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Abstract

Consider a stationary, pth order autoregression {X,} satisfying

P
Xn =Y 6iXn i+ Zn, n=0,%1,42,...
i=1
whose innovation sequence {Z,, } is iid with regularly varying tail probabilities of index —«. From
observations X1,...,X,, one may estimate o' by applying Hill’s estimator to X1,...,X,.
Alternatively, a second procedure is to use Xy, ..., X, to get estimates (;31, ceny qu of the autore-
gressive coefficients and then to estimate the residuals by

P
Zt(n):Xt_Z¢iXt—ia t=p+1,...,n
i=1
and then to apply Hill’s estimator to the estimated residuals. We show that from the point of
asymptotic variance, the second procedure is superior.

1 Introduction.

Sets of data displaying large values with high probabilities are commonly encountered in fields such
as finance, hydrology, reliability and teletraffic engineering. For these fields estimating the tail
probability P(X > x) of a random variable X for large = has serious practical implications. Often
the estimation procedures are based on the semi-parametric assumption of regular variation for
the tail of the marginal distribution. Then the index of variation has to be estimated based on a
sequence X1, Xg, ..., X, of observations. A well studied estimator of the reciprocal of the index,
Hill’s estimator, is known to be consistent and under reasonable conditions also asymptotically
normal for iid samples. (See Hall (1982), Mason (1982, 1988), Mason and Turova (1994), de
Haan and Resnick (1996), Geluk et al (1996), Davis and Resnick (1984), Hausler and Teugels
(1985), Resnick and Stdrica (1996).) However, since many real life applications provide one with
dependent, stationary data rather then iid data, it is important to understand the behavior of Hill’s
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estimator under more general assumptions such as stationarity of the observed sequence or, even
more generally, only for a common marginal distribution. Several recent papers (Hsing (1991),
Rootzen et al. (1990), Rootzen (1995)) support the belief that Hill’s estimator performs well even
under these weaker assumptions.

Resnick and Stdrica (1995) proved the consistency of Hill’s estimator for an infinite order moving
average sequence whose marginal distribution is regularly varying. They also considered in detail
the special case when the observations {X,,,n > 0} come from a p-th order autoregressive process
whose residuals have regularly varying tail probabilities of index -a. Since both the stationary
sequence {X,,} and the residuals have distributions with regularly varying tails of index -a, for

estimating a~! one could either

1. apply Hill’s estimator to the observed time series Xy, X5,..., X, or

2. assuming the order of the autoregression p is known, fit coefficients of the autoregression and
use this to estimate residuals. Then estimate o by applying Hill’s estimator to the estimated
residuals.

(Methods of estimating autoregressive coefficients in the heavy tailed case have been suggested by
Davis and Resnick (1985), Feigin and Resnick (1992, 1993); Mikosch, Gadrich, Klippelberg and
Adler (1993); Davis, Knight and Liu (1992).) Resnick and Stédricd (1995) show that both methods
are consistent.

The main goal of this paper is to compare efficiencies of the two methods of estimation. We
prove under quite general assumptions on the innovations of the AR—process and on the asymp-
totic behavior of the estimators for the coeflicients of the autoregression that the second method
based on estimated residuals, is a more efficient procedure. The asymptotic variance of the Hill
estimator is always smaller when the second method is used. An important conclusion is that the
asymptotic variance of the Hill estimator applied to the estimated residuals does not depend on the
coeflicients of the AR process and is actually equal to the asymptotic variance of the Hill estimator
for independent data.

We now give some basic notations and assumptions. Let {X, X;,¢ = 0,41, +2,...} be a sequence
of dependent random variables having the same marginal distribution Fx satisfying (z — o0)

Fx(z):=1-Fx(z)~pz~*Li(z), Fx(—z)~ qz *Li() (1.1)

where @ > 0, p,g > 0, p+ ¢ = 1 and Ly is a slowly varying function. The distribution of | X | will
be denoted by Fx|. Note that (1.1) implies

Fix|(z) = Fx(z) 4+ Fx(—2) ~ 2% Ly(x)

(we also write F]X| € RV_,). We are interested in estimating o based on observing X7, X5, ..., X,.
Note that by setting p = 1, we could specialize (1.1) to the one tail case appropriate to positive
variables.

Set
Fx(y) :=inf{o: Fxe) >y}, 0<y<1
and ) 1
bix|(t) = (1_7F|X|) ()= Fx(1- 1) t>1. (1.2)



To simplify notation, b will always stand for b|x.
For 1 < < m, write | X|(; for the ith largest value of [X1],|X2],...,|X,[. With this notation,
Hill’s estimator based on the k largest order statistics (Hill (1975)) is defined as

x| _ 1 X3y
H E log 1.3
kT g |X| k+1) (1.3)

Asymptotic properties of H| | have been studied under assumptions which include that k = k(n)
is a function of n such that n/k — 00 as m — 0.
It is useful to define the tail empirical measure which is going to play a key role. For z € R and

A C R define
lifz e A
€(4) = {O,if z € A°.

Define the tail empirical measure associated to the sequence of random variable {|X,|,n € N} as

Vix)n() : kZﬂXVbn/k)() (1.4)

=1

which is considered as a random element of M, ((0,00]), the space of Radon measures on the
punctured set (0,00]. The tail empirical process is defined as a stochastic process on (0, 00) by

(B ) = vix (9, ]),0 < y < o0} (1.5)

In Section 2 we discuss the asymptotic behavior of the Hill estimator applied to MA(cc) pro-
cesses of the form

X, = ZC]‘Zn_]‘, —o0o < n < oo, (1.6)

where {Zy,k = 0,41, +2,...} areiid with a common distribution G satisfying the analogue of (1.1).
Following the method of Rootzen, Leadbetter and de Haan (1990), we discuss when {X,,} satisfies
a strong mixing condition and apply one of their results to the infinite moving average. General
sufficient conditions on the density of the iid innovations {Z;} guaranteeing that the sequence
{X,} satisfies the needed strong mixing condition are known (see for example Gorodetskii (1977)
or Withers (1981)). The special dependence structure of the infinite moving average process (1.6)
allows for derivation of the asymptotic variance of the estimator in terms of the coefficients {c;}
of the infinite order moving average MA(oc) given in (1.6). Section 2 also provides some evidence
that the main result in Section 4 of Rootzen, Leadbetter and de Haan (1990) is, in fact, versatile
and useful although at first glance their statement seems plagued by restrictive conditions. In
particular, our result applies to a stationary, autoregressive process of the form

p
=Y ¢iXn_it+Zn, n=0,+1,42,... (1.7)
=1

since such a process (under proper assumptions) has a causal representation of the form (1.6) (cf.
Brockwell and Davis (1991)).



Section 3 assumes that {X,} is an AR(p) process defined by the p-th order autoregression
1.7). Let ¢ ") _ A(n), ey 3m) ,m > 1 be a given set of consistent estimators for the coefficients
1 (2 g

of the autoregression (1.7), where (z)(n) is based on observing Xi,...,X,. An alternative method
of estimating a for the AR-process (1.7) is to apply Hill’s estimator to the estimated residuals

ZA;T;)I, ey Zr(ln) defined as

P
Zt(n) = Xt—z¢§n)Xt_j, t=p+1,...,n. (1.8)
j=1

To derive the asymptotic behavior of Hill’s estimator applied to the vector {Zt(n),p+ 1<t<n}
we make the standing assumption that the estimators of the coefficients of the autoregression have
an asymptotic law and that they converge at a certain rate d(n); that is,

d 3 (
(n)($
where d(n) — oo and S is a non-degenerate, proper random vector. This assumption is satisfied
by both the Yule Walker estimates (Davis and Resnick (1986)) and the linear programming esti-

mators introduced in Feigin and Resnick (1994). See also Mikosch et al (1995) and Davis et al
(1992). Section 3 uses a tail empirical measure approach: associate the tail empirical process to the

Vog)=s

sequence of estimated residuals Z Y .,Z,(ln), show the weak convergence of the normalized
tail empirical process to a process closely related to Brownian motion and deduce from this the
asymptotic behavior of the Hill estimator applied to the estimated residuals. See de Haan and
Resnick (1994, 1996), Resnick and Starica (1996), Mason (1988), Mason and Turova (1994).

For proving asymptotic normality of the Hill estimator, a second order regular variation condi-
tion and a restriction on the sequence {k,} is needed. Let H be a distribution on R. Then H:=
1 - H is second order (—a, p) regularly varying at oo (written F € 2RV (—a, p)) if there exists an

a>0,p<0,KeRand L aslowly varying function such that H(z) = 27 *L(z) € RV_, and

Litz) 4 o

for all z > 0, where g € RV, and g(t) — 0 as t — oo. (See, for example, de Haan and Stadtmiiller
(1994), Geluk and de Haan (1987)). We will say that a distribution H satisfies Condition 1 if
H € 2RV (—a,p) and the slowly varying function L associated to H satisfies (1.9).

The function g appearing in (1.9) can be used to further restrict the sequence k¥ = k(n) used
in the definition of the Hill estimator. In conjunction with Condition 1, we say the sequence k(n)
satisfies Condition 2 if "

\/Eg(bH(E)) =0 (1.10)

for n — oo where by (n/k) corresponds to the cdf H and is defined like in (1.2).

Condition 2 has been used by many authors. See for example Hall (1982), Hausler and Teugels
(1985), Dekkers and de Haan (1993), Hsing (1991).

It will be assumed throughout that the following hold:



Condition A: {X,X;,i = 0,+1,+2,...} is a sequence of dependent random variables having
the same marginal distribution Fx satisfying

Fx(z) ~pz~*Li(z), Fx(—z)~ qz %Li(x) (1.11)
where a > 0, p,¢ > 0, p+ ¢ =1 and L; is a slowly varying function so that (1.11) implies
F]M(x) = Fx(z)+ Fx(~2) ~ 27 Ly(2).

The quantile function of [X|is defined as b(t) := (1/Fjx)) (1), t > 1.
Condition B: {Z;,i = 0,+1,4+2,...} is a sequence of iid random variables with the common
distribution G where

G(z) ~rz~%Ly(z), G(—z)~ sz~ *Ly(x) (1.12)

with @ > 0,7,5> 0,74+ s =1 and L; a slowly varying function. Note that (1.12) implies
Giz|(z) == G(z) 4+ G(—z) ~ 2~ “L(z).

The quantile function of |Z| is defined as b(t) := bjz(t) = (1/G)z) (1), ¢t > 1.

2 Asymptotics of Hill’s estimator for an infinite order moving
average process.

In this section we discuss the asymptotic behavior of the Hill estimator applied to the absolute
value of an infinite moving average M A(oo) process of the form

o)
X, = ZC]‘Zn_]‘, —o0o < n < oo, (2.1)
7=0

where Z;, are iid and satisfy Condition B. Our approach follows Rootzen, Leadbetter and de Haan’s
(1990) Theorem 4.3 which derives Hill estimator asymptotics under a strong mixing assumption
on a stationary sequence {X,}. General conditions for an infinite linear combination like (2.1) to
satisfy the strong mixing conditions of their Theorem 4.3 are available (see for example Gorodetskii
(1977), Withers (1981)). The special dependence structure of the infinite moving average allows us
to obtain the expression of the asymptotic variance of the estimator as a function of the coefficients
¢; in (2.1). Our Section 2 is also related to Hsing (1991) and our Proposition 2.1 extends and
clarifies Hsing’s Theorem 4.5.

Denote ¢t V 0 := t* and suppose that the sequence {c;} € R*™ appearing in (2.1) contains at
least one non-zero element and that there exists A > 0 and » > 1 such that

lej| < Au™?, j €N. (2.2)

Condition (2.2) holds for example if one assumes there exists |zg| > 1 such that

> .
Zqzj < oo, |z <20, (2.3)
=0



which is the case for causal autoregressive processes defined by (1.7). We also assume

0< > e’ < o0 (2.4)
J=0
for 0 < é < @ A1 which implies (cf. Datta and McCormick (1995), Lemma 5.2)
> leillZ;] < oo
J=0
and
P X[ >2) &
lim —————= = ;] 2.5

so that | X4 also has regularly varying tail probabilities. Next, assume that

o\ |exts| V ekl
S5 lel® Alejpr]* log (C’“ﬂi’“) < o0, (2.6)
s ki) A ekl
a mild condition in view of (1.7), and we also suppose that Condition 1 and Condition 2 hold
for Fix|, the cdf of |[X;|. For a finite moving average of positive random variables with positive
coefficients, it is enough to suppose Condition 1 holds for G since by Geluk et al (1995) Theorem
3.2, this implies Condition 1 for the distribution of the finite moving average.
Before stating our result we will prove the following lemma.

Lemma 2.1 Assume {Z;} satisfies Condition B and (2.6) holds and let {r,} be a sequence such
that r, = o(n/k). Then
(a)

D521 2okeo lek]®a ™ Alejpk|“y ™

n & )
=2 P(1X1] > b(n/k)z,| X 41| > b(n/k)y) — C— ; (2.7)
k j=1 Ej:() |Ck|
locally uniformly in z and y on (0, 00),
(b)
NS [0 [ dz dy
23 [T [T RU > /by Xl > b/ k) L (2.8)
k o h z oy
L 125 ko lerl® Alejrl®(2 + alog(leri| V el /Iek+i] A lex])
o E;io |ex|* ’
(c)
n <N [ dy
£ [T PUX] > bk | Xl > b/ )
7=1
n N [ dy
420 [ PUKI| > BnE). Xl > bn/R)e) T (29)
7=1
C L 2R ko ekl Alejr]®(2 + alog(leri| V ekl /ler+s] A ler])
a? E;io |ex|* ’

locally uniformly in z on (0,00).



Proof: To prove (a) we fix z > 0, y > 0. Lemma 5.1 and Lemma 5.2 of Datta and McCormick
(1995) yield for any 7 € Nand z > 0,y > 0

Doheo lek|* 2™ A Jejqr|*y ™
E?io |ex |

We intend to bound 1;¢,, (n/k)P(|X1| > b(n/k)z,|X ;41| > b(n/k)y) for all n bigger than some ng
and for all 7 > jo(z,y) by a sequence s,(j) which satisfies

—P(|X1| > b(n/k)z,| X 41| > b(n/k)y) — (2.10)

[oe)

nILI%OZSn(]) = anl—»I%o sn(7). (2.11)
7=1

=1

Due to (2.10) the result follows by a commonly used variant of Fatou’s lemma sometimes called
Pratt’s lemma (Pratt (1960)).
The form of the bounding sequence s,(j) is obtained as follows. For any j

P(|X1I>b(n/k) Xl > b(n/E)y)

< P( E|Cz||Z1 il >b(nfk)z, ) lcillZjpa-il > b(n/k)y)
=0 =0
[e%s] -1
P> Jeill Z1-i] > b(n/k)ﬂﬁ, |cil| Zj41-i| > b(n/k)y/2)
=0 =0
Z|Cz||Z1 z| > b Tb/k’ Z|Cl||Z]+1 l| > b(’fb/k‘)y/2)
i=j
7—1
E|Q||Z1 z| > b(n/k Z|Cz||Z]+1 z| > b(n/k)y/Z)
=0
Z|Cl||ZI il > b(n/k)z E|C,+]||Z1 il > b(n/k)y/2)
=0
= j,n‘|’II],n-

We are interested in a bound on (n/k)(I;, + II;,). Let € > 0 such that o — e > 0. Then there
exists an mq, independent of j such that for all n > nq

—1
n

Z lcill Z1-i] > b(n/k)z ZlCzHZﬁ-l il > b(n/k)y/2)
k:
E lcill Z1—i| > b(n/k)z EIC:IIZl il > b(n/k)y/2) (2.12)

<(1+ €)(@//2)_°“+€1’(Z il Z1—i] > b(n/k)2),

=0

for a constant Ky > 0 where the last inequality holds by Potter’s bound (Bingham et al (1987)).



Set Y := Y%, u"*|Z,_;|. For our choice of ¢ there exist ny such that for n > ny and all j € N

n
(n/k)]IijE Z|C,||Z1 i| > b(n/k)z E |civjl|Z1-i] > b(n/k)y/2)
=0
n —1—
E Alzgu "Zi_i| > b(n/k)z, Agu INZy_i] > b(n)k)y/2)
n > —3 —q ad —3
:EP(Agu | Z1-i] > b(n/k)z, Au ]gu |Z1_:] > b(n/k)y/2) (2.13)

< %P(Y > A7(n/k)2, Y > A" wib(n/k)y/2) = %P(Y > A7b(n/k)(z V (wWy/2)))
< M(a v (uy/2))"+

where the last step results from Potter’s inequality (Bingham et al (1987)). For j such that
< wy/2,n>mny Ang and Ky = Ky V M2%° it is then true that

ZP([Xa| > b(n/k), | X | > b(n/k)y) = (n/k)(Ljn + I1jn)

< Kyy™te (P(Z leil| Z1—i] > b(n/k)z)+ (u’)‘““) . (2.14)

=0
Define
sn(7) 1= Koljey,y™ " ( ZICZIIZl il > b(n/k)x) + (v!)” °‘+€)-

Due to the fact that r,, = o(n/k), (2.11) follows since

Jim Y sn(s)= lim Koy~ (mP(Z leil| Zi-il > b(n/k)z) + " (w!)" “*f)

2 —a+e
_x,"v/?)
1— y—ote

[es)
E 1m Sn(7
:1

The result follows by Pratt’s (1960) lemma. The convergence in (a) is locally uniform in z and y
since the left hand side is a sequence of functions monotone in x and y and the limit is a continuous
function. This ends the proof of (a).

The proof of (b) follows the same path. Using Lemma 5.1 of Datta and McCormick (1995),
(2.12) and (2.13) one can quickly prove that

/ /OO P(|Xq] > b(n/k)z,|X;41| > b(n/k)y )Cir C;y

L Rz lerl® Afejar]*(2+ alog(lerss| V ekl /ler+s| Alex]))
&2 2:] 0|Ck|a




From (2.12) and (2.13) it follows that
dzx dy
L [ [ FRUX] > bnb)e. Xl > bln /) 2
n s dy
Slj<rn/ Z|Cz||Z1 il > b(n/k)z /1 EP > leillZi—il > b(n/k)y/2 "
=0
dz d
-HW/ / (z Vv (uly)2)) o+ = ’ y)

= L[ P <Z|c,'||Z1_,'| > b(n/k)x) ?/1 =P
s

+ ((consty) + (consty)j)u™?@2)) .=

(Z il Z1 -] > b(n/k)y/Z) (2

=0

).
(1)

Since (2.11) holds for the sequence sy () the conclusion of (b) follows. The proof for claim (c) is
similar. This ends the proof of the lemma. O

Remark 2.1: Note that the conclusions of the lemma imply that

n 23 3 g erl® Al vkl

i=1 >0 lex|®

S RIRW
mVar (; (log b(n/k)) ) (2.16)

L2 (1+ D021 2oreo lek]® A |Cj+k|°‘(2+0410g(|0k+j|V|Ck|/|0k+j|/\|ck|)))
2 9

;io |ek|*
and
n Tn Tn |Xz| +
RCOV (; €|Xg|/b(n/k)(‘r7oo]7; <log b(n/k‘)) ) (2.17)

—

7 - D521 ko lek|® Alejyr]®(2 + alog(fertj| V [ekl/lexsj| Alek]))
o E;io|ck|a

Let us quickly sketch the reasoning behind (2.15). Since

Var (z €1l (2 oo1) = ru(P(Xal/B(n/) > @) = P(Xi]/b(n/}) > o))

rn—1

+2 Z P(1X1] > b(n/k)z, | Xja| > b(n/k)x) — P(1X1|/b(n/k) > 2)*)

it follows by Lemma 2.1, that one only has to check that

1 rn—1

Tn

33 PUXa] > b(n/k), [ Xj4a] > b(n/k)z) — 0, (2.18)

j:



and

iﬂi P(IX:|/b(n/k) > 2)* = 0 (2.19)

when n — co. By (2.14), for large n,

rp—1
> iz ZP(|X1| > b(n/k)z,| X ;4| > b(n/k)y)
J=Jo
Tn(tn — 1) Tl
< ?sz—aﬁ Z|C,||Z1 i| > b(n/k)z)+ Z J( u] Tote )
Then (2.18) leads to
rn—1 n
— Z iz PUXal > b(n/k), | Xj4a] > b(n/k)z)
=
. rpn—1
< Ix 2yt P( Z|c,||Z1 il > b(n/k)x)+ Ky y_a+€ Z j(u?)=ote
=0 Tn
—0

since r, = o(n/k) and Y22, j(u'y/2)"*** < 0o. To see that (2.19) holds note that

rpn—1

—n Z P(IX:|/b(n/k) > 2)> <

1 (X /b(n/ ) > ) 0

due to the fact that r,k/n — 0.
If one defines

n - X \*
Ap 1= RV&I’ (Z ((10g b(|n/l|<:)> — $€|X,'|/b(n/k)(17 oo])) (2.20)

=1
then (2.15), (2.16) and (2.17) imply that
E;il k=0 ek A |Cj+k|a)
, n— 00.

;)io|‘3k|a

A o & (1 +2 (2.21)
Q

Write B;; for the o-field o{X} : ¢ < k < j} generated by X;, X;14,...,X; and

a(n) = sup{|P(ANB) - P(A)P(B)|: A€ B1x,B € Bitnoo, k> 1}.

Then {X,} will be called a(n)-strongly mixing if a(n) — 0 as n — oc.

We now verify the conditions of the main result in Section 4 of Rootzen, Leadbetter and de
Haan (1990), Theorem 4.3. The numbers of the references to Rootzen and Leadbetter (1990) will
carry an asterix (for example (2.5)*) and the ones referring to the current paper will be plain. We
will apply Theorem 4.3 to the sequence {log|X;|}.

10
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We start by verifying the Basic Assumptions of Section 2* of Rootzen et al (1990). For ()%,
the strong mixing assumption, to hold, assume that G has a density G’ and that F has a density
F’ which satisfies the Von Mises condition

tF' (1)
im0 F(1)

= a. (2.22)

(It would be of interest to know when a Von Mises condition on G implies on for F.) We require
that the density G be Lq-Lipschitz

/ G'(z) - G'(z + y)ldz < Cy, y >0, (2.23)
0

and there exists d < 1 such that
E(Z{) < . (2.24)

By Gorodetskii (1977) these assumptions and (2.2) guarantee that {X,} is a(n)-strongly mixing.
Moreover, since ¢; = O(u™7) for some u > 1, there exists 0 < A < 1 such that a(n) = O(u=*")
(Withers (1981), Corollary 4). This takes care of the strong mixing requirements of condition (7)*
of the Basic Assumptions.

Suppose we are given a sequence 7, — oo (which will be more fully specified later) satisfying
also r,/n — 0. Choose {l,,} so that l,,/n — 0, l,,/r, — 0 and

i (u_/\l" + l—n> — 0.
T n

This assures that (¢7)* is satisfied. Choose ¢,, = k and u,, = log b(n/k). This choice guarantees that
(#47)* holds.

We have to check now the conditions of Theorem 3.5 of Rootzen, Leadbetter and de Haan
(1990) for ¢ (z) = 2150, ¥2(z) = 1z>0. It is easy to see that (3.2)* holds for the functions 1y, 2.
A sufficient condition for (2.5)* to hold is (2.1)* (their Lemma 2.3); that is, the sequence r,, should

satisfy

k
0, n— oo (2.25)
n

Condition (3.10)* asks for the existence of a sequence w,, — oo for which
TnWwy exp(—(a — €)w,) = 0, n — (2.26)

for some € < o A 1. Condition (3.11)* becomes

TnWp

1/2

— 0, n— oo. (2.27)

We show next that there is always a choice of sequences r,, — oo, w, — oo such that (2.25),
(2.26) and (2.27) hold, provided lim sup,,_ ., n/k*/? < oo or iminf, .., n/k%/? > 0. First assume
that

lim sup n/k%? < . (2.28)

n—oo

11



Then choose § > 0 and 0 < ¢ < 1 such that 6§ < € /(1 —€) and set r, = (n/k)'™ — oo and
w, = r5 — co. Then conditions (2.25) and (2.26) hold trivially and (2.27) becomes

Trlz+5 n n 6(1—6,)—6/
kuz::z§5<z> -0

by the choice of € and é and (2.28).
Assume now that

lim inf n/k%/% > 0 (2.29)
and set 12
Tn = z(a — €)k — 00, Wp = ]_ng — 0.

log? k& 2(a—€)

Condition (2.25) becomes
krn _ k3?2 2(a — €)
n n log?k

due to (2.29). Conditions (2.26) and (2.27) are easy to check. Assumptions (2.28) and (2.29) are
the only new standing restrictions we impose on the sequence k.

The conditions on .
n Xl
O 2(1 |Xi )
T o \E b)) )

n L
/\22) = mvar (Z €11 /b /k) (15 OO])

=1

— 0

and

n ' X; \t
Afﬁﬁ%zam$%>‘5wwwmw

=1
are satisfied due to Remark 2.1. To check condition (4.22)* denote z, = logv,. The condition then
reads

n o
o var (E(legl/b(n/k)(lv 00] = €1x;1/b(n/k) (Vn/b(1/F), OO])) — 0 (2.30)
n =1

whenever vk log(v,/b(n/k)) — 0. The convergence in (2.30) holds due again to Remark 2.1.
We now state our conclusion.

Proposition 2.1 Let {X;} be the infinite order moving average (2.1) and assume (2.22), (2.23)
and (2.24). If (2.28) or (2.29) hold, as n — oo and k/n — 0 then

R 1 X *n | X1] dz
VEEZ e N _/ _P< >33>— = N(0,2), 2.31
k ; i X1y Sk \b(n/k) m (0,4) (2.31)

where

1 2L YA |ejipl®
A (1 + 22]—1 Zk_o |Ck| |C]+k| ) ‘ (2'32)

T a2 E;io |ex|*
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If Condition I and Condition II also hold for Fx| then

zk)o Ko L) L v, (2.33)
|X k+1) (8% ’
In particular, our result applies to an autoregressive process of the form
P
i=1

where the innovations Z; satisfy the conditions of Proposition 2.1, since such a process (under proper
assumptions) has a causal representation of the form (1.6) (cf. Brockwell and Davis (1991)).

For the case when X, is a finite moving average, the a(n)-mixing condition is trivially satisfied
and there is no need to assume (2.22), (2.23) and (2.24). Moreover in this case it is enough to ask
Condition I to hold for Fz (Geluk, de Haan, Resnick and Staricd (1995)). The case of the finite
moving average was covered by Proposition 4.5 of Hsing (1991).

The conditions of Proposition 2.1 are not perhaps as clean as desirable but the main point
of the result is that for autoregressions, the variance given in (2.32) is larger than the asymptotic
variance obtained when applying the Hill estimator to the estimated residuals. Thus, the procedure
of applying the Hill estimator directly to an autoregressive process is inferior to the procedure of
first estimating autoregressive coefficients and then estimating o using estimated residuals.

3 Asymptotics of Hill’s estimator for a stationary AR(p) process.

In this section, we assume that {X,,,—0co < n < oo} is an AR(p) process defined by the p-th order
autoregression:

p
X, =Y 6iXei+ 2y, t=0,41,42, ... (3.1)
=1

We assume that the iid innovations {Z,} satisty Condition B and suppose
p .
B(z)=1-Y ¢iz' £0, |2 <1 (3.2)
i=1

so that (Brockwell and Davis, (1991)) the autoregression (3.1) exists and has a stationary solution
of the form

X, = ZC]‘Zn_]‘, —x<n<x (3.3)
where
z) = Zc]z] = () |z] < 1. (3.4)
J=0
We assume that we have a sequence q?)(n) = (égn), .. .,&I(Qn)),n > 1 of consistent estimators for
the coefficients of the autoregression such that:
5.(n)
dn)(¢ " —¢)= S (3.5)



. 5 (n) . .
where d(n) — oo, S is a non-degenerate random vector and ¢ is based on observing X,..., X,.

For this sequence of estimators, the estimated residuals Zt(n) are defined by (1.8) so that

P

Z - 2" =38 — 6i) X (3.6)
=1
The purpose of this section is to show that the Hill estimator applied to |Zl(n)|, |Z£n)|7 e, |Zr(ln)|

yields a consistent estimator of a=!. Following the line of proof in Resnick and Starici (1996) and
de Haan and Resnick (1996), we will show that the normalized empirical process associated with the

sequence |Zl(n)|7 |Z£n)|7 cee |Zr(ln)| converges to a process closely related to a Brownian motion. This
is known (Resnick and Staricd (1996) and de Haan and Resnick (1996)) to imply the asymptotic
normality of Hill’s estimator.

We recall Proposition 2.1 of Resnick and Staricd (1996) since it is central to our proof.

Proposition 3.1 Assume that Condition B holds and G|z satisfies Condition 1 and {k} satisfies
Condition 2. Then, asn — oo, k — oo and k/n — 0,

n

W(y) = Vk (%Z€|Zi|/b(n/k)[y7 oo — @/_a> = W(y™), (3.7)

=1
in D((0, cc]), where {W(t),t > 0} is a standard Brownian motion.

The behavior of the tail empirical process associated with {|Zt(n)|} is given next.

Proposition 3.2 Assume that the hypotheses of Proposition 3.1 hold and there erists a sequence
d(n) — oo and a non-degenerate random variable S such that the coefficient estimators ¢ () satisfy
(8.5). Assume also that the sequence k = k(n) is chosen to satisfy the additional requirement

VE@INVE) _ ) n o o
b(n/k) - (d( ))7 : (3‘8)

Then
1 B B
vk (E ;GIZE”)I/b(n/k)(yv o] -y ) = W(y™) (3.9)
in D((0, 00]), where {W(t),t > 0} is a standard Brownian motion.

Remark 3.1: How restrictive is condition (3.8)7 Since b(t) € RV; 4, if we choose §' > 0 small
then, by Potters inequality (Bingham et al (1987), for n big enough

VEb(n/VE) , E(1/2)(A+1/a+8)
anpingm) < )

Therefore a restriction on k(n) which is sufficient for (3.8) is

!
1+1 6
k’n+ Ja+

“Tr 0. (3.10)
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Suppose ¢2(”) are the Yule-Walker estimators. If EZ? < oo (for instance if a > 2), then
d(n) = n'/? (Brockwell and Davis (1991), page 240) and the sufficient condition (3.10) becomes

k1+1/°‘+5l/n — 0. When a < 2, so that EZ% = oo, the Yule-Walker estimators have an inferior rate
of convergence compared to the linear programming (Feigin and Resnick (1994)) or least gamma
deviation estimators (Davis et al (1992)). When Z,, > 0, the linear programming estimators of
Feigin and Resnick (1994) can be applied and in this case d(n) = b(n) and therefore for any §" > 0

b(n)/nQ/o‘_‘S” — oo and thus eventually

p1+1/ats’ p1+1/ats’
< e
S (14 6" i

Then (3.10) (and hence (3.8)) hold if
gz g

for any 6" > 0.
Proof:
We intend to show that, for a given interval [¢,d] C (0, 00] and a given § > 0

1
P|— sup
k weled)
as n — oo. This together with (3.7) will imply the conclusion of the proposition. To prove (3.11),
decompose the probability

n

D1l (@5 001 = D €150 11y (2]
=1

=1

> 6) —0 (3.11)

1 n
P (_kzse‘[lfd] (Z 1Zil/o(n/k)>,| 27| fo(nf k) <o +Zl UZ71/5(n k) > |7 |/b<n/k)<z]) > ‘5)

1
<P (\/_E o Zl 121 /o(nf k) > 27| fo(n /Ry <a] ~ ‘5/2)

z€[c,d)

1
+P (_kxsel[lpd]zllZ(")l/b(n/kbr \Zilf5(n/ k) <a >6/2)

= Ta+ I(b).
We will concentrate on proving Ia — 0 as n — oo with §/2 replaced by é for typographical ease.

The proof for Ib is similar. Let £, be a sequence of positive numbers tending to 0 at a rate to be
specified later. Then

1 n
fa=F (7@?%2 Y02 ot/ 1) 5 271 o) <] 7 5)

1
<P (7%121[1%2 (<1241 /o (n/K) <1 b2y |27 fo(m iy <a] O 2)

1 n
+P | — sup 1, 5(n) > 6/2)
( E wefed ; [1Z:]/b(n/k)>(1+en)z,| 23 |/b(n/k)<2]
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1
<P <— sup Zlmz /5 (n/K)<(1+en)a] > 5/2)
k zeled i

z€[c,d)

1
- (_k‘ Sup 21|Z [/b(n/k)>(14en)z |Z(")|/I>( Jk)<z >5/2)

:Ia1 —|—Ia2.

Assume that Viac %, — 6/4. We first consider Ia; and have

Ia, < P(— sup Z Loc|Z:\b(n/R)<(14em)e — VE(L = (14 5) %)z ™"

kxe[ d] —
>5/2—\/E sup 71— (1+¢,)7%))
z€[c,d]
1 - — —
< P(—k Sel[lpd] N Loz <(i4enye — VE(L = (14 e,) )z
xr C, i:l

>6/2 = VE(1~ (1+e,)%)c?)

S P (%E Isel[lfd] ;€|Zz|/|7(n/k)(‘r7 (1 + €n)$] — \/E(l — (1 + €n)_a)$_a > 6/4)
=P ( sup |[Wy(z) — Wo((1—¢)z)| > 6/4)

z€[c,d)
—0

where the last inequality holds for n greater then some ng due to the assumption on the rate
of convergence of ¢,. The convergence to 0 of the last expression is a direct consequence of the
convergence in (3.7).

Let us turn now our attention to Ias. Let M be a large constant. For typographical ease,
replace 6/2 by 6 and then

foe =0 (ikfé?fd]i1[|Z=-|/b<n/k>><1+en)w7|Z$“)lfb(”/’ﬂff] - 6)
<P (7 sp leZ =2 fo(nfR)>enz] © 6)
< P(\/%g: [12:=2{"|/b(n/k) >enc] >6)
=7 (ﬁélmn) o 7 =05 Sl s /> dm)enc] 6)
< P(\/Lﬁglmn) DB 85 0, Xics oy ed(myen] > & AR VM ¢j|<M)
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p ~
mV 1657 — 051 = M)

<=

( Zle Xl o8 (e ]>6)+P<d<n> 65— &51 > M)

1

165 — 6,1 > M),

.
ﬂ‘<"8 ?

< 5\F ZlXp+1 il > gp ) (nfk)en | + P(d(n)

7=1

where the last step was taken by applying Chebyshev’s inequality. Let first n — oo and then
M — 0. Due to the fact that £ = k(n) has been chosen such that

d(n(n/k)
VEb(n/VE)

and e, satisfies €, ~ (const)k='/? and since (3.5) holds, it follows that Tay — 0 as n — oo. This
ends the proof of our result. O

The asymptotic normality of the estimator follows after an argument as in Resnick and Starica
(1996). For the sake of completeness we state the result.

Proposition 3.3 Assume the hypotheses of Proposition 3.2 hold. Then the Hill estimator applied
to the estimated residuals satisfies

\/E(H,LZTJ - 1) ( Zl 8 1) = N(0, ). (3.12)
sy @

«

4 Concluding remarks.

As remarked, for autoregressive processes the variance given in (2.32) is larger than the asymptotic
variance obtained when applying the Hill estimator to the estimated residuals, the latter being
the variance obtained when applying the Hill estimator to iid sequences. Thus, the procedure of
applying the Hill estimator directly to an autoregressive process is less efficient than the procedure
of first estimating autoregressive coefficients and then estimating « using estimated residuals.

In practice, when applying the second method of estimation based on estimated residuals, one
tries to choose the set of estimators that have the fastest rate of convergence. If a > 2, the Yule—
Walker estimators converge at rate v/n and in this case §' can be chosen such that 1—|—1/a—|—6/ < 3/2.
So the conclusion of Proposition 3.3 holds if & = k(n) satisfies the constraint k%/2/n — 0. If the
left end point of the distribution of Z is 0 and « < 2 the linear programming estimates converge
faster and it is easy to see that the same condition, i.e. k3/2/n — 0, turns out to be sufficient
since then (14 a)/2 < 3/2. The conclusion is that with a judicious choice of the estimates for the
autoregressive coefficients the asymptotic normality of the Hill estimator applied to the estimated
residuals follows whenever the choice of the sequence k& = k(n) satisfies the additional constraint
k3/2/n — 0.

A comparison between the asymptotic variances in (2.32) and (3.12) clearly shows that for the
case of an AR(p) process the second method based on estimated residuals of estimation of the

17



index of regular variation is a more satisfactory procedure in terms of the asymptotic variance.
This conclusion is confirmed by simulation. We simulated the AR(2) process

Xt - 1.3Xt_1 —0.7Xt_2—|-Zt, = 17
where Z; are iid so that
1 o7 1 o7
P(Zt>ac):§ac ', P(Zt<—;r):§ac Y,z > 1

The AR(2) process is causal and therefore has an MA(oo) representation so that the results of
Sections 2 and 3 are applicable. The coefficients ¢ and ¢, were estimated by the Yule-Walker
method. The results of estimation for two simulation runs are presented, the first one consisting of
700 observations, the second one of 2000 observations.

14
14

12

12

10
10

08
08

06

06
Hill estimate of alpha for the AR process

Hill estimate of alpha for the real residuals
Hill estimate of alpha for Yule-Walker estimated residuals

04
04

o 200 400 600 o 200 400 600 o 200 400 600
order statistics order statistics order statistics

Figure 1

For the first simulation, the estimation based on the AR process {X;} is not very informative.
Estimation based on the estimated residuals comes quite close to the correct answer. Figure 1 gives
Hill estimator plots as a function of the number of order statistics. In each graph, the dotted line
represents the true value of a. The left graph applies the Hill estimator to the absolute values of
the actual residuals. The middle graph applies it to the absolute values of the time series {|X¢|}
and the right graph gives the Hill plot for the absolute values of the estimated residuals {|Zt|}
The estimated coefficients are in this case ¢1 = 1.2896 and qbg = -0.6906.

The results of the estimation for the longer second run are presented in Figure 2. The estimated
coefficients were ¢21 = 1.2998 and <£2 = -0.6996. The second example suggests that by the time the
sample size is large enough for the plot based on the time series to level off, the estimation of the
coefficients tends to be so accurate that the graph displaying the result of the estimation based on
the estimated residuals and the one based on the actual residuals differ very little. Of course, in
practice the graph based on the actual residuals is not available.
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