School of Operations Research and Industrial Engineering
Cornell University
Ithaca, New York 14853-3801

Technical Report No.901

April 1990 (Revised July 1991)

ON THE COMPLEXITY
OF
PREFLOW-PUSH ALGORITHMS
FOR
MAXIMIUM FLOW PROBLEMS

Levent TUNCEL!

1Research supported in part by the Ministry of Education of Turkey through the scholarship program
1416

ON THE COMPLEXITY OF
PREFLOW-PUSH ALGORITHMS FOR
MAXIMUM FLOW PROBLEMS

Levent TUNCEL*

School of Operations Research and Industrial Engineering
Cornell University
Ithaca, NY 14853-3801

July 23, 1991

Abstract

We study the mazimum flow algorithm of Goldberg and Tarjan and show that the
largest-label implementation runs in O(n?\/m) time. We gwve a new proof of this fact.
We compare our proof with the earlier work by Cheriyan and Maheswart who showed that
the largest-label implementation of preflow-push algorithm of Goldberg and Tarjan runs
in O(n?\/m) time when implemented with current edges. Our proof that the number of
non-saturating pushes is O(n%\/m), does not rely on implementing pushes with current

edges, therefore it is true for much larger family of largest-label implementation of the
preflow-push algorithms.

Key Words: Graph Theory, Network Flows, Algorithms, Complexity, Maximum
Flow.

*The work was partially supported by the Ministry of Education of the Republic of Turkey through
the scholarship program 1416.

1 Introduction

Goldberg and Tarjan [GT88] gave a family of algorithms, called preflow-push algo-
rithms, for the maximum flow problem. Goldberg and Tarjan [GT88] also proved that
without using sophisticated data structures, the algorithm runs in O(n3®) time. Us-

ing the dynamic tree data structure enabled them to obtain an O(nmlog (n?/m)) time
bound.

Cheriyan and Maheswari [CM89] showed that the largest-label implementation ac-
tually runs in O(n?y/m) time when the current edges are used. It is reasonable to
believe that the key point in decreasing the number of non-saturating pushes is to push
through the same edge repeatedly until it gets saturated. Here, we give a different
proof that the largest-label algorithm runs in O(n?\/m). We show that the number of
non-saturating pushes is O(n?\/m) even if the algorithm is implemented without using
current edges. In other words, any arbitrary choice of the edge to push through cannot
give a worse bound than O(n?\/m). We note that to the best of our knowledge this is
the best bound proven on the number of non-saturating pushes for any version of the
preflow-push algorithms.

Throughout the paper, we assume that the reader 1s familiar with the maximum
flow algorithm of Goldberg and Tarjan. For a survey on the algorithm see, for instance,
the survey by Goldberg, Tardos, and Tarjan (GTT89].

2 Maximum Flow Problem

Let G = (V, E) be a digraph. Let s and t be two distinguished nodes of G. Node s is
called the source, and node t is called the sink. u(v,w) > 0 is a real-valued capacity

for v,w € V. We assume that u(v,w) = 0 if (v,w) ¢ E. Throughout the paper,
n := |V| and m := |E|.

Definition 2.1. A preflow f is a real-valued function on the node pairs that satisfies
the following constraints:

f(v,w) < u(v,w) V(v,w) € E (capacity constraints)
f(v,w) = — f(w,v) V(v,w) € E (anti-symmetry constraints)
ef(v) = Twev flw,v) 20V v eV — {s,t}.

Definition 2.2. A flow on G is a preflow which also satisfies the following:
es(v) = 0 (How conservation constraints) ¥V v € V — {s,t}.

The value of a flow f is defined as e/(t) and the maximum flow problem is to find
a flow of maximum value from s to t.

[SV)

Definition 2.3. Given a preflow f, the residual capacity of a node pair is defined as
ugp(v,w) = u(v,w) — f(v,w) Yv,we V. The residual graph is Gy = (V, Ey)
where E; = {(v,w) € V x Vl|ug(v,w) > 0}.

Definition 2.4. A distance labelling d for a preflow f is a function from V to the
non-negative integers such that

d(s) =n, d(t) = 0, and d(v) < d(w) +1V (v,w) € Ey.

The generic preflow-push algorithm maintains a preflow f and a distance labelling
function d for the preflow f, and updates f and d by using push and relabel operations.
Now, we give the generic preflow-push maximum flow algorithm:

INITIALIZE:
V (v,w) € E do
begin
f(v,w) :=0;
if v = s then f(v,w) := u(v,w);
if w = s then f(v,w) := —u(w,v);
end
VveVdo
begin
Calculate eg(v)
if v = s then d(v) := n else d(v) := 0;
end

PUSH(v, w):
{push(v,w) is applicable if es(v) > 0, us(v,w) > 0, and d(v) = d(w) + 1.}
begin

§ = min{ey(v), uy(v, w)};

F(vw) = F(v,0) + 6;

f(w,v) := f(w,v) - §;

end

RELABEL(v):
{relabel(v) is applicable if
(i) ef(v) > 0, and
(ii) v ¢ {s,t}
(i) Y w € V either ug(v,w) = 0 or d(w) 2 d(v).}
begin
d(v) := ming, w)eg, {d(w)} +1;
end

MAIN LOOP OF THE ALGORITHM:
while 3 v such that eg(v) > 0 do

select an applicable operation (either push(v,w) or relabel(v)) and apply it
end.

From the description of the generic algorithm it is clear that there are many possible
alternatives for the choice of the next operation to apply, the next edge to push through,
and the next node to relabel. Different implementations use different rules to select
the next node with excess, and there might be different rules to choose the next edge
to push through.

The largest-label preflow-push algorithm selects v in the main algorithm so that
es(v) > 0 and d(v) = Mazyev{d(w)les(w) > 0}. In other words, the largest-label
preflow-push algorithm tries to push the excess away from a node with the largest-label.

Definition 2.5. The push(v,w) operation is called saturating if us(v, w) = 0 after the
push(v, w) operation, and called non-saturating otherwise.

The proofs of the following lemmas (lemma 2.1 - 2.5) can be found in [Go85],
[GT88],and [GTT89):

Lemma 2.1. When the algorithm terminates, the preflow f is a maximum flow.

Lemma 2.2. The number of relabelling operations is at most 2n — 1 per vertex and at
most (2n — 1)(n — 2) < 2n? overall.

Lemma 2.3. The number of saturating pushes is at most nm.

Lemma 2.4. If k is the number of non-saturating pushes throughout the algorithm
then the largest-label preflow-push algorithm can be implemented in O(nm + k) time.

Note that Lemma 2.4 has been proven for the implementation with current edges.
Since we want to prove the same bound for a larger family of implementations, we
should generalize it a little bit more. For instance, it is not difficult to see that any
implementation, that does not spend more than O(nm + k) time over all to find an
edge to push along or to conclude that there are no eligible edges, will satisfy the claim
of the lemma. We will show that the number of non-saturating pushes is O(n?,/m) for
all pushing rules. So, in terms of the bound on the number of pushes, all pushing rules

are covered by our result. We give some examples of natural pushing rules that are
covered by our result:

e (i) Push to the node with minimum excess

e (ii) Push to the node with maximum residual capacity (i.e. push to a node w
such that Y cv us(w,r) is maximized among all eligible neighbors of v)

The first rule is something reasonable to do because it tries to spread the current
excess among its neighbors evenly. The second rule is slightly more involved. It tries to
push to a neighbor which has the best potential (locally) for pushing that excess away.

Definition 2.6. Let dmaz = Mazyev{d(w)les(w) > 0}. We define a phase of the
algorithm as a maximal interval of time during which d.e, remains constant.

Lemma 2.5. The number of phases for the largest-label preflow-push algorithm is at
most 4n?.

Cheriyan and Maheswari [CM89] showed that the largest-label preflow-push algorithm
runs in O(n?./m) time when the current edges are used. Their version is a particular
implementation of the largest-label preflow-push algorithm. After a push(v,w) opera-
tion, if the edge (v, w) is not saturated it becomes the current edge of v. The next time
v is selected for a push operation, if d(v) is still equal to d(w)+1, the algorithm applies
a push(v,w) operation. Using current edges forces the algorithm to push along the
same edge for a given node as long as the edge is not saturated. Intuitively, this imple-
mentation should reduce the number of non-saturating pushes. However, we prove that
even if we do not use current edges, the number of pushes throughout the algorithm is
O(n?/m).

Similar to the definition of Cheriyan and Maheswari [CM89], we define a flow atom

as a flow excess that travels through a sequence of non-saturating pushes without
getting relabelled.

Definition 2.7.

(i) A flow atom is born at node v when a relabel(v) operation is done (and the atom
which was previously at this node dies).

(i) During a saturating push(v,w) operation a flow atom which will travel through
edge (v,w) is born and if es(v) > us(v,w) another flow atom is born at node v (in
either case the atom which was previously at node v dies).

(iii) If w had excess before a push(v,w) operation then after the push operation a
flow atom is born at node w (and the two merged atoms die).

The following lemma can be found in [CM89]. Due to the slight difference in the
definition of a flow atom, we give a proof.

Lemma 2.6. The number of flow atoms born throughout the algorithm is O(nm).

Proof : We consider all cases separately:

(i) The number of flow atoms born when a relabelling is done is at most O(n?) (by
Lemma 2.2).

(ii) The number of flow atoms born by saturating pushes is at most O(nm) (by
Lemma 2.3).

(iii) The number of flow atoms born by merging is at most the sum of the number
of flow atoms born by cases (i) and (ii), because merge decreases the number of alive
flow atoms by one. a

For the proof of the O(n?\/m) time bound for the algorithm without using current
edges, we introduce the concept of future course of a flow atom.

Definition 2.8. The future course of a flow atom is the path consisting of the sequence
of non-saturating pushes that this atom will travel through until it dies.

Lemma 2.7. Suppose that at some time during the algorithm we have eg(v1) > 0 and
es(vz) > 0 (v1 and v, are distinct), then the future courses of the flow atoms at v; and
v, are node-disjoint, except potentially the last node.

Proof : Suppose not. Let the flow atom at v, be ay and the flow atom at v, be ;.
Let w be a common node of the future courses of a; and ;. Without loss of generality,
assume that a; arrived at w first. If we push a; to w when o is there, they both die,
so it is necessary that we push o; away from w before we push a3 to w. Note that the
atoms travel monotone downward, because, push(v,w) applies only if d(v) = d(w) +1
and relabelling kills the atom at the relabelled node. So, when we push ¢; away from

w, a is at a node with a larger label. Therefore, o cannot be pushed away from w.
This is a contradiction. o

Theorem 2.1. The number of non-saturating pushes throughout the algorithm is

O(n?%/m).

Proof : Let a special push be pushing a flow atom which has a future course of
length strictly greater than n/\/m. If we consider the non-special pushes, we see that
each atom dies after at most n/\/m such pushes. There are O(mn) atoms, so there are
at most O(n?+/m) non-saturating pushes of this type. To establish an upperbound on
the number of special pushes consider all such pushes during a phase. Let dynaz be the
maximum label during a particular phase. All pushes made during that phase are on
the atoms which are at the nodes with label d,q; at the beginning of the phase (because,
we are using the largest-label algorithm). Lemma 2.7 implies that the number of special
pushes per phase is at most v/m. Using lemma 2.5 we conclude that the number of
special pushes is O(n?/m) overall. a

Corollary 2.1. The largest-label preflow-push algorithm runs in O(n%y/m) time.

Note that in [CM89] instead of future course, trace of a flow atom is used. The trace
of a flow atom is defined as the sequence of non-saturating pushes that this atom has
traveled through since it was born. Their analysis is based on the observation that if
two flow atoms are simultaneously alive at the nodes with largest label then they have
node-disjoint traces. Our observation is that if any two flow atoms are simultaneously
alive then they have node-disjoint future courses. Our result is strong enough to prove
that any arbitrary choice of the next edge to push along gives an O(n?\/m) time bound.

3 Conclusion

As it was pointed out before, it is intuitively clear that the usage of current edges
decreases the number of non-saturating pushes. However, in terms of the worst case
performance, we proved that no matter how you choose the edge to push you wil
not get a worse bound than O(n?y/m) on the number of non-saturating pushes. We
believe that this result encourages the attempts to get a better running time by using
preflow-push algorithms, because this result provides flexibility in choosing which edge
to push along. Consider for instance the results of Cheriyan, Hagerup, and Mehlhorn
[CHM90], they start the execution of their algorithm with edges that have relatively
large capacities and then add the other edges in the order of decreasing capacity as the
execution progresses. Using their algorithm on dense graphs, they were able to get an
o(mn) time bound on running time. We believe that using more sophisticated rules for
choosing the next edge, it might be possible to improve the O(n?,/m) bound on the
number of pushes for preflow-push algorithms. We also believe that some analog of this
result might be extended to some version of the successive approximation algorithm
of Goldberg and Tarjan [GT87| for the minimum cost circulation problem. Also note
that since the complexity bound applies no matter how the next edge is chosen, the
result of the paper might yield more efficient time bounds on the applications of the
maximum flow model where there is more than one criterion for optimality.

7

Acknowlegdements : We thank Eva Tardos for her very valuable and helpful discus-

sions.

References:

[CHMO90] J.Cheriyan, T.Hagerup, and K.Mehlhorn, Can a Mazimum Flow be Com-
puted in o(nm) Time?, Proceedings of the 17th International Colloguivm on Automata,
Languages, and Programming, London,1990.

[CM89] J.Cheriyan and S.N.Maheswari, Analysis of Preflow Push Algorithms for
Magimum Network Flow, SIAM J.Comput.,18,(1989), pp.1057-1086.

[Go85] A.V.Goldberg, Efficient Graph Algorithms for Sequential and Parallel Com-
puters, Ph.D. thesis MIT/LCS/TR-374, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 1987.

[GTTS9] A.V.Goldberg, E. Tardos, and R.E.Tarjan, Network Flow Algorithms,
Tech. Report No. 860, School of Operations Research And Industrial Engineering,
Cornell University, Ithaca, NY, 1989.

[GT87] A.V.Goldberg and R.E.Tarjan, Finding Minimum-Cost Circulations by Suc-
cessive Approzimations, Tech. Report MIT/LCS/TM-333,Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 1987.

[GT88] A.V.Goldberg and R.E.Tarjan, A New Approach to the Mazimum Flow Prob-
lem,J. Assoc. Comput. Mach., 35 (1988), pp.921-940.

