidan et al. (2007). HU-

MANR@SENTENCE extends the human annotator rationales to sentence bound-

aries, and then treats each such sentence as a separate rationale. As shown

in Table 3.2, we get almost the same performance from these two variations

(91.33% and 91.61%).7 This result demonstrates that locking rationales to sen-
7The performance of HUMANR reported by Zaidan et al. (2007) is 92.2% which lies between
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tence boundaries was a reasonable choice.

Among the approaches that make use of only automatic rationales (bottom

half of Table 3.2), the best is OPINIONFINDER, reaching 91.78% accuracy. This

result is slightly better than results exploiting human rationales (91.33-91.61%),

although the difference is not statistically significant. This result demonstrates

that automatically generated rationales are just as good as human rationales in

improving document-level sentiment classification. Similarly strong results are

obtained from the POLARITYLEXICON as well.

Rather unexpectedly, RANDOM RATIONALES also achieves statistically sig-

nificant improvement over NORATIONALES (90.0% vs. 88.56%). However, no-

tice that the performance of RANDOM RATIONALES is statistically significantly

lower than those based on human rationales (91.33-91.61%).

In our experiments so far, we observed that some of the automatic rationales

are just as good as human rationales in improving the document-level sentiment

classification. Could we perhaps achieve an even better result if we combine the

automatic rationales with human rationales? The answer is yes! The accuracy of

OPINIONFINDER+HUMANR@SENTENCE reaches 92.50%, which is statistically

significantly better than HUMANR (91.61%). In other words, not only can our

automatically generated rationales replace human rationales, but they can also

improve upon human rationales when they are available.

3.3.2 Experiments with Product Reviews

We next evaluate our approaches on datasets for which human annotator ra-

tionales do not exist. For this, we use some of the product review data from

Blitzer et al. (2007): reviews for Books, DVDs, Videos and Kitchen appliances.

the performance we get (91.61%) and the oracle accuracy we get if we knew the best parameters
for the test set (92.67%).
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Each dataset contains 1000 positive and 1000 negative reviews. The reviews,

however, are substantially shorter than those in the movie review dataset: the

average number of sentences in each review is 9.20/9.13/8.12/6.37 respectively

vs. 30.86 for the movie reviews. We perform 10-fold cross-validation, where 8

folds are used for training, 1 fold for tuning parameters, and 1 fold for testing.

Table 3.3 shows the results.

Table 3.3: Experimental results for Product Review data.

Method Books DVDs Videos Kitchen
NoRationales 80.20 80.95 82.40 87.40
OPINIONFINDER 81.65∗ 82.35∗ 84.00∗ 88.40
POLARITYLEXICON 82.75• 82.85• 84.55• 87.90
RANDOM RATIONALES 82.05• 82.10• 84.15• 88.00

– The numbers marked with • (or ∗) are statistically significantly better than
NORATIONALES according to a paired t-test with p < 0.05 (or p < 0.08).

Rationale-based methods perform statistically significantly better than NO-

RATIONALES for all but the Kitchen dataset. An interesting trend in product

review datasets is that RANDOM RATIONALES rationales are just as good as

other more sophisticated rationales. We suspect that this is because product re-

views are generally shorter and more focused than the movie reviews, thereby

any randomly selected sentence is likely to be a good rationale. Quantitatively,

subjective sentences in the product reviews amount to 78% (McDonald et al.

(2007)), while subjective sentences in the movie review dataset constitute only

about 25% (Mao and Lebanon (2006)).
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3.3.3 Examples of Automatically Acquired Informative Sen-

tences

In this section, we examine an example to compare the automatically gener-

ated rationales (using OPINIONFINDER) with human annotator rationales for

the movie review data. In the following positive document snippet, automatic

rationales are underlined, while human-annotated rationales are in bold face.

...But a little niceness goes a long way these days, and there’s no

denying the entertainment value of that thing you do! It’s just

about impossible to hate. It’s an inoffensive, enjoyable piece of

nostalgia that is sure to leave audiences smiling and humming, if

not singing, “that thing you do!” — quite possibly for days...

Notice that, although OPINIONFINDER misses some human rationales, it

avoids the inclusion of “impossible to hate”, which contains only negative terms

and is likely to be confusing for the learning framework with contrast examples.

3.4 Related Work

In broad terms, automatically constructing rationales and using them to formu-

late contrast examples can be viewed as learning with prior knowledge (e.g.,

Schapire et al. (2002), Wu and Srihari (2004)). In our task, the prior knowl-

edge corresponds to our operational assumptions given in Section 3.2: for the

document-level sentiment classification task, good rationales are likely to be

subjective, and their sentiments should match the document-level sentiment.

Our operational assumptions can further be loosely connected to recogniz-

ing and exploiting discourse structure. Taboada et al. (2009) investigate this
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aspect more directly, by categorizing each paragraph as either “formal” or

“functional”, and further dividing the functional paragraphs into “description”

or “comment”. Then the authors make use of such discourse information to

improve document-level sentiment classification. The work of Taboada et al.

(2009), however, requires human annotation for the discourse information. In

contrast, our approaches do not make use of human annotations at the sen-

tence or paragraph level. The work of Pang and Lee (2004) recognizes and ex-

ploits discourse structure implicitly, without requiring extra human annotation.

The main difference from our approach is that Pang and Lee (2004) incorporate

the discourse information at inference time using the minimum cut algorithm,

while we make use of it at training time using the learning framework with

contrast examples.

3.5 Summary of the Chapter

In this chapter, we explored methods to automatically acquire informative sen-

tences for document-level sentiment classification. Our study is motivated by

the desire to retain the performance gains of rationale-enhanced learning mod-

els while eliminating the need for additional human annotation effort. By em-

ploying existing resources for sentiment analysis, we automatically discovered

informative sentences that are as good as human annotator rationales in im-

proving document-level sentiment classification.
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CHAPTER 4

MULTI-LEVEL STRUCTURED MODELS FOR DOCUMENT-LEVEL

SENTIMENT CLASSIFICATION

Chapter 1 suggested that all parts of a document should not be treated

equally in document-level sentiment classification: some parts are more indica-

tive of the sentiment label of the document than others. As the movie review

from Table 1.1 shows, objective sentences are often interleaved with subjective

ones; moreover, an overall positive review might still include some negative

opinions about an actor or the plot. This makes the sentiment classification task

harder for machine learning methods using bag-of-words representations, that

treat all words in the document in the same way, and ignore sentence structure.

In particular, the positive (negative) words can potentially appear in positive

(negative) documents as well as in negative (positive) ones. In this chapter, as in

Chapter 3, we continue exploiting the sentence structure of the document for document-

level sentiment classification; however, we incorporate the structure differently. We

develop a two-level structured model for document-level sentiment classifica-

tion that jointly learns to predict the document-level sentiment and the set of

informative sentences that explain the label of the document.

As discussed in Chapter 2, early research on document-level sentiment clas-

sification employed conventional machine learning techniques for text catego-

rization (Pang et al. (2002)). These methods, however, assume that documents

are represented via a flat feature vector (e.g., a bag-of-words). As a result, their

ability to identify and exploit subjectivity (or other useful) information at the

sentence-level is limited.

And although researchers subsequently proposed methods for incorporat-

ing sentence-level subjectivity information, existing techniques have some un-
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desirable properties. First, they typically require gold standard sentence-level

annotations (McDonald et al. (2007), Mao and Lebanon (2006)). But the cost of

acquiring such labels can be prohibitive. Second, some solutions for incorpo-

rating sentence-level information lack mechanisms for controlling error prop-

agation from the subjective sentence identification subtask to the main docu-

ment classification task (Pang and Lee (2004)). Finally, solutions that attempt

to handle the error propagation problem have done so by explicitly optimiz-

ing for the best combination of document-level and sentence-level classification

accuracy (McDonald et al. (2007)). Optimizing for this compromise, when the

real goal is to maximize only the document-level accuracy, can potentially hurt

document-level performance.

In this chapter, we propose a joint two-level model to address the aforemen-

tioned concerns. We formulate our training objective to directly optimize for

document-level accuracy. Further, we do not require gold standard sentence-

level labels for training. Instead, our training method treats sentence-level la-

bels as hidden variables and jointly learns to predict the document label and

those informative sentences that best “explain” it, thus controlling the propaga-

tion of incorrect sentence labels. And by directly optimizing for document-level

accuracy, our model learns to solve the informative sentence extraction subtask

only to the extent required for accurately classifying document sentiment. Em-

pirical evaluations on movie reviews and U.S. Congressional floor debates show

improved performance over previous approaches.

Roadmap of the Chapter. The material described in this chapter is based on

Yessenalina et al. (2010b). In the rest of this chapter, we will discuss related work

(Section 4.1), motivate (Section 4.2) and describe our model (Section 4.3). Then

we present an empirical evaluation of our model on movie reviews and U.S.
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Congressional floor debates datasets (Section 4.4). We close this chapter with

discussion (Section 4.5) and conclusions (Section 4.6).

4.1 Related Work

Pang and Lee (2004) first showed that sentence-level extraction can improve

document-level performance (see Chapter 2 for more details). One advantage

of their two-stage approach is that it avoids the need for explicit subjectiv-

ity annotations. However, it employs a cascaded approach in which the out-

put of an earlier (sentence-level) stage is consumed as input to the subsequent

(document-level) stage. And like other cascaded approaches to sentiment clas-

sification (e.g., Thomas et al. (2006), Mao and Lebanon (2006)), it can be difficult

to control error propagation. from the sentence-level subtask to the main docu-

ment classification task.

Instead of taking a cascaded approach, one can directly modify the training

of flat document classifiers using lower-level information. For instance, Zaidan

et al. (2007) used human annotators to mark the “annotator rationales”, which

are text spans that support the document’s sentiment label. These rationales are

then used to formulate additional constraints during SVM training to ensure

that the resulting document classifier is less confident in classifying a document

that does not contain the rationale versus the original document. In Chapter 3

we extended their approach to use automatically generated rationales.

A natural approach to avoid the pitfalls associated with cascaded methods is

to use joint two-level models that simultaneously solve the sentence-level and

document-level tasks (e.g., McDonald et al. (2007), Zaidan and Eisner (2008))

Since these models are trained jointly, the sentence-level predictions affect the

document-level predictions and vice-versa. However, such approaches typi-
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cally require sentence-level annotations during training, which can be expen-

sive to acquire. Furthermore, the training objectives are usually formulated as

a compromise between sentence-level and document-level performance. If the

goal is to predict well at the document-level, then these approaches are solving

a much harder problem that is not exactly aligned with maximizing document-

level accuracy.

Recently, researchers within both Natural Language Processing (e.g., Petrov

and Klein (2007), Chang et al. (2010), Clarke et al. (2010)) and other fields (e.g.,

Felzenszwalb et al. (2008), Yu and Joachims (2009)) have analyzed joint multi-

level models (i.e., models that simultaneously solve the main prediction task

along with important subtasks) that are trained using limited or no explicit

lower-level annotations. Similar to our approach, the lower-level labels are

treated as hidden or latent variables during training. Although the training

process is non-trivial (and in particular requires a good initialization of the hid-

den variables), it avoids the need for human annotations for the lower-level

subtasks. Some researchers have also recently applied hidden variable models

to sentiment analysis, but they were focused on classifying either phrase-level

(Choi and Cardie (2008)) or sentence-level polarity (Nakagawa et al. (2010)).

4.2 Extracting Latent Explanations

In this chapter, we take the view that each document has a subset of sentences

that best explains its sentiment. Consider the “annotator rationales” generated

by human judges for the movie reviews dataset (Zaidan et al. (2007)). Each

rationale is a text span that was identified to support (or explain) its parent

document’s sentiment. Thus, these rationales can be interpreted as (something

close to) a ground truth labeling of the explanatory segments. Using a dataset
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where each document contains only its rationales, cross validation experiments

using an SVM classifier yield 97.44% accuracy — as opposed to 86.33% accuracy

when using the full text of the original documents. Clearly, extracting the best

supporting segments can offer a tremendous performance boost.

We are interested in settings where human-extracted explanations such as

annotator rationales might not be readily available, or are imperfect. As such,

we will formulate the set of extracted sentences as latent or hidden variables in

our model. Viewing the extracted sentences as latent variables will pose no new

challenges during prediction, since the model is expected to predict all labels at

test time. We will leverage recent advances in training latent variable SVMs (Yu

and Joachims (2009)) to arrive at an effective training procedure.

4.3 Model: Structural SVMs for Sentiment Classification with

Latent Explanations (SVMsle)

In this section, we present a two-level document classification model. Although

our model makes predictions at both the document and sentence levels, it will

be trained (and evaluated) only with respect to document-level performance.

We begin by presenting the feature structure and inference method. We will

then describe a supervised training algorithm based on structural SVMs, and

finally discuss some extensions and design decisions.

Let x denote a document, y = ±1 denote the sentiment (for us, a binary pos-

itive or negative polarity) of a document, and s denote a subset of explanatory

sentences in x. Let Ψ(x, y, s) denote a joint feature map that outputs features de-

scribing the quality of predicting sentiment y using explanation s for document

x. We focus on linear models, so given a (learned) weight vector ~w, we can write
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the quality of predicting y (with explanation s) as

F (x, y, s; ~w) = ~wTΨ(x, y, s), (4.1)

and a document-level sentiment classifier as

h(x; ~w) = argmax
y=±1

max
s∈S(x)

F (x, y, s; ~w), (4.2)

where S(x) denotes the collection of feasible explanations (e.g., subsets of sen-

tences) for x.

Let xj denote the j-th sentence of x. We propose the following instantiation

of (4.1),

~wTΨ(x, y, s) =
1

N(x)

∑
j∈s

y · ~wTpolψpol(xj) + ~wTsubjψsubj(x
j), (4.3)

where the first term in the summation captures the quality of predicting polarity

y on sentences in s, the second term captures the quality of predicting sentences

in s as the subjective sentences, and N(x) is a normalizing factor (which will be

discussed in more detail in Section 4.3.3). We represent the weight vector as

~w =

 ~wpol

~wsubj

 , (4.4)

and ψpol(x
j) and ψsubj(x

j) denote the polarity and subjectivity features of sen-

tence xj , respectively. Note that ψpol and ψsubj are disjoint by construction, i.e.,

ψTpolψsubj = 0. We will present extensions in Section 4.3.5.

For example, suppose ψpol and ψsubj were both bag-of-words feature vectors.

Then we might learn a high weight for the feature corresponding to the word

“think” in ψsubj since that word is indicative of the sentence being subjective

(but not necessarily indicating positive or negative polarity).
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Algorithm 1 Inference Algorithm for (4.2)
1: Input: x
2: Output: (y, s)
3: s+ ← argmaxs∈S(x) ~w

TΨ(x,+1, s)

4: s− ← argmaxs∈S(x) ~w
TΨ(x,−1, s)

5: if ~wTΨ(x,+1, s+) > ~wTΨ(x,−1, s−) then
6: Return (+1, s+)
7: else
8: Return (−1, s−)
9: end if

4.3.1 Making Predictions

Algorithm 1 describes our inference procedure. Recall from (4.2) that our

hypothesis function predicts the sentiment label that maximizes (4.3). To do this,

we compare the best set of sentences that explains a positive polarity prediction

with the best set that explains a negative polarity prediction.

We now specify the structure of S(x). In this chapter, we use a cardinality

constraint,

S(x) = {s ⊆ {1, . . . , |x|} : |s| ≤ f(|x|)}, (4.5)

where f(|x|) is a function that depends only on the number of sentences in x. For

example, a simple function is f(|x|) = |x| ·0.3, indicating that at most 30% of the

sentences in x can be informative (explain the sentiment label of the document).

Using this definition of S(x), we can then compute the best set of informative

sentences for each possible y by computing the joint subjectivity and polarity

score of each sentence xj in isolation,

y · ~wTpolψpol(xj) + ~wTsubjψsubj(x
j),

and selecting the top f(|x|) as s (or fewer, if there are fewer than f(|x|) that have

positive joint score).
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4.3.2 Training

For training, we will use an approach based on latent variable structural SVMs

(Yu and Joachims (2009)).

Optimization Problem (OP) 1.

min
~w,ξ≥0

1

2
‖~w‖2 +

C

N

N∑
i=1

ξi (4.6)

s.t. ∀i :

max
s∈Si

~wTΨ(xi, yi, s) ≥ max
s′∈S(xi)

~wTΨ(xi,−yi, s′) + 1− ξi (4.7)

OP 1 optimizes the standard SVM training objective for binary classification.

Each training example has a corresponding constraint (4.7). This constraint en-

sures that the score of the highest scoring explanation for the training polarity

label is larger than score of the highest scoring explanation for the opposite po-

larity label. Note, that we never observe the true explanation for the training

labels; they are the hidden or latent variables. The hidden variables are also

ignored in the objective function.

As a result, one can interpret OP 1 to be directly optimizing a trade-off be-

tween model complexity (as measured using the 2-norm) and document-level

classification error in the training set. This has two main advantages over re-

lated training approaches. First, it solves the multi-level problem jointly as op-

posed to separately, which avoids introducing difficult to control propagation

errors. Second, it does not require solving the sentence-level task perfectly, and

also does not require precise sentence-level training labels. In other words, our

goal is to learn to identify the informative sentences that best explain the train-

ing labels to the extent required for good document classification performance.

OP 1 is non-convex because of the constraints (4.7). To solve OP 1, we use a

combination of the CCCP algorithm (Yuille and Rangarajan (2003)) with cutting
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Algorithm 2 Training Algorithm for OP 1
1: Input: {(x1, y1), . . . , (xN , yN)} //training data
2: Input: C //regularization parameter
3: Input: (s1, . . . , sN) //initial guess
4: ~w ← SSVMSolve(C, {(xi, yi, si)}Ni=1)
5: while ~w not converged do
6: for i = 1, . . . , N do
7: si ← argmaxs∈S(xi) ~w

TΨ(xi, yi, s)
8: end for
9: ~w ← SSVMSolve(C, {(xi, yi, si)}Ni=1)

10: end while
11: Return ~w

plane training of structural SVMs (Joachims et al. (2009)), as proposed by Yu

and Joachims (2009). Suppose each constraint (4.7) is replaced by

~wTΨ(xi, yi, si) ≥ max
s′∈S(xi)

~wTΨ(xi,−yi, s′) + 1− ξi,

where si is some fixed explanation (e.g., an initial guess of the best explanation).

Then OP 1 reduces to a standard structural SVM, which can be solved efficiently

(Joachims et al. (2009)). Algorithm 2 describes our training procedure. Start-

ing with an initial guess si for each training example, the training procedure

alternates between solving an instance of the resulting structural SVM (called

SSVMSolve in Algorithm 2) using the currently best known explanations si (Line

9), and making a new guess of the best explanations (Line 7). Yu and Joachims

(2009) showed that this alternating procedure for training latent variable struc-

tural SVMs is an instance of the CCCP procedure (Yuille and Rangarajan (2003)),

and so is guaranteed to converge to a local optimum.

For our experiments, we do not train until convergence, but instead use per-

formance on a validation set to choose the halting iteration. Since OP 1 is non-

convex, a good initialization is necessary. To generate the initial explanations,

one can use an off-the-shelf sentiment classifier such as the OpinionFinder sys-

tem (Wilson et al. (2005b)) introduced in Chapter 3. For some datasets, there ex-
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ist documents with annotated sentences, which we can treat either as the ground

truth or another (very good) initial guess of the explanatory sentences.

4.3.3 Feature Representation

Like any machine learning approach, we must specify a useful set of features

for the ψ vectors described above. We will consider two types of features.

Bag-of-words. Perhaps the simplest approach is to define ψ using a bag-of-

words feature representation, with one feature corresponding to each word in

the active lexicon of the corpus. Using such a feature representation might al-

low us to learn which words have high polarity (e.g., “great”) and which are

indicative of subjective sentences (e.g., “opinion”).

Sentence properties. We can incorporate many useful features to describe sen-

tence subjectivity. For example, subjective sentences might densely populate the

end of a document, or exhibit spatial coherence (so features describing previous

sentences might be useful for classifying the current sentence). Such features

cannot be compactly incorporated into flat models that ignore the document

structure.

For our experiments, we normalize each ψsubj and ψpol to have unit 2-norm.

Joint Feature Normalization. Another design decision is the choice of nor-

malization N(x) in (4.3). Two straightforward choices are N(x) = f(|x|) and

N(x) =
√
f(|x|), where f(|x|) is the size constraint as described in (4.5). In

our experiments we tried both and found the square root normalization to

work better in practice; therefore all the experimental results are reported us-

ing N(x) =
√
f(|x|). We suggest an analysis that sheds light on when square
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root normalization can be useful.

Analysis. Recall that all the ψsubj and ψpol vectors have unit 2-norm, which is

assumed here to be desirable. We now show that usingN(x) =
√
f(|x|) achieves

a similar property for Ψ(x, y, s). We can write the squared 2-norm of Ψ(x, y, s)

as

|Ψ(x, y, s)|2 =
1

N(x)2

[∑
j∈s

y · ψpol(xj) + ψsubj(x
j)

]2

=
1

f(|x|)

(∑
j∈s

ψpol(x
j)

)2

+

(∑
j∈s

ψsubj(x
j)

)2
 ,

where the last equality follows from the fact that

ψpol(x
j)Tψsubj(x

j) = 0,

due to the two vectors using disjoint feature spaces by construction. The sum-

mation of the ψpol(xj) terms is written as(∑
j∈s

ψpol(x
j)

)2

=
∑
j∈s

∑
i∈s

ψpol(x
j)Tψpol(x

i)

≈
∑
j∈s

ψpol(x
j)Tψpol(x

j) (4.8)

=
∑
j∈s

1 ≤ f(|x|),

where (4.8) follows from the sparsity assumption that

∀i 6= j : ψpol(x
j)Tψpol(x

i) ≈ 0.

A similar argument applies for the ψsubj(xj) terms. Thus, by choosing N(x) =√
f(|x|) the joint feature vectors Ψ(x, y, s) will have approximately equal mag-

nitude as measured using the 2-norm.
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4.3.4 Incorporating Proximity Information

As mentioned in Section 4.3.3, it is possible (and likely) for subjective sentences

to exhibit spatial coherence (e.g., they might tend to group together). To ex-

ploit this structure, we will expand the feature space of ψsubj to include both the

words of the current and previous sentence as follows,

ψsubj(x, j) =

 ψsubj(x
j)

ψsubj(x
j−1)

 .
The corresponding weight vector can be written as

~w′subj =

 ~wsubj

~wprevSubj

 .
By adding these features, we are essentially assuming that the words of the

previous sentence are predictive of the subjectivity of the current sentence.

Alternative approaches include explicitly accounting for this structure by

treating informative (explanatory) sentence extraction as a sequence-labeling

problem, such as in McDonald et al. (2007). Such structure formulations can be

naturally encoded in the joint feature map. Note that the inference procedure in

Algorithm 1 is still tractable, since it reduces to comparing the best sequence of

informative/non-informative sentences that explains a positive sentiment ver-

sus the best sequence that explains a negative sentiment. For this study, we

chose not to examine this more expressive yet more complex structure.

4.3.5 Extensions

Though our initial model (4.3) is simple and intuitive, performance can depend

heavily on the quality of latent variable initialization and the quality of the fea-

ture structure design. Consider the case where the initialization contains only
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objective sentences that do not convey any sentiment. Then all the features ini-

tially available during training are generated from these objective sentences and

are thus useless for sentiment classification. In other words, too much useful in-

formation has been suppressed for the model to make effective decisions. To

hedge against learning poor models due to using a poor initialization and/or

a suboptimal feature structure, we now propose extensions that incorporate in-

formation from the entire document.

We identify the following desirable properties that any such extended model

should satisfy:

(A) The model should be linear.

(B) The model should be trained jointly.

(C) The component that models the entire document should influence which

sentences are extracted.

The first property stems from the fact that our approach relies on linear mod-

els. The second property is desirable since joint training avoids error propaga-

tion that can be difficult to control. The third property deals with the informa-

tion suppression issue.

Regularizing Relative to a Prior: SVMsle with Prior

We first consider a model that satisfies properties (A) and (C). Using the repre-

sentation in (4.4), we propose a training procedure that regularizes ~wpol relative

to a prior model. Suppose we have a weight vector ~w0 which indicated the a pri-

ori guess of the contribution of each corresponding feature, then we can train

our model using OP 2,
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Optimization Problem (OP) 2.

min
~w,ξ≥0

1

2
‖~w − ~w0‖2 +

C

N

N∑
i=1

ξi

s.t. ∀i :

max
s∈Si

~wTΨ(xi, yi, s) ≥ max
s′∈S(xi)

~wTΨ(xi,−yi, s′) + 1− ξi

For our experiments, we use

~w0 =

 ~wdoc

0

 ,
where ~wdoc denotes a weight vector trained to classify the polarity of entire doc-

uments. Then one can interpret OP 2 as enforcing that the polarity weights ~wpol

not be too far from ~wdoc. Note that ~w0 must be available before training. There-

fore this approach does not satisfy property (B).

Extended Feature Space: SVMslewith Feature Smoothing (SVMsle
fs )

One simple way to satisfy all three aforementioned properties is to jointly model

not only polarity and subjectivity of the extracted sentences, but also polarity of

the entire document. Let ~wdoc denote the weight vector used to model the po-

larity of entire document x (so the document polarity score is then ~wTdocψpol(x)).

We can also incorporate this weight vector into our structured model to com-

pute a smoothed polarity score of each sentence via ~wTdocψpol(x
j). Following this

intuition, we propose the following structured model,

~wTΨ(x, y, s) =

y

N(x)

(∑
j∈s

(
~wTpolψpol(x

j) + ~wTdocψpol(x
j)
))

+
1

N(x)

(∑
j∈s

~wTsubjψsubj(x
j)

)
+ y · ~wTdocψpol(x)
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where the weight vector is now

~w =


~wpol

~wsubj

~wdoc

 .

Training this model via OP 1 achieves that ~wdoc is (1) used to model the polarity

of the entire document, and (2) used to compute a smoothed estimate of the

polarity of the extracted sentences. This satisfies all three properties (A), (B),

and (C), although other approaches are also possible.

4.4 Experiments

We empirically evaluate the models proposed in the previous section. We start

by describing the datasets and the experimental setup in Section 4.4.1 and dis-

cuss the experimental results in Section 4.4.2.

4.4.1 Experimental Setup

We evaluate our methods using the Movie Reviews and U.S. Congressional

Floor Debates datasets, following the setup used in previous work for compari-

son purposes.1

Movie Reviews. We use the movie reviews dataset from Zaidan et al. (2007)

(originally released by Pang and Lee (2004)), that contains annotated rationales

for each review. We use those annotated rationales to generate an additional

1A software implementation of our method is publicly available http://projects.

yisongyue.com/svmsle/. Datasets in the required format for SVMsle are available at
http://www.cs.cornell.edu/˜ainur/data.html
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initialization during training (described below). We follow exactly the experi-

mental setup used in Zaidan et al. (2007). In particular, since the rationale anno-

tations are available for nine out of 10 folds, we used the 10-th fold as the blind

test set. We trained nine different models on subsets of size eight, used the re-

maining fold as the validation set, and then measured the average performance

on the final test set.

U.S. Congressional Floor Debates. We also use the U.S. Congressional floor

debates transcripts from Thomas et al. (2006). The data was extracted from Gov-

Track (http://govtrack.us), which has all available transcripts of U.S. floor de-

bates in the House of Representatives in 2005. As in previous work, only debates

with discussions of “controversial” bills were considered (where the losing side

had at least 20% of the speeches). The goal is to predict the vote (“yea” or “nay”)

for the speaker of each speech segment. For our experiments, we evaluate our

methods using the speaker-based speech-segment classification setting as de-

scribed in Thomas et al. (2006).2

Since our training procedure solves a non-convex optimization problem, it

requires an initial guess of the explanatory sentences. We use an explanatory set

size (4.5) of 30% of the number of sentences in each document, L = d0.3 · |x|e,

with a lower cap of 1. We generate initialization using OpinionFinder (Wilson

et al. (2005b)), which was shown to be a reasonable substitute for human an-

notations in the Movie Reviews dataset in Chapter 3 of this dissertation. We

select all sentences whose majority vote of word-level polarities predicted by

OpinionFinder matches the document’s sentiment. If there are fewer than L

sentences, we add sentences starting from the end of the document. If there are

2In the other setting described in Thomas et al. (2006) (segment-based speech-segment classi-
fication), around 39% of the documents in the whole dataset contain only 1-3 sentences, making
it an uninteresting setting to analyze with our model.
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more, we remove sentences starting from the beginning of the document.

We consider two additional (baseline) methods for initialization: using a ran-

dom set of sentences, and using the last 30% of sentences in the document. In

the Movie Reviews dataset, we also use sentences containing human annota-

tor rationales as a final initialization option. No such manual annotations are

available for the Congressional Debates.

4.4.2 Experimental Results

We evaluate three versions of our model: the initial model (4.3) which we

call SVMsle (SVMs for Sentiment classification with Latent Explanations),

SVMsle regularized relative to a prior as described in Section 4.3.5 which we

refer to as SVMsle w/ Prior,3 and the feature smoothing model described in Sec-

tion 4.3.5 which we call SVMsle
fs . Due to the difficulty of selecting a good prior,

we expect SVMsle
fs to exhibit the most robust performance.

Tables 4.1 and 4.2 show a comparison of our proposed methods on the two

datasets. We observe that SVMsle
fs provides both strong and robust performance.

The performance of SVMsle is generally better when trained using a prior than

not in the Movie Reviews dataset. Both extensions appear to hurt performance

in the U.S. Congressional Floor Debates dataset. Using OpinionFinder to ini-

tialize our training procedure offers good performance across both datasets,

whereas the baseline initializations exhibit more erratic performance behav-

ior.4 Unsurprisingly, initializing using human annotations (in the Movie Re-

views dataset) can offer further improvement. Adding proximity features (as

3We either used the same value of C to train both standard SVM model and SVMsle w/ Prior
or used the best standard SVM model on the validation set to train SVMsle w/ Prior. We chose
the combination that works the best on the validation set.

4Using the random initialization on the U.S. Congressional Floor Debates dataset offers sur-
prisingly good performance.
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Table 4.1: Summary of the experimental results for the Movie Reviews datasets
using SVMsle, SVMsle w/ Prior and SVMsle

fs with and without proximity fea-
tures.

Methods Random Last OpinionFinder Annot.
30% 30% Rationales

SVMsle 87.22 89.72 ∗ 91.28 ? 91.61 ?
SVMsle+ Prox.Feat. 85.44 88.83 90.89 ? 92.00 ?
SVMslew/ Prior 87.61 90.50 ∗ 91.72 ? 92.67 ?
SVMsle+ Prox.Feat. 87.56 90.00 ∗ 93.22? 92.00 ?
SVMsle

fs 89.50 91.06 ? 92.50? 92.39 ?
SVMsle

fs+ Prox.Feat. 88.22 91.22 ? 92.39? 93.22 ?

– For Movie Reviews, the SVM baseline accuracy is 88.56%. A ? (or ∗) indicates
statically significantly better performance than baseline according to the paired
t-test with p < 0.001 (or p < 0.05).

Table 4.2: Summary of the experimental results for the U.S. Congressional Floor
debates datasets using SVMsle, SVMsle w/ Prior and SVMsle

fs with and without
proximity features.

Methods Random 30% Last 30% OpinionFinder
SVMsle 78.84 73.26 77.33
SVMsle+ Prox.Feat. 73.14 73.95 79.53
SVMslew/ Prior 78.49 71.51 77.09
SVMsle+ Prox.Feat. 76.40 73.60 78.60
SVMsle

fs 77.33 67.79 77.67
SVMsle

fs+ Prox.Feat. 73.84 73.37 77.09

– For U.S. Congressional Floor Debates, the SVM baseline accuracy is
70.00%. Statistical significance cannot be calculated because the data comes in
train/validation/test split, not folds.

described in Section 4.3.4) in general seems to improve performance when us-

ing a good initialization, and hurts performance otherwise.

Tables 4.3 and 4.4 show a comparison of SVMsle
fs with previous work on the

Movie Reviews and U.S. Congressional Floor Debates datasets, respectively. For
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Table 4.3: Comparison of SVMsle
fs with previous work on the Movie Reviews

dataset. We considered two settings: when human annotations are available
(Annot. Labels), and when they are unavailable (No Annot. Labels).

METHOD ACC

Baseline SVM 88.56
Annot. Zaidan et al. (2007) 92.20
Labels SVMsle

fs 92.28
SVMsle

fs+ Prox.Feat. 93.22
No Annot. Yessenalina et al. (2010a) 91.78
Labels SVMsle

fs 92.50
SVMsle

fs+Prox.Feat. 92.39

Table 4.4: Comparison of SVMsle
fs with previous work on the U.S. Congressional

Floor Debates dataset for the speaker-based segment classification task.

METHOD ACC

Baseline SVM 70.00

Prior work
Thomas et al. (2006) 71.28
Bansal et al. (2008) 75.00

Our work
SVMsle

fs 77.67
SVMsle

fs+ Prox.Feat. 77.09

the Movie Reviews dataset, we considered two settings: when human annota-

tions are available, and when they are not (in which case we initialized using

OpinionFinder). For the U.S. Congressional Floor Debates dataset we used only

the latter setting, since there are no annotations available for this dataset. In all

cases we observe SVMsle
fs showing improved performance compared to previous

results.

Training details. We tried around 10 different values for C parameter, and

selected the final model based on the validation set. The training procedure al-
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Figure 4.1: Overlap of extracted sentences from different SVMsle
fs models on the

Movie Reviews training set.

ternates between training a standard structural SVM model and using the sub-

sequent model to re-label the latent variables. We selected the halting iteration

of the training procedure using the validation set. When initializing using hu-

man annotations for the Movie Reviews dataset, the halting iteration is typically

the first iteration, whereas the halting iteration is typically chosen from a later

iteration when initializing using OpinionFinder.

Figure 4.1 shows the per-iteration overlap of extracted sentences from

SVMsle
fs models initialized using OpinionFinder and human annotations on the

Movie Reviews training set. We can see that training has approximately con-

verged after about 10 iterations.5 We can also see that both models iteratively

learn to extract sentences that are more similar to each other than their respec-

tive initializations (the overlap between the two initializations is 57%). This is an

5The number of iterations required to converge is an upper bound on the number of itera-
tions from which to choose the halting iteration (based on a validation set).
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Figure 4.2: Test accuracy on the Movie Reviews dataset for SVMsle
fs while vary-

ing extraction size.

indicator that our learning problem, despite being non-convex and having mul-

tiple local optima, has a reasonably large “good” region that can be approached

using different initialization methods.

Varying the extraction size. Figure 4.2 shows how accuracy on the test set of

SVMsle
fs changes on the Movie Reviews dataset as a function of varying the ex-

traction size f(|x|) from (4.5). We can see that performance changes smoothly6

(and so is robust), and that one might see further improvement from more care-

ful tuning of the size constraint.

Examining an example prediction. Our proposed methods are not designed

to extract interpretable explanations, but examining the extracted explanations

might still yield meaningful information. Table 4.5 contains an example speech

from the U.S. Congressional Floor Debates test set, with Latent Explanations

found by SVMsle
fs highlighted in boldface. This speech was made in support of

the Stem Cell Research Enhancement Act. For comparison, Table 4.5 also shows

6The smoothness will depend on the initialization.
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Table 4.5: ”yea” speech with Latent Explanations from the U.S. Congressional
Floor Debates dataset predicted by SVMsle

fs with OpinionFinder initialization.
Latent Explanations are preceded by solid circles with numbers denoting their
preference order (1 being most preferred by SVMsle

fs ). The five least subjective
sentences are preceded by circles with numbers denoting the subjectivity order
(1 being least subjective according to SVMsle

fs ).

Ë Mr. Speaker, I am proud to stand
on the house floor today to speak
in favor of the Stem Cell Research
Enhancement Act, legislation which
will bring hope to millions of people
suffering from disease in this nation.
Ì I want to thank Congresswoman
Degette and Congressman Castle for
their tireless work in bringing this
bill to the house floor for a vote.

À The discovery of embryonic
stem cells is a major scientific
breakthrough. Ä Embryonic stem
cells have the potential to form any
cell type in the human body. This
could have profound implications for
diseases such as Alzheimer’s, Parkin-
son’s, various forms of brain and
spinal cord disorders, diabetes, and
many types of cancer. Á According
to the Coalition for the Advancement
of Medical Research, there are at least
58 diseases which could potentially
be cured through stem cell research.

That is why more than 200 major pa-
tient groups, scientists, and medical
research groups and 80 Nobel Laure-
ates support the Stem Cell Research
Enhancement Act. Â They know that

this legislation will give us a chance
to find cures to diseases affecting 100
million Americans. I want to
make clear that I oppose reproduc-
tive cloning, as we all do. I have
voted against it in the past. Í How-
ever, that is vastly different from
stem cell research and as an ovar-
ian cancer survivor, I am not going to
stand in the way of science.

Permitting peer-reviewed Federal
funds to be used for this research,
combined with public oversight of
these activities, is our best assurance
that research will be of the high-
est quality and performed with the
greatest dignity and moral respon-
sibility. The policy President Bush
announced in August 2001 has lim-
ited access to stem cell lines and has
stalled scientific progress.

As a cancer survivor, I know the
desperation these families feel as they
wait for a cure. Ã This congress must
not stand in the way of that progress.
Î We have an opportunity to change
the lives of millions, and I hope we
take it. Ê I urge my colleagues to
support this legislation.

the five least subjective sentences according to SVMsle
fs , that are underlined. No-

tice that most of these “objective” sentences can plausibly belong to speeches

made in opposition to bills that limit stem cell research funding. That is, they
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do not clearly indicate the speaker’s stance towards the specific bill in question.

We can thus see that our approach can indeed learn to infer sentences that are

essential to understanding the document-level sentiment.

4.5 Discussion

Making good structural assumptions simplifies the development process. Com-

pared to methods that modify the training of flat document classifiers (e.g.,

Zaidan et al. (2007)), our approach uses fewer parameters, leading to a more

compact and faster training stage. Compared to methods that use a cascaded

approach (e.g., Pang and Lee (2004)), our approach is more robust to errors in

the lower-level subtask due to being a joint model.

Introducing latent variables makes the training procedure more flexible by

not requiring lower-level labels, but does require a good initialization (i.e., a

reasonable substitute for the lower-level labels). We believe that the widespread

availability of off-the-shelf sentiment lexicons and software, despite being de-

veloped for a different domain, makes this issue less of a concern, and in fact

creates an opportunity for approaches like ours to have real impact.

One can incorporate many types of sentence-level information that cannot be

directly incorporated into a flat model. Examples include scores from another

sentence-level classifier (e.g., from Nakagawa et al. (2010)) or combining phrase-

level polarity scores (e.g., from Choi and Cardie (2008)) for each sentence, or

features that describe the position of the sentence in the document.

Most prior work on the U.S. Congressional Floor Debates dataset focused on

using relationships between speakers such as agreement (Thomas et al. (2006),

Bansal et al. (2008)), and used a global min-cut inference procedure. However,

they require all test instances to be known in advance (i.e., their formulations
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are transductive). Our method is not limited to the transductive setting, and

instead exploits a different and complementary structure: the latent explanation

(i.e., only some sentences in the speech are indicative of the speaker’s vote).

In a sense, the joint feature structure used in our model is the simplest that

could be used. Our model makes no explicit structural dependencies between

sentences, so the choice of whether to extract each sentence is essentially made

independently of other sentences in the document. More sophisticated struc-

tures can be used if appropriate. For instance, one can formulate the sentence

extraction task as a sequence labeling problem similar to McDonald et al. (2007),

or use a more expressive graphical model such as in Pang and Lee (2004),

Thomas et al. (2006). So long as the global inference procedure is tractable or

has a good approximation algorithm, then the training procedure is guaran-

teed to converge with rigorous generalization guarantees (Finley and Joachims

(2008)). Since any formulation of the extraction subtask will suppress informa-

tion for the main document-level task, one must take care to properly incorpo-

rate smoothing if necessary.

Another interesting direction is training models to predict not only senti-

ment polarity, but also whether a document is objective. For example, one can

pose a three class problem (“positive”, “negative”, “objective”), where objective

documents might not necessarily have a good set of informative (explanatory)

sentences, similar to Chang et al. (2010).

4.6 Summary of the Chapter

In this chapter we presented latent variable structured models for the

document-level sentiment classification task. These models do not rely on

sentence-level annotations, and are trained jointly (over both the document and
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sentence levels) to directly optimize document-level accuracy. Experiments on

two standard sentiment analysis datasets showed improved performance over

previous results.

Our approach can, in principle, be applied to any classification task that is

well modeled by jointly solving an extraction subtask. However, as evidenced

by our experiments, proper training does require a reasonable initial guess of

the extracted informative sentences, as well as ways to mitigate the risk of

the extraction subtask suppressing too much information (such as via feature

smoothing).

63



CHAPTER 5

COMPOSITIONAL MATRIX-SPACE MODELS FOR PHRASE-LEVEL

SENTIMENT CLASSIFICATION

In this chapter we consider the task of phrase-level sentiment classification. As

described in Chapter 1, humans use quite different intuitions for deciding the

sentiment of a phrase or a sentence, compared to deciding the sentiment of a

document. In this chapter, we exploit the compositional semantic structure of

phrases to improve phrase-level sentiment classification. More specifically we

learn matrix-space word representations that are compositional in nature and

model composition as matrix multiplication.

As described in Chapter 2, work in the sentiment analysis area ranges from

identifying the sentiment of individual words to determining the sentiment of

phrases, sentences and documents. The bulk of previous research, however,

models just positive vs. negative sentiment, collapsing positive (or negative)

words, phrases and documents of differing intensities into just one positive (or

negative) class. For word-level sentiment, therefore, these methods would not

recognize a difference in sentiment between words like “good” and “great”,

which have the same direction of polarity (i.e., positive) but different intensities.

At the phrase level, the methods will fail to register compositional effects in

sentiment brought about by intensifiers like “very”, “absolutely”, “extremely”,

etc. “Happy” and “very happy”, for example, will both be considered simply

“positive” in sentiment. In real-world settings, on the other hand, sentiment

values extend across a polarity spectrum — from very negative, to neutral, to

very positive. Recent research has shown, in particular, that modeling intensity

at the phrase level is important for real-world natural language processing tasks

including question answering and textual entailment (de Marneffe et al. (2010)).
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This chapter describes a general approach for phrase-level sentiment anal-

ysis that takes these real-world requirements into account: we adopt a five-level

ordinal sentiment scale and present a learning-based method that assigns ordinal senti-

ment scores to phrases. Importantly, our approach will also be explicitly composi-

tional1 in nature so that it can accurately account for critical interactions among

the words in each sentiment-bearing phrase.

The vast majority of methods for phrase-level and sentence-level sentiment

analysis do not tackle the task compositionally: they, instead, employ a bag-of-

words representation and, at best, incorporate additional features to account for

negators, intensifiers, and for contextual valence shifters, which can change the

sentiment over neighboring words (e.g., Polanyi and Zaenen (2004), Wilson et

al. (2005b), Kennedy and Inkpen (2006), Shaikh et al. (2007)).

A notable exception is work by Moilanen and Pulman (2007), who propose

a compositional semantic approach to assign a positive or negative sentiment

to newspaper article titles. However, their knowledge-based approach presup-

poses the existence of a sentiment lexicon and a set of symbolic compositional

rules.

But learning-based compositional approaches for sentiment analysis also ex-

ist. Choi and Cardie (2008), for example, propose an algorithm for phrase-based

sentiment analysis that learns proper assignments of intermediate sentiment de-

cision variables given the a priori (i.e., out of context) polarity of the words in

the phrase and the (correct) phrase-level polarity. As in Moilanen and Pulman

(2007), semantic inference is based on (a small set of) hand-written composi-

tional rules. In contrast, Nakagawa et al. (2010) use a dependency parse tree to

guide the learning of compositional effects. Each of the above, however, uses a

1As described in Chapter 1 and Chapter 2, the Principle of Compositionality asserts that the
meaning of a complex expression is a function of the meanings of its constituent expressions
and the rules used to combine them.
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binary rather than an ordinal sentiment scale.

In contrast, our proposed method for phrase-level sentiment analysis is in-

spired by recent work on distributional approaches to compositionality. In par-

ticular, Baroni and Zamparelli (2010) tackle adjective-noun compositions using

a vector representation for nouns and learning a matrix representation for each

adjective. The adjective matrices are then applied as functions over the mean-

ings of nouns — via matrix-vector multiplication — to derive the meaning of

adjective-noun combinations. Rudolph and Giesbrecht (2010) show theoreti-

cally, that multiplicative matrix-space models are a general case of vector-space

models and furthermore exhibit desirable properties for semantic analysis: they

take into account word order and are reasonable from algebraic and cognitive

perspectives. Their work, however, does not present an algorithm for learning

such models; nor does it provide empirical evidence in favor of matrix-space

models over vector-space models.

In this chapter, we propose a learning-based approach to assign ordinal sen-

timent scores to sentiment-bearing phrases using a general compositional matrix-

space model of language. All words are modeled as matrices, independent of their

part-of-speech, and compositional inference is uniformly modeled as matrix

multiplication. To predict an ordinal scale sentiment value, we employ Ordered

Logistic Regression, introducing a novel training algorithm to accommodate

our compositional matrix-space representations. To our knowledge, this is the

first such algorithm for learning matrix-space models for semantic composition.

We evaluate the approach on a standard sentiment corpus (Wiebe et al. (2005)),

making use of its manually annotated phrase-level annotations for polarity and

intensity, and compare our approach to the more commonly employed bag-of-

words model. We show that our matrix-space model significantly outperforms
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a bag-of-words model for the ordinal scale sentiment prediction task.

Roadmap of the Chapter. The work described in this chapter is based on

Yessenalina and Cardie (2011). We start by describing the compositional effects

in sentiment analysis tasks (Section 5.1). We present the model in Section 5.2 and

experimental methodology in Section 5.3, then proceed with the discussion of

the experimental results in Section 5.4. Section 5.5 describes related work in dis-

tributional similarity and compositionality. We discuss the model in Section 5.6

and summarize the chapter in Section 5.7.

5.1 Compositional Effects in Sentiment Analysis

To motivate our compositional model for phrase-level sentiment classification,

we start by describing the compositional effects in sentiment analysis that we

would like to model. We discuss compositional effects in sentiment analysis

using a few examples of combining polar adjectives with adverbs, including

negators.

First, consider combining an adverb like “very” with a polar adjective like

“good”. “Good” has an a priori positive sentiment, so “very good” should be

considered more positive even though “very”, on its own, does not bear sen-

timent. Combining “very” with a negative adjective, like “bad”, results in a

phrase (“very bad”) that should be characterized as more negative than the

original adjective. Thus, it is convenient to think of the effect of combining

an intensifying adverb with a polar adjective as being multiplicative in nature, if

we assume the adjectives (“good” and “bad”) to have positive and a negative

sentiment scores, respectively.

Next, let us consider adverbial negators, e.g., “not”, combined with polar
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adjectives. When modeling only positive and negative labels for sentiment,

negators are generally treated as flipping the polarity of the adjective it mod-

ifies (Choi and Cardie (2008), Nakagawa et al. (2010)). However, recent work

(Taboada et al. (2011), Liu and Seneff (2009)) suggests that the effect of the nega-

tor when ordinal sentiment scores are employed is more akin to dampening the

adjective’s polarity rather than flipping it. For example, if “perfect” has a strong

positive sentiment, then the phrase “not perfect” is still positive, though to a

lesser degree. And while “not terrible” is still negative, it is less negative than

“terrible”. For these cases, it is convenient to view “not” as shifting polarity

to the opposite side of polarity scale by some value, which is essentially is an

additive effect.

There are, of course, more interesting examples of compositional semantic

effects on sentiment: e.g., prevent cancer, ease the burden. Here, the verbs prevent

and ease act as content-word negators (Choi and Cardie (2008)) in that they mod-

ify the negative sentiment of their direct object arguments so that the phrase as

a whole is perceived as somewhat positive.

We want to model both additive and multiplicative compositional effects for

phrase-level sentiment classification task. Our proposed matrix-space model

accounts for both of these effects.

5.2 The Model for Ordinal Scale Sentiment Prediction

As described above, our task is to predict an ordinal scale sentiment label for a

phrase. To this end, we employ a sentiment scale with five ordinal values: VERY

NEGATIVE, NEGATIVE, NEUTRAL, POSITIVE and VERY POSITIVE. Given a set of

phrases with their gold standard ordinal sentiment labels as training examples,

we then use an Ordered Logistic Regression (OLogReg) model for prediction.
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Unfortunately, our matrix-space representation precludes doing this directly.

We have chosen OLogReg, as opposed to say PRanking (Crammer and

Singer (2001)), because optimization of the former is more attractive: the ob-

jective (likelihood) is smooth and the gradients are continuous. As will become

clear shortly, learning our models is not trivial and it is important to use sophis-

ticated off-the-shelf optimizers such as L-BFGS.

For a bag-of-words model, OLogReg learns one weight for each word and

a set of thresholds by maximizing the likelihood of the training data. Typi-

cally, this is accomplished by using an optimizer like L-BFGS whose interface

needs the value and gradient of the likelihood with respect to the parameters

at their current values. In the next subsections, we instantiate OLogReg for our

sentiment prediction task using a matrix-space word model (Sections 5.2.1 and

5.2.2) and a bag-of-words model (Sections 5.2.3). The learning formulation of

bag-of-words OLogReg is convex therefore we will get to the global optimum;

in contrast, the optimization problem for matrix-space model is non-convex, it is

important to initialize the model well. Initialization of the matrix-space model

is discussed in Section 5.2.4.

5.2.1 Notation

In the subsequent subsections we will use the following notation. Let n be the

number of phrases in the training set and let d be the number of words in the

dictionary. Let xi be the i-th phrase and yi would be the label of xi, where yi

takes r different values yi ∈ {0, . . . , r−1}. Then |xi|will denote the length of the

phrase xi, and the words in i-th phrase are: xi = xi1, x
i
2, . . . , x

i
|xi|; x

i
j, 1 ≤ j ≤ |xi|

is the j-th word of i-th phrase; where xij is from the dictionary: 1 ≤ xij ≤ d.
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In the case of the bag-of-words model, Φ(xi) ∈ Rd is the representation of the

i-th phrase. Φj(x
i) counts the number of times the j-th word from the dictionary

appears in the i-th phrase. Given a w ∈ Rd it assigns a score ξi to a phrase xi by

ξi = wTΦ(xi) =

|xi|∑
j=1

wxij (5.1)

In the case of the matrix-space model the Φ(xi) ∈ R|xi|×d is the representation

of the i-th phrase. Φjk(x
i) is 1, if xij is the k-th word in the dictionary, and zero

otherwise. Given u, v ∈ Rm and a set of matrices {Wp ∈ Rm×m}dp=1, one for each

word, it assigns a score ξi to a phrase xi by

ξi = uT

 |xi|∏
j=1

d∑
k=1

WkΦjk(x
i)

 v

= uT

 |xi|∏
j=1

Wxij

 v (5.2)

where
∏|xi|

j=1Wxij
= Wxi1

Wxi2
· · ·Wxi

|xi|
in exactly this order. We choose to map

matrices to the real numbers by using vectors u and v from Rm×1; so that

ξ = uTMv, where M ∈ Rm×m, which is sensitive to the order of matrices, i.e.,

uTM1M2v 6= uTM2M1v. Note, that care must be taken in choosing how to map a

matrix to a real number. For example, another way to map matrices to the real

numbers is to use the determinant of a matrix; however, the determinant is not

sensitive to the word order: det(M1M2) = det(M1)det(M2) = det(M2M1); which

is not desirable for a model like ours that needs to account for word order.

Modeling composition. A m×m matrix, representing a word, can be consid-

ered as a linear function, mapping from Rm to Rm. Composition of words is

modeled by function composition, in our case composition of linear functions,

i.e., matrix multiplication. Note, that unlike bag-of-words model, the matrix-
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space model takes word order into account, since matrix multiplication is not

commutative operation.

5.2.2 Ordered Logistic Regression

Now we will describe our objective function for OLogReg and its derivatives.

OLogReg has r−1 thresholds (κ0, . . . κr−2), so introducing κ−1 = −∞ and κr−1 =

∞ leads to the unified expression for posterior probabilities for all values of k:

P (yi = k|x) = P (κk−1 < ξi ≤ κk)

= F (κk − ξi)− F (κk−1 − ξi)

F (x) is an inverse-logit function

F (x) =
ex

1 + ex

this is its derivative:
dF (x)

dx
= F (x)(1− F (x))

Therefore the negative loglikelihood of the training data will look like the fol-

lowing (Hardin and Hilbe (2007)):

L = −
n∑
i=1

r−1∑
k=0

ln(F (κk − ξi)− F (κk−1 − ξi))I(yi = k)

where r is the number of ordinal classes, ξi is the score of i-th phrase, I is the

indicator function that is equal to 1, when yi = k, and zero otherwise. We need

to minimize the objective L with respect to the following constraints:

κk−1 ≤ κk, 1 ≤ k ≤ r − 2 (5.3)

(The constraints are similar to the ones in PRank algorithm). For ease of opti-

mization we parametrize our model via κ0, and τj, 1 ≤ j ≤ r − 2:
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κ−1 = −∞,

κ0,

κ1 = κ0 + τ1,

κ2 = κ0 +
∑2

j=1 τj ,

. . . ,

κr−2 = κ0 +
∑r−2

j=1 τj

κr−1 =∞,

where τ1, . . ., τr−2 are non-negative values, that represent how far the corre-

sponding thresholds are from each other. Then the constraints (5.3) would be:

τj ≥ 0, 1 ≤ j ≤ r − 2 (5.4)

To simplify the equations we can rewrite the negative loglikelihood as follows:

L = −
n∑
i=1

r−1∑
k=0

ln(Aik −Bik)I(yi = k) (5.5)

where

Aik =


F (κ0 +

∑k
j=1 τj − ξi), if k = 0, . . . , r − 2

1, if k = r − 1

Bik =


0, if k = 0

F (κ0 +
∑k−1

j=1 τj − ξi), if k = 1, . . . , r − 1

Let’s introduce Lik = − ln(Aik−Bik)I(yi = k) and then the derivative of Lik with

respect to κ0 will be:

∂Lik
∂κ0

=
−[Aik(1− Aik)−Bik(1−Bik)]

Aik −Bik

I(yi = k)

= (Aik +Bik − 1)I(yi = k)

For j = yi:

∂Lik
∂τj

=
−Aik(1− Aik)
Aik −Bik

I(yi = k)
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For all j < yi:

∂Lik
∂τj

= (Aik +Bik − 1)I(yi = k)

For all j > yi: ∂Lik

∂τj
= 0. The derivative with respect to the score ξi is:

∂Lik
∂ξi

= (−Aik −Bik + 1)I(yi = k) (5.6)

Matrix-Space Word Model

Here we compute the derivatives with respect to a word. For the OLogReg

model with matrix-space word representations, we have:

∂L

∂Wxij

=
∂L

∂ξi
· ∂ξi
∂Wxij

The expression for ∂L
∂ξi

is given in (5.6); we will derive ∂ξi
∂W

xi
j

from (5.2). In the case

of the Matrix-Space word model, each word is represented as an m × m affine

matrix W :

W =

 A b

0 1

 (5.7)

We choose the class of affine matrices since for affine matrices matrix multipli-

cation represents both operations: linear transformation and translation. Linear

transformation is important for modeling changes in sentiment, translation is

also useful (we also make use of a translation vector during initialization, see

Section 5.2.4). In this thesis we consider m ≥ 3 since we want the matrix A from

(5.7) to represent rotation and scaling. Applying the affine transformation W to

vector [x, 1]T is equivalent to applying linear transformation A and translation b

to x. 2

2 (
A b
0 1

)(
x
1

)
=

(
Ax+ b

1

)
where A is a linear transformation, b is a translation vector.
Also the product of affine matrices is an affine matrix.
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Though vectors u and v can be learned together with word matrices Wj , we

choose to fix u and v. The main intuition behind fixing u and v is to reduce

the degrees of freedom of the model: different assignments of u, v and Wj-s can

lead to the same score ξ, i.e., there exist û, v̂ and Ŵj-s different from u, v and

Wj-s respectively, such that ξ(u, v,W ) would be equal to ξ(û, v̂, Ŵ ). The specific

choice of u and v leads to an equivalent model for all û and v̂ such that û = MTu,

v̂ = M−1v, where M is any invertible transformation (i.e., û, v̂ are derived from

u, v by applying linear transformations MT , M−1 respectively):

uTW1W2v = (uTM)(M−1W1M)(M−1W2M)(M−1v)

= ûT Ŵ1Ŵ2v̂

The derivative of the phrase ξi with respect to j-th word Wj would be (for

brevity we drop the phrase index and Wj refers to Wxij
and p refers to |xi|):

∂ξi
∂Wj

=

(
∂uTW1W2 . . .Wpv

∂Wj

)
=
[
(uTW1 . . .Wj−1)

T (Wj+1 . . .Wpv)T
]

=
[
(W T

j−1 . . .W
T
1 )(uvT )(W T

p . . .W
T
j+1)

]
(see Petersen and Pedersen (2008)).

In case if a certain word appears multiple times in the phrase, the derivative

with respect to that word would be a sum of derivatives with respect to each

appearance of a word, while all other appearances are fixed. For example,(
∂uTWW1Wv

∂W

)
= u(W1Wv)T + (uTWW1)

TvT

where W is a representation of a word that is repeated.

So given the expression (5.6) for ∂L
∂ξi

, the derivative with respect to each word

can be computed. Notice that the update for the j-th word in a sentence depends

on the order of the words, which is in line with our desire to account for word

order.
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Optimization

The goal of the training procedure is for the i-th phrase with p words x1x2 . . . xp

to learn word matrices W1, W2, . . . , Wp and thresholds κ0, τ1, . . . τr−2 such that

resulting ξi-s will lead to the lowest negative loglikelihood. So, given the nega-

tive loglikelihood and the derivatives with respect κ0 and τj-s and word matri-

ces W , we optimize objective (5.5) subject to τj ≥ 0. We use L-BFGS-B (Large-

scale Bound-constrained Optimization) by Byrd et al. (1995) as an optimizer.

Regularization in Matrix-Space Model

In order to make sure that the L-BFGS-B updates do not cause numerical issues

we perform the following regularization to the resulting matrices. An m by m

matrix Wj that can be represented as:

Wj =

 A11 a12

aT21 a22


where A11 ∈ Rm−1×m−1, a12, a21 ∈ Rm−1×1, a22 ∈ R. First make the matrix affine

by updating the last row, then the updated matrix will look like:

Ŵj =

 A11 a12

0 1


It can be proven that such a projection returns the closest affine matrix in Frobe-

nius norm.

However, we also want to regularize the model to avoid ill-conditioned ma-

trices. Ill-conditioned matrices represent transformations whose output is very

sensitive to small changes in the input and therefore they have a similar effect

to having large weights in a bag-of-words model. To perform such a regular-

ization we “shrink” the singular values of A11 towards one. More specifically,
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Algorithm 3 Training Algorithm for Matrix-Space OLogReg
1: Input: {(x1, y1), . . . , (xn, yn)} //training data
2: Input: h //projection parameter
3: Input: T //number of iterations
4: Input: W , κ0 and τj //initial values
5: for t = 1, . . . , T do
6: (W , κ0, τj)=minimize L using L-BFGS-B
7: for i = 1, . . . , d do
8: Wi=Project(Wi, h)
9: end for

10: end for
11: Return W , κ0, τj

we first use the Singular Value Decomposition (SVD) of the A11: UΣV T = A11,

where U and V are orthogonal matrices, Σ is a matrix with singular values on

the diagonal. Then we update singular values in the following way to get Σ̃:

Σ̃ii = Σh
ii, where h is a parameter between 0 and 1. If h = 1, then Σii remains

the same. In the other extreme case, if h = 0, then Σh
ii = 1. For intermediate

values of h the singular values of A11 would be brought closer to one. Finally,

we recompute Ã11: Ã11 = UΣ̃V T . So, W̃j would be :

W̃j =

 Ã11 a12

0 1


Learning in the Matrix-Space Model

We use Algorithm 3 to learn the matrix-space model. What essentially happens

is that we iterate two steps: optimizing the W matrices using L-BFGS-B and

the projection step. L-BFGS-B returns a solution that is not necessarily an affine

matrix. After projecting to the space of affine matrices we start L-BFGS-B from

a better initial point. In practice, the first few iterations lead to large decrease in

negative loglikelihood.
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5.2.3 Bag-Of-Words Model

In the bag-of-words model the score of the i-th phrase is given in (5.1). There-

fore, the partial derivative with respect to j-th word in i-th phrase ∂ξi
∂w

xi
j

is equal

to the number cj of times xji appears in xi, so:

∂L

∂wxij
=
∂L

∂ξi
· cj

Optimization. We minimize negative loglikelihood using L-BFGS-B subject to

τj ≥ 0.

Regularization. To prevent overfitting for bag-of-words model we regularize

w. The L2-regularized negative loglikelihood will consist of the expression in

(5.5) and an additional term λ
2
||w||22, where || · ||2 is the L2-norm of a vector. The

derivative of the additional term with respect to w will be:

∂ λ
2
||w||22
∂w

= λw

Hence the partial derivative with respect to wxij will have an additional term

λwxij .

5.2.4 Initialization

Initialization of bag-of-words OLogReg. We initialize the weight for each

word with zero and κ0 with a random number and τj-s with non-negative ran-

dom numbers. Since the learning problem for bag-of-words OLogReg is convex,

we will get the global optimum.

Better Initialization of Matrix-Space Model. Preliminary experiments

showed that the Matrix-Space model needs a good initialization. Initializing
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with different random matrices reaches different local minima and the quality

of local minima depends on initialization. Therefore, it is important to initialize

the model with a good starting point. One way to initialize the Matrix-Space model

is to use the weights learned by the bag-of-words model. We use the following intu-

ition. As noted in Section 5.2.2 applying transformationA of affine matrixW can

model a linear transformation, while vector b represents a translation. Since the

matrix-space model can encode a vector-space model (Rudolph and Giesbrecht

(2010)), we can initialize the matrices to exactly mimic the bag-of-words model.

In order to do that we place the weight, learned by the bag-of-words model in

the first component of b. Let’s assume that wx1 and wx2 are the weights learned

for two distinct words x1 and x2 respectively. To compute the polarity score of a

phrase x1 x2, the bag-of-words model sums the weights of these two words: wx1

and wx2 . Now we want to have the same effect in matrix-space model. Here we

assume m = 3.

Z =


1 0 wx1

0 1 0

0 0 1




1 0 wx2

0 1 0

0 0 1



=


1 0 wx1 + wx2

0 1 0

0 0 1


Finally, there is a step of mapping matrix Z to a number using u and v, such that

ξ(Z) = wx1 + wx2 . We also want vector u and v to be such that:

uT


1 0 wx1 + wx2

0 1 0

0 0 1

 v = wx1 + wx2 (5.8)

The last equation can help us construct u and v. We also set u and v to be or-

thogonal: uTv = 0. So, we arbitrarily choose two orthogonal vectors for which
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Table 5.1: Mapping of combination of polarities and intensities from MPQA
dataset to our ordinal sentiment scale.

Polarity Intensity Ordinal
label

negative high, extreme 0
negative medium 1
neutral high, extreme, medium 2
positive medium 3
positive high, extreme 4

equation (5.8) holds: u = [1,
√

2, 1]T and v = [1,−
√

2, 1]T .3

5.3 Experimental Methodology

For experimental evaluation of the proposed method we use the publicly

available Multi-Perspective Question Answering (MPQA)4 corpus (Wiebe et al.

(2005)) version 1.2, which contains 535 newswire documents that are manually

annotated with phrase-level subjectivity and intensity. We use the expression-

level boundary markings in MPQA to extract phrases. We evaluate on posi-

tive, negative and neutral opinion expressions that have intensities “medium”,

“high” or “extreme”.5 The schematic mapping of phrase polarity and intensity

values on ordinal sentimental scale is shown in Table 5.1.

5.3.1 Training Details

We perform 10-fold cross-validation on phrases extracted from the MPQA cor-

pus: eight folds for training; one as a validation set; and one as test set. In total

3If m > 3, u and v can be set using the same intuition.
4http://www.cs.pitt.edu/mpqa/
5We ignored low-intensity phrases similar to Choi and Cardie (2008), Nakagawa et al. (2010).
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there were 8022 phrases. Before training, we extract lemmas for each word. For

evaluation we use L1 loss: 1
n

∑
i |ŷi − yi|, where ŷi is the prediction.

Choice of dimensionality m. The reported experiments are done by setting

m = 3. Preliminary experiments with higher values of m (5, 20, 50), did not lead

to a better performance and increased the training time; therefore we did not

use those values in our final experiments.

5.3.2 Methods

PRank. For each of the folds, we run 500 iterations of PRank and choose an

early stopping iteration using a model that led to the lowest L1 loss on the vali-

dation set; afterwards report the average performance on respective test sets.

Bag-of-words OLogReg. To prevent overfitting we search for the best regu-

larization parameter among the following values of λ: 10i, from 10−4 to 104.

The lowest negative log-likelihood value on the validation set is attained for6

λ = 0.1. With this value of λ fixed, the final model is the one with the lowest

negative loglikelihood on the training set.

Matrix-space OLogReg+RandInit. First, we initialized matrices with random

numbers from normal distributionN(0, 0.1) and set u and v as in Section 5.2.4, T

is set to 25. We run with two different random seeds and three different values

for the parameter h: [0.1, 0.5, 0.9] and report the performance of the model that

had the lowest negative loglikelihood on the validation set. The setting of h that

lead to the best model was 0.9.
6We pick single λ that gives best average validation set performance, and then use it to com-

pute the average test set performance.
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Table 5.2: L1 loss for vector-space Ordered Logistic Regression and Matrix-
Space Logistic Regression. † Stands for a significant difference w.r.t. the Bag-
Of-Words OLogReg model with p-value less than 0.001 (p < 0.001).

Method L1 loss
PRank 0.7808
Bag-of-words OLogReg 0.6665
Matrix-space OLogReg+RandInit 0.7417
Matrix-space OLogReg+BowInit 0.6375†

Matrix-space OLogReg+BowInit. For the matrix-space models we initialize

the model with the output of the regularized Bag-of-words OLogReg as de-

scribed in Section 5.2.4, T is set to 25. Then we use the training procedure

described in Algorithm 3. We consider three different values for the parame-

ter h [0.1, 0.5, 0.9] and choose the model with the lowest validation set negative

log-likelihood. The best setting of h was 0.1.

5.4 Results

We report L1 loss for the four models in Table 5.2. The worst performance (de-

noted by the highest L1 loss value) is obtained by PRank, followed by matrix-

space OLogReg with random initialization. Bag-of-words OLogReg obtains

quite good performance, and matrix-space OLogReg, initialized using the bag-

of-words model performs the best, showing statistically significant improve-

ments over the bag-of-words OLogReg model according to a paired t-test.

To see what the bag-of-word and matrix-space models are learning we per-

formed inference on a few examples. In Table 5.3 we show the sentiment scores

of the best performing bag-of-words OLogReg model and the best performing

model based on matrices Matrix-space OLogReg+BowInit. By sentiment score,

we mean equation (5.1) of Bag-of-words OLogReg and equation (5.2) of Matrix-
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Table 5.3: Phrase and the sentiment scores of the phrase for 2 models Matrix-
space OLogReg+BowInit and Bag-of-words OLogReg respectively. Notice that
relative ranking order what matters.

Phrase Matrix-space Bag-of-words
OLogReg+BowInit OLogReg

not -0.83 -0.42
very 0.23 0.04
good 2.81 1.51
very good 3.53 1.55
not good -0.16 1.09
not very good 0.66 1.13
bad -1.67 -1.42
very bad -2.01 -1.38
not bad -0.54 -1.85
not very bad -1.36 -1.80

space OLogReg+BowInit.

Here we choose two popular adjectives “good” and “bad” that appeared in

the training data, and examine the effect of applying the intensifier “very” on

the sentiment score. As we can see, the matrix-space model learns a matrix for

“very” that correctly intensifies both “bad” and “good” on the sentiment scale,

i.e., ξ(good) < ξ(very good) and ξ(bad) < ξ(very bad), while the bag-of-words

model gets the sentiment of “very bad” wrong: it is more positive than “bad”.

We also looked at the effect of combining “not” with these adjectives. The

matrix-space model correctly encodes the effect of the negator for both positive

and negative adjectives, such that ξ(not good) < ξ(good) and ξ(bad) < ξ(not bad).

For the interesting case of applying a negator to a phrase with an intensifier,

ξ(not good) should be less than ξ(not very good) and ξ(not very bad) should be

less than ξ(not bad).7 As shown in Table 5.3, these are predicted correctly by the

matrix-space model, but the bag-of-words model misses the case of “bad”.

7See the detailed discussion in Taboada et al. (2011) and Liu and Seneff (2009).

82



Also notice that since in the matrix-space model each word is represented

as a function, more specifically a linear operator, and the function composition

defined as matrix multiplication, we can think of ”not very” being an operator

itself, that is a composition of operator ”not” and operator ”very”.

5.5 Related Work

The related work in the sentiment analysis area is discussed in Chapter 2.3. In

this section we briefly overview related work in distributional semantics and

compositionality.

Distributional Semantics and Compositionality. Research in the area of dis-

tributional semantics in NLP and Cognitive Science has looked at different word

representations and different ways of combining words. Mitchell and Lapata

(2010) propose a framework for vector-based semantic composition. They de-

fine composition as an additive or multiplicative function of two vectors and

show that compositional approaches generally outperform non-compositional

approaches that treat the phrase as the union of single lexical items.

Work by Baroni and Zamparelli (2010) models nouns as vectors in some se-

mantic space and adjectives as matrices. It shows that modeling adjectives as

linear transformations and applying those linear transformations to nouns re-

sults in final vectors for adjective-noun compositions that are close in semantic

space to other similar phrases. The authors argue that modeling adjectives as a

linear transformation is a better idea than using additive vector-space models.

In their work, a separate matrix for each adjective is learned using the Partial

Least Squares method in a completely unsupervised way. The recent work by

Rudolph and Giesbrecht (2010), described in the introduction to this chapter, ar-
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gues for plausibility of multiplicative matrix-space models. In contrast to work in

semantics, our work is concerned with a specific dimension of word meaning —

sentiment. Our techniques, however, are quite general and should be applicable

to other problems in lexical semantics.

5.6 Discussion

Though in our model the order of composition is the same as the word order,

we believe that a linguistically informed order of composition can give us fur-

ther performance gains. For example, one can use the output of a dependency

parser to guide the order of composition, similar to Nakagawa et al. (2010).

Another possibility for improvement is to use the information about the scope

of negation. In this thesis we assume the scope of negation to be the expres-

sion following the negation; in reality, however, determining the scope of nega-

tion is a complex linguistic phenomenon (Moilanen and Pulman (2007)). So the

proposed model can benefit from identifying the scope of negation, similar to

Councill et al. (2010).

Another possibility is to explore various ways of initialization of the matrix-

space model. One interesting direction to explore might be to use non-negative

matrix factorization (Lee and Seung (2001)), co-clustering techniques (Dhillon

(2001)) to better initialize words that share similar contexts. The other possible

direction is to use existing sentiment lexica and employing a “curriculum learn-

ing” strategy (Bengio et al. (2009), Kumar et al. (2010)) for our learning problem.
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5.7 Summary of the Chapter

In the current chapter we presented a novel matrix-space model for ordinal scale

sentiment prediction and an algorithm for learning such a model. The proposed

model learns a matrix for each word; the composition of words is modeled as

iterated matrix multiplication. The matrix-space framework with iterated ma-

trix multiplication defines an elegant framework for modeling composition; it

is also quite general. We use the matrix-space framework in the context of sen-

timent prediction, a domain where interesting compositional effects can be ob-

served. The main focus of this chapter was to exploit compositional structure of

the phrase by learning matrix-space word representations. One of the benefits

of the proposed approach is that by learning matrices for words, the model can

handle unseen word compositions (e.g., unseen bigrams) when the unigrams

involved have been seen.

However, it is not trivial to learn a matrix-space model. Since the final op-

timization problem is non-convex, the initialization has to be done carefully.

Here the weights learned in bag-of-words model come to rescue and provide

good initial point for optimization procedure. The final model outperforms the

bag-of-words based model, which suggests that this research direction is very

promising.
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CHAPTER 6

CONCLUSIONS

In this thesis we addressed two important tasks in the sentiment analysis area:

document-level and phrase-level sentiment classification. Here we summarize

the contributions of our work and discuss future directions.

6.1 Summary of Contributions

Incorporating automatically discovered informative sentences to im-

prove document-level sentiment classification. Informative sentences for

document-level sentiment classification are those sentences that exhibit the

same sentiment as the document, thus explain or support the document’s sen-

timent label. We showed that informative sentences discovered automatically

using sentiment analysis resources improve document-level sentiment classi-

fication, when incorporated in the form of additional constraints for an SVM

classifier.

Two-level joint structured model for document-level sentiment classification.

We further used automatically discovered informative sentences as latent vari-

ables in joint structured models. We explored two-level joint structured mod-

els for document-level sentiment classification; our final model does not re-

quire sentence-level sentiment annotations and directly optimizes document-

level sentiment classification accuracy, using sentence-level information only to

the extent necessary for solving the classification task. Our proposed model

demonstrates improved performance on two publicly available datasets.
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Compositional matrix-space models for phrase-level sentiment classification.

We presented an algorithm for learning matrix-space models for phrase-level

sentiment classification. The resulting model learns matrix-space word repre-

sentations that are explicitly compositional and the composition is modeled as

matrix multiplication. Our proposed model outperforms bag-of-words repre-

sentation for phrase-level sentiment classification task.

6.2 Future Work

There are many different directions to extend our work. In this section we de-

scribe some of these.

Rationales. Using rationales could be beneficial for other classification tasks.

For example, one interesting task to consider is deception detection (Ott et al.

(2011)) — the task of classifying whether a review is deceptive or not. Ott et al.

(2011) created a dataset of reviews with gold standard labels for this task. We

hypothesize that after careful consideration of those reviews, human annotators

could find explanatory text segments (rationales) that support the deception

label of the review. Can we automatically identify rationales for this task?

Structured models for document-level sentiment classification. The struc-

ture used in the model that we proposed in Chapter 4 is a set of informative

sentences. Instead, one can propose to represent the sentences in a document as

a linear chain of sentence-level sentiment variables connected to the respective

sentences, then identify informative sentences as in standard sequence-labeling

task. This will capture interactions between neighboring sentences by using a

more expressive graphical model as opposed to using proximity features as we
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did in Chapter 4. The inference in such a model will be tractable since the Viterbi

algorithm could be used to predict the best sequence of informative/non-

informative sentences; and then the best sequence of informative sentences

could be used as a structure for document-level sentiment classification.

Work by Thomas et al. (2006) on the U.S. Congressional floor debates dataset

exploits the speaker agreement structure of the debates. In Chapter 4, we de-

veloped a model that exploits the structure of informative sentences, which is

orthogonal to the speaker agreement structure used by Thomas et al. (2006).

Potentially one can combine these orthogonal and complementary structures to

further improve performance on the task of classifying speeches.

Another interesting research question is to consider the sentiment rating pre-

diction task: instead of predicting just positive or negative label, predict an ordi-

nal sentiment label. Will the structure of informative sentences as we defined it

in this thesis be useful for this task? Or should we define informative sentences

differently for this task?

One might also consider the task of classifying objective vs. positive vs. neg-

ative documents. In this setting the objective documents, as opposed to sub-

jective ones, might not have a good set of informative explanatory sentences.

Could we develop a model for this setting?

Compositional matrix-space model for phrase-level sentiment classification.

In Chapter 5, we proposed a compositional matrix-space model for phrase-level

sentiment classification. However, our learned model potentially can combine

any words. It has been known that some word combinations are more probable

than others. One way to extend our model is to incorporate language modeling

as part of the learning objective, so that more plausible word combinations will

get a higher score than less plausible ones.
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An interesting research direction is to explore ways of reducing the num-

ber of parameters in the model. One way is to consider matrices that have

some structure, therefore have fewer parameters. Another way is to have part-

of-speech-dependent word representations, where words with certain part-of-

speech tags will have many fewer parameters; for example, matrices for adjec-

tives and vectors for nouns (similar to Baroni and Zamparelli (2010)), etc.

Another possibility is to investigate different ways of initializing the matrix-

space model. It might be possible to use existing sentiment lexica to develop

better ways to initialize word matrices. Perhaps, word clustering techniques

(e.g., Brown et al. (1992)) could be used to initialize words such that words ap-

pearing in similar contexts initialized with similar matrices.

The other possible research direction is to employ a “curriculum learning”

strategy (Bengio et al. (2009)), to learn our proposed matrix-space model, by

learning from shorter phrases at first, and gradually moving to longer phrases.

Finally, our proposed model could be used for other tasks in lexical seman-

tics such as paraphrase detection, if we consider the matrix-space semantic rep-

resentation of a phrase, rather than its sentiment value. Then, it might be possi-

ble to formulate a learning objective that enforces similarities between the ma-

trix representations of similar phrases.
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