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Induction couplers exploit eddy-current effects to create force and torque on a

target without mechanical contact. Nearly all spacecraft structures include con-

ductive material, so induction couplers may be the closest realizable technology

to science fiction’s tractor beam: a device that generates contactless force on an

uncooperative target.

Contactless forces can potentially enable on-orbit servicing missions that are

currently infeasible because they are too dangerous and expensive. On-oribt ser-

vicing enables tasks we take for granted on earth but are difficult in space like

maintenence, repair, and disposal.

Relative movement between two uncooperative spacecraft traditionally requires

either mechanical grapplers or thrusters. Contactless actuators can act in the

place of mechanical grapplers in many situations, reducing the risks associated

with mechanical contact and sudden non-compliant dynamics coupling. Induction

couplers reduce or eliminate the need for thrusters while maneuvering near a larger

object — increasing lifetimes, reducing costs, and eliminating risks from plume

impingement.

Contactless actuation technology asks three major questions:

• How do you model and characterize dynamic eddy-current interactions?

• How can an inspector use induction couplers to move in six degrees of free-

dom?



• How do you design an inspection system that can successfully control itself

with induction couplers?

This thesis describes solutions to each of these challenges, laying the ground-

work for safe and practical on-orbit servicing.Induction couplers can produce

millinewton actuation forces with a lower specific power than other contactless ac-

tuators. The inspector can move in six degrees of freedom by following trajectories

composed of four motion primitives, each with two possible control laws. Finally,

a new algorithm based on the idea of controllable volumes informs the inspector’s

physical layout so that it can maximize the use of its induction couplers.
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Preface

How foolish for a man with metal

bones to stand against me

Magneto

Magnetism, as you recall from

physics class, is a powerful force

that causes certain items to be

attracted to refrigerators.

Dave Barry

This thesis is a two part exploration into induction coupler technology. The

divisions reflect a research arc in which a novel spacecraft actuation technology

exposes a nest of robotics problems. Part I introduces induction couplers and

explores their unique properties in the context of space applications. Part II looks

at the technology more broadly as a dynamical system through a robotics lens.

The Internet has created a brave new world for transmitting knowledge. Digital

content enables much richer explanations than those that can be confined to static

text. Supplemental materials, along with a copy of this work will be maintained

in perpetuity at www.benjaminreinhardt.com/research.
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Part I

Induction Couplers for Spacecraft

Actuation
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CHAPTER 1

INTRODUCTION

1.1 What are Induction Couplers?

Induction couplers are actuators that exploit eddy-current effects to create force

and torque without mechanical contact. They require only a conductive target.

Their ability to actuate near a target with neither propellant nor mechanical con-

tact can provide a completely new way to perform robotic locomotion and manip-

ulation in space. Because most man-made satellites include conductive material

in their structure, induction couplers may be the closest realizable technology to

science fiction’s tractor beam: a device that can produce contactless force on an

uncooperative target.

Induction couplers offer two major advantages for spaceflight applications.

First, fully deployed spacecraft are fragile and rarely offer straightforward means

for mechanical grappling; interactions without the potential for contact damage

are valuable. Second, induction couplers operate on electricity alone; they pro-

vide the ability to maneuver without propellant, eliminating risks associated with

thruster-plume impingement[8] and extending the usable lifetime of the chaser

spacecraft.

Induction couplers and induction-coupled spacecraft combine three major re-

search areas: On-Orbit Servicing (OOS), contactless spacecraft actuators, and

eddy-current force modeling.
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Figure 1.1: A chaser traverses the surface of the ISS using induction couplers

1.2 On-Orbit Servicing

OOS is a valuable but difficult robotic task[19][23]. Just as on Earth, large assets

like the International Space Station (ISS) or geostationary satellites experience

wear and unexpected problems that require inspection, repair, or refueling[50][115].

These tasks are well suited for robots because it is less dangerous and expensive to

send an inspection vehicle to Geostationary Orbit (GEO) or outside the ISS than

a human spacewalker[17][2]. Induction couplers can generate force interactions

between OOS robots and their targets without mechanical contacts. Contactless

actuation has many applications, especially propellantless locomotion.

The benefits of OOS provides strong motivation for advancing induction cou-

pler technology [2] [104]. Underwater autonomous service vehicles regularly inspect

pipelines and ships[112], but no such analogy exists in space. A small inspection
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spacecraft (Fig. 1.1) can use induction couplers to perform similar tasks. This

inspector can fulfill a number of functions: verify spacecraft health; perform me-

chanical tasks; or provide logistical support for astronauts during Extravehicular

Activity (EVA) [17]. The ability to traverse the exterior of the ISS without the

constraints of rails, specific attachment points, or finite propellant supplies can

free valuable resources like astronaut time and augment overall safety through an

increased frequency for inspection and repair. These benefits are not limited to the

ISS - a similar inspection spacecraft could enable unique OOS missions to inspect

and repair other large satellites.

OOS tasks fall into four major categories [109]: inspection[12], refueling[69],

repair[58], and orbit alteration[60]. All of these tasks require a robotic spacecraft to

operate in close proximity to the surface of a target. Robotic proximity operations

carry significant risk because spacecraft are fragile and respond to impacts with

hard-to-predict rigid-body and flexible motions. Thus, it is critical to avoid contact

except under controlled conditions.[41]

There are many proposed robotic OOS systems for use on the ISS and other

satellites in both Low-Earth Orbit (LEO) and GEO[62]. These include AeroAs-

tro’s Escort [38] for LEO, DARPA’s Phoenix system for GEO[104], and AERCam

[27] [17] and Dextre [19] for the ISS. Recent developments in space robotics have

emphasized the cubesat standard for vision systems [108] and planning for capture

with robotic arms[24].

Presently, an inspector can use one of three different methods to maneuver

close to the surface of its target: it can mechanically grapple the surface to pull

itself along; it can use propellant and thrusters; or it can use cooperative, non-

contacting electromagnetic systems installed both on the inspector and the target.
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Grappling has many potential risks in an uncertain, low-friction environment[66].

Propellant is a finite resource and can damage sensitive surfaces through plume

impingement[56][8]. Cooperation is infeasible in many situations because most

spacecraft launch without the necessary subsystems: current spacecraft are not

designed to be inspected or repaired by robots.

1.3 Contactless Actuation

In addition to induction couplers, four major categories of proposed technologies

produce contactless forces between a spacecraft and a target: coulomb tethers,

Electromagnetic Formation Flight (EMFF) architectures, flux-pinning interfaces,

and light-based actuators. All of them use electromagnetic effects to generate

force-at-a-distance through a vacuum, but differ in operating principles, range,

and application.

Coulomb tethers forces between two or more spacecraft to control satellite for-

mations [92] in both open [63] and closed loop control [65][64]. Coulomb forces can

also prevent collisions[110] and deploy fractionated spacecraft systems [74]. EMFF

systems use interactions between controlled dipoles to produce inter-spacecraft

forces[94, 46]. They have the distinction of being the only contactless actuator

with an on-orbit demonstration [80]. Flux-pinned interfaces use the potential

wells of magnetic fields embedded in superconductors to control inter-spacecraft

positioning[96, 67]. Formation flight[68], docking[53], and on-orbit assembly[28]

are two applications of their passively stable configurations.

All of the previous approaches impose pre-launch hardware requirements on

each interacting spacecraft. Lasers can produce contactless force on an uncooper-
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ative target, either through reflection[7] or potential wells [13][32]. However, lasers

are best at manipulating micron-scale spacecraft[54], which makes them imprac-

tical for interactions between most spacecraft. At present, mechanical contact is

the only general solution for interacting with uncooperative targets, motivating

the development of induction couplers as an alternative.

1.4 Eddy-Current Forces

The ISS and most spacecraft are composed of aluminum honeycomb with alu-

minum facesheets, aluminum isogrid, and aluminum truss elements. Induction

couplers exploit this abundance of aluminum through eddy-current force. Specifi-

cally, by introducing a changing magnetic field, a robotic inspector can induce eddy

currents in these non-magnetic but conductive components and use the reaction

force between the field and the currents for actuation[97].

Eddy-currents are an annoyance to be minimized in most applications. They

reduce the efficiency of electrical systems and motors, dissipating energy as heat[72]

and generating forces opposed to motion. However, these motion-opposing forces

can also interact with any conductive surface. This unique capability can propel

mag-lev devices[70, 77], and manipulate non-ferrous trash[89], and contactlessly

damp unwanted motion[99]. At least two studies have explored the possibilities

for passive eddy-current damping on orbit [81, 103], but not active actuation.

Different models of eddy-currents abound, but most are unsuitable for ac-

tively controlled spacecraft dynamics because they apply only to narrow situa-

tions. Analytical solutions focus on specific geometries and ignore time-varying

dynamics[102, 71]. Most numerical methods also ignore time-varying dynamics
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and are computationally expensive[39]. Finite Element Analysis (FEA) is the

standard approach to solving quasistatic eddy-current problems. However, even

those few commercially available FEA packages like COMSOL and ANSYS that can

account for a moving source field are computationally expensive and require hand-

tuning for each new geometry. These drawbacks make them unsuitable for dynamic

simulations with several degrees of freedom and rigid body dynamics [75].

Paudel and Bird introduced an analytical solution that both relaxes the geom-

etry restrictions and accounts for a moving magnetic source [76]. Their method

finds the force between a time-varying, moving magnetic source field and a large

flat conductive plate leading to a computationally-lightweight solution for the force

from a generic, time-vary magnetic field with a single frequency component.

The steady-state model is a good approximation when

1. There are no interactions between the fields of multiple couplers.

2. The mechanical frequencies are much lower than the propagation speed of

the magnetic field through the conductor.

3. The changing magnetic field has only one frequency component.

This thesis simplifies and extends the Paudel-Bird model so that it can easily

integrate simulations of complex spacecraft behaviors.

Experimental demonstrations are the real test of any new technology. Even

high quality models demand verification, and many unmodeled effects, problems,

and lessons manifest during physical experiments. Induction couplers have two

attributes that confound experiments: strong state dependence and forces on the

order of terrestrial disturbances. These issues motivated the development of a
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simple but novel 1-Degree of Freedom (DOF) low-friction test bed.

Air bearing test beds have simulated microgravity dynamics, both translational

and rotational, for over 45 years[93]. Traditional planar air bearing systems are

ideal for testing 3-DOF dynamics, but have a number of drawbacks that make

them unattractive for testing 1-DOF systems like early-stage induction couplers.

The second DOF introduces extraneous variables when testing 1-DOF systems.

Sensing the state of the 3-DOF system in real-time requires video processing soft-

ware that is either custom built or expensive[113]. Closed loop control requires

on-board computing, adding to the complication of the system[11]. Planar air

bearings require extremely flat surfaces and rapidly consume deceptively expen-

sive compressed gas.

Rotational test-beds can also simulate 1-DOF microgravity dynamics. These

test-beds consist of a target on the end of a long arm attached to a low-friction

rotational axis[101]. The throw over which they can approximate linear translation

is limited by the length of the arm. The bearings holding the rotational axis

experience more off-axis torque as the arm length increases so the friction increases

with the throw of the system. This connection between friction and throw length is

the primary downside for eddy-current experiments, which require a large variation

in the throw of the system.

1.5 Contributions

Part one contains five primary contributions:

1. A control law that enables a single induction coupler to pull on a target -
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chapter 2.

2. An induction coupler model for dynamic motion - chapter 3.

3. Experimental characterization of eddy-current forces from rotating magnetic

arrays - chapter 3.

4. Lyapunov stability for eddy-current detumbling - chapter 4.

5. A low-cost system for microgravity experiments - chapter 5.

As a preview, part two contains three additional contributions:

1. The four motion primitives an induction-coupled inspector can use to navi-

gate the surface of a target - chapter 7.

2. Experimental demonstration of induction coupler motion primitives - chapter

7.

3. A new algorithm for simultaneously generating the design and controller for

complex dynamical systems - chapter 8.
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CHAPTER 2

ATTRACTIVE FORCES WITH A SINGLE MAGNET

This chapter shows why pulling is a hard problem for induction couplers and

describes a set of control laws that a single induction coupler to pull on a target.

2.1 Properties of Eddy-Current Forces

Eddy-current forces share several properties, regardless of their source. Two of

these properties are especially important to developing eddy-current-based actua-

tors: the asymmetry between attractive and repulsive eddy-current forces and the

duality between forces created by electromagnets and permanent magnets.

2.1.1 Governing Equations

The eddy-current forces created by induction couplers are not intuitive to most,

so it is informative to build up the model from well-known principles. Maxwell’s

equations lie at the core of induction coupler’s governing equations:

∇× E = −dB
dt

(2.1)

∇×B = µ0J + µ0ε0
∂E

∂t
(2.2)

∇ ·B = 0 (2.3)
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Any material with finite conductivity experiences a voltage gradient in response

to a time-varying magnetic field.

J = σE (2.4)

The voltage difference induces a current in the material that in turn generates its

own magnetic field. The resulting field has a vector potential that obeys

B = ∇×A (2.5)

E = −dA
dt
−∇V (2.6)

If the conductive plate is linear and simply connected, these governing equations

can be combined into a partial differential equation describing the propagation of

A through the plate [97]:

∇2A = µ0σ
dA

dt
(2.7)

A solution for A gives B on the surface of the plate and Maxwell’s stress tensor can

find force between the plate and the magnetic source. Because there is no electric

field exterior to the plate, Maxwell’s stress tensor (
↔
σ) reduces to

↔
σ =

1

µ0

[
B⊗B− B2

2
(x̂⊗ x̂ + ŷ ⊗ ŷ + ẑ⊗ ẑ)

]
(2.8)

Where ⊗ is the dyadic product. Integrating the stress tensor across the target’s

surface gives the net force, F between the surface and the magnetic field (and thus

the coupler.) While straightforward, this result is useless for dynamic modeling

without the solution to (2.7). Any solution to a three-dimensional time-varying

partial differential equation requires numerical methods or assumptions about the

problem’s geometry. In the 1-DOF case, the simple solution in section 2.1.3 takes

advantage assumptions about symmetry and propagation speed. Further on, chap-

ter 3 delves deeper into 3-DOF solutions.

12



Figure 2.1: Frequency response for an induced current to an applied magnetic field.

2.1.2 Attraction/Repulsion Asymmetry

A demonstration of the eddy currents’ ability to produce net repulsive impulses

over an actuation cycle is as simple as placing a coil of wire on a conductive surface

and plugging it in to the wall. The coil jumps into the air and hovers. Previous

work[72] has analytically found a nearly 180 degree phase shift between the oscil-

lating current through an electromagnet and the currents it induces at sufficiently

high frequencies. In this case is above 10 Hz. Most frequencies associated with an

eddy-current actuator fall into this high frequency range. The near-180 degree dif-

ference in phase causes the current density in the conductor (J) and the magnetic

field (B) to have the same frequency but opposing signs, so their cross product

is always negative. As the force between the actuation magnet and the plate is
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Figure 2.2: An oscillating current levitates a coil over a conductive target.[106]

proportional to the product of the magnetic field and the induced current[102],

the magnetic field causes a repulsive force on the conductor. Due to the phase

shift between the magnetic field and induced current, any repeating input to the

electromagnet-conductor system produces a net repulsive impulse over the cycle

in the absence of other dynamics.

Creating a net repulsive momentum transfer to a target with a permanent

magnet is as simple as moving the magnet from an effectively infinite distance

towards a conductor. A dipole moving at any velocity directly towards a conductive

plate with a surface perpendicular to the dipole induces circular current loops in

the conductor centered on the line of the magnetic dipole. The net force given

by integrating F = J × B across the entire plate is in the same direction as the

velocity of the magnet, and thus produce a repulsive impulse. The same effect can

be produced by monotonically increasing the current through an electromagnet

near a conductive surface. Clearly, it is simple to produce repulsive forces and

impulses with eddy currents induced either by a moving permanent magnet or a
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time-varying electromagnet.

Eddy current systems are not incapable of producing attractive forces and

impulses - moving a permanent magnet away from a conductor or turning off an

adjacent electromagnet imposes an attractive impulse on the target. However, in

order to achieve the initial conditions necessary in order to create an attractive

impulse, an electromagnet had to be turned on or a permanent magnet brought

close to the conductor. As discussed previously, these actions cause a repulsive

impulse that in a low-friction space environment that cancels out the subsequent

attractive impulse, thus at best producing no net attractive force over the complete

set of actions and possibly driving the target away. The implication of this physical

reality is that if you approach and leave in the same manner, the cycle is unable

to produce an attractive impulse. Conveniently, a magnetic field also induces eddy

currents in a target and reduces its momentum if the target has a relative velocity

away from the magnet. This damping behavior is the key to a full actuation cycle

that produces a net attractive momentum change on a target. The key to creating

a net attractive cycle is that it must be asymmetric.

2.1.3 Permanent Magnet-Electromagnet Duality

In the 1-D case, the actuation force, Feddy(t), that can be produced by the relative

velocity of permanent magnet and the conductor, vm(t), is

Feddy = C1
vm − vT
‖r‖3

(2.9)

The force produced by a current im(t) through an electromagnet is

Feddy = C2

C3i
di
dt
− vT

‖r‖3
(2.10)
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Thus, with perfect control over the velocity of the magnet, there is a suitable

vm(t) that can produce the same Feddy(t) with a moving permanent magnet as the

force produced by an electromagnet. The symmetry of the 1-D case causes the

duality between the Feddy(t) generated by electromagnets and moving permanent

magnets because the force can be treated as a scalar value that scales with either

vm(t) or im(t). For a force caused by some vm(t), the appropriate choice of im(t)

can produce the same force and vice-versa, resulting in the same impulse over time.

Therefore, any discussion in terms of a moving permanent magnet is applicable to

an actuator utilizing an electromagnet as well.

The duality between electromagnets and permanent magnets as eddy-current

actuators is useful because it allows for EC actuation schemes to be developed

independent of the final implementation of the physical actuator. The duality

between eddy currents induced by permanent magnets and electromagnets allows

the following discussion of the proof-of-concept actuation cycle to be framed only

in terms of a moving permanent magnet because descriptions of maneuvers are

simpler and easier to visualize when described in terms of an actuator using a

controlled permanent magnet. It is critical to remember that many conclusions

for an actuator using a moving permanent magnet apply to an actuator using a

controlled electromagnet as well.

2.2 Attractive Actuation Cycle

In order for eddy currents to be used in an actuator, they must be able to transfer

momentum to the target in both the attractive and repulsive directions with respect

to the actuator. While instantaneous attractive forces are possible, producing a
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net attraction over a closed cycle is not possible for system with a fixed target.

However, it is possible to achieve the attractive momentum transfer necessary for

a successful actuator through a multi-step actuation cycle that takes advantage

of the eddy force dynamics combined with the free body dynamics of the system.

This section establishes the conditions that a cycle must meet in order to have

successfully attracted the target, outline the general cycle, and then go into greater

detail with a sample actuation cycle.

2.2.1 Cycle Conditions

In the most general case, the initial conditions which lead to successful attraction

are those for which there is a time history of actuation commands to the magnet,

vm(t) , that lead to “successful” final conditions of the cycle. A successful cycle is

one in which has the following two final conditions:

1. The momentum of the target experiences a net change in the direction of the

magnet.

2. The magnet starts and ends the cycle far from the target.

Condition (1) ensures that either the target has been captured and is moving

towards the magnet at the end of the cycle, or that over repeated successful cy-

cles, the momentum of the target can be changed to be in the direction of the

magnet. Condition (2) is necessary because for an actuation cycle to be complete

and repeatable the magnet must start and end the cycle in the same place and

logically any actuator magnet must be brought near the plate from somewhere

else to initiate the actuation. Due to the r−3 nature of the eddy current force[86],
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Figure 2.3: Diagram for attraction-cycle model.

Feddy decreases quickly with the distance to the target. Thus, a magnet that is

effectively infinitely far away does not have to be a large physical distance from

the plate, making this condition applicable to real situations.

2.2.2 Model Assumptions

The attractive force actuation cycle uses a simplified model (Fig. 2.3) for demon-

stration purposes. This model is built on a number of assumptions that simplify

the system in order to illustrate the underlying dynamics but does not alter the

fundamental results as they are removed or made more complicated.

1. The model produces a changing magnetic field through a moving permanent

magnet. The position and velocity of the magnet are directly controlled.

2. The model has a single translational DOF in which the magnet and target

plate move along the Z-axis with the magnet in the Z direction of the target.
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3. There is a fixed coordinate system with its origin at the target’s initial posi-

tion.

4. The model assumes no friction.

5. The target is a conductive half sphere oriented with its face towards the

magnet that has a finite mass mt but an infinite radius.

6. When calculating Feddy(t) the model finds the instantaneous force at each

time t rather than solving the full PDEs that dictate the propagation of the

magnetic field and induced eddy currents within the conductive material.

2.2.3 Justifications for Model Assumptions

Assumption (1) makes the model more physically intuitive than one in which the

actuation forces are provided by an electromagnet. It is easier to discuss forces

that depend only on relative motion between a magnet and a target than forces

dependent on a combination of relative velocity and an electromagnetically gener-

ated field’s magnitude and rate of change. The external control of the magnet’s

position and velocity can be physically realized by moving a permanent magnet

on a rail or with thrusters. Assumption (2) simplifies the model without limiting

its applicability. The model does not need more than one translational DOF mag-

netic fields and currents can be linearly superimposed, so the actuation cycle can

be generalized to multiple degrees of freedom.

Assumption (4) is valid because the actuation cycle takes place in space -

a very low friction environment. Assumption (5) allows Feddy(t) to be calculated

analytically and for analytical conversion between the vm(t) of a moving permanent

magnet and the im(t) of an electromagnet. Force calculations with an infinite
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radius are not a large deviation from the physical situation because the magnetic

field drops off quickly away from the dipole axis and the skin effect causes the

current to decrease exponentially with depth inside the conductor. Thus, although

the forces on parts of the target, which would not actually exist, are calculated,

their contribution to the total force is very small.

Assumption (6) is justified because:

1. The relative permeability of aluminum is very close to one so the magnetic

field propagates at close to the speed of light, which for the centimeter to

meter scales of the problem is effectively instantaneous.

2. The frequency of the actuation cycle ( 0.1 Hz) is shorter than the frequencies

at which force hysteresis caused by induction occurs ( 3 Hz) by an order of

magnitude.[6]

3. Due to the symmetry of the problem, the magnetic field from the eddy-

currents themselves acts only as a scaling factor to the total force. [100]

2.2.4 Cycle Creation

It is clear that simply moving a magnet towards the plate and then immediately

pulling it away at the same speed does not produce a net attraction moving the

magnet towards the plate initially repels the plate, increasing the distance between

the plate and the magnet, and thus decreasing the magnitude of the attractive

forces when the magnet is then drawn away. The repulsive forces caused by moving

the magnet towards the plate and subsequent increase in separation distance means

that any actuation cycle that does not take advantage of the dynamics of the
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plate-magnet system is unable to produce a net attractive force. Thus, in order to

produce net attraction, an asymmetric actuation cycle is necessary.

However, EC forces are inherently non-conservative, and introduce damping

into the relative motion between the magnet and the target. An actuation cycle

can use the damping effect to dissipate some of the momentum imparted to the

target when the magnet is moved in from infinity. Thus, a net attraction between

a magnet and the actuation target can be achieved by taking advantage of the

damping of relative velocity between the two due to the eddy forces.

2.2.5 Attraction Cycle Phases

The proposed actuation cycle can be broken down into three steps that together

make a continuous cycle - the initial conditions of each step are the final conditions

of the previous step. The three phases of the cycle and the time intervals associated

with them are:

1. Approach Phase (t0 ≤ t < t1)

2. Capture Phase (t1 ≤ t < t2)

3. Pull Phase (t2 ≤ t ≤ t3)

The following section first presents the outline of each and its role in creating

a complete cycle that causes a net attractive force on the target. Following the

outline are results of a simulation that works backwards through the cycle in order

to determine the region in phase space for which the target can be successfully

attracted. The state variables of the system are the position (xm) and velocity

(vm) of the actuating magnet as well as the position(xT ) and velocity (vT ) of the
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conductive target. These coordinates are measured in an inertial reference frame

with x = 0 at the initial position of the target. The mutual force caused by

the interaction between the magnetic field and the induced currents in the target

(Feddy) is calculated at the target. This force is proportional to where r is the

relative position of the magnet and the target - r = xm − xT .

Approach Phase

	
  
Figure 2.4: System at beginning of approach phase t = t0

	
  
Figure 2.5: System at end of approach phase t = t1

In order to create a complete and repeatable cycle that reflects a physical

situation, the magnet must begin and end the cycle at xm = −∞. This initial

state is intuitive because any magnet has to approach the target from a distance

that is effectively infinite, or in the case of an electromagnet, the current must be

increased from zero to some finite value. For all cycles, xT (t0) = 0 and vT (t0) is
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unconstrained - the initial velocity of the target determines whether it is possible

to capture and subsequently pull the target.

During the approach phase, the magnet approaches the target at some vm > 0.

Assuming vm > vT (otherwise the magnet would remain infinitely far from the

target) this causes Feddy > 0 and the magnet accelerates to the right. This positive

acceleration is an unfortunate necessity in order to decrease r so that the magnet

can produce a non-trivial Feddy to the left on the target later in the cycle.

At the end of the approach phase, the magnet stops at xm(t1) = 0 in order to

begin the capture phase. The exact value of this stopping point is for illustrative

purposes and would change based on the application of an implemented cycle. The

target continues to move in the positive direction with vT (t1) > 0.

Capture Phase

	
  
Figure 2.6: System at beginning of capture phase t = t1

	
  

Figure 2.7: System at end of capture phase t = t2

The goal of the capture phase is to use the damping that occurs between the
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stopped magnet and the moving target in order to reduce dr
dt

. This reduction in

the momentum of the target creates a situation in which Feddy has a sufficiently

large magnitude to make vm < 0 when the magnet moves to the left, achieving a

successful final state with the magnet moving to the left.

At the beginning of the capture phase, the state of the system is the same as at

the end of the approach phase. The magnet is held at xm(t1) = 0 with vm(t1) = 0

and the target is at some positive position xT (t1) > 0, moving with vT (t1) > 0.

During the capture phase, the magnet is held at xm = 0 by an external force.

Feddy acts as a damping force on the target as dr
dt
< 0 and the vm = 0. At the end

of the capture phase the magnet has not moved from the origin, xm(t2) = 0 and

vm(t2) = 0. The target remains to the right of its starting position, xT (t2) > 0, with

a positive velocity, but vT (t2) < vT (t1) which makes the future impulse imparted

by pulling the magnet to the left larger than the momentum of the target.

Pull Phase

The goal of the pull phase is to successfully cause vm to change direction. This

change in the direction of the target velocity is achieved when Feddy finally im-

parts an impulse to the target sufficient to reduce its momentum below zero, thus

completing the goal of the actuation cycle.

At the beginning of the pull phase, the magnet is still at the origin, xm(t2) = 0

and begins moving to the left with vm(t2) < 0 until it returns to its position at

the beginning of the cycle: xm(t3) = xm(t0) = −∞. At the beginning of the phase

the target is located at a position to the right of the origin and has a positive

velocity. As the magnet moves from xm(t2) = 0 to xm(t3) = −∞ the resulting
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Figure 2.8: System at beginning of pull phase t = t2

	
  

Figure 2.9: System at end of pull phase t = t3

dr
dt
< 0 causes Feddy to be to the left, imparting a negative impulse on the target,

which makes vm(t3) < 0 if the cycle has successfully attracted the target. The

cycle has successfully attracted the target even if xT (t3) > 0 because the fact that

xm(t3) = −∞ means that ‖r‖ =∞ and Feddy = 0 so that eventually the fact that

vT (t3) < 0 causes xT (t > t3) < 0 which is the goal of an attractive actuation.

The condition of the pull phase in order for the cycle to successfully attract

the target is that before ‖r‖ becomes large enough that Feddy is negligible, the

impulse imparted by the magnet as it moves to the left must be greater than the

momentum of the target at t2.

2.3 Successful Attraction Cycle

A given EC actuation cycle cannot successfully attract a target for every initial

vT (t0). The actuation cycle fails to attract the target if the magnet cannot move
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Figure 2.10: Final target velocity as a function of initial target conditions for
vm = −15

faster than the target or the target gains too much velocity due to the approach

of the magnet. Due to the three discrete phases of the cycle, the desired final

conditions of each phase are those that correspond to successful initial conditions

of the following phase. These successful initial conditions are those that lead to the

desired final conditions of the phase in question. Ultimately, the initial conditions

of the target which allow for successful attraction are those which can be affected

by a given magnet and its associated properties such that at the end of the cycle

vT (t3) < 0.

Fig. 2.10 shows a plot of the initial conditions for the pull phase that result in
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a successful complete cycle. The method used to determine the set of initial vT (t0)

can be successfully attracted works backwards through the cycle in three discrete

steps corresponding to the phases of the cycle, in a manner similar to backwards

dynamical programming. At each phase, this method finds the initial conditions

of that phase which propagate through the dynamics of that phase into the desired

final conditions of that phase. These initial conditions then become the desired

final conditions of the previous phase. Thus, the successful final condition of the

cycle (vT (t3) < 0) yields the initial conditions that can lead to successful attraction

of the target.

This section presents the process of solving for the initial conditions leading to

successful attraction for a sample open-loop actuation cycle. Each phase of the

cycle has a key control parameter: vm(t) during the approach phase, t2− t1 during

the capture phase, and vm(t) during the pull phase. These are constant throughout

each phase. Each simulation varied the parameter values to demonstrate effect

of their variation. Differences in the actuating magnet’s motion have significant

effects on the viable initial conditions of each phase.

Simulation of the pull phase yields a set of initial conditions (xT (t2), vT (t2))

that can lead to vT (t3) < 0. Due to the r−3 nature of axis-symmetric eddy-

current forces, relatively small increases in xT (t2) as compared to vT (t2) results

in vT (t3) > 0 and the failure of the cycle to successfully attract the target. A

graph of vT (t3) on the z axis vs. vT (t2) and xT (t2) (Fig. 2.10) shows that the final

velocity monotonically increases with the initial conditions of the pull phase. The

monotonic nature of the relationship between the initial and final conditions in the

pull phase means that all successful initial states of the pull phase are all those

which lie below the line vT (t3) = 0 projected onto the vT (t2) xT (t2) plane. Points
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  Figure 2.11: Initial conditions of the pull phase yielding vT (t3) = 0 for varying
magnet pull velocities.

lying below this line are the desired final states of the capture phase.

Fig. 2.11 shows the critical vT (t3) = 0 line for a number of constant magnet

pull speeds that vary over several orders of magnitude. Note that the shape of

the curve barely changes despite the large range of pull speeds. This invariance

to change in the speed of the magnet indicates that the magnet quickly leaves the

r-values for which Feddy is significant with respect to the momentum of the target

and instead the initial conditions of the target(xT (t2), vT (t2)) dominate the pull
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  Figure 2.12: Capture phase for different magnet pause times (t2t1) showing trajec-
tories that lead to a net attraction.

phase.

Continuing the process of backwards dynamical programming, a simulation

of the capture phase yielded the set of (xT (t1), vT (t1)) which propagates to the

line of (xT (t2), vT (t2)) that in turn propagates to vT (t3) = 0 in the pull phase.

Three simulations of varying initial conditions of the capture phase (Fig. 2.12)

demonstrate the effect of varying t2− t1, the pause time during which the magnet

holds still at zero in order to dissipate energy after approaching the target. The

contrast between the successfully attracted initial conditions in t2 − t1 = 0.01

and t2 − t1 = 0.1 but the relative similarity between those in t2 − t1 = 0.1 and

t2− t1 = 5 is noteworthy. The intuitive conclusion is that for any pull phase vm(t)

profile, there is a point during the capture phase at which all the energy that can
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be dissipated by eddy-current interactions has been dissipated, and the target has

either escaped the region in which Feddy is large enough to have an effect, or has

been reduced to a very small vT within that region.

The process for finding the desired set of vT (t0) at the beginning of the approach

phase which leads to a successful attraction is essentially the same as for the capture

and pull phases except that xT (t0) is always zero due to the choice of the reference

frame. The set of initial conditions, vT (t0), which leads to successful attraction

over the entire cycle are those which propagate to points below the line of (xT (t1),

vT (t1)) found in the capture phase. This is the actual set of initial conditions that

allow the target to be captured by this proof-of-concept cycle.

A notable trend in the set of attractable initial conditions arises when the

approach speed of the magnet is varied over a number of simulations. The changes

in the approach speed have a significant effect on the set of attractable vT (t0);

increasing the approach speed increases the highest values of the set of vT (t0) that

can be attracted, but also increases the lowest value of the set. Thus, there is a

trade-off between the approach speed of the magnet and the range of vT (t0) that

can be successfully attracted over the course of the actuation cycle.

The relationship between the approach speed and the set of vT (t0) that can be

attracted is one of great interest, as it can lead to control laws for an attractive

eddy-current actuation cycle. The relationship can be framed in terms of the energy

imparted to the target by the approaching magnet (which increases vT ) and the

ability of the magnet to affect the target over the rest of the cycle dominated by

r(t1).

In situations where vT (t0) is small, a lower vm(t) (top half of Fig. 2.13) min-
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Figure 2.13: Plots of approach phase for different approach speeds (Left) and the
initial conditions of the target at time t0 that leads to a successful capture (Right).

imizes the amount of energy imparted to the target, while still not moving the

target out of the range of r in which the magnet can affect the target. However,

in this same situation of a lower vm(t) a target with a higher vT (t0) already has

a large amount of energy. The energy added to the target by the approaching

magnet is smaller with respect to its initial energy and instead the possible Feddy

is dominated by the fact that r(t1) is much larger because the target had more

time to move away as the magnet approached it.

In situations with small vT (t0) in which vm(t) is larger (bottom half of fig. 9),

the target gains large amounts of kinetic energy because r quickly becomes small

and the target and magnet interact for longer. The kinetic energy transferred to

the target in this situation is sufficient to cause dr
dt

to become large enough that

Feddy is very small before the energy of the target can be damped out by Feddy.
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Increasing vm(t) when approaching targets with larger vT (t0) still increases their

kinetic energy, but as a smaller fraction of their original kinetic energy. The domi-

nant effect, rather than the increase in kinetic energy, is that a larger vm(t) causes

r(t1) to become small enough that Feddy can successfully interact with the target

over the rest of the cycle. The relationship between vm(t) and both low and high

vT (t0) can be seen graphically in fig. 9 by noting how trajectories with lower vT (t0)

become unattractable with high vT (t1) and low xT (t1) whereas trajectories with

higher vT (t0) become unattractable with low vT (t1) and high xT (t1). A quantita-

tive relationship is beyond the scope of this proof-of-concept cycle, but the results

still provide a valuable intuition into the cycle.

2.4 Conclusion

This chapter shows how an induction coupler can both push and pull on a target.

While induction couplers can easily repel a target with a pulsed or a sinusoidal

input, generating attractive forces is more complicated. A net attractive force re-

quires a three-phase cycle that takes into account the damping dynamics of the

eddy-current system, as demonstrated by the proof-of-concept actuation cycle.

The ability of the cycle to successfully attract a target depends on the relationship

between a number of parameters: the initial kinetic energy of the target, deter-

mined by vT (t0); the amount of energy that the approaching magnet transfers to

the target, determined by vm(t); and the ability of the magnet to damp out the

energy of the target through Feddy, determined by r(t1). An initial magnet velocity

vm(t) that is too great causes the target velocity at the end of the capture phase,

vT (t1), to be too large for Feddy to stop the target before the relative separation

becomes too large for Feddy to affect the target. On the flip side, a vm(t) that is too
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small allows r(t1) to become too large for Feddy to have a significant effect on the

targets trajectory. This chapter describes the actuation cycle in terms of a moving

permanent magnet for simplicity and physical intuition, but an electromagnet-

based coupler could achieve the same effects. The duality between electromagnet

and permanent-magnet induction couplers is important to keep in mind. Attrac-

tion/repulsion aysmmetry is only one characteristic where the same conclusions

apply to both electromagnet and permanent magnet induction couplers.
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CHAPTER 3

INDUCTION COUPLERS FOR ON-ORBIT INSPECTION

This chapter describes induction couplers in more detail, models their state-

dependent forces, and describes design considerations driven by the important

system properties in in section 3.1. Experiments validate the model and provide

measurements of power consumption and force output in section 3.2. Finally,

section 3.3 shows how an inspection spacecraft can traverse a planar surface in

simulation.

3.1 Induction Coupler Behaviors

An induction coupler exerts force by creating a time-varying magnetic field that

induces eddy currents through the conductive materials in a target. The field then

exerts a force on these currents and through them, the target (Fig. 3.1). These

forces have many dependencies, but most relevant is their strong coupling to the

configuration of inspector and its target. This section discusses how to model an

induction coupler, its properties, and the resulting design considerations for an

induction-coupled spacecraft.

3.1.1 Force Model

There are many solutions for the time-varying magnetic potential A in section

2.1.1; few of them can find forces in situations where the field’s geometry changes

over time in the target’s frame. The solution in [75] solves the geometry problem
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Figure 3.1: Graphical intuition for eddy-current forces.

and analytically solves for A and F due to a moving magnetic source, agnostic to

the field’s geometry. While valuable, the solution in [75] finds two separate forces

(Fx and Fz) with respect to the target surface. This form is still unsuitable for

spacecraft applications, which need a three-dimensional force as a function of the

coupler’s orientation and position.

A useful model of induction-coupler forces for spacecraft dynamics emerges

from a combination of the solution in [75] with a few simplifying assumptions. In

this situation, an induction coupler with an axis of symmetry perpendicular to a

conductive target surface surface produces a time-varying magnetic field, generat-

ing a force between itself and the target. Fig. 3.2 shows the situation.

F = C [(1− β) â×n̂+ βn̂]ω (3.1)

ω is the coupler’s frequency, â is its axis of symmetry, n̂ is a vector normal to the

surface. C is a scale factor on the the force F that accounts for factors other than a

coupler’s input speed. C is a function of the magnet properties, target properties,

and the separation between the coupler and the surface, g. β is the thrust ratio

between the components of the force perpendicular and tangent to the target’s

surface. When ω is small, β is negligible, creating a force approximately tangential
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S

Figure 3.2: Diagram for a single induction coupler seen along its spin axis

to the target surface in both the simplified and full force model (Fig. 3.3). The

model’s simplifying assumptions are:

1. The frequency and translational speed of the coupler are both small. At low

speeds, the relationship between F and ω is approximately linear.

2. The coupler’s axis remains perpendicular to the target’s surface.

3. The coupler is close enough to the target that its surface is effectively an

infinite plate.
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Figure 3.3: Shear and normal forces on the induction coupler from unsimplified
model.

3.1.2 Design Considerations

Induction couplers can generate time-varying magnetic fields with either mechan-

ically moving permanent magnets or electromagnets driven by time-varying cur-

rents. Each type of magnet excels at producing forces in certain directions. A

single electromagnet can produce forces directly away from a target [85], while

rotating permanent magnets primarily produce shear forces (Fig. 3.3). The exper-

iments and simulations in this chapter focus on permanent-magnet couplers and

their shear forces to produce actuation in a plane parallel to a target.

Permanent-magnet induction couplers operate by spinning permanent magnets

with a varying speed, ω. The array spins about an axis â near a conductive

surface with a normal vector n̂ (Fig. 3.2). The many dependencies in induction-

coupler forces create several design tradeoffs. Increasing the number of dipoles in

the array increases |B| while decreasing ∇B, leading to a tradeoff between the

time-averaged field strength and dB
dt

. Additionally, the array can either consist of
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Figure 3.4: The two-magnet orthogonal array (left) generates a field similar to that
of a two pole-pair Halbach array(right.) Each generates force by spinning about
an axis out of the page.

dipoles orthogonal to the spin axis or a circular Halbach rotor (Fig. 3.4). An

orthogonal array is less complex and easier to build, but the field of an equally

sized Halbach rotor has a larger magnitude and is simpler to model[114]. For

simplicity, preliminary experiments use a two-magnet orthogonal array that is

well-approximated by a four-magnet Halbach rotor, but a high performance system

would want to implement Halbach rotor induction couplers.

A spacecraft generating a time-varying magnetic field can produce forces in all

three translational degrees of freedom and all three rotational degrees of freedom

for complete six DOF actuation. Single induction couplers can only produce forces

normal and tangential to their target, while systems of induction couplers can

produce force in any direction relative to the target by taking advantage of a

target’s topography. Induction coupler systems can also generate torques: couplers

situated away from the spacecraft’s Center of Mass (CoM) on a moment arm can

produce a coupled torque and force while two paired induction couplers separated

by a moment arm can produce forceless torques. Thus, spacecraft using systems

of induction couplers are not subject to the limitations of single induction couplers
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in isolation.

The design for any system and mission using induction couplers needs to con-

sider several parameters that govern their forces. These parameters include: the

strong dependency on the gap to the target, the strength of the magnetic field, the

properties of the target, and nonlinearities between the speed input and output

force. The force magnitude decreases with g−4, limiting an inspector’s effective

operating distance from its target. Larger magnets provide stronger fields that

increase the force in exchange for more inertia and weight. The thickness and

conductivity of the target scale the induced current and thereby the force. Finally,

a system needs to consider that a coupler’s input speed affects its force nonlinearly

at high speeds. At low speeds this relationship is approximately linear (see Fig.

3.7) but increasing speed past a certain point shows diminishing returns because

the penetration depth (or skin depth) of the induced current decreases at high

frequencies.

Utilizing spinning magnetic fields on a spacecraft raises several valid but ad-

dressable concerns: changing magnetic fields could damage sensitive electronics

or produce unwanted interactions with the earth’s magnetic field, while mechan-

ically spinning magnets can create problematic angular momentum. The skin

effect[22] shields sensitive electronics from a coupler’s eddy currents. Currents will

only penetrate 0.1 mm into an aluminum-skinned target at 50 Hz - well below a

coupler’s operating limits. The coupler’s relatively high frequency also prevents

adverse interactions between the coupler’s and the Earth’s magnetic field. The

earth’s field is effectively static because the coupler frequency is far larger than the

spacecraft’s orbital period and each coupler cycle is closed, producing no net force

between the two. The coupler’s momentum could be absorbed by reaction wheels
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or counteracted by counterspinning masses. Additionally, an induction coupler’s

bi-directional operating mode also helps counteract unwanted angular momentum

because a coupler will switch direction frequently instead of spinning up like gyros.

Ultimately, the coupler’s angular momentum is a solvable design consideration.

3.2 Induction Coupler Experiments

Experiments on a low friction air track verify the simplified force model in equation

3.1. The experimental setup consists of an angled aluminum target plate mounted

on a cart that moves along a low-friction air track. The cart is actuated by two

induction couplers (Fig. 3.5) consisting of small commercial-off-the-shelf (COTS)

motors (BaneBots MP-36004-540). Two arrays attach to the motors, each con-

taining two neodymium magnets orthogonal to the spin axis. Table 3.1 shows the

parameters used in the experiment.

During the experiment, the couplers accelerate the cart in both directions along

the track to exercise the full range of eddy-current forces. The coupler’s rotational

speeds are manually controlled while a microcontroller records the rms voltage to

the motors and a camera captures the cart’s movement. MATLAB scripts extract

the cart’s position and acceleration over time, lining up the motor signals with the

resulting movement.

The results in Fig. 3.6 demonstrate that the couplers can produce milliNewton

shear forces parallel to a surface for less than one Watt. These forces agree with the

model (Fig. 3.7), supporting its usefulness as a simulation tool. At 3.33 mN/Watt,

the experimental specific force compares favorably to other non-contacting actua-

tion technology (Table 3.2).
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Figure 3.5: Top (left) and side (right) view of the experiments measuring induction
coupler forces.
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Table 3.1: Experiment Values

Variable Value Unit
Motor Voltage 12 V

Duty Cycle 25 %max
Motor Speed 4200 RPM

Motor Current 0.25 A
Motor Power 0.75 W

Table 3.2: Specific Force Comparison

System Specific Force (mN/W)
Induction Couplers 3.33

Electromagnetic Dipoles 1.22 [46]
Coulomb Interactions 3× 10−7 [44]
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Figure 3.6: Force on a one-dimensional air-track levitated cart vs. motor speed.
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Figure 3.7: Linear fit between shear force and a magnet coupler’s angular velocity.

3.3 Multi-Coupler System

An inspection spacecraft can use a system of several induction couplers to locomote

near the surface of a target. The placement of these couplers affects the space-

craft’s capabilities, driving further design considerations. This section addresses

those considerations and simulates the operational capabilities of an inspection

spacecraft navigating across the ISS. In a multi-coupler system, each coupler is

the located on a vector d relative to the spacecraft’s CoM and has a spin axis

â (Fig. 3.9). The force generated by each coupler varies linearly with with its

angular speed, ωi, when ω is small. The system kinematics are those of a standard

6 DoF rigid body.

Ṙ = ω×R (3.2)Iω̇

mẍ

 =

−ω× (Iω)

0

+

1 0

0 R

 Ju (3.3)

where R is the direction-cosine matrix that relates coordinate systems for the

target and inspector. ω is the inspector’s angular velocity and x is its position,
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Figure 3.8: Top view of example induction coupler architecture.

both in the target’s frame. I is the inspector’s inertia tensor and m is its mass.

The input Jacobian, J , transforms input speeds in the frame of each coupler,
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Figure 3.9: A single-magnet induction coupler.

u = [ω1, ω2...ωN ]T , to forces in the inertial frame.

J = C

d×1 [(1− β1) â×1 n̂+ β1n̂
]
d×2
[
(1− β2) â×2 n̂+ β2n̂

]
... d×N

[
(1− βN) â×N n̂+ βN n̂

]
(1− β1) â×1 n̂+ β1n̂ (1− β2) â×2 n̂+ β2n̂ ... (1− βN) â×N n̂+ βN n̂


(3.4)

The Jacobian in equation 3.4 imposes two design constraints:

• di×âi must be nonzero for at least one coupler so that the system can gen-

erate a control torque.

• Not all of the spin axes âi can be parallel. If they were, the Jacobian would

not be full rank.

Three spinning arrays can govern three independent planar degrees of freedom.

In practice, more should be used for redundancy and greater control authority. As

long as the arrays have sufficient spatial separation their forces simply superimpose

without the nonlinear coupling that might arise if one array’s induced currents

interact with another’s magnetic field. A separation of 5.5 times the distance to

the surface is enough to cause the magnetic field from one coupler to drop by

an order of magnitude in the eddy-current region of the other. For a particular
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application, these principles inform tradeoffs among force, power, mass, and the

reliability of moving parts introduced by the additional arrays.

3.3.1 Simulation

A simulation of an inspection vehicle shown in Fig. 3.8 with parameters in table

3.3 demonstrates that a small spacecraft can successfully follow a trajectory and

inspect a large area in a reasonable amount of time.

The example spacecraft uses three permanent magnet couplers to govern three

independent planar degrees of freedom and traverse a path defined by several

waypoints, where the inspector briefly pauses before moving on. Based on the

experimental data in section 3.2, each coupler uses at most 0.75W for a maximum

power consumption of 2.25 W - within a cubesat’s power budget[3]. The inspector’s

path is 3.4 m long and includes 90 degrees of heading change to exhibit control in

all three planar degrees of freedom.

Closed loop control is essential for induction coupler systems. Couplers are

sensitive enough to their state that even numerical rounding errors in open-loop

systems can throw the inspector off course. To compensate, the inspector uses a

sequence of scheduled Linear Quadratic Regulator (LQR)[49] gains for feedback

control between its desired state and the input speed to the induction couplers.

As the inspector reaches each waypoint, it switches to the gains associated with

the next waypoint.

Figs 3.10 and 3.11 show the simulation’s waypoints, heading, and control input.

Despite frequent pauses and turns, the inspector traverses the path at an average

speed of 1m
s

. Extending these results, an inspector with a 0.1 m inspection swath
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could cover the 39 m2 surface of the Destiny ISS module in just under two hours.

The inspector’s ability to stop itself cleanly at each waypoint means that this

inspection could be executed in a lawnmower-like pattern, making the planning

process simple.
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Figure 3.10: Trajectory of a simulated inspection vehicle with waypoints.
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Figure 3.11: Heading and speed for a simulated inspection vehicle.
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Table 3.3: Model Values

Variable Value Units

ri 0.0127 m
ro 0.0191 m
Br 1.42 N ·m−1 · A−1
µ 1.08
g 0.01 m
σ 3.53× 105 S

m

b 0.01 m
m 4 kg
I 0.16 kg ·m2

The simulation makes two assumptions: first, it ignores orbital effects that

cause relative motion between the inspector and its target. Second, it assumes

the inspector moves only in the plane parallel to the target with no out-of-plane

motion. Section 3.4.1 expands on both assumptions.

3.4 Discussion

This section briefly discusses the limitations of induction couplers and directions

for future developments.

3.4.1 Assumptions

Orbital disturbance forces and relative accelerations are significant concerns for

any OOS application. A single induction coupler on a 4 kg spherical spacecraft

of radius 0.1 m can generate a linear acceleration a = 2 × 10−3m
s2

and an angular

acceleration of α = 9 × 10−3 rad
s2

. These can easily compensate for perturbation

forces in LEO [16][111].
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Non-inertial accelerations are a consideration any time two spacecraft interact

in orbit. The Clohessy-Wiltshire model[18] finds the linearized relative accelera-

tions between the two spacecraft:

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z

(3.5)

n =

√
µ

a3
(3.6)

where x is along the line from the center of the earth to the target, z is along

the target’s angular momentum vector, and y completes the right-handed system,

often pointing tangent to the target’s orbit. In LEO, µ = 3.986× 1014 m3s−2 and

a = 4.15 × 105 m, so n = 1.13 × 10−3 s−1. On a large structure like the ISS, x

and z can be tens of meters. The ISS has a maximum dimension of r = 54.3m,

creating maximum relative accelerations of 2.07×10−4ms−2. Even a single coupler

can generate sufficient force to create accelerations an order of magnitude larger,

warranting the simulation’s assumption of an inertial target frame.

Out-of-plane forces created by induction couplers are another issue assumed

away by the simulation. Induction coupler forces always have a component point-

ing directly away from the target surface. While small, this repulsive force will

eventually drive the inspector away from the surface. There are three solutions

to this problem: First, an induction coupler inspector can use topography of he

surface to create attractive forces by placing couplers to either side of a curve or

edge. This is a promising approach because there are few space structures that are

completely flat over large scales (even solar panels have edges.) Second, a small

thruster pointed directly away from the surface could apply forces towards the tar-

get as necessary. While a thruster would require propellant, an inspector using a
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combination of thrusters and induction couplers would still get much more propel-

lant economy than an all-thruster system and avoid plume impingement. Finally,

an inspector could solve the repulsion problem by leveraging areas where orbital

dynamics cause attractive acceleration between the inspector and the target, per

equation 3.5.

3.4.2 Future Work

Induction coupler systems have many unexplored directions. The two most relevant

to this chapter are dynamics augmented path planning and hardware improvement.

The relative accelerations between the inspector and the target could augment

an inspector’s capabilities. Specifically, future studies should explore planning

paths using induction couplers to set initial conditions so that an inspector can

traverse areas which would be inaccessible otherwise. Experimentally, future induc-

tion coupler implementations should use high-speed brushless motors to increase

output forces.

3.5 Conclusion

This chapter presents a starting point for induction coupler technology. Prelim-

inary experiments demonstrate specific forces of 3.33 mN ·W−1 which are both

larger and less power-hungry than other contactless actuators. Using these ex-

perimental values, a simulated mission shows that an inspection vehicle can use

induction couplers to successfully traverse the ISS. Future work will focus on full

six-degree-of-freedom maneuverability. These initial findings show that induction
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couplers enable a unique ability for close-proximity inspection: inter-body force

without mechanical contact, cooperation, or propellant.
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CHAPTER 4

ACTIVE DETUMBLING WITH INDUCTION COUPLERS

Eddy-current forces are used as breaks on Earth, but can also stop spinning objects

like out-of-control satellites in space. Specifically, permanent magnet induction

couplers can form a three-axis damper that exhibits global Lyapunov stability. If

the magnets are mounted on motors, the reaction torque applied on the magnets by

the spinning target implies the angular velocity of the target. Spinning the magnets

opposite the direction of the targets angular velocity produces a Lyapunov stable

system that drives the angular velocity of the target to zero much faster than the

damping from stationary magnets.

This chapter shows

1. Two static permanent magnets can create a Lyapunov-stable system with a

spinning spacecraft.

2. Three orthogonal spinning magnets can sense the angular velocity of the

target and provide appropriate damping toques.

3. Spinning permanent magnets get around the limits imposed by the speed of

the angular velocity of the target on the ability of eddy currents to apply a

damping torque.

4. A spinning-magnet actuator can always drive the angular velocity of the

target to zero (Lyapunov stable.)
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4.1 Lyapunov Stability of an EC Damped System

Even without active speed control, induction couplers can create a contactless

system that is guaranteed to stably damp out a target’s motion. Eddy-current

forces provide an angular velocity damper on each axis as long as there are at least

two orthogonal magnets. This follows from the fact that the only way a magnet

produces no eddy-current toque on a nearby rotating body is if the axis of rotation

is exactly aligned with the magnet’s axis of symmetry. An arrangement of two

orthogonal magnets guarantees that the angular velocity of a target can’t align

with the symmetry axes of all the magnets.

The target body has no potential energy and rotational kinetic energy makes

up all of the body’s kinetic energy.

E = T + V (4.1)

V = 0 (4.2)

T =
1

2
ω · I · ω (4.3)

The damping torque is proportional and opposite to the target’s angular velocity.

τ = −cω (4.4)

The target’s dynamics are simply Euler’s equation of motion for a spinning body:

I · ω̇ + ω × I · ω = τ (4.5)

If there exists a Lyapunov function that is always less than or equal to the total

energy of the system, it is zero when the state of the system is zero. If it has a

derivative that is always negative, the system is stable in the sense of Lyapunov.
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The total energy of the system is a Lyapunov function in the case of a spinning

body damped by eddy-currents. From equation 4.3, E = 0 when ω = 0, meeting

the first criterion of Lyapunov stability. To check the second condition of Lyapunov

stability, find the sign of dE
dt

:

Ė = Ṫ =
Nd

dt

(
1

2
ω · I · ω

)
(4.6)

Ṫ =
Nd

dt

(
1

2
ω

)
· I · ω +

(
1

2
ω

)
Nd

dt
(I · ω) (4.7)

Note that the time derivative of the angular velocity in the body frame and the

inertial spacecraft frame are the same because ω × ω = 0.

Nd

dt
ω

B
N =

Bd

dt
ω + ω × ω = ω̇ (4.8)

By definition τ ≡ Nd
dt

(I · ω) so the right-hand term of equation 4.6 becomes

the LHS of equation 4.5

Ṫ =
1

2
ω̇ · I · ω +

(
1

2
ω

)
· (I · ω̇ + ω × I · ω) (4.9)

Combining terms

Ṫ = ω · (I · ω̇ + ω × I · ω)− 1

2
ω · ω × I · ω (4.10)

But , ω · ω × I · ω = 0 so

Ṫ = ω · (I · ω̇ + ω × I · ω) = ω · τ = ω · (−cω) (4.11)
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Ṫ = −c‖ω‖2 (4.12)

Eddy-current dynamics dictate that ∀c : c > 0 and ‖ω‖2 > 0 when ω 6=

0. Thus, the system meets both conditions for Lyapunov stability. Recall from

equations 4.1 and 4.2 that E = 0 when ω = 0 so the Lyapunov function is zero

when the state is zero. Equation 4.12 shows that the derivative of the Lyapunov

function is always negative when the system state is non-zero. As long as the

spacecraft with the induction coupler can negate the absorbed energy through

thrusters or reaction wheels

4.2 Feedback sensing of the target state

The induction coupler’s damping effects can generate information about the tar-

get’s rotational velocity. Sensing a target’s spin rates is invaluable for planning

collision-free maneuvers near a tumbling target. This analysis assumes that the

magnet-wielding chaser spacecraft can know that it is an inertial frame, through

star trackers, thrusters and gyros. If the permanent magnets are mounted on mo-

tors, the torque on the motor shaft when the magnets are held still always opposes

the angular velocity of the target.

If the actuator consists of three magnets mounted on motors, the torque on the

target is

Fnet ∝ −vB‖B‖ ∝ − m

‖x‖3
(ω × r− ωm × x) (4.13)

τ = r× Fnet (4.14)
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Figure 4.1: Diagram of target body and rotating magnet.

τ ∝ −r× (ω × r− ωm × x) (4.15)

τ ∝ −cω + r× ωm × x (4.16)

The actuator spacecraft experiences equal and opposite torques from the target

spacecraft. Thus, when ωm = 0, the torques on the magnets imply the direction

of the spin of the target. These torques act through the magnets and their motor

shafts. Using that fact, the current needed to hold the magnets still in the presence

of the external torques implies the direction and relative magnitude of the target

angular velocity along each axis. Three magnets on linearly independent axes are

necessary for this sensing technique to work because each motor can only sense

torque along a single axis.
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4.3 Spinning Magnets

Magnets mounted on motors are useful for more than just sensing the angular

velocity of the target. Eddy-current forces generated by spinning (as opposed

to static) permanent magnets can provide the same Lyapunov Stability as static

magnets, but drive the angular velocity of the target to zero faster than static

magnets. Spinning magnets remove the ceiling on the net torque imposed by the

magnitude of the target bodys angular velocity (recall equation 4.4). Instead,

the actuator spacecraft limits the maximum torque (equation 4.16.) These limits

would come from the motor torque or the actuator spacecrafts ability to counter

the reaction torque through reaction wheels or thrusters. The ability to provide

torque independent of the angular velocity of the target prevents a situation where

it takes near infinite time to actually bring the target to a stop.

4.4 Lyapunov Stability of Spinning Magnets

The torque produced by an array of spinning magnets generates a Lyapunov-

stable system. This analysis continues to assume that the actuator spacecraft can

sense the direction of the targets angular velocity as described in section 4.2. The

equation for the energy of the target is the same as in equation 4.1 and is again be

the Lyapunov function for the system. Following the analysis of section 4.1 and

substituting the torque equation with spinning magnets from equation 4.16 into

equation 4.8 gives:

Ṫ = ω · (−cω) + ω · (r× ωm × x) (4.17)
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By picking ωm appropriately based on the direction of om,

Ṫ = −c‖ω‖2 − c2‖ω‖‖ωm‖ (4.18)

Thus meeting the criteria for Lyapunov stability, but with a Lyapunov function

that converges on zero more quickly than the system with stationary magnets.

4.5 Conclusion

This chapter shows through a Lyapunov stability analysis that an array of magnets

can always reduce the angular velocity of a target spacecraft to zero if the magnet

frame (actuator spacecraft) remains inertial through thrusters and reaction wheels.

These magnets can be either permanent or electromagnets, because the eddy-

current forces only depend on relative motion between a target and a fixed set of

magnets. However, it will take infinite time for the stationary magnets to bring

the target to a complete stop. The same analysis shows that magnets mounted

on spinning motors can de-spin the target more effectively. The spinning magnets

can sense the rotation of the target through the external torque generated by the

target when the magnet has no angular velocity. Based on this information, the

magnet can then spin in the appropriate direction to slow the target.
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CHAPTER 5

A LOW-COST TESTBED FOR MICROGRAVITY EXPERIMENTS

This chapter introduces a low-cost system for simulated microgravity experiments.

5.1 Test Bed Requirements

A low-friction test bed with a versatile closed-loop controller enables experiments

that are essential for transforming induction couplers from a promising concept to

a functional technology. This section outlines the capabilities that make the test

bed system necessary for induction coupler development and the requirements on

the system in order to provide these capabilities. An additional advantage of this

test bed is its use of inexpensive off-the-shelf parts and software.

5.1.1 Justification for Test Bed Experiments

Experiments performed on a low-friction test-bed are integral to the development

of induction couplers. The literature fails to address eddy-current forces that pro-

duce controlled actuation on a remote moving target. induction couplers operate

in dynamic conditions that present numerical and analytical challenges for the

simulation, analysis, and validation of eddy-current-based control without experi-

ments. The equations governing the formation of currents by a changing magnetic

field are essentially a vector form of the heat equation. A three-dimensional partial

differential equation means that the forces produced by these interactions are im-

possible to find analytically except in a few constrained cases. Any useful actuator
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would need to operate outside of these cases. Numerical models could find the

forces, but there are problems with this approach as well. It is difficult for FEA

to accurately incorporate both a non-steady-state external magnetic field and the

dynamics of the target. Traditional FEA models are also specific to each actuator

configuration. The overhead associated with setting up each FEA makes it hard

to iterate quickly and build intuition about a new technology. Inevitably, these

models must be simplified, but it is not yet clear which assumptions can even be

made. The development of a working induction coupler needs validation of design

choices and control systems beyond that is beyond the capabilities of numerical

simulations.

Testing EC systems on a low-friction test bed has advantages over analytical

and numerical models in several ways. Experimental characterization bypasses

unmodeled effects that can be created by the many nonlinearities in the system.

Experiments on a complete system will build valuable intuition for designing the

prototype actuator. A physical demonstration of the capabilities of EC forces for

actuation is far more compelling than models. Finally, the development of the test

bed necessary for experimental characterization provides the capability to verify

future models and test prototypes of both actuator hardware and control systems.

5.1.2 Minimum Requirements for Success

The test bed needs to meet a number of requirements. These requirements can be

broken down into three broad categories:

1. Sensing Capabilities

2. Actuation Capabilities
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3. Extensibility

Accurate system characterization and closed-loop control both require ability

to measure the full state (acceleration, velocity, and position) of the target cart

during an experiment. The need for accurate time-varying measurements of the

targets state imposes a number a design constraints that are simple in concept,

but non-trivial to implement. In order to capture the target’s dynamics, the mea-

surement frequency needs to be at least an order of magnitude larger than the

dominant dynamics exhibited by the target under normal operating conditions.

Additionally, the positional resolution needs to be fine enough to capture small

position changes, because the system is only controllable over a small range. Fi-

nally, state measurements need to be consistently accurate over the course of an

experiment. Hence, the system needs to compensate for sensor drift.

Quality measurements are not useful without the ability to produce controllable

outputs and measure the state of the force-producing actuator. In order to create

forces large enough to measurably affect the target, the actuator needs to produce

at least two independent sinusoidal magnetic fields whose properties vary with

time. The magnetic field is generated by the current through the electromagnet.

As the control input (u) to the system, the currents through the electromagnets

should be both measurable and controllable (in a practical rather than formal

sense.)

Another of the test bed’s goals is to keep costs low while maximizing both the

extensibility and reproducibility of the system. In order to achieve this flexibility,

the components of the system should be easily replaced and upgraded to fit new

experiments. The target cart should be able to accept targets of different sizes

and materials, with the ability to hold them in different orientations so that the
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Figure 5.1: System architecture diagram illustrating the flow of information be-
tween components of the test bed. The track-cart subsystem is on the bottom, the
sensor subsystem is on the left and the actuator subsystem is in the upper-right.

actuator can be validated in different scenarios. Additionally, reconfiguring the

physical setup of hardware should be simple, as different experiments require dif-

ferent setups and the design of the prototype can change frequently based on new

information.

5.2 System Architecture

The test bed consists of four subsystems (Fig. 5.1). The track-cart subsystem

includes all of the moving parts and the air track that supports them. The sensor

subsystem comprises the sensors that measure the physical state of the system.

The actuator subsystem contains the electromagnets that generate the actuating

magnetic field as well as the power supply. The sensor and actuator subsystems
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Figure 5.2: The test bed. Visible components: Actuation magnets (A); Cart (C)
with accelerometer and conductive target (B); IR position sensor (D) on far right.

connect to the computer subsystem that serves as the “brain” of the entire system:

recording data, estimating the state of the cart from the sensor inputs and closing

the loop between the sensors and the actuator.

5.2.1 Track-Cart Subsystem

The track-cart subsystem is a heavily modified Pasco Scientific low-friction air

track that is powered by a standard compressed air line. The track allows the tar-

get cart to exhibit low-friction dynamics similar to those found in a micro-gravity

environment. The single DOF is beneficial because it simplifies the sensors neces-

sary to measure the state of the system and simplifies the system for experiments

that verify models or test parameter sensitivity.
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Figure 5.3: Simulink block diagram of control and data acquisition code running
on the real- time OS.

Several modifications to the standard carts improve the extensibility of the

system. Machined mounting points and modular mounting brackets enable the

carts to accept any payload with the correct screw through-holes, making the

carts able to accommodate future experiments that may have different payload

requirements. The target mount is in front of the cart to ensure that the primary

eddy-current interactions are between the actuator and the target, rather than

the cart itself. Counterweights that are adjustable in directions both parallel and

perpendicular to the axis of the cart prevent unbalanced loads from introducing

friction into the system.
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5.2.2 Computer

The core of the computer subsystem is a host computer running Simulink on

Microsoft Windows and a target computer running the Simulink xPC Target

real-time operating system. The real-time target handles analog to digital and

digital to analog conversion (ADC and DAC) through a NI PCIe 6000 DAQ card.

The real time target runs the Simulink diagram shown in figure 4 in a discrete loop

with a 0.00025 second step size. This step size corresponds to a loop frequency of

4000 Hz, which exceeds the maximum frequency of the actuator (200 Hz) by more

than an order of magnitude, allowing the system to capture and respond to all

of the relevant dynamics. The loop first converts the voltage inputs to calibrated

position and acceleration measurements. A Kalman filter implemented by the

Simulink DSP Toolbox estimates the full state of the cart from the noisy sensor

signals. A controller can then use the state estimate to inform the output voltage

to the power supply and magnets.

5.2.3 Sensor Subsystem

The sensor subsystem comprises a Freescale Semiconductor MMA7361L accelerom-

eter mounted to the cart and a Sharp GP2D120XJ00F IR position sensor. Due

to its small size, the accelerometer can be mounted directly to the target cart

without causing the payload to exceed specifications. However, the accelerome-

ter cannot send its signal wirelessly because the necessary batteries and hardware

would exceed the cart’s weight payload. Extremely fine wire intended for medical

applications provides power and data transfer while minimizing the effect on the

cart’s dynamics. Both sensors output analog voltage signals that are read by a NI
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6861 PCIe DAQ card and converted from analog to a digital signal .

5.2.4 Actuator Subsystem

The actuator subsystem comprises three electromagnets and a two channel am-

plifier. The amplifier is a Carvin DCM 1500 audio amplifier. The amp accepts

non-DC voltage signals on two channels and amplifies them, providing the cur-

rents pulled by the circuit up to current/voltage combinations, which exceed 1500

Watts between the two channels. The magnets are 15 mH laminate core speaker

inductors. These parts are both off-the-shelf and designed to accommodate the

large sinusoidal currents necessary to generate observable EC forces.

5.3 System Implementation and Assessment

The current implementation uses inexpensive, off-the-shelf components to sense the

state of the system with greater precision than any of the components could achieve

on their own. A real-time OS provides high frequency sensing, data collection, and

analog outputs.

5.3.1 Part Selection

A large part of the design phase concentrated on part selection because there is

no standardized way to instrument a low-friction test bed. Each one is usually

custom made for a specific purpose. One of the goals of this project is to create

a system that is replicable with easily available parts, instead of being at the
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mercy of equipment specialized for other purposes. The goal of an easily replicable

system is so that labs and schools can avoid a long generic design phase and focus

on the specifics of their own low-friction experiments. This section presents the

considerations informing the ultimate part selection.

Accelerometers have high bandwidth, but estimate position poorly. Conversely,

position sensors have poor bandwidth, but are able to measure position directly.

Computer filtering can compose multiple sensors, allowing them to supplement

each other. The choice in accelerometer was not critical because MEMS devices

have become both cheap and high quality. However, there are many choices for

linear position sensors vision systems, optical encoders, laser sensors and infrared

position sensors were all in consideration. These sensors all had a unique combi-

nation of price point, bandwidth, sensing range, sensing precision, and necessary

computation. This test bed uses an IR position sensor because the sensor was

inexpensive, precise, outputs easily convertible raw voltages rather than digital

signals, and since the system doesn’t require more than third of a meter sensing

range the range of the sensor is not a downside.

There were several computing options available for reading analog voltage in-

puts, closing the loop, and producing analog voltage outputs. The three main

possibilities were Labview, a microcontroller like an Arduino, and Simulink. The

system required a high frequency control loop, which can only be achieved reliably

with a microcontroller or a real-time operating system. Normal operating systems

like Windows reserve the right to put threads on hold, so it is not guaranteed that

outputs happen exactly when they need to. Arduinos can run a control loop at high

frequencies, but are limited both in on-board computing power and the ability to

record data. Labview works very well with all National Instruments products, but
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did not have the easy customizability this system required. Ultimately, Simulink

xPC target offered the most benefits and the least downsides.

5.3.2 Sensor Verification

The following graphs show test data demonstrating the capabilities of the senor

suite. Using a Kalman filter to estimate the true state of the cart, the system

can achieve sub-centimeter position precision for system dynamics slower than 20

Hz. While not ideal, this precision is sufficient for eddy-current actuator tests,

which have demonstrated maximum forces of 0.05 N. These forces create system

dynamics with a 5 Hz characteristic frequency under normal operating conditions:

a 0.25 kg target cart and a 0.01 m minimum sensing precision. 5 Hz dynamics are

sufficiently slow for the sensor suite to measure.
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5.4 Discussion

In practice, the test system met all of the prescribed requirements and served as

platform for several successful and unsuccessful (though still informative) exper-

iments. The test bed provided the data in chapter 3 as well as preliminary tests

for the experiments in 7 and several unsuccessful explorations into electromagnet-

based induction couplers. The system does have several flaws as well. Leveling

the track perfectly is impossible, and even then, tiny deviations in its height cre-

ate potential wells that noticeably affect the cart’s dynamics. On the sensor side,

modern computer vision software has made high-end cameras extremely useful in

controlled environments like laboratories as long as a project’s budget can support

them.

5.5 Conclusion

The quest to design any new spacecraft actuator eventually requires experimen-

tal verification. There are several low-friction test bed models available for ex-

periments requiring simulated microgravity dynamics. However, both planar air

bearing tables and rotational test beds have downsides. They introduce unwanted

dynamics, have states that are hard to measure, and are expensive partially be-

cause they require specialized parts as well as consumables. These downsides and

the technological gap in contactless orbital interactions motivated the design of a

new low-friction test bed. This 1-D test bed has several advantages: it is easy to

replicate because it is built from off-the-shelf components; it avoids as many ex-

traneous dynamics as possible; and it is extensible thanks to input sensors, output

actuators, and components that are easily modified and replaced. Novel spacecraft
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construction will become less specialized and more widespread; the first satellite

built by a high school recently achieved orbit. This trend will make simple, inex-

pensive test beds ever more important so that investigators can spend their time

on the experiment itself rather than the experimental test bed.

5.6 Conclusion of Part One

Part I introduced induction couplers: a new technology for contactless spacecraft

actuation. Chapter 2 outlines the implementation-independent properties shared

by all induction couplers. It goes on to describe how a single coupler can take

advantage of dynamics to pull on a target - an impossible task in a static situa-

tion. Chapters 3 and 4 explored two induction coupler applications: inspecting a

large target and de-tumbling a target with unknown dynamics. Finally, chapter 5

explains the details of a simple, low-cost testbed for exploring induction coupler

dynamics. Together, these results lay the groundwork for induction couplers to

transform from proof-of-concept to a functional component of space-exploration

infrastructure.
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Part II

Complex Dynamical Systems:

Design, Control, and Motion

Primitives

71



CHAPTER 6

INTRODUCTION

Induction couplers offer a unique capability - contactless actuation with an uncoop-

erative target. They also pose a unique set of challenges. Induction coupler systems

are dynamic, high-dimensional, nonlinear, and control limited. These properties

demand new methods for planning, control, and the system’s design itself.

6.1 Motion Primitives

  

Target Surface

Induction 
Couplers

Figure 6.1: An experimental inspector on a low-friction testbed uses induction
couplers to actuate off of an aluminum plate simulating the ISS exterior.

The goal of motion primitives is to build a library of maneuvers[25] that are the

building blocks for global control strategies[79] and controller synthesis[82]. Hybrid

trajectories composed of discrete transitions between continuous motion primitives

have unlocked capabilities many nonlinear dynamical systems including humanoid
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robots[35], dexterous arms [14] and helicopters [26] but this approach has not yet

been tried in space systems. While probabilistic nature of motion planners have

previously clashed with the need for strong guarantees in space operations, modern

approaches can generate guarantees to address those concerns[10][29].

6.2 Control

Probabilistic methods like Rapidly-exploring Random Trees (RRTs) [51] are a

common approach for attacking high dimensional systems. Several methods have

demonstrated how RRTs can control systems with non-linear dynamics [78] and

non-holonomic[42]. Probabilistic methods combine naturally with planning ap-

proaches that use local controllers to cover state space. These include sequential

potential functions for navigation [20] and preimage backchaining, which uses se-

quential control ‘funnels’ to drive a system to a goal state [52, 57, 14].

The controller half of probabilistic co-generation is heavily influenced by LQR

trees [105], which combine sequential stabilizing funnels with probabilistic methods

and numerical verification [107]. Additionally, LQR trees provide coverage over all

(reachable) state space by finding the regions of attraction for their control gains

through SoS verification [88]. Our approach uses similarly verified coverage as

information about the state space volume that a controller can drive to a stable

goal state. Like LQR trees, our approach uses LQR control gains [49] in each

individual controller. While simple, LQR gains can be quickly calculated and

extended for control-limited systems [95].

RRTs in general and LQR trees in particular are single-query approaches - they

drive the system to a single goal state. Single-query planners are good for a single
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task or maneuver, but a system that may need to perform several different tasks

needs a multi-query planner. There remain fewer analogs in dynamical systems for

multi-query probabilistic planners like Probabilistic Road Maps (PRMs) [43, 61]

than their single-query counterparts because many dynamical systems have only a

few stable goal states. Thus, verification and controller generation for multi-query

dynamical systems is an area of active research [55]. Following the lead of PRMs,

our approach creates a safe roadmap through state space by connecting stable goal

states with overlapping Region of Attractions (RoAs).

The plethora of possible goal states raise the question of how to evaluate the

controller, because it can’t be judged on driving the system to any single state. The

number of states it can stabilize provides a different metric. Ideally, this metric

would be the volume of the closed loop system’s reachable set. Many systems

can use the solution to the Hamilton-Jacobi-Bellman (HJB) equation to find their

reachable set [61]. Other methods of verification include ‘growing’ reachable cells

[21]. However, these methods are computationally intractable above three or four

dimensions which makes them impractical even for dynamical systems that are

unconstrained in three degrees of freedom.

Instead, our system needs an approximation for the full reachable set. One

possible approximation is the volume covered by the RoAsof each set of control

gains. Input-constrained systems without a clear metric for total energy defy tra-

ditional energy-based Lyapunov functions [45], so our method needs to generate

Lyapunov functions by another path. Sum-of-Squares (SOS) programming lever-

ages numerical optimization and increased computational power to algorithmically

find a Lyapunov function for a system [73]. The function’s level sets define a RoA

in state space where the controller can always stabilize the system. These RoA
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are often small in strongly nonlinear systems because a single LQR controller is

based on a linearization of the system. One downside of SOS programming is

that it is computationally intensive and scales poorly to high dimensional systems.

However, recent research has shown that Diagonally-dominant SOS (DSOS) pro-

gramming and Scaled-Diagonally-dominant SOS (SDSOS) programming are viable

alternatives to SOS programming in high dimensions [1].

6.3 Algorithmic Design

Many systems are full of numerical design parameters that dominate their dynam-

ics. These parameters can be anything from the wing width of an airplane to the

volume of a chemical tank to the length of a pendulum or the number of joints in

an arm. The resulting dynamic effects are then unavoidably linked to the system’s

control law. A naive set of parameters can render the system effectively useless.

Ideally, the system’s parameters would take its future controller into account to

maximize its whole performance.

System design can be long and involved, so ideally it would leverage increased

computing power to expedite the process and unlock the power of complex sys-

tems. Traditional methods for designing simple systems close the loop between the

parameters and controller through a combination of intuition, analysis/tuning, and

leveraging well-studied systems. This process tends to fall apart as the system be-

comes more novel or complex - a perfect place for more algorithmic approaches to

step in [117]. As additive manufacturing, laser cutters, and cheap, multi-use elec-

tronics make new and on-the-fly system creation more common, design techniques

need to match these advances [31].
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Note that many systems don’t need algorithmic design synthesis. Often, the

design of a physical system is determined by external factors - manufacturing costs

and well-understood designs are important considerations. A novel system is often

intuitive or well understood; it may have a few free parameters which have well-

known effects on performance [37]. However, even in these cases algorithmic system

generation enables a symbiotic pairing between humans and machines - leaving the

humans to do the creative work they are best at, while the computer takes care of

the details.

Different fields have used algorithmic co-generation to design parameters and

controllers across several applications. Chemical engineering uses several tools to

simultaneously generate designs and control laws for large-scale systems [47, 91,

90, 9]. Aerospace engineers have applied co-generation to the designs of flexible

spacecraft [33, 84, 98] and micro air vehicles before they were drones [40]. The

co-generation methods used in aerospace and chemical engineering take a purely

optimization-based approach, which can provide explicit performance guarantees.

These guarantees are needed because the systems in question are often delicate

and expensive.

Algorithmic co-generation can be especially useful in robotics, where systems

need to adapt to many situations [84] and may be reconfigurable [48] or designed on

the fly [118]. Robotic co-generation uses either optimization over the parameterized

dynamics or genetic algorithms paired with simulations [4, 36].

Each of these systems has trade-offs. Optimization-based methods perform

well in several cases: when the dynamics can be expressed analytically [83] or

when the dynamics are smooth, low dimensional or linear. If a system doesn’t

meet these conditions, the optimization could fail to converge or require excessive
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tuning (essentially reverting to hand-design.) Simulation-based co-generation can

handle systems that defy traditional optimization. However, whereas simulations

can demonstrate functionality, they give no guarantees. Additionally, both opti-

mization and simulation-based methods primarily target systems with a single goal

- whether it be a point in state space or a limit cycle.

6.4 Contributions

Part two comprises three primary contributions:

1. The four motion primitives an induction-coupled inspector can use to navi-

gate the surface of a target - chapter 7.

2. Experimental demonstration of induction coupler motion primitives - chapter

7.

3. A new algorithm for simultaneously generating the design and controller for

complex dynamical systems - chapter 8.
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CHAPTER 7

MOTION PRIMITIVES FOR AN INDUCTION-COUPLED

INSPECTOR

Goal
State

Generate 
Waypoints

Generate 
Maneuvers

Environment, StateDynamics Model

Generate 
Control

Actuators

Planning Control

Figure 7.1: Induction Coupler System Diagram.

The first step towards an induction coupler locomotion system is to model the

system and break the problem into motion primitives for each DOF. What is an

induction coupled inspector capable of given different states? This is a difficult

question because eddy-current forces depend both on the robot’s pose and the

geometry of the environment.

This chapter provides three contributions to planning and control using

induction-coupler actuation, focusing on waypoint generation, control generation,

and actuator modeling (figure 7.1). It first builds a dynamics model by extending

2D force model to find the force generated by arbitrary configurations of multiple

induction couplers. The model leads to four basic control inputs and their as-

sociated motion primitives that can be combined to create six degree-of-freedom

actuation: planar force (force in the plane of the target), planar torque (torque

about an axis out of the plane), out-of-plane force, and out-of-plane torque. Sim-

ulations and experiments illustrate that each of these motions requires a different

configuration of couplers and control input from those couplers. Finally, a multi-
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movement trajectory shows how the primitives can be composed to create 6-DOF

movements and motivates several requirements on induction coupler systems.

Section 7.1 presents an analytical model to solve for induction-coupler force.

Section 7.2 describes and simulates the open-loop behaviors that cause motion

in each DoF. Section 7.4 presents experimental verification of each motion with

a prototype induction coupler system on a low-friction testbed, shown in figure

6.1. Section 7.5 addresses general considerations for multi-movement trajectories

and simulates a full trajectory. Finally, section 7.6 discusses the implications for

induction inspector design, control, and implementation.

7.1 Actuator Model

Conductive Target Surface

Magnet Array

N

S

Figure 7.2: Diagram of a single induction coupler array

Maxwell showed that a time-varying magnetic field induces an electric current

in nearby conductors. Magnetic fields generate a force on moving currents. These
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two effects combine to create an eddy-current force between a source of a changing

magnetic field and a conductive surface. Induction couplers can use mechanically

moving permanent magnets or time-varying electromagnets to generate a time-

varying magnetic field. This chapter focuses on the simplest and least power-

intensive implementation of a mechanical induction coupler: a motorized, circular

array of magnets.

Paudel and Bird derived an analytical solution for the force from a single ro-

tating array of permanent magnets near a flat conductor. [75] In a Newtonian

reference frame (S) fixed to the conductive surface as shown in figure 7.2, the force

on the magnet array is

SF =
w

8πµ0

∫ ∞
−∞

Γ(ξ, g)|Bs(ξ, g)|2dξ (7.1)

where Γ is a transmission function associated with the conductive surface and B

is the spatial Fourier transform of the time-invariant part of the array’s magnetic

field. Γ and B are nonlinear functions of the system state. Γ depends on the

array’s angular rate ω, velocity v and distance from the surface g. B is a nonlinear

function of g as well. Near a curved surface of the scale of typical spacecraft,

the assumption of an infinite flat surface is locally valid for induction couplers

because the operating gap is on the order of centimeters: very small compared to

the curvatures of most target surfaces.

Eddy-current properties and geometry can extend these forces from con-

strained, single wheel models to dynamic models of a 6-DOF orbital inspector.

This extension is important because the coupler’s axis is rarely perpendicular to

the surface normal, and it is much more convenient to represent the forces in a

global coordinate system instead of one fixed to the target surface. Eddy-current
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forces act only in opposition to change in magnetic field. So, the net force always

acts in a direction perpendicular to the array’s spin axis. Thus, a 3D formulation

of the force in any reference frame can be found by tilting the force plane (shown

in figure 7.2 along with â.)

F =Fz(g, ω,v) (â× n̂)

+Fy(g, ω,v) (â× n̂)× â

(7.2)

Fz and Fy are the components of the planar force calculated in equation 7.1.

This statement of eddy-current forces is powerful because it is both analytical

and general. The generality enables fast simulations of a 6-DOF inspection vehicle

while the analytical nature enables provable statements about the system’s stabil-

ity. A full system consists of several couplers to control all six DOFs. Each[M2]

coupler rotates around an axis, ân, located at dn, shown in figure 7.3. The net

control force is

Fnet =
∑
i

Fz (âi × n̂i) + Fy (âi × n̂i)× âi (7.3)

and the net control torque is

τ net =
∑
i

di × [Fz (âi × n̂i) + Fy (âi × n̂i)× âi] (7.4)

ni is the vector to the surface segment closest to array i.

The following sections use this model to demonstrate how a robotic inspector

can use induction couplers to generate force and torque in all six rigid body DOFs.
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7.2 Movement Primitives

7.2.1 Planar Movement

While moving in the plane parallel to the target surface, induction couplers resem-

ble contactless wheels, but they generate force parallel to the surface that increases

with their speed. Thus, a fixed arrangement needs at least two couplers to move

in all three planar DOFs and three couplers to control each DOF independently.

Unlike wheels, induction couplers do not provide significant constraint force

perpendicular to their rotation. Wheels skid if they accelerate too quickly, whereas

induction coupler accelerations are limited only by the capabilities of their motors.

Target Surfacex

y

Inspector

Array 1

Array 2

Figure 7.3: Configuration for planar control: An inspector with two arrays spinning
about ŷ can translate and rotate above a flat target surface

An inspector can translate in the plane by using a pair of induction couplers like
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differential drive wheels. Figure 7.3 shows this mode. Ideally, pure translational

motion will involve no net torque. Applying these forces along a line of action that

does not pass through the system’s CoM naturally produces a torque. Without

no-slip constraints, force and torque are coupled. Thus, the system is extremely

sensitive to modeling error and implementing induction couplers for locomotion

generally requires active control of all rigid-body DOFs.

An inspector also needs to rotate in the plane parallel to the surface. The

simplest way for induction couplers to produce rotation about an axis normal to

the surface without translation is similar to differential drive wheels, with two

couplers spinning in opposite directions on axes parallel to the surface. Like pure

translation, pure rotation in a real system is sensitive to the relative geometry of

the coupler, the surface, and the CoMlocation, again demanding feedback control

to decouple angular from translational motion.

7.2.2 Out-of-Plane Movement

It is more complicated for induction couplers to produce force and torque that

control movement out of the plane parallel to the target surface because the forces

from a single induction coupler are limited in their direction.

The force generated by spinning magnets is almost completely tangential to

the surface. For large ω, the ratio of the normal to tangential components of the

force increases slightly and can be used to repel away from the surface. However,

these forces are small and act only in the +ẑ direction, giving no control in −ẑ.

By strategically summing forces across several couplers near different locations on

a non-flat surface, the inspector can generate larger net forces in both +ẑ and −ẑ.
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Inspector

Array 1

Array 2

(Out of page)

(Out of page)

Target Surface

Figure 7.4: Configuration for out-of-plane control

Rotating two couplers oriented along the ŷ with opposing ω creates a force at

each coupler whose x̂ components cancel and whose ẑ components sum, pulling

the inspector towards the surface or pushing it away. This strategy is illustrated

in figure 7.4.

Using tangential forces at each coupler, the inspector can control rotation about

the ŷ axis by giving each coupler the same input speed ω. With only two couplers,

force always couples with torque. A three-coupler array would allow the force and

torque to be applied independently.
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7.3 Simulation

In this section, simulations demonstrate each motion primitive: planar translation,

planar rotation, out-of-plane translation, and out-of-plane rotation. In each case,

the simulation constrains the inspector to the plane of interest to demonstrate

open-loop motion primitives and match experimental constraints. In practice, a

closed loop controller and more than two couplers are essential to enable motion

out of the plane. The model considers an inspector that is the size of a micro- or

nano-satellite, using two motors each with two magnets as induction couplers. The

simulation parameters shown in table 7.1 match the experimental demonstrations

in section 7.4.

Table 7.1: Simulation Parameters

Description value units

Max Coupler Speed, ω 32.7 rad s−1
Max Coupler Power, Pmax 2 W

Max Magnet Shear Speed, v 0.98 m
s

Magnet Surface Field, B 4667 Gauss
Mass m 10.2 kg
Inertia J 1.02 · I kgm2

Gap in Planar Movement g 1 cm
Conductivity, σ 2.5 ×107 Sm−1

Curvature of non-flat target, κ 0.14 m−1

7.3.1 Planar Movement

To demonstrate planar movement, the target is represented by a flat conducting

plate in the x-y plane shown in figure 7.3.

In a simulation of planar translation the inspector first drives itself forward by
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Figure 7.5: Simulation of planar translation. The top plot shows the speed inputs
to the couplers and resulting control force. The bottom plot shows the inspector’s
position

commanding opposite speeds in each coupler. Because â1 = −â2, opposite speeds

in the couplers result in both spinning in the same direction. The speeds of both

couplers then reverse direction, creating a negative force and moving the inspector

backwards. Figure 7.5 shows the coupler speeds, force, and displacement.

In a simulation of planar rotation the inspector commands the same speed to

each coupler, rotating itself about the positive z axis. The speeds of both couplers

then reverse direction, generating a torque about the negative z axis. Figure 7.6

shows the coupler speeds, torque, and heading.
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Figure 7.6: Simulation of planar rotation. The top plot shows the speed inputs to
the couplers and resulting control torque. The bottom plot shows the inspector’s
heading. Note: the control speed is the same for both arrays

7.3.2 Out-of-Plane Movement

To demonstrate out-of-plane movement, the target is a curved surface in the x-z

plane, shown in figure 7.4. The surface curvature matches an ISS module both in

simulation and experiment to approximate real capabilities as much as possible.

The induction couplers both spin about the y axis in the body frame so that they

can produce motion in the x-z plane by generating force tangential to the surface.

In figure 7.7 the inspector pulls itself towards the surface by spinning with

opposing speeds so that the z component of each tangential force is negative.

When the forces from each coupler sum, the resultant force is entirely in the −z
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direction, pulling the inspector towards the surface. The inspector then reverses

the coupler speeds, pushing itself away from the surface and preventing a collision.

Finally, it stops itself at its original position.

In figure 7.8 the inspector rotates about the y axis by spinning each coupler in

the same direction.
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Figure 7.7: Simulation of out-of-plane translation. The top figure shows the input
speeds for each coupler and the resultant force on the inspector. The bottom figure
shows how the gap between each coupler and the surface change in response to the
control force
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Figure 7.8: Simulation of out-of-plane rotation. The top figure shows the input
speeds for each coupler and the resultant force and torque on the inspector. The
bottom figure shows how the gap between each coupler and the surface change in
response to the control force and torque

7.4 Experimental Demonstration

This section discusses an experimental demonstration of each motion primitive:

planar translation, planar rotation, out-of-plane translation, and out-of-plane

rotation–in an ideal situation. The demonstration consists of two prototype in-

spection vehicles, each with two spinning magnet arrays. One prototype, pictured

in figure 7.9, demonstrates the planar movement suggested in figure 7.3. The other

prototype, pictured in figure 6.1, demonstrates the out-of-plane movement shown

in figure 7.4. These inspection vehicle analogues operate on a low-friction air-

bearing test bed, which allowed them to simulate a space-like environment with

89



three DOFs.

The analogues operate close to, but not touching, an aluminum sheet-metal

target during the experiments. During planar movement, a flat target sits above

an analogue with arrays spinning about horizontal axes. Out-of-plane movement

uses a vertically oriented, curved target and vertical spin axes. The gap between

the arrays and the target was approximately one centimeter (more precision is

impossible because of imperfections in the arrays and the target.) A single exper-

iment ended as soon as there was contact between an array and the surface or the

gap between them grew large enough to neuter the actuator.

Hardware: The induction couplers are Sparkfun Standard DC Gearmo-

tors, each with a laser-cut cylinder containing one north- and one south-facing

neodymium magnet. A 12V lead-acid battery powers the motors. The properties

of the magnets and motors are in table 7.1. An Arduino microprocessor and Xbee

radio enable remote open-loop commands and handle low-level motor control. A

visual tag-based tracking system records the vehicle’s heading and position with

respect to the tags visible in figures 6.1 and 7.9. The aluminum target sits above

the

Considerations: The arrays cannot be placed symmetrically about the CoM

due to the constraints of the test platform. Similarly, the tracking points cannot

be located at the CoM because the target occults it from the tracking system; the

target plate was mounted directly above the vehicle out of necessity. These con-

straints mean that the experiments serve as a demonstration of individual motion

primitives, rather than a full model validation.
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7.4.1 Planar Movement

  

Motor

Permanent Magnets

Target Surface Goes Here

Figure 7.9: Overhead view of the platform for demonstrating induction-coupler-
generated planar motion

Figure 7.10 shows the trajectory of the inspector during planar translation.

The inspector spins both arrays forward to translate forward. The majority of

the inspector is obscured because the arrays needed to remain directly under the

target surface.

Figure 7.11 shows a maneuver in which the inspector uses induction couplers to

rotate itself around the −z axis and then reverses its motion by generating torque

around +z. Note that â1 = â2, the opposite of the simulations.
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Figure 7.10: Trajectory during a planar translation maneuver. The body of the
inspector is obscured by the target surface in the lower right part of the picture

7.4.2 Out-of-Plane Movement

Out-of-plane motion requires a different inspector-target setup when the exper-

iments are restricted to three DOF The plate used to demonstrate out-of-plane

movement has a curvature designed to match the Harmony module of the ISS.

The out-of-plane demonstration inspector has two couplers, both with axes point-

ing in the −y direction, out of the page. Figure 7.12 shows the heading of the

inspector as it rotates itself out of the plane about the ŷ axis. Figure 7.13 shows

the closing gap as the inspector pulling itself towards the surface. Note that the

distance it can travel before colliding with the plate is tiny, a clear motivation for

closed-loop control.

Comparison between the average force in each primitive and its simulated coun-

92



70 75 80 85 90 95 100 105
4.2

4.4

4.6

4.8

5

H
e
a
d
in

g
 (

ra
d
)

70 75 80 85 90 95 100 105
−40

−20

0

20

40

Time (sec)

A
rr

a
y
 S

p
e
e
d
s
 (

ra
d
/s

)

Figure 7.11: Inspector heading (top) and induction coupler speed (bottom) during
open-loop planar rotation

terpart is critical in order to validate the force model and verify that the induction

couplers are affecting the inspector’s dynamics as expected. Out-of-plane transla-

tion provides cleanest force extraction because unlike the other three cases there

there are no coupled torques, making it simple to find force of each coupler(fc)

from the distance between the inspector and its target (d(t)).

d(t) = xt − x(t) = xt − x0 − v0t−
1

2m
(2fc)t

2 (7.5)

Here, xt is the target’s position, x0 and v0 are the inspector’s initial position

and velocity. m is the inspector’s mass. The force falls out of the quadratic term

in a quadratic fit to the data. In a similar manner, a Savitzky-Golay filter finds

the average force during the other three noisier, torque-coupled primitives. The
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Figure 7.12: Inspector heading (top) and coupler speeds (bottom) during out-of-
plane rotation

experimental forces compare favorably to those predicted by the coupler model

in equations(7.2 - 7.4) and the simulations in section 7.3 when given the same

parameters as the experiments. Table 7.2 shows a comparison of the simulated

and experimental forces, verifying that the real actuator forces (F) match the

dynamics model (ẋ = f(x,u) in figure 7.1.

7.5 Multi-movement Trajectories

An inspector can chain together sequences of the four primitives to move between

waypoints across the surface of a target. By connecting movements, the inspector
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Figure 7.13: Distance between plate and center of tag during out-of-plane trans-
lation. A quadratic fit indicates a constant force of 4.30 mN

gains mobility, but movement sequences also introduce a new level of complexity.

This section describes the considerations for a multi-movement controller and il-

lustrates a trajectory in which an inspector chains together the four movements to

move across the surface of an ISS module.

7.5.1 Zone of Safety

The state-dependent physics of induction couplers impose constraints on waypoint

placement and maneuver sequencing:
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Table 7.2: Simulated vs. Experimental Forces and Torques

Description Experimental Simulation Units

Planar Translation 0.0151 0.0176 N
Planar Rotation -0.0022 -0.0020 Nm

Out-of-plane Translation 0.0043 0.0037 N
Out-of-plane Rotation -0.0018 -0.0012 Nm

The left-middle column shows the measured average force for translational movements
and torque for rotational movements. The right-middle shows those same values from a

simulation with the same physical parameters.

1. Waypoints need to be sufficiently close to the surface to maintain control.

2. Waypoints need to be sufficiently far from the surface to maintain safety.

Conditions (1) and (2) together define an operating ‘zone of safety’ near the

surface. This zone can be thought of as a set of allowed waypoint states w ∈ Z

with w ∈ R12. Z depends on the system dynamics

ẋ = f(x,u) (7.6)

which in turn are strongly tied to the inspector’s configuration relative to its target.

Condition (1) encodes the dependence between an induction coupler’s maxi-

mum force output and its distance from a conductive surface. If the waypoint

causes large1 gaps between the surface and a coupler, it will lose control authority.

If enough couplers are rendered useless, the system can become uncontrollable and

any velocity away from the surface will cause it to float off into space. Waypoints

can prevent permanent uncontrollability in two ways: through proximity to the

surface such that all the couplers are useful, or via a velocity component that will

cause each coupler ci, i ∈ [1...k] to become useful at some time tk in the future after

the system dynamics drive its configuration,xi closer to the surface. The closeness
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condition can be expressed as:

w ∈ Z : ∃ti | ∀ci, ‖xi(ti)‖ < rineffective (7.7)

Condition (2) comes from the straightforward requirement that an inspector

not crash into its target. Any waypoint needs to allow the inspector to stabilize

itself without touching the target. In other words, a waypoint is unsafe if it will

cause the inspector to crash regardless of control effort, u. The distance condition

can be expressed as:

w ∈ Z : ∃u(t) | ∀t > t0,x(t0) = w,x(t) 6∈ xcollision (7.8)

Determining Zone of Safety When is a waypoint in the zone of safety?

How a planner asserts whether a given state is in Z can vary along a scale that

trades decreasing computational and algorithmic complexity for increasing conser-

vatism. The straightforward method to check a waypoint’s inclusion in Z is to solve

for a sequence of control inputs that satisfies both conditions on Z. A non-convex

optimization can encode both conditions directly and can verify that a point is in

Z. Verification with trajectory optimization is still slightly conservative because

the inability to find a solution doesn’t guarantee that the zone-of-safety conditions

cannot be met. While straightforward and minimally conservative, this approach is

computationally expensive, doesn’t guarantee convergence, and requires significant

parameter tuning.

1The distance where a coupler becomes ineffective depends on the coupler’s properties, the
inspector’s properties, and the system’s state.
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A different approach is to encode Z in terms of system dynamics and actuator

work:

T ≤ max

(∫
S

Fcouplers · ds
)

(7.9)

where T is the system’s linear kinetic energy, and Fcouplers is the total force pro-

duced by the inspector’s induction couplers. S is the worst-case path – the path

that makes it as hard as possible for the inspector to prevent itself from achieving

escape velocity or from crashing into the surface. The work-energy condition is

more conservative than the optimization approach, because it requires the inspec-

tor to have the ability to bring itself to a stop (dissipating its translational kinetic

energy) instead of simply avoiding the surface or an escape trajectory.

Lyapunov functions can verify that a waypoint is in Z. This check is the most

conservative method of the three but also the easiest to implement and compute.

A waypoint is in Z if there exist a set of gains and a stable point that has a

region of attraction including the waypoint but excluding the target surface. By

definition, the inspector won’t leave the region of attraction and will not crash or

permanently escape. More details on algorithmically finding and verifying regions

of attraction are in chapter 8.

7.5.2 Multi-Movement Considerations

In addition to the zone of safety constraints, the unique physics of induction cou-

plers introduce several considerations for trajectory generation. The straddle con-

sideration encodes the geometric requirement that the induction coupler system

needs a non-flat surface to generate a force towards the target (recall figure 7.4.)

The force from each coupler will always have a component perpendicular to, and
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pointing away from, the closest point on the surface (recall equation 7.3.) As such,

the inspector needs to use the net force from all of its couplers to produce a net

force directly towards the target. Larger angles between the vector directed to-

wards the target’s center and the vectors from each coupler to its closest surface

point will decrease the components of the surface-perpendicular force that points

directly away from the target, thus making attractive forces easier. Additionally,

the spin axes of any coupler pair coupler producing attractive forces need to have a

component parallel to the curve’s axis. The upshot is that ’straddling’ the surface

between two or more couplers is a good strategy when the inspector needs to move

towards the target or maintain a certain distance. A path-planning algorithm

should select waypoints accordingly.

An inspector can execute any motion with either of two control laws, but it

is better to use a different law for long maneuvers than stabilization. Like tradi-

tional thrusters[111], induction couplers can provide quick impulses or sustained

closed-loop control. Each of these strategies serves a different purpose: impul-

sive actuation should generate velocity for large rotations or translations, while

continuous control is best for stabilizing the inspector’s state and adjusting its

configuration. While technically either approach could be used for both purposes,

the nature of induction coupler forces encourages this mode-separation for two

reasons: nonlinearities and repulsive forces. While the system can be linearized so

that a feedback controller can stabilize it to a trajectory or waypoint, its nonlin-

earities make feedback control impossible for large translations or rotations. This

leaves open the possibility of a strategy like model predictive control [15]. However,

recall that one component of an induction coupler’s force always points directly

away from the target surface. This repulsive component increases relative to the

total force with the coupler’s speed. As such, both bang-bang control (using im-
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pulses for closed loop control) and sustained force in a single direction during a

long movement will both tend to drive the inspector away from the surface and

eventually out of the zone of safety.

7.5.3 Example Trajectory

The example trajectory in figure 7.14 has five phases. Each one is an example

of a different maneuver that an inspector like the one in figure 7.15 would use to

locomote over the surface of a large target like the ISS’ Harmony Module.

1. Translation parallel to the surface in the direction of the curve’s axis.

2. Rotation in the plane parallel to the surface.

3. Translation towards and away from the surface.

4. Translation parallel to the surface along the curve.

5. Rotation out of the plane parallel to the surface.

In step 1 the inspector moves along the module’s z axis. It creates an impul-

sive force and momentum in the +ẑ direction by spinning the couplers with axes

perpendicular to the desired motion in a short burst with angular speed ω. This

impulse will also generate momentum away from the target, which if left unchecked

would drive the inspector out of the zone of safety. It uses couplers c2 and c4 with

a simple PD controller to maintain a constant distance from the target throughout

the step. Finally, as it nears the waypoint, the inspector activates a (different) PD

controller for couplers c1 and c3 to dissipate its velocity from the initial impulse.

t0 ≤ t < t1
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1uimp = {t0 < t < t0 + ∆t : [ω 0 ω 0 0 0]T}

1upd1 = (−kpxerr1 − kdẋerr1 )[0 1 0 − 1 0 0]T

1upd3 = {xerr3 < ∆x3 : (−kpxerr3 − kdẋerr3 )[1 0 1 0 0 0]T}

In step 2 the inspector rotates a full 90 degrees in the plane parallel to the

surface. c1 and c3 spin in opposite directions to produce an impulsive torque

about the global −x̂ axis. The inspector then rides its angular velocity to a new

orientation. Unlike step 1, there is no distance holding feedback control2— the

drift away from the target prevents any of the couplers from crashing into the

surface. As in step 1, a PD feedback loop slows the inspector at the end of the

maneuver, this time based on its angular orientation.

t1 ≤ t < t2

2uimp = {t1 < t < t1 + ∆t : [−ω 0 ω 0 0 0]T}

2updφ = {φerr < ∆φ : (−kpφerr − kdφ̇err)[−1 0 1 0 0 0]T}

In step 3 the inspector repositions itself closer to the surface after the drift

during step 2. c5 and c6 are now oriented parallel to the cylinder’s axis and

produce forces perpendicular to the surface by counter-rotating according to a PD

controller.

t2 ≤ t < t3

3upd1 = (−kpxerr1 − kdẋerr1 )[0 0 0 0 1 − 1]T

In step 4 the inspector translates along the surface in the −ŷ direction by briefly

using the same inputs as step 1 to impulsively generate momentum and maintaining

distance according to the strategy in step 3. In-plane translation perpendicular

to the curve’s axis differs from translation parallel to the curve’s axis because the
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movement doesn’t preserve the inspector’s orientation with respect to the surface.

Instead, the inspector will appear to rotate with respect to the surface, bringing

some couplers closer and some farther away. The gap between one set of couplers

and the surface would eventually render them ineffective.

t3 ≤ t < t4

4uimp = {t3 < t < t3 + ∆t : [ω 0 ω 0 0 0]T}

4upd2 = (−kpxerr2 − kdẋerr2 )[1 0 1 0 0 0]T

In step 5 the inspector rotates about ẑ to reorient after translating. It uses a

PD controller and a single coupler to drive itself back to an orientation where each

set of couplers are equidistant from the surface. During this movement there is

also an inevitable force tangential to the surface, undoing some of the progress in

step 4.

t4 ≤ t < t5

5updψ = (−kpψerr − kdψ̇err)[0 0 0 0 0 1]T

The inspector in the simulation shown in figure 7.15 is a hybrid between the

simple inspectors that demonstrated single movements. It has a set of additional

couplers so that it can control its distance from the surface in both its starting

orientation and after rotating 90 degrees. This illustrates an inherent flaw in

designs with fixed coupler positions that section 7.6.1 discusses further.

During the simulation, the inspector zeros its linear and angular velocity be-

tween each maneuver. In practice, this would be done by one LQR (Linear

2Distance-holding feedback control is possible but was not implemented for simplicity.
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1

2

3 4
5

Figure 7.14: Multi-motion trajectory using all four motion primitives.

Quadratic Regulator) controller built from a system model linearized around the

waypoint or several local LQR controllers clustered around the waypoint. Other

work discusses this strategy, so for simplicity the simulation starts step n at wn−1

as long as the inspector reached with low velocity and a small pose offset.
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Figure 7.15: Diagram of the setup for an example trajectory composed of multiple
motions.

7.6 Discussion

The experiments and simulations of induction coupled motion primitives have sev-

eral implications for the inspection spacecraft’s design, trajectory generation, and

physical implementation.

7.6.1 Design Lessons

The design of inspector’s structure, its control laws, and waypoint selection should

all take into account the zone-of-safety conditions. Control authority over the gap
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Figure 7.16: Inspector position, heading and control during maneuvers one and
two.

between the inspector and the target surface is essential to satisfy both conditions

of the zone of safety. The inspector achieves this control authority by positioning

two couplers spin axes parallel to a curve’s axis close enough to surface to be effec-

tive. It can do this through careful rigid-body motion or reconfigurable couplers

which places a design restriction either on feasible trajectories or the coupler’s

physical attachments. In the first case, any would need to account for the cou-

pler’s configuration at all time, and in the second case the couplers could mount

to actuated limbs.

The inspector’s velocity can easily drive it out of the zone of safety — send-
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Figure 7.17: Inspector position, heading and control during maneuvers three
through five.

ing it flying off into space or crashing into the surface. Trajectories can encode

this danger by capping waypoint velocities and generating impulses accordingly.

Many experiments, both real and simulated, left the zone of safety because the

couplers applied a force for too long. Since the system has no inherent resistance

to displacement or velocity, the damping ratio, ξ, is entirely dependent on the

closed-loop gains. Without an appropriate selection of proportional and derivative

gains (kp and kd) the inspector will overshoot waypoints, escape the zone of safety,

and encounter disaster. To create a safely damped system, the control gains should
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enforce

ξ =
kd

2
√
mkp

≥ 1 (7.10)

Controllers and trajectories should also account for the nonlinear relationship

between an induction coupler’s input speed and output force. Recall that as a

coupler’s speed increases, its force component perpendicular to the target increases

faster than the parallel component. The rotating force vector can cause input

commands to drive the inspector away from the surface, even when that input is

supposed to pull it towards the surface! This danger is another reason for the

path planner to limit maximum command velocities and for control laws to use

closed-loop gains that create a critically damped system.

7.6.2 Physical Implementation

The simulations in sections (7.3,7.5) and the experiments in section 7.4 reveal

several possible improvements for future induction coupler systems. Hybrid con-

trollers and mechanically mobile couplers could both address the system’s extreme

sensitivity to environmental geometries. Even during simulations, accumulated

numerical errors could be enough to disrupt an open loop trajectory. In the exper-

iments, modeling errors from inevitable misalignments in motors and measurement

uncertainties led to several unexpected effects including stronger force/torque cou-

pling and smaller zones of safety.

It is well known that feedback control can compensate for disturbances and

modeling errors. However, the control laws for each motion primitive depend on

an appropriate configuration for executing that maneuver. For example, a pair

of couplers need to be oriented with axes perpendicular to the desired motion
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to control translation in that direction. Thus, an effective controller needs both

discrete and continuous components, with guards on the discrete transitions to

protect the system from executing an inappropriate control law given the system’s

true configuration.

Mechanically mobile couplers offer another approach to robustness. The config-

uration of each coupler is a dominating effect on actuation forces, so even a small

decoupling between the coupler’s position and the inspector’s CoM will lead to

more control authority. The static coupler arrangement on the experimental and

simulated inspectors has the advantage of simplicity, but the associated restric-

tions ultimately make static arrangements a poor choice. Instead, couplers could

mount to the end of actuated arms that move them relative to the inspector’s body.

Several studies address the additional levels of control that reconfigurable space

robots require[116][66]. Speculatively, the inspector could treat its actuators as a

distributed system, with each coupler measuring its own distance and orientation

to the surface, collaborating with others to achieve the larger goal of controlling the

body’s state. Ultimately, the position and orientation of the couplers makes the

difference between success and failure so its a good strategy to maximize control

over these key state variables.

7.7 Conclusion

This chapter presents a system that can actuate an orbital inspection vehicle in six

DOFs near a conductive surface without mechanical contact. Induction couplers

enable contactless, propellantless motion on orbit — a unique capability that can

form the basis of orbital servicing missions. The construction of a generalized
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model enables fast dynamic simulations of an inspector using multiple induction

couplers to actuate near a target surface. These couplers enable four different open-

loop maneuvers that together span 6-DOF: planar translation, planar rotation,

out-of-plane translation, and out-of-plane rotation.

Theory and experiment show that couplers rotating on axes parallel to the

plane generate planar motion similarly to a differential drive. Two or more couplers

can take advantage of the surface geometry to generate motion out of the plane

parallel to the target. This arrangement generates force in the ẑ direction by

two or more creating shear forces whose x̂ and ŷ components cancel but whose

ŝ components add. Flipping the direction of only one of these couplers produces

a torque coupled with a force, enabling rotation out of the plane. Simulations

demonstrate each of these four maneuvers in an ideal scenario and a prototype

system on a low-friction air table shows that they work in practice as well as theory.

A full three-dimensional trajectory illustrates the capabilities and challenges of

composing multiple primitives.

Future work will focus on two areas: adaptive controllers and movement plan-

ning. A robotic inspector will need adaptive controllers to account for induction

coupler’s strong dependence on poorly known parameters of the environment. The

inspector will also need to plan movements carefully because its ability to exert

control with an induction coupler is based on both its kinematics and the local

geometry.
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CHAPTER 8

PROBABLILISTIC DESIGN/CONTROL CO-CREATION

This chapter introduces a new approach to algorithmic dynamical system de-

sign. Our probabilistic co-generation method uses techniques from evolutionary

design, motion planning, and controller verification to generate designs and evalu-

ate them on controller coverage. This process results in physical design parameters

and a multi-query controller. These together attempt to maximize the volume of

state-space that the system can explore without becoming unstable. Algorithmi-

cally generated designs that can safely reach many goal states are especially valu-

able to our motivating system: an inspector spacecraft using induction couplers.

The inspector exhibits a confluence of problematic characteristics for traditional

co-generation methods - complex dynamics, multiple goal states, and high dimen-

sionality. While designed for a specific system, this method is broadly applicable

to the design of systems with similar characteristics.

Why does the world need another approach to algorithmic design and controller

synthesis? New technologies enable systems that fall through the holes in the

existing methods.1 Consider the induction inspector in chapter 3. Unlike a free-

flying inspection vehicle [17], it uses novel electromagnetic actuators that allow it

to grapple surfaces without mechanical contact. These actuators have advantages,

requiring no propellant, but a poorly designed controller can send the inspector

spinning into space. The probabilistic co-generation approach can unlock multi-

query controllers for an entire class of systems with nonlinear, high-dimensional
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Multi-Query

High-dimensional Complex Dynamics:
Actuator Saturation

Nonlinearity
State-dependent Control

Target systems for Co-generation

Figure 8.1: Probabilistic co-generation addresses high-dimensional, multi-query
systems with complex dynamics.

dynamics and limited control authority (figure 8.1.)

8.1 System Description

The probabilistic co-generation method is meant for complex dynamical systems

where other methods fall short. In general, these systems have nonlinear, state-

1See section 6.3 for state-of-the-art in algorithm-based design/control synthesis
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dependent actuators, a high dimensional state space, and many stable points.

Consider a many-link pendulum with limited actuators at each joint. The actuators

are sufficient to hold the joints in many stable configurations, but other states can’t

be kept from chaotic motion. More complicated real-world examples include some

underactuated walkers [37] and many electromagnetically actuated systems [96]

including the inspection spacecraft described in subsection 8.1.2.

8.1.1 General System Description

Co-generation targets systems with parameterized designs, D(p) where p are mu-

table and numerical parameters of the system. In the thought experiment, p are

the length and mass of each pendulum link. These parameters are either discrete

(number of links) or continuous (properties of the links.) D, along with fixed pa-

rameters and information about the environment, must have enough information

to numerically model the system.

D and the independent environment variables2 specify the nonlinear dynamics

of the system with a state x and control input u.

ẋ = f(x,u) (8.1)

A controller C defines a set of control actions u(t,x) that can drive the system

to a stable goal state, x G. The total volume of the regions of attraction in C

define V(C) - the volume of state space that C can successfully drive to some x G.

While V(C) has little meaning in an absolute sense, it provides a metric to compare

2Independent environment variables can be fixed design parameters (like a fixed mass) or
external factors that affect the dynamics, like an external magnetic field
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different D based on how much state space they can explore before “wandering”

into a possibly unrecoverable state.

In general, the co-generation problem is to find a D and C that create a system

that exhibits some desired performance. In the toy example, performance is based

on possible joint configurations and in the motivating example, performance is

based on controllable rigid-body configurations. The larger the set of achievable

configurations, the better the performance.

Traditional human-intuited or optimization-based design and controllers fall

short when there exists a combination of:

• x is high dimensional.

• p is high dimensional.

• f(x,u) is nonlinear and not analytically solvable.

• u saturates, especially if umax and umin are functions of x.

• The system cannot be controlled over all of state space, regardless of the

design.

• Unknown goal specifications and a large number of possible goal points.

The dimensionality of p and x that constitute ‘high dimensional’ varies based

on the behavior of the other criteria. High dimensional systems with slowly

changing dynamics and state-independent actuators are often still amenable to

optimization-based design. At some dimension, human intuition breaks down and

optimizers fail to converge. In these cases, a probabilistic approach to both the

design and control may be needed.
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8.1.2 Motivating System Description

The real-world system motivating this approach is a robotic inspection spacecraft

using induction couplers for contactless manipulation. Induction couplers create

actuation forces from the interaction between time-varying magnetic fields of spin-

ning magnets or oscillating electromagnets and induced currents in conductive

targets. These forces allow a spacecraft to manipulate a target and locomote itself

without physical contact at distances of several centimeters.

Induction couplers enable unique capabilities, but also exhibit the behaviors

that make traditional design-and-then-control difficult. The rigid body system it-

self has a 12 dimensional state space. Each actuator could be placed anywhere

on the inspector, with any orientation - six parameters per actuator. The actua-

tion forces both increase nonlinearly and change direction with the control input.

The actuation force’s direction and magnitude also depend on the distance and

relative orientation between the surface and the actuator. With enough distance,

the actuators become effectively useless which can cause the system to become

uncontrollable if too many actuators are too far from the target. Finally, a robotic

inspector needs the ability to stabilize itself in many different configurations. With

this complexity and number of free parameters, creating a design without consid-

ering its associated controller could lead to systems with poor performance. The

actuators’ nonlinear, state-dependent, and saturated response make it hard to in-

tuit a design that can lead to a useful controller. Algorithmic co-generation is a

natural solution.

This chapter includes:

• A new probabilistic algorithm for simultaneous design and control (section
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8.2.)

• A comparison showing that the algorithm converges on a known optimal

solution in a simple system (section 8.4.1.)

• Experimental validation that the algorithm beats human design in a comp

(section 8.4.2.)

8.2 Algorithm

The goal of the algorithm is to find both a design, D, and controller, C, that

together maximize the volume of state space over which the controller can success-

fully stabilize the system. This controller is composed of a set of local control gains

associated with both a stable point x and a RoA of the gains about x. Each RoA

is an analytically defined ellipsoidal level set ρ. The closed-loop system employing

the gains associated with ρ converges to x from any point within ρ. Because all

x in C are stable points of the system, the system can stabilize any state that lies

within any ρ. Together, the total volume of state space covered by all the ρ in C

creates a “controllable volume”, V(C).

By its nature, the controllable volume is a conservative proxy for the amount of

state space the system can visit and then return to a stable point. The controllable

volume addresses both concerns of the system: the ability to achieve as many states

as possible and to do so safely, without either drifting away (a state that can never

be stabilized) or violating constraints like ’don’t crash’ that can be encoded in

the various ρ. Thus, the controllable volume in algorithm 1 makes a good fitness

function for exploring the design space.

The controllable volume can act as a fitness function for exploring the design-
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Algorithm 1 Find Controllable Volume

1: D ⇐ input design
2: for i = 1 to max controllers do
3: x ⇐ random state ∈ stable states
4: [A,B] ⇐ linearization of f(x,u) around x
5: [K,S] ⇐ LQR(A,B,Q,R)
6: ρ⇐ level set for the closed loop system using K about x
7: C.add-node(x,K,S, ρ)
8: end for
9: for all node N in C do

10: if ρi ∩ ρ 6= ∅ then
11: C.add-edge(ρi, ρ)
12: end if
13: end for
14: OUT = Volume(C)

space through one of four algorithm classes: stochastic search, grid-based search,

gradient-based optimization, and genetic algorithms. A stochastic design-space

exploration (shown in algorithm 2) is fast, but has the downside that improvement

over multiple iterations is random. Both grid-based searches and gradient-based

optimization fail on the high-dimensional systems in question. Genetic algorithms

are a good compromise because they systematically attempt to improve on each

iteration, while avoiding the full computational complexity of most optimization

methods.

Algorithm 2 Stochastic Design-Space Exploration

1: C.init(NULL)
2: best V ⇐ 0
3: best design ⇐ NULL
4: while no convergence do
5: D ⇐ new parameterized design
6: V ⇐ Stochastic Control-Volume(D)
7: if V > best V then
8: best V ⇐ V
9: best design ⇐ D

10: end if
11: end while
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8.2.1 Algorithm Execution

While the algorithm hasn’t exceeded a total number of loops set by

max iterations and improvements in the fitness function haven’t stalled (the

number of loops without a better D hasn’t exceeded max no improve), the algo-

rithm iteratively generates new designs, controllers, and their associated fitness

functions. D and the independent environment variables define a new dynamical

system that needs a controller. This generation can either be stochastic (high

speed with no guarantees) or part of a genetic algorithm.

The algorithm populates the controller by first picking a state from the set of

stable states, defined either explicitly (with a pre-defined range for a continuous set

of points) or implicitly (with a function that checks the stability of each sampled

point.) It then linearizes the system about that state and finds the LQR gains for

that linearized system. SOS finds a verified polynomial level set ρ that is added

to the controller along with the LQR gains. This process proceeds until it meets

a termination condition like reaching some maximum number of gain nodes.

Once the controller is fully populated with gain nodes, a graph is created by

generating an edge between gain nodes. A conservative connection policy connects

only two nodes N1 and N2 with x1 and x2 such that x1 ∈ ρ2 and x2 ∈ ρ1. The

fitness function returns the total volume filled by the RoAs in the controller.

The algorithm returns a design D and an accompanying controller C that max-

imize stabalizable volume.
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8.2.2 Controller Execution

A possible control policy using C is as follows:

Start with an initial state x0 and a target state xG. Find two gain nodes, N0

and NG such that whose level sets encompass x0 and xG respectively. Perform a

graph search to connect the two nodes and generate a series of waypoint nodes

N1 ... Nk. Assuming the connection policy in section 8.2.1, while inside ρi the

system should use Ki until it is inside ρi+1 and then switch to Ki+1, effectively

“hopping” between nodes. This policy provides stability guarantees because the

system is always driving itself towards a stable point while within the RoA of that

point and using the gains associated with that RoA. Figure 8.2 shows the RoAs

and associated path for a simple example.

The system can then use other path planners to reach stable states near the

node states. One approach is to generate a new sequence of nodes with overlapping

RoAs that lead to the goal state, like a fractal of the larger map. This approach

assumes smooth dynamics, but the RoA of the node state already makes that

assumption.

This control policy is not optimal and leaves significant room for improvement

because moving this way gives no performance guarantees beyond stability. It is

meant to illustrate how the results of the co-generation algorithm can be incorpo-

rated into a control policy that allows the system to traverse volume of C without

additional controller synthesis. Further discussion of control policies is in section

8.5.2.
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(b) Graph and example control-gain-path from node 1 to node 5.

Figure 8.2
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8.3 Implementation Details

The number of gain nodes necessary to allow controllers to cover possibly control-

lable states varies with the smoothness of the dynamics. V(C) can converge with

a smaller max controllers when the gradients of the dynamics are small and the

RoA for individual nodes are large compared to the size of the state space. The

user needs to pick the parameters built into the controllers unless they are included

as design parameters. In our example the matrices Q and R that generate LQR

gains are built-in controller parameters.

Different regions of state-space may be more important than others. The algo-

rithm can incorporate this information in two ways. One option is to assign more

weight towards picking node centers in a region of interest during the sampling

step. Another option is adding weight to points in the region of interest during

the integration step. Our implementation assigns the same weight to each state.

Several different methods can find a RoA for each gain node. SOS is the most

widely used and toolboxes like SPOT [59] simplify the process of generating and

manipulating Lyapunov functions. However, SoS does not scale well to high di-

mensions. Alternatives include simulation-based approaches, DSOS programming

and SDSOS programming [1].

Numerical methods are necessary to find the volume of each controller because

there is no good way to find the volume covered by several overlapping ellipses

analytically. We use Monte Carlo integration because of the high dimensionality.

In our implementation, a set of points from the Halton sequence is generated across

the convex hull of the controller and each point checks whether it is contained in

any RoA. The Halton sequence’s deterministic sampling points allow volumes to
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be reliably compared while still exhibiting the large dispersion needed to capture

high-dimensional volumes. There are many increasingly fancy ways to implement

Monte Carlo integrators for more accuracy.

The samples from the integration step also populate the edges of the controller’s

graph. Each point is already checking whether it is in any RoA, which in the worst

case checks each RoA in the controller. To populate the graph, the sample points

check whether they are in each RoA, keep track of the RoAs containing them, and

then add an edge between all gain nodes associated with those RoAs.

There are many evolutionary algorithms, each with several parameters. CMA-

ES[34] is a strong choice because it is derivative-free and designed for non-linear

but continuous problems. CMA-ES has easy-to-use open source implementations

in most major languages [5]. Any optimization algorithm’s convergence is sensitive

to many input parameters, and evolutionary algorithms are no exception. How-

ever, CMA-ES found feasible designs in two unrelated systems using its default

parameters and the control-volume fitness function, suggesting that it is a good

choice for probabilistic design-control.

8.4 Experiments

We demonstrate the co-generation algorithm with two systems: a double pendu-

lum and a robotic inspection spacecraft using novel actuators . The pendulum is

a simple example demonstrating that the algorithm converges on a known optimal

design. The spacecraft system shows how the co-generation algorithm can gener-

ate designs for systems that are intractable for traditional design methods. The

generated spacecraft design outperforms the intuitive symmetric design of the type
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that often outperforms generated designs.

The success criteria for the co-generation algorithm are:

1. Generate a design that can be controlled in a quantifiable volume of state

space.

2. Generate a design that is as good or better a intuition-driven human design.

Figure 8.3: The pendulum. Co-generation maximizes the stable states achievable
by limited τ1 and τ2.

Without criterion 1 the algorithm would be completely useless. Real usefulness

comes from criterion 2. Many algorithmic designs succeed at criterion 1 but fail

at 2. The human design used as a baseline exhibits the symmetries and even

distribution of struts that would intuitively allow the system to stabilize itself in

the largest possible state-space volume.

8.4.1 Pendulum

The double pendulum in figure 8.3 is a simple nonlinear system with four states,

two actuators - one at each joint, and an analytical equation of motion. Its sim-
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plicity means that its amenable to both hand design and other co-generation meth-

ods. Using probabilistc co-generation to find a design and controller is overkill.

However, the double pendulum is a good baseline system that demonstrates how

probabilistic co-generation arrives at the same conclusions as other methods, given

enough time.

Equation 8.2 describes the pendulum’s dynamics. For abbreviation, α = m1l
2
1+

m2(l
2
1 + l22), β = m2l

2
2, δ = m2l

2
2, ci = cos(θi), si = sin(θi), cij = cos(θi + θj).

α + 2βc2 δ + βc2

δ + βc2 δ


θ̈1
θ̈2

+

−βs2θ̇2 −βs2(θ̇1 + θ̇2)

βs2θ̇1 0


θ̇1
θ̇2

+

m1gl1c1 +m2g(l1c1 + l2c12)

m2gl2c12

 =

τ1
τ2


(8.2)

Each of the two actuators saturates at τi = umax. These two limited actuators

create a non-linear system with four continuous sets of stable points and a state-

space that is largely unstable.

The double pendulum has a simple design space: the lengths and masses of its

arms, li and mi. The arm mass/length design space has a clear optimum design

using the controllable volume metric: minimizing the masses and lengths of the

arms gives the actuators maximum control over the pendulum’s joint angles. Op-

timization via MATLAB’s fmincon confirms the optimality of this design, making

it the clear choice as an experimental baseline. The volume of the interconnected

RoAs for this design provides a baseline controllable volume.
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In figure 8.4, the co-generation algorithm generates designs using increasing val-

ues of max iterations in a stochastic search. The generated design’s controllable

volume approaches the baseline value as max iterations increases, demonstrating

convergence on the optimal design. An evolutionary algorithm using controllable

volume as a fitness function explores the design space quickly and converges to the

optimal values in a few iterations (figure 8.5.)
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Figure 8.4: The controllable volume of designs generated by a stochastic search
converges on the controllable volume of the optimal design. The volumes are
normalized by the controllable volume of the optimal design.

8.4.2 Spacecraft

The other test system, an inspection spacecraft, is a complex system that uses

novel electromagnetic actuators to interact with a conductive target without con-

tact. The control forces from these actuators are nonlinear, position dependent,
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Figure 8.5: The controllable volume of designs generated by a stochastic search
converges on the controllable volume of the optimal design. The volumes are
normalized by the controllable volume of the optimal design.

and prone to saturation. Coupled with the spacecraft’s rigid-body dynamics, the

actuators create a system that exhibits all the criteria listed in section 8.1. This

complexity causes traditional methods to fall short and motivates the creation of

the co-generation algorithm.

The experimental model is a simplified version of a real system currently in

development [87]. The model spacecraft is a rigid body with three degrees of

freedom (two translational, one rotational.) Struts attach the actuators to the

main mass of the system so that the actuators’ positions aren’t constrained by

the inspector’s body geometry. The angles between the spacecraft body and the

four struts are the free parameters, p, specified during the design of the system.

The length of the struts and mass of the spacecraft are fixed parameters, while

the position of the surface (that magnetically interacts with the actuators) and
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dynamics of the actuators are external environmental variables.

Optimization methods fail to generate designs and controllers for this system,

even with a smaller set of parameters than the real system. Both fmincon and

SNOPT can’t provide a baseline design because they fail to converge on solutions.

This failure drove our new method in the first place. Without optimized designs, a

system designer would need to turn to their intuition. The human baseline is this

intuitive design that places struts symmetrically spanning the space of possible po-

sitions, which ideally would make the system stabilizable in as many configurations

as possible.

The results in figure 8.6 show the design and a projection of the control volume

for both the human and algorithmically generated design. The designs (subfigures

8.6a and 8.6b) show the body, strut positions, and target surface. Subfigures 8.6c

and 8.6d) show 2-d projections of the regions of attraction onto the x-y plane. The

baseline design has a stabilizable volume Vh = 1.14E−11. After 65 iterations, the

algorithm produced a design with a stabilizable volume Va = 3.4E− 11. The ratio

Va
Vh

= 2.99 shows that the algorithm succeeds on both criteria 1 and 2.

Closer inspection of the resulting design yields unexpected insight into the

system as well. The algorithm’s design consistently places a strut pointed straight

down; its actuator as close to the surface as possible. The state-dependence of

the actuators explains this placement because their effectiveness decreases with r4

from the surface. However, there is a trade-off between this arrangement and the

human-designed baseline which places actuators farther out to the side to provide

more control when the inspector rotates. Post hoc this trade-off is obvious and

could be analyzed with traditional methods. However, the size of the design space

and complexity of the dynamics completely obscures that clarity during the initial
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design process. This insight is specific to the particular model, but it demonstrates

how the co-generation algorithm can lead to insights about complex systems. The

co-generation leads to both an expanded control volume and a design insight that

would have been lost in a traditional design-and-then-controller-synthesis process.
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Figure 8.6: Algorithmic design and controllers (left) and human design and con-
trollers (right.) The system comprises a main body attached to a set of nonlinear
actuators by struts. The co-generation algorithm uses the angles of these struts
as the free parameters (p). In an unexpected result, the algorithm showed that
symmetry between the four actuators led to less controllable area than a design
with a central actuator.
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8.5 Discussion

The algorithm presented here is meant as a proof-of-concept for algorithmic design

based on a controller metric. There are many possible extensions and areas for

future work both in the design and controller halves.

8.5.1 Design

There are multiple methods for generating a design at each iteration. The im-

plementation in this chapter uses two different approaches: a näıve stochastic

approach and an evolutionary algorithm. While we used CMA-ES because of its

flexibility and convenient implementation, the specific evolutionary algorithm is

a mutable design choice. Evolutionary algorithms don’t always converge on a

global optimum. Their final results depend on the initial design distribution (fig-

ure 8.7) and many other parameters. However, evolutionary algorithms’ iterative

improvements and wide search space support the goal of probabilistic co-creation

to generate feasible designs and controllers, rather than optimal ones.
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Figure 8.7: Three designs generated by an evolutionary algorithm from random
initial distributions. After ten generations, the designs do not converge on an
optimum, but all outperform the human baseline.
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A gradient-based optimization method using the control volume as a cost func-

tion could replace the entire co-generation algorithm if the number of parameters

is small and the dynamics are smooth. Most complicated systems don’t fulfill these

requirements, especially if some parameters can change discretely (three vs. four

struts.) Many other algorithms can generate superior simultaneous designs and

controllers if the system is amenable to gradient-based optimization.

8.5.2 Control

New center points for new gain nodes can be generated in different ways to maxi-

mize coverage or connections between nodes. Selecting only new center points that

fall within an existing RoA maximizes connections between nodes; the new node’s

RoA is guaranteed to intersect the existing RoA, forming a connection. Select-

ing gain node centers that are already within the RoA of another node guarantees

that the control policy described in section 8.2.2 will succeed. Alternately, selecting

only new center points that do not fall within, an existing region increases coverage

and decrease redundant controllers for the same points. Dynamics-based distance

metrics can also be used to pick new center points that are ‘dynamically close’

to existing regions, leading to new regions that expand coverage and are likely to

connect to others [78, 30]. V(C) need not necessarily be composed of many LQR

regions of attraction. If the dynamics are analytically tractable, SoS can find a

single parameterized RoA for the entire range of goal states [55]. This single RoA

reduces computation significantly because it requires only one verification but it

doesn’t lead directly to controller synthesis as a graph of connected gain nodes.

Time-Invariant LQR (TILQR) controllers must be centered around a stable

point. This restricts C to a volume of state space immediately around the set
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of goal points while using TILQR gains. Limiting the controller to TILQR gains

limits V(C), trading volume for consistency. C could expand farther into state space

by including Time-Varying LQR (TVLQR) gains through methods like LQR trees

[105]. The trees’ TVLQR controllers would stabilize the system to pre-computed

trajectories that lead to stable points or other time-varying LQR controllers. LQR

trees have verified RoAsthat can add to the V(C) design metric. The downside

of the expanded control volume is that LQR trees depend on accurate trajectory

optimization which can fail to converge for complicated systems, especially when

the specific dynamics are unknown a priori because of the design’s mutability.

The final control policy need not be limited to jumping between the LQR gains

in C. Several different robust on-line planners exist, including Model-Predictive

Control (MPC) and LQR trees. These control laws outperform LQR gain hopping

most of the time. When using these controllers, C remains valuable because it

can provide constraints for MPC that prevent it from driving the system to an

uncontrollable state. Additionally, the gain nodes could provide goal regions for

LQR tree generation.

8.6 Summary and Conclusion

Designs for complex dynamical systems often require decisions that can benefit

from a tight loop between the design parameters and the control system instead

of the traditional approach: design first, controller later. This chapter presents an

approach to algorithmic design that uses volume of state space as a metric. This

volume acts as a conservative metric for the robustness of the generated controller

and by proxy, the quality of the design. The approach is appropriate for high-
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dimensional systems with several parameters thanks to its probabilistic nature.

8.7 Conclusion of Part Two

Part II attacked the challenges posed by a robotic inspector locomoting with in-

duction couplers. The inspector is a high-dimensional, nonlinear, dynamical sys-

tem with state-dependent control authority and actuator limits. Chapter 7 built

up motion primitives that allow an induction-coupled inspector to actuate all six

rigid-body degrees of freedom. The chapter extended the model from 3 to account

for arbitrary coupler orientations, simulated and experimentally demonstrated the

motion primitives, and composed them into a full trajectory around an ISS module.

An induction inspector’s control authority is strongly and non-intuitively coupled

to its design. Chapter 8 addressed this challenge by introducing a new probabilistic

design and controller generation algorithm for complex nonlinear systems.

8.8 Closing Thoughts

This thesis is a two part exploration into induction couplers. The first part en-

compasses the space-oriented details of the technology; the second looks at the

technology more broadly as a dynamical system through a robotics lens. The

reader should come away with three points. First, the theoretical groundwork for

future development of induction coupler actuators: models that illustrate their

capabilities and limitations. Here, it is important to note that while most of the

specific work has focused on permanent-magnet induction couplers, many facts

apply to electromagnet-based induction couplers as well.
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Second, the reader should learn some practical lessons in building and testing

induction couplers and electromagnetic spacecraft systems in a terrestrial environ-

ment.

Finally, tools from robotics can be leveraged to enhance human creativity. The

probabilistic co-creation algorithm attempts to shine a light in this direction. Until

now, a system’s complexity and operating limits have been constrained by human

ability to analyze them and reason about them. Powerful processors and better

numerical models can enable human engineers to work more closely with computers

to create previously intractable systems.
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