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Wireless networks comprise the majority of devices within the growing edge of

the global communication system. Performance metrics determining the suc-

cessful application of wireless networks in that setting are goodput, latency

and network lifetime. Overhead retransmissions due to redundant data trans-

fer, inefficient transmissions, low link quality, and suboptimal network layer

protocols affect negatively these three metrics. Designing wireless networks to

minimize the overhead retransmissions encompasses three network levels: the

data, structural and procedural levels. Encoded sensing (ES) is a “data-aware”

scheme that shapes the network structural level to account for correlations across

data sources and common data across groups of nodes. Via new encoding algo-

rithms, ES achieves substantial reduction of the transmissions required to con-

vey a message to a sink node. A few beneficial properties for network hard-

ware and design, based on sparsity of ES signals, are also discussed. The struc-

tural level is further augmented by the placement of relay nodes to minimize

the overhead retransmissions in the network due to low quality and heavily

loaded links. Finally, the Time Sequence Scheme operates on the network pro-

cedural level, allowing for broadcast of messages reaching all network nodes,

while minimizing redundant broadcast retransmissions. Explicitly minimizing

the number of retransmissions at each of the three network levels impacts ben-

eficially performance as shown by analysis and full network stack simulations.
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CHAPTER 1

INTRODUCTION

“But they are useless. They can only

give you answers.”

–Pablo Picasso on computers

1.1 The Expanding Edge

In 2016, the projected total world-wide internet traffic will exceed 1 zetabyte

per year, for the first time [1]. While this is still far away from the 10

90 total

number of bits the universe could register were it an ultimate computer [2], in

the context of human records this number describes approximately the content

of 174 newspapers received per person every day, per year [3].

Again in 2016, the projected amount of traffic generated by wireless de-

vices for the first time will surpass the traffic generated by wired devices [4].

More than 54% of the 1 zetabyte per year will be generated by tablets, smart

machine-to-machine (M2M) devices, sensors, and wearable electronics residing

at the edge of the network. And the edge is expanding: the Compound Annual

Growth Rate (CAGR) of the global communication system’s edge (estimated at

10.7%) is growing faster than the world population (CAGR 1.1%) and the num-

ber of Internet users (CAGR 9.2%) combined [4]. This shows that the average

number of interconnected devices per person will be more than one. A typi-

cal household in the U.S. will own a sizeable, wireless communication network

comprising dozens of devices.
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The projected numbers in [4] also help outline the nature of devices in such

wireless communication networks. Characterized by fast deployment and mo-

bility, these devices are energy-limited via battery power supply and commu-

nicate with the rest of the network via range-limited links. As discussed in

this thesis, the amount of transmissions on the wireless links determines the

cost, performance, and lifetime of a network. The efficiency of state-of-the-art

wireless networks technology and deployment can be substantially improved in

various domains (sensor networks, cyber-physical systems, health monitoring

medical wearable devices, etc.), significantly reducing the number of transmis-

sions and overhead (re)transmissions required to carry more than 500 exabytes

of data annually over the next few years.

This thesis outlines three network levels and their functional relationship to

the number of generated radio transmissions within a wireless network: the

data, the structural, and the procedural network levels. The data level shapes

the optimal construction of the structural level; in turn, the structural level

guides the design of the optimal algorithms and protocols residing at the pro-

cedural level. Fig. 1.1 shows an instance of the three-level decomposition for a

sample wireless sensor network. To optimize the number of (re)transmissions

and energy consumption in the network, three schemes are suggested in this

work: Encoded Sensing, RePlace, and the Time Sequence scheme. Each scheme

is closely coupled with a distinct network level. Encoded Sensing exploits the

properties of the data level and coordinates network devices transmissions to

form collaborative, sparse codewords accurately representing the source data,

yet requiring minimal number of transmissions. RePlace optimizes the prop-

erties of the structural level by placing relay nodes at strategic positions in the

network, increasing links’ reliability depending on links’ traffic loads and thus
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Figure 1.1: Left: a sample wireless sensor network measuring a physical
phenomenon (e.g. temperature). Nodes are in black and their
sensing ranges are homogeneous, as shown. Right: the decom-
position of the network system into three levels - data (bottom),
structural (middle), and procedural (top).

reducing packet loss and overhead retransmissions in the network. The Time

Sequence Scheme resides at the procedural level and orchestrates the funda-

mental broadcast network procedure, so that a minimal number of nodes are

required to transmit in order to convey a message from a source to all other

nodes in the network.

The data level comprises the description of traffic sources (e.g. phenomenon

to be sensed by a wireless sensor network, the traffic patterns input to an in-

telligent home network, etc.). The data level is rarely under the control of the

network engineer. The network engineer can react to the nature of the data level

by designing properly the structural and procedural network levels. Chapter 2

of this thesis examines how the network engineer could exploit knowledge of

the data level in order to achieve network structure which minimizes the num-

ber of signals required to convey a message - accurately describing the source

data - further up the network. The provided solution suggests new data encod-

ing schemes and drives the optimal construction of a wireless network topology
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into specifically designed clusters of “source” nodes pushing information to a

“head” node, so that the total number of signals sent by the source nodes is min-

imized. The resulting scheme reduces at least two-fold the amount of signaling

compared to typical state-of-the-art wireless network schemes.

Chapter 3 discusses the placement of relay nodes so that the number of re-

transmissions in the resulting network is minimized. For instance, if the “head”

nodes from chapter 2 are too far apart, the quality of the links on the paths

connecting them may be weak, requiring the addition of relay nodes to the net-

work. The relay nodes do not interact with the network data layer. They are

not sources of traffic and only retransmit the messages received by other nodes,

such as the “head” nodes. The RePlace algorithm outlined in chapter 3, finds the

placement of relay nodes, minimizing and even eliminating transmissions and

overhead re-transmissions, depending on the available number of relay nodes.

Given an optimized structural level, the design of a number of algorithms

and protocols residing in the procedural network level can be tailored to mini-

mize the number of transmissions in the network still further. Chapter 4, studies

one of the fundamental network procedures: broadcast. Broadcast allows any

network node to send a message reaching all other network nodes. In some

cases, broadcast may be the sole feasible data propagation mechanism in wire-

less networks. More importantly however, crucial network protocols (e.g. rout-

ing) utilize broadcast for link state updates and discovering paths to nodes. Ef-

ficient broadcast mechanisms satisfying a certain set of desiderata and minimiz-

ing the number of (re)transmitting nodes may determine the successful deploy-

ment of a network application. The Time Sequence Scheme described in chap-

ter 4 designed with the explicit goal of transmissions optimization, provides a
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fresh perspective on broadcast and leads to network performance significantly

surpassing existing schemes in the technical literature.

1.2 Why Data Retransmissions?

There are different network parameters that network designers can strive to op-

timize at different layers: interference, congestion, load balancing, network sur-

vivability, etc.. In almost all of these cases the goal is to provide network quality

of service (QoS) that satisfies the demands of a given network application, in a

best effort fashion. In many cases network QoS can be captured by two metrics:

latency and goodput.

Latency is typically defined as the time elapsed between a network source

node sending a packet and a destination node receiving that packet in full.

Goodput is the amount of application relevant information (in bits) that is

received at a destination node every second. This measure excludes the amount

of lower layer protocols’ overhead, packet retransmissions due to collision, etc..

Another metric, network lifetime, is becoming increasingly more relevant in

the context of battery powered devices populating the Internet of Things (IoT),

M2M, and Wireless Sensor Networks (WSN), the latter being deployed monitor-

ing various physical processes, ranging from measuring soil moisture (e.g. [5])

for precision agriculture to assessing power consumption in buildings (e.g. [6]).

In these scenarios, battery replacement is sometimes costly (industrial M2M net-

works cannot be shut-downed frequently for device maintenance) and is not

always feasible (e.g. remotely deployed sensor networks). Although different
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authors assume a variety of network lifetime definitions varying with respect

to the network applications (the reader may refer to [7] for overview), typically

these definitions capture the amount of time in which the network devices are

capable of satisfying QoS constraints. The network lifetime depends crucially

on the power drained for devices’ operation. It is well-known (e.g. [8], [9], [10])

that radio operation is one of the main energy depletion source for wireless de-

vices. 60�65% of the WSN nodes’ energy is consumed by radio communication

(this varies little with platforms); about 70% of WiFi enabled devices’ energy is

consumed by the radio operation, as well.

Examining the operation of various wireless network protocols, an interest-

ing pattern emerges. While a number of variables affect network performance

as captured by latency, goodput and network lifetime, the number of transmis-

sions affect significantly all three of those metrics.

More specifically, for instance, on the MAC layer, per the IEEE 802.11 MAC

protocol, the transmitter does not receive an acknowledgement by the receiver

if a packet is dropped at the receiver. In turn the transmitter retries sending

the packet. The number of such retries/retransmissions effectively leads to loss

in the goodput of the network. Due to the retransmission backoff mechanism

in the IEEE 802.11 MAC protocol, ceteris paribus, each retransmission until the

source receives acknowledgement leads to increasingly larger packet delay. Fur-

thermore, each transmission drains the energy of the devices. Therefore one

would like to ensure that communication links are as reliable as possible and

have as low communication cost as possible. As discussed in the following

chapters, minimizing the number of overhead retransmissions is a function of

the network structure: network engineers can design/control network topology

6



to reduce these retransmissions

At higher network layers, larger number of (re)transmissions due to pro-

tocol design again leads to reduction of goodput, increase of latency and de-

crease of network lifetime. For example, “the broadcast storm” ([11]) problem

results from inefficient flooding protocols propagating link status updates (or

other data) through the network. In this case, the number of nodes retransmit-

ting a broadcast message is too large causing contention, packet collisions, and

ever more further retransmissions.

Therefore, optimizing network structure (e.g. via topology control) and net-

work procedures (e.g. broadcast) to reduce the number of network transmis-

sions enhances significantly network performance across different metrics. The

following sections provide an overview of the prior work aimed towards min-

imizing the number of transmissions in wireless networks exploiting the char-

acteristics of each of the three network levels.

1.3 The Data Level

Informally, in the context of data networks, a set of S t source nodes may be

thought of observing st pieces of data at time t. The data pieces contain infor-

mation of Is [bits]. Upon receiving Is, a set of Dt destination nodes would change

their states. The function of a data network is to move the amount of informa-

tion Ir [bits] required for the proper change of states at the Dt destination nodes

in timely and reliable fashion, where “proper”, “timely” and “reliable” depend

7



on the network application requirements. 1

In many cases the st pieces of data contain redundant information. For in-

stance, in a wireless sensor network (WSN) a set of S t nodes may be measuring

the values of some phenomenon at a set of st points in space. The resulting st

measurements may contain redundant data due to the spatial correlations inher-

ent in many phenomena (e.g. temperature). The bits of information Is obtained

from all st measurements does not require the transmission of all st packets, each

packet encoding a separate measurement.

The S t nodes could compress the st packets to be sent. Alternatively, one could

ask if the set of S t source nodes itself can be pruned. In effect, fewer nodes, S 0t ,

sample the information in the st data packets and only the resulting subset of s0t

packets are transmitted. The two problems of efficient compression and sampling

depending on the properties of the data sources and network communication

channels have been central in the field of communication networks, and in the

next subsections, we review some of the work related to the data network level.

1.3.1 Data Compression

One of the first results on network compression from the 1970s characterizes

Distributed Source Coding (DSC). DSC is a network data compression tech-

nique leveraging results based on the Slepian-Wolf source coding theorem [12].

Namely, correlated data sources (e.g. the st data packets) can be compressed
1Notice that Ir  Is. Ir may be less than Is, for instance, if the source nodes “know” that

the destination nodes already have access to portion of the information encoded in Is. Ir could
even be 0 if the source nodes “know” that the destination nodes already have access to all of
the information in the Is bits; or, that the receipt of the Is bits would not change the state of
the destination nodes. In this work, we assume that Is = Ir bits need to be delivered to the
destination nodes.
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separately - without communication between the source nodes - and without

loss to the level of the joint entropy of the sources. This can be done as long as

proper statistical correlation information is available at each of the source nodes.

For instance, in the case of WSNs different approaches for distributed source

coding have been suggested in the recent technical literature utilizing available

spatial correlation models for a number of physical phenomena. The authors of

[13] and [14] leverage results based on the Slepian-Wolf source-coding theorem.

According to a pre-specified scheme, each sensor node in the network transmits

fewer bits the more correlated its measurement is to reference nodes. A some-

what different utilization of DSC is suggested in [15], where the authors extend

DSC to Distributed Source Coding Using Syndromes (DISCUS); the main ideas

however remains similar and are outlined below.

For simplicity consider the single-hop variation of the algorithms in [13] and

[14]. Given a neighborhood radius, ri, around a representative node i, the dis-

tributed source coding algorithm constructs an ordered sequence Ci of the nodes

that are within distance ri of i. The sequence can be ordered based on the dis-

tance between the sink and each node in the sequence (including i). (If the nodes

are approximately equidistant to the sink the sequence can be ordered based on

nodes’ IDs.)

Next, in the order of the sequence, rates (in bits) are allocated as follows:

R
1

(H(X
1

)) to the first node in the sequence, R
2

(H(X
2

|X
1

)) to the second node

in the sequence, and so on until the last node transmits with lowest rate:

RN(H(XN |XN , XN�1

, ..., X
1

)), assuming |Ci| = S t = N. Note, that while only local

information is required, all nodes within distance ri of i need to know all dis-

tances between the N nodes in Ci. Given a specific spatial correlation model,
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the distance information is required to compute the conditional entropies deter-

mining each node’s rate.

Here, the phenomenon’s statistical model is assumed to be a Gaussian ran-

dom field whose instances in the plane are Joint Random Gaussian Variables

(JGRV) with Power Exponential correlation model. In this case, one can find,

following [16], that the conditional entropy H(Xj|S ⇢ Ci) is approximated using

the conditional differential entropy as follows

h(Xj|S ⇢ Ci) = 0.5log
 

(

2⇡e)

|Ci |�|S | det(K)

det(K[S])

!

where K is the covariance matrix of the JGRV observed by the nodes in Ci. K[S ]

is the covariance matrix of the JGRV observed by the subset, S , of nodes in

Ci that node j conditions on, depending on j’s order in the sequence Ci. The

covariance matrix is computed using the given Power Exponential correlation

model and the known distances across the nodes.

Hence, instead of sending st packets containing redundant information, the

S t nodes are grouped in a sequence Ci with respect to some reference node i

and each of them only sends information conditional on the information sent

by the rest of the nodes in the sequence. As noted in [13] and [14], a number

of applications ([17], [18], [19] and [20] among others) in sensor and low power

wireless networks are suitable to utilize a similar DSC scheme.

Despite the rates allocated by DSC account for nodes observations’ correla-

tion, still the total rate equals at least the joint entropy of the observed measure-

ments. Proper sampling can be utilized in conjunction with compression to re-

duce the amount of information sent by source node even further. The trade-off

here is that the lower the number of data samples sent the greater the distortion

of the received information at the sink.
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1.3.2 Data Sampling

Data sampling across a set of S t source node is most intuitive in the context of

WSNs, though the sampling approaches considered below can be generalized

to different applications where a set of nodes have access to data packets con-

taining redundant/correlated information.

In a wireless sensor network setting, for example, a scheme is introduced in

[21] eliminating the transmission of highly correlated measurements across the

nodes in S t. Notice that in contrast to DSC discussed above where all nodes

transmitted, albeit potentially small amount of information, here only a subset

of representative nodes transmits the entirety of their measurements. As shown

in [21], the elimination of certain highly correlated messages would not distort

(within a bound) the overall phenomenon estimate at the sink. Thus network

energy is conserved via appropriate spatial sampling. Fig. 1.2 illustrates the

representative nodes approach in the context of WSNs. The outcome of the

scheme is that within a group of S t nodes measuring the same (or very simi-

lar) values, only a single representative node transmits an entire measurement

value at every time instance t. The work in [21] is motivated by the results in

[22] and [23] among others investigating the relation between the number of

samples (spatial, spatial-temporal respectively) and the achieved distortion of

the sink. The latter studies demonstrate that as the network density increases

in WSN the number of samples, as a percentage of the total number of nodes,

may decrease substantially without significant phenomenon estimate distortion

increase at the sink. A similar redundant node elimination approach has been

suggested in [24] where the authors determine the set of representative nodes

based on multiple distinct set covers. Here the goal is to cover a discrete set of

11



Figure 1.2: A number of network areas contain a large number of nodes
with spatially correlated measurements. One such area is
shown in blue. The area contains two clusters of nodes. The
nodes in each cluster measure very correlated measurements
that can be represented by the transmission of only one repre-
sentative node per cluster.

targets in contrast to accurately represent a continuous physical phenomenon.

At any given time only the nodes in one of the set covers is active. Each set

cover comprises the representative sensor nodes accurately depicting the set of

observed targets.

A more recent development of sampling compression schemes utilizes the

theory of compressive sensing ([25], [26], and [27]). The theory and algorithms

offered by compressive sensing depend on the structure of the data describing

a given phenomenon over time and space. Often physical phenomena can be

accurately described by signals possessing sparse representation in a certain

basis. In the context of wireless sensor networks the signals may have sparse

representation over time at a given sensor node (intra-signal sparse structure)

and/or over space across the measurements of different sensor nodes at any

fixed time (inter-signal sparse structure).
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Intra-signal structure has been exploited beginning with the work of Can-

des and Wakin ([28]) so that the measurements collected over time by any given

node are represented by substantially less data. For instance, suppose the phe-

nomenon source can be represented as a K-sparse signal over a period of n time-

slots. In the context of WSN, instead of sampling the phenomenon at each time-

slot and transmitting a message for a total of n messages, each node may sample

only at O(Klog(n)) timeslots. For example, in a very recent work, the authors of

[29] apply intra-signal compressive sensing techniques to the problem of in-situ

soil moisture measuring. Various other schemes based on compressive sensing

rely on inherent K-sparsity in phenomenon signal’s structure. An approach to

utilizing compressive sensing to account for inter-signal sparsity due to spatial

correlation is presented in [30]. The authors utilize specifically selected clus-

ters of spatially correlated nodes and apply compressive sensing locally within

these clusters. While in the intra-signal compressive sensing recent works relax

the assumption that the observed signal is exactly K-sparse over time (e.g. [31],

[32]), in the inter-signal setting [30] require that the observed phenomenon sig-

nals at a set of locations have exactly K-sparse representation (in some basis);

furthermore, the signals need to preserve spatial K-sparseness over time.

Notice that in themselves the compressive sensing-based temporal sampling

methods are orthogonal to the techniques utilizing spatial correlation across

nodes discussed above. Hence, a combination of spatial and temporal compres-

sion would be potentially beneficial. In a foundational study ([33]), the authors

investigate distributed compressive sensing applied to a signal characterized

by inter-signal K-sparsity, extending compressive sensing to distributed source

coding. The authors assume exact K-sparse representation of the phenomenon

over time.
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The above approaches illustrate that properties of the data at the source

nodes directly influence the amount of transmissions in the network. As we

will discuss in chapter 2, the data level characteristics may also determine how

to design optimal transmission strategies for that data. E.g. cooperative trans-

missions across nodes with access to “common data” reduce the required trans-

mission power for each bit, while achieving the same signal to noise ratio at

the receiver via beam-forming (e.g. [34] and [35]); also, sparsity of the data at

the source nodes may be exploited to modulate nodes’ transmissions, so that

the resulting transmitted signal contains only a low number of data’s random

projections while the destination node can still recover the data using wireless

compressive sensing (as suggested in [36]). The approach of Encoded Sensing

presented in chapter 2 improves on these methods by introducing a novel col-

laborative coding scheme, based on “common data” and “approximately com-

mon data”. We do not require sparsity in the data at the source nodes, and yet

are able to exploit the benefits of compressive sensing at the physical layer due

to the properties of the constructed collaborative codebook.

1.4 The Structural Level

A number of important network performance properties are determined by net-

work’s topology links’ states. Network’s structural level captures topological

and links states characteristics. The structural level design reflects network’s

connectivity, fault tolerance and links’ reliability.
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1.4.1 Connectivity and Fault-tolerance

A network is connected if for any pair of nodes u and v in the network there

exists a path of bi-directional reliable links that connects u and v. The reliability

of each link connecting node i to node j on a given path is determined by the

amount of noise and interference on that link and on the transmission power of

the source node (e.g. i). It is well known (see for instance [37]) that the trans-

mitted wireless signal deteriorates proportional to d↵i j, where di j is the distance

between nodes i and j and in various wireless networks ↵ 2 [2, 4]. Hence, intu-

itively to increase the reliability of the links in the network and the probability

that the network is connected at any given time, the wireless nodes should in-

crease their transmission power. This strategy is not necessarily beneficial:

• First, increasing transmission power decreases network life time in the case

of battery constrained devices.

• Second, increasing i’s transmission power may lead to increase in interfer-

ence across a different set of links.

1.4.1.1 Transmission Power Control

Finding the minimum level of transmission power, so that the network is still

connected is one approach of controlling network topology and optimizing

the network’s structural level. Various algorithms have been suggested in the

technical literature for power allocation and transmission radius adjustment to

maintain connectivity, while maximizing network life. Li et al. ([38]) deter-

mine the minimum amount of power required to maintain a cone originating

at source node i and spanning x degrees, so that a message sent by i is deliv-

ered successfully at least at one node inside the cone. The authors derive the
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optimal value for x, so that the network is connected. In contrast, the authors

of [39] minimize the maximum transmit power across all nodes in the network

by allocating transmission powers to the nodes following a Minimal Spanning

Tree strategy. A strategy of incremental adjustment of transmission powers to

minimize the maximum transmit power is also studied in [40]. Instead of mini-

mizing the maximum assigned transmission power, a different approach could

be the minimization of the total transmission power consumed in the network

while maintaining connectivity (e.g. see [41]). The two different approaches to

topology control optimize different life-time metrics ([42] and [7] provide more

references to various lifetime models).

1.4.1.2 Relay Nodes Placement

In all of these cases the authors assumed that nodes perturb their transmission

powers in order to optimize a given property (i.e. connectivity) of the network

structural level. A different stream of work considers instead the addition of

relay nodes to the network. These are assumed to be cheap devices that are not

sources of the data in the network, and only re-transmit the packets reaching

them. The authors of [43] and [44] investigate connectivity guarantees via re-

lay node placement, instead of transmission power adjustment, and show that

the relay placement problem is NP-hard in that setting. Various heuristic and

approximation algorithms have been suggested to optimize the positions of the

relay nodes. In many cases, a stronger condition on network connectivity is

imposed: at least k paths need to exist between each pair of network nodes.

The latter condition provides survivability and fault-tolerance guarantees

with the network deployment and relay nodes placement (for instance, if less
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than k nodes antennae fail it is guaranteed that the network will still be con-

nected). The authors of [45], [46], [47], [48] and [49] and references therein pro-

vide various approximation schemes to the optimal relay placement, relying on

operation research results regarding finding Steiner points in a network (e.g.

[50]) and survivable network design problems (e.g. [51]).

1.4.1.3 Virtual Mobile Backbones

Another form of topology control specifically targeting Mobile Ad-hoc Net-

works (MANETs) relies on the construction of mobile virtual backbones. In

these studies the authors assume that the network consists of two types of

nodes: highly and less capable nodes. The network designer has control over

the mobility patterns of the highly capable nodes. The task is to position the

highly capable nodes w.r.t. the less capable nodes in order to improve certain

network performance metrics. The first studies (e.g. [52] and [53]) describing

the building and maintaining of such virtual mobile backbones did so in the

context of routing (increased throughput) and network QoS (decreased latency).

However, virtual mobile backbones has since been utilized (e.g. the reader may

refer to [54]) to maintain network connectivity by solving the connected disk

cover problem and minimizing the number of highly capable nodes.

1.4.2 Reliability and Communication Cost

Topology control can be used to achieve desired levels of network connectivity

and path redundancy as discussed above, but it can also be utilized to increase

network’s links reliability and reduce overhead communication costs due to
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multiple packet re-transmissions. These are the metrics we concentrate on in

chapter 3 of this thesis. In this context, network designers have resorted both to

the placement of additional relay nodes in the network and to adjusting nodes

positions. The latter technique relies either on controlling network nodes’ mo-

bility to create a virtual mobile backbone (similar to the one described in the

previous subsection); or, altering the placement of the relay nodes via network

re-configuration.

The approach of allocating mobile nodes to construct a virtual mobile net-

work backbone has found popularity in works on mobile robots networks.

Recently, in [55], the authors considered the optimal placement of M mobile

relay nodes serving as a forwarding communication backbone to reduce net-

work communication cost. Their approach improved on earlier works (e.g. [56]

and [57]) of mobility-based topology control for communication cost optimiza-

tion. In [56] the authors considered mobile relay nodes forwarding information

across static source nodes. In [57], Goldenberg et al. provide a distributed al-

gorithm controlling the mobility of the relay nodes towards the midpoints of

links carrying traffic. In both works, the communication cost improvement in

the resulting network has been measured in terms of energy saved, while main-

taining fixed link reliability. An alternative equivalent communication cost im-

provement measure would be increasing link reliability while maintaining a

fixed transmission energy budget. As shown in [55] the midpoints of certain

loaded network links is not necessarily the best placement of the mobile relay

nodes w.r.t. to the rest of the links in the network that are carrying traffic. Fur-

thermore, the motion of the nodes (i.e. robot agents) depletes energy: the path

of the mobile nodes needs to be optimized in order to conserve energy [55]. In

the context of sensor networks, where nodes are often static and the adjustment
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Figure 1.3: The communication cost function of a network on four fixed
source nodes and one relay node. Each (x,y) position of the
relay node corresponds to a communication cost value (z-axis),
given fixed routing in the network (i.e. routing does not change
as the relay nodes position changes). Notice that the communi-
cation cost function attains its minimum (marked with a cross)
in the intersection of the specifically shaped zones, each zone
associated with a distinct link. In this example, placing the re-
lay node at the position marked by the cross also induces op-
timal routing in the network and minimizes globally the com-
munication cost function. Notice that in general this need not
be the case: the optimal routing may change as relay nodes’ po-
sition changes and, vice versa, the optimal relay node’s place-
ment changes as the routing changes. Chapter 3 discusses in
more detail the zone shape and the intersection selection for
relay node placement.

of nodes’ positions over time is not feasible, a set of additional relay nodes may

be added to the network at arbitrarily picked and fixed positions, so that com-

munication cost is minimized. The optimal placement of relay nodes have been

studied in [58], [59], and [60]. In these cases however, the potential locations of

relay nodes within the network are constrained to a discrete, finite, set of pre-

specified points on the plane. Chapter 2 describes in more detail the problem

of relay placement in this setting. The RePlace algorithm for relay placement

is studied along with the reformulation of the optimal relay placement prob-

lem that avoids inherent inefficiencies in current relay placement models (e.g.

19



in the works discussed above, traffic patterns and links loads are considered

fixed as the relay nodes are placed). We observe that the communication cost

function is convex when the routing in a network is fixed. We consider geo-

metrical constraints on the optimal routing of traffic through the network in the

presence of relay nodes. Fig. 1.3 illustrates an example of the communication

cost function given a network of four fixed source nodes and one relay node

placed in the intersection of specifically picked feasible zones for relay nodes

placement. Chapter 3 motivates the zones’ shape and the intersection selection

for relay node placement, with the goal of minimizing the number of overhead

retransmissions in the network and overall network communication cost.

1.5 The Procedural Level

Suppose we have established what, how much information to send, how to en-

code that information and what are the source nodes in the network at the data

level. At the structural level, we have determined the positions of the nodes,

or their mobility patterns (when applicable), have assigned transmission pow-

ers and placed communication relay nodes as needed to insure connectivity,

increase reliability and reduce network communication cost. How and when

should then information flow through the network so that links are not over-

loaded and congested, information is delivered from the source to the destina-

tion over the “best” possible paths according to some metric (for instance, num-

ber of retransmissions or energy consumption); which of the network nodes

should forward information given a specified set of source node and a specified

set of destination nodes? Questions of this flavor are addressed at the procedu-

ral network level.
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The communication patterns in networks can be broken into three types:

unicast, multicast and broadcast. Unicast comprises communication scenarios

where typically a single source has information delivered to a single destina-

tion; multicast comprises communication patterns where a source node sends

the same piece of information to a specific subset of the network nodes; and

broadcast comprises patterns where a source node has to deliver the same piece

of information to all nodes in the network.

1.5.1 Unicast

In wireless networks, links are often asymmetrical. If node A can communicate

with node B that does not necessarily imply that node B can communicate with

node A (the reader may refer to, for instance, [61] in the case of wireless ad

hoc networks, [62] in the case of wireless sensor networks). Also, links’ quality

change over time (due to nodes’ mobility, environmental changes, etc.); e.g. see

[63] and [64] for link quality prediction in, respectively, mobile networks and

vehicular ad-hoc networks (VANETs).

Due to the dynamics of wireless link quality and asymmetry traditional

wireline network protocols such as OSPF ([65]) do not perform well2. The

amount of link state updates an OSPF implementation would require to account

for link dynamics is not feasible due to limited bandwidth, for instance.

A number of unicast routing algorithm have been suggested in the tech-

nical literature and have been deployed in the context of WANETs, MANETs,
2Medium Access Control (MAC) protocols for wireless networks have very different design

and handle a host of communication scenarios that are not present at wireline link layers. Here,
we do not focus on MAC layer performance, however the interested reader may refer to [66]
and the more recent work in [67] for a survey on MAC layer protocols for wireless networks.
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VANETs 34. The goal of these algorithms is to deliver each payload message

from the source to the destination with minimal control message overhead,

while maintaining a (approximately) correct view of the network’s structural

level. A number of protocols that have been shown to attain these goals while

delivering acceptable QoS levels. The protocols can be classified as reactive,

pro-active and hybrid. Reactive protocols (such as Associativity Based Rout-

ing (ABR, [70]), Dynamic Source Routing (DSR, [71]), Ad-hoc On Demand Dis-

tance Vector Routing (AODV, [72]), Temporarily Ordered Routing Algorithm

(TORA, [73]), etc.) rely on building a source-destination path, on-demand,

when a packet needs to be sent. In contrast, pro-active protocols (Destination-

Sequenced Distance-Vector (DSDV [74]), Optimized Link State Routing (OLSR

[75]), the Cluster Based Routing Protocol (CBRP [76]), etc.) attempt to main-

tain an accurate view of the network structural state over time. Each node pe-

riodically updates a routing table from itself to all other nodes connected to

the network. The first example of a hybrid routing protocol was proposed in

1997: the Zone Routing Protocol (ZRP [77]), where routing within specifically

constructed zones is done pro-actively; routing in-between zones is done re-

actively. This approach leverages a balance between the control message over-

head of on-demand protocols (a source-destination path is built only if a packet

is sent outside a zone) and pro-active protocols (the state of the network is main-

tained only within a local zone, usually comprising a 2-hop neighborhood).

The operation of the above unicast protocols should account for network’s

structural and data levels as well. If the network structure supports multi-
3In the context of infrastructure wireless networks (e.g. cellular networks), routing is easier

since mobile nodes are typically one hop away from the destination.
4We do not consider here networks with intermittent connectivity, which fall in the broader

class of delay tolerant networks. The interested reader may refer to one of the first studies on
the problem [68]; [69] suggests the use of epidemic routing for the first time, in that context.
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Figure 1.4: An example of sensor network with specified data and struc-
tural levels. Representative sensors (stars) at optimal sam-
pling locations measure the values of a phenomenon follow-
ing a Joint Gaussian Random Variable with Power Exponen-
tial spatial correlation model. The locations of representative
sensors are chosen to minimize the number of representative
sensors and transmissions required to convey accurately the
phenomenon (data level). Relay nodes (blue circles) forward
the measurements across representative nodes. Relay nodes’
locations are optimized w.r.t. to the source data demand ma-
trix and traffic loads in the network, in order to minimize com-
munication cost and overhead transmissions due to dropped
packets (structural level). Broadcast information flows from a
source node (red) to all other nodes in the network. Multicast
information flows from the source node to the subset of net-
work nodes nodes south of it. Both multicast and broadcast
are designed to meet network’s QoS constraints and reduce re-
dundant re-transmissions of packets.
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ple paths between source and destination (each path having different bottle-

neck link capacity), an efficient routing protocol should attempt to balance

the load across multiple paths over time and space. If only the minimum

weight/shortest paths are utilized, links connecting nodes with high centrality

would be heavily loaded increasing congestion and energy consumption due

to dropped packets re-transmissions. Works along the lines of [78] and more

recently [79] and [80] have investigated incorporating load balancing in wire-

less network routing protocols. In [79], the authors demonstrate that following

optimal “curved” in lieu of short “straight” paths may decrease the maximum

link traffic load in the network by 40%. As we see in chapter 3, traffic loads on

links directly impacts the network structural level, for instance, in the context

of optimal relay placement minimizing overhead transmissions in the network.

In this work, we compute the optimal relay placement w.r.t. minimum weight

source-destination path routing and investigate the resulting interplay between

traffic loads and relays locations (chapter 3). However, a brief discussion on the

impact of load balancing and evenly distributed traffic loads on optimal relay

placement is provided in chapter 5.

1.5.2 Multicast and Broadcast

Multicast and broadcast are two other communication patterns residing at the

network procedural level. Per multicast, information can flow within a “many-

to-many” or “one-to-many” scenario: respectively, a subset of source nodes

send data to a subset of destination nodes; and a single node sends a packet

to multiple nodes in the network. In both scenarios the destination nodes may

be multiple-hops away from the source node(s). Broadcast, on the other hand,
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requires that a message sent by a source node should reach all of the network

nodes (please refer to Fig. 1.4).

In a sense, multicast could be thought of as the most general communica-

tion pattern in networks. Both unicast and broadcast can be viewed as special

cases of multicast. However, due to the specific requirements of broadcast and

unicast communication, the respective algorithms differ significantly from the

multicast approaches. Typically multicast protocols rely on a collection of trees

each spanning (possibly disjoint) subset of network nodes. Each tree is rooted

at a source node and covers the multicast destination nodes. This approach was

first proposed for wireless multihop networks multicast in [81], where authors

built on earlier ides for multicast in wireline LANs developed in [82]. Notice

that simple unicast protocols build a single-path or, in the case of multi-path

routing, a collection of paths (potentially disjoint) between a single source and

a single destination.

In contrast, as we see in chapter 4, the broadcast solution minimizing the

number of re-transmitting nodes in the network is equivalent to finding a Min-

imum Connected Dominating Set (MCDS) in the wireless network graph. As

discussed in chapter 4, minimizing the number of re-transmitting nodes has

a number of benefits for network performance. Since broadcast is frequently

invoked network primitive in many network layer protocols (for example, all

unicast routing protocols in the on-demand and hybrid classes discussed above

use a form of broadcast to build source-destination routing paths), it is impor-

tant that a broadcast message is propagated within the network with low la-

tency and utilizing minimum amount of resources (e.g. energy). Intuitively, the

lower the number of nodes re-transmitting the broadcast message, the lower
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the latency and energy consumed in the network. Finding the MCDS in a gen-

eral graph is an NP-hard problem ([83]). In unit disk graphs (UDG) utilized to

model wireless networks, the hardness of the problem is preserved. Hence, effi-

cient distributed approximation algorithms and heuristic solutions are typically

sought to solve the broadcast problem. Chapter 4, discusses in detail state-of-

the-art algorithms and a novel approach of broadcast transmissions prioritiza-

tion in time, to achieve close to optimal performance in terms of minimizing

the number of payload packet re-transmissions required to cover all network

nodes.
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CHAPTER 2

STRUCTURING NETWORKS AROUND THE DATA LEVEL

As noted above, communicating data is among the most energy expensive

routines across different types of wireless networks. For instance, receiving

and transmitting data in wireless sensor networks (WSN) consisting of Mica2

nodes running TinyDB applications constitutes about 59% of the total energy

consumption [8]. In various applications running on similar WSN node plat-

forms, only transmissions account for up to 50-65% of energy expenditure, de-

pending on radio throughput [9]. The trend is similar for small WiFi connected

devices, where radio operation may claim 70% of the total energy budget [10].

Reducing the amount of data transmitted and/or energy consumed per trans-

mission could lead to longer network lifetimes and significantly impact network

functions.

The focus of the next sections is on a particular communication scenarios in

the context of wireless networks’ energy efficiency. Suppose a group of source

nodes have access to the same or highly correlated pieces of data that need to be

sent to a common sink. This scenario may be inherently embedded at the data

level, on one hand. For instance, a physical phenomenon changes slowly across

space, and the nodes in a WSN have similar readings. This is true in a number

of WSN deployments, where clusters of spatially proximate nodes sense and

potentially transmit very highly correlated, almost identical values to the sink

([21],[84]). Also, due to the broadcast nature of wireless transmissions, a number

of collocated nodes may receive the same data packet from a source node, while

having the destination node as a common neighbor. On the other hand, the

scenario may be proactively sought after by the network designer. I.e., nodes
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can be intentionally placed in clusters, so that all nodes within a cluster have

access to “approximately common” data. Suppose there are |G| nodes placed

within a cluster |G| and each node i needs to transmit a message mi, 1 < i < |G|

at time t to sink s. Nodes within cluster G are said to have “approximately

common data”, if at any time t the difference (measured by some metric such as

hamming distance, binary value, etc.) between any two packets is bounded by

a constant:

kmi � mjk < b,8i, j, where b 2 R+ (2.1)

For example, the operation of cooperative transmission networks (e.g. [85], [86])

and the related distributed transmit beamforming physical layer protocols [34]

requires a specific case of approximately common data across a cluster of nodes

that synchronizes their tranmissions. In the case of these protocols, b is 0 in (2.1).

I.e. the nodes have access to common data.

Encoded sensing (ES) is a different novel scheme outlined and analyzed in

[87] and [88] that substantially reduces the energy required for transmission of

data in various types of wireless networks. ES operates by exploiting approxi-

mately common data embedded in the data level, or by structuring the network

topology, so that approximately common data across multiple clusters of nodes

is attained, and then exploited. ES reduces at least two-fold the number of radio

signals required for conveying a message to the destination from each cluster of

nodes. Furthermore, the received messages distort the original source messages

within QoS constraints. The next section first provides a brief description of en-

coded sensing’s basic idea in the context of a WSN, since ES is most intuitive in

that setting.
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2.1 Encoded Sensing for Energy Efficient Wireless Networks

Suppose a set N of sensor nodes is deployed within an event area A, according

to some spatial distribution �. The event source is continuous and governed by

an apriori known spatial statistics. The source statistics model could be dictated

by the phenomenon nature, or learned via training. Although measurements at

different positions in A are frequently assumed i.i.d in the research literature,

it is more realistic to assume that measurements are instead spatially-correlated

and dependent on the distance between sensors ([89], [21]). The specifics of

the spatial-correlation model are described in section 2.4.1, where we discuss

further the application of ES to WSN.

Assume time is discretized in slots. The sensors sampleA, and a set of active

nodes report measurements to the sink during each timeslot. Nodes are coarse-

grained synchronized at a resolution of a timeslot. Suppose nodes transmit over

multiple access AWGN channel at the same average power per bit, and that the

sink B is within the transmission radius R of the nodes. The latter assumption

is made for simplicity of presentation. ES can be readily extended to a multihop

scenario.

Finally, imprecisions in sensors’ electronics often occur in practice, introduc-

ing noise in each node’s measurement. The statistical model for this instrumen-

tation noise is provided in section 2.4.1.

WSN problem statement: under the above assumptions, one seeks a scheme

that minimizes the energy spent in communicating measurements to the sink,

while simultaneously guaranteeing a level of accuracy in estimating the value

of the measured source. This minimum level of accuracy is prescribed to the
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system by QoS constraints. Sink’s estimate accuracy is modeled via a standard

Minimum Square Error (MSE) distortion metric fully specified in section 2.4.1.

2.1.1 Encoded Sensing Solution Intuition

Suppose the continuous source (e.g. a phenomenon or modality such as tem-

perature) is quantized into a set of short intervals. The intervals are assigned

to an index I = 1, 2, . . . ,M. For simplicity assume that at a given timeslot, all

sensor nodes in a group G ⇢ N measure phenomenon values falling in the same

interval x 2 I. We relax this assumption later. The goal of group G is to transmit

measurement x to the sink, reliably and with minimum energy.

Per encoded sensing, the nodes in G are labeled with IDs: 0, 1, . . . , |G| � 1 as

shown in fig. 2.1. Every interval x 2 I is assigned to a distinct set of nodes

Ax ⇢ G. Each of the nodes in Ax ⇢ G assigned to x transmits a signal “1” to

the sink. The nodes in G/Ax remain silent. Each transmitted signal “1” carries a

“signature” of its source node j 2 Ax. Receiving the signed signals, the sink can

identify all j’s in Ax. Assuming it knows the assignment of sets Ax to intervals

x, 8x 2 I, the sink can recover x. Since x is short, it is an accurate estimate of the

value measured by the nodes in G.

In essence, the sink receives a “collaborative codeword” cx of “1”s that en-

codes the interval x. Upon receiving a valid codeword cx, the sink can decode it

and obtain x. The number of available codewords depends on the cardinality of

Ax and the size of the group G. For instance, given a group of size |G| = 14 and

equal codeword lengths |Ax| = |cx| = 4 one could generate
⇣

14

4

⌘

= 1001 different

codewords; if |G| = 17, there are more than double,
⇣

17

4

⌘

= 2380, codewords. In
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 Figure 2.1: All nodes in the group G sense a value in the same small in-
terval x (in solid red gradient). Only the 4 nodes (circled in
red line) that are assigned to x transmit to the sink; the remain-
ing 10 nodes are silent (white blocks). The sink identifies the 4
transmitting nodes (red blocks) and recovers the interval x.

the limit case, |Ax| = |cx| = 1: given |G| = M the measurement can be encoded

over a single bit sent by a single source node j, given j’s “signature”. Notice

that this limit case is somewhat analogous to utilizing M-ary orthogonal codes

(e.g. PPM) to achieve reliable communication at the minimum possible energy

per bit Eb as M increases ([90]). There, the total power is spread over a large

time interval. As we will see, in the encoded sensing limit case, where |G| = M,

the energy per bit is spread over nodes’ specific orthogonal code “signatures”.

Although most energy efficient, the limit case is not practical, as M could

be on the order of tens of thousands and larger. However, one can observe a

trade-off between the number of nodes in the network and network’s energy

efficiency. Given the number of nodes |G| as a system constraint/parameter, the

minimum codeword length |Ax| = |cx| = K is found, so that
⇣|G|
|K|

⌘

� M, thus min-
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imizing energy consumption for communication in group G. Also, a WSN of

N nodes can be partitioned in multiple groups of nodes, so that encoded sens-

ing employed locally in each group maximizes network-wide energy efficiency,

while satisfying quality of service constraints.

In the above description, there are a few implicit assumptions regarding ES

operation. In what follows we show how these assumptions can be met or re-

laxed; we study and quantify the benefits of employing ES; and we describe

how ES may be generalized outside the scenario of WSNs.

- Encoded sensing collaborative codes:

• First, it is assumed that the sink and nodes “know” of a mapping where any

message x is assigned to a distinct set of nodes Ax ⇢ G. Sections 2.1.2 and 2.2

provide and analyze decentralized algorithms for finding such mappings and

constructing novel collaborative codes for energy efficient communication.

• In the case of WSN, it is also assumed that nodes in the same group G mea-

sure values falling in the same interval x 2 I. In practice, this may not always be

the case due to measurement imprecisions, for instance. Section 2.2 (Theorems

(2.2) - (2.4)) propose and analyze a novel Minimal Distance Combinatorial En-

coding allowing nodes within a group to erroneously measure values falling in

an interval x0 differing from the true interval x. The nodes in the group still can

transmit the correct collaborative codeword for interval x. The same ES codes

can be used to encode general data messages instead of intervals x.

- Encoded sensing signatures and sparse DSSS:

• Next, it is assumed that the sink can identify each transmitting node’s “sig-

nature” based on a single bit. Section 2.1.2 discusses a node identification tech-

nique at the sink based on standard direct sequence spread spectrum (DSSS)
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PN sequences. A certain sparseness property of ES provides insight for a novel,

significantly reduced, receiver circuitry (and cost) for DSSS devices based on

compressive sensing sparse support recovery. Using the latter technique, the

sink identifies nodes’ signals with high probability (Theorem (2.5)).

Support recovery is sufficient for ES operation; ES does not require detection of

the received symbol sign (i.e. detecting if the received bit is 0 or 1). However, the

described sparse DSSS receiver design is potentially applicable in other, non-ES,

DSSS deployment scenarios, too. Hence, for completion, we discuss a MMSE-

based scheme for detecting the received symbol sign at the sparse DSSS receiver.

The bounds for the conventional DSSS receiver design’s symbol detection prob-

ability of error are derived and compared with the respective performance of

the suggested sparse DSSS MMSE-based scheme.

- Energy efficiency and distortion:

• In section 2.4, ES is studied in a WSN application. ES achieves comparable

energy gains to state-of-the-art cooperative distributed transmit beamforming

schemes [34]. Unlike beamforming, ES does not reside on the physical layer

and does not require fine synchronization across transmitting nodes, the latter

often being impractical. Also, we show that ES is at least 2 times more energy

efficient than non-cooperative (e.g. algorithms in [21] and other duty cycles

schemes), where only one of the nodes in a group G transmits message x. The

analytical rationale for the latter is given in section 2.5.

• The energy efficiency of the ES scheme is achieved while matching and guar-

anteeing optimal level of estimate distortion at the sink, within WSN’s QoS con-

straints. Section 2.4.2 outlines a vector quantization scheme for determining the

sites of representative groups of nodes with highly correlated measurements so
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that the resulting distortion is optimal. The scheme can be utilized orthogonally

to ES to reduce distortion of measurement either in the context of topology con-

trol by placing nodes at the representative groups sites; or, for forming groups

of highly correlated nodes, given network nodes have already been placed.

2.1.2 Encoded Sensing Stages

For clarity, consider a single group of nodes G ⇢ N. The nodes in G need to

send message x to a single sink. Encoded sensing consists of four major stages:

encoding, assignment, transmission, and decoding.

• At the encoding stage, each node in G locally encodes x into binary codeword

cx of length |G|, according to a common decentralized coding algorithm run at

all nodes. We discuss such codes, satisfying different properties below. Let

cx( j), 0  j  |G| � 1, denote the j-th most significant bit in cx. Each node forms

the set Ax = { j : cx( j) = 1}.

• At the assignment stage each node j determines whether it is in the set Ax:

Dj =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, if j 2 Ax

0, otherwise
(2.2)

Node j assigns itself to x, iff Dj = 1.

• Next, at the transmission stage, for each node j 2 G, if Dj = 1, j transmits a

single bit “1 j” with j’s signature, so that upon receiving “1 j” the sink can detect

the sender node j. Otherwise, if Dj = 0, node j remains silent.

• Finally, at the decoding stage, the sink receives the set
n

1 j : j 2 Ax

o

. The sink

determines the identities of the transmitting nodes based on their signatures

and recovers Ax. The codeword entry cx( j), 0  j  |G|� 1, is set to 1 if j 2 Ax and
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to 0 otherwise. The sink runs a decoding algorithm on cx to obtain message x.

The codeword cx received at the sink has been collaboratively constructed by the

nodes of group G. Such codewords are referred to as collaborative codewords.

Minimizing |Ax| reduces the number of nodes that transmit signals, convey-

ing message x to the sink, in turn minimizing communication energy. Notice

that |Ax| = w(cx), where w(cx) is the weight of codeword cx. The weight of a

binary codeword as usual equals the number of 1’s in it. The objective of a col-

laborative code would be to have a sufficiently large range C of codewords with

length |G|, so that C � M. Simultaneously, w(cx) should be as small as possible

for all x. Since each x must be encoded with a distinct codeword cx, the subsets

Ax of G have to be distinct. As an illustration of encoding sensing’s mechanism,

the next three subsections discuss a simple combinatorial code, along with re-

spective encoding/decoding algorithms, that achieves optimal performance for

sufficient number of nodes in a group G. However, this combinatorial code

may not be practical in certain scenarios. Section 2.2, develops a more sophisti-

cated code preserving the performance of the simple combinatorial code, while

avoiding its limitations.

To reduce the number of nodes participating at the encoding and trans-

mission stages and achieve optimal energy efficiency, the goal is to minimize

|Ax| = w(cx), given M and |G|. Suppose M and |G| are known locally at all nodes.

The constraint here is that all M messages have to be assigned to M distinct

codewords. Assume equiprobable messages at present, |Ax| = w(cx) = K,8x.

Then, notice that the number of possible distinct codewords is
⇣|G|

K

⌘

; it is required
⇣|G|

K

⌘

� M. For a given fixed group size |G|, one first finds

K⇤ = min

1K|G|/2
K s.t.

 |G|
K

!

� M (2.3)
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and next constructs a code, where w(cx) = K⇤ , 8x. The range C of this code is
⇣|G|

K

⌘

. For any given |G| and M, K⇤ is easily computed numerically at each node.

Picking K⇤ for the size of the subset of nodes Ax assigned to each message x

guarantees that the number of nodes participating in the encoding of x is the

minimum possible.

Each message x is indexed so that: 0  x  M�1. Given message x, in the en-

coding step, each node runs Algorithm (2.1) locally. Algorithm (2.1) performs

basic combination unranking. Hence this simple code is dubbed combinato-

rial encoded sensing (ES-C). For each distinct input pair (x,K⇤) ES-C outputs

a distinct set Ax of K⇤ integers taking values from 0 to at most |G| � 1. Stated

differently, each distinct message x is mapped to a set Ax containing the IDs of

the nodes in G responsible for x. Ax is the minimal possible such subset under

the constraints of (2.3). At the assignment stage, each node j 2 G knows the set

Ax assigned to the message x, and j knows its own ID. If j’s ID is in Ax, j sets

Dj = 1 in (2.2). Notice that without message passing between each other, the

nodes in G have at this point locally and collectively encoded the message x to

a codeword cx, where cx( j), 0  j  |G| � 1, is set to 1 if j 2 Ax and to 0 otherwise.

Algorithm 2.1: COMBINATORIALASSIGNMENT

input: value of message x, K⇤
output: assignment Ax = {nK⇤ , nK⇤�1

, · · · , n
1

}
1: Ax  {;}
2: m K⇤
3: // Each iteration, add node ID to the assignment Ax of nodes to message x
4: while m � 1 do
5: nm  maximum integer nm such that

⇣

nm
m

⌘

 x
6: x x �

⇣

nm
m

⌘

 x
7: m m � 1

8: Ax  Ax [ nm
9: end while
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2.1.3 Transmission and Optimality

At the transmission stage, the nodes in Ax can transmit their respective single-bit

signals “1 j”. The sink can only recover the codeword cx if nodes’ transmissions

indicate nodes’ identities as well. This information however is often implicit in

many standard physical layer protocols employing variants of spread spectrum

wave signatures embedded in each node’s signal. For instance, the physical

layer of IEEE 802.15.4 utilizes Direct Sequence Spread Spectrum (DSSS). Sim-

ilarly practical and efficient DSSS architectures for low-powered WSNs have

also been discussed in [91]. Long Term Evolution 3GPP networks are another

example where each node is assigned a distinct, in this case, Zadoff-Chu se-

quence [92]. In general, some form of a signature identifying nodes’ signals

at the receiver is a common feature in many “off-the-shelf” multiuser systems

([93], [94]). In the above instances, each node’s signal (bit) is multiplied by the

node’s unique sequence and transmitted. The received signal is correlated at the

sink, via a bank of matched filters, with the set of available sequences’ waveform

signatures. The sink can obtain the identity of the transmitting nodes in this se-

quence acquisition stage. This is the only assumption ES makes regarding the

physical layer. Section 2.3.1 expounds different possible DSSS designs.

Notice that given |G| � M each message x can be encoded over a single bit,

w(cx) = K⇤ = 1, sent by a single source node j, where the bit is spread over j’s

DSSS spreading sequence. This limit case is similar to utilizing M-ary orthogo-

nal codes (e.g. PPM) to achieve reliable communication over AWGN channels

at the minimum possible energy per bit Eb, as M increases [90]. There, the to-

tal power is spread over a large time interval to achieve the Shannon limit of

Eb/N0

= -1.6dB. Here, DSSS spreading (e.g. PN, orthogonal, etc.) sequences
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have very low cross-correlation; ideally they are orthogonal to each other. In

the ES-C limit case, where |G| � M and w(cx) = 1, the energy per the single bit

transmitted over AWGN is spread over the spreading sequence of the single

channel user j. Node j’s sequence is orthogonal to the spreading sequences of

the nodes in G/ { j} and ES-C operates at the optimum energy per bit level.

2.1.4 Decoding

After receiving and correlating nodes’ transmissions exploiting spread spec-

trum physical layer properties, the sink identifies the nodes j in Ax each of which

has transmitted only a single bit “1 j”. Assuming the system operates under

DSSS acquisition capacity, so that w.h.p. there are no errors in transmission, the

sink can decode the codeword cx. For completion, the acquisition capacity of

a standard DSSS system is discussed in the Appendix A. The following theo-

rem ensures that the IDs of the nodes in Ax available at the sink are sufficient to

recover the index of the message x.

Theorem 2.1. For every number x 2 N, 9 a unique set nm, nm�1

, . . . , n
1

, ni 2 N and

nm > nm�1

> · · · > n
1

� 0, such that for any m 2 N, where m  nm

x =
 

nm

m

!

+

 

nm�1

m � 1

!

+

 

nm�2

m � 2

!

+ · · · +
 

n
1

1

!

=

m
X

i=1

 

ni

i

!

(2.4)

Proof. Please refer to [95]. ⇤

Notice that Theorem (2.4) guarantees existence as well uniqueness. Namely,

after ordering the set of IDs in Ax into the sequence (nm, nm�1

, , n
1

) and having

m = K⇤ we obtain that

x =
m

X

i=1

 

ni

i

!

(2.5)
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The ES decoding process is simply a combination ranking of Ax.

2.1.5 Example of a Basic ES-C Run

Suppose a group of |G| = 6 nodes is required to send, among a set of M = 16

messages, the message x = 0101

2

= 5

10

. It is easy to compute that K⇤ = 3 from

(2.3). (By inspection, if K⇤ = 2,
⇣

6

2

⌘

= 15 < M = 16 and (2.3) is not satisfied.) Then,

at the encoding step, all 6 nodes run Algorithm (2.1) with input pair x = 5 and

K⇤ = 3. The output of Algorithm (2.1) is the set A
5

= 4, 2, 0. Nodes in G with IDs

4, 2 and 0 are assigned to x = 5. At the assignment stage, the binary decisions

from (2.2) of the nodes in G are D
4

= 1,D
2

= 1,D
0

= 1,D
5

= 0,D
3

= 0,D
1

= 0. The

transmitted collaborative codeword is c
5

= 010101. At the transmission stage

each node in A
5

sends a single bit utilizing a physical layer allowing the nodes’

identification at the receiver (e.g. DSSS as discussed in the previous section).

After receiving the signals and identifying the transmitting nodes’ IDs in Ax, the

sink can decode the codeword c
5

using (2.5). Knowing m = K⇤ = 3 and ordering

the IDs in Ax so that (n
1

, n
2

, n
3

) = (4, 2, 0) the sink obtains

3

X

i=1

 

ni

i

!

=

 

4

3

!

+

 

2

2

!

+

 

0

1

!

= 5

10

= 0101

2

This is the correct message and it has been transmitted utilizing only 3 signals.

ES-C is significantly more energy efficient than current communication

schemes deployed in WSNs, as discussed in sections 2.4.3 and 2.5. However,

ES-C implicitly requires that all nodes in group G have access to message x that

needs to be sent. This need not be the case in the context of WSNs where each

message x is uniquely mapped to one of M intervals spanning a continuous

source. Nodes in the same group may measure different values falling in in-
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x x + 1 
v v + σW 

Figure 2.2: The value v of the phenomenon falls close to one of the end-
points of interval x. Due to sensing instrumentation impreci-
sion �W , the value is incorrectly measured to fall in interval
x + 1.

tervals x and x0. Independent on the source quantization (i.e. the length of the

intervals), the probability of the latter event is not zero. Figure 2.2 illustrates the

scenario leading to nodes in the same group reporting different measurements

due to instrumentation noise �W . Theoretically we cannot preclude the event

shown in fig. 2.2. The actual value v of the phenomenon may be arbitrarily

close to either of interval x’s endpoints, and even small instrumentation noise

may lead some number k of nodes in G to measure values in the adjacent but

wrong interval x0. The resulting ES-C collaborative codewords sent to the sink

may be invalid or, worse, wrong causing large distortion in the sink’s estimate

even if a single node is in error. The instrumentation imprecision of sensors is

modeled statistically in the technical literature as an additive Gaussian random

variable N(0,�W), independent at each node. We can set the length ✏ of each in-

terval x so that the probability of a measurement being shifted to more than one

intervals due to sensing imprecision is bounded and very low (i.e. by setting ✏

to a couple of standard deviations �W).

If a number k of nodes in a group G erroneously measure a value v0 falling in

interval x0 and the rest |G|� k nodes sense a value v falling in the correct interval

x, could one find an encoding scheme with the property that almost surely the

correct codeword is received at the sink, given |x � x0| = 1?
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This question is answered in the positive by the minimum distance combi-

natorial encoding scheme presented in the next section. The scheme avoids the

above shortcoming of ES-C, but preserves ES-C’s energy efficiency.

2.2 Minimum Distance Combinatorial Encoding

Suppose there are two intervals x and x0 within the phenomenon’s range of

values such that |x�x0| = 1. As above, x and x0 are assigned to two distinct binary

codewords. However, the assignment/encoding algorithm is different. It is

required that if |x � x0| = 1, then the hamming distance between the codewords

assigned to x and x0 is bounded by a constant. There is a constant number |Ax|

active nodes out of |G| nodes in a group at any time slot, thus one can obtain a

new codeword from a given valid codeword flipping at least two bits: one of

the bits has to flip to 0 and the other bit has to flip to 1 to preserve the number of

active nodes. (E.g. if only one bit flips to 1, |Ax|would increase by 1; and if only 1

bit flips to 0, |Ax| would decrease by one.) More specifically, let HD(cx, c0x) be the

hamming distance between the codewords cx and c0x assigned to measurements

in intervals x and x0 respectively. The requirement is that

|x � x0| = 1, HD(cx, c0x) = 2 (2.6)

Notice that similarly to ES-C, in this setup |cx| = |c0x| = |G| and w(cx) = w(c0x) = |Ax|.

The following section discusses the benefit of such minimum distance com-

binatorial encoding (MDCE) with the latter property; it also provides the algo-

rithms to construct MDCE codebooks, and encode/decode MDCE words.
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2.2.1 MDCE Probability of Error

Suppose the event in fig. 2.2 occurs with probability pe independently at each

node. Namely, the phenomenon’s actual value v at a sensor’s node location is

within, but close to, the boundaries of interval x. Due to instrumentation noise,

the sensor node at that location erroneously measures value in the interval x0

such that |x � x0| = 1. The probability Pk that k nodes are in error is given by

Pk =

 |G|
k

!

pk
e (

1 � pe)
|G|�k (2.7)

Suppose node j is one of the k nodes that erroneously determines the collab-

orative codeword to be transmitted is c0x. Node j checks the bit at position j in

c0x to determine its decision. Notice that node j0s decision would be erroneous

only if the bit at position j in c0x is erroneous. Since |x � x0| = 1 it is guaranteed

that HD(cx, c0x) = 2 from (2.6). Also, |c0x| = |G|. Hence, the probability pj of the

event E j that the bit at position j in c0x is erroneous is given by

pj =
2

|G| (2.8)

Given k nodes in error, the probability PR that either of the k nodes reports erro-

neously (causing at least a single error in the codeword received at the sink) can

be bounded as

PR =

k
[

j=1

E j 
k

X

j=1

pj =

k
X

j=1

2

|G| =
2k
|G| (2.9)

where the inequality follows from the union bound. Since the probability that

k nodes are in error is Pk from (2.7), overall, the probability PE of error in the

message is given by

PE = PkPR 
2k
|G| ·

 |G|
k

!

pk
e (

1 � pe)
|G|�k (2.10)
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Figure 2.3: MDCE probability of encoding invalid or erroneous codeword
given different number k of sensors with erroneous measure-
ments, for pe = 0.05.

Figure 2.3 shows the values of PE for varying numbers of k and |G|. As the in-

strumentation noise decreases, the probability of inaccurate measurements de-

creases as well. Assuming pe is small, k is a constant, and |G| is large (2.10)

becomes

PE 
2k
|G| ·

e�|G|pe
(|G|pe)

k

k!

(2.11)

PE ! 0 as |G| increases, and the probability that a MDCE codeword transmitted

by group G is invalid or wrong can be made arbitrarily low.

2.2.2 MDCE Construction

The MDCE construction developed below starts with the well-known Gray bi-

nary code with the property that the hamming distance between two consec-

43



utive codewords is one. Suppose a set of M messages must be encoded using

MDCE and consider a Gray codebook with words of length n = |G|. Start with

an empty MDCE codebook and let x = 0. For each consecutive word c in the

Gray codebook, check if m = w(c) = |Ax| = K⇤, so that (2.3) is satisfied; if true,

add c to the MDCE codebook, setting cx = c and then incrementing x by one.

Theorem 2.2. The resulting MDCE code satisfies (2.6), and hence it is a minimum

distance combinatorial encoding.

Proof. First note that the standard reflexive binary Gray code of length n is given

recursively as

Grayn = 0Grayn�1

, 1reverse(Grayn�1

)

where the reverse() operation simply reverses its input binary sequence. Let

MDCEm,n be the subsequence of the Grayn code where w(c) = m,8c 2 Grayn.

Then,

MDCEm,n = 0MDCEm,n�1

, 1reverse(MDCEm�1,n�1

)

Notice that MDCE
0,n = {000 . . . 0}: a run of m 0s, denoted as 0

m. Also, MDCEn,n =

1

m.

By induction, the first word in MDCEm,n is 0

n�m
1

m and the last

word in MDCEm,n is given by 10

n�m
1

m�1. For example, MDCE
1,2 =

�

0MDCE
1,1, 1reverse(MDCE

0,1)

 

=
n

0

2�1

1

1, 10

2�1

1

0

o

= {01, 10}, which is true.

Invariantly, to obtain

1reverse(MDCEm�1,n�1

)

only 2 bits are flipped in the preceding

0MDCEm,n�1
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To see that, observe that by induction 0MDCEm,n�1

= 010

n�m�1

1

m�1 and

1MDCEm�1,n�1

= 110

n�m�1

01

m�2,8m � 2. Trivially, for m = 1 again only 2 bits

are flipped to transition from 0MDCE
1,n�1

to 1reverse(MDCE
0,n�1

).

Therefore every two consecutive words in the resulting code differ by the

signs of two bits, and hence |x � x0| = 1 , HD(cx, c0x) = 2 is satisfied. Since the

only selected codewords c from the Gray code are such that m = w(c) = |Ax|, the

resulting code construction forms a minimum distance combinatorial encoding

of the M messages. ⇤

Notice that the MDCE codewords generated in this manner have weight

equal to the energy efficient codewords of ES-C generated by Algorithm (2.1)

for a given M and |G|. In fact, the set of MDCE codewords and that of ES-C are

identical, for any given M and |G|. However, the mapping between codewords

and messages is rather different.

Table (2.1) lists a subset of the MDCE and ES-C codewords for the case |G| =

6,M = 20, where |Ax| = K⇤ = 3 respectively. Notice that the hamming distance

between two consecutive codewords is exactly equal to two.

The above MDCE generation procedure is not rather efficient, as it is based

on the binary reflexive Gray codes, which are generated recursively. Algorithm

(2.2) alleviates that problem and efficiently constructs MDCE codebooks for any

given |G| and K⇤.

Theorem 2.3. Algorithm (2.2) with input K⇤ = |Ax| = m and |G| = n generates a valid

codebook MDCEm,n.

Proof. Consider the binary sequence of codewords in MDCEm,n. Suppose each
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bit in each codeword is indexed, so that the first bit indicates whether node

n � 1 transmits, the second bit indicates whether node n � 2 transmits, etc. so

that the last bit indicates whether node 0 transmits. For instance, the binary

codeword 1

5

1

4

1

3

0

2

0

1

0

0 is equivalent to nodes 5, 4, and 3 transmitting; the binary

1

5

1

4

1

3

0

2

0

1

0

0 can then be interpreted as the codeword 543. Then, one can convert

MDCEm,n = 0MDCEm,n�1

, 1reverse(MDCEm�1,n�1

)

to

MDCEm,n ⌘ MDCEI
m,n = MDCEm,n�1

, {n � 1} [ reverse(MDCEm�1,n�1

)

Let (nm, nm�1

, . . . , n
2

, n
1

) be a codeword in MDCEI
m,n. Note that the sequence of

these codewords in MDCEI
m,n is sorted in the lexicographic order of

(nm,�nm�1

, . . . , (�1)

m�1n
1

)

This follows directly by induction on the structure of the MDCEI
m,n code. It

is straightforward to check that Algorithm (2.2) generates the codewords of

MDCEI
m,n exactly in the lexicographical order of (nm,�nm�1

, . . . , (�1)

m�1n
1

). ⇤

Table (2.1) illustrates the encoding of MDCEI
3,6 generated by Algorithm (2.2)

as an example. The basic combinatorial encoding from section 2.1.2 is also given

in Table (2.1), for comparison. Algorithm (2.2) could be used to encode/decode

measurements. However, that would require storing an assignment table simi-

lar to Table (2.1) at the sensor and sink nodes, and then looking up values of x

and cx respectively for encoding and decoding. The next theorem exploits the

structure of the MDCEI
m,n code so that encoding and decoding are done much

more efficiently, without requiring extra space for code tables.

Let the range of MDCEI
m,n be M, so that (2.3) is satisfied.
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Algorithm 2.2: MINIMUMDISTANCECOMBINATORIALENCODING

input: K⇤, |G|
output: list of assignments: {Ax = (nK⇤ , nK⇤�1

, · · · , n
1

)}8x 2 I
1: m K⇤; nm+1

 |G|; L {;}; j m
2: while j � 1 do
3: nj  j � 1; j j � 1

4: end while
5: j 1

6: while j  m do
7: L L [ (nm, nm�1

, · · · , n
2

, n
1

)

8: increment n j  f alse
9: decrement n j  f alse

10: if m is odd then
11: if n

1

+ 1 < n
2

then
12: continue // add assignment to L
13: else
14: j 2; decrement n j  true
15: end if
16: else
17: if n

1

> 0 then
18: n

1

 n
1

� 1; continue // add assignment to L
19: else
20: j 2; increment n j  true
21: end if
22: end if
23: while true do
24: if decrement n j then
25: if nj � j then
26: nj  nj � 1; nj�1

 j � 2

27: break // add assignment to L
28: else
29: j j + 1; increment n j = true
30: end if
31: end if
32: if increment n j = true then
33: if nj + 1 < nj+1

then
34: nj�1

 nj; nj  nj + 1

35: break // add assignment to L
36: else
37: j j + 1

38: end if
39: if j  m then
40: decrement n j = true
41: else
42: break // add assignment to L and terminate
43: end if
44: end if
45: end while
46: end while
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Table 2.1: MDCE and Combinatorial Encoding Examples

x MDCE MDCEI
3,6

Combinatorial
encoding

Combinatorial
encoding index

0 000111 2,1,0 000111 2,1,0
1 001101 3,2,0 001011 3,1,0
2 001110 3,2,1 001011 3,2,0
3 001011 3,1,0 001110 3,2,1
4 011001 4,3,0 010011 4,1,0
5 011010 4,3,1 010101 4,2,0
6 011100 4,3,2 010110 4,2,1
7 010101 4,2,0 011001 4,3,0
8 010110 4,2,1 011010 4,3,1
9 010011 4,1,0 011100 4,3,2

10 110001 5,4,0 100011 5,1,0
11 110010 5,4,1 100101 5,2,0
12 110100 5,4,2 100110 5,2,1
13 111000 5,4,3 101001 5,3,0
14 101001 5,3,0 101010 5,3,1
15 101010 5,3,1 101100 5,3,2
16 101100 5,3,2 110001 5,4,0
17 100101 5,2,0 110010 5,4,1
18 100110 5,2,1 110100 5,4,2
19 100011 5,1,0 111000 5,4,3

Theorem 2.4. Any integer value x in the range of MDCEI
m,n can be uniquely repre-

sented as

x =
m

X

j=1

(�1)

m� j
  

nj

j

!

� 1

!

where (nm, nm�1

, . . . , n
2

, n
1

) is a codeword in MDCEI
m,n.

Proof. Note that the tuple (nm, nm�1

, . . . , n
2

, n
1

) is the x-th codeword generated by

Algorithm (2.2), where

x =
m

X

j=1

(�1)

m� j
  

nj

j

!

� 1

!

(2.12)
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To see that, consider the codewords (nj, nj�1

, . . . , n
2

, n
1

) and (nj�1

, nj�2

, . . . , n
2

, n
1

)

of the two codes MDCEI
j,n and MDCEI

j�1,n0 . Let the codeword (nj, nj�1

, . . . , n
2

, n
1

)

be the x-th codeword generated by Algorithm (2.2) and codeword

(nj�1

, nj�2

, . . . , n
2

, n
1

) be the y-th codeword generated by Algorithm (2.2).

By induction,

x =
 

nj + 1

j

!

� 1 � y,8 j > 0

Then, starting with j = 1 and summing to j = m, using the above equation,

one obtains

x =
m

X

j=1

(�1)

m� j
  

nj

j

!

� 1

!

(2.13)

⇤

Algorithm (2.3) and Algorithm (2.4), listed below, utilize directly Theorem

(2.4) respectively to encode measurement x, in the range of code MDCEI
m,n, and

then decode x at the sink. Similarly to Algorithm (2.1), Algorithm (2.3) is run at

each node of group G, upon measuring x. If node j’s ID is in the output Ax then

j transmits a 1. The sink receives the resulting 1’s from all nodes in Ax (thus

determining Ax). The sink then runs Algorithm(2.4) to recover x; Algorithm

(2.4) computes the formula in (2.12).

Notice that both Algorithms (2.3) and (2.4) only work on a single codeword.

The code table computed by Algorithm (2.2) is no longer required. In the case

of MDCEI
m,n, the runtime of Algorithm (2.4) is O(m); here m = |Ax| = K⇤. The

worst case runtime input for Algorithms (2.3) is |Ax| = K⇤ = 1 and x = M � 1,

yielding O((M � 1)/|G|) performance. However, in practice the average runtime

of Algorithm (2.3) is much lower depending on the distribution of x and the

values of |Ax| and |G|. The resulting scheme employing Algorithms (2.3) and
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Algorithm 2.3: MDCEASSIGNMENT

input: value of message x, K⇤, |G|
output: assignment Ax = {nK⇤ , nK⇤�1

, · · · , n
1

}
1: Ax  {;}
2: m K⇤
3: n |G|
4: // Each iteration, add node ID to the assignment Ax of nodes to message x
5: while m � 1 do
6: while

⇣

n
m

⌘

> x do
7: n n � 1

8: end while
9: nm  n + 1

10: Ax  Ax [ nm

11: x 
⇣

n+1

m

⌘

� x � 1

12: m m � 1

13: end while

Algorithm 2.4: DECODEMDCE
input: assignment Ax = {nK⇤ , nK⇤�1

, · · · , n
1

}, K⇤
output: value of message x

1: m K⇤
2: if m is even then
3: x 0

4: else
5: x �1

6: end if
7: c 1

8: while m � 1 do
9: x x + c ·

⇣

nm

m

⌘

10: c �c
11: end while

(2.4) to construct and decode MDCE codewords is dubbed ES-MDCE.

2.3 Sparse DSSS receiver

This section explores an interesting sparseness property of the ES signal re-

ceived at the sink. This allows for a novel DSSS design that significantly reduces

the complexity and cost of the status quo DSSS receivers.
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In regular DSSS systems, each PN sequence corresponds to a unique signa-

ture waveform si(t) assigned to node i, 0  t  T and 1  i  N, where T is the

symbol duration and N is the total number of users in the system. At any given

timeslot, the sink receives a signal y(t) as a superposition of the transmitted sig-

nature waveforms. As shown in fig. 2.4A, the sink employs a set of N matched

filters (MFs) for decorrelation of the received signals. Each MFi correlates y(t)

with the signature waveform si(t) of node i. Each MFi comprises high complex-

ity and high precision analogue circuitry driving the cost of a DSSS receiver

proportional to the number of MFs/nodes in the system. Thus, along reducing

circuit complexity, reducing the number N of MFs also reduces the actual cost

of a DSSS receivers’ deployment1.

2.3.1 Sparse Support Recovery for DSSS

In a general setting, the task of reducing the number of MFs is hard, if at all

feasible. We need information for all the N possible signature waveforms at the

receiver in order to distinguish between the N different transmitted signals that

can be received at any time. The crux here is that the ES communication scheme

allows the number of signals transmitted and received during any timeslot to

be much lower than N. Consider an ES system consisting of a single group of

size N = |G| with |Ax| = K active nodes. We can encode
⇣|G|

K

⌘

different messages;

for instance if K = 3 and |G| = 40 we can generate
⇣|G|

K

⌘

= 9880 different code-

words. At the receiver, each codeword contains exactly K non-zero bits and can
1The interested reader may find a more detailed description of DSSS systems and their prop-

erties in [93], [96], and [97] among others. A briefer but instructional discussion regarding tra-
ditional DSSS design and the important signal acquisition mechanism of DSSS-based system is
given in the Appendix A of this work, as well.
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Figure 2.4: Receiving signal y(t) with K-sparse support vector b. A: regular
DSSS receiver consisting of N matched filters; B: sparse DSSS
receiver consisting of Klog(N/K) matched filters.

be represented as a binary K-sparse vector bNx1

. The received signal is

y(t) =
N

X

i=1

bisi(t)

containing the signature waveforms of the transmitting nodes. The task of the

MFs at the receiver is only to recover the support of b and thus find the identities

of the transmitting nodes. As discussed above, this is sufficient for the operation

of ES, which does not require symbol detection. Let l denote the length of the

PN sequences. I.e. l equals the number of chips per PN sequence.

Theorem 2.5. Given that ES is utilized, the support of b is recovered correctly w.h.p.

at the DSSS receiver utilizing on the order of h = Klog(N) matched filters, instead of N

matched filters, iff l > 2Klog(N).

Proof. To show this, suppose each MF now correlates the received signal y(t)
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with a signature waveform gj(t) (fig. 2.4 B), instead of utilizing the regular sig-

nature waveform si(t). The signature gj(t) is obtained as follows:

gj(t) =
N

X

i=1

qjisi(t), where 1  j  h (2.14)

here qji are the random ±1 entries of a Rademacher matrix (Q)hxN . Now, there

are h signature waveforms at h MFs. Each signature waveform gj(t) is a random

linear combination of the original N signature waveforms. After receiving y(t),

the output of the j-th MF is given by the crosscorrelation between y(t) and gj(t),

namely the inner product y0j =
D

gj(t), y(t)
E

.

The output of all h MFs, represented in vector form, is y0 = QRb, where

(R)NxN is the cross-correlation matrix of the original signature waveforms si(t).

Due to the universality property and restricted isometry property (RIP) of Q, the

matrix ⇥ = QR also has the RIP w.h.p., if h � ↵Klog(N/K), where ↵ is a small

constant ([98], [26]). Then the support of b can be recovered using a standard

Orthogonal Matching Pursuit (OMP) (e.g. [99]). Applying the argument in [99],

it is required that l > 2Klog(N), and this is sufficient for OMP to recover the

support of b with high probability. ⇤

Suppose the PN sequence has length l = 32 chips (similarly to PN sequences

in IEEE 802.14.5). This implies that, for instance, with K = 3 and N = |G| = 40,

one requires 16 MFs to identify the 3 transmitting nodes w.h.p., in comparison

to 40 MFs in a regular DSSS receiver. This is a 60% reduction in circuitry! Notice

that we have l = 32 > 2 · 3log(40) = 31.93 and satisfy the sufficient condition of

Theorem (2.5). Also, note that a compressive sensing argument similar to the

above can readily be devised in order to reduce significantly the length of the

PN sequences generated in a DSSS system instead of reducing the complexity
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of the receiver. This could potentially increase the energy efficiency of ES fur-

ther. We do not pursue this avenue here, but it could be of interest for future

research. Furthermore, the latter observation may have implications for design-

ing general DSSS-based systems with variable length PN sequences. The more

the utilization of a system, the longer the PN sequences employed; once the

utilization is lower the length of the PN sequences can be reduced significantly

using an argument similar to the one in Theorem (2.5). Such design would ben-

efit significantly the energy efficiency of devices deployed in rural areas, where

CDMA-based cell towers service on average a small number of users.

2.3.2 Symbol Detection

The preceding subsection discussed how exploiting the sparseness of ES collab-

orative codewords, one can recover nodes’ identities w.h.p at the sink, efficiently

utilizing fewer MFs, which is sufficient for ES operation. However, other poten-

tial applications of the sparse DSSS receiver may utilize symbol detection (i.e.

determining whether the bit transmitted by a given node j is 0 or 1).

2.3.2.1 Sparse DSSS Symbol Estimator

The DSSS receiver detector can be constructed using different approaches. The

scenario here is very similar to multi-user detection (MUD). It has been shown

that the optimal maximum likelihood detector for MUD is intractable in prac-

tice [100]. Therefore various lower complexity approximate detectors have been

proposed (e.g. refer to section 13.4.4 of [97]). The MMSE estimator is in the

category of efficient low complexity, linear MUD detectors. Therefore, the fol-
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lowing section derives the optimal MMSE estimator for the sparse DSSS receiver

described in the previous section.

The value of the bit that node j sends have so far been assumed to be 1 j,

given Dj = 1 in (2.2). Instead, suppose now node j sends either a 0 or 1 (equiv-

alently -1 or 1) when Dj = 1. The sink needs to detect the correct sign of the

transmitted bit. That is, K nodes transmit in group G; next the identities of the

transmitting nodes are recovered correctly, per Theorem (2.5); and finally, it is

required that the receiver determine the sign of the bit transmitted by each of

the K nodes. Once the support vector bS of b is determined, errors can still occur

while detecting each of the K bits in b due to multi-access interference (MAI).

Assume that the sparse support of the received signal has already been re-

covered correctly, as described in the previous subsection. Then, also notice that

only the signs (-1 or 1) of the bits in the support of b need to be estimated; the

rest of bj’s are 0.

As above, let R be the normalized cross-correlation matrix of the original

N = |G| signature waveforms:

R =
hD

si(t), s j(t)
EiN

i, j=1

Suppose the channel gains pi, i = 1, 2, . . . ,N, are known at the receiver and

pi = ai
p

Pi

where ai is the channel amplitude also known at the receiver. Let P be a diagonal

matrix with entries p
1

, p
2

, . . . , pN . The output of the sparse DSSS receiver in

vector form is then given by

y0 = QPb + z (2.15)
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Here, z captures the effect of MAI and is a Gaussian r.v. with zero mean and

covariance �2

z QRQT . As per the typical MUD MMSE ([101]), the MMSE detector

at the sparse DSSS receiver determines the sign of each bit by applying a linear

transform D to the output of the h MFs. I.e.

ˆbj = sgn
⇣⇣

Dy0 j

⌘⌘

(2.16)

so that the mean square error between b and ˆb =
⇣

ˆbj

⌘

N
is minimized.

The challenge here is to find D⇤ for the sparse DSSS receiver so that

D⇤ = arg min

D
E

h

�

b � Dy0
�

2

i

First, note that

E
h

�

b � Dy0
�

2

i

= tr
h

E
h

�

b � Dy0
� �

b � Dy0
�T

ii

Carrying the multiplication, substituting y’ from (2.15) and the covariance ex-

pression of z, one obtains

E
h

�

b � Dy0
�

2

i

= tr
⇣

I + D
⇣

QP2QT + �2

z QR�1QT
⌘

DT � PQT DT � DQP
⌘

Suppose

D⇤ = PQT
⇣

QP2QT + �2

ZQR�1QT
⌘�1

(2.17)

It can be shown by straightforward arithmetic that

E
h

�

b � Dy0
�

2

i

= tr
⇣

I � D⇤B (D⇤)T + (D � D⇤) B (D � D⇤)T
⌘

where B =
⇣

QP2QT + �2

ZQR�1QT
⌘

. Substituting D⇤ from (2.17) in the second term

above yields

E
h

�

b � Dy0
�

2

i

= tr
⇣

I � PQT B�1QP + (D � D⇤) B (D � D⇤)T
⌘

(2.18)

56



Notice that QP2QT is a positive definite matrix. Also, the cross correlation matrix

R is positive definite implying �2

ZQR�1QT is positive definite. Therefore, B is

positive definite. Then, tr
⇣

PQT B�1QP
⌘

> 0. From (2.18) it follows that

D⇤ = PQT
⇣

QP2QT + �2

ZQR�1QT
⌘�1

= arg min

D
= E

h

�

b � Dy0
�

2

i

Thus, the MMSE detector’s linear transformation is given by D⇤, and the re-

ceiver can readily estimate the signs of the transmitted symbols in the support

of b using D⇤ in (2.16).

2.3.2.2 Conventional MUD Symbol Estimator

Let Prj(error) be the probability of error in detecting node j’s bit sign at the

receiver. For completion, the bounds on Prj(error) of the conventional multi-

user detection receiver are derived next. The conditions that need to be met

so that Prj(error) ! 0 are also obtained. Finally, Prj(error) of the conventional

symbol estimator is compared with the respective performance of the sparse

DSSS receiver developed in 2.3.2.1.

The MMSE estimator is utilized in this case as well for MUD. Carrying over

notation from the previous section, this time

y0 = RPb + z (2.19)

Here, z is a vector representing only white Gaussian noise variables with power

�2

Z, and now y’ has N entries. Similarly to the above the MMSE detector deter-

mines

ˆbj = sgn
⇣⇣

Dy0 j

⌘⌘

(2.20)
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so that the mean square error between b and ˆb =
⇣

ˆbj

⌘

N
is minimized. It is well-

known (e.g. [100]) that the optimal linear transformation D⇤ here is given by

D⇤ =
⇣

R + �2

ZP�2

⌘�1

(2.21)

From Proposition 3.1 in [101], asymptotically, as Pj/� j grows, the probability of

error in detecting node j’s sent bit is given by

Prj(error) = Q

0

B

B

B

B

B

B

B

B

B

B

@

Pj

�Z

q

�

R�1

�

j, j

1

C

C

C

C

C

C

C

C

C

C

A

(2.22)

The impact of the PN sequence ensemble choice on the system performance is

not immediately obvious from the term
⇣

R�1

⌘

j, j
as given in (2.22). To elucidate

this impact, it would be instructive to derive closed form bounds on this ex-

pression, explicitly as a function of the maximum cross-correlation between PN

sequence signatures used in the system.

Lemma 2.1. Let N be the number of users in the system and �max be the highest cross-

correlation between any two PN sequences in the system. Then

⇥

1 + (N � 1

) �max
⇤�1 

⇣

R�1

⌘

j, j
 ⇥

1 � (N � 1

) �max
⇤�1 (2.23)

Proof. As observed earlier, the cross-correlation matrix R is positive definite and

its eigenvalues can be ordered as 0 < �
1

 �
2

, . . . , �N . Let 4 � �N and 5  �N .

Then, from [102],
1

4 
⇣

R�1

⌘

j, j
 1

5 (2.24)

Let R = E + F, where E is diagonal matrix with entries e
1

, e
2

. . . , em and F’s

diagonal entries are 0’s. From Gershgorin’s Circle Theorem (GCT) (e.g. [103]), if

�(R) is the set of all eigenvalues of R, then

�(R) ✓
N

[

i=1

Di
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Figure 2.5: Possible positions of cross correlation matrix’s eigenvalues on
the real line. Here, interval [1 � N , 1 + N] is described by the
circle DN .

where

Di =

8

>

>

<

>

>

:

z 2 C : |di � z| 
N

X

j=1

| (F)i, j | = i
9

>

>

=

>

>

;

That is, all eigenvalues of R, lie within the union of closed disks Di, in the com-

plex plane. Each disk Di is centered at the corresponding diagonal entry of R

and has radius equal to the sum of the non-diagonal entries at row/column i of

R. Here, all eigenvalues of R are real and Di’s are intervals on the real line cen-

tered around
⇣

R�1

⌘

i,i
= 1. Figure 2.5 illustrates the possible positions of R’s eigen-

values. �(R) lie within the interval DN = [1�N , 1+N], where 
1

< 
2

<, . . . , < N .

Then,

N = arg max

1iN

8

>

>

<

>

>

:

N
X

j=1

| (F)i, j |
9

>

>

=

>

>

;

 (N � 1

) �max

Suppose N = (N � 1

) �max. From GCT

min {�(R)} � 1 � N = 5 > 0 and {�(R)}  1 + N = 4

Therefore,

5 = 1 � (N � 1)�max and 4 = 1 + (N � 1)�max (2.25)
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Then, combining with (2.24) one obtains

⇥

1 + (N � 1

) �max
⇤�1 

⇣

R�1

⌘

j, j
 ⇥

1 � (N � 1

) �max
⇤�1 (2.26)

⇤

Observe that as the highest cross-correlation between two PN sequences

goes to 0 (as it should ideally), the entry
⇣

R�1

⌘

j, j
! 1, from Lemma (2.1).

Theorem 2.6. As Pj/� j increases, the asymptotic symbol detection probability,

Prj(error), of the conventional MMSE MUD detector is upper bounded by

U =
1

12

exp

8

>

>

<

>

>

:

P2

j
⇥

(N � 1)�max � 1

⇤

2�2

Z

9

>

>

=

>

>

;

+
1

4

exp

8

>

>

<

>

>

:

2P2

j
⇥

(N � 1)�max � 1

⇤

3�2

Z

9

>

>

=

>

>

;

and lower bounded by

L =
1

12

exp

8

>

>

<

>

>

:

�
P2

j
⇥

1 + (N � 1)�max
⇤

2�2

Z

9

>

>

=

>

>

;

+
1

4

exp

8

>

>

<

>

>

:

�
2P2

j
⇥

1 + (N � 1)�max
⇤

3�2

Z

9

>

>

=

>

>

;

Proof. Using

Q(x) ⇡ 1

12

e
�x2

2 +
1

4

e
�2x2

3 (ref. [104])

and substituting the result from Lemma (2.1) yields the bounds. ⇤

Figure 2.6 plots numerically the symbol estimation probability of error for

the conventional DSSS MUD detector based on MMSE (along with its upper

bound) and the sparse DSSS receiver based on the MMSE with the optimal lin-

ear transform D⇤ derived in (2.17); �Z = 0.2, Pj = 1, �max = 0.02,N = 40. The

number of MFs varies in the case of the sparse DSSS receiver. Notice, that as the

number of MFs increases the symbol estimation probability of error decreases

for the sparse DSSS receiver and becomes comparable to that of the conventional

DSSS receiver. Note that this is conditional on the support of b being correctly
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Figure 2.6: Symbol sign estimation probability of error for varying num-
ber of MFs at the sparse DSSS receiver’s. The number N = 40
of MFs for the conventional receiver numerical performance
and theoretical upper bound is a constant. Notice again that
ES does not require symbol sign estimation and requires only
support recovery as described in section 2.3.1.

computed. For that, one needs to deploy greater number of MFs than shown on

the figure here. To emphasize again, the ES scheme, does not require the symbol

sign estimation and support recovery, as given in section 2.3.1 suffices.

2.4 A Wireless Sensor Network Application

Next, encoded sensing’s benefits are demonstrated in a practical WSN applica-

tion. All N sensor nodes utilize ES to communicate their measurements with a

sink.
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2.4.1 Phenomenon and Sensing Models

Assume a continuous source S giving rise to a space-time random field s(l, x, y).

In the l-th timeslot the random field is defined as
n

S j[l] = s(l, x j, y j) : (x j, y j) 2 A
o

at spatial position (x j, y j), according to a spatial-correlation model. The instances

S j[l] are modeled as joint Gaussian random variables (JGRV). Considering a

single discrete-time interval sample, the time index l can be dropped. The JGRV

is characterized by:

E
h

S j

i

= 0,Var[S j] = �
2

S , ⇢i, j = E
h

S iS j

i

�2

S (2.27)

where ⇢i, j are the correlation coefficients of the JGRV 2.

Often physical phenomena’s values at different points in space are depen-

dent on one another and are correlated via some function of the distance be-

tween them. Formally, this function is represented by a parameterized spatial

covariance model, which reflects the nature of the specific phenomenon and

determines the correlation coefficients. The covariance model selected here is

the Power Exponential since different physical phenomena monitored by sensor

networks could be approximated this way (e.g. [21], [105], [14]):

⇢i, j = K✓ (ki � jk) = e
✓

� ki�jk
✓
1

◆✓
2

(2.28)

where k · k denotes the Euclidean distance between sensors i and j at (xi, yi) and

(x j, y j).

A sensor node j with coordinates (x j, y j) does not have direct access to the

phenomenon value S j. Rather, it obtains a distorted measurement Xj of S j due
2We assume memoryless source and do not account for temporal correlations. However,

ES is readily adjustable to temporal correlations: if some readings are more likely than others
Algorithms (2.3) and (2.4) can be easily extended to allow for a round-robin assignment of nodes
to message x in order to improve the energy balance of a group.
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to inherent sensing imprecision/noise Wj. Wj’s are assumed to be i.i.d. Gaussian

random variables, such that E
h

Wj

i

= 0 and Var
h

S j

i

= �2

W .

Ultimately, j measures Xj = S j +Wj.

2.4.2 Encoding Sensing Setup

To utilize ES one needs to ensure that the network is partitioned in groups of |G|

nodes such that the nodes in each group have access to the same message x. To

this end, there are two conditions we need to meet simultaneously.

• First, each group occupies a site where the actual values of the source at the

different points by the sensors fall in the same interval x 2 Iw.h.p..

• Second, noise due to electronic imprecision should not offset node j’s mea-

surement in an interval x0 different from x, for all j 2 G, where |x � x0| > 1.

Source quantization: To meet the second condition, we quantize the interval

I so that the probability is low that the Gaussian measurement imprecision Wj

offsets the measurement of any j 2 G outside interval x0, where |x � x0|  1.

Therefore, the size of each interval is set to ✏ = 2��W , � � 2.

Vector quantization: To meet the first condition, the network is partitioned

in disjoint groups of highly correlated nodes. This can be achieved by utilizing

the distributed vector quantization algorithm underlying the CC-MAC protocol

presented in [21]. Given the nodes’ spatial statistical distribution � and the spa-

tial correlation model as an input, the algorithm selects k representative nodes

out of the N nodes in the WSN. Per [21] , the selected k nodes are chosen so

that the spatial correlation between their measurements is reduced. Each of the
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selected k nodes transmits (non-cooperatively) a measurement to the sink ev-

ery timeslot; the rest of the N nodes’ measurements can be eliminated. This

describes the basic operation of a non-cooperative transmission with decorrelation

(NCD) scheme. The k representative nodes are selected, so that distortion in the

sink’s estimate of the source S is minimized to a QoS threshold.

One can exploit a related but different property of the algorithm in [21] to

satisfy the ES requirement that a group G of nodes all sense values in the same

interval x. All nodes within distance rcorr < r of each representative node, have

highly spatially-correlated measurements and report almost identical values.

rcorr is an output of the representative node vector quantization algorithm used

in [21]. Consider a disk, Oi, with radius rcorr, centered at representative node i.

Definition 2.1. A group of sensor nodes, Gi, situated in disk Oi is called a Rep-

resentative Group.

To summarize, nodes within each representative group Gi utilize ES-MCDE

to transmit their measurements to the sink. Encoding sensing operates in each

Gi, as described in sections 2.1.2 and 2.2: each short interval x is assigned to

a distinct subset of nodes Ax in Gi according to Algorithm (2.3) . The length

of the intervals is constant and set according to the source quantization dis-

cussed above. Upon measuring a value in interval x, each node j 2 Gi checks

if it is in Ax. If so, j transmits a signal using DSSS. The sink receives the col-

laborative codeword cx comprising the transmission signals of all nodes in Ax;

finally, the sink recovers the interval x using Algorithm (2.4). In Appendix B,

it is shown analytically that as the sensing imprecision due to Wj decreases,

the distortion DES (k) in the sink’s estimate when ES is utilized converges to the

distortion DNCD(k) that can be obtained within QoS constraints, via the optimal
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Figure 2.7: Distortion of measurement for ES and NCD; �W = 0.25, 0.05

respectively top and bottom; ✓S = 5 throughout. ES and NCD
converge for lower values of �W .

non-cooperative transmission of k representative nodes [21]. Figure 2.7 illus-

trates the numerical evaluation of DES (k) and DNCD(k) derived in Appendix B.

The behavior of the two distortion functions is evaluated for varying number of

representative nodes/groups, given the covariance model (2.28) and its param-

eters: ✓
1

2 {100, 500, 1000} and ✓
2

= 1.
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2.4.3 Perfromance Evaluation

2.4.3.1 Simulation System

The simulation environment and schemes’ implementations are programmed

in JAVA and utilize the BLOG Inference Engine available online [106]. In each

simulation run, N nodes are placed within a 100[m] ⇥ 100[m] square area. S j’s

are modeled as spatially correlated JGRVs with covariance model K✓ (2.28).

• The phenomenon’s values are assumed to be in the range [�4�S , 4�S ]; the

standard deviation is �S = 625.

• Notice that if nodes’ sensors measure temperature with precision 0.1 degree,

the range in the setup above would allow for temperature measurements be-

tween -250 and 250 degrees for all schemes. A sample output of the system is

shown in fig. 2.8. The BLOG Inference Engine is used to generate the set of S j’s.

The parameters of K✓ are set to ✓
1

= 10000 and ✓
2

= 2.

• For all simulated schemes, the transmit power per bit, Eb, is standard: Eb =

14[dBm]=25[mW]. All schemes utilize a standard DSSS with acquisition win-

dow length F = 512, at the physical layer. Thus the acquisition capacity of the

system is approximately 36 users/nodes (please see Appendix A for acquisi-

tion capacity discussion). An exception here is the distributed transmit beam

forming, which is itself a physical layer protocol. The evaluation of its perfor-

mance in the simulation system is described with more detail later in the next

subsection section.
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Figure 8. Influence of parameters θ1 and θ2 in the correlation model in eq. (5.2) on the spatial distribution 
of phenomenon values. Notice that θ2 affects significantly the behavior of the phenomenon. Nodes are 
placed uniformly at random. Network density 2.5 nodes/m2. 

Figure 2.8: Influence of parameters ✓
1

and ✓
2

in the correlation model in
(2.28) on the spatial distribution of phenomenon values. Notice
that ✓

2

affects significantly the behavior of the phenomenon.
Nodes are placed uniformly at random. Network density 2.5
nodes/m2.

2.4.3.2 Simulated Schemes

The simulation results below qualify the energy efficiency of the system, the

distortion of the sink measurement, and compare ES performance to schemes

communicating via

- distributed source coding (DSC) (e.g. [14], [13]);
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- non-cooperative transmission with decorrelation (NCD) ([21]);

- cooperative distributed transmit beamforming (BF) ([34]).

• Per ES, the range of phenomenon values is quantized into a sequence of in-

tervals where M = 5000. Each interval is of length ✏ = 1, with �W = 0.25.

• Per NCD, k representative nodes are selected by the CC-MAC algorithm as

described above, and each of the k nodes transmits, non-cooperatively, the entire

measurement. The transmissions of highly correlated nodes are eliminated with

the goal of better energy efficiency. The scheme’s energy efficiency is equivalent

to a duty cycle scheme. In the latter, only one node is selected to transmit the

entire measurement from each of the k representative groups, at each timeslot.

• The algorithm underlying the DSC scheme is a single hop variation of Al-

gorithm 2 in [13] and Algorithm 1 in [14]. The algorithm is frequently used in

contemporary works on DSC in wireless sensor and ad-hoc networks. Given a

neighborhood radius ri around a representative node i, the algorithm constructs

an ordered sequence Ci of the nodes that are within distance ri of i. Next, in the

order of the sequence, the algorithm allocates rates as follows: the first node in

the sequence is allocated rate R
1

= H(X
1

); the second is allocated R
2

= H(X
2

|X
1

),

etc.; the last node in the neighborhood is allocated rate: RK = H(XK |XK�1

, . . . , X
1

),

assuming |Ci| = K; ri = rcorr around each representative node.

• The BF scheme evaluated here is based on the cooperative distributed trans-

mit beamforming scheme suggested in [34]. An assumption in [34] is that upon

each transmission, cooperating nodes are synchronized in frequency with each

other. Furthermore, they need to be synchronized in phase so that the gains of

beam forming are realized due to constructive interference at the sink. Satis-

fying the latter assumption, a simple randomized algorithm is offered in [34]

to achieve phase coherency of the transmitted bits at the sink. Similarly to the
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above schemes, the beamforming groups Gi are formed within correlation ra-

dius rcorr around each of the k representative nodes.

2.4.3.3 System Capacity and Error Rates.

Since each node sending a bit per ES needs to be identified by the sink, we con-

sider a regular DSSS physical layer as outlined in Fig. 2.4A above. Typically, a

DSSS communication system is described both by post-acquisition-based capacity

and acquisition-based capacity. The post-acquisition-based capacity of the system

characterizes the maximum number of nodes in a system so that, given process-

ing gain F (number of PN sequence chips per bit), the probability of a bit error

is less than a threshold ✏. The acquisition-based capacity of the system charac-

terizes the maximum number of nodes in a system so that the probability pa of

acquiring wrong PN sequence at the sink is less than a threshold ✏.

The Encoded Sensing (ES) schemes rely only on the correctness of the out-

put of the matched-filters at the sink after the acquisition stage. Hence, we are

interested in the acquisition-based capacity of the system. ES requires that the

number of nodes |G| is less than or equal to the acquisition-based capacity of the

system. Assume that the signals of concurrently active nodes in set Ax arrive

at the sink with independent random time-delays (within any given reporting

time-slot) and with independent random carrier phases. Note that if more tim-

ing information is available a priori, for example by virtue of a side feedback

channel devoid of interference, the probability of acquiring wrong PN sequence

would be lower and the system capacity would be larger. This would be a viable

approach in some practical scenarios, but we do not implement this approach

in our simulation system. It is well known (e.g. see [107]) that the probability,
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pa, of acquiring a wrong PN sequence in our setting is given by

pa ⇡
F � 1

2

e�
3F

4(|G|�1) (2.29)

Notice that the system is interference limited. In contrast, per the NCD

scheme, a single representative node from group G transmits, sending log(M)

bits. The bit error rate of the NCD scheme utilizing, for instance, binary ampli-

tude shift keying OFDMA over AWGN channel is given by

pb ⇡
1

2

er f c
⇣p

S NR
⌘

(2.30)

The bit error rate expression for pb in (2.30) remains the same for BPSK and

single user DSSS systems.

In the simulation results presented here, when comparing the energy perfor-

mance of the NCD and ES schemes we are conservative and require not only

that w.h.p. pa < pb, but also that Pa = 1 � (1 � pa)

m < pb, where m = |Ax|.

That is, we ensure that the probability Pa of not acquiring all m signals correctly

is less than the probability of error of traditionally demodulating a single bit.

Thus, the reduced energy consumption of the ES schemes is not an artifact of

increased error rate vis-á-vis traditional modulation. More specifically, fig. 2.9

shows the bit error rate, pb, of the NCD system, the probability pa of acquiring

a wrong PN sequence, and the probability Pa that at least one of the received

|Ax| PN waveforms was acquired incorrectly per the ES schemes, for different

group sizes |G|. Notice that for F = 512 in all cases pa < Pa < pb. Here SNR

⇡ 5.5dB and pb ⇡ 0.005 from (2.30). For completion, we also include an analy-

sis of the system post-acquisition-based and acquisition-based capacities. Using

(2.29) the acquisition-based capacity, Cacq, of the system is given by

Cacq ⇡
3F

4ln
⇣

F
2✏

⌘ (2.31)
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Figure 2.9: Probability of wrong PN sequence acquisition at the sink (both
in terms of Pa and pa) and bit error rate pb for NCD (i.e. sin-
gle representative node transmissions), for varying number of
nodes in a group. Notice that in our simulation, for all group
sizes |G|, we require and satisfy pa < Pa < pb.

It is well known (e.g. [107]) that the probability of bit error perr in a interference-

limited DSSS system with |G| users, under Gaussian approximation, is given by

perr ⇡ Q
0

B

B

B

B

@

r

3F
|G| � 1

1

C

C

C

C

A

(2.32)

Let ✏ = 0.005. That is, we require that perr < ✏ = 0.005. When F = 512, using

(2.32) the post-acquisition-based capacity of the system is 230 nodes; in contrast,

using (2.31) we obtain Cacq = 35. In this case, the system capacity is determined

by acquisition performance. In all our simulation runs we require and satisfy

Cacq = 35 > |G|.

2.4.3.4 Energy Efficiency and Estimate Inaccuracy

All schemes are simulated and compared in terms of two metrics: energy con-

sumption and estimate inaccuracy at the sink. Energy consumption is given by the
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average energy consumption E per node in the network for reporting rounds.

Estimate inaccuracy is given by the average inaccuracy of the phenomenon

point source estimate at the sink over ⌧ rounds:

¯V =
1

⌧

⌧
X

i=1

Vi (2.33)

where at round i, Vi = 100|si � s0i |/M. si is the true value of S at (xi, yi), and s0i is

the estimated measurement at the sink given the report of representative group

Gi (or in the case of NCD the representative node i).

The average energy consumption per network node E for ES tends to be less

than that of NCD and DSC as shown on fig. 2.10 and comparable to the perfor-

mance of distributed beamforming with K = 5 cooperative beamforming nodes.

As expected, both ES-MCDE and ES-C perform identically in terms of energy

efficiency. When more nodes are added to the network (in effect increasing its

density), as expected E decreases for all schemes. However, both ES schemes

benefit substantially more from the network density increase, compared to DSC

and NCD. Larger network density allows for smaller values of K⇤ leading to a

lower number of transmitting nodes in |Ax| required to convey measurement x.

At network densities of 1.5 nodes/m2, ES consumes 2 times less the transmission

energy of NCD; at 1.9 nodes/m2, the energy is 3 times less; and nearly 5 times

less at densities around 3.5 nodes/m2 depending on the correlation radii. |Gi|

grows from 15 to 33 nodes as density increases (notice that |Gi| is always under

acquisition capacity) and |Ax| decreases from 7 to 3 nodes. BF also benefits from

the addition of cooperative nodes. Evaluating the performance of BF, the phase

synchronization feedback algorithm is successfully run at each beamforming

node to achieve 70% phase coherency at the receiver (which is equivalent to

achieving about 80% of beamforming gains). Operating below its theoretical

efficiency, BF outperforms the ES for the case of 10 cooperating nodes in the
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Figure 2.10: Energy consumption for 150 rounds and different rcorr values.
Top: rcorr = 15[m]; inset: DSC performance; bottom rcorr =

30[m] and rcorr = 45[m]. Energy consumption decreases as the
correlation radius increases (number of representative nodes
decreases). The performance of ES-MDCE is identical to the
performance of the basic ES-C encoding scheme.
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region of lower network densities. However, the synchronization assumptions

of ES are much more relaxed than those of the BF scheme. In reality, synchro-

nizing more than 10 nodes would pose a challenge to any practical distributed

transmit beamforming system.

Interestingly, DSC compares rather poorly with the rest of the schemes in

terms of energy efficiency. This is so since all nodes within a given neighbor-

hood with radius rcorr transmit with positive rates, allocated to account for nodes

observations’ correlation. The total rate equals at least the joint entropy of the

observed measurements and is higher than the rest of the schemes.

Figure 2.11 demonstrates that the inaccuracies in the source estimates are

rather similar for ES, NCD, and BF. This is expected in the case of ES and NCD

since as shown in Appendix B the distortion of the two schemes numerically

converges. All four schemes report information only about the value of the

phenomenon at the representative nodes i. However, ES-MCDE outperforms

slightly ES-C, achieving lower estimate inaccuracy. DSC obtains slightly lower

inaccuracy, since all nodes in each rcorr neighborhood around a representative

node send information regarding the sensed value at their position.

2.5 Number of Transmissions and Energy Efficiency

This section analyzes the minimum required number of nodes in G, required for

the ES operation. The arguments below are valid for both ES-C and ES-MCDE.

In (2.3) it is required that
⇣|G|

K

⌘

� M, where K = |Ax|. If the group size |G|

is fixed,
⇣|G|

K

⌘

is maximized for K = |G|/2. What is the least value of |G| that
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Figure 2.11: Estimate inaccuracy. Top rcorr = 15[m]; bottom rcorr = 30[m]
and rcorr = 45[m]. ES-MDCE achieves lower inaccuracy and
lower variance than the basic ES-C encoding scheme. How-
ever, all four scheme estimate the source relatively accurately.
The measurements at the representative sites found via vector
quantization model represent well the phenomenon.
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guarantees
⇣ |G|
|G|/2

⌘

� M? Using Sterling’s approximation yields
 |G|
|G|/2

!

� 2

|G|�1/
p

|G|/2

Therefore, 2

|G|�1/
p|G|/2 � M implies

⇣ |G|
|G|/2

⌘

� M. Solving for |G|:

0.5|G| � log (

0.5|G|) /4 + log (M) /2 + 0.5

Also notice that log (

0.5|G|) /4  1 for practical values of |G| (up to |G| = 32 nodes).

Then,

|G| � 2dlog (M) /2 + 1.5e (2.34)

Satisfying (2.34) ensures there are enough codewords for each message in M.

Here, K⇤ =|G|/2. This is the maximum possible number of nodes in the set Ax,

largest codeword weight, and the worst case of ES operation. Allowing larger

group sizes |G| substantially reduces the value of K⇤ utilized in ES as shown

in fig. 2.12. In practice, K⇤ << |G|/2 is sufficient to encode M messages, as

observed in the example WSN application of the previous section. One can now

compare the worst-case energy efficiency of ES vs. the average energy efficiency

of NCD. Since each node sending a bit per ES needs to be identified by the sink,

consider a DSSS physical layer is utilized as outlined above. I.e. the energy

Eb consumed per bit transmission is spread over a PN sequence. In the case of

ES, we do not need to detect the sign of the signal (i.e. we are not interested

whether the transmitted bit is 0 or 1 as long as some signal is there). Suppose

K⇤ = |G|/2 = dlog (M) /2 + 1.5e = |cx| bits are transmitted per message, as in the

worst case of ES operation from (2.34).

In contrast, the NCD scheme over the same underlying DSSS physical layer

would require transmission of a single representative node from group G, send-

ing log(M) bits. Each of these bits, as standard in single user DSSS systems, is

76



 

Figure 2.12: Number of nodes in a group Gi and number of transmitting
nodes K⇤ for different network densities. Even at lower den-
sities, K⇤ is less than |G|/2, the worst-case of ES operation, and
drops further with density. K⇤ is the same for both ES-MDCE
and ES-C.

spread over a PN sequence and modulated antipodally. The sign of each bit, 0

or 1, must be detected.

Given a transmission energy budget of E each, ES and the NCD schemes can

send respectively dES and dNCD messages in total: dES =
E

(|cx |Eb)

and dNCD =
E

log(M)Eb
.

In the worst-case for ES, |cx| = dlog (M) /2 + 1.5e and

dES =
2dNCD

(1 + 3/log(M)

(2.35)

Thus, ES in its worst regime of operation is close to 2 times as energy efficient

as NCD or a corresponding duty-cycling scheme. Respectively, the ES scheme

achieves at least a factor of 2 better energy efficiency than NCD in simulations.

Suppose the NCD scheme utilizes different, for instance non-antipodal, modu-

lation so that in effect only dlog(M)/2e signals are transmitted. Still, the energy
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per bit required to achieve the bit error rate obtained via the former antipodal

modulation would need to at least double (for instance, if orthogonal instead of

antipodal modulation is used). It is well known that a DSSS system achieves the

same bit error as a non-spread spectrum system with the same modulation for-

mat. On an AWGN channel (without interference), the unspread scheme would

require the same amount of energy as a DSSS-based non-cooperative scheme.

2.6 Other Collaborative Transmission Systems

A number of different schemes that take advantage of data correlation and “ap-

proximately common data” have been suggested in the technical literature.

One of the first and most prominent examples of collaboration across mul-

tiple wireless sensor nodes is cooperative communication, discussed in [108].

Inspired by the gains of spatial diversity realized in cooperative MIMO systems

the authors of [109], study cooperative communication in the context of WSN

comprising sets of nodes where each node is equipped with a only single an-

tenna. The nodes within each set transmit cooperatively (portions of) the same

message to a sink. Since different nodes have different spatial coordinates, the

sink receives multiple instances of the same message that have suffered fading

over statistically independent spatial paths. The earliest realizations of coopera-

tive transmission utilize the decode-and-forward [110] and the amplify-and-forward

mechanisms [111]. Various schemes for optimal selection of cooperating nodes

(e.g. [112]), algorithms for cooperative space-time coding of the transmitted

messages (e.g. [113]); and cooperative game theoretic frameworks optimizing

network quality of service per given energy budget ([114]) have been further in-
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vestigated. Encoded sensing is distinct from such cooperative communication

strategies. Per ES, each node in the subset Ax of G transmits a single bit directly

to the sink, without additional communication across collaborating nodes.

ES does not rely on spatial diversity in order to achieve energy efficient

communication. This is in contrast to more recent distributed transmit beam

forming systems (BF) [34]. Per BF, a set of cooperating nodes simultaneously

transmit copies of the same message to a single sink. The signals of the coop-

erating nodes are specifically synchronized in phase and frequency resulting

in constructive interference at the sink. Theoretically, employing n cooperative

beamforming nodes could lead up to a factor of n energy savings compared to

non-cooperative signaling. However, in the most recent proof-of-concept beam-

forming systems, noiseless 1-bit feedback from the sink is assumed so that all co-

operatively transmitting nodes are approximately synchronized in phase. This

feedback is provided via a separate cable connection (e.g. [115]) to the sink; this

is often not feasible in practice. ES does not require as fine synchronization of

message transmissions as beamforming. Furthermore, ES continues to operate

even if common data is not present (i.e. b in (2.1) is 1).

A somewhat separate stream of technical literature discusses the collabo-

rative operation of nodes in WSN taking into account correlations in measure-

ments. For example, a scheme is introduced in [21] eliminating the transmission

of measurements that are highly correlated. As shown in [21], the elimination of

certain highly correlated messages would not distort (within a bound) the over-

all phenomenon estimate at the sink. Thus network energy is conserved. The

outcome of the scheme is that within a group of nodes measuring the same (or

very similar) values, only a single node transmits an entire measurement value
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at every time-slot.

In a similar spirit, techniques relying on distributed source coding have been

suggested for WSN. The authors of [13] and [14] leverage results based on the

Slepian-Wolf source-coding theorem. Namely, correlated sources can be com-

pressed separately (e.g. without communication between the source nodes) and

without loss to the level of their joint entropy. Consequently, according to a pre-

specified scheme, each sensor node in the network transmits fewer bits the more

correlated its measurement is to reference nodes. As discussed in section 2.4, ES

leverages the representative nodes selection algorithm in [21] and achieves more

energy efficient data reports than distributed source coding.

The work of [116] provides a comprehensive overview and classification of

various data sampling and compression schemes based on compressive sensing

for WSN, some of which were outlined in subsections 1.3.1 and 1.3.2 of chap-

ter 1. Notice that in itself a number of these compressive sensing methods are

orthogonal to techniques utilizing spatial correlation across nodes and respec-

tively encoded sensing. In the context of ES, for instance, the nodes within each

representative group would have very highly correlated intra-signal structure

(since these nodes are spatially close). Exploiting the K-sparsity of this struc-

ture via compressive sensing, the nodes within each representative group could

access the same set of O(Klog(n)) incoherent measurements over n timeslots. ES

can then be utilized to transmit each one of the O(Klog(n)) samples in each repre-

sentative group. The extension of ES within this setting provides an interesting

avenue for research and holds potentially substantial energy savings in various

applications. In itself, ES does not require inherent K-sparsity in the observed

phenomenon signal. The linear combination of signature waveforms character-
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izing the received ES signals at the sink at a given timeslot is guaranteed to be

|Ax|-sparse. As the size |G| of the representative group increases, |Ax| decreases

independent of the sparsity of the phenomenon signal.
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CHAPTER 3

OPTIMIZING THE STRUCTURAL LEVEL

An important factor driving the number of packet re-transmission is net-

work’s links quality ([58], [59]). Among others, presence of obstacles between

nodes; increasing interference as the density of nodes grows; and separation

distance between wireless devices may all influence links’ quality. The relative

impact of each of these factors on network performance depends on the partic-

ular structural level and network deployment application.

For instance, the main reason for poor link quality in sparsely deployed out-

door sensor networks is the large separation distance between sensing nodes

causing low SNR, and low packet reception rate (PRR) ([59]). In these set-

tings, to improve links’ quality and decrease communication cost in wireless

networks, researchers and practitioners often rely on the deployment of relay

nodes. Relay nodes do not introduce new traffic in the network and only re-

transmit the packets received from a set of source nodes.

Generally, given a set of n fixed source nodes, along with their locations and

traffic demands, and a budget of k relay nodes, the problem posed is to find the

optimal locations of the k relay nodes minimizing the communication cost in the

network. This problem arises in many basic application scenarios. Pre-existing

sensor networks comprising n nodes may contain “low quality” links incurring

a large number of packet retransmission. For instance, the clusters positions

picked by ES in the previous chapter may be far apart due to the data level

model. Moving the n sensors may not be feasible from the perspective of sensor

network deployers (e.g. [45]); or may diminish the fidelity of data received at

the sink. In the case of ES for instance, representative groups positions (see
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definition (2.1) in the previous chapter) are picked to optimize the distortion

of the data received at the sink. Changing these positions would increase this

distortion. A solution could be the deployment of k new relay nodes.

In other cases, even if link quality is uniform throughout a network of n

devices, certain subsets of the devices may be more active, generating larger

amounts of source traffic in the network. A subset of links may be more loaded,

in effect raising the number of dropped packets on these links. Placing k relay

nodes appropriately reduces the communication cost1 in such scenarios.

3.1 Relay Placement Challenges

As shown in fig. 3.1, the appropriate placement of relay nodes may effec-

tively reduce the length of the longest and more loaded links between source-

destination pairs in a network, and thus potentially increases links’ PRR and

decrease communication cost. Even in the simple case of fig. 3.1, the optimal

placement of relay nodes accounts for more than 80% reduction in communica-

tion cost. It is well known ([117]) that even random placement of relay nodes

may theoretically have beneficial effects on network capacity as the network

scales. However, in general the number of randomly placed relay nodes re-

quired to achieve noticeable impact on network performance is rather large.

The random deployment of relay nodes is expensive and not practical. In the

sample topology of fig. 3.1, the random placement of relay nodes achieves only

about 45% in communication cost reduction.

Aside from the optimal and random placement, fig. 3.1 illustrates the re-

lay nodes topologies generated by two other algorithms typically utilized in
1Communication cost is more rigorously defined in section 3.2.1.2.
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Figure 3.1: A sample network topology of n = 4 fixed nodes and a demand
matrix W summarizing the traffic demands for different source
destination pairs. There are k = 2 relay nodes to place in the
network. The solutions obtained by the Euclidean and Gen-
eralized Steiner trees algorithms are not optimal in terms of
reducing communication cost. The optimal solution is charac-
terized in this chapter. The suggested RePlace algorithm (3.1)
achieves it in this network sample.

various studies and applications requiring relay nodes deployment. The first

algorithm solves the Euclidean Steiner tree problem and the second solves the

General Steiner tree problem on the given sample topology. These algorithms

however do not truly solve the optimal relay placement problem. The inefficien-

cies of these algorithms’ outputs compared to the optimal relay placement stem

from somewhat subtle but fundamental difference between the corresponding
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problem models.

The Euclidean Steiner tree consists of locations and links that interconnect

the n given fixed nodes in the plane. Each connecting link has an associated

weight equal to the Euclidean distance between its vertices. The goal is to pick

the locations on the plane that will minimize the sum weight of the intercon-

necting links. The relay nodes are placed at these locations. The problem is

NP-complete ([83]), however good approximations are efficiently found. Since

the sum of distances between the relay nodes is minimized, the intuition to such

a solution is that the overall links’ quality in the network increases, driving the

number of retransmitted packets and communication costs down. While such

approaches are frequently used in practice (e.g. [59] in the field of sensor net-

works; and [118] in the field of robotics), they are not necessarily optimal, as fig.

3.1 demonstrates. First, the Euclidean Steiner tree does not account for the traf-

fic loads on links: heavily utilized links may require more relay nodes placed

closer to them. For instance, in fig. 3.1, the traffic between sources 3 and 4 is sig-

nificantly larger than the rest of the links, shifting the optimal positions of the

relay nodes away from the Euclidean Steiner tree. Second, the SNR and respec-

tively the number of packet retransmissions due to poor PRR do not depend

linearly on the distance between receiver and transmitter.

These issues seem to be remedied by modeling the relay placement prob-

lem as an instance of the General Steiner tree model. In the General Steiner tree

problem, the input consists of a graph G(V, E), where each edge i j 2 E has an

associated cost ci j. Given a set of terminal nodes N ✓ V, |N | = n, the goal is to find

a tree ST of minimum cost spanning the vertices in N. Here, the weights of the

edges are arbitrary. As part of their influential work ([58]), Krause et al. utlize
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the General Steiner tree model to suggest locations for communication nodes

within a network of wireless sensors deployed to maximize the amount of gath-

ered sensing information and minimize communication cost in the network. In

[58], V is finite and represents the potential locations of network nodes. Each

edge i j 2 E in G has weight equal to the expected number of times a packet

needs to be retransmitted by i so that the packet is received successfully by j.

In this model, the communication cost depends on the locations of the nodes

and distance between them but, unlike the case of the Euclidean Steiner tree,

not necessarily linearly. The communication nodes are placed at the Steiner tree

vertices in ST spanning the set of sensor nodes.

The General Steiner tree model for placing relay nodes appears sound, how-

ever it omits a few important factors affecting the optimal placement of relay

nodes. First, the ideal locations of the relay nodes depend on how the routing

in the network is constructed: the communication cost on a link i j 2 E depends

on the amount of traffic flow on i j. The more the packets flowing on link i j

are, the greater is the expected number of retransmissions, i.e. communication

cost, on link i j. Furthermore, the ideal routing in the network depends on the

positions of the relay nodes: one could obtain a better routing if one were to

position the relay nodes elsewhere within a set of available locations. This hints

that the locations of the relay nodes and the routing should be optimized si-

multaneously working both on the structural and the procedural network levels. The

General Steiner tree approach to modeling the optimal relay placement does

not capture these aspects of the problem. This is corroborated by the example

in fig. 3.1, where Steiner tree based solutions do not match the optimal solution,

achieving markedly lower reduction in communication costs even in this very

simple network scenario. Furthermore, in practice, the relay nodes may occupy
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a continuum of points in the plane. In some cases, confining the points to a pre-

specified set of discrete locations as per the General Steiner tree model may not

be feasible. To obtain a good approximation of the best relay nodes positions in

network where n nodes span large area, one may need a large amount of possi-

ble locations in V , which increases significantly the complexity of the respective

General Steiner tree approximation algorithms.

This chapter revisits anew the problem of placing optimally a set of k relay

nodes within a network of n fixed nodes, with the goal of reducing network

communication cost. This task is formulated as a novel optimization problem

that generalizes previously studied wireless network node placement problems.

• The presented optimization framework allows nodes to be placed at a contin-

uum of points on the plane 2. Furthermore, the relay nodes’ locations and routing

traffic patterns in the network are simultaneously optimized.

• Via reduction to a graph clique problem, it is shown that per the optimal

relay placement model even listing a set of feasible sites for the placement of

relay nodes is NP-hard.

• Exploiting convexity in a special case of the network communication cost

function, an optimal algorithm solving the relay placement problem and mini-

mizing network overhead retransmissions is described. The optimal algorithm,

however, is exponential on the number of nodes in the network and hence not

practical for larger network instances.

• An efficient relay placement and routing heuristic algorithm (RePlace) is sug-

gested. Numerically it is shown that RePlace outputs optimal or very close to
2We do not consider here spatial restriction on the possible locations of the relay nodes in

the plane (e.g. due to physical obstacles such as ponds or rivers), however the framework
generalizes to settings, where relay nodes may only be placed within constraints of continuous
convex sets of points.
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the optimal solutions (within 2-3% of the optimal communication cost) in small

network instances. RePlace is implemented in the full network stack simula-

tor JiST/SWANS ([119]), where practical network effects (e.g. link asymmetry,

interference, noise, collisions, etc.) are present. As the number of relay nodes

increases RePlace eliminates almost entirely overhead communication costs, in

terms of packet retransmissions due to low quality links. Furthermore, the re-

sulting delay in networks with relay nodes placed according to the RePlace so-

lution, decreases down to about 35% of the delay achieved in the same networks

without placement of relay nodes.

• Finally RePlace replace is compared to alternative relay placement schemes

in the recent technical literature.

3.2 Optimal Topology for Relays in Wireless Networks

3.2.1 System Model

3.2.1.1 Link model

Let ij denote the wireless link between two network nodes i and j. We calculate

the packet error rate ri j on link i j, assuming the log-distance path loss model

([120]). This wireless signal propagation model has been known to realistically

characterize a number of low power network deployment scenarios (e.g. see

[121] and [59]). Assuming i’s transmit power is Pt, the received power Pr at j is

given by

Pr = Pt � a(d
0

) � 10↵ log

10

(di j/d0

) + ⌘(0,�) + �(0,�
1

) (3.1)
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and the SNR at j is correspondingly

�(di j) = Pt � a(d
0

) � 10↵ log

10

(di j/d0

) � ⌘(0,�) � �(0,�
1

) (3.2)

where a(d
0

) is the attenuation at reference distance d
0

. ⌘(0, ) and �(0,�
1

) are

normal random variables modeling the thermal noise power and shadowing

respectively.

Per the physical reception model in Gupta and Kumar’s seminal paper

([117]), the received SNR has to be greater than a minimum threshold � for a

successful transmission:

�(di j) � � (3.3)

At present, we assume that there is no interference from nodes’ transmissions.

In section 3.2.5.2, we study the effect of interference. Hence, the bit error rate pi j

on link i j is given by

pi j = Q
⇢

h

2�(di j)
i

1

2

�

(3.4)

if BPSK modulation is utilized. The results below are easily extensible for other

commonly utilized modulation schemes.

The packet error rate ri j on i j is then given by

ri j = 1 � (1 � pi j)
b (3.5)

where b is the packet length in bits.

Physical link cost: the cost ci j of link i j is defined as

ci j = 1/(1 � ri j) (3.6)

ci j accounts for the number of dropped packets due to low SNR at receiver j

in the network. Notice that ci j captures well links’ communication cost. The
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physical link cost ci j however does not account for the full communication cost

on link i j, as discussed below.

3.2.1.2 Network model

Let V be a set of network nodes with equal computational and communication

capabilities. We assume that links in the network are symmetric. The network

is modeled as an undirected, connected, weighted graph G(V, E). E is the set of

wireless links. The weight of edge i j 2 E is ci j. The graph G is captured by its

weighted adjacency matrix C =
h

ci j

i

|V |x|V |. Notice that the values ci j depend on

the distance between the nodes i and j, and hence on the positions of the nodes

i and j. Link i j exists iff di j  R, where R is defined as follows.

Definition 3.1. Maximum Transmission Range R: The maximum transmission

range R of node i is the maximum distance away from i at which, a fraction �

of the time, the BER is less than 0.5 � ✏, ✏ > 0.

The parameters ✏ and � depend on QoS constraints.

Suppose the initial demand matrix W = [wsd]|V |x|V | is provided. Each entry wsd

of W captures bidirectional traffic demand [packets/sec] between nodes s and

d: the sum of the traffic demands from node s to d and from node d to s. A

demand pair is denoted hsdi. For all given pairs hsdiwe can find a routing path

ysd ⇢ E connecting s with d. Let Yi j be the set of all hsdi, such that i j 2 ysd. The

traffic on i j is then

qi j =
X

hsdi2Yi j

wsd (3.7)

Link i j is utilized if qi j > 0.
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Network communication cost: Assuming each packet error on i j is an inde-

pendent event with probability ri j, the expected number of packet retransmis-

sions until qi j packets are successfully received is given by

fi j = qi jci j. (3.8)

The quantity fi j is the communication cost on link i j. The greater the packet

error rate ri j on i j, the larger the physical cost ci j. The larger the qi j of link i j, the

greater fi j and the average packet delay on link i j. If link i j is not utilized it does

not carry traffic: qi j = fi j = 0. If pi j > 0, then ci j > 1 and fi j > qi j. Ideally, if pi j = 0,

then ci j = 1 and fi j = qi j.

The total network communication cost is given by

F =
X

i j2E

fi j (3.9)

Intuitively, minimizing F would improve network performance in terms of net-

work goodput and average packet delay. In the following sections, we study

and quantify how the addition of relay nodes, so that F is minimized, impacts

these network performance metrics.

3.2.2 Communication Cost Minimization

In this section, we formulate the general problem of communication cost mini-

mization in wireless networks where a set of relay nodes is added to an initial set

of fixed nodes. The relay nodes’ positions are picked arbitrarily in the network

area, and the positions of the fixed nodes cannot be changed. We describe an

optimal algorithm for placement of the additional relay nodes that minimizes

the communication cost in the resulting network topology.
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Given a network of n fixed nodes and a set K of new relay nodes, where k =

|K|, our task is the minimization of overall communication cost in G0, where G0

is the resulting network graph with vertex set N [ K and edge set E0. The relay

nodes are not sources of traffic and can only offload the traffic from the original

n nodes.

From (3.9), fi j, i j 2 E0, depends both on the distance between i and j (via the

term ci j) and the traffic routed through link i j (via the term qi j). Hence, we need

to jointly optimize two sets of variables to minimize communication cost:

(a) the positions of relay nodes; and

(b) the routing over the links in the relay network.

Notice also that

(c) changing the positions of relay nodes may affect the optimal routing paths

in the network and changing the routing paths in the network in turn may

affect the optimal positions of the relay nodes.

3.2.2.1 General Relay Placement Problem

Let Q = [qi j](n+k)(n+k)

denote the network traffic flow matrix, where qi j denotes the

traffic on link i j 2 E0 as defined in (3.7). The coordinates of the k relay nodes

are denoted by (x j, y j), 1  j  k. We let v = [(x
1

, y
1

), (x
2

, y
2

), . . . , (xk, yk)], v 2 R.

C(v) denotes the weighted adjacency matrix of G0. Its entries depend on v. The

general relay placement problem (GRPP) becomes

min

Q,v
{F(Q, v)} ⌘ min

Q,v
{Q : C(v)} = min

Q,v

8

>

>

<

>

>

:

n+k�1

X

i=1

n+k
X

j=i+1

fi j

9

>

>

=

>

>

;

(3.10)

As usual, A:B denotes the inner product of matrices A and B; and we have

min

Q,v

8

>

>

<

>

>

:

n+k�1

X

i=1

n+k
X

j=i+1

fi j

9

>

>

=

>

>

;

=

n+k�1

X

i=1

n+k
X

j=i+1

qi j



1 � Q
✓

q

2�
⇣

d
⇣

xi, yi, x j, y j

⌘⌘

◆��b

(3.11)
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d(xi, yi, x j, y j) denotes the Euclidean distance between any two points i and j with

coordinates (xi, yi), (x j, y j).

The candidate solutions to the GRPP (3.10) are uncountably many since v

may include any point on the plane. However, the different possible routing

paths that satisfy (3.7) and hence the different matrices Q are finitely many. If

we were able to compute the optimal vector v for each possible input Q, we

would have an optimal enumeration algorithm for solving the GRPP (3.10).

3.2.2.2 Relay Placement with Fixed Routing

Suppose the traffic matrix Q is provided. Can we find the optimal locations (i.e.

v) of the relay nodes and solve

min

v

n

FQ
(v)

o

= min

v

8

>

>

<

>

>

:

n+k�1

X

i=1

n+k
X

j=i+1

qi j



1 � Q
✓

q

2�
⇣

d
⇣

xi, yi, x j, y j

⌘⌘

◆��b
9

>

>

=

>

>

;

(3.12)

where qi j’s are no longer optimization variables but the entries of the given ma-

trix Q? We label this problem as the Relay Placement with Fixed Traffic (RPFT).

Note that RPFT’s solution must satisfy a set of simple geometrical constraints

due to the properties of wireless links. Showing that the function FQ
(v) is convex

under these constraints, we are able to provide an optimal solution to the RPFT.

This allows us to pose GRPP as a combinatorial problem.

- Convexity of RPFT:

Let v = (x
1

, y
1

, x
2

, y
2

, . . . , xk, yk) be the set of variables representing the coordi-

nates of the k relay nodes. We begin by noting that xi and yi are independent:

changing xi or yi does not change x j or y j, for any i and j. Next, we recall the

following theorem.
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Theorem 3.1. The function

FQ
(v) =

n+k�1

X

i=1

n+k
X

j=i+1

qi jg
h

d(xi, yi, x j, y j)
i

(3.13)

is convex if g(z) : R+ ! R is convex and non-decreasing.

Proof. Please refer to [122], p. 434. ⇤

Consider the function FQ
(v) in (3.12). Let

g
h

d(xi, yi, x j, y j)
i

=


1 � Q
✓

q

2�
⇣

d
⇣

xi, yi, x j, y j

⌘⌘

◆��b

(3.14)

We then can rewrite FQ
(v) as follows

FQ
(v) = const +

n+k�1

X

i=1

n+k
X

j=i+1

qi jg
h

d(xi, yi, x j, y j)
i

(3.15)

To determine whether FQ
(v) is convex on some domain, by Theorem (3.1), we

only need to determine whether g(z) is convex and non-decreasing on that do-

main.

Observation 3.1. The function g(z) is convex and non-decreasing on the interval

(0, rd
0

), 8r such that rd
0

> R.

Observation 1 is analyzed with more detail in Appendix C. Figure 3.2 shows a

plot of g(z) when Pt = 10[W], R ⇡ 110[m], b = 256[bits], d
0

= 1[m]. Given function

FQ
(v) in (3.15) and R  rd

0

, the RPFT problem becomes

v0 = arg min

v

n

FQ
(v)

o

s.t. d(xi, yi, x j, y j)  R,8qi j > 0 (3.16)

The constraints inequalities in (3.16) are convex too (e.g. [122]).

Hence, for any fixed matrix Q and a network graph where links are con-

strained within transmission range R, we can solve (3.16) and find the positions
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of the relay nodes that minimize the network communication cost. Standard

convex optimization algorithms such as the steepest gradient descent with con-

straints ([122]) could be utilized to solve the RPFT problem.

3.2.2.3 Optimal Brute Force Solution to the GRPP

Going back to the GRPP, we can now present a brute force combinatorial solu-

tion. Given a graph G of fixed nodes, its weighted adjacency matric C, demand

matrix W, and a number k of relay nodes, the algorithm outputs as a solution

the optimal coordinates v⇤ of the k relay nodes and the optimal routing Y⇤ in

the resulting network G0 on vertex set N [ K. The pair (v⇤,Y⇤) minimizes the

network communication cost.

Let Y be a set of routing paths on the vertices N [ K connecting all hsdi pairs.

Let Y be the collection of all possible sets Y . Y has finite number of elements

depending on n, k, and the maximum transmission radius R (assuming that the

flow for each pair hsdi is routed on a single path).

The brute force algorithm (BruteForceMin) then follows:

1. for each set of routing paths Y 2 Y, generate the matrix QY = [qi j](n+k)(n+k)

as

in (3.7) and solve the constrained convex optimization problem (3.16) for

QY, finding v’ minimizing FQY
(v0);

2. pick the solution v⇤ and the corresponding Y⇤ that yields the minimum

FQY
(v0) over all different routing paths Y 2 Y:

(v⇤,Y⇤) = arg min

v0,Y
FQY

(v0) (3.17)

The cardinality of Y is exponential of the number of vertices in N [ K and thus

solving the GRPP using BruteForceMin is not practical for larger networks. In
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the next sections, we characterize the inherent computational hardness of the

GRPP. We pose the GRPP as a maximization problem and provide an efficient,

practical heuristic algorithm for it.

3.2.3 Zones, Overlaps and Feasible Polygons

3.2.3.1 Defining Zones and Overlaps

In this section, we define a set of geometrical constraints on the possible optimal

positions of the relay nodes. This allows us to define a feasible set of polygons

in the network area, where relay nodes can be initially placed. We show that

listing these feasible polygons is an NP-hard problem.

Observation 3.2. Given a link uv in G and a relay node i, the communication cost of

uv can be reduced if and only if i is positioned within the lune formed by the overlap of

the two circles with centers respectively u and v, each with radius duv.

The lune of link uv is shown in fig. 3.3 (top) and is referred to as the lune zone

of link uv. We can approximate the lune zone with a corresponding rhombus

zone, as shown in fig. 3.3 (bottom). The rhombus approximation is chosen

for ease of presentation. We can choose to approximate the lune with a different

many-sided convex polygon. We denote this approximate rhombus zone of link

uv by ✓uv, and refer to it as the zone of link uv. Let ✓u0v0 ⇧ ✓uv denote the statement

”the zone of link u0v0 overlaps with the zone of link uv”. Let A be a set of links,

such that ✓u0v0 ⇧ ✓uv, 8uv, u0v0 2 A. The polygon formed by the overlap of all zones

of links in A is denoted by ✓A. We say ✓A > 0 if the zones’ overlap polygon has

area greater than 0. Let A ✓ E be a set of links connecting some subset of fixed
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Figure 3.3: Top: Lune zone of link uv. Bottom: Rhombus zone of uv.

nodes in G.

Observation 3.3. Given a set of links A, their zones, and a relay node i, i can reduce the

communication cost of every link in A if and only if i is placed in ✓A, assuming ✓A > 0.

Observation 3 follows from Observation 2, since i is in the zone of ev-

ery link in A, when placed within ✓A. Figure 3.4 demonstrates such an

arrangement, where i is placed in ✓A, |A| = 3. Consider the set X(A) =

{✓S : S ✓ A, ✓S > 0}. In the example of fig. 3.4, A = {12, 13, 23} and X(A) =

�

✓{12}, ✓{13}, ✓{23}, ✓{12,23}, ✓{12,13}, ✓{13,23}, ✓{12,13,23}
 

. Notice that a zone overlaps with it-

self. According to Observation 3, the relay node i can only reduce the communi-
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Figure 3.4: The overlapping zones of links 12, 13, and 23 (left); the over-
lapping zones of the links in the same network constrained to
the convex hull of the fixed nodes 1, 2, and 3 (right). Relay
node i is positioned in the overlap of zones ✓

12

, ✓
13

, ✓
23

and can
reduce the communication cost of all three links in the network,
iff their traffic is routed through i.

cation cost of all the links 12, 13, and 23 if and only if i is placed in the overlap

of the set of zones ✓{12,13,23} 2 X(A).

Observation 3.4. Consider the set Y⇤ 2 Y of routing paths connecting all hsdi pairs in

the relay network G0. Let A be a subset of the utilized links in Y⇤ from the initial network

G. For a given relay node i, from Observations (3.2) and (3.3), 8u, v such that uv 2 A,

if ui 2 Y⇤ and iv 2 Y⇤ then dui < duv and div < duv. The latter is equivalent to placing i

in ✓A. By contraposition, if i is not placed in ✓A, 9 u and v such that uv 2 A, ui < Y⇤ and

iv < Y⇤. Furthermore, there 9 a relay node i that if placed in ✓A, then the set of routing

paths Y⇤ minimizing network communication cost and utilizing i should include links

ui and iv, 8u, v such that uv < A.

From Observation (3.4), for instance, if the zones of links u
1

v
1

and u
2

v
2

do not

overlap, then the links u
1

i, iv
1

, u
2

i, and iv
2

cannot all be in Y⇤. Each set of routing

paths containing all four of these links is suboptimal.
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3.2.3.2 Feasible Polygons and Their Independence

Based on Observations (3.1) - (3.4), in this section we describe a set of feasible

polygons that necessarily contains the optimal positions for the placement of

relay nodes in the network. We show that just obtaining this set of feasible

polygons is in itself an NP-hard problem.

- Feasible polygons:

Let E be the set of links in the initial graph G. Each ✓S 2 X(E), S ✓ E, defines

an overlap polygon. From Observation (3.4), if relay node i is placed outside

✓S it would be suboptimal for i to offload all links in S . ✓S provides an initial

feasible site at which relay node i can be placed to offload all links in S . The

relay nodes are optimally placed in a subset of the polygons contained in X(E).

E.g., in fig. 3.4 (right) the overlap polygon ✓S 2 X(E) associated with the set of

links S = {12, 13, 23} is in green and contains relay node i. In this example, the

routing Y⇤ in the relay network is not hard to compute. Given i’s placement in

✓S , and the traffic routed through i, i’s optimal position is found by solving the

RPFT with input QY⇤ .

Definition 3.2. Let A ✓ E be a set of links connecting some subset of fixed nodes

in G. The set of feasible polygons is the set X(A) = {✓S : S ✓ A, ✓S > 0}.

- Finding the set of Feasible Polygons is NP-Hard:

Notice that some zones of links in E may overlap while others may not have

common overlap. For instance, Figure 3.5 shows an example of a network with

two sets of links S
1

and S
2

, each containing three links. There we have ✓S
1

2 X(E)

and ✓S
2

< X(E), since ✓S
1

> 0 while ✓S
2

= 0. Obtaining X(E) is a prerequisite
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Figure 3.5: S
1

= S
2

= {✓
12

, ✓
13

, ✓
23

}. ✓S
1

2 X(E) for the graph G (left);
✓S

2

< X(E) for the graph G (right). Zones ✓
12

, ✓
13

have positive
overlap for the graph on the left, and zones ✓

12

, ✓
13

have zero
overlap for the graph on the right.

for finding optimal placement for the relay nodes. Can we design an efficient

algorithm generating the set of overlap polygons that belong to X(E)?

Theorem 3.2. Finding all sets in X(E) is NP-hard.

Proof. We start by defining the zone graph GZ(VZ, EZ) of G(V, E). Associate a

vertex vi j 2 VZ to each zone ✓i j, i j 2 E. Any two vertices vi j, vi0 j0 2 VZ are connected

by an edge e 2 EZ if and only if ✓i j ⇧ ✓i0 j0 . The zone graphs of three sample graphs

on fixed nodes are given in fig. 3.6. Consider the clique complex �(GZ) of the

graph GZ and let VS ✓ VZ be the set of nodes associated with the links in S ✓ E.

We next show that VS 2 �(GZ) if and only if ✓S 2 X(E),8VS ✓ VZ.

Let ✓S 2 X(E). We have ✓i j ⇧ ✓i0 j0 ,8i j, i0 j0 2 S . Then, vi j and vi0 j0 are connected

by an edge e 2 EZ, 8vi j, vi0 j0 2 VS . Therefore, VS is a clique in GZ, and VS 2 �(GZ).

Conversely, let VS 2 �(GZ), then the vertices in VS form a clique in GZ. We have

that vi j, and vi0 j0 are connected by an edge e 2 EZ,8vi j, vi0 j0 2 VS . By the definition

of GZ, ✓i j ⇧ ✓i0 j0 ,8i j, i0 j0 2 S . This implies ✓S 2 X(E).

There is equivalence between the elements in X(E) and the elements in �(GZ).

Listing all the sets in X(E) is equivalent to listing all cliques of GZ. Listing all
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Figure 3.6: Zone graphs of three network instances: a) zone graph of the
network in fig. 3.5 (left); b) zone graph of the network in fig. 3.5
(right); c) network on 4 nodes (left) and its zone graph (right).
The zone graphs quickly become more complex as the number
of nodes in the corresponding networks increases.

cliques in GZ is at least as hard as listing all maximal cliques of GZ. For general

graphs, listing all maximal cliques is an NP-hard problem ([83]). ⇤

Hence, even listing the potential polygons where relay nodes should be

placed is NP-hard. Furthermore, for general graphs this clique problem is hard

to approximate in polynomial time ([123]).

- Feasible Polygons as an Independence System:

Corollary 3.3. X(E) is an independence system, therefore X(E) is the intersection of m

matroids, where m is finite.

Proof. From Theorem (3.2), X(E) is equivalent to the clique complex �(GZ) of the
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graph GZ. The clique complex of a graph is an independence system ([124]).

Therefore X(E) is an independence system. It is well known that any indepen-

dence system is an intersection of a finite number of matroids ([125]). ⇤

Next, we pose the GRPP as a set function maximization problem, subject

to independence constraints. This perspective provides intuition for heuristics

solving approximately the GRPP.

3.2.3.3 Optimal Assignment: A Maximization Perspective

Let the communication cost reduction �K be the difference between the commu-

nication cost in the initial network G(N, E) and the communication cost in the

relay network G0(N [ K, E0):

�K =
X

i j2E

fi j �
X

i j2E0
fi j (3.18)

Given X(E), the GRPP problem becomes an optimal assignment problem

of elements/polygons in X(E) to relay nodes. Each element in X(E) may be

assigned to 0, 1 or more relay nodes. Rename the set of overlaps X(E) to J. Let

the pair (i, j), i 2 K and j 2 J, denote the assignment of relay node i to the overlap

polygon j. Let� = {(i, j) : i 2 K, j 2 J} be the set of all possible assignment pairs,

and � j = {(i, j) : i 2 K} , j 2 J. The maximization problem below is equivalent to

the GRPP:

O⇤ = arg max

O✓�

n

�(O) : |O \� j|  k, j 2 J
o

(3.19)

Notice that since we only renamed X(E) to J in (3.19), � in (3.19) is an inde-

pendence system from Corollary (3.3). The function �(O) is defined here as the

maximum communication cost reduction in the network G achieved by placing

103



a subset of the K relay nodes within a combination of polygons in the set X(E),

according to the assignment pairs (i, j) 2 O ✓ �. The function � : O ! R+ is not

given explicitly. However, for a particular O ✓ �we can compute �(O).

We next show how to evaluate the minimum communication cost corre-

sponding to the set of assignment pairs in O. This is equivalent to evaluating

�(O). Then, we describe the BruteForceMax algorithm solving (3.19).

We start by noting from (3.18) that maximizing the communication cost re-

duction is equivalent to minimizing the communication cost in G0. Given each

(i, j) 2 O for a particular set O, we position a relay node i within the overlap

j 2 J , ✓S 2 X(E) at a random point in ✓S . Suppose the traffic matrix Q of the

initial network G is given. This can be obtained by running Floyd-Warshall’s al-

gorithm on the weighted adjacency matrix C of G. The communication cost in G,

given the resulting routing, is computed using (3.9). We apply Observation (3.4)

and offload the traffic from all links in S only through the relay nodes placed in

✓S . Given this constraint, let YO be a set of routing paths on the vertices N [ K,

while the relay nodes are placed according to the assignment pairs in O. Let YO

be the collection of all possible sets YO for a fixed O. Run the BruteForceMin

algorithm with input Y = YO.

This yields the minimum communication cost FQY
(v) in the network G0 for

the fixed O. Equivalently, we have �(O).

The BruteForceMax algorithm follows:

1. For each O ✓ �, compute �(O) as described above.

2. Pick O⇤ that maximizes �(O) over all O ✓ �.

Similarly to BruteForceMin, the BruteForceMax algorithm is exponential on
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the number of vertices in N [ K. The formulation of the GRPP as maximiza-

tion problem does not in itself reduce the complexity of the solution, and we do

not know the properties of the function �(O) from (3.19). However, we know

that (3.19) is a maximization problem over an independence system �. Typ-

ically, greedy algorithms perform well in that context. The RePlace heuristic

algorithm presented next follows such Greedy strategy.

3.2.4 The RePlace Heuristic

Given the exponential running time of the discussed brute force algorithms and

the hardness of the exact computation of the feasible polygons in X(E), in this

section, we resort to designing an efficient heuristic for the GRPP.

Based on the initial network G(N, E) and demand matrix W, we start by com-

puting the adjacency cost matrix C of G using (3.6). We find routing Y and

traffic matrix Q by running, for instance, all pairs shortest paths routing algo-

rithm over the weighted adjacency matrix C of G. Suppose we can enumerate

all sets ✓S 2 X(E). In the next section, we describe a practical implementation

that computes an overlap polygon ✓S from the overlapping zones of the links in

S . We also give a procedure to approximately compute the set X(E) of overlap

polygons.

Given input G, C, Y , W, Q, X(E) and K, the goal is to find k positions at which

to place the relay nodes and the routing through the resulting relay network, so

that a best-effort solution to (3.19) is computed. The RePlace algorithm given

by Algorithm (3.1) relies on a Greedy heuristic to achieve that.
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Suppose P is the set of placed relay nodes after iteration t. vt contains the

coordinates of the nodes in P. Correspondingly, G0(N [ P, Et) is the resulting

network with weighted adjacency matrix Ct = [ci j](n+t)(n+t), where E
0

= E. Let

Ft be the communication cost in the network after iteration t. Then, �t is the

communication cost reduction:

�t = Ft � F
0

=
X

i j2Et

fi j �
X

i j2E
0

fi j (3.20)

At each iteration t of the RePlace algorithm, we place a new relay node p at

a location within the overlap polygon ✓S 2 X(E) that leads to the maximum �t

(lines 10 - 38, Algorithm (3.1)). To determine ✓S maximizing �t at each iteration

t, RePlace probes all overlap polygons prior to placing each relay node p.

Namely, at iteration t, for each ✓S 2 X(E), relay node p is temporarily placed

at a random location in ✓S (line 11, Algorithm (3.1)). The network routing is up-

dated according to Observation (3.4), to account for the placement of p (lines 13 -

21, Algorithm (3.1)). Next, node p’s position within ✓S is optimized by solving

(RPFT), with respect to the updated network routing (lines 22 - 28, Algorithm

(3.1)). Notice that the positions of all relay nodes placed until iteration t are also

optimized, within the constraints of their respective overlap polygons. Then,

the estimated communication cost reduction �S from placing p in overlap ✓S is

obtained (line 28, Algorithm (3.1)). Eventually, p is placed in overlap ✓S leading

to maximum �t at iteration t.

RePlace terminates when all k relay nodes are placed and returns the Greedy

solution vg for the positions of the relay nodes, along with the corresponding

routing Yg in the network.
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Algorithm 3.1: REPLACE

input: G,C,Y,W,Q, X(E), and K
output: vg,Yg: vector of relay node locations and a set of routing paths

1: t  0; P ;; Yt  Y ; vt  ;; Ct  C; Et  E
2: while |P|  |K| do
3: p rand(K\P) // pick a relay node from the set of not placed relay nodes
4: P P [ p
5: ES  Et
6: t  t + 1

7: �max  0

8: vt  vt�1

9: Yt  Yt�1

10: for all ✓S 2 X(E) do
11: (xp, yp) (xrand, yrand) // tentatively place p at a random location in ✓S
12: // estimate communication cost reduction of placing p in ✓S
13: for all v 2 N [ P do
14: if dvp  R then
15: cvp =

1

1�rvp
// set the cvp entry in Ct

16: ES  ES [ vp
17: end if
18: end for
19: CS  Ct
20: YS  FLOYDWARSHALL(G(N[P, ES

),CS
) // compute all-pairs shortest

paths YS using Floyd-Warshall on G(N [ P, ES
) with matrix CS

21: Y  YS

22: for all i j 2 ES do
23: // compute traffic qi j on link i j per (3.7); set entry qi j 2 QY
24: qi j  

P

hsdi2Yi j wsd
25: end for
26: vS  CONSTRAINEDDESCENT(FQY

(vt [ (xp, yp))) // Solve the RPFT
problem (3.12) with input QY via constrained gradient descent

27: FS  FQY
(vS

)

28: �S  F
0

� FS

29: if �max  �S then
30: �max  �S

31: vt  vS

32: Yt  YS

33: Et  ES

34: end if
35: ES  Et�1

36: Ct  Ct�1

37: �t  �max
38: end for
39: end while
40: vg  vt
41: Yg  Yt
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3.2.4.1 RePlace Implementation

The implementation of the above RePlace heuristic assumes that one can com-

pute an overlap polygon ✓S from the overlapping zones of the links in a set

S ✓ E, and also that one can find all sets ✓S 2 X(E).

Given graph G, the collection X(E) is approximately found via Monte Carlo

based approach. Suppose M points are sampled on the plane uniformly at ran-

dom. It is very efficient to check whether each of the M points is positioned

within any given link’s zone. Let m be a sample point and S m be a set of zones

that contain m. Combining the sets S m for each m yields approximate set X0(E).

The larger M the more complete the approximate solution X0(E) of X(E).

We can efficiently find the overlap polygons of the zones forming ✓S 2 X0(E).

To do that, we adapt the clipping algorithm of ([126]). Given a set of convex

zones as input, we use clipping to compute the intersection polygons of the

zones in X0(E).

3.2.5 Numerical and Simulation Results

This section studies the performance of the RePlace heuristic described above,

which is compared numerically with the performance of RePlace to the perfor-

mance of an optimal brute force algorithm. (In small networks, one can find the

optimal solution to the GRPP via either of the brute force algorithms described

above.) The performance of the RePlace heuristic matches the performance of

the optimal solutions very closely, and in most of the trials the two are identi-

cal. Using the JiST/SWANS ([119]) full network stack simulator, we evaluate
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the performance of RePlace in terms of network delay and communication cost

reduction. We show that under practical wireless network conditions where in-

terference, collisions, links asymmetries, fading, etc. are present, the optimized

placement of small number of relay nodes reduces the delay by a factor of 2

and almost completely eliminates overhead communication cost in the result-

ing network as the number of relay nodes increases.

3.2.5.1 Numerical Evaluation

The performance of RePlace is shown in fig. 3.7. In small networks, we di-

rectly compare RePlace to the optimal solution obtained by the BruteForceMax

algorithm. Notice that the two algorithms perform remarkably close. Each data

point represents the communication cost reduction achieved by placing k relay

nodes in a network of n nodes and is averaged over 50 random network topolo-

gies. X(E) is computed exactly by brute force for the input of the BruteForce-

Max algorithm. We compare the results for the optimal and RePlace solutions

for networks of size up to n = 10 and k = 6 nodes.

Figure 3.8 lists a few typical relay network topologies found by the two al-

gorithms for different values of n and k. In these examples, RePlace matches

exactly the optimal solution in terms both of routing and relay nodes’ positions.

3.2.5.2 JiST/SWANS Simulations

To investigate the effect of bandwidth limitation, interference, collisions, link

asymmetries, etc., we simulate RePlace in the full stack network simulator
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Figure 3.7: RePlace and the optimal BruteForceMax communication cost
reduction performance in small networks for varying numbers
n and k of fixed and relay nodes (x � axis: n, k). The RePlace
heuristic achieves solutions remarkably close to the optimal
ones.

Table 3.1: Parameters of the JiST/SWANS Simulation

Simulator JiST/SWANS v1.0.6

Radio frequency 2.4GHz

Channel bandwidth 1Mb/s

Pt 5[dBm]

R ⇡ 10[m]

Area Varying

Propagation model Free Space

MAC Layer IEEE 802.11b

b 256[bits]

n [5,50]

k [2,30]

JiST/SWANS. Table (3.1) summarizes the simulation setup parameters. Each

simulation run consists of two experiments. First, only the nodes in N are de-

ployed in the network. As above, we model the link costs ci j according to the

log-distance path loss model and then find the lowest-costs paths routing on the
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n = 4 
k = 3 

n = 4 
k = 2 

n = 5 
k = 2 

n = 5 
k = 6 

n = 10 
k = 6 

n = 10 
k = 10 

Figure 3.8: The output of the RePlace and the optimal BruteForceMax al-
gorithms on typical random network topologies. The relay
nodes placed by the RePlace algorithm are marked with blue
circles; the relay nodes placed by the BruteForceMax algorithm
are marked with red squares. In these cases the solutions, both
routing and positions of nodes, output by the two algorithms
are the same and the respective relay nodes placements over-
lap. Hence, only one solution is visible at a time. For k = 2 and
3, all zone overlaps bounded by the convex hull of the network
are shown. For k = 6 and 10, only the zone overlaps selected for
the optimal placement of the relay nodes are visible in green.
The black dots are the sample points used for computing the
approximate set X(E) input to the RePlace algorithm.
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n nodes. The routing is static and centralized. Each node receiving a packet with

a given source and destination has access to the routing table and determines

the next hop of the packet. In the second experiment, the nodes in N [ K are

deployed. The coordinates of the n nodes and W are provided as input to Re-

Place. We model the traffic demand qi j on each link i j per (3.9). Using RePlace,

we obtain the positions of the k relay nodes and the corresponding routing over

the nodes in N [ K.

For both experiments, we consider the metrics communication cost reduc-

tion and average packet delay (i.e. the delay of a packet successfully delivered

at a destination, averaged across all such packets on all network paths). These

metrics are investigated in networks of different sizes and varying number of

relay nodes. Each data point in the simulation figures represents the mean net-

work performance over a 100 different random network instances.

- Communication Cost Reduction:

The communication cost reduction obtained by RePlace (vis-á-vis the base

case where no relay nodes are deployed) is shown in fig. 3.9. The communica-

tion cost metric we consider accounts for the number of dropped packets due

to low SINR at each receiver in the network. More specifically, in IEEE 802.11

the transmitter does not receive an acknowledgement if a packet is dropped at

the receiver. This causes the transmitter to retry sending the packet. The num-

ber of such retries/retransmissions effectively leads to loss in the throughput of

the network. The communication cost reduction metric measures the fractional

difference between the number of retransmissions when relay nodes are placed

and the number of retransmissions without placement of relay nodes. Note that

the low SINR at the receiver can result from the combination of two phenom-
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Figure 3.9: The fractional difference between the number of retransmis-
sions due to dropped packets when relay nodes’ positions are
optimized in comparison to the base case with no relay nodes
placed. As the ratio k/n varies there are three different trends:
top-left, top-right and bottom. As expected for large k/n, the
reduction is almost 100%. The communication cost reduction
rate is highest for smaller values of k/n. The communication
cost reduction rate becomes lower for larger k/n.

ena: interference from other transmitters on one hand and low received signal

power on the other. It is observed, similarly to the work in [59], that in smaller

networks operating in mid-SNR regime, interference does not affect critically

the packet loss in the network. As long as the relay nodes are placed optimally

so that signal degradation due to separation distance is minimized, packet loss

can be reduced significantly. For instance, in a network of 20 nodes we can po-

sition 6 relay nodes and achieve almost 70% reduction of dropped packets as

shown in fig. 3.9.
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- Average Packet Delay:

The communication cost reduction leads to substantial decrease of average

packet delay in the network when relay nodes are optimally deployed. This is

due to the retransmission backoff mechanism in the IEEE 802.11 MAC proto-

col. Each retransmission, until an acknowledgement is received by the receiver,

leads to increasingly larger delay. Reducing the number of retransmissions ef-

fectively reduces the packet delay. The delay ratio DRk,n is defined as average

end-to-end packet delay in a network of n fixed nodes with k relay nodes di-

vided by the average packet delay in the network of n fixed nodes without

relay nodes. If the ratio is less than 1, the delay is lower after the addition of the

relays.

The plots of DRk,n for the different values of k and n are shown in fig. 3.10.

Notice that for all values of n and k the achieved delay when relays are deployed

utilizing RePlace is less than the delay when no relays are deployed.

Figure 3.10 (top) depicts the delay ratio for large ratio k/n. In these cases the

communication cost reduction saturates, the average path length grows longer

and the delay increases as more relay nodes are added to the network. Further-

more, the delay increases due to the RTS/CTS mechanism on the MAC layer as

the number of relay nodes in the network grows. A similar effect is observed in

fig. 3.10 (middle) for k/n > 1: the delay increases as more relay nodes are added

in these cases. In contrast, fig. 3.10 (bottom) shows the decrease of delay, as more

relay nodes are added while k/n < 1. In terms of delay, the optimum ratio k/n is

approximately 1.

- Performance Comparison:
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Figure 3.10: Delay ratio DRk,n. The delay, after optimized placement of the
relay nodes, is less compared to the base case with no relay
nodes, for the different values of n and k shown. As the com-
munication cost reduction saturates (for large k/n as shown in
fig. 3.9), the delay ratio increases accordingly. In these cases
increasing the number of relay nodes causes the average rout-
ing path length in the network to increase, without substantial
communication cost reduction. The delay ratio is also high
and closer to 1 for small k/n: too few relay nodes do not re-
duce the communication cost substantially.

We investigate the performance of two strategies alternative to RePlace, for

placing relay nodes in wireless networks. The Steiner tree-based strategy fol-

lows the General Steiner Tree (GST) model discussed in section 3.1 above. GST

is utilized in [58] and [59], among other works. The DoubleStage strategy has

been recently suggested in [55]. The authors of [55] account for the energy cost

required for reconfiguring the positions of the relay nodes. Since in the model
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considered here, there is no such reconfiguration cost, it is assumed that the

reconfiguration cost is set to 0, when the relay placement algorithm of [55] is

utilized. DoubleStage constructs a routing tree in the original graph (sans re-

lay nodes) by finding a shortest path connecting a source-destination pair. The

length of each edge in the path models the energy required for successful trans-

mission of a packet on the corresponding wireless link. Hence, the resulting

shortest path minimizes the communication cost. This is the first stage of the

algorithm. In the second stage, the authors position k relay nodes iteratively.

Each relay node’s position is determined, so that the communication cost in the

network is minimized given the routing found in the first stage of the algorithm.

The routing is not updated during the placement of the relay nodes. This inher-

ently leads to potential inefficiencies of the DoubleStage algorithm’s output.

The performance of the Steiner tree and DoubleStage algorithms relative

to the RePlace algorithm is shown in fig. 3.11 (left: communication cost; and

right: delay ratio). The number k of placed relay nodes is the same for each

of the three schemes. RePlace outperforms the other two schemes for varying

numbers of fixed nodes in the network.

3.2.6 Approximating Special Cases

The maximization problem formulation of the general relay placement problem

given in (3.19) generalizes a number of cases, in which a constant approxima-

tion algorithms to the optimal solutions are known. Some of them may have

practical significance. Below, a brief sample of these results are provided. The

different cases result from placing different constraints on the communication
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Figure 3.11: Top: Communication cost reduction achieved by RePlace vs.
DoubleStage vs. Steiner-tree based approaches. Higher val-
ues of communication cost reduction are better. Bottom: De-
lay ratio of Re-Place vs. DoubleStage vs. Steiner-tree based
approaches. Lower values of the delay ratio are better. The
three schemes are given equal budgets k of relay nodes.
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cost reduction function �(O) defined in (3.19). Throughout, it is assumed that

X(E) is given by an oracle.

- Case 1: �(O) is nonmonotone and submodular function over the independence

system �. There is a Greedy algorithm that iteratively selects assignment pairs

(i, j) 2 � and provably achieves a constant factor ((m�1)/m2+ ✏)-approximation,

8✏ > 0 ([127]). Here m is the number of matroids intersecting to form the inde-

pendence system �.

Potential application problem is the location of network integration points

in wireless networks. This may be viewed as a special case of the GRP where

relay/integrator nodes do not communicate with each other but only communi-

cate with the fixed nodes. Also, each fixed node communicates with exactly one

integrator/relay node. The case of placing a single relay node in the network

also falls in this category. The online problem of placing relay nodes given one

at a time (where the positions of the previous relay nodes cannot be altered) falls

in this category as well, given that the routing through the already placed relay

nodes is not affected by the addition of new relay nodes.

- Case 2: �(O) is monotone and submodular function over the independence system

�. Similarly to the above case there is a constant approximation Greedy algo-

rithm. The constant factor is 1/(m + 1) ([125]). A potential application problem

would be the integrators placement problem, where communication cost on the

network links between integrators and fixed nodes is relatively uniform.

- Case 3: �(O) is nonmonotone and submodular function and the independence

system � is an intersection of a single matroid (i.e. � is a matroid). In this case,

there is a 1/3.23 constant approximation algorithm ([128]). Of course, this case
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is rather restrictive and may model only very specific practical scenarios.

- Case 4: �(O) is monotone and submodular function and the independence system

� is a matroid. There is a well known 1/2-approximation algorithm in this case

(e.g. [125]). This is the most restrictive of all cases in terms of modeling potential

practical scenarios, and is included here only for completion.

3.3 Other Relay Placement Schemes and Goals

The problem of placing relay nodes in a network with the goal of improving net-

works’ links reliability and reducing communication costs is an important one,

with many applications. Hence, a number of works in the technical literature

tackle different versions of it, in different contexts.

For instance, a number of works study the placement of relay nodes to

provide connectivity in the network (e.g. [129], [130],[131],[43] and references

therein). The problem addressed by the authors in this setting is different from

the problem considered above. Given a network of fixed nodes, the goal is to

place a minimum number of relay nodes so that the induced overall network

topology is connected. In some cases (e.g. [130]) to accomplish that, the au-

thors assume that the relay nodes have larger transmission radius than the fixed

nodes; in other cases (e.g. [129]) a constant transmission radius is given as an

input to the problem, and the number of required rely nodes is found so that

the network is connected. The authors of [131] consider a heterogeneous net-

work where a minimum number of relay nodes are utilized to connect sensor

nodes to more powerful base stations via directed paths. In [43], the authors ex-

tend this result allowing constraints to be placed on the discrete sets of locations
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available for relay node placement (e.g. due to natural obstacles). They required

the construction of bi-directional paths comprising relay nodes and connecting

the base stations and sensor nodes. Although the network lifetime may be in-

creased as a result of the improved network connectivity, the above works ap-

proach the use of relay nodes in a different setting than the one presented in this

chapter. Here the relay network topology is explicitly optimized with the goal

of reducing communication costs. Relays’ communication radius is not altered

and the physical communication model from [117] is assumed rather than the

protocol model assumed by the above studies. Furthermore, the solution of the

connectivity problem relies on approximate optimal coverage algorithms, often

based on steinerization (e.g. [43]) techniques. As observed in section 3.1, the lat-

ter models do not reflect well the characteristics of the relay placement problem

discussed in this chapter.

A different stream of technical literature (e.g. [45], [46], and [132]) considers

the deployment of relay nodes to provide fault tolerance in networks guaran-

teeing m-connectivity between sensor nodes, or sensor nodes and base stations.

In a comprehensive work, Patel et al. ([133]) study versions of these problems

restricted to a setting where sensors, relay nodes and base stations may occupy

only a discrete set of locations on a 2D grid of points. Minimizing congestion

([134]) and load balancing are other application areas where topology control

in the form of relay node placement is utilized (e.g. [46]). However, network

performance in terms of communication cost is not an objective there.

Targeting problems more similar to the one considered in this chapter are

studies in the area of controlled mobility, where nodes in the network may ad-

just their locations to optimize certain network performance metrics (e.g.[135],
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[118], [55]). In these settings relay nodes may move on a continuum of points for

optimal performance. For instance, the authors of [135] allow a set of k mobile

nodes to adjust their location and provide a wireless communication backbone

(i.e. comprising relay nodes) that minimizes energy expenditure by increasing

the reliability of links. The authors propose a solution finding the lowest en-

ergy level of a dynamical physical system modeling the problem. However, in

their setting routing is not considered. Similarly, in [118] the authors construct

a wireless backbone communication network of relay nodes maximizing links’

quality using Steiner tree approximations. They study the performance of their

schemes with different routing patterns, but the location of the relay nodes is

independent of the routing and traffic loaded on the links. More recently, the

authors of [55] employ mobile relays to minimize both energy due to transmis-

sions and the movement of the relay nodes. Their algorithm assumes that the

routing tree does not change during nodes’ mobility. This is analogous to the

RPFT problem defined in section 3.2.2.2 above, where the assumption is that the

routing pattern is fixed. In this case, the optimal positions of the relay nodes is

obtained by convex optimization. In contrast, the algorithm presented in [55]

does not guarantee an optimal solution in this case.

Finally, a number of works on sensor networks have considered a form of

sensor nodes placement in order to optimize network communication cost. For

instance, in [59], the authors utilize Steiner tree model to place relay nodes in

a sparse network and increase links’ reliability. They observe that in the latter

setting the log-normal path-loss model is rather accurate and interference does

not contribute significantly to reduce the PRR. This conclusion is also corrobo-

rated by the simulations presented here in section 3.2.5.2. The authors of [58]

consider the placement of relay nodes, so that overall link cost is minimized
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while the gathered information by sensor nodes is maximized. Their algorithm

approximates a General Steiner Tree to suggest locations for the communica-

tion relay nodes. In both works, routing in the network and its influence on

communication costs and relay nodes’ positions is not accounted for.
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CHAPTER 4

PROCEDURAL LEVEL: BROADCAST AND RETRANSMISSIONS

4.1 Towards Optimal Broadcast in Wireless Networks

As noted above, broadcast is a fundamental network operation allowing a

source node to send a message to all other nodes in the network. In the con-

text of networks where all communications are carried over a wireless medium

and network nodes are limited in energy and computational power (e.g. sensor

and mesh networks), an efficient broadcast mechanism is exceptionally impor-

tant for the overall network performance. Similarly, a robust broadcast solution

is required in networks where topology can change rapidly due to nodes’ mo-

bility (e.g. networks of unmanned aerial vehicles (UAVs), or interconnected

wearable devices).

For instance, among the various proposed wireless network routing proto-

cols (e.g., AODV, DSR, OLSR, TRBF, ZRP), a prominent subgroup, referred to

as on-demand or reactive routing protocols, is designed based on the philos-

ophy that the discovery of a route in the network should be done only when

there is an actual need to route traffic. The route discovery mechanism in on-

demand routing protocols relies on some variant of broadcasting to locate a

path between the source and the destination nodes. Also, in highly reconfig-

urable topologies, where the lifetime of network routes may be shorter than the

duration of a communication (especially in the case of connection-oriented com-

munication) broadcast, by itself, could be used as a routing mechanism. Yet in

other scenarios, data dissemination to all nodes in a sensor network is needed

and broadcast is an obvious solution. Being such an essential network opera-
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tion, it is not surprising the importance of an efficient broadcast implementation

has been widely accepted by the networking community.

The remaining of this chapter includes the design of the Time Sequence

Scheme (TSS), a new broadcasting algorithm that ranks and orders in time the

transmissions of broadcasting nodes, so that the overall number of re-broadcasts

in the network is minimized. TSS utilizes only 1-hop topology information

while simultaneously achieving full coverage of the network with close to opti-

mal number of broadcast messages and with low delay.

Furthermore, the algorithm is robust to rapid topological changes and network

partitions. It retains its performance in a full network stack implementation,

where packet loss at network and MAC layers, for instance, may be present. The

various differences and advantages of TSS are discussed and compared with

different state-of-the-art approaches to broadcast. It is demonstrated that the

described TSS scheme outperforms these approaches in the metrics considered.

Also, TSS does not require positional information (unlike a number of recent

algorithms) as the latter is infeasible or costly to get in many network settings.

4.1.1 Desiderata for an Efficient Broadcast Algorithm

Assume the network is represented as a connected graph G = (S , E), where S is

the set of all the network nodes and E is the set of all the links. Given a source

node s
0

2 S that transmits a broadcast message m, suppose it is desirable to

reduce the number of rebroadcasts of m required to propagate m in the entire

network. Consider the set of nodes Q ✓ S such that for each node v 2 S/Q,

v has a neighbor in Q. If Q is a connected subgraph of G, Q forms a connected
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dominating set (CDS). Notice that after the termination of any broadcast scheme

that propagates m to all nodes in S , the set of nodes that the scheme has picked

for broadcast forms a CDS. For pure flooding ([11]) this is the trivial CDS: S .

A Minimum Connected Dominating Set (MCDS) of G is a CDS in G with

minimum cardinality. If just all the nodes in a MCDS broadcast message m, all

nodes in G will receive m and the number of broadcast nodes is minimized. In

the context of wireless networks, observe that, first, minimizing the number of

rebroadcasts (and rebroadcasting nodes) would expend substantially less en-

ergy and bandwidth especially as compared to flooding ([136], [137]). Second,

recent practical variants of flooding, such as Glossy [138] and Flash [137], can

be very rapid and m reaches all nodes with remarkably low latency sans finding

MCDS. However, as noted in [137], in many cases the design and application of

these flooding schemes is orthogonal to the task of finding MCDS. I.e., the num-

ber of transmissions can be minimized by, first, finding the set, Q, of network

nodes forming a MCDS; and, second, constraining the flooding only within Q

one can minimize latency. Such approach was shown to significantly reduce the

energy cost of the Flash flooding protocol in [137], for instance.

Challenges: As noted above, the importance of MCDS to solving and model-

ing the wireless network broadcast problem has been observed by the research

community. However, finding a MCDS of a graph G is an NP-hard problem

(even if G is a Unit Disk Graph (UDG) [139]) and one needs to consider an ap-

propriate heuristic algorithm for only approximate CDS. The desired features

and challenges for a such practical and efficient algorithm for dynamic wireless

reconfigurable networks are that it should

1. reach all the network nodes;

2. transmit the broadcast message as few times as possible (or, equivalently,
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reduce the number of times that the broadcast message is received by a

network node, optimally to only once);

3. minimize delay (i.e., the time needed for the broad-cast message to be re-

ceived by the entire network);

4. require only locally available information (e.g., only knowledge of the 1-

hop neighborhood topology);

5. minimize the effects, on (1), (2), and (3) above, of topological changes dur-

ing a broadcast propagation caused by mobility, and due to packet loss.

Unfortunately, few of the so-far-proposed approaches to the broadcast prob-

lem satisfy all the above desiderata. Pure flooding protocols violate (2) above;

furthermore, they may lead to the notorious “broadcast storm” problem ([11]).

Probabilistic schemes ([140], [141], [142], [143], [144], [145], [146], [147]) do not

satisfy (1) above. To ensure full coverage, stochastic schemes would need to

transmit with probability close to 1, whereby the scheme degrades to flooding.

Also, albeit simple, fast, and flexible they are not as efficient in terms of finding

small size CDS. Following a different strategy, backbone-based algorithms have

also been proposed (e.g., the reader is referred to [148] for comparison of such

schemes). They rely on finding approximate MCDS which are constructed by

identifying dominating sets, maximal independent sets, or Steiner trees prior to

broadcast. While satisfying (1) - (3) above and often guaranteed to find a CDS

with size within a constant of the MCDS, such algorithms do not tolerate dy-

namic topologies well ([43], [149], [150], [151]). Thus, they are incompliant with

(5). Furthermore, some of these algorithms are centralized ([152], [153]) and vio-

late (4). Two examples, (e.g. [154], [136]), of broadcast algorithms that satisfy (1)

- (5) have been described most recently. In [154] though, the algorithm requires

the knowledge of the nodes’ geographical position, which is not always feasible.

The proposed algorithm in [136] requires only 2-hop local topology information
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Figure 4.1: The output of four algorithms given a sample network on 5
nodes, where the source node is s

0

. The broadcast nodes in the
output CDS are in red. a) RBS and CCS output broadcast nodes
s

0

, A, and B; b) Funke’s algorithm outputs s
0

, A, B, C, and D; c)
TSS outputs the optimum solution which is s

0

and B.

in lieu of geographical position and thus satisfies more of the desiderata for

efficient broadcast. However, as the authors of [136] note, in highly mobile net-

works the algorithm’s performance drops due to the 2-hop topology knowledge

requirement.

The Time Sequence Scheme (TSS) described in the following sections and

also in ([155]), addresses these challenges and improves on the state-of-the-art

schemes. The TSS’s design carefully avoids subtle algorithmic inefficiencies that

undermine the performance of broadcast schemes in the current technical liter-

ature. Illustrating some of these inefficiencies, fig. 4.1 shows a very simple

network topology that is input to three algorithms among the top performing

in the context of reducing the number of broadcast transmissions and finding

small size CDS.

Figure 4.1 a) shows the output of the position-aware Responsibility Based

Scheme (RBS), suggested by Khabbazian and Bhargava [154]. Per RBS a network

node i receiving broadcast message m transmits m if 1) among i’s neighbors there
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is a node j that has not received m yet and 2) the Euclidean distance between

i and j is smaller than the Euclidean distance between j and any other of the

neighbors of i that has already received m. Given source node s
0

, this broadcast

rule requires the transmission of nodes A (since AC < BC) and B (since D has

not received m after A broadcasts).

Figure 4.1 a) also shows the output of the more recent novel broadcast al-

gorithm utilizing only 2-hop topology information (sans position information)

developed by Khabbazian and Bhargava in [136]. This scheme is referred to

here as the Coverage Condition Scheme (CCS). In a nutshell, each node j main-

tains a list Lj of neighbors. Lj is gradually pruned by j. Based on information

piggybacked in each retransmitted broadcast message and 2-hop neighborhood

topology knowledge, j removes nodes from Lj. According to j the removed

nodes have received or will receive m from a different node in the network. Per

CCS, only nodes selected for broadcast transmit m. If Lj is non-empty, node j is

eligible to select node i 2 Lj to broadcast next only if j itself has been previously

selected for broadcast by a neighboring node k. The selection of i by j is done

at random from Lj. If at some point Lj is empty the coverage condition of j is

satisfied, and j does not need to broadcast if it has not been previously selected

to broadcast by k. Otherwise, if j was selected to broadcast by k, j broadcasts

but does not select a forwarding node. Here s
0

’s list contains the nodes A and B.

Node s
0

selects node A to broadcast next (this happens with probability of 50%).

Node C receives m from A, but node D has to receive m from B. Thus again both

A and B broadcast m.

To include an algorithm that constructs a backbone structure prior to the

broadcast session, fig. 4.1 b) shows the output of the algorithm in [150] de-
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veloped by Funke et al.. Funke’s algorithm provably obtains one of the best ap-

proximation ratios to the MCDS. The algorithm is distributed and finds a CDS

with size guaranteed to be within 6.94 from the optimum MCDS solution for

UDGs. The algorithm has behavior similar to the Wan-Alzoubi-Frieder’s algo-

rithm from [149]. Funke’s algorithm finds a solution CDS, which is a union of an

independent set and a connected set in G. In the case of this example topology,

the algorithm needs to select all the nodes in the network as its final solution.

Finally, fig. 4.1 c) show the optimal solution given a source node s
0

. In this

case the MCDS consists only of node B. The broadcasts of the source s
0

and

node B would be sufficient to cover the entire network. All of the three algo-

rithms considered above miss the optimum solution. Notice that by design all

of the three algorithms approach the goal of reducing the number of broadcast

nodes somewhat implicitly. RBS relies on expanding the area covered by the

broadcast nodes quicker. CCS relies on pruning redundant transmissions, but the

effectiveness of the selected broadcast nodes’ transmissions is not considered as

much. Funke’s algorithm exploits interesting relationships between graph the-

oretic properties of the independent and connected dominating sets to provide

a good theoretical guarantee for the final solution. However, it does not nec-

essarily target the minimization of the number of broadcasting nodes locally at

each step, or the maximization of the number of nodes that receive m for the

first time.

Thus per all three algorithms the main utility of a broadcast node - the num-

ber of neighboring nodes that have not received message m yet - is not explicitly

pursued or maximized, leaving room for inefficient broadcast decisions. In con-

trast, TSS’s target is to explicitly maximize the utility of each broadcast: every broad-
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cast node i should reach as many as possible neighboring nodes that have not

received m yet. If there were a node j in the network whose transmission would

potentially reach fewer such neighboring nodes, j should wait until i finishes its

broadcast first. This principle and its careful distributed implementation allow

TSS to find the optimum solution shown in fig. 4.1 c). Both nodes A and B re-

ceive the message m from s
0

, however node B has two neighbors (nodes C and

D) that have not received m at this time, and node A has only one neighbor (node

C). TSS thus considers both A and B as broadcast candidates and assigns them

respective tentative broadcast times. B has higher rank and receives higher pri-

ority than A. The broadcast time of B is earlier than the broadcast time of A. B

broadcasts and at the time for broadcast assigned to A, A no longer has neigh-

bors who have not received m. Following TSS policy A does not broadcast in

this case. Thus TSS finds the optimal solution here: the broadcasts of the source

node s
0

and B are sufficient.

Although the optimal performance of TSS in this extremely simple example

is not an accident, the actual distributed design and implementation of TSS of

course requires more care and justification. The next sections outline the algo-

rithms behind TSS and some of the unexpected benefits of the scheme in highly

dynamic mobile network scenarios.

4.1.2 Network Model

The network model consists of N equal-capability nodes with unique IDs, ran-

domly distributed in a 2D plane. Though, the results below apply to 1D and to

3D networks, too. The transmission range of all nodes is r [meters]. Two nodes
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are referred to as 1-hop neighbors (or simply as neighbors) and can commu-

nicate directly if the Euclidean distance between them is less than R [meters].

Thus, the network is modeled as a Unit Disk Graph (UDG).

Two scenarios are considered regarding the MAC layer: a) a perfect MAC

layer to isolate other effects (e.g., collisions, links asymmetry, etc.), so that the

broadcast performance metrics reflect only the algorithmic efficiency; and b)

packet loss (at the MAC and other network layers) to evaluate the performance

of the algorithm in practical network settings, where collisions and links asym-

metries, among other deleterious effects, are present.

The system operation is time-slotted, and the network nodes are assumed to

be only coarse-grain synchronized. The latter is a standard assumption of many

distributed algorithms and can be implemented in variety of ways. For instance,

distributed, control-message-based coarse-grain synchronization in multi-hop

wireless networks would suffice; such schemes have been studied extensively

in the literature (e.g., [156]). Recent advances in radio technologies could also

be utilized (e.g., [157]).

Definition 4.1. A broadcast session is the operation (including all related events)

of delivering a message m, created at one node - the source - to all the other

network nodes.

Definition 4.2. A covered node is a node that has already received the broadcast

message in a prior transmission of the broadcast session.

To simplify notation, in what follows assume only a single message m needs

to be propagated in the network, during the duration of each broadcast ses-

sion. However, TSS can be trivially extended to handle the broadcast of multi-
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ple different messages simultaneously originating from different sources in the

network.

The source node of a broadcast session is always covered. A node that has

not received the broadcast message at a particular time, t, is referred to as an

uncovered node at t.

Definition 4.3. The residual coverage (RC) of a covered node s (s 2 S ) at a par-

ticular time t, referred to as RC(s), equals the number of its 1-hop uncovered

neighbors at time t.

Define C as the set of all covered nodes at a particular time and Q as the set of

nodes that have already transmitted the message at a particular time. Further,

define NE(s) as the set of all the neighbors of the node s, s 2 S . Note that at any

time, Q ✓ C ✓ S and that |S | = N.

Finally, assume all nodes are cooperative.

4.1.3 Broadcast Solution Intuition

The problem of finding the most efficient broadcast scheme is equivalent to find-

ing an approximation of the MCDS, and satisfying (1) - (5) above. Since finding

the MCDS is an NP-hard problem [139], one needs to consider an appropriate

heuristic, with the centralized greedy algorithm being one such an alternative

(e.g., [158]). The basic idea of the greedy algorithm finding the MCDS is to re-

peatedly select nodes for transmission, such that in each round a node whose

transmission covers the largest number of uncovered nodes is selected. Thus,

each transmission “removes” the largest possible number of nodes from the set
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of uncovered nodes and, eventually, results in covering the whole network with

a minimized number of transmissions. However, such a centralized greedy al-

gorithm violates the requirement (4) of the previous section. Consequently, a

particular distributed heuristic is discussed below, which approximates the op-

eration of the centralized greedy algorithm. The operation of this distributed

greedy heuristics relies on each node “scheduling” its transmission based on

the value of its RC - the larger the value of RC, the sooner the node is scheduled

to transmit.

To explain the operation of the proposed distributed heuristic, consider first

the operation of the centralized greedy scheme. Start with the initial set of

covered node C = {s
0

} and Q = ;. The source node transmits first, cover-

ing its neighbors: C = {s
0

[ NE(s
0

)} ,Q = s
0

. An “oracle” greedily chooses a

node, s
1

, from the set C \ Q with the largest RC value to broadcast next; i.e.,

8s 2 (C \ Q),RC(s)  RC(s
1

). After s
1

transmits, C  C [ NE(s
1

) and Q Q [ s
1

.

Then, repeatedly, the next node with the largest RC is selected to transmit from

the set C \ Q, until all the network nodes are covered; i.e., until C = S , at which

time the algorithm terminates. The total number of transmissions in a broadcast

session equals |Q| at the algorithm’s termination time. Furthermore, the choice

of node si to transmit in the i-th iteration allows maximizing the number of cov-

ered nodes during the i-th transmission. This intuitively only tends to minimize

the total number of transmissions during the operation of the algorithm. The al-

gorithm does not guarantee such a minimum, as in some cases choosing a node

with smaller RC value first could, in fact, result in finding nodes with much

larger RC values later, reducing the overall number of transmissions.

Although in [158], the authors discuss the inefficiency of a greedy scheme in
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finding MCDS in general graphs, the above centralized greedy heuristic finds on

the average a rather close approximation of a MCDS in UDG as demonstrated

in section 4.1.5. Of course, the challenge, similarly to other efficient MCDS ap-

proximation schemes, is to implement the “oracle” in a distributed manner; i.e.,

ordering nodes’ transmissions based on their RC values, while utilizing only

local topological information. Surprisingly this path towards optimizing broad-

cast in wireless networks has not been investigated in works on the problem,

prior to ([155]).

The following distributed Time Sequence Scheme (TSS) approximates the cen-

tralized greedy transmissions’ order in time, by allowing nodes with larger RC

values to transmit before nodes with smaller RC values.

TSS’s blueprint is given as follows:

• Source s
0

transmits message m and covers its neighbors.

• Each node i receiving m for the first time marks itself as covered and com-

putes RC(i). The local RC computation by nodes is discussed below.

• Next, node i runs Algorithm (4.2) to schedule itself for later transmission

time-slot Tb depending on RC(i).

• If node i is scheduled to transmit in some time-slot Tb, i computes RC(i) in

the beginning of Tb. If the residual coverage of i has decreased (but is still posi-

tive) since the time-slot in which i has scheduled itself, i reruns Algorithm (4.2)

and schedules itself for a new, later transmission time-slot. Else, still in Tb and

prior to broadcast, i checks whether any of its 1-hop neighbors are scheduled to

transmit within Tb as well. If more than one neighboring nodes are scheduled

for Tb, the node with the largest RC transmits in Tb. The rest of the neighboring

nodes schedule themselves to transmit in the next time-slot.

Next, we describe the details of the time sequence T ’s structure as generated
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by Algorithm (4.1). We also discuss the scheduling Algorithm (4.2) , and how

it exploits the structure of T to rank, prioritize and order transmissions in time.

4.1.4 Time Sequence, Structure and Schedules

The timing of nodes’ transmissions is enforced by the particular structure of the

time sequence T of time-slots. Each time-slot x, 0 < x  |T |, is associated with a

specific RC threshold ⌧x. Only nodes with RC values greater or equal to ⌧x are

allowed to transmit in time-slot x.

4.1.4.1 Defining the Time Sequence

What is the rationale for determining the RC threshold ⌧x at each time-slot x?

Consider the following naı̈ve scheme, which attempts to order the transmissions

of the nodes, so that nodes with larger RC transmit first. Let T be a sequence of

time-slots and assume ⌧x < ⌧x+k, 0 < k  |T | � x. Namely, each subsequent time-

slot is associated with a strictly lower threshold value of RC than the previous

time-slot’s threshold. Upon receiving a broadcast message, node i marks itself

as covered, determines RC(i), and schedules itself to transmit in a future time-

slot Tb. Since i can only schedule itself for a time-slot Tb such that ⌧b  RC(i), the

higher RC(i) the earlier the scheduled Tb. That is, nodes with higher RC would

tend to broadcast earlier than nodes with lower RC. This simple scheme does

not take into account the fact that as scheduled nodes transmit, for instance in

time-slot Tb, the set of newly covered nodes may contain nodes with RC values

larger than ⌧b. In other words, the time-slots following Tb cannot be used to

time-order the transmissions of such newly covered nodes, since these nodes’
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Figure 4.2: Time Sequence T: output of Algorithm (4.1) with input u, ar-
ranged in epochs to implement threshold resets required for
node scheduling.

RC values are greater than the thresholds of all time-slots following Tb.

To address this problem, the time sequence T utilizes Algorithm (4.1) , so

that T contains repeated reordering of time-slots within epochs (also referred

to as levels interchangeably). Each epoch now contains a sequence of time-

slots, and each subsequent time-slot within an epoch has RC threshold strictly

lower than the previous time-slot’s threshold. However, at the beginning of

each epoch, the RC threshold is reset: the first time-slot in each epoch has RC

threshold equal to the RC threshold ⌧
1

of the first time-slot in T . Suppose ⌧
1

= u.

Figure 4.2 shows the structure of the resulting time-sequence T , which is the

output of Algorithm (4.1) with input u.

For example, consider the case of u = 4. At the top level of T (level 4) only

nodes with RC � 4 are allowed to transmit. In the next level (level 3), first nodes

with RC � 4 and then nodes with RC � 3 will be allowed to transmit. In level 2,

first nodes with RC � 4, then nodes with RC � 3, and finally nodes with RC � 2

will transmit. In the last level, first nodes with RC � 4, then nodes with RC � 3,

then nodes with RC � 2, and finally nodes with RC � 1 (all nodes with at least

one uncovered neighbor) will be allowed to transmit.
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To unambiguously label each time-slot, instead of using the threshold value

only, we use a vector of three values: (upper, middle, lower). The upper is

simply equal to u: the maximum value of the threshold, which is associated

with the first time-slot in T . The lower is the number of the level/epoch and

equals the RC threshold of this epoch. I.e. nodes with RC less than lower cannot

transmit in this epoch. The middle is the threshold value of a time-slot. I.e.

nodes with RC less than middle cannot transmit in this time-slot, but they may

transmit later in this epoch, given their RC is greater than lower. Note that the

values of lower and middle for all time-slots in T depend only on upper, which

is equal to the parameter u. Hence, the number of timeslots |T | in a broadcast

session is a function of u. The parameter u is fixed and set up administratively

and network-wide at the time of network deployment.

The value u should be judiciously chosen. A too small value of u does not

allow separating in time the transmissions of nodes with different values of RC,

thus losing the ability to assign larger priority to nodes with larger RC values,

Algorithm 4.1: CONSTRUCTTSSEQUENCE

input: upper value u
output: ordered collection of vectors T = {Tu,Tu�1

, · · · ,T
1

}
1: T  ;
2: upper  u
3: middle u
4: lower  u
5: T

1

 (upper,middle, lower)

6: T  T
1

7: while middle > 1 do
8: if middle == lower then
9: lower  lower � 1

10: middle upper
11: else if middle > lower then
12: middle middle � 1

13: end if
14: Tnext  (upper,middle, lower)

15: T  T [ Tnext
16: end while
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while a too large value of u results in many empty time-slots, thus leading to an

unnecessarily long broadcast session (i.e. larger |T | and delay). Section 4.1.5.2

addresses the choice of appropriate parameter u in more detail, discussing its

effect on the scheme’s performance.

Figure 4.3 shows the ordering of time-slots in time during the duration of a

broadcast session. Each “edge” slot (in bold) demarcates the end of an epoch.

The time-slot from the uppermost epoch occurs first, followed by the time-slots

in the next, lower level. Also, in each level the time ordering of the time-slots

is from left to right. The uppermost epoch (which contains a single time-slot) is

associated with the largest threshold of RC (which is set to u), allowing transmis-

sions only of nodes with RC value of at least u. The second epoch is associated

with the RC threshold of u�1, allowing only nodes with RC values of at least u�1

to transmit. However, notice that, as the transmission in the first epoch might

have revealed newly covered nodes with RC value larger than u, the second

epoch contains two time-slots: the first allowing transmission of nodes with RC

value of at least u, followed by a time-slot allowing transmission of nodes with

RC value of at least u� 1. This process continues until the last epoch (associated

with RC threshold of 1 and containing u time-slots) allows ordered transmission

of nodes with RC values of at least u down to nodes with RC values of at least 1.

4.1.4.2 Scheduling Over the Time Sequence

Given the time-sequence (TS) structure described above, each node locally

schedules its time of transmission, after receiving broadcast message m so that,

overall, nodes with higher RC transmit earlier than nodes with lower RC. The

TS serves as a common reference for all nodes.
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Figure 4.3: The output of Algorithm (4.1) with input u; temporal format of
time-slots and the temporal blueprint of TSS. Only nodes with
RC greater or equal than a time-slot’s threshold ⌧x can transmit
in time-slot x. Time-slots in bold are called edge slots. Each time-
slot comprises a Preamble followed by a Broadcast Field. Control
messages are exchanged during the preamble of a time-slot.
Nodes transmit a broadcast message during the broadcast field
of a time-slot. Tct is the current time-slot ( j receives the broad-
cast message); Tb is a later time-slot for which j is scheduled
using Algorithm (4.2) , based on RC( j) computed during the
Preamble of Tct. In this case, RC( j) has not changed during the
time between Tct and Tb; j broadcasts during the Broadcast Field
of Tb.

The broadcast session begins when source node s
0

broadcasts message m. As

m propagates throughout the network, any node j upon receiving m for the first

time determines the current time-slot Tct within the TS. This can be implemented

as discussed in section 4.1.4.3 below.

The TS schemes’ temporal flow proceeds as shown in fig. 4.3. Node j de-

termines its residual coverage RC( j), as described in section 4.1.4.3 below. After

determining RC( j), node j runs Algorithm (4.2) to schedule its transmission
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for a future time-slot. Given Tct and RC( j), Algorithm (4.2) schedules node

j for a transmission timeslot, Tb, later in the broadcast session. Tb could be

the next timeslot immediately after Tct provided RC( j) is large enough (i.e.,

RC( j) > middlect). Otherwise, Algorithm (4.2) attempts to schedule node j for a

time-slot at the current level, if RC( j) � lowerct. If the current time-slot is an edge

slot (see fig. 4.2), Algorithm (4.2) attempts the next level of the time-sequence.

Else, node j is scheduled to transmit at a later, lower level. In general, the larger

RC( j), the earlier is the level and the earlier is the scheduled transmission time-

slot Tb within that level. If RC( j) = 0 the node is not scheduled for transmission

at all.

It is important to note that the value of RC( j) can change between the

Algorithm 4.2: SCHEDULEBROADCAST

input: RC( j) of node j to be scheduled, (uct,mct, lct) of the current time-slot Tct
output: transmission time-slot Tb $ tb

1: rc RC( j)
2: upper  uct
3: middle mct
4: lower  lct // if RC( j) is larger than the current value of middle, j transmits

in the next time-slot
5: if rc > middle then
6: Tb  Tct+1

// if RC( j) is larger than lower, Tb is in the current level de-
pending on the value of RC( j)

7: else if rc  middle and rc � lower then
8: if (uct,mct, lct) is edge slot then
9: if lower > 1 then

10: Tb  (upper, rc, lower � 1)

11: else
12: Tb  (upper, rc, 1)

13: end if
14: else
15: Tb  (upper, rc, 1)

16: end if
17: else if rc < lower and rc � 1 then
18: Tb  (upper, rc, rc) // if RC( j) is even less than the of lower, Tb is in a later

level of the TS; the level is determined by RC( j)
19: end if
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time at which j had scheduled itself for transmission and the beginning of j’s

scheduled-for-transmission time-slot Tb, due to transmissions of other nodes or

due to mobility. This may render j inadmissible in Tb. To avoid transmission in

an incorrect time-slot, j re-computes its RC value prior transmitting in Tb and

checks if it still can transmit in Tb. If so, j transmits the message in Tb. Else, it

reschedules itself by employing Algorithm (4.2) again with inputs Tct = Tb and

the latest recomputed RC( j).

4.1.4.3 Time Sequence Schemes Implementation Details

This section discusses possible implementations of the Time Sequence Schemes

based on the algorithms described above. It also provide details regarding im-

plementations of procedures such as residual coverage computation, determin-

ing the current time-slot, and checking if a node has the largest RC in its neigh-

borhood.

As shown in fig. 4.3, each time-slot consists of a Preamble part immediately

followed by a Broadcast Field part. The Broadcast Field is fixed to the maximum

duration needed to transmit the broadcast message depending on the maximum

message size. The Preamble is used to transmit short control messages between

adjacent nodes, and its duration is small compared to the Broadcast Field length

of the time-slot. The time-slot duration tD equals the duration of the Preamble

added to the duration of the Broadcast Field and is known to all nodes in the

network at deployment time.

Determining the Current Timeslot:

The source node transmits the message m at the beginning of the Broadcast
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Field of the first time-slot in the TS. The initial transmission’s timestamp is pig-

gybacked by the broadcast message. Upon receiving m, node j computes the

current time-slot Tct by subtracting the initial transmission timestamp from j’s

current local time and dividing the difference by tD to obtain the number of

elapsed time-slots since the beginning of the broadcast session. Knowing the

generic TS structure as per fig. 4.2, a node is able to determine the vector of the

current time-slot: Tct = (upperct,middlect, lowerct).

Residual Coverage Computation:

The RC value of a node is needed prior to the node’s scheduling (during

the Preamble of timeslot Tct) or rescheduling (during the Preamble of timeslot

Tb), as noted in section 4.1.4.2 above and shown in fig. 4.3. This is done by a

locally executed protocol - a version of a “Neighbor Discovery” protocol - where

Coverage Request (CReq) and a Coverage Reply (CRep) messages are exchanged

between neighboring nodes.

This simple protocol can be further improved in a variety of ways. However,

in section 4.1.5.2, TSS is simulated over a full network stack, demonstrating that

a standard 802.11b MAC layer readily handles all the control messages gen-

erated; as the network density increases, the performance of the TS schemes

remain robust (figures 4.8, 4.7, and 4.6).

The Naı̈ve Time-Sequence Scheme

For clarity, first a basic TS-based broadcasting scheme is outlined next. Upon

network deployment, all nodes run Algorithm (4.1) to construct the TS. After

a node transmits the broadcast message, all of its previously uncovered neigh-

bors that receive the message mark themselves as covered, compute their RC,
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and run Algorithm (4.2) to schedule their transmission time-slots. Just before

its scheduled time to transmit (during the Preamble of Tb), node j re-computes

and updates its RC( j), as per fig. 4.3. After the update, if the RC( j) has not

decreased, j broadcasts during the Broadcast Field of Tb; if RC( j) has decreased

(but RC > 0), the node determines its new time-slot assignment by re-running

Algorithm (4.2). If, at any time, the computed RC value of a node equals 0, the

node will never be scheduled for transmission in this broadcast session. This

basic scheme is referred to as the Na¨ve Time Sequence Scheme (NTSS). As the

name indicates, the NTSS possess some important deficiencies, which will be

cured by the other variant, TSS, of the scheme presented next.

The Time-Sequence Scheme (TSS): Neighborhood Check

TSS operates as NTSS, but incorporates a 1-Hop neighborhood check within

the scheduled-for-transmission time-slot Tb. To accommodate that, each times-

lot’s Preamble is split in two parts: Preamble1 and Preamble2. Suppose node j

is scheduled to transmit in Tb. During Preamble1, j computes its RC, by send-

ing CReq and receiving CRep packets. Next, j checks during Preamble2 of Tb

whether any of its 1-hop neighbors are scheduled to transmit within Tb as well.

This check does not necessitate any additional transmissions. Node j can de-

termine whether a particular neighbor i is scheduled to transmit in Tb, if j has

received the CReq message from i during Preamble1. If more than one neigh-

boring nodes are scheduled for Tb, the node with the largest RC is selected to

transmit in Tb. In our implementation of TSS this is done as follows. Immedi-

ately after Preamble1, node j picks a random time within Preamble2 to send a

RCPacket j containing RC( j) (as found by j in Preamble1) and j’s ID. If j receives

RCPacketi from a neighboring node i and if RC(i) > RC( j), j does not send its
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RCPacket j and reschedules itself for broadcast to the next time-slot. Otherwise,

j sends its RCPacket j. Since the set BN of all neighboring nodes broadcasting in

the same time-slot Tb follows this protocol, it is easy to check that at the end of

Preamble2 all but the node j⇤ with highest RC in BN broadcasts in Tb. The nodes

in BN \ j⇤ are rescheduled for the next time-slot Tb+1

.

This 1-Hop check avoids redundant transmissions whereby neighboring

nodes i and j broadcast m to the uncovered nodes in their respective neigh-

borhoods and the shared neighbors of i and j receive m redundantly both from

i and j. This severely degrades the performance of NTSS (see section 4.1.5).

4.1.4.4 Sample Execution of TSS

Consider the network of nodes shown on fig. 4.4. Suppose u = 4 and Algorithm

(4.1) constructs the TS as shown in fig. 4.2. The sample run of TSS is shown in

Table (4.1), with the resulting network coverage depicted in fig. 4.4. In the first

time-slot, the source node s
0

transmits the message m. Nodes A, B, C, and D

receive m, mark themselves as covered, compute their RC, and schedule them-

selves to broadcast. At Step 1, according to Algorithm (4.2), since node B has 3

uncovered neighbors it is scheduled for time-slot (4,3,3). Node A is scheduled

similarly for (4,2,2); C and D for (4,1,1). At Step 2, during the third time-slot

(4,3,3) node B transmits the message. Nodes G, H, and F become newly covered

and are added to the scheduled nodes list: F is scheduled for (4,1,1); G and H

have RC = 0 and are not scheduled. Node B is removed from the list. At Step

3, in the sixth timeslot (4,2,2), node A checks its RC. Since its RC remains the

same, node A transmits the message. Nodes E and K become newly covered.

Node K has two uncovered neighbors: I and J. K is scheduled for time-slot
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Figure 4.4: A network topology example, where the TS-based scheme
picks {s

0

, B, A,K} for broadcast and forms a MCDS of the partic-
ular network graph. All nodes are covered after the broadcast
session completes. The TSS steps are given in Table (4.1).

(4,2,1). Finally, at Step 4, during the preamble of the ninth time-slot node K has

not changed its RC. K transmits in this time-slot. All nodes are covered at this

point. Hence, C, D, and F do not transmit.

Note that the TS structure allows Algorithm (4.2) to give priority to nodes

with higher RC, which could be covered and scheduled later during the broad-

cast session. For instance, because of its larger RC value, node K transmits be-

fore either of nodes C, D, or F, in spite of the fact that C, D, and F received the

broadcast message and were scheduled earlier than K.

Ultimately, this eliminates the transmissions of nodes C, D, and F. Fig. 4.4

shows the network state after the broadcast session is completed. In this exam-

ple, the MCDS (in red) equals the nodes selected by the TS scheme.
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Table 4.1: TS Schemes Example Run

Scheduled
Nodes

RC/Scheduled
Timeslot

A 2 / (4,2,2)
B 3 / (4,3,3)
C 1 / (4,1,1)
D 1 / (4,1,1)

Step 1

Scheduled
Nodes

RC/Scheduled
Timeslot

A 2 / (4,2,2)
C 0 / (4,1,1)
D 1 / (4,1,1)
F 1 / (4,1,1)
G 0 / -
H 0 / -

Step 2

Scheduled
Nodes

RC/Scheduled
Timeslot

C 0 / (4,1,1)
D 1 / (4,1,1))
F 0 / (4,1,1)
G 0 / -
H 0 / -
E 0 / -
K 2 / (4,2,1)

Step 3

All nodes are covered after
timeslot (4,2,1). The time-
sequence is exhausted at
(4,1,1), where as well no
nodes have RC > 0, and the
algorithm terminates.

Step 4

4.1.4.5 Properties of the TS-based Schemes

Correctness of the TS-based Schemes

In the following proof of correctness, the network topology is assumed to be

static during the broadcast session and the MAC layer to be perfect. The net-

work graph is assumed to be connected. For an arbitrary mobility model even

flooding cannot ensure full network coverage; similarly, this is true if package

loss probability is positive. Also, if the underlying graph of a static network is

disconnected no broadcast algorithm can ensure full network coverage.
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The performance evaluation of the TSS in the next section, demonstrates

that even in the presence of high mobility and potential packet loss, the scheme

achieves full or almost full network coverage.

Theorem 4.1. The TS-based schemes terminate in finite amount of time and guarantee

full coverage of the network.

Proof. Per Algorithm (4.2), for all TS schemes, a node is not scheduled to trans-

mit unless its RC is strictly greater than zero. Whenever a node n transmits, all of

it neighbors receive the broadcast message and are marked as covered. Hence,

the RC value of node n decreases to zero, and node n is not admissible in any

future time-slot. Therefore, a node does not transmit more than once during the

execution of the algorithm. Since the number of nodes in the network is finite,

the algorithm terminates in a finite number of steps.

Now, suppose that after the termination of a TS-based algorithm there is at

least one node, D, that is not covered. Since the network graph is connected,

there exist at least one path from the source node, S , to the destination node

D. Because D has not received the message, there are at least two neighboring

nodes X and Y along this path, such that X has received the message and Y has

not received the message (note: X might be S and Y might be D). Therefore,

since Y has not been covered, RC(X) � 1 at algorithm’s termination. This is a

contradiction. Per both TS schemes, node X computes RC(X), after receiving the

broadcast message. Per Algorithm (4.2) (lines 5-17), as long as RC(X) > 0, X is

always scheduled to transmit in a later timeslot Tb.

Thus, the TS schemes cover all the network nodes. ⇤

Algorithm (4.1) Complexity
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Let T be an ordered collection of vectors {Tx,Tx�1

, · · · ,T
1

}, where Tk =

(uk,mk, lk), uk, mk, and lk 2 N+, and where the parameters u, m, and l are equal

to the upper, middle, and lower values. Let T be the output of Algorithm (4.1)

with input u.

Theorem 4.2. The time complexity of Algorithm (4.1) is O(u2

); and the length of the

generated time sequence is x = |T | = u(u + 1)/2.

Proof. The output, T , of Algorithm (4.1) is arranged in an isosceles triangle with

sides u as shown in fig. 4.2. The triangle consists of u levels, where the last level

(level 1) comprises u vectors. Invariantly, the number of vectors at the i-th level

equals 1 + u � i. The total number of vectors is then:

u
X

i=1

=
u(u + 1)

2

(4.1)

At each iteration of Algorithm (4.1) there is exactly one vector generated. Hence

there are O(u2

) iterations and x = |T | = u(u + 1)/2. ⇤

As discussed in section 4.1.5, the value of u is rather low (u ⇡ 7) in practice

and does not depend on the network density. Hence, Algorithm (4.1) is not

computationally expensive and could be run on resource-constrained nodes.

Greedy Transmission priority

Let A = (S ,I) be a set system with ground set S = { j : 1  j  N}, the

set of all network nodes. Each node j has weight equal to RC( j) at a given

time t. As time advances from time-slot to the next, the values RC( j) may

change. Let I = �

S
1

, S
2

, · · · , S |T |
 

be the collection of subsets of S , where

S k = { j : RC( j) � mk � lk � 1}, for given vector Tk = (uk,mk, lk) 2 T . Note that

|I| = |T |.
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Definition 4.4. A network node j is called admissible in vector Tk, iff j 2 S k.

Let x = |T | = u(u+1)

2

. Every x consecutive time-slots (ordered in time as in

fig. 4.3) are mapped one-to-one to the vectors in the ordered collection T above.

That is, each time-slot, tk is uniquely associated with a vector in T : t
1

$ Tx =

(u, u, u), t
2

$ Tx�1

= (u, u, u � 1), · · · , tx $ T
1

= (u, 1, 1).

Formally, a time-sequence TS is the ordered collection of the time-slots to-

gether with their corresponding vectors in T . A network node is admissible in

time-slot tk if it is admissible in vector Tx+1�k. This association “wraps around”;

i.e., in general for k � 1, tk $ Td+1�k, where d = d k
xe.

Revisited Definition 4.1. A broadcast session consists of all the events, starting

from the transmission of the message m by the source node and ending when

the broadcast algorithm terminates after |T | time-slots.

Broadcast Rule: At every time-slot tk, a node considers transmitting only if it

has not transmitted earlier in this broadcast session and if during the Preamble

of tk, it is admissible in Tx+1�k.

It is easy to verify that Algorithm (4.2) complies with the Broadcast Rule. For

instance, if middlect of the current TS time-slot is lower than a node’s RC value,

Algorithm (4.2) schedules the node’s transmission for the next immediate time-

slot. Otherwise, a further future time-slot is assigned to the node. A node is

never scheduled to transmit if its RC = 0 (i.e., it is not admissible in any time-

slot).

Definition 4.5. Node Ordering: j  i, 8i, j 2 S , iff RC( j)  RC(i).

Definition 4.6. A minimal admissible element min(Tk) in vector Tk is an element
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j 2 S such that j  i for all i admissible in vector Tk.

Consider the ordered collection T q of vectors at level q, q 2 {1, · · · , u}, of T .

Definition 4.7. in f (T q
) is the smallest element among all minimal admissible

elements in the vectors at level q.

Let L be the sequence (in f (T u
), in f (T u�1

), · · · , in f (T 1

)). Note that the sequence

L is decreasing, from Definitions (4.5), (4.6), and (4.7) applied to I.

Since L is decreasing, given the TS structure and Broadcast Rule, covered

nodes with low RC values would not be able to transmit (i.e., be admissible) in

earlier higher levels of the time sequence TS, but will potentially be admissible

in later, lower levels. And reversely, only nodes with larger RC values would be

admissible and be able to transmit in earlier higher levels of the time sequence.

Next, note that a similar observation holds for the time-slots within each level

of the TS.

Let M be the sequence (min(Ti),min(Ti�1

) · · · ,min(T
1

)), where vectors

Ti,Ti�1

, · · · ,T
1

are in collection Tq for a given level q. The sequence M is de-

creasing again from applying Definitions (4.5), (4.6), and (4.7) to I.

Since M is decreasing, within level q of the TS, nodes with smaller RC values

would be admissible only in later timeslots at level q, and nodes with larger RC

values would be admissible earlier at level q.

In summary, the structure of the TS (implemented via Algorithm (4.1)) in

conjunction with the Broadcast Rule (implemented via Algorithm (4.2)) has ad-

missibility property allowing for repetitive assignment of larger transmission
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priority to nodes with larger RC values compared to nodes with smaller RC val-

ues. By virtue of the admissibility property of the Broadcast Rule, the greedy

”oracle” scheme is emulated approximately.

4.1.5 Performance Evaluation and Comparison

The performance, defined by a number of metrics, of various broadcast algo-

rithms in four distinct network topology models is investigated next. For a

static network topology, consider the case of a perfect MAC-layer (no packet

loss due to collisions) is considered first. Next, NTSS and TSS are implemented

in a full network stack, discrete event simulator (JiST/SWANS [119]), where

packets may be lost at different network layers (e.g. due to collisions, noise

etc.). Finally, the the algorithms’ performance is compared under two types of

realistic mobile models: one generating independent mobility patterns of the

nodes; and another generating correlated (group) mobility patterns.

The performance of the TS-based schemes is compared against the most ef-

ficient schemes found in the technical literature to date. In particular, the sim-

ulated algorithms are the RBS ([154]). In [154] the authors show that RBS out-

performs a few well-known broadcast algorithms such as the Edge Forwarding

[159] algorithm, for example. The more recent CCS ([136]) is also simulated. An-

other broadcast protocol implemented for comparison here is the Bordercast: the

route discovery mechanism in the Zone Routing Protocol (ZRP) ([119]). Bordercast

relies only on local topological information to select the nodes, which forward

the broadcast message. Per ZRP a zone of node A in the network includes all

nodes that are within k hops from A. Border nodes are those nodes in the zone
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whose minimum hop distance from A is exactly k. According to the Bordercast

algorithm, the goal is to cover most efficiently the set of border nodes in its zone.

To include an algorithm that constructs a backbone structure prior to the

broadcast session, Funke’s algorithm from [150] was selected, as it arguably

provides one of the theoretically closest constant approximation ratio to MCDS:

6.94. For comparison, Liu’s influential algorithm from [160] is also simulated -

this is a node forwarding algorithm that relies on 1-Hop positional information.

In all the experiments, unless otherwise indicated, the simulation area is a

200[m] ⇥ 200[m] square; the inner square area is of dimensions (200 - R)[m] ⇥ (200

- R)[m] to avoid edge effects. R[m] is the transmission radius of all nodes and is

set to R = 25[m]. The number of nodes in the network varies from 200 up to 3000

nodes to investigate the schemes’ performance at different node densities.

4.1.5.1 Static Network Topology with Lossless MAC

In this case the broadcast schemes performance reflect only the algorithmic effi-

ciency, without the effect of collisions or noise in the environment.

The number of transmission (i.e., “transmission complexity”), equivalent to

the number of broadcasting nodes during a broadcast session is a crucial metric

for an efficient broadcast algorithm, and is investigated in figures 4.5 top and

bottom. The performance of the centralized Greedy algorithm is plotted in 4.5

bottom for comparison with the TSS. As expected TSS emulates well the cen-

tralized Greedy algorithm and both generate similar number of transmissions.

Interestingly, without utilizing positional information TSS achieves about 15%

lower number of transmissions compared to RBS and completes the broadcast

152



session with approximately 67% fewer transmissions than CCS, while utilizing

only 1-Hop topology knowledge. As an additional benchmark for transmission

complexity, the figure also shows the number of transmissions using the Linear

Hexagon Coverage technique, which provides a very close approximation to

the minimum number of transmissions needed to cover the entire network area,

assuming sufficient node density (fig. 4.5 bottom). The upper bound of trans-

mission complexity in fig. 4.5 top should be interpreted as the maximal number

of transmissions that would be required by any broadcast algorithm that avoids

duplicate coverage of nodes and, hence, is density-independent. More detailed

discussion of these bounds is found in Appendix D.1 and D.2.

4.1.5.2 Full Network Stack Simulation

TSS and NTSS are implemented in the JiST/SWANS network simulator ([119])

to evaluate the effect of collisions, noise, fading, link asymmetries, etc. inherent

in practical network scenarios.

The simulation parameters are given in Table (4.2). Figures 4.6, 4.7, and 4.8

show the performance of the TS schemes in terms of transmission complexity,

delay, and fraction of network covered. Since some packets may be lost, full

network coverage cannot be 100% guaranteed. However, the performance of

the TSS scheme is rather robust as node density increases, despite more load

at the MAC layer is present in the form of control messages. For comparison,

the state-of-the-art RBS ([154]) and CCS ([136]) algorithms, discussed above, are

also implemented in JiST/SWANS.

Transmission Complexity:
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Figure 4.5: The number of transmissions in a static collision free network
(full coverage) of eight different broadcast algorithms.
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Table 4.2: Parameters of the JiST/SWANS Simulation

Simulator JiST/SWANS v1.0.6

MAC layer IEEE 802.11b

Radio frequency 2.4GHz

Propagation model Free space

Packet size 64 - 7081 [bytes]

R ⇡ 22[m]

Area Square: 200[m] ⇥ 200[m]

Number of nodes [150-1000]

Time-slot duration TSS/NTSS: 150[ms]
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Figure 4.6: Number of retransmissions (full network stack simulator).
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The simulation results in terms of number of transmissions (fig. 4.6), both

for the TSS and NTSS algorithms, resemble their respective performance trends

in the case of ideal MAC layer above. The number of transmissions is higher in

fig. 4.6 since the average transmission radius is about 22[m] here vs. 25[m] in

the ideal MAC layer case. Also, some broadcast messages may be lost, requiring

further retransmissions. TSS generates 25-30% and 53% fewer transmisions than

RBS and CCS respectively. Notice however that, simultaneously, TSS maintains

higher network coverage (fig. 4.8): for instance, RBS leaves 25-30 uncovered

nodes for networks of average node degree about 40.

Delay:

The delay - the time needed to complete a broadcast session - is presented

in fig. 4.7. The delay performance of the TS-based schemes is obtained with

parameter u set to the smallest value possible, so that the number of broadcast

transmissions is still minimized. Decreasing u further would decrease the delay

but would lead to more transmissions.

Setting the parameter u: On one hand, the number of time-slots would be

lower if u is lower. However, smaller number of time-slots allows for more

nodes with different RC’s being admissible and able to broadcast in the same

time-slot. Hence, nodes’ transmissions greedy prioritization could be coarser

and less efficient. Larger values of u lead to potentially better prioritization of

nodes’ transmissions. However, the probability that a time-slot does not con-

tain any transmissions is increased, leading to unutilized time and higher delay

(quadratic in u as shown in section 4.1.4.5). For instance, initial time-slots go

by empty since their corresponding middle and lower values are too high com-

pared to the nodes with highest RC. Thus, very few broadcasting nodes are
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admissible then.

Optimal value of parameter u is robust to network density variation: The opti-

mal values of u for different network densities were determined via simulations

(fig. 4.9). Observe that beyond average node degree of 15, the optimal u values

for TSS remain essentially constant with respect to the network density. Increas-

ing u further, does not lead to notable decrease of transmission complexity. Thus

the upper value could be fixed prior to network deployment, resulting in trans-

mission complexity and delay that are close to the TSS optimal performance.

The results for TSS hint that a good practice would be to set u to the average

node degree for networks of node degrees up to 7. For networks of larger node

degrees, u is largely density-independent and may remain fixed to 7. In the im-

plementation presented here, each node constructs a local copy of the TS that

can be extended if at the last time-slot of the TS, the node schedules itself for

transmission and its residual coverage is greater than 0. The delay of the broad-

cast (fig. 4.7) accounts for the number of time-slots in the time sequence at the

node with the longest local time sequence (i.e. the time elapsed between the

first and last transmission).

The delay of TSS is comparable but slightly larger than that of the RBS al-

gorithm, which however relies on GPS information and leaves larger number

of nodes in the network uncovered (fig. 4.8). The delay of the TSS scheme is

about 50% lower compared to the CCS scheme, which utilizes only topology

information.

Network Coverage:

The network coverage (fig. 4.8) of the TS-based schemes for lower node
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Figure 4.9: The values of the parameter u determined via simulations for
NTSS and TSS, so that the trade-off between number of re-
broadcasts and delay is optimized.

densities is ⇡ 96% since disconnections in the network are possible. However,

at higher network densities the TS-schemes performance remains robust and

they achieve virtually full coverage. The results indicate that the MAC layer

readily copes with the number of control messages, as density increases. For all

network densities TSS maintains higher coverage than both RBS and CCS.

4.1.5.3 Dynamic Network Topology

In addition to TSS, two state-of-the-art online, dynamic broadcast schemes (i.e.

RBS, and CCS) are simulated under two mobility models within JiST/SWANS.

Under the Gaussian-Markov Mobility Model (GMMM) ([161], [162]) each node fol-

lows independent realistic trajectory of movement. Under the Self-Similar Least

Action Model (SLAW) model from [163], subsets of the network nodes follow

correlated paths.
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Table 4.3: Parameters of the GMMM

Velocity and position update interval 0.2 [s]

Velocity standard deviation 0.75 [m/s]

Velocity mean 1-20 [m/s]

Alpha 0.75

Individual Movement: Gauss-Markov Mobility Model:

Per GMMM, time is split into time intervals (independent of the TS-based

schemes time-slots). At the beginning of the k-th time interval, nodes’ velocity

is updated according to the following rule:

v[k] = ↵v[k � 1] + (1 � ↵)v̄ + (1 � ↵2

)

1

2 z[k � 1] (4.2)

Here, v[k � 1] is the velocity (speed and direction) of a node in the [k � 1]th,

time interval; z[k � 1] is the observation of a Gaussian random variable at time

interval [k � 1]; v̄ is the mean value of the velocity; and ↵ is a parameter that

determines the degree to which the current velocity at step k depends on the

velocity at time interval [k � 1]. As ↵ approaches 1, nodes’ motion becomes

more constant; as ↵ approaches 0 nodes’ motion becomes more random. Table

(4.3) summarizes the values of the parameters used in the simulation. The

number of transmissions and the corresponding achieved network coverage by

the four algorithms at different average speeds is shown in fig. 4.10 top. The TSS

performance is robust since each node checks its residual coverage at least twice

(at the time a broadcast message is received and prior to transmission in the

scheduled-for-transmission time-slot). Notice also that TSS is partially resilient

against temporal disconnections of nodes from the network due to mobility.

More specifically, suppose in the Preamble of time-slot Tct, j has a relatively

smaller number of neighbors compared to the average node degree in the net-
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Figure 4.10: Mobile network: top) Gaussian-Markov Mobility Model: N =
200 nodes. Num. transmitting and covered nodes (non-solid
and solid color respectively); bottom) Self-similar Least Ac-
tion Model: N = 200 nodes; x-axis: varying number of fractal
waypoints 5,10,15, and 20.

work. Respectively, j has higher chance of being temporarily disconnected from

the network. In this case, it is likely that RC( j) would also be lower in compar-

ison to the RC of other nodes in the network. Then, node j is scheduled for a

broadcast time-slot Tb that is late in the TS. This gives j more time to potentially

move in areas with higher number of neighbors and increase RC( j). Further-

more, even if meanwhile j becomes disconnected from the network at some

time-slot between Tct and Tb, that would not affect j’s decision to transmit or

not during Tb. Only RC( j) in the Preamble of Tb determines whether j would
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transmit or not in Tb.

In contrast, suppose node j has larger than average number of neighbors

during the Preamble of time-slot Tct. In this case it is likely that RC( j) would

also be larger in comparison to the RC of other nodes in the network. Hence, j

would be scheduled to transmit sooner in the TS, thus reducing the chance that

the number of j’s neighbors would decrease due to mobility.

As a result, TSS generates ⇡ 15% fewer transmissions than the position-

aware RBS while achieving full network coverage. RBS leaves ⇡ 5% (8-10 nodes)

uncovered. Furthermore, TSS generates 50-60% fewer transmissions than CCS,

while the latter leaves up to 15% of the network nodes uncovered

Group Movement: Self-Similar Least Action Model

Since independent individual node movement may be unrealistic for cer-

tain scenarios (e.g. hikers, tour groups, military platoon, etc.), a group mobility

model is also simulated here. The model is based on the Self-Similar Least Ac-

tion Model (SLAW) model described in [163]. SLAW aims specifically at mod-

eling realistically human mobility statistical features and has been verified to

match a number of traces generated by real people’s mobility. The simulation

parameters (such as �, Levy Exponent, Waypoint Ratio, Hurst Value, and node

velocities) used here were borrowed from [163]. Table (4.4) lists the parameters’

values. Figure 4.10 bottom depict the number of transmissions and the corre-

sponding network coverage for different number of fractal waypoints govern-

ing the clustering in the network. TSS achieves at least 90% network coverage.

The performance of the remaining broadcast algorithms degrades substantially

since the network tends to be temporally partitioned. Here, each transmission
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Table 4.4: Parameters of the SLAW model

Pause time 10-120[s]

� 1

Cluster range 27.5[m]

Distance weight 3

Nodes velocities 0.5 - 2 [m/s]

Waypoint ratio 5

Hurst value 0.75

Number of fractal waypoints varied [5-20]

covers larger number of nodes (due to clustering) and fewer transmissions are

required to cover the network. TSS generates more transmissions than RBS,

however it covers substantially larger fraction of the network nodes.

4.2 Other Broadcast Schemes

The problem of efficient broadcasting has been extensively studied in the techni-

cal literature. The initial simple concept of flooding (e.g. [11]) evolved into more

sophisticated schemes through building optimal network subgraphs. Among

the major shortcomings of pure flooding are the large transmission complexity

and the resulting notorious broadcast storm [11], where the network suffers from

severe contention due to the number of transmissions. The Scalable Broadcast

Algorithm [164] alleviates somewhat this problem utilizing 1-Hop neighbor in-

formation. All through, the main algorithmic challenge has been to reduce the

number of transmissions needed to reach all network nodes.

More recent work on flooding offers a different and ingenious approach to
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circumvent the broadcast storm problem. Ferrari et al. ([138], [165]) design a

system that harnesses constructive interference of concurrent neighboring trans-

missions and achieves remarkably low broadcast latency. Finding an approxi-

mation CDS to the minimum connected dominating (MCDS) set first, as done by

the proposed TSS scheme, can significantly reduce the number of transmissions

generated by such novel flooding-based algorithms. Constraining the flood to

the nodes in the CDS could lead to significantly reduced energy expenditure, for

instance, as observed in [137]. Consequently, these flooding-based approaches

are orthogonal to the application of schemes such as TSS in finding approxima-

tions to the MCDS.

A different approach is taken by probabilistic broadcast protocols that as-

sociate some (re)transmission probability to each node receiving the broadcast

message. Schemes exploring such mechanisms were suggested in ([140], [141],

[142], [143], [144], [145], [146], [147], and most recently [166]). The interest in

probabilistic broadcasting schemes is due to their inherent low transmission

overhead, low processing complexity, and high tolerance to frequent and rapid

topological changes. Balancing these benefits, though, is the disadvantage of

inability to guarantee full network coverage and, still, the presence of many

redundant transmissions.

In contrast, deterministic broadcast algorithms innately guarantee full net-

work coverage (assuming ideal MAC layer). In the deterministic scheme of

Multipoint Relaying proposed in [167], the set of retransmitting neighbor nodes

is reduced from the set of all neighbors to the minimum subset of neighbors that

cover the same area as that covered by the original set. This approach is an ex-

ample of the minimum forward-node set strategy, and works such as [160], [168],
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[159], and [169] provide approximate solutions to this NP-hard problem. To

avoid the transmission of the list of forwarding nodes along with the broadcast

message, the technique of self-pruning (e.g. [170], [171]) has been proposed.

The forward-node set and, consequently, the self-pruning problems can es-

sentially be viewed as the task of solving the NP-hard “Minimum Connected

Dominating Set” (MCDS) problem [159]. Several studies ([172], [173], [149],

[150], [151]) have attempted to tackle the MCDS problem by constructing a com-

munication backbone prior to the broadcast initiation. These schemes can some-

times dramatically reduce the number of transmissions. For instance, Funke’s

algorithm in [150] provably guarantees a 6.94-approximation ratio to the size

of the MCDS. Nevertheless, as shown in [174], such backbone schemes do not

tolerate well frequent network topological changes. For volatile communication

environments, an approach to dynamically construct CDS is a better alternative.

Works such as [175], [154], and [136] offer initial solutions. However, [154] re-

lies on positional information such as GPS, and GPS is not always feasible. The

algorithm in [175] does not scale well for higher density networks. Finally, the

TSS scheme described above and also in [155] is significantly more efficient in

reducing the number of retransmissions (i.e. finding better approximation to

the MCDS) than the CCS algorithm in [136].

Bounds on the size of |MCDS | in unit disk graphs (UDG) have been studied

extensively in the technical literature, as well. Typically these bounds are given

via ratio between the cardinalities of the Maximal Independent Set (MIS) and

MCDS. Let µ = |MCDS | and � = |MIS |. Wu et al. demonstrate that �  4µ + 1

[176]. Further improved bound is derived in [177], where �  3.43µ + 4.82.

Finally, a tight (non-improvable) bound is derived by Vahdatpour et al.: ([178])
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�  3µ + 3 .

A number of studies have attended to the theoretical complexity bounds of

broadcast and related information dissemination mechanisms for topology (not

area) bounded networks. For instance, [179] and [180] provide such complexity

bounds on gossiping, broadcast, and rumor spreading in such networks. Also,

influential works by Peleg et al. in the spirit of [181] demonstrate important

complexity lower bounds on broadcast in radius-2 radio networks showing that

the broadcast procedure requires ⌦(log2n) transmissions.

4.3 Advantages and Limitations of the TSS scheme

The Time Sequence Scheme for broadcasting in wireless networks described

above is based on finding a distributed approximation of the wireless network

MCDS. Through simulations and based on two metrics - the transmission com-

plexity and the delay - TSS performance has been compared to other leading

broadcasting schemes. The TSS scheme outperforms all other schemes with

respect to the number of broadcast message transmissions, without requiring

additional equipment, such as GPS. Furthermore, this performance is achieved

with bounded latency, and is independent of network density.

TSS improves on the performance of CCS and RBS with respect to number

of transmissions and network coverage, while achieving comparable or better

delay than the two algorithms. TSS also possesses network partitioning immu-

nity and outperforms the other schemes with respect to network coverage in all

mobility models simulated, achieving almost full coverage. This feature makes

TSS one of the few alternatives to flooding in the context of mobile networks.
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TSS is among the first broadcast algorithms, satisfying the efficient broadcast

desiderata (1)-(5) of section 4.1.1, and applying the TSS scheme in various net-

work scenarios such as deployment of UAVs and sensor networks is a practical

option.

However, note that with the current implementation of the TSS broadcast al-

gorithm, its deployment in extremely dense and dynamic networks may not be

practical. The number of control packets exchanged to compute RC in the latter

settings may be rather large leading to increased delay. An alternate strategy of

estimating RC that reduces the number of control packets in such cases may be

needed. For instance, instead of replying to a residual coverage request message

100% of the time, only a fraction of the nodes may reply (depending on the net-

work density; the higher the density the smaller the fraction). Thus, a node may

only have an estimate of the RC. This approach has not been implemented yet,

and a study of such alternate RC computation is left for future work. The TSS

performance though is robust both in mobile and static networks containing up

to a few hundred nodes.
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CHAPTER 5

FUTURE WORK AND CONCLUSION

5.1 Future Work: Extensions

The latter chapters laid out a preliminary set of perspectives towards designing

data level aware algorithms for the structural and procedural wireless network

levels. For instance, the Encoded Sensing (ES) scheme of chapter 2 accounted

for the statistical properties of the data source (e.g. spatial correlation in sensor

nodes’ measurement, common data due to the broadcast nature of the wire-

less transmissions, etc.) to coordinate and encode the transmissions of specifi-

cally placed representative groups of nodes to reduce wireless signals sent to the

sink. Thus, ES is “data-aware” while shaping the structural level of the network.

Chapter 3 discussed further the optimization of the structural level via the place-

ment of additional relay nodes and determining the set of all pairs, unicast, sin-

gle path routes, so that the communication cost (i.e. retransmissions overhead)

in the network is minimized. Given the placement of the representative groups

of nodes, relay nodes may be positioned to augment the links on heavily loaded

paths connecting these groups. Finally, chapter 4 described the Time Sequence

Scheme broadcast protocol that minimizes the number of required transmis-

sions in the network, so that all nodes are covered by a single-source broadcast

message. Hence, given the data-aware structural level designed in 2 and 3, the

TSS could be used as a solution to propagate network wide updates across all

different representative groups of nodes and relay nodes.

While the algorithms presented within each individual network level pro-

vide significant improvement and new perspectives on wireless networks sys-
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tems, the interactions across the data, structural and procedural levels need to

be studies further. Additionally, a number of technical questions and challenges

regarding the design of algorithms at each level remain to be addressed. A brief

overview on some of those is given below.

5.1.1 Topology Control for Clusters of Collaborative Nodes

In chapter 3, the placement of relay nodes assumed that each relay transmission

is independent of the transmissions of other relay nodes. However, in practice,

relay nodes may utilize any of the cooperative transmission schemes discussed

in section 2.6 including ES, to synchronize their transmissions and achieve bet-

ter SINR on cooperative links. To achieve that, instead of placing individual

relay nodes utilizing the link model in section 3.2.1, subsets of the available

relay nodes may be clustered together to transmit collaboratively according to

cooperative transmission models similar, for instance, to the ones described in

[86], [182], and [85] among others. The technical challenge here is to determine

the number of nodes within each relay cluster and determine the position of each relay

cluster and the nodes within it, so that the the network goodput is optimized. This

question has not been addressed yet in the technical literature and is open for

future work.

The benefits of such setup would allow the extension of the encoded sens-

ing scheme of chapter 3 to multi-hop network scenarios, while minimizing the

number of overhead retransmissions due to weak transmission links. As a re-

sult, for example, the recent energy-efficient wireless ad-hoc network protocol

relying on cooperative transmissions suggested in [86] could be simplified with
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Figure 5.1: CMF: the black nodes form Gi after receiving RECi and send-
ing GRi from and to i respectively. Next, i sends a CL packet
to s and RR packet to j. j forms G j (dark blue nodes). Per ES,
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= 48620 (i.e. 16-
bit) messages can be encoded by Gi when cx = |Ax| = 9. Notice
that the CF packet from [86] is now not required. The chal-
lenge is to position relay nodes in clusters within the network,
so that the collaborative transmissions of each cluster reduce
the number overhead retransmissions (i.e. network communi-
cation cost per equation (3.9) derived in the context of cooper-
ative transmissions).

ES, via relaxing assumptions on the physical layer. Extending ES application to

multi-hop network scenarios, would allow ES to reduce the control overhead of

the cooperative protocol in [86] at the procedural network level.

The cooperative message forwarding protocol (CMF) introduced in [86] con-

sists of two phases: routing and recruiting-and-transmitting. In the routing phase

a multi-hop path L is established between a source and destination node, em-

ploying ad-hoc routing such as the Zone Routing Protocol.

Only the details relevant to ES of the recruiting-and-transmitting (RT) phase of

CMF are described briefly here and illustrated in fig. 5.1. During the RT phase,

each node in L recruits a group of nodes in its neighborhood dynamically, as the

message x is propagated on the path L. This is done via a series of control and

synchronization message exchanges between neighboring nodes in L. Suppose
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nodes s, i, j, and k in that order are nodes in the path L. When the message x

reaches the hop at node s, s sends a request-to-recruit (RR) packet to i. Node i

forms a cluster of nodes in i’s neighborhood that will cooperatively transmit the

message to the next hop j. Upon receiving RR, i sends a recruit (REC) packet

to its neighbors including, among other control information, the ID of the next

hop, j, in L. The nodes that are both neighbors of i and j form a cluster Gi

and reply to i with a grant request (GR) packet. i is now the clusterhead of Gi

and in charge of coordinating the cooperative transmission. The nodes in Gi are

ready to receive x and then cooperatively transmit x to the next hop. i sends s a

clear-to-send (CL) packet. In addition i is required to send a confirm (CF) packet

to the nodes in Gi that contains the waiting-time-to-send and their transmission

power level. i then sends RR packet to j and the operation repeats. It is assumed

that the cooperating nodes synchronize each other’s transmitted signals at the

receiver on a bit level in order to claim the benefits of cooperative transmission.

Notice that this implies very precise clock synchronization across cooperating

nodes. In [86], groups of sizes up to 5 nodes are discussed, since synchronizing

more than 5 nodes dynamically while the message is propagated on the path L is

rather challenging and incurs communication overhead. Even in this case, CMF

achieves substantial energy savings over non-cooperative message forwarding

schemes.

At this point one can observe that 1) encoded sensing can be naturally incor-

porated in CMF, replacing cooperative transmissions at the physical layer, and

extending the application of ES into multi-hop network scenarios; 2) incorporat-

ing ES, relaxes CMFs synchronization assumptions and reduces CMFs control

messages communication overhead as follows. On the path L, form Gi with

clusterhead i exactly as per CMF. Upon receiving message x, the nodes in Gi run
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through the assignment and encoding stages of ES as described in section 2.1.2.

Per CMF, i sends RR packet to k and after a timeout a CL packet is received from

k in the cluster Gi. Once the CL packet is received in Gi, the nodes in Ax of Gi

execute the transmission stage of ES. Per CMF, k has already formed a receiving

cluster Gk that receives the transmissions of the nodes in Gi. The nodes in Gk

perform the decoding stage of ES to obtain x; they in turn run through the ES

assignment and encoding stages. That way, similarly to the original CMF, the

message is forwarded hop-by-hop on the path L. However, here, the control

message CF along with the bit-level synchronization on the physical layer are

not needed. As demonstrated in chapter 2 ES can be as energy efficient as dis-

tributed transmit beamforming (e.g. [34]) with number of beamforming nodes

up to 5.

As noted, algorithms for placing clusters of relay nodes that could utilize ES

and the other cooperative transmissions schemes, as described above, in order

to minimize retransmissions in wireless networks are not known, and further

work in that direction could be impactful.

5.1.2 Designing a Hybrid Structural-Procedural Level

The schemes described in the preceding chapters could be further improved

by examining the trade-offs between designing “data-aware” structural levels

and “procedure-aware” structural levels. For instance, in chapter 2 and 3, the

suggested schemes determined network structure via topology control assum-

ing respectively certain properties of the data sources and unicast routing in

the network. However, if the applications running over the network require

172



primarily multi-cast and broadcast data dissemination solutions, the placement

both of relay nodes and representative groups of nodes may be suboptimal.

To provide flexibility in that regard, a different multi-level approach could be

considered. For example, optimizing the structural network level for broad-

cast procedures would lead to a set of algorithms for topology control resulting

in topologies of type �p perhaps similar to the one described in Appendix D.1

if the network is dense. Optimizing the structural network level considering

the data level and using ES, while placing relay nodes according to chapter 3,

would lead to topologies �d. Over-simplifying the problem in the interest of

presentation, consider a network utilizing broadcast for ↵% of the transmitted

data and unicast for (1�↵)%. A hybrid policy for wireless network design could

“weight” the output of algorithms producing topologies �p and �d according re-

spectively to the proportion ↵% to derive a “hybrid” topology �h that optimizes

the number of overhead transmissions in the network considering both the data

and procedural network levels.

5.1.3 Load Balancing, Load Estimation and Relay Placement

Chapter 3 considered the optimal placement of relay nodes to optimize com-

munication cost in the resulting wireless network. One of the implicit assump-

tions in the problem formulation presented in the chapter is that traffic loads,

distribution of source-destination pairs, and traffic demand matrices may be ar-

bitrary and are unknown in advance. In various scenarios, a number of routing

algorithms could be utilized that balance the traffic across the network links

(e.g. [78], [79], [80]). That is, in large scale networks with multiple redundant

paths connecting source-destination pairs and relatively uniform distribution
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of source-destination pairs, a routing algorithm may be selected that achieves

relatively uniform traffic across all links in the network, independent on the

particular positions of source-destination pairs and relay nodes. In fact, un-

der these assumptions, a single, minimum-weight path routing algorithm often

load balances the traffic offered to network nodes as studied in [183]. That is

given the cumulative traffic demand one could estimate the load on each link

in a load balanced network down to a certain level of uncertainty. Furthermore,

given a shortest path routing algorithm and network nodes’ positions one could

again estimate the traffic loads on network links without explicitly computing

the routing paths in the network ([183]).

Let the traffic load on link i j be Ti j where i and j could be any network nodes.

Ti j could be modeled as a random variable: a sum of (deterministic) estimate Ei j

for the traffic load on link i j and a noise term Zi j representing the uncertainty in

the traffic load estimate.

Ti j = Ei j + Zi j (5.1)

Again, notice that in this setting, we do not consider the explicit computation

of different possible load-balance routing patterns. Instead, we encode the vari-

ation across the different deterministic load balanced routing patterns in the

uncertainty of the traffic load estimate. One then could utilize various meth-

ods from stochastic optimization such as Sequential Kringing Method (SKM

[184]) and Simultaneous Perturbation Stochastic Approximation (SPSA [185])

to optimize a cost function similar to the on in eq. (3.16). Under certain assump-

tions on the properties of the cost function in (3.16) (smoothness and convexity),

SPSA and SKM guarantee convergence to the global optimum w.h.p.. A differ-

ent approach in this probabilistic load-balanced setting, may utilize a number

of works on chance (a.k.a. probabilistic) constrained programming (e.g. [186]
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and [187]), where (5.1) places probabilistic constraints on the traffic loads that

are feasible. In either case, the reformulation of the optimization problem may

not be trivial, but if done properly would yield a practical algorithm with ana-

lytically optimal solution w.h.p..

5.2 Future Work: Research Directions

Aside from the potential extensions discussed in the above section which could

improve on the work presented in this thesis, a few broader avenues for research

can also be identified. The sections below briefly outline two of those.

5.2.1 Sparse DSSS for Varying Capacity CDMA Systems

Section 2.3 suggests and studies a novel DSSS receiver design inspired by the

signal sparsity inherent for ES operation. The sparse DSSS receiver design may

have potential applications in CDMA systems (not limited to sensor networks)

where the set of active users at any given time is much smaller then system’s

capacity. Such systems could comprise cellular networks in rural areas, for in-

stance. Even in these cases the number of active users in the system would not

be exactly constant but would vary. The system is not exactly K-sparse, where

K is the number of active users, at any given instance in time. This variation

in sparsity needs to be handled without modification to the hardware at the

receiver’s matched filters, while preserving the reduced circuitry complexity

made possible via compressive sensing. Furthermore, even rural systems may

suffer peak utilization spikes. During these spikes the received signal is not
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sparse and the receiver needs full circuitry complexity (i.e. M matched filters

handling each of the M active users under 100% utilization).

Hence, despite being of potential practical and theoretical interest, the gen-

eral sparse DSSS receiver hardware design’s use cases may be constrained.

A more flexible solution is possible by considering a dual problem of the one

studied in section 2.3. Instead of modifying the reference PN sequence signa-

ture waveform at the receiver to be the linear combination given in eq. (2.14),

one could modify the PN sequence signature waveforms at the source nodes

using equation similar to (2.14). The DSSS receiver hardware would consist of

one matched filter for each user in the system as in a regular DSSS system (the

reference PN sequence waveform at each matched filter may still require mod-

ification). The PN sequence at each user is changed with time, depending on

the number of active users in the system. In this case, the reduced cost in the

system is not in terms of hardware complexity, but rather in terms of energy

consumption for each of the active users. If the system is K-sparse the lengths

of the spreading sequence utilized by each user would be on the order of a loga-

rithm of the original PN sequences length. As the system utilization grows, the

spreading sequence at each user also grows in length. At peak utilization, the

spreading sequence converges to the original PN sequence.

Such a system could significantly reduce devices energy consumption in ru-

ral area CDMA systems, while maintaining overall system peak capacity. Ana-

lytical, simulation and experimental studies of the parameters of such sparse,

variable length spreading sequences and correspondingly the design of the

matched filters at the receiver may have significant research and practical im-

pacts.
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5.2.2 Underwater Networks

Throughout this work, we have considered wireless radio signals assuming

terrestrial signal propagation. In the context of underwater sensor networks,

where communication occurs via acoustic wireless links, a number of questions

regarding the structural network level and its interaction with the data level

remain open.

Acoustic signal’s path loss function, multipath effects and link time variabil-

ity are rather different than the ones of terrestrial radio systems. The relay place-

ment problem investigated in chapter 3 takes different form. To the best of the

author’s knowledge the relay placement problem in the setting of underwater

networks has not been investigated well. One of the few available studies of the

problem has been published only recently ([188]). While the authors analyze the

effect of acoustic wave frequency and separation distance between relay nodes

on network performance, their approach does not take into account a number

of factors such as routing scheme, effects of multipath, etc..

Encoded Sensing could be suitable for low rate, underwater acoustic sensor

networks. However, the analysis of the scheme in this scenario would differ.

The DSSS PN sequence acquisition techniques are different from the ones uti-

lized in terrestrial systems ([189]). Although, certain acquisition performance

metrics have been studied for specific acquisition schemes, an information the-

oretic acquisition-based capacity of these systems has not been derived and is

still unknown.
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5.3 Conclusion

Wireless network performance and lifetime is directly related to the number

of transmission signals, ceteris paribus, sent by network nodes. In this thesis,

the wireless network is decomposed in three levels: the data, structural and

procedural levels. We have considered a distinct communication scheme cou-

pled with each level, optimizing the properties of the respective level, so that

the number of (re)transmissions (i.e. communication cost) is minimized. Fig.

5.2 illustrates the general overview of the presented work. At the interface be-

tween the data and structural level, we have introduced the Encoded Sensing

(ES) paradigm that allows collaborative division of responsibility across net-

work nodes with access to common or approximately common data. Chapter

2 discusses the implementation of ES and demonstrates that the scheme gener-

ates at least a factor of two less transmissions than state-of-the-art conventional

non-collaborative transmission. ES achieves energy efficiency comparable to

distributed beam-forming (DBF) techniques. However, DBF relies on very tight

synchronization across source nodes that is hard to scale in practice, whereas

ES only requires standard DSSS physical layer. A novel sparse DSSS receiver

design is proposed and analyzed based on the inherent sparsity of the ES signal

received at the sink node. The sparse DSSS receiver has substantially simpli-

fied circuitry and may lower the cost of DSSS receivers in applicable scenarios,

independent of ES.

In chapter 3, the structural network level is optimized by the placement

of relay nodes minimizing network communication cost. Although the relay

placement problem seems well studied in the technical literature, we identify a

number of inherent inefficiency in the problem’s models currently utilized by

178



Data Level 

Structural Level 

Procedural Level 

ES 

RePlace 

TSS 

Minim
izin

g #
 tr

ans
mis

sio
ns 

!
 En

erg
y e

ffi
cie

ncy
 

Figure 5.2: Network levels and respective schemes described in the thesis

network researchers and practitioners. We highlight the importance of the feed-

back loop between traffic loads/routing and relay nodes positions and suggest

a brute force optimal algorithm. A heuristic (the RePlace algorithm) designed to

maximize the communication cost improvement resulting from the placement

of relay nodes is described to eschew the brute force algorithm exponential com-

plexity. RePLace performs almost identically to the optimal solution in small

networks. In larger networks, RePlace eliminates overhead network transmis-

sions almost completely, as the number of relay nodes increases. Simultane-

ously, we show that the average packet delay in the resulting relay network

decreases significantly. In comparison to other relay placement algorithms with

the goal of minimizing communication cost from the technical literature, Re-

Place performs better both in terms of communication cost and delay reduction.

Given the optimized structural level, accounting both for the data level char-

acteristics (e.g. correlation of measurements in WSN) and relay placement,

we consider the optimization of important primitive at the network procedu-

ral level. In chapter 4, we introduce the Time Sequence Scheme (TSS) broad-
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cast protocol designed to compute an approximation of the Minimal Connected

Dominating Set (MCDS) in wireless network graphs. TSS is implemented in

the JiST/SWANS simulator and compared against a multitude of the best es-

tablished and very recent broadcast algorithms. TSS reduces the number of

broadcast nodes, or equivalently the size of the MCDS, to a fraction of network

nodes substantially less than competitive schemes. Furthermore, TSS remains

robust within highly dynamic networks, where temporary disconnections dur-

ing algorithm’s operation are possible.

As a result of our study, at different network levels, we confirm that care-

fully reducing the number of (re)transmissions in a wireless networks indeed

improves not only network throughput, but also in most cases improves qual-

ity of service. At the data level we observed that encoded sensing does not

sacrifice accuracy of estimate, while sending fewer signals from sensor nodes to

the sink. Optimizing the structural and procedural level to reduce the number

of overhead and redundant transmissions in the network, invariably decreased

average packet latency.

The methods presented in this work pose a number of questions for further

research that may benefit practical deployment of future sensor and wireless

networks. The preceding sections of the current chapter outline some of the

possible extensions of our techniques to improve their robustness and perfor-

mance. Furthermore, we consider new, broader directions for future work with

potentially high research and industrial impact.
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APPENDIX A

ACQUISITION CAPACITY OF DSSS SYSTEMS

The signal acquisition stage is inherent part for any DSSS-based system (e.g.

[93], chapter 3). During this stage, the delay of node j’s signal (and similarly of

the remaining transmitting nodes) is estimated, so that its transmission can be

properly matched and despread at the receiver (e.g. see [94]).

In the case of asynchronous acquisition system a lower bound on the capac-

ity of the system can be obtained, so that the probability of bit error vanishes

to 0. This is the probability that a matched filter would erroneously determine

that its reference waveform matches one of the other signature waveforms in

the received signal. Although the detailed analysis is omitted here, it follows

directly the derivation of the asynchronous system acquisition capacity lower

bound of Appendix B in [94]. As shown in [94], the acquisition capacity deter-

mines the capacity of an asynchronous DSSS system. The lower bound on the

system capacity is given by

N <
↵2

(FlogF)

2

¯P
where F is the length of the matched filter acquisition window length (a param-

eter of the sink’s receiver design determining its circuitry complexity) and ¯P is

given by

¯P =
1

N

N
X

i=1

Pi

If all the received powers of nodes’ transmissions are approximately the same

then, ¯P! 1 and the capacity of the system is equal to

N <
1

2

↵2

(FlogF) (A.1)

The latter assumption is feasible when modeling the transmissions of nodes

within a single group Gi. The nodes within the same representative group
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(see Definition (2.1)) are clustered spatially so that the measurements of nodes

within the same representative group are highly correlated. Thus, the near-far

effect in the system is minimal. The different representative groups in the sys-

tem could transmit in different timeslots to avoid interference at the sink.
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APPENDIX B

DISTORTION OF MEASUREMENT PER ES AND NCD

The estimate of the source S at the sink produced utilizing either ES or NCD is

distorted since 1) only information regarding the measurements of k representa-

tive out of the N nodes in the network is taken into account; 2) there is channel

noise and sensing imprecision noise present. The CC-MAC algorithm in [21]

utilized for representative node selection both by NCD and ES ensures that the

number of selected k nodes is minimized so that the resulting distortion D(k) is

within a quality of service constraint DQoS . We demonstrate that ES achieves

similar level of distortion. For both schemes the distortion is given by standard

Minimum Square Error (MSE) metric:

D(k) = E
⇥�

S � S0
�⇤

= E
h

S2

i

� 2E
⇥

SS0
⇤

+ E
h

S02
i

(B.1)

where S is the value of the point source; S’ is the estimate of the point source

at the sink given the k reports. Suppose the channel noise is AWGN so that

Zj ⇠ N(0,�2

Z).

For a non-cooperative transmission scheme such as NCD, the measurement

Xj of a representative node j is transmitted most efficiently using uncoded trans-

mission (ref. [190]) subject to power constraint P per node, per measurement.

The received signal at the sink is

Yj =

s

P
⇣

�2

Z + �
2

W

⌘ ·
⇣

S j +Wj

⌘

+ Zj

The optimal decoder at the sink is given by the standard MMSE estimator [190]:

S 0j = Yj ·
0

B

B

B

B

B

B

@

E
h

S jY j

i

E
h

Yj

i

1

C

C

C

C

C

C

A
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and therefore

S0 =
1

k

k
X

j=1

S 0j

Evaluating (B.1) term by term and simplifying yields

DNCD(k) = D(k, P) = �2

S � �4

S

"

⇣

�2

S + �
2

W

⌘

 

1 +
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Z
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Per ES, |Ax| = K nodes transmitting for each of the k representative groups.

The nodes transmit in a multi-access interference limited system utilizing DSSS.

The channel noise is negligible in comparison to nodes’ mutual interference.

However, since the system operates at acquisition capacity, the probability of

transmission error due to interference is close to 0 (see Appendix A and [94])

and consequently does not incur distortion of measurement. Here, we have as-

sumed the range of values a phenomenon can take is split in intervals of length

✏ = 2��W , � > 2. Hence, per each group G j, the estimation of measurement at

the sink is S 0j = S j + 2��W .

As before S0 = 1

k
Pk

j=1

S 0j and plugging in (B.1) yields:

DES (k) = �2

S

2
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(B.3)

Aside from the term
⇣

2��W
�S

⌘

2

, as shown in fig. 2.7, ES achieves similar dis-

tortion to NCD as the number of representative groups/nodes increases and

�W < �S . The latter condition is satisfied as the sensor instruments on nodes

become more accurate.
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APPENDIX C

CONVEXITY OF THE RPFT PROBLEM

From Theorem (3.1), one only needs to show that the function g(z) is convex

and non-decreasing for z 2 (0, rd
0

), where r > R. For clarity of presentation,

assume d
0

= 1.

To analyze the above claim, consider the function

g(z) =
h

1 � Q
n

p

2� (z)

oi�b
(C.1)

where z 2 R+ . Substituting � from (3.2), g(z) now equals

g(z) =


1 � Q
⇢

q

2

�

Pt � a(1) � 10↵ log

10

(z) � ⌘(0,�) � �(0,�
1

)

�

���b

(C.2)

Let A = Pt � a(1) � ⌘(0,�) � �(0,�
1

). A is a Gaussian r.v., however, at present A is

treated a constant w.r.t. to z. Then

g(z) =


1 � Q
⇢

q

2

⇥

A � 10↵ log

10

(z)

⇤

���b
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where the Q(•) function was converted to the error function er f (•) and the SNR

expression (2.2) was converted from dB to linear scale. Let B = 10A/20 and

a = ↵/2. We obtain

g(z) =

 

1

2

!�b
⇥

1 + er f
�

Bz�a�⇤�b (C.3)

The multiplicative constant
⇣

1

2

⌘�b
does not affect the convexity of g(z). Hence,

we only consider

g
1

(z) =
⇥

1 + er f
�

Bz�a�⇤�b

If g
1

(z) is convex, so is g(z).

dg
1

(z)

dz
=

2abBp
⇡
· e�Bz�2a ⇥

1 + er f (Bz�a
)

⇤�b�1

xa+1

(C.4)
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Note that on R+, g0
1

(z) is non-negative for any z. Hence, g
1

(z) and respectively

g(z) is non-decreasing.

The constant 2abBp
⇡

is positive and can be ignored. Using the product and

quotient rules

d2g
2

(z)

dz2

= a
⇥

1 + er f
�

Bz�a�⇤�b�1 e�B2z�2a

·
8

>

<

>

:

2(b + 1)Be�B2z�2a

⇥

1 + er f (Bz�a
)

⇤

p
⇡
+

2B2

za �
za

(a + 1)

a

9

>

=

>

;

If g00
2

(z) is non-negative, g(z) is convex. Notice that since a > 0, b > 0, and B > 0

a
⇥

1 + er f
�

Bz�a�⇤�b�1 e�B2z�2a
> 0

for all z. Hence, we are only interested in the inequality

2(b + 1)Be�B2z�2a

⇥

1 + er f (Bz�a
)

⇤

p
⇡
+

2B2

za �
za

(a + 1)

a
> 0 (C.5)

In this form (A.5) does not have analytical solution expressed in simple func-

tions.

However, one can still reason about the convexity of the function g(z). First,

simplify (A.5) further by noting that
⇥

1 + er f (Bz�a
)

⇤

< 2 for any z, since Bz�a is

positive. Therefore (A.5) is valid if the inequality

(b + 1)Be�B2z�2a

p
⇡

+
2B2

za �
za

(a + 1)

a
> 0 (C.6)

is satisfied. Also, observe that B2z�2a < 0.15. Hence, from the Taylor series

expansion of e(·)

e�B2z�2a ⇡ 1 � B2z�2a

This approximation is valid as z (or equivalently, the distance between two net-

work nodes) increases, since B = 10A/20 and a = ↵/2. Typically in wireless
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networks models ↵ = 3 and B is small in low SNR regimes. Using this approxi-

mation and slightly rearranging the resulting inequality from (A.6) we obtain

2

p
⇡B(b + 1)

za � B2

(b + 1)

z3a �
p
⇡(a + 1)

aB
> 0 (C.7)

Noting that za > 0, substituting↵ = 3, a = ↵/2 and letting

⇣
1

=

p
⇡(a + 1)

aB
, ⇣

2

= 2

p
⇡B(b + 1), ⇣

3

= B2

(b + 1) and y = z3/2

the cubic inequality

⇣
1

y3 � ⇣
2

y2 + ⇣
3

< 0 (C.8)

is obtained. The solution intervals of (C.8), after reverse substitution, are equiv-

alent to the intervals where g(z) is convex in low SNR regimes.

The solutions of (C.8) can be found explicitly, however the roots are com-

plicated. Instead, one can gain intuition about the asymptotic behavior of the

function g(z) by observing its first derivative as z increases.

Recall that
dg

1

(z)

dz
=

2abBp
⇡
· e�Bz�2a ⇥

1 + er f (Bz�a
)

⇤�b�1

xa+1

(C.9)

Notice that as z increases
⇥

1 + er f (Bz�a
)

⇤�b�1 ⇡ 1.

Then, asymptotically

dg
1

(z)

dz
=

2abBp
⇡
· 1 � B2z�2a

za+1

! 0 (C.10)

Then, notice that g00
2

(z) 0. Thus, the function g(z) is convex in this asymptotic

regime. (More precisely the function g(z) is non-strictly convex.) We notice that

intuitively this is correct since the Q(·), analogously er f (·), and the packet error

rate functions converge to constants, as z increases. I.e., the received power is

very low at a node that is large distance away from a transmitting node.
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Figure C.1: g(x) and g00(x) for different packet sizes and fixed transmit
power of 10[W]. Notice that the convexity interval (0, r) in-
creases as b grows. The transmission range, R ⇡ 110[m] is less
than r for various values of BER and SNR.

This regime occurs if transmission links between nodes are long, the packet

error rate is very high, and links’ capacities are low. We note that as z decreases

the first two terms in (C.8) increase and the third term decreases. Qualitatively,

as z decreases the function becomes strictly convex.

Let z 2 (0, r) and respectively z 2 (0, rd
0

) be intervals where the function is

convex. Figure C.1 demonstrates that (C.8) is indeed satisfied for large values of

r depending on the transmit power and the packet size. The larger the transmit

power and the packet size, the larger r. For instance, if the transmit power is
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10[W] and the packet size is 512 bits the function g(z) is convex within a range

of z = rd
0

= 1100[m], for packet size of 1024 bits; g(z) is convex within a range

of z = rd
0

= 1700[m]. d
0

= 1[m] throughout. Also, to increase the transmission

range, the transmit power is increased, which in turn increases the convexity

interval (0, r).
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APPENDIX D

BOUNDS ON WIRELESS BROADCAST

This section provides upper and lower asymptotic bounds on the number of

retransmissions in a 2D wireless ad hoc network. The bounds are demonstrated

based on geometrical arguments (given the system model described in section

4.1.2). The bounds are general and hold for any broadcast algorithm over UDG.

Typically the bounds on the size of MCDS for UDG are presented in terms

of an approximation ratio between the cardinality of the Maximal Independent

Set (MIS) and the cardinality of the MCDS (section 4.2) provides more details

and references). In contrast, the bounds shown below are simple, useful for

the purposes of algorithms benchmarks, and are characterized by closed form

expressions depending only on the size of the area enclosing the network and

nodes’ transmission radius, R. This is useful for high density networks since

computing the exact size of MCDS is NP-hard problem ([139]), which of course

is intractable for large number of nodes. The running of algorithms (be they ef-

ficient) finding constant factor approximations either to MIS or MCDS for every

graph instance may neither be feasible nor required.

Let the minimum number of nodes transmitting a broadcast message (equiv-

alently number of transmissions) be �min the number of nodes in the network be

N = |S |, the area enclosing the network be A, its size be a constant |A|, the set

of all points in A covered by transmission of node i be ⇧i, and µ = |MCDS |. As

noted in section 4.1.3, �min = µ.

Let the areaA be rectangular. As N ! 1, with high probability one can find

and pick a node at any desired point inA. Given graph topology ⇤(S ), the goal
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is to pick a set of nodes X positioned so that

i
S

i2X ⇧i coversA entirely;

ii
T

i2X ⇧i is minimized (i.e. the overlap between transmissions is minimal).

iii for any two nodes i and j in X, i and j can communicate: 9 a path of nodes

entirely in X connecting i and j.

Let �(⇤(S )) be the conjunction of i), ii), and iii) given topology ⇤(S ).

D.1 Lower Bound on the Number of Transmissions

As N ! 1, �(⇤(S )) yields a recast of the MCDS problem with solution the set X

in the context of a bounded areaA and UDGs. Namely, |X| = �min.

Now, let ⇧i = Di where Di are identical disks with radius R (i.e. all nodes

in the network have the same transmission range). Under the constraint of

�(⇤(S )), let |XD| = |X| = �min. It is easy to check that utilizing circular disks Di

to satisfy i) of �(⇤(S )) would introduce substantial overlaps between the disks

covering area A. Instead, suppose each of the N disks Di is approximated with

a hexagon Hi with side R and centered at i. That is, under the constraint of

�(⇤(S )), let ⇧i = Hi and let |XH | = |X| in this case. The plane is readily tessel-

lated by hexagons thus avoiding the overlaps needed to satisfy i). In essence,

�min = |XD| > |XH | as long as a construction is provided so that ii) and iii) are also

satisfied, given ⇧i = Hi.

Consider the Linear Hexagon Packing (LHP) construction as described in fig.

D.1. A node from S is picked to be in X if it is at a centroid of a hexagon in the
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LHP. The LHP results from arranging hexagons in multiple lines. In each line,

every two adjacent hexagons share only one common point. A node needs to be

picked at every such point so that all nodes covered in each line of hexagons can

communicate, partially satisfying iii) of �(⇤(S )), with least possible resulting

overlap between hexagons, satisfying ii) of �(⇤(S )). It is easy to check that

now only 2

3

of each hexagon’s area is covered twice. Yet, at this point nodes

covered in line x can communicate only with other nodes covered in x. Placing

an additional hexagon for every two adjacent lines is sufficient so that all N

nodes communicate (and ii), iii) of�(⇤(S )) are satisfied as well). Notice that i) of

�(⇤(S )) is still satisfied by the LHP construction at this point. Suppose the area

A is a square of side d and let q =
p|A|

R (assuming without loss of generality d
R is

an integer). Asymptotically then, employing LHP, accounting for the 2

3

overlap

and the additional connecting hexagons, one obtains

�min > k = |XH | =
⇣

q2 + q �
p

3

⌘

/
p

3 (D.1)

D.2 Upper Bound on the Number of Transmissions

Definition D.1. A reasonable broadcast algorithm generates at most K(q) trans-

missions.

Notice that K(q) is independent on the network density; that is, a reasonable

algorithm scales as the number of nodes in A increases. For instance, flooding

is not a reasonable broadcast algorithm by Definition (D.1) since the number of

transmissions is proportional to the number of nodes in the network. Notice

that a trivial upper bound on the number of retransmissions of all broadcast al-

gorithms (including flooding) could be N: the number of nodes in the network.
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Step 1: Starting from the top of A, arrange a line of hexagons 
from left to right as shown above. (No overlaps at this step) 

Step 2: Connect the hexagons from Step 1 with an additional 
line of hexagons: translation of the first line R distance away 
to the right. (Overlaps 2/3 of the already covered area.) 

Step 3: Repeat each line of hexagons immediately 
underneath the previous line, until the area A is covered 
completely (aside from edge effects). 
 & 
Step 4: There is no connection between separate lines. After 
Step 3. Therefore, connect the lines with a column of 
hexagons (as shown in blue). 

Figure D.1: Construction of the Linear Hexagon Packing
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What is the value of K(q)? To answer this, one can attempt to construct the worst

case topology which maximizes the size of the minimum connected dominating

set.

Suppose one can position the nodes in the network at will. Then, a topology

can be constructed that maximizes the minimum needed number of nodes, N,

whose transmission disks would cover the entire network area and result in a

connected graph. That is, given rectangular area A and a number of nodes N

(not necessarily infinite), one seeks graph with topology, ⇤(S ) such that

�min = max|X| (D.2)

where as before X is the set of nodes picked for transmission while �(⇤(S )) is

satisfied; ⇧i = Di here. Notice that the following properties hold given �min and

X satisfy (D.2). First, |X| = N � 1 (the last covered, N-th, node is not picked to

transmit); second, it is guaranteed that the addition of new nodes in the network

area would not require additional transmissions, since every new node would

be positioned in area already covered by one of the N � 1 nodes in X; and third,

if N is only dependent on A’s dimensions and R, then N � 1 is equal to K(q) by

Definition (D.1).

In the previous section, linear arrangement of hexagons was employed to

construct an approximation of the lower bound on the number of transmissions.

Here, to construct ⇤(S ) a different hexagons’ property is utilized.

In 1940, L. Fejes Tóth [191] proved that the densest packing of circles (or any

collection of other shapes given each shape encloses the same surface area) in

the plane is obtained by the honeycomb hexagonal lattice.

Suppose the plane is tessellated by hexagons. Then, the honeycomb circle

194



!

Figure D.2: Honeycomb-based topology: nodes are placed at the vertices
and centers of tessellating hexagons of side r

p
3.

packing requires that each packed circle is centered at the centroid of a tessel-

lating hexagon. The largest number of packed circles results from Tóth’s result.

Figure D.2 demonstrates the union of 7 such circle packings (the center of each

circle in the union of packings is represented by a node in fig. D.2). Only one of

the underlying 7 honeycomb lattices (dashed line) is shown in fig. D.2 for clar-

ity. Again, here is is assumed, without loss of generality, that the rectangular

area is a square with side d and |A| = d2; the radius of a circle is equal to the

transmission radius R, but the side of a tessellating hexagon this time is equal to

3

p
R.

Suppose each node in fig. D.2 is replaced by a pair of nodes separated by

distance ✏, where ✏ ! 0.

Consider the transmissions’ row in fig. D.3. The removal of any node from

the row would disconnect the graph. Note that at this point, nodes in row x of
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Figure D.3: Removal of any node from pairs a through j would render
the communication between nodes in the broadcast row im-
possible. Note that the nodes from pairs A through J are not
covered by the transmissions of nodes in pairs a though j.

the hexagonal topology are not connected to nodes in rows other than x (i.e.,

the rows form connected components in the graph). To connect the rows into

single connected component, additional nodes need to be placed. As above, one

would like to maximize the minimum number of connecting nodes needed.

Figure D.4 demonstrates the final graph topology ⇤(S ) including the addi-

tional connecting pairs of nodes (in green). Note that eliminating any node’s

transmission (except of the last covered node) would cause disconnections in

the graph. Hence, N � 1 nodes need to transmit so that condition iii) of �(⇤(S ))

is satisfied; thus indeed |X| = N � 1. Given N � 1 transmitting nodes i) and ii)

of �(⇤(S )) are also satisfied; ii) is satisfied since due to symmetry, one cannot

select a different subset X of the N nodes, such that
T

i2X ⇧i is less.

By construction, ⇤(S ) maximizes the minimum number of nodes needed

whose transmission disks would cover the entire network area and result in

connected graph. Initially there are R�1 pairs per row; adding the nodes needed

to connect every two rows yields R + 1 pairs of nodes per row. Since the rows

are distance R from one another, there are R � 1 rows. Thus, at most

�min = |X| = N � 1 = 2(q + 1)(q � 1) � 1 = 2(q2 � 1) � 1 (D.3)

transmissions are needed for network coverage. Hence, |X| is independent of

the network density. By Definition (D.1), K(q) = |X| = �min, providing an upper
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D"

S
a"

Figure D.4: Nodes in green connect broadcast rows so that all N nodes
communicate. Broadcast starting from node S proceeds in a
“zig-zag” fashion until node D is reached. All N nodes are re-
quired to transmit: |MCS D|=N. Removal of any node would
cause disconnection. The network area (black rectangle) is
completely covered by the transmissions.

bound on the number of needed transmissions by any reasonable algorithm to

cover the network. K is also the lowest number of transmissions any algorithm

can guarantee given a network area with dimensions d ⇥ d and transmission

radius of R. In contrast, the lowest number of transmissions any algorithm can

ever achieve as the density of the network grows to infinity is approximated by

(D.1).
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