
 

THERMAL ADAPTATION IN THE AMERICAN RED SQUIRREL (TAMIASCIURUS 

HUDSONICUS) 

 

 

 

 

 

A Dissertation 

Presented to the Faculty of the Graduate School 

of Cornell University 

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 

 

by 

Fríða Jóhannesdóttir 

January 2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 Fríða Jóhannesdóttir 

 



i 

 

THERMAL ADAPTATION IN THE AMERICAN RED SQUIRREL  

(TAMIASCIURUS HUDSONICUS) 

 

Fríða Jóhannesdóttir, Ph.D. 
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Temperature is one of the most important environmental variables impacting organisms. For 

endotherms, temperature can be extremely testing since they need to maintain a constant core 

body temperature at any given ambient temperature. However, endotherms can survive both in 

very hot areas and very cold areas and mammals are, for example, found throughout the world 

and widespread species may face temperature differences of more than 80C over their 

distribution range. Recent changes in climate are likely to have great impact on thermoregulatory 

abilities and with increased regional temperatures due to anthropogenic climate change more and 

more species are being pushed to, or beyond their thermal limits in parts of their distribution, 

making an understanding of adaptation to temperature particularly important.  

The following series of studies examine multiple aspects of thermal adaptation in the 

American red squirrel (Tamiasciurus hudsonicus). The first chapter asks if the distribution of the 

species is limited by temperature. Indeed, three of the major predictors of the species distribution 

reflect temperature, i.e. mean annual temperature, minimum temperature of the coldest month 

and maximum temperature of the warmest month. Knowing the importance of climate in 

determining the species niche helps us understand the selective pressures it asserts. The second 

and third chapters discuss adaptations found in the morphology of T.hudsonicus that relate to 

temperature. Both whole body and skull dimensions vary with temperature, with smaller animals 

being found in colder areas, either as a response to reduction of heat loss in cold conditions or 
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increased heat loss in hot conditions. This is consistent with Bergmann’s Rule, but with regards 

Allen’s Rule, only one protuberance or appendage – the nose - was found to show an adaptive 

trend and that shows a relationship with humidity rather than temperature. The fourth chapter 

examines variation in gene expression levels in response to temperature and elevation. The gene 

expression responses suggest that T.hudsonicus has a decreased metabolic activity in cold 

conditions compared to warm (or alternatively increased metabolic activity in warm conditions) 

and shows greater metabolic responses to increased elevation than to temperature.  

Overall T.hudsonicus is found to live within limits determined by temperature and shows 

both morphological and gene expression response to temperature.  
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lived close to the Arctic Circle in Akureyri until moving to the capital city, Reykjavík, to study 
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CHAPTER 1 

 

The thermal niche of the American red squirrel (Tamasciurus hudsonicus) 

 

Fríða Jóhannesdóttir1, Hugo Rebelo2,3, Joana Paupério2, Paulo Célio Alves2 & Jeremy B. Searle1 

1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA 

2. CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade 

do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal 

3. School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 

ABSTRACT  

Temperature is one of the most important environmental variables impacting organisms. For 

endotherms, temperature can be extremely testing since they need to maintain a constant core 

body temperature at any given ambient temperature. Mammals are found throughout the world 

and widespread species may face temperature differences of more than 80C over their 

distribution range. To cope with these extreme temperatures mammals may either respond 

behaviorally or physiologically. If these responses prove unsuccessful in maintaining a constant 

body temperature the individual will perish.  

In this study we focused on the American red squirrel, Tamiasciurus hudsonicus, a small 

widespread mammal found in coniferous forests of North America. The species is active year 

round and found as far south as southern New Mexico and Georgia (in mountain ranges) and as 

far north as northern Alaska. Here we attempt to answer how temperatures affects the species 

distribution range using species distribution models.  

Our findings suggest that climate is the main predictor of the distribution of 

T.hudsonicus. We found that three main climatic factors; annual mean temperature, maximum 
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temperature of the warmest month and the minimum temperature of the coldest month were the 

most important factors in our species distribution model. While the species can easily cope with 

cold temperatures it appears that it may sometimes be close to its heat limits and it can be 

expected that with increased temperature rise, due to anthropogenic climate change, populations 

in the south, which already are isolated on mountain tops, may go extinct.  

INTRODUCTION 

One of the most important environmental variables to affect organisms in general, and mammals 

in particular, is temperature, which can change daily, seasonally or spatially. In polar areas the 

environmental temperature can be as low as 60-70C below zero and in hot deserts temperature at 

the hottest time of the year can reach between 50 and 60C (Careau 2007). These extremes mean 

that mammals are subjected to great physiological challenges and temperature can influence 

individual behavior and fitness and, when individuals are pushed beyond their thermal limits, 

may cause cold and heat stress (Karl & Fischer 2008; Marcos-Carcavilla et al 2010). The thermal 

limits are between the lower critical temperature, i.e. the lowest temperature a mammal can 

withstand without increasing metabolic rate to maintain constant body temperature, and the 

upper critical temperature, i.e. the highest temperature a mammal can withstand before starting 

heat dissipation (Feldhamer et al 2016). In essence, the temperature limits in which a species can 

survive defines its ‘thermal niche’ and this concept can be applied to mammals as to other taxa 

(Bowler et al 2015). 

Mammals are endotherms and as such use metabolic heat to regulate body temperature, 

keeping it constant irrespective of the environmental temperature (McNab 2002). This provides 

the benefit of high aerobic capacity and extended periods of activity but it is energetically 

expensive and the main challenges when dealing with temperature extremes are related to 
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management of energy and water flow (Humphries et al 2005; Careau 2007). When faced with 

temperatures lower than the critical temperature and the endotherms are losing heat to the 

environment they need to increase their energy expenditure and heat production and thus 

metabolism (e.g. Humphries et al 2005; Careau 2007; Moore & Huntington 2008). Some 

mammals deal with decreased temperature by lowering body temperature and increasing both 

insulation and fur thickness (Lovegrove 2005; Glanville & Seebacher 2010). However, species 

may instead avoid exposure to extreme cold and thereby decrease energy demands for 

thermoregulation and need for increased foraging. In hot areas, where water scarcity is often a 

concurrent problem, ambient temperature is often close to the core body temperature. One of the 

most efficient ways of dealing with excess metabolic heat is through evaporation (since 

convection becomes problematic when the thermal gradient is reduced) which, in dry areas, can 

increase risk of dehydration (Careau 2007).  

Even though endotherms like mammals have multiple ways of dealing with various 

thermal conditions there are limits to what each species can tolerate and this constrains species 

distributions (Humphries, Thomas & Speakman 2002; Gammons, Mengak & Conner 2009). 

Species need to spend more energy to maintain body function beyond their thermoneutral zone 

(Feldhamer et al 2016), they can only do so for short periods of time without a significant loss of 

fitness and will not be able to survive long-term in areas outside of their thermoneutral zone 

(Oswald et al 2010). Species with narrow distribution are often found to have lower thermal 

tolerance than widespread species that may face extreme cold during the winter in parts of the 

species distribution and extreme heat in summer in others (Sunday, Bates & Dulvy 2012). 

However it has also been reported that there may not be any relationship between the breadth of 

the thermoneutral zone and latitude, and climatic variability, meaning that thermal physiology of 
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mammals may not be particularly linked to ambient temperature and the species may instead 

have behavioral strategies to cope with temperature (Kjaliq et al 2014).   

Given those contrasting results it is of great interest to analyze the importance of 

temperature and other climatic variable on particular species of mammal. A way of 

understanding the relationship between ecological factors, climate, and the distribution of 

particular species is to use ecological niche models/species distribution models (Loveless et al 

2016). These use current location data for a species and use geographic information systems 

(GIS) to attribute environmental data (topography, climate, land cover category etc.) to the 

location data and from that build a model that accurately describes the species distribution. 

Species distribution models have been applied widely for mammals (e.g. Kanagaraj et al 2013; 

Latinne et al 2015). In relation to an interest in defining the thermal niche, species distribution 

models can, in particular, provide information on the impact of temperature in constraining the 

species distribution. 

A species with an exceptionally wide distribution, and therefore of great interest in terms 

of its response to climate, is the America red squirrel (Tamiasciurus hudsonicus). This is a small 

mammal found in coniferous forests throughout northern North America and along the 

Appalachian mountain chain in the east down to Georgia and the Rocky Mountains in the west 

down to New Mexico (Steele 1998). The species is found as far north as Aklavik, Northwest 

Territories (around 68N), as far west as the Seward peninsula, Alaska (up to 168W), as far south 

as the Mogollon mountains, New Mexico (around 33N), and as far east as Newfoundland 

(around 52W). The species does not hibernate or go into daily torpor and needs to leave the nest 

to forage for food throughout the year. For these reasons the species is subjected to both extreme 

cold temperatures in various parts of its distribution, and to high temperatures in others. It can 
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therefore be suggested that the species limits might be determined, in part, by temperatures, 

potentially cold temperature in the north and warm temperatures in the south. Here we examine 

this contention using a species distribution model based on location data from museum records 

of T.hudsonicus.  

 

MATERIALS AND METHODS 

 

Species records 

Presence data for T.hudsonicus over the period 1960-2000 was obtained from a variety of 

museums, both through vertnet.org and from museum curators and collection managers and 

represent a subset of specimens in a larger study with museum records over ca. 150 years 

(chapter 2). This 40-year period was chosen to fit with the accurate climate information 

available. The 2681 T.hudsonicus records that have been gathered cover the known range for the 

species throughout USA and Canada (figure 1.1). There is an issue of spatial auto-correlation 

(SAC) with such data. SAC can occur when certain areas are more intensively surveyed leading 

to a clustering of observations (Merow, Smith & Silander 2013). SAC causes model biases by 

artificially inflating the ecological conditions of the correlated observation (Elith, Kearney & 

Phillips 2010). To eliminate SAC from calculations we employed the SDM toolbox package for 

ArcGIS 10.1 (ESRI 2012) where an analysis using buffers was conducted in the context of the 

spatial heterogeneity of the environment, deleting records with duplicate environmental 

information but retaining those with unique information (Brown 2014). 
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Figure 1.1 – Locations of specimens used in the study.  

Environmental data 

We chose a set of environmental predictors associated to the occurrence of T.hudsonicus. We 

incorporated all 19 climatic variables from the WorldClim database (http://www.worldclim.org), 

the digital elevation data of the NASA Shuttle Radar Topography Mission 

(http://srtm.csi.cgiar.org) as a topographical variable and 10 land cover variables from the 

Globcover project (http://postel.obs-mip.fr/?GLOBCOVER-Project) including a mix of land 

cover types where T.hudsonicus is likely to occur, may or may not occur and is unlikely to occur, 

based on the field biology of the species (Reid 2006). All variables had a resolution of 30 arc-

seconds (ca. 1 km) and all GIS processing was made in ArcGIS 10.1 (ESRI 2012).  

It was an essential step of this study to avoid multicolinearity among the environmental 

predictors, for which we calculated a correlation matrix. Using the Pearson correlation (r) value 

of 0.8 as a threshold (Dormann et al 2013), only one out of a group of correlated variables was 

kept as a predictor, and it is the variable with the greatest impact (based on a principal 

component analysis) that was retained. All calculations were made in the SDM toolbox for 
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ArcGIS 10.1 (ESRI 2012). From the collinearity analyses we kept 10 environmental predictors 

(table 1.1). 

To test the effect of different environmental predictors we used three datasets of 

predictors for calculating the model: one only containing climatic variables (climatic model), 

another with land cover and elevation (landscape model) and a last with all environmental 

predictors (full model).  

Table 1.1 – Uncorrelated environmental predictors used for the species distribution modelling analyses  

Type Description Short name 

 

 

 

 

Climatic 

Annual Mean Temperature Bio1 

Max Temperature of Warmest Month Bio5 

Min Temperature of Coldest Month Bio6 

Temperature Annual Range Bio7 

Mean Temperature of Warmest Quarter Bio10 

Annual Precipitation Bio12 

Precipitation of Driest Quarter Bio17 

Precipitation of Warmest Quarter Bio18 

Topography Elevation Elev 

Habitat 10 land cover classes* Land 

*Land cover classes: Broadleaf forest, Coniferous forest, Shrubland, Coniferous 

shrubland, Grassland, Cropland, Urban water bodies, Snow and ice, Wetlands 

Species distribution modelling  

Species distribution models were built using the maximum entropy modelling technique, Maxent 

version 3.3.3k (Phillips, Anderson & Schapire 2006), which outperforms other modelling 

methods (Hernandez et al 2006; Wisz et al 2008; Rebelo & Jones 2010). Species presence 

records and the selected environmental predictors (table 1.1) were imported into Maxent and run 

in auto features with a regularization multiplier of 1. Then, 10 model replicates were run using 

cross-validation. The area under the curve (AUC) of the receiver operating characteristics 

(ROCs) plot was taken as a measure of the overall fit of the models (Fielding & Bell 1997; 

Phillips, Anderson & Schapire 2006). The 10 variables already selected (table 1.1) were then 
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used to build the final models. The cross-validation approach is an alternative way of testing 

models as the use of ‘training’ and ‘testing’ datasets (e.g. Elith, Kearney & Phillips 2010). 

Importance of variables 

The importance of each variable was measured using the percent contribution to the model and 

the jackknife values of the regularized training gain (a measure of likelihood between species 

data and the variable).Variable response curves were determined from univariate models created 

by Maxent. 

RESULTS 

The climatic and full models performed well (climatic: AUC=0.867±0.022, full: 

AUC=0.877±0.012) while the landscape model achieved a poorer performance 

(AUC=0.722±0.02). Both climatic and full models predicted the occurrence of T.hudsonicus 

over the main mountain ranges of North America (figures 1.2 – 1.3). Because of the poorer 

performance of the landscape model, we do not show a map based on that. 

The environmental predictors that contributed most highly to explain the occurrence of 

T.hudsonicus were three climatic variables associated to temperatures (Bio1: annual mean 

temperature, Bio5: maximum temperature of the warmest month, Bio6: minimum temperature of 

the coldest month). The importance of these predictors is evident from both the percent 

contribution values and the jackknife values of the regularized training gain in the full model 

(figure 1.4). The three most important temperature predictors each showed a unimodal response 

underlying the occurrence of squirrels (figure 1.5). Interestingly the topographic predictor 

(elevation) shows almost no contribution to explain the occurrence of T.hudsonicus (figure 1.4). 

Land cover also has a much smaller predictive value than the top temperature predictors, with the 
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presence of forests (conifer and broadleaved) and proximity to water bodies the most important 

variables (data not shown). 

 
Figure 1.2 – Climatic species distribution model of T.hudsonicus for North America. Darker colors 

indicate greater probability of occurrence, ranging from 0 where the species is predicted absolutely to be 

absent to 1 where the species is predicted absolutely to be present.  

 
Figure 1.3 – Full species distribution model of T.hudsonicus for North America. Darker colors indicate 

greater probability of occurrence, ranging from 0 where the species is predicted absolutely to be absent 

to 1 where the species is predicted absolutely to be present. 
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Figure 1.4 – Importance of each variable (short name according to table 1.1) for the full species 

distribution model. Percentage contribution of each variable (% contribution; left axis) and values of the 

jackknife results for models for only the one variable (with only; right axis). 

 

 

 
Figure 1.5 – Response curves of the best supported climatic predictors. Bio1 is the annual mean 

temperature, Bio5 is the maximum temperature of the warmest month and Bio6 is the minimum 

temperature of the coldest month.  
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DISCUSSION  

Of the three models created here, the full and climatic species distribution models performed well 

while the landscape model performed badly. This has been found in other studies (Pearson & 

Dawson 2003): at a continental scale climate related factors are more likely to be important than 

land cover, which is more relevant at a local domain. T.hudsonicus occurs over much of North 

America and so can be considered to have a distribution that is continental in scale. Topography 

is relevant at intermediate geographical scales (Pearson & Dawson 2003) and it is interesting how 

unimportant elevation, as a topographical factor, is to the full distribution model. Although the 

distribution of T.hudsonicus clearly relates to elevation with occurrence in the Rocky Mountains 

and Appalachians (figures 1.2 and 1.3), it is actually temperature which appears to be determinant 

of this distribution. 

In terms of the individual environmental predictors used in the species distribution model, 

annual mean temperature (Bio1), maximum temperature of the warmest month (Bio5), and 

minimum temperature of the coldest month (Bio6) are the most important. These are the primary 

factors defining the ‘species temperature niche’ or ‘thermal niche’ of T.hudsonicus (see Bowler et 

al 2015). In a North American context, it is clear from the response curves (figure 1.5) that 

T.hudsonicus is a species that can tolerate very low winter temperatures, but is not found where 

there are high summer temperatures. In fact Bio5 predicts that there is a sharp decline in species 

occurrence at 30C, with the species not being found in areas where the average hottest summer 

temperature reaches beyond 32C, while Bio6 predicts a gradual decline in occurrence from around 

-12C to approximately -33C below which the species will not be found. This fits extremely well 

with the species distribution. The temperature range described for T.hudsonicus goes from an 

average coldest temperature during January below or around -30C in the far north in the 
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distribution to around 30C as the average highest temperature in July in the southern part of the 

species distribution (http:www.usclimatedata.com). The species is not found in areas colder than 

those or warmer than those (although the species will survive short periods above or below these 

thresholds). T.hudsonicus is distributed throughout northern North America but is limited to high 

ground (Rocky Mountains, Appalachians) further south, reflecting that. 

Hope et al (2016) independently constructed a species distribution model for T.hudsonicus. 

However it was based on a smaller number of individuals from a wider timescale than ours and 

was used for different purposes (particularly in relation to a hypothesized subdivision of 

T.hudsonicus and incorporation of other Tamiasciurus, and paleodistributions). There is not the 

same focus on the thermal niche. 

Individuals in a warm climate are already close to the limits of their thermal tolerance 

and the distribution of T.hudsonicus is extremely influenced by the highest summer temperature. 

We can see that in figure 1.5, with the sharp decline in the response curve at about 30C. 

Sherwood and Huber in 2010 estimated that even mammals as environmentally labile as humans 

will in the future face intolerable conditions due to heat stress. Net conductive and evaporative 

cooling can only occur if an animal is warmer than the minimum temperature reachable with 

evaporative cooling (Tw) meaning if an animal finds itself in an environment where Tw exceeds 

its own temperature it cannot lose heat to the environment. For heat to be dissipated to the 

environment the temperature of the skin must be colder than the core body temperature. In the 

case of humans the skin temperature never exceeds 35C under normal conditions. Environmental 

temperatures above regulated skin temperature for any extended time will lead to elevated core 

temperature and hyperthermia. This is relevant to anthropogenic climate change. With predicted 

increase in temperature there are several areas where T.hudsonicus is now found where it will 
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most likely face increased risk of heat stress and will not be able to survive in those places. The 

species may be able to cope physiologically with the changed environmental conditions by 

phenotypic plasticity or genetic change (Visser 2008), but there are limits to the extent to which 

a species can adapt to changed thermal conditions and therefore local extinctions are inevitable 

(Parmesan 2006; Sherwood & Huber 2010). This would most likely occur at low elevation in the 

southern part of the distribution where T.hudsonicus is found, in areas where the maximum 

temperature of the warmest month is already at the upper limit of what the species can tolerate. 

Any increase in temperature will therefore not be endurable by the species.   

In conclusion, we have defined the thermal niche of T.hudsonicus and we have 

established that it is a critical determinant of the species range. We can expect therefore that 

temperature will create an enormous selection pressure on the morphology, physiology and 

genetics as examined in the following chapters 2-4.                                                                                                                                                                                    
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ABSTRACT  

Temperature is one of the more substantial environmental constraints that species face and traits 

associated with adaptation or tolerance to temperature extremes (high or low) are important to 

investigate. With regards mammals, it is possible to address thermal adaptation through testing 

two biogeographical rules, Bergmann’s rule (which states that mammals will get bigger with 

reduced temperature) and Allen’s rule (which states that appendages will get smaller relative to 

body size with reduced temperature). These can be tested using gross morphological 

measurements. Fortunately, longstanding traditions of museum collections and curation, 

including applying standardized measurements to newly acquired specimens, have led to the 

accumulation of a vast amount of morphometric and presence data for many North American 

terrestrial mammals, obtained over a 150 year-period. These data provide an excellent 

opportunity to consider the extent to which there is an adaptive response in morphology over the 

wide range of temperatures found on the continent.  
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Here we studied the American red squirrel, Tamiasciurus hudsonicus, a small, extremely 

widespread and common mammal found inhabiting the coniferous forests of North America. We 

gathered a dataset of over 9000 specimens from 34 museums from the entire distribution of the 

species and applied multimodel inference to the standard whole body measurements taken on 

these specimens.  

We found that the largest individuals tended to be found at high elevation and latitudes. 

We found that appendages (ear, tail and hind foot) varied in size in proportion to the rest of the 

body. Overall our findings are consistent with Bergmann’s rule and thermal adaptation in the 

T.hudsonicus. However, we do not find support for Allen’s rule which might indicate selective 

pressures other than temperature are more important in relation to size of the appendages.       

INTRODUCTION  

Temperature is an important environmental constraint affecting species of mammal and there are 

many ways in which they may show trait responses to temperature variation. This includes 

changes in morphology (e.g. in relation to body or appendage size in cold vs. warm areas or in 

body size in summer vs. winter; Clauss et al 2013; Griffing 1974; Taylor, Rychlik & Churchfield 

2013), behavior (e.g. resting during the warmest part of the day or basking in the sun; Huey et al 

2012; Warnecke, Turner & Geiser 2008) and physiology (e.g. increasing heat production, 

evaporative water loss or changes in blood flow; Scholander et al 1950; Tattersall et al 2012; 

Johnson, Minson & Kellogg 2014) and many instance of thermal adaptation will undoubtedly 

involve a combination of strategies (Briscoe et al 2014). In order to best understand the complete 

picture of thermal adaptation it is important to focus on the relative importance of each of these 

factors in turn.  
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Two ecogeographical rules, Bergmann’s rule and Allen’s rule, have long been used as 

essentially null models in relation to morphological adaptations to temperature. Bergmann’s rule, 

in its original form, states that endotherms will on average have a larger body size at higher 

latitudes and elevation (James 1970; Blackburn, Gaston & Lodger 1999; Blackburn & Hawkins 

2004). Allen’s rule, again first formulated for endotherms, states that appendages (such as the tail 

and feet) will be smaller relative to body size at higher latitudes and elevation (Fooden & 

Albrecht 1999; Nudds & Oswald 2007). Both rules follow the same principle in relation to 

conservation of energy, positing that it is important to have a low surface to volume ratio to 

minimize heat loss to the environment. However, there are some controversies regarding these 

rules, including alternative explanations for Bergmann’s and Allen’s trends and examples where 

species do not follow these trends. Proposed alternative explanations include e.g. reduction of 

heat loading in warm areas rather than reduction of heat loss in cold climates (McNab 1979), 

change in insulation for heat conservation (Scholander 1955, as seen with increased fat storage in 

moose at higher latitudes; Sand, Cederlund & Danell 1985), the importance of food quality or 

abundance with the lower productivity of arctic areas e.g. leading to an increased foraging area 

and a larger body size to move around that (Lindsay 1986; Erlinge 1987; McNab 1963).  

Bergmann’s and Allen’s rules can be examined using museum collections. Since 

biologists first started systematically collecting for museums there have been standardized 

methods for a quantitative description of each specimen in hand for accurate comparison 

between population samples and species. For specimens collected in the US, the measurements 

for terrestrial mammals include the total body length (measured from the tip of the tail vertebrae 

to the tip of the nose), the length of the tail (measured from the first to the last vertebrae of the 

tail), hind foot (measured either from the tip, or the nail, of the longest toe on the right hind foot 
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to the heel), length of ear (measured from the notch to the most distal part of the right ear) and 

body mass (Hoffmann et al 2010). Due to this being a longstanding tradition and the long history 

of museums and museum collections there is a vast amount of data available from over a 

hundred year period that provides an amazing opportunity to answer basic questions relating to 

natural variation and evolution (Lister 2011). The vertnet database (Vertnet.org) alone has 

around 20 million records of specimens, relating to vertebrates. The standard measures taken for 

terrestrial mammals are clearly critical for taxonomy (Martin et al 2001) and allow particular 

species of mammal to be defined (e.g. Gündüz et al 2007). At a within-species level, the 

measurements may help to define major genetic units within species, such as subspecies (e.g. 

Heaney 1978). The measurements can also be a valuable resource in understanding adaptation in 

mammals. This particularly applies to thermal adaptation since all of the standardized 

measurements for mammals may relate to Allen’s rule and/or Bergmann’s rule.  

The American red squirrel, Tamiasciurus hudsonicus, a small arboreal mammal, is found 

throughout the boreal forests of northern North America and extending south along the Rocky 

Mountains in the west and the Appalachian Mountains in the east (Steele 1998). The species is 

active all year around, does not hibernate and does not go into torpor (Aleksiuk 1971). It is 

therefore subjected to very low temperature through the northern parts of its distribution, and at 

high elevation, and high temperature in lowland areas further south in the distribution. Any 

patterns of morphological variation supporting either Allen’s rule or Bergmann’s rule will most 

likely relate to temperature in this species, because alternative explanations do not appear to 

apply. The species has very little insulatory fat, does not have conspicuous mammalian 

competitors that could lead to character displacement (in this case increase or decrease in size) to 

avoid niche overlap, and does not have greater quantities of food in warmer areas which might 
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lead to smaller size due to smaller areas of foraging (Rovetto & Ferguson 1971; Steele 1998; 

Gurnell 1984; Streubel 1968).  

Here we make use of the large set of museum records on T.hudsonicus, to examine 

variation in external dimensions over its range (in relation to the geographical features that 

biogeographical rules are based on), to gain insight into the factors that are of influence, and in 

particular the role of temperature. We apply multimodel inference to the whole dataset, 

examining a range of predictor variables recorded for each specimen (relating to sex of 

specimens, time and location of sampling). The impact of year of sampling is of interest, because 

this allows us to examine if climate change over recent decades has had an impact on body 

dimensions. It is well known that despite reasonable stability in temperature over the past 

millennium, there has been a striking increase during the twentieth century (Mann et al 1999) 

that is continuing today (climate.nasa.gov). It is also known that these temperature changes 

impact distributions (e.g. Parmesan et al 1999) and cause extinctions (including of mammals: 

Gynther, Waller & Leung 2016; Watson 2016), but we have an excellent opportunity to assess 

whether climate change causes Bergmann-like trends in T.hudsonicus, as has been reported in 

other species (Sheridan & Bickford 2011). 

Altogether we make use of records for over 9000 museum specimens collected over a 

period longer than 150 years, making this one of the largest datasets of this type that has been 

analyzed. The extensive geographic distribution of T.hudsonicus and the vast number of records 

and the time dimension under conditions of climate change allow us to use this system for a 

particularly powerful test of Bergmann’s and Allen’s rules. 
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MATERIALS AND METHODS  

Data collection  

The specimen data were gathered using Vertnet (vertnet.org), online museum databases through 

museum websites, through direct contact with curators and collection managers, or via museum 

visits.  

We used the most commonly reported morphological measurements for our analysis: 

total body length (TBL; the standard measurement in the USA), head-body length (HBL; the 

standard measurement in Europe, mammalogists trained in Europe will often record this instead 

of TBL), tail length (TL), hind foot length (HF), ear length (Ear), body mass (Mass), and two 

ratios, TL/HBL, and HF/HBL. Where not recorded separately, HBL was calculated by 

subtracting TL from TBL. 

For each specimen there were data available on the following factors: latitude, longitude, 

elevation, year and sex. These were the factors that were used to construct the models in the 

multimodel inference. 

The total dataset, after filtering for quality, included 9407 individuals collected from 

1860-2015 (figure 2.1) from 34 museums (table 2.1).  

  



24 

 

Table 2.1 – Number and museum origins of specimens used in the study  

Museum 

code 

Museum Number of 

specimens 

AMNH American Museum of Natural History 783 

BYU Monte L. Bean Life Science Museum 40 

CAS California Academy of Sciences 14 

CHAS Chicago Academy of Sciences 51 

CM Carnegie Museum of Natural History 420 

CMNMA Canadian Museum of Nature 697 

CRCM Charles R Conner Museum  193 

CSUC California State University, Chico Vertebrate Museum 5 

CUMV Cornell University Museum of Vertebrates 287 

DMNS Denver Museum of Nature and Science 146 

FMNH Field Museum of Natural History 304 

GMNH Georgia Museum of Natural History 10 

KSTC Schmidt Museum of Natural History, Emporia State University 2 

KU Kansas University Biodiversity Institute 699 

LACM Natural History Museum of Los Angeles County 30 

MCZ Museum of Comparative Zoology 140 

MMNH Midwest Museum of Natural History (Bell Museum) 61 

MSB Museum of Southwestern Biology  396 

NBM New Brunswick Museum 231 

NMMNH New Mexico Museum of Natural History and Science 5 

RBCM Royal British Columbia Museum 42 

 Redpath Museum 14 

ROM Royal Ontario Museum 1101 

RSKM Royal Saskatchewan Museum 26 

TTU Museum of Texas Tech University 6 

UAFMC University of Arkansas Collection Facilities 3 

UAM University of Alaska Museum 646 

UBCBBM University of British Columbia Beaty Biodiversity Collection 202 

UCM University of Colorado Museum of Natural History 169 

UIMNH University of Iowa Museum of Natural History 5 

USNM National Museum of Natural History 2052 

UTCM University of Tennessee at Chattanooga Museum 1 

UWBM University of Washington, Burke Museum 622 

WNMU Western New Mexico University 3 
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Figure 2.1 – Collection locations for all specimens analyzed in this study 

Age determination and quality control  

To reduce biases, all juveniles and subadults were excluded from the analysis. For the purpose of 

this study individuals were simply labelled adults and not divided into subclasses within that 

classification. Individuals were classified as juveniles until they had reached approximate adult 

size or sexual maturity. Individuals typically reach full size for all the standard external 

measurements used in this study by 125 days and full weight shortly thereafter (Layne 1954, 

based on a study of T.hudsonicus loquax in New York). As a first step in determining age we 

relied on information from collectors or preparators. When lifestage was not listed we used a 

variety of methods to determine approximate lifestages based on museum notes and personal 

observation of specimens where applicable (figure 2.2).  
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All data entries were checked for errors or biases. Individuals may have their tails broken in 

nature, and TL and TBL of specimens where this could be detected (TL and TBL were outliers 

while HBL was not), were discarded. Since a defining feature of the species is TL being shorter 

than HBL, specimens were discarded in cases where TL was larger than HBL and where it was 

not obvious that HBL and TBL had not been mixed up; HBL was given as TBL in some 

collections as a common confusion due to difference in standards between countries and hence 

training of collectors. Since the species has been divided into 25 subspecies based on 

morphology they were, when applicable, taken into account when looking at outliers.  
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Figure 2.2 - Criteria used to classify Tamiasciurus 

hudsonicus specimens into age classes. While 

there are other characteristics that can be utilized, 

the listed characteristics are the full set that were 

described in museum notes or were directly 

observed on the specimens, for the set of 

specimens used in this study. Based on Mossman, 

Lawlah & Bradley 1932; Layne 1954; Nellis 

1969; Lindsay 1987; Steele 1998. 

1Testes are often retracted into the abdomen due 

to handling; collection method may therefore 

influence this and for that reason this was 

evaluated with caution for aging.  

2From September to November the reproductive 

organs of adult males are repressed and similar to 

juveniles; therefore, this was considered when age 

was determined.  
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Analysis 

For each specimen there were data on latitude, longitude, elevation, year and sex and the impact 

of these factors on the morphological variables TBL, HBL, TL, HF, Ear, Mass, TL/HBL, and 

HF/HBL was explored using multimodel inference (Burnham & Anderson 2002). To avoid 

excessive collinearity among the factors latitude, longitude, elevation, year and sex we 

determined collinearity using a variance inflation factor (vif) test in R using the car package (R 

version 1.15.6, R Core Team 2016; Fox et al 2016). Only factors with a vif score within an 

acceptable range were used for further analysis. From our knowledge of the biology of 

T.hudsonicus we generated 49 candidate models (table S2.1) that we evaluated for each 

morphological variable. The candidate models were compared using the second-order Akaike 

information criterion (AICc) and the best-fitting model was indicated by the lowest AICc value, 

with each other model i compared to the best using the AICc differences (Δi). All models with 

ΔAICc < 2 were considered, following convention (Burnham & Anderson 2002; Burnham & 

Anderson 2004). The top models for each variable were selected using the MuMIn package in R 

(version 1.15.6, R Core Team 2016; Bartoń 2015).  

RESULTS  

The model most often found to well describe the variation in the skull measurements included all 

the main factors, and the geographical interactions elevation:longitude, elevation:latitude and 

longitude:latitude (table 2.2). This model was found to be a good fit for all the morphological 

variables. However, the spread of best models was fairly even and the lowest Δi (and therefore 

highest Wi i.e. the relative likelihood of the model) were split between six models. Only nine 

models out of 49 were found to be well supported. The factors found in these well supported 

models were as follows: latitude, elevation and longitude in all nine models, year in eight and sex 
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in six. The interaction between elevation and longitude was found in six models, between 

elevation and latitude in eight and between latitude and longitude in seven. Interaction between 

year and latitude was only found in one model and was only well supported for one variable 

(HF/TBL). For four variables, HBL, TBL, HF and TL, the best models for each have an 

accumulated weight of around or above 0.9, i.e. are within the 90% confidence set. While for 

TL/TBL only one model was well supported, support for up to four models (in the case of TL) 

was found for other variables. Further details of results for each variable can be found in tables 

S2.2-S2.9. 
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Table 2.2 – Well supported models for all morphological variables in the study (as defined by Δi <2) based on the following factors: elevation 

(Elev), latitude (Lat), longitude (Long), sex and year, with the best models for each variable (Δi = 0) shown in bold 

Model Variable AICc Δi Wi 

Elev + Lat + year + sex + Long + Elev:Long + Elev:Lat + Long:Lat TL/TBL -35787.7 0 0.743 

HF 48651.8 0.1 0.314 

TL 68735.3 0.83 0.185 

Ear 24682.8 0.56 0.313 

HF/TBL -47012.1 1.53 0.173 

TBL 73595.8 1.56 0.298 

Mass 32642.2 1.95 0.123 

HBL 69487 1.95 0.245 

Elev + Lat + year + Long + Elev:Long + Elev:Lat + Long:Lat TL 68734.5 0 0.281 

 Ear 24682.3 0 0.414 

Elev + Lat + year + sex + Long + Elev:Lat + year:Lat + Long:Lat HF/TBL -47012.8 0.84 0.244 

Elev + Lat + year + sex + Long + Elev:Long + Elev:Lat Mass 32640.2 0 0.325 
 TBL 73594.3 0 0.651 

Elev + Lat + year + sex + Long + Lat:Long + Lat:Elev HF/TBL -47013.6 0 0.372 

HF 48652.2 0.51 0.256 

TL 68735.4 0.9 0.179 

Elev + Lat + year + sex + Long + Long:Elev + Long:Lat HF 48651.7 0 0.33 

Elev + Lat + year + Long + Elev:Long + Elev:Lat Mass 32640.6 0.36 0.272 

Elev + Lat + year + Long + Lat:Long + Lat:Elev TL 68734.6 0.07 0.271 

Elev + Lat + sex + Long + Elev:Long + Elev:Lat + Long:Lat HBL 69485.1 0 0.651 
* AICc = second-order Akaike information criterion; Δi difference between a model and the highest scoring mode; Wi = model weight, the relative likelihood of a 

model.  
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Considering the geographical interactions, all of which are found to be important for all 

variables, figures 2.3-2.5 show a clear pattern where large individuals are found at higher 

elevation, low and high latitudes (but less so in between), and at intermediate longitude.   

 
Figure 2.3 – Interaction between latitude (degrees) and elevation (m) for TBL; a) longest 20% of 

specimens, b) shortest 20% of specimens.  

 

 
Figure 2.4 – Interaction between longitude (degrees) and elevation (m) for TBL; a) longest 20% of 

specimens, b) shortest 20% of specimens. 

 

Figure 2.5 – Interaction between latitude (degrees) and longitude (degrees) for TBL; a) longest 20% of 

specimens, b) shortest 20% of specimens.  
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Weak relationships were found between the morphological variables and year (e.g. TBL: figure 

2.6). 

 

Figure 2.6 – Changes in total body length (TBL) through time, with a fitted linear regression 

Males were found to be larger than females for all variables, except the ratios, and this 

size difference was not limited to specific parts of the distribution (table 2.3).  

On examination of bivariate plots between morphological variables and main factors we 

found weak or no relationships in most cases, as indicated by the R-squared values (table 2.4). If 

Allen’s rule was supported we would expect HF, TL, HF/HBL and TL/HBL to decrease with 

increased elevation and latitude. If Bergmann’s rule was supported we would expect all variables 

to increase with elevation and latitude. All morphological variables but one showed positive 

relationships with elevation (TL/HBL showed no relationship). Similarly variables other than 

HF/HBL (no relationship) and TL/HBL (positive) had negative relationships with longitude. 
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TBL, TL, HF, Ear and TL/HBL had negative relationships with latitude while HF/HBL and 

Mass had positive relationships with latitude and HBL showed no relationship. As already 

indicated, all relationships between morphological variables and year were very weak or not 

apparent at all (HF and HF/HBL). TBL, TL, HBL, TL/HBL and Ear had weak negative 

relationships with year while Mass had a weak positive relationship with year.    

Table 2.3 – Means and standard deviations for morphological variables in males and females  

 

 

Table 2.4 – R-squared values for linear regressions of morphological variables on the factors Elevation, 

Latitude (South to North), Longitude (West to East), and Year. Arrows show direction of regression with 

↑ indicating a positive regression and ↓ a negative regression.    

 Elevation Latitude Longitude Year 

TBL (mm) R2 = 0.101 (↑) R2 = 0.005 (↓) R2 = 0.076 (↓) R2 = 0.001 (↓) 

HBL (mm) R2 = 0.070 (↑) R2 = 0.000 R2 = 0.082 (↓) R2 = 0.003 (↓) 

Mass (g) R2 = 0.097 (↑) R2 = 0.002 (↑) R2 = 0.103 (↓) R2 = 0.015 (↑) 

TL (mm) R2 = 0.064 (↑) R2 = 0.014 (↓) R2 = 0.021 (↓) R2 = 0.015 (↓) 

HF (mm) R2 = 0.070 (↑) R2 = 0.001 (↓) R2 = 0.124 (↓) R2 = 0.000 

Ear (mm) R2 = 0.043 (↑) R2 = 0.014 (↓) R2 = 0.007 (↓) R2 = 0.002 (↓) 

TL/HBL R2 = 0.000 R2 = 0.009 (↓) R2 = 0.013 (↑) R2 = 0.023 (↓) 

HF/HBL R2 = 0.003 (↑) R2 = 0.007 (↑) R2 = 0.000 R2 = 0.000 

 

DISCUSSION  

T.hudsonicus has a very large geographic range in North America and the museum collecting for 

the species has been remarkably comprehensive over the range (figure 2.1). There has also been 

consistent sampling from the late 1800s to the early 2000s (figure 2.6). Given the occurrence of 

over 9000 records and the varied topography and geographic variation in temperature regimes, 

 
Female Male 

TBL (mm) 315.03 ± 21.98 316.97 ± 23.89 

HBL (mm) 190.06 ± 16.29 191.59 ± 17.53 

Mass (g) 198.97 ± 44.37 200.84 ± 43.29 

TL (mm) 124.77 ± 11.88 124.99 ± 12.54 

HF (mm) 48.07 ± 3.70 48.52 ± 4.05 

Ear (mm) 23.52 ± 3.93 23.74 ± 4.03 

TL/HBL  0.40 ± 0.03 0.40 ± 0.03 

HF/HBL 0.15 ± 0.01 0.15 ± 0.01 
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this system is an excellent one for examining the environmental determinants of body size and 

appendage size. Therefore, the fit of data to Bergmann’s and Allen’s rule can be examined as 

part of a wider consideration of thermal adaptations shown by T.hudsonicus. 

In the multimodel inference the factors that we included in the models were elevation, 

longitude, latitude, sex and year; elevation, latitude and longitude being the original variables 

used when the ecogeographical rules were established. All were well represented in the best 

supported models. While elevation, longitude and latitude do not show strong trends in bivariate 

analyses the interactions between these geographical factors show clear trends (figures 2.3 – 2.5). 

All measurements show that body size increases with increased elevation although at higher 

latitudes there are larger individuals at lower elevation as well. This trend provides support for 

Bergmann’s rule. Due to the nature of the distribution the effect of latitude is not as clear. This 

can be seen when looking at figures 2.3 & 2.5. This is since the tree line is lower in the northern 

part of the range and the species cannot be found as high up both for that reason and due to 

extreme climate at high elevation in the far north; similarly, the species is only found in 

mountainous areas in the south due to restriction of habitat and climate (chapter 1). Specimens 

collected in the Rocky Mountains and in the southern part of the Appalachians are mostly larger 

than average. In the west this can be seen as far north as Canada while in the east this is mainly 

seen in Georgia, Tennessee, North Carolina and West Virginia. This means that while the 

majority of the distribution of the species in the east comprise relatively small squirrels, at 

corresponding latitudes in the west they are very large. Where the distribution is in the middle of 

North America the squirrels are again very small, leading to a considerable latitudinal belt 

around 55N where squirrels are relatively small. The latitudinal effects therefore appear to be 

due to the impact of elevation. Overall these findings seem to provide support for Bergmann’s 
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rule in that T.hudsonicus at high latitude and high elevations tend to be larger. There is little 

support for Allen’s rule. The three ‘appendages’ (ear, hindfoot and tail) all show increase in size 

(both HF and TL increase proportionately to TBL) up an elevational gradient, contrary to what 

the rule would predict. While there is some indication that there might be reduction in the size of 

the appendages with latitude, this is unclear and may be due to confounding effects.  

Sex proved to be an important factor in the majority of the models, and for all variables. 

This was perhaps not to be expected. While many mammals show sexual dimorphism with one 

or the other sex being bigger this has not been systematically reported for T.hudsonicus (Steele 

1998; Vernes 2004). The consensus has been that the species is not sexually dimorphic and 

where dimorphism is found it is limited to certain geographic regions and subspecies (Boutin & 

Larsen 1993; Layne 1954). Some authors have found specific measurements, namely minor skull 

features, to differ between the sexes with males on average being larger, although not in all cases 

(Lindsay 1987). Here we find that males are larger than females when looking at all of variables 

except the ratios which did not differ between the sexes. We did not find sex to be interacting 

with any geographical predictor and therefore conclude that the pattern is not limited to certain 

areas and not a confounding effect in our dataset.   

Regarding the Bergmann trend of greater size with northernmost latitudes and high 

elevations in the south in T.hudsonicus, these results indicate a need to be cautious in interpreting 

latitudinal trends in body size. The norm is to assess Bergmann’s rule by analysis of body size 

against latitude (Ashton, Tracy & de Queiroz 2000) and therefore an increase in body size 

towards lower latitudes is seen as a converse to Bergmann’s rule. However, if the localities at 

lower latitudes are at a higher elevation, then, in terms of thermal conservation, they may 

actually be following Bergmann’s rule, because localities at high elevation can be exposed to 
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very low temperatures. As we have indicated, T.hudsonicus populations at low elevation in the 

eastern US are smaller than high elevation populations in the western US (figure 2.5). A 

European example of a species that shows increasing size with lower latitudes is the pygmy 

shrew (Sorex minutus) (Vega et al 2010, 2016); like T.hudsonicus it follows mountain chains 

(such as the Apennines) in the southern part of its range, and therefore may be showing converse 

Bergmann’s rule on the basis of latitude, but Bergmann’s rule on the basis of temperature. 

Given the evidence for Bergmann’s rule with geography in T.hudsonicus, it might appear 

surprising that there is not a Bergmann trend over time in the species; with decreasing body size 

with increasing temperature during the twentieth century, as seen in other mammals (Post et al 

1997). This requires further investigation. The data on T.hudsonicus is obtained range wide. One 

possibility is that T.hudsonicus have remained the same size because the whole distribution has 

moved northwards or up an elevation gradient. 

While there is qualified support for Bergmann’s rule in T.hudsonicus, Allen’s rule is not 

supported. Although it would seem to be advantageous to have smaller appendages under cold 

conditions, there may be constraints which do not allow this type of morphological change. For 

instance, tails have many functions (Hickman 1979) and for a very fast running and jumping 

arboreal species like T.hudsonicus (Layne 1954), tails of a particular length are likely to be 

essential for balance. Tails in T.hudsonicus are also used as part of thermoregulation under cold 

conditions, contributing to insulation (Pauls 1978). It is interesting that larger body size is 

allowable at higher latitudes and elevations in T.hudsonicus, given that such a size increase may 

hinder their rapid movements. However, the thermoregulatory advantages may outweigh any 

loss in agility. Further studies would be worthwhile to investigate these points. 
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On a final note, it is worth emphasizing that while museum datasets are of immense value 

it is essential to be cautious in making use of the data and results. To illustrate this we can look at 

the impact of year which we might have expected to indicate changes in morphology in response 

to climate change, with size reduction due to increased temperature. However, all relationships 

between morphological variables and year are very weak and may be subject to biases. When 

looking at TBL and TL the apparent decrease in size with time seems to be driven by the large 

size of specimens collected before 1890 (figure 2.6). A large number of those samples are from 

New York State, collected by one person. The average length of these individuals is much 

greater than the average length in later years, which stays constant throughout the twentieth 

century. As an example, the average TBL of the early New York squirrels is around 30mm 

longer than the average length for any ten year time period after 1900 and much greater than any 

published values for T.hudsonicus loquax (the subspecies found in the region; Layne 1954; 

Whitaker & Hamilton 1998). While it is impossible to say exactly why these squirrels are this 

big, it is likely that some measurement error is involved. Given that HBL is not impacted in the 

same way as TBL and TL it may be suggested that the collector included the tail hairs, which 

extend beyond the tip of the tail vertebrae, in his measurements. Increase in body mass is also 

likely due to sampling bias. Measurement of body mass was not as easily obtained as length 

measurements for researchers early on and between 1846 and 1906 for only 25 samples was 

body mass recorded, this is out of 1308 samples in our dataset from that time period. When these 

early samples were removed, thereby limiting the analysis to the period where body mass was 

frequently measured, there was no relationship between body mass and year.  
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SUPPLEMENTARY MATERIAL 2  

Table S2.1 – Models evaluated for the study 

Model 

Number 

Model factors  

Model 1 Elevation + Latitude + Year + Sex + Longitude 

Model 2 Elevation + Year + Sex + Longitude 

Model 3 Elevation + Year + Longitude + Latitude 

Model 4 Elevation + Latitude + Sex + Longitude 

Model 5 Elevation + Latitude + Longitude 

Model 6 Elevation + Year + Latitude 

Model 7 Elevation + Year + Longitude 

Model 8 Elevation + Longitude 

Model 9 Latitude + Longitude 

Model 10 Latitude + Elevation 

Model 11 Elevation + Year + Latitude + Longitude + Year:Elevation 

Model 12 Elevation + Year + Latitude + Longitude + Year:Longitude 

Model 13 Elevation + Year + Latitude + Longitude + Year:Latitude 

Model 14 Elevation + Year + Latitude + Longitude + Elevation:Longitude 

Model 15 Elevation + Year + Longitude + Latitude + Latitude:Longitude 

Model 16 Elevation + Year + Longitude + Latitude + Elevation:Latitude 

Model 17 Elevation + Latitude + Longitude + Elevation:Longitude 

Model 18 Elevation + Latitude + Longitude + Elevation:Latitude 

Model 19 Elevation + Latitude + Longitude + Longitude:Latitude 

Model 20 Elevation + Year + Longitude + Elevation:Longitude 

Model 21 Latitude + Year + Longitude + Latitude:Longitude 

Model 22 Latitude + Year + Elevation + Latitude:Elevation 

Model 23 Elevation + Longitude + Elevation:Longitude 

Model 24 Latitude + Longitude + Latitude:Longitude 

Model 25 Latitude + Elevation + Latitude:Elevation 

Model 26 Elevation + Latitude + Year + Sex + Longitude + Elevation:Longitude + 

Elevation:Latitude + Longitude:Latitude 

Model 27 Elevation + Latitude + Year + Sex + Longitude + Elevation:Year + Year:Latitude 

Model 28 Elevation + Latitude + Year + Sex + Longitude + Elevation:Latitude + Year:Latitude + 

Longitude:Latitude 

Model 29 Elevation + Latitude + Sex + Longitude + Elevation:Longitude + Elevation:Latitude + 

Longitude:Latitude 

Model 30 Elevation + Latitude + Year + Longitude + Elevation:Longitude + Elevation:Latitude + 

Longitude:Latitude 

Model 31 Elevation + Latitude + Longitude + Elevation:Longitude + Elevation:Latitude + 

Longitude:Latitude 

Model 32 Elevation + Year + Sex + Latitude + Longitude + Sex:Elevation 

Model 33 Elevation + Year + Sex + Latitude + Longitude + Sex:Latitude 

Model 34 Elevation + Year + Sex + Latitude + Longitude + Sex:Longitude 
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Model 35 Elevation + Sex + Latitude + Longitude + Sex:Elevation 

Model 36 Elevation + Sex + Latitude + Longitude + Sex:Latitude 

Model 37 Elevation + Sex + Latitude + Longitude + Sex:Longitude 

Model 38 Elevation + Latitude + Year + Sex + Longitude + Elevation:Longitude + 

Elevation:Latitude 

Model 39 Elevation + Latitude + Sex + Longitude + Elevation:Longitude + Elevation:Latitude 

Model 40 Elevation + Latitude + Year + Longitude + Elevation:Longitude + Elevation:Latitude 

Model 41 Elevation + Latitude + Longitude + Elevation:Longitude + Elevation:Latitude 

Model 42 Elevation + Latitude + Year + Sex + Longitude + Latitude:Longitude + 

Latitude:Elevation 

Model 43 Elevation + Latitude + Sex + Longitude + Latitude:Longitude + Latitude:Elevation 

Model 44 Elevation + Latitude + Year + Longitude + Latitude:Longitude + Latitude:Elevation 

Model 45 Elevation + Latitude + Longitude + Latitude:Longitude + Latitude:Elevation 

Model 46 Elevation + Latitude + Year + Sex + Longitude + Longitude:Elevation + 

Longitude:Latitude 

Model 47 Elevation + Latitude + Sex + Longitude + Longitude:Elevation + Longitude:Latitude 

Model 48 Elevation + Latitude + Year + Longitude + Longitude:Elevation + Longitude:Latitude 

Model 49 Elevation + Latitude + Longitude + Longitude:Elevation + Longitude:Latitude 
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Table S2.2 – Results from model selection for TBL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model. 

Model (Int) Elv Ltt Lng sex Yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

38 427.1 -0.0185 -0.8972 -0.4010 + -0.0592 
   

-0.0001 
 

0.0003 
   

9 -36788.11 73594.30 0.00 0.65 

26 419.8 -0.0178 -0.7731 -0.4576 + -0.0586 
   

-0.0001 0.0011 0.0003 
   

10 -36787.89 73595.80 1.56 0.30 

42 409.4 -0.0114 -0.6506 -0.5426 + -0.0577 
    

0.0023 0.0003 
   

9 -36791.05 73600.10 5.87 0.04 

28 359.1 -0.0112 0.3732 -0.5256 + -0.0310 
  

-0.0005 
 

0.0020 0.0003 
   

10 -36790.81 73601.70 7.40 0.02 

40 429.3 -0.0186 -0.9000 -0.4003 
 

-0.0596 
   

-0.0001 
 

0.0003 
   

8 -36799.52 73615.10 20.81 0.00 

30 422 -0.0179 -0.7767 -0.4566 
 

-0.0591 
   

-0.0001 0.0011 0.0003 
   

9 -36799.30 73616.60 22.38 0.00 

44 411.7 -0.0115 -0.6541 -0.5417 
 

-0.0581 
    

0.0023 0.0003 
   

8 -36802.46 73620.90 26.68 0.00 

16 427 -0.0121 -0.9219 -0.4248 
 

-0.0593 
     

0.0004 
   

7 -36803.55 73621.10 26.87 0.00 

46 412 -0.0156 -0.5671 -0.4478 + -0.0578 
   

-0.0002 0.0015 
    

9 -36802.52 73623.10 28.80 0.00 

27 573.1 -0.0810 -2.3410 -0.4141 + -0.1405 0.0000 
 

0.0009 
      

9 -36809.58 73637.20 42.94 0.00 

14 424.5 -0.0168 -0.7421 -0.3664 
 

-0.0590 
   

-0.0002 
     

7 -36814.66 73643.30 49.08 0.00 

48 414.2 -0.0158 -0.5684 -0.4466 
 

-0.0582 
   

-0.0002 0.0015 
    

8 -36814.22 73644.50 50.21 0.00 

11 484.4 -0.0724 -0.6684 -0.4148 
 

-0.0943 0.0000 
        

7 -36821.75 73657.50 63.25 0.00 

1 412.1 0.0033 -0.6806 -0.4103 + -0.0572 
         

7 -36825.82 73665.70 71.40 0.00 

33 411 0.0033 -0.6486 -0.4106 + -0.0574 
       

+ 
 

8 -36825.22 73666.50 72.21 0.00 

32 412.2 0.0032 -0.6808 -0.4103 + -0.0572 
      

+ 
  

8 -36825.75 73667.50 73.26 0.00 

34 411.8 0.0033 -0.6808 -0.4133 + -0.0572 
        

+ 8 -36825.78 73667.60 73.32 0.00 

29 297.8 -0.0156 -0.5806 -0.5313 + 
    

-0.0001 0.0029 0.0003 
   

9 -36825.73 73669.50 75.24 0.00 

39 314.4 -0.0175 -0.9090 -0.3810 + 
    

-0.0001 
 

0.0003 
   

8 -36827.28 73670.60 76.34 0.00 

43 290.9 -0.0105 -0.4834 -0.5996 + 
     

0.0038 0.0003 
   

8 -36827.80 73671.60 77.37 0.00 

15 381.1 0.0030 -0.1051 -0.6728 
 

-0.0552 
    

0.0052 
    

7 -36831.96 73677.90 83.69 0.00 

13 222 0.0033 3.2050 -0.4143 
 

0.0408 
  

-0.0020 
      

7 -36834.14 73682.30 88.04 0.00 

3 414.2 0.0033 -0.6813 -0.4095 
 

-0.0576 
         

6 -36837.74 73687.50 93.25 0.00 

12 335.2 0.0033 -0.6763 -1.1140 
 

-0.0171 
 

0.0004 
       

7 -36836.87 73687.80 93.51 0.00 

31 299.1 -0.0158 -0.5829 -0.5308 
     

-0.0001 0.0029 0.0003 
   

8 -36837.60 73691.20 96.97 0.00 

41 315.8 -0.0177 -0.9120 -0.3802 
     

-0.0001 
 

0.0003 
   

7 -36839.15 73692.30 98.07 0.00 

45 292.3 -0.0106 -0.4857 -0.5990 
      

0.0038 0.0003 
   

7 -36839.66 73693.30 99.08 0.00 

47 291.9 -0.0136 -0.3845 -0.5209 + 
    

-0.0002 0.0033 
    

8 -36839.21 73694.40 100.18 0.00 

18 314.2 -0.0115 -0.9326 -0.4034 
       

0.0003 
   

6 -36842.71 73697.40 103.19 0.00 

49 293.2 -0.0137 -0.3845 -0.5202 
     

-0.0002 0.0033 
    

7 -36851.36 73716.70 122.47 0.00 

17 312.3 -0.0159 -0.7580 -0.3474 
     

-0.0002 
     

6 -36853.38 73718.80 124.52 0.00 

21 374.5 
 

-0.0940 -0.8923 
 

-0.0552 
    

0.0080 
    

6 -36856.59 73725.20 130.94 0.00 

4 303.6 0.0034 -0.6984 -0.3902 + 
          

6 -36862.11 73736.20 141.98 0.00 

36 302.4 0.0034 -0.6744 -0.3903 + 
        

+ 
 

7 -36861.78 73737.60 143.31 0.00 

35 303.7 0.0034 -0.6985 -0.3901 + 
       

+ 
  

7 -36862.06 73738.10 143.89 0.00 

37 303.4 0.0034 -0.6985 -0.3918 + 
         

+ 7 -36862.10 73738.20 143.96 0.00 

19 269.2 0.0030 0.0223 -0.7196 
      

0.0065 
    

6 -36865.41 73742.80 148.58 0.00 

5 304.9 0.0034 -0.6992 -0.3892 
           

5 -36874.47 73759.00 164.70 0.00 

24 262.7 
 

0.0333 -0.9387 
      

0.0093 
    

5 -36889.77 73789.60 195.30 0.00 

2 398.1 0.0070 
 

-0.2542 + -0.0600 
         

6 -36894.99 73802.00 207.73 0.00 
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20 406.7 -0.0071 
 

-0.2126 
 

-0.0617 
   

-0.0001 
     

6 -36895.06 73802.10 207.89 0.00 

7 400.3 0.0070 
 

-0.2532 
 

-0.0605 
         

5 -36906.85 73823.70 229.46 0.00 

9 316 
 

-1.0750 -0.4842 
           

4 -36909.61 73827.20 232.97 0.00 

23 288.9 -0.0059 
 

-0.1892 
     

-0.0001 
     

5 -36936.53 73883.10 288.82 0.00 

8 285 0.0072 
 

-0.2275 
           

4 -36946.68 73901.40 307.12 0.00 

22 360.6 -0.0001 0.2959 
  

-0.0351 
     

0.0002 
   

6 -37110.64 74233.30 639.05 0.00 

25 294.4 -0.0001 0.2524 
        

0.0002 
   

5 -37123.73 74257.50 663.21 0.00 

6 353.6 0.0100 0.4284 
  

-0.0346 
         

5 -37124.92 74259.80 665.59 0.00 

10 288.5 0.0099 0.3838 
            

4 -37137.56 74283.10 688.88 0.00 
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Table S2.3 – Results from model selection for HBL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model. 

Model (Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

29 160.3 -0.0153 0.0309 -0.4557 + 
    

-0.0001 0.0043 0.0001 
   

9 -34733.53 69485.10 0.00 0.65 

26 162.7 -0.0154 0.0269 -0.4542 + -0.0012 
   

-0.0001 0.0043 0.0001 
   

10 -34733.51 69487.00 1.95 0.25 

47 158.2 -0.0146 0.1014 -0.4516 + 
    

-0.0002 0.0044 
    

8 -34736.74 69489.50 4.40 0.07 

46 160.2 -0.0146 0.0982 -0.4504 + -0.0009 
   

-0.0002 0.0044 
    

9 -34736.72 69491.50 6.37 0.03 

39 185.3 -0.0181 -0.4608 -0.2304 + 
    

-0.0001 
 

0.0001 
   

8 -34739.80 69495.60 10.53 0.00 

38 191.8 -0.0182 -0.4601 -0.2316 + -0.0034 
   

-0.0001 
 

0.0001 
   

9 -34739.56 69497.10 12.06 0.00 

43 148.1 -0.0062 0.2046 -0.5774 + 
     

0.0060 0.0002 
   

8 -34745.31 69506.60 21.54 0.00 

31 161.5 -0.0154 0.0270 -0.4545 
     

-0.0001 0.0043 0.0001 
   

8 -34746.14 69508.30 23.20 0.00 

42 147.6 -0.0062 0.2054 -0.5776 + 0.0003 
    

0.0060 0.0002 
   

9 -34745.31 69508.60 23.55 0.00 

28 109.2 -0.0061 0.9848 -0.5645 + 0.0207 
  

-0.0004 
 

0.0058 0.0002 
   

10 -34745.06 69510.10 25.06 0.00 

30 164.7 -0.0155 0.0217 -0.4524 
 

-0.0015 
   

-0.0001 0.0042 0.0001 
   

9 -34746.09 69510.20 25.11 0.00 

49 159.3 -0.0147 0.0999 -0.4502 
     

-0.0002 0.0044 
    

7 -34749.56 69513.10 28.03 0.00 

48 162.1 -0.0147 0.0955 -0.4484 
 

-0.0013 
   

-0.0002 0.0044 
    

8 -34749.52 69515.10 29.97 0.00 

41 186.3 -0.0182 -0.4630 -0.2299 
     

-0.0001 
 

0.0001 
   

7 -34752.34 69518.70 33.61 0.00 

40 193.6 -0.0183 -0.4623 -0.2312 
 

-0.0038 
   

-0.0001 
 

0.0001 
   

8 -34752.05 69520.10 35.03 0.00 

17 184.9 -0.0175 -0.4033 -0.2172 
     

-0.0002 
     

6 -34756.20 69524.40 39.33 0.00 

14 191.9 -0.0176 -0.4024 -0.2184 
 

-0.0037 
   

-0.0002 
     

7 -34755.93 69525.90 40.79 0.00 

45 149.3 -0.0063 0.2001 -0.5757 
      

0.0060 0.0002 
   

7 -34757.79 69529.60 44.50 0.00 

44 149.6 -0.0063 0.1997 -0.5755 
 

-0.0001 
    

0.0060 0.0002 
   

8 -34757.79 69531.60 46.50 0.00 

18 183.6 -0.0076 -0.4981 -0.2697 
       

0.0002 
   

6 -34771.21 69554.40 69.34 0.00 

16 189.7 -0.0076 -0.4976 -0.2708 
 

-0.0032 
     

0.0002 
   

7 -34771.00 69556.00 70.93 0.00 

19 135.6 0.0018 0.5020 -0.6470 
      

0.0076 
    

6 -34774.28 69560.60 75.47 0.00 

15 132.8 0.0018 0.5054 -0.6482 
 

0.0014 
    

0.0076 
    

7 -34774.24 69562.50 77.40 0.00 

27 154.1 -0.0369 0.9183 -0.2659 + 0.0110 0.0000 
 

-0.0006 
      

9 -34772.69 69563.40 78.31 0.00 

36 174.7 0.0024 -0.3093 -0.2610 + 
        

+ 
 

7 -34782.60 69579.20 94.11 0.00 

4 176.3 0.0024 -0.3419 -0.2608 + 
          

6 -34783.71 69579.40 94.33 0.00 

35 176.5 0.0022 -0.3424 -0.2608 + 
       

+ 
  

7 -34783.36 69580.70 95.64 0.00 

33 178.9 0.0024 -0.3084 -0.2618 + -0.0022 
       

+ 
 

8 -34782.50 69581.00 95.93 0.00 

1 180.1 0.0024 -0.3414 -0.2615 + -0.0020 
         

7 -34783.63 69581.30 96.18 0.00 

37 176.1 0.0024 -0.3420 -0.2633 + 
         

+ 7 -34783.65 69581.30 96.23 0.00 

32 180.3 0.0022 -0.3419 -0.2615 + -0.0020 
      

+ 
  

8 -34783.28 69582.60 97.49 0.00 

34 179.8 0.0024 -0.3415 -0.2640 + -0.0020 
        

+ 8 -34783.57 69583.20 98.08 0.00 

11 224.5 -0.0441 -0.3345 -0.2642 
 

-0.0247 0.0000 
        

7 -34785.88 69585.80 100.69 0.00 

24 131.4 
 

0.5113 -0.7835 
      

0.0093 
    

5 -34791.10 69592.20 107.12 0.00 

21 128.3 
 

0.5152 -0.7849 
 

0.0016 
    

0.0093 
    

6 -34791.05 69594.10 109.02 0.00 

13 -10.45 0.0023 3.5370 -0.2657 
 

0.0961 
  

-0.0020 
      

7 -34790.10 69594.20 109.12 0.00 

12 86.57 0.0024 -0.3354 -1.1090 
 

0.0464 
 

0.0004 
       

7 -34794.24 69602.50 117.40 0.00 

5 177.4 0.0024 -0.3422 -0.2600 
           

5 -34796.61 69603.20 118.13 0.00 

3 181.8 0.0024 -0.3415 -0.2608 
 

-0.0023 
         

6 -34796.50 69605.00 119.92 0.00 
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23 172.5 -0.0122 
 

-0.1332 
     

-0.0002 
     

5 -34798.75 69607.50 122.41 0.00 

20 181.9 -0.0123 
 

-0.1351 
 

-0.0049 
   

-0.0002 
     

6 -34798.26 69608.50 123.45 0.00 

2 172.7 0.0043 
 

-0.1833 + -0.0032 
         

6 -34814.68 69641.40 156.28 0.00 

9 185.1 
 

-0.6037 -0.3262 
           

4 -34827.33 69662.70 177.58 0.00 

8 167.6 0.0043 
 

-0.1811 
           

4 -34827.73 69663.50 178.37 0.00 

7 174.5 0.0043 
 

-0.1826 
 

-0.0036 
         

5 -34827.47 69665.00 179.86 0.00 

22 147.2 0.0001 0.2813 
  

0.0122 
     

0.0002 
   

6 -34995.27 70002.60 517.47 0.00 

25 170.1 0.0001 0.2962 
        

0.0002 
   

5 -34998.13 70006.30 521.17 0.00 

6 142.9 0.0067 0.3672 
  

0.0124 
         

5 -35006.18 70022.40 537.27 0.00 

10 166.2 0.0067 0.3829 
            

4 -35009.13 70026.30 541.17 0.00 
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Table S2.4 – Results from model selection for TL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model. 

Model (Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

30 261.70 -0.0017 -0.8802 0.0431 
 

-0.0577 
   

0.0000 -0.0041 0.0001 
   

9 -34358.24 68734.50 0.00 0.28 

44 264.80 -0.0037 -0.9168 0.0693 
 

-0.0580 
    

-0.0044 0.0001 
   

8 -34359.27 68734.60 0.07 0.27 

26 261.40 -0.0017 -0.8794 0.0428 + -0.0577 
   

0.0000 -0.0041 0.0001 
   

10 -34357.65 68735.30 0.83 0.19 

42 264.50 -0.0037 -0.9160 0.0690 + -0.0579 
    

-0.0044 0.0001 
   

9 -34358.68 68735.40 0.90 0.18 

28 236.50 -0.0036 -0.3468 0.0784 + -0.0431 
  

-0.0003 
 

-0.0046 0.0001 
   

10 -34358.45 68736.90 2.43 0.08 

40 233.90 0.0009 -0.4210 -0.1719 
 

-0.0555 
   

0.0001 
 

0.0001 
   

8 -34368.95 68753.90 19.42 0.00 

38 233.70 0.0009 -0.4207 -0.1720 + -0.0555 
   

0.0001 
 

0.0001 
   

9 -34368.34 68754.70 20.21 0.00 

15 254.90 0.0015 -0.7362 0.0271 
 

-0.0571 
    

-0.0035 
    

7 -34371.94 68757.90 23.41 0.00 

48 258.40 -0.0006 -0.7851 0.0516 
 

-0.0574 
   

0.0000 -0.0039 
    

8 -34371.19 68758.40 23.91 0.00 

46 258.10 -0.0006 -0.7846 0.0513 + -0.0574 
   

0.0000 -0.0039 
    

9 -34370.52 68759.10 24.57 0.00 

16 235.30 -0.0029 -0.4092 -0.1581 
 

-0.0557 
     

0.0001 
   

7 -34373.25 68760.50 26.03 0.00 

27 360.60 -0.0273 -2.4170 -0.1542 + -0.1215 0.0000 
 

0.0011 
      

9 -34375.63 68769.30 34.78 0.00 

11 247.90 -0.0162 -0.3441 -0.1558 
 

-0.0636 0.0000 
        

7 -34378.50 68771.00 36.52 0.00 

3 232.10 0.0012 -0.3470 -0.1546 
 

-0.0554 
         

6 -34381.19 68774.40 39.91 0.00 

1 231.80 0.0012 -0.3469 -0.1547 + -0.0553 
         

7 -34380.51 68775.00 40.54 0.00 

14 231.80 0.0019 -0.3450 -0.1560 
 

-0.0553 
   

0.0000 
     

7 -34381.11 68776.20 41.75 0.00 

13 245.30 0.0012 -0.6142 -0.1542 
 

-0.0621 
  

0.0001 
      

7 -34381.14 68776.30 41.80 0.00 

12 224.20 0.0012 -0.3465 -0.2254 
 

-0.0513 
 

0.0000 
       

7 -34381.16 68776.30 41.85 0.00 

32 231.70 0.0013 -0.3467 -0.1547 + -0.0553 
      

+ 
  

8 -34380.33 68776.70 42.19 0.00 

33 232.10 0.0012 -0.3539 -0.1546 + -0.0552 
       

+ 
 

8 -34380.42 68776.80 42.36 0.00 

34 232.00 0.0012 -0.3468 -0.1524 + -0.0553 
        

+ 8 -34380.42 68776.90 42.37 0.00 

21 250.40 
 

-0.7223 -0.0866 
 

-0.0567 
    

-0.0021 
    

6 -34392.58 68797.20 62.68 0.00 

20 223.60 0.0064 
 

-0.0855 
 

-0.0567 
   

0.0000 
     

6 -34440.14 68892.30 157.80 0.00 

7 225.00 0.0031 
 

-0.0760 
 

-0.0569 
         

5 -34442.26 68894.50 160.04 0.00 

2 224.70 0.0031 
 

-0.0762 + -0.0568 
         

6 -34441.57 68895.10 160.66 0.00 

31 141.90 0.0001 -0.6978 -0.0296 
     

0.0000 -0.0023 0.0001 
   

8 -34476.62 68969.20 234.76 0.00 

29 141.70 0.0001 -0.6970 -0.0299 + 
    

0.0000 -0.0023 0.0001 
   

9 -34475.77 68969.60 235.07 0.00 

45 146.00 -0.0030 -0.7542 0.0113 
      

-0.0029 0.0001 
   

7 -34479.12 68972.30 237.77 0.00 

43 145.70 -0.0030 -0.7534 0.0110 + 
     

-0.0029 0.0001 
   

8 -34478.27 68972.60 238.07 0.00 

41 128.40 0.0016 -0.4344 -0.1532 
     

0.0001 
 

0.0001 
   

7 -34480.10 68974.20 239.72 0.00 

39 128.20 0.0016 -0.4340 -0.1533 + 
    

0.0001 
 

0.0001 
   

8 -34479.24 68974.50 240.01 0.00 

18 129.50 -0.0025 -0.4216 -0.1381 
       

0.0001 
   

6 -34485.04 68982.10 247.60 0.00 

19 139.00 0.0014 -0.6017 -0.0241 
      

-0.0022 
    

6 -34488.14 68988.30 253.81 0.00 

49 139.40 0.0012 -0.6078 -0.0211 
     

0.0000 -0.0022 
    

7 -34488.13 68990.30 255.79 0.00 

47 139.10 0.0012 -0.6074 -0.0214 + 
    

0.0000 -0.0022 
    

8 -34487.19 68990.40 255.91 0.00 

5 127.20 0.0013 -0.3646 -0.1350 
           

5 -34491.52 68993.10 258.56 0.00 

4 127.00 0.0013 -0.3645 -0.1352 + 
          

6 -34490.58 68993.20 258.69 0.00 

36 127.70 0.0013 -0.3796 -0.1351 + 
        

+ 
 

7 -34490.16 68994.30 259.85 0.00 

17 126.70 0.0025 -0.3608 -0.1378 
     

0.0000 
     

6 -34491.22 68994.50 259.96 0.00 

35 126.90 0.0014 -0.3643 -0.1352 + 
       

+ 
  

7 -34490.34 68994.70 260.20 0.00 
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37 127.30 0.0013 -0.3644 -0.1316 + 
         

+ 7 -34490.38 68994.80 260.28 0.00 

9 131.10 
 

-0.5005 -0.1699 
           

4 -34507.15 69022.30 287.82 0.00 

24 135.40 
 

-0.5892 -0.1331 
      

-0.0007 
    

5 -34506.71 69023.40 288.95 0.00 

22 209.20 0.0015 0.0459 
  

-0.0462 
     

0.0001 
   

6 -34523.76 69059.50 325.03 0.00 

6 207.70 0.0038 0.0759 
  

-0.0461 
         

5 -34526.28 69062.60 328.08 0.00 

23 115.40 0.0073 
 

-0.0636 
     

0.0000 
     

5 -34554.23 69118.50 383.98 0.00 

8 116.60 0.0033 
 

-0.0518 
           

4 -34557.37 69122.70 388.25 0.00 

25 122.40 0.0014 -0.0134 
        

0.0001 
   

5 -34599.98 69210.00 475.49 0.00 

10 121.10 0.0036 0.0153 
            

4 -34602.24 69212.50 478.00 0.00 
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Table S2.5 – Results from model selection for HF; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model. 

Model (Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

46 59.18 -0.0011 0.0545 -0.1448 + -0.0114 
   

0.0000 0.0014 
    

9 -24316.82 48651.70 0.00 0.33 

26 59.46 -0.0012 0.0470 -0.1455 + -0.0114 
   

0.0000 0.0013 0.0000 
   

10 -24315.87 48651.80 0.10 0.31 

42 58.42 -0.0005 0.0592 -0.1541 + -0.0114 
    

0.0015 0.0000 
   

9 -24317.08 48652.20 0.51 0.26 

28 53.75 -0.0005 0.1540 -0.1525 + -0.0089 
  

-0.0001 
 

0.0014 0.0000 
   

10 -24317.00 48654.00 2.37 0.10 

38 68.77 -0.0021 -0.1052 -0.0744 + -0.0122 
   

0.0000 
 

0.0000 
   

9 -24328.81 48675.60 23.98 0.00 

27 20.46 0.0036 0.7951 -0.0789 + 0.0120 0.0000 
 

-0.0005 
      

9 -24336.58 48691.20 39.51 0.00 

1 67.36 0.0004 -0.0913 -0.0780 + -0.0120 
         

7 -24341.26 48696.50 44.87 0.00 

30 60.10 -0.0012 0.0450 -0.1449 
 

-0.0116 
   

0.0000 0.0013 0.0000 
   

9 -24339.47 48697.00 45.29 0.00 

48 59.79 -0.0011 0.0532 -0.1441 
 

-0.0115 
   

0.0000 0.0013 
    

8 -24340.62 48697.30 45.60 0.00 

44 59.07 -0.0006 0.0570 -0.1533 
 

-0.0115 
    

0.0015 0.0000 
   

8 -24340.63 48697.30 45.62 0.00 

34 67.44 0.0004 -0.0913 -0.0770 + -0.0120 
        

+ 8 -24341.09 48698.20 46.52 0.00 

33 67.43 0.0004 -0.0932 -0.0780 + -0.0120 
       

+ 
 

8 -24341.18 48698.40 46.71 0.00 

32 67.35 0.0004 -0.0913 -0.0780 + -0.0120 
      

+ 
  

8 -24341.25 48698.50 46.86 0.00 

15 57.45 0.0002 0.0852 -0.1600 
 

-0.0113 
    

0.0016 
    

7 -24344.07 48702.20 50.50 0.00 

21 56.85 
 

0.0864 -0.1780 
 

-0.0113 
    

0.0018 
    

6 -24350.08 48712.20 60.50 0.00 

40 69.34 -0.0021 -0.1061 -0.0743 
 

-0.0124 
   

0.0000 
 

0.0000 
   

8 -24352.15 48720.30 68.66 0.00 

14 69.09 -0.0020 -0.0985 -0.0727 
 

-0.0123 
   

0.0000 
     

7 -24353.55 48721.10 69.45 0.00 

16 68.91 -0.0009 -0.1098 -0.0788 
 

-0.0123 
     

0.0000 
   

7 -24357.20 48728.40 76.74 0.00 

13 32.06 0.0004 0.6320 -0.0787 
 

0.0062 
  

-0.0004 
      

7 -24360.49 48735.00 83.33 0.00 

12 48.12 0.0004 -0.0901 -0.2541 
 

-0.0020 
 

0.0001 
       

7 -24363.02 48740.00 88.38 0.00 

3 67.90 0.0004 -0.0915 -0.0778 
 

-0.0122 
         

6 -24364.99 48742.00 90.33 0.00 

11 69.59 -0.0015 -0.0912 -0.0780 
 

-0.0131 0.0000 
        

7 -24364.66 48743.30 91.67 0.00 

43 34.95 -0.0003 0.0951 -0.1667 + 
     

0.0018 0.0000 
   

8 -24368.15 48752.30 100.64 0.00 

47 35.32 -0.0007 0.0936 -0.1607 + 
    

0.0000 0.0017 
    

8 -24368.30 48752.60 100.96 0.00 

29 35.49 -0.0008 0.0875 -0.1613 + 
    

0.0000 0.0017 0.0000 
   

9 -24367.66 48753.30 101.67 0.00 

2 65.37 0.0009 
 

-0.0574 + -0.0124 
         

6 -24388.28 48788.60 136.91 0.00 

39 45.46 -0.0019 -0.1071 -0.0702 + 
    

0.0000 
 

0.0000 
   

8 -24388.92 48793.80 142.18 0.00 

45 35.33 -0.0004 0.0933 -0.1661 
      

0.0018 0.0000 
   

7 -24392.69 48799.40 147.72 0.00 

49 35.66 -0.0007 0.0928 -0.1601 
     

0.0000 0.0017 
    

7 -24393.04 48800.10 148.44 0.00 

31 35.85 -0.0008 0.0859 -0.1609 
     

0.0000 0.0017 0.0000 
   

8 -24392.23 48800.50 148.81 0.00 

19 34.34 0.0002 0.1148 -0.1712 
      

0.0019 
    

6 -24394.73 48801.50 149.80 0.00 

24 33.80 
 

0.1159 -0.1888 
      

0.0021 
    

5 -24400.47 48810.90 159.28 0.00 

4 44.49 0.0004 -0.0946 -0.0737 + 
          

6 -24399.47 48810.90 159.28 0.00 

37 44.62 0.0004 -0.0945 -0.0724 + 
         

+ 7 -24399.17 48812.40 160.69 0.00 

36 44.67 0.0004 -0.0982 -0.0736 + 
        

+ 
 

7 -24399.19 48812.40 160.72 0.00 

35 44.48 0.0004 -0.0945 -0.0737 + 
       

+ 
  

7 -24399.45 48812.90 161.24 0.00 

20 66.60 -0.0007 
 

-0.0527 
 

-0.0126 
   

0.0000 
     

6 -24406.81 48825.60 173.96 0.00 

7 65.91 0.0009 
 

-0.0571 
 

-0.0125 
         

5 -24411.94 48833.90 182.21 0.00 

41 45.79 -0.0019 -0.1080 -0.0700 
     

0.0000 
 

0.0000 
   

7 -24413.23 48840.50 188.82 0.00 

17 45.63 -0.0018 -0.1014 -0.0686 
     

0.0000 
     

6 -24414.29 48840.60 188.92 0.00 
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18 45.48 -0.0007 -0.1115 -0.0743 
       

0.0000 
   

6 -24417.72 48847.40 195.78 0.00 

5 44.79 0.0004 -0.0948 -0.0734 
           

5 -24424.13 48858.30 206.59 0.00 

9 46.00 
 

-0.1360 -0.0840 
           

4 -24440.02 48888.00 236.38 0.00 

23 42.45 -0.0005 
 

-0.0479 
     

0.0000 
     

5 -24469.94 48949.90 298.23 0.00 

8 42.05 0.0009 
 

-0.0519 
           

4 -24473.88 48955.80 304.10 0.00 

6 55.41 0.0017 0.1216 
  

-0.0074 
         

5 -24760.72 49531.40 879.78 0.00 

22 55.69 0.0013 0.1165 
  

-0.0074 
     

0.0000 
   

6 -24759.97 49531.90 880.28 0.00 

10 41.46 0.0017 0.1120 
            

4 -24781.37 49570.70 919.07 0.00 

25 41.67 0.0013 0.1074 
        

0.0000 
   

5 -24780.75 49571.50 919.84 0.00 
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Table S2.6 – Results from model selection for Ear; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model. 

Model (Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

30 38.65 -0.0083 -0.0681 -0.0697 
 

-0.0077 
   

0.0000 0.0008 0.0001 
   

9 -12332.12 24682.30 0.00 0.41 

26 38.52 -0.0083 -0.0682 -0.0693 + -0.0077 
   

0.0000 0.0008 0.0001 
   

10 -12331.39 24682.80 0.56 0.31 

40 44.40 -0.0089 -0.1650 -0.0266 
 

-0.0081 
   

-0.0001 
 

0.0001 
   

8 -12334.13 24684.30 2.03 0.15 

38 44.22 -0.0089 -0.1643 -0.0265 + -0.0081 
   

-0.0001 
 

0.0001 
   

9 -12333.37 24684.80 2.52 0.12 

31 23.20 -0.0084 -0.0567 -0.0739 
     

-0.0001 0.0010 0.0001 
   

8 -12338.36 24692.80 10.48 0.00 

29 23.15 -0.0084 -0.0569 -0.0734 + 
    

-0.0001 0.0010 0.0001 
   

9 -12337.58 24693.20 10.92 0.00 

41 28.99 -0.0092 -0.1706 -0.0231 
     

-0.0001 
 

0.0001 
   

7 -12341.15 24696.30 14.06 0.00 

39 28.89 -0.0092 -0.1699 -0.0230 + 
    

-0.0001 
 

0.0001 
   

8 -12340.32 24696.70 14.40 0.00 

48 38.50 -0.0077 -0.0352 -0.0646 
 

-0.0081 
   

-0.0001 0.0008 
    

8 -12343.60 24703.20 20.97 0.00 

46 38.37 -0.0077 -0.0355 -0.0642 + -0.0080 
   

-0.0001 0.0008 
    

9 -12342.83 24703.70 21.43 0.00 

14 44.41 -0.0083 -0.1348 -0.0203 
 

-0.0085 
   

-0.0001 
     

7 -12345.73 24705.50 23.21 0.00 

28 107.40 -0.0048 -1.5010 -0.1542 + -0.0472 
  

0.0008 
 

0.0022 0.0001 
   

10 -12345.73 24711.50 29.24 0.00 

49 22.36 -0.0079 -0.0226 -0.0688 
     

-0.0001 0.0010 
    

7 -12350.37 24714.80 32.49 0.00 

47 22.31 -0.0079 -0.0229 -0.0683 + 
    

-0.0001 0.0010 
    

8 -12349.53 24715.10 32.83 0.00 

44 33.05 -0.0048 0.0269 -0.1297 
 

-0.0080 
    

0.0017 0.0001 
   

8 -12350.71 24717.50 35.19 0.00 

42 32.93 -0.0048 0.0267 -0.1292 + -0.0080 
    

0.0017 0.0001 
   

9 -12349.95 24717.90 35.67 0.00 

17 28.33 -0.0086 -0.1399 -0.0164 
     

-0.0001 
     

6 -12353.33 24718.70 36.40 0.00 

45 16.87 -0.0049 0.0402 -0.1349 
      

0.0019 0.0001 
   

7 -12357.43 24728.90 46.62 0.00 

43 16.82 -0.0049 0.0398 -0.1343 + 
     

0.0019 0.0001 
   

8 -12356.61 24729.20 46.97 0.00 

16 45.39 -0.0053 -0.1809 -0.0425 
 

-0.0092 
     

0.0001 
   

7 -12360.94 24735.90 53.63 0.00 

18 28.01 -0.0055 -0.1879 -0.0391 
       

0.0001 
   

6 -12369.76 24751.50 69.27 0.00 

20 43.58 -0.0068 
 

0.0079 
 

-0.0102 
   

-0.0001 
     

6 -12385.21 24782.40 100.16 0.00 

23 24.12 -0.0071 
 

0.0138 
     

-0.0001 
     

5 -12396.00 24802.00 119.74 0.00 

21 26.52 
 

0.2023 -0.1859 
 

-0.0090 
    

0.0028 
    

6 -12397.20 24806.40 124.16 0.00 

15 26.93 0.0001 0.2036 -0.1791 
 

-0.0092 
    

0.0027 
    

7 -12396.77 24807.60 125.29 0.00 

24 8.20 
 

0.2218 -0.1909 
      

0.0030 
    

5 -12405.57 24821.10 138.87 0.00 

19 8.28 0.0001 0.2229 -0.1862 
      

0.0029 
    

6 -12405.36 24822.70 140.46 0.00 

22 35.51 -0.0045 -0.0609 
  

-0.0051 
     

0.0001 
   

6 -12409.75 24831.50 149.25 0.00 

25 25.94 -0.0047 -0.0704 
        

0.0001 
   

5 -12412.52 24835.10 152.79 0.00 

11 52.71 -0.0078 -0.1114 -0.0429 
 

-0.0145 0.0000 
        

7 -12421.92 24857.90 175.60 0.00 

1 46.33 0.0003 -0.1102 -0.0416 + -0.0113 
         

7 -12422.26 24858.50 176.27 0.00 

3 46.56 0.0003 -0.1109 -0.0418 
 

-0.0113 
         

6 -12423.40 24858.80 176.54 0.00 

12 69.37 0.0003 -0.1149 0.1725 
 

-0.0229 
 

-0.0001 
       

7 -12422.41 24858.80 176.58 0.00 

33 46.53 0.0003 -0.1173 -0.0415 + -0.0112 
       

+ 
 

8 -12421.70 24859.40 177.16 0.00 

27 57.88 -0.0083 -0.2134 -0.0427 + -0.0172 0.0000 
 

0.0001 
      

9 -12420.76 24859.60 177.29 0.00 

32 46.29 0.0004 -0.1098 -0.0415 + -0.0113 
      

+ 
  

8 -12421.99 24860.00 177.74 0.00 

34 46.39 0.0003 -0.1101 -0.0401 + -0.0112 
        

+ 8 -12422.07 24860.20 177.90 0.00 

13 30.66 0.0003 0.2117 -0.0421 
 

-0.0033 
  

-0.0002 
      

7 -12423.19 24860.40 178.13 0.00 

4 24.83 0.0003 -0.1159 -0.0374 + 
          

6 -12435.32 24882.70 200.39 0.00 

36 25.25 0.0003 -0.1243 -0.0373 + 
        

+ 
 

7 -12434.57 24883.20 200.89 0.00 
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5 24.95 0.0003 -0.1167 -0.0375 
           

5 -12436.59 24883.20 200.93 0.00 

37 25.04 0.0003 -0.1158 -0.0354 + 
         

+ 7 -12434.99 24884.00 201.74 0.00 

35 24.77 0.0003 -0.1156 -0.0373 + 
       

+ 
  

7 -12435.07 24884.20 201.90 0.00 

9 25.86 
 

-0.1470 -0.0450 
           

4 -12439.78 24887.60 205.30 0.00 

2 45.45 0.0009 
 

-0.0166 + -0.0125 
         

6 -12448.22 24908.50 226.18 0.00 

7 45.70 0.0009 
 

-0.0166 
 

-0.0125 
         

5 -12449.71 24909.40 227.16 0.00 

8 21.63 0.0009 
 

-0.0104 
           

4 -12465.73 24939.50 257.20 0.00 

6 36.82 0.0010 0.0063 
  

-0.0073 
         

5 -12469.36 24948.70 266.46 0.00 

10 23.04 0.0009 -0.0056 
            

4 -12474.94 24957.90 275.62 0.00 
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Table S2.7 – Results from model selection for Mass; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model.  
(Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

38 318.00 -0.0686 -0.4982 -0.4569 + -0.0797 
   

-0.0005 
 

0.0006 
   

9 -16311.09 32640.20 0.00 0.33 

40 320.70 -0.0693 -0.5089 -0.4564 
 

-0.0802 
   

-0.0005 
 

0.0006 
   

8 -16312.27 32640.60 0.36 0.27 

26 307.70 -0.0678 -0.3540 -0.5221 + -0.0782 
   

-0.0005 0.0012 0.0006 
   

10 -16311.06 32642.20 1.95 0.12 

30 310.40 -0.0685 -0.3647 -0.5216 
 

-0.0787 
   

-0.0005 0.0012 0.0006 
   

9 -16312.24 32642.50 2.30 0.10 

39 166.60 -0.0710 -0.5674 -0.4326 + 
    

-0.0005 
 

0.0006 
   

8 -16314.15 32644.30 4.10 0.04 

41 168.40 -0.0717 -0.5787 -0.4319 
     

-0.0005 
 

0.0006 
   

7 -16315.36 32644.80 4.53 0.03 

14 327.90 -0.0661 -0.2949 -0.4042 
 

-0.0859 
   

-0.0007 
     

7 -16315.74 32645.50 5.27 0.02 

20 330.10 -0.0634 
 

-0.3366 
 

-0.0913 
   

-0.0007 
     

6 -16316.83 32645.70 5.46 0.02 

29 146.40 -0.0688 -0.1743 -0.6100 + 
    

-0.0005 0.0033 0.0006 
   

9 -16313.91 32645.90 5.63 0.02 

31 148.10 -0.0695 -0.1840 -0.6100 
     

-0.0005 0.0033 0.0006 
   

8 -16315.12 32646.30 6.05 0.02 

46 322.40 -0.0652 -0.2384 -0.4235 + -0.0850 
   

-0.0007 0.0004 
    

9 -16314.64 32647.30 7.09 0.01 

48 324.80 -0.0659 -0.2500 -0.4242 
 

-0.0854 
   

-0.0007 0.0004 
    

8 -16315.73 32647.50 7.27 0.01 

17 164.70 -0.0685 -0.3555 -0.3743 
     

-0.0007 
     

6 -16319.29 32650.60 10.36 0.00 

23 154.60 -0.0653 
 

-0.2895 
     

-0.0007 
     

5 -16320.90 32651.80 11.59 0.00 

47 147.10 -0.0661 -0.0331 -0.5121 + 
    

-0.0007 0.0026 
    

8 -16318.01 32652.10 11.84 0.00 

49 148.70 -0.0668 -0.0439 -0.5132 
     

-0.0007 0.0026 
    

7 -16319.14 32652.30 12.08 0.00 

42 246.00 -0.0377 0.3019 -1.0300 + -0.0718 
    

0.0084 0.0012 
   

9 -16321.56 32661.20 20.93 0.00 

44 248.00 -0.0379 0.3016 -1.0390 
 

-0.0722 
    

0.0085 0.0012 
   

8 -16323.09 32662.20 21.98 0.00 

28 -44.71 -0.0394 6.1210 -0.9619 + 0.0797 
  

-0.0030 
 

0.0069 0.0012 
   

10 -16321.26 32662.60 22.36 0.00 

16 319.00 -0.0398 -0.7218 -0.6047 
 

-0.0828 
     

0.0013 
   

7 -16324.77 32663.60 23.34 0.00 

43 99.08 -0.0392 0.4535 -1.1000 + 
     

0.0102 0.0012 
   

8 -16323.94 32663.90 23.69 0.00 

45 100.20 -0.0395 0.4541 -1.1090 
      

0.0103 0.0012 
   

7 -16325.50 32665.00 24.80 0.00 

18 161.90 -0.0421 -0.7956 -0.5807 
       

0.0013 
   

6 -16328.04 32668.10 27.87 0.00 

15 216.50 0.0133 1.6320 -1.3810 
 

-0.0882 
    

0.0153 
    

7 -16350.40 32714.80 74.59 0.00 

33 332.50 0.0145 0.0661 -0.6011 + -0.1088 
       

+ 
 

8 -16350.72 32717.50 77.24 0.00 

19 34.35 0.0126 1.8510 -1.4760 
      

0.0176 
    

6 -16353.95 32719.90 79.69 0.00 

32 343.50 0.0128 -0.1375 -0.5972 + -0.1082 
      

+ 
  

8 -16352.10 32720.20 80.01 0.00 

2 343.60 0.0153 
 

-0.5668 + -0.1111 
         

6 -16354.39 32720.80 80.57 0.00 

1 342.80 0.0145 -0.1416 -0.6006 + -0.1086 
         

7 -16354.14 32722.30 82.08 0.00 

7 347.20 0.0153 
 

-0.5653 
 

-0.1121 
         

5 -16356.23 32722.50 82.23 0.00 

3 346.20 0.0144 -0.1568 -0.6028 
 

-0.1094 
         

6 -16355.92 32723.90 83.63 0.00 

34 341.20 0.0145 -0.1449 -0.6161 + -0.1086 
        

+ 8 -16354.00 32724.10 83.82 0.00 

12 175.60 0.0143 -0.1425 -2.2280 
 

-0.0234 
 

0.0008 
       

7 -16355.69 32725.40 85.18 0.00 

11 329.90 0.0405 -0.1471 -0.5980 
 

-0.1012 0.0000 
        

7 -16355.87 32725.80 85.53 0.00 

13 387.50 0.0144 -0.9766 -0.6017 
 

-0.1302 
  

0.0004 
      

7 -16355.92 32725.90 85.63 0.00 

27 323.30 0.0411 -0.0751 -0.5958 + -0.0988 0.0000 
 

0.0000 
      

9 -16354.09 32726.20 85.99 0.00 

36 124.90 0.0138 -0.0071 -0.5691 + 
        

+ 
 

7 -16356.33 32726.70 86.45 0.00 

35 136.90 0.0121 -0.2098 -0.5652 + 
       

+ 
  

7 -16357.65 32729.30 89.10 0.00 

4 135.40 0.0138 -0.2142 -0.5686 + 
          

6 -16359.73 32731.50 91.24 0.00 

8 131.10 0.0151 
 

-0.5137 
           

4 -16362.24 32732.50 92.25 0.00 
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5 137.40 0.0138 -0.2302 -0.5706 
           

5 -16361.57 32733.20 92.93 0.00 

37 133.80 0.0138 -0.2175 -0.5841 + 
         

+ 7 -16359.59 32733.20 92.97 0.00 

25 126.60 -0.0295 1.0200 
        

0.0013 
   

5 -16381.18 32772.40 132.15 0.00 

22 174.30 -0.0287 1.0650 
  

-0.0254 
     

0.0013 
   

6 -16380.88 32773.80 133.55 0.00 

24 28.71 
 

1.4000 -2.2180 
      

0.0253 
    

5 -16389.73 32789.50 149.24 0.00 

21 110.20 
 

1.2910 -2.1930 
 

-0.0395 
    

0.0245 
    

6 -16389.01 32790.10 149.81 0.00 

9 182.30 
 

-1.7790 -0.9640 
           

4 -16405.74 32819.50 179.25 0.00 

6 201.70 0.0252 1.6210 
  

-0.0520 
         

5 -16410.62 32831.30 191.02 0.00 

10 103.40 0.0246 1.5390 
            

4 -16411.89 32831.80 191.56 0.00 
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Table S2.8 – Results from model selection for TL/TBL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order 

Akaike information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model.  
(Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

26 0.67 0.0000 -0.0015 0.0006 + -0.0001 
   

0.0000 0.0000 0.0000 
   

10 17903.85 -35787.70 0.00 0.74 

46 0.67 0.0000 -0.0014 0.0006 + -0.0001 
   

0.0000 0.0000 
    

9 17901.63 -35785.20 2.44 0.22 

30 0.67 0.0000 -0.0015 0.0006 
 

-0.0001 
   

0.0000 0.0000 0.0000 
   

9 17899.57 -35781.10 6.57 0.03 

48 0.67 0.0000 -0.0014 0.0006 
 

-0.0001 
   

0.0000 0.0000 
    

8 17897.44 -35778.90 8.82 0.01 

42 0.70 0.0000 -0.0018 0.0008 + -0.0001 
    

0.0000 0.0000 
   

9 17890.68 -35763.30 24.34 0.00 

28 0.66 0.0000 -0.0010 0.0008 + -0.0001 
  

0.0000 
 

0.0000 0.0000 
   

10 17890.76 -35761.50 26.19 0.00 

38 0.59 0.0000 -0.0001 0.0000 + -0.0001 
   

0.0000 
 

0.0000 
   

9 17888.57 -35759.10 28.57 0.00 

15 0.70 0.0000 -0.0018 0.0008 
 

-0.0001 
    

0.0000 
    

7 17886.28 -35758.50 29.14 0.00 

21 0.70 
 

-0.0018 0.0008 
 

-0.0001 
    

0.0000 
    

6 17885.04 -35758.10 29.61 0.00 

44 0.70 0.0000 -0.0018 0.0008 
 

-0.0001 
    

0.0000 0.0000 
   

8 17886.42 -35756.80 30.86 0.00 

20 0.59 0.0000 
 

0.0000 
 

-0.0001 
   

0.0000 
     

6 17882.51 -35753.00 34.66 0.00 

40 0.59 0.0000 -0.0001 0.0000 
 

-0.0001 
   

0.0000 
 

0.0000 
   

8 17884.34 -35752.70 35.01 0.00 

14 0.59 0.0000 -0.0001 0.0000 
 

-0.0001 
   

0.0000 
     

7 17882.74 -35751.50 36.21 0.00 

27 0.83 0.0000 -0.0047 0.0001 + -0.0002 0.0000 
 

0.0000 
      

9 17863.25 -35708.50 79.21 0.00 

33 0.61 0.0000 -0.0002 0.0001 + -0.0001 
       

+ 
 

8 17861.68 -35707.30 80.35 0.00 

1 0.61 0.0000 -0.0001 0.0001 + -0.0001 
         

7 17860.53 -35707.10 80.63 0.00 

32 0.61 0.0000 -0.0001 0.0001 + -0.0001 
      

+ 
  

8 17861.33 -35706.60 81.03 0.00 

2 0.60 0.0000 
 

0.0001 + -0.0001 
         

6 17858.86 -35705.70 81.98 0.00 

34 0.61 0.0000 -0.0001 0.0001 + -0.0001 
        

+ 8 17860.79 -35705.60 82.12 0.00 

13 0.83 0.0000 -0.0046 0.0001 
 

-0.0002 
  

0.0000 
      

7 17859.15 -35704.30 83.39 0.00 

16 0.60 0.0000 0.0000 0.0001 
 

-0.0001 
     

0.0000 
   

7 17859.05 -35704.10 83.60 0.00 

3 0.60 0.0000 -0.0001 0.0001 
 

-0.0001 
         

6 17856.26 -35700.50 87.16 0.00 

11 0.58 0.0000 -0.0001 0.0001 
 

-0.0001 0.0000 
        

7 17857.08 -35700.10 87.54 0.00 

12 0.68 0.0000 -0.0001 0.0008 
 

-0.0001 
 

0.0000 
       

7 17856.77 -35699.50 88.15 0.00 

7 0.60 0.0000 
 

0.0001 
 

-0.0001 
         

5 17854.59 -35699.20 88.50 0.00 

22 0.61 0.0000 -0.0002 
  

-0.0001 
     

0.0000 
   

6 17854.04 -35696.10 91.61 0.00 

6 0.61 0.0000 -0.0003 
  

-0.0001 
         

5 17852.00 -35694.00 93.68 0.00 

29 0.46 0.0000 -0.0011 0.0005 + 
    

0.0000 0.0000 0.0000 
   

9 17832.28 -35646.50 141.15 0.00 

47 0.45 0.0000 -0.0010 0.0005 + 
    

0.0000 0.0000 
    

8 17830.49 -35645.00 142.71 0.00 

31 0.45 0.0000 -0.0011 0.0005 
     

0.0000 0.0000 0.0000 
   

8 17828.50 -35641.00 146.69 0.00 

49 0.45 0.0000 -0.0010 0.0005 
     

0.0000 0.0000 
    

7 17826.80 -35639.60 148.10 0.00 

39 0.41 0.0000 -0.0001 0.0000 + 
    

0.0000 
 

0.0000 
   

8 17824.30 -35632.60 155.10 0.00 

23 0.40 0.0000 
 

0.0001 
     

0.0000 
     

5 17818.69 -35627.40 160.31 0.00 

41 0.41 0.0000 -0.0001 0.0000 
     

0.0000 
 

0.0000 
   

7 17820.55 -35627.10 160.60 0.00 

17 0.40 0.0000 -0.0001 0.0000 
     

0.0000 
     

6 17819.18 -35626.30 161.34 0.00 

43 0.48 0.0000 -0.0015 0.0007 + 
     

0.0000 0.0000 
   

8 17815.67 -35615.30 172.35 0.00 

19 0.48 0.0000 -0.0016 0.0007 
      

0.0000 
    

6 17811.28 -35610.60 177.12 0.00 

24 0.48 
 

-0.0016 0.0007 
      

0.0000 
    

5 17810.19 -35610.40 177.31 0.00 

45 0.48 0.0000 -0.0015 0.0007 
      

0.0000 0.0000 
   

7 17811.94 -35609.90 177.82 0.00 
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36 0.42 0.0000 -0.0002 0.0001 + 
        

+ 
 

7 17796.32 -35578.60 209.05 0.00 

4 0.42 0.0000 -0.0002 0.0001 + 
          

6 17794.55 -35577.10 210.59 0.00 

35 0.42 0.0000 -0.0002 0.0001 + 
       

+ 
  

7 17795.44 -35576.90 210.82 0.00 

18 0.41 0.0000 -0.0001 0.0001 
       

0.0000 
   

6 17794.17 -35576.30 211.36 0.00 

37 0.42 0.0000 -0.0002 0.0001 + 
         

+ 7 17794.96 -35575.90 211.78 0.00 

9 0.41 
 

-0.0002 0.0001 
           

4 17790.72 -35573.40 214.25 0.00 

5 0.42 0.0000 -0.0002 0.0001 
           

5 17790.75 -35571.50 216.19 0.00 

8 0.41 0.0000 
 

0.0001 
           

4 17788.35 -35568.70 218.98 0.00 

25 0.42 0.0000 -0.0004 
        

0.0000 
   

5 17782.62 -35555.20 232.45 0.00 

10 0.42 0.0000 -0.0004 
            

4 17780.42 -35552.80 234.85 0.00 
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Table S2.9 – Results from model selection for HF/TBL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; yer = year; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight = model weight, the relative likelihood of a model;”+” = factor incorporated into the model. 

Model (Int) Elv Ltt Lng sex yer Elv:yer Lng:yer Ltt:yer Elv:Lng Ltt:Lng Elv:Ltt Elv:sex Ltt:sex Lng:sex df logLik AICc delta weight 

m42 0.15 0.0000 0.0005 -0.0002 + 0.0000 
    

0.0000 0.0000 
   

9 23515.81 -47013.60 0.00 0.37 

m28 0.20 0.0000 -0.0005 -0.0002 + 0.0000 
  

0.0000 
 

0.0000 0.0000 
   

10 23516.39 -47012.80 0.84 0.24 

m26 0.15 0.0000 0.0005 -0.0002 + 0.0000 
   

0.0000 0.0000 0.0000 
   

10 23516.04 -47012.10 1.53 0.17 

m44 0.15 0.0000 0.0005 -0.0002 
 

0.0000 
    

0.0000 0.0000 
   

8 23513.44 -47010.90 2.74 0.10 

m30 0.15 0.0000 0.0005 -0.0002 
 

0.0000 
   

0.0000 0.0000 0.0000 
   

9 23513.67 -47009.30 4.26 0.04 

m43 0.13 0.0000 0.0005 -0.0002 + 
     

0.0000 0.0000 
   

8 23512.07 -47008.10 5.47 0.02 

m29 0.12 0.0000 0.0006 -0.0002 + 
    

0.0000 0.0000 0.0000 
   

9 23512.43 -47006.80 6.76 0.01 

m46 0.15 0.0000 0.0004 -0.0002 + 0.0000 
   

0.0000 0.0000 
    

9 23512.35 -47006.70 6.92 0.01 

m27 0.05 0.0000 0.0020 0.0000 + 0.0001 0.0000 
 

0.0000 
      

9 23511.74 -47005.50 8.13 0.01 

m45 0.13 0.0000 0.0005 -0.0002 
      

0.0000 0.0000 
   

7 23509.62 -47005.20 8.37 0.01 

m48 0.15 0.0000 0.0004 -0.0002 
 

0.0000 
   

0.0000 0.0000 
    

8 23510.09 -47004.20 9.44 0.00 

m31 0.12 0.0000 0.0006 -0.0002 
     

0.0000 0.0000 0.0000 
   

8 23509.98 -47003.90 9.65 0.00 

m11 0.15 0.0000 0.0000 0.0000 
 

0.0000 0.0000 
        

7 23508.03 -47002.00 11.54 0.00 

m38 0.17 0.0000 0.0001 0.0000 + 0.0000 
   

0.0000 
 

0.0000 
   

9 23509.82 -47001.60 11.97 0.00 

m47 0.13 0.0000 0.0005 -0.0002 + 
    

0.0000 0.0000 
    

8 23508.53 -47001.10 12.54 0.00 

m15 0.16 0.0000 0.0003 -0.0002 
 

0.0000 
    

0.0000 
    

7 23507.41 -47000.80 12.79 0.00 

m16 0.17 0.0000 0.0001 0.0000 
 

0.0000 
     

0.0000 
   

7 23507.39 -47000.80 12.83 0.00 

m40 0.17 0.0000 0.0001 0.0000 
 

0.0000 
   

0.0000 
 

0.0000 
   

8 23507.47 -46998.90 14.66 0.00 

m2 0.18 0.0000 
 

0.0000 + 0.0000 
         

6 23505.46 -46998.90 14.69 0.00 

m49 0.13 0.0000 0.0005 -0.0002 
     

0.0000 0.0000 
    

7 23506.20 -46998.40 15.21 0.00 

m1 0.18 0.0000 0.0000 0.0000 + 0.0000 
         

7 23505.95 -46997.90 15.71 0.00 

m33 0.18 0.0000 0.0000 0.0000 + 0.0000 
       

+ 
 

8 23506.71 -46997.40 16.19 0.00 

m7 0.18 0.0000 
 

0.0000 
 

0.0000 
         

5 23503.23 -46996.50 17.14 0.00 

m34 0.18 0.0000 0.0000 0.0000 + 0.0000 
        

+ 8 23506.14 -46996.30 17.32 0.00 

m32 0.18 0.0000 0.0000 0.0000 + 0.0000 
      

+ 
  

8 23506.13 -46996.20 17.36 0.00 

m3 0.18 0.0000 0.0000 0.0000 
 

0.0000 
         

6 23503.72 -46995.40 18.16 0.00 

m20 0.18 0.0000 
 

-0.0001 
 

0.0000 
   

0.0000 
     

6 23503.67 -46995.30 18.27 0.00 

m14 0.18 0.0000 0.0000 0.0000 
 

0.0000 
   

0.0000 
     

7 23504.33 -46994.60 18.95 0.00 

m12 0.21 0.0000 0.0000 0.0003 
 

0.0000 - 0.0000 
       

7 23504.15 -46994.30 19.31 0.00 

m19 0.13 0.0000 0.0004 -0.0002 
      

0.0000 
    

6 23502.94 -46993.90 19.71 0.00 

m13 0.19 0.0000 -0.0003 0.0000 
 

0.0000 
  

0.0000 
      

7 23503.80 -46993.60 20.01 0.00 

m39 0.15 0.0000 0.0001 0.0000 + 
    

0.0000 
 

0.0000 
   

8 23504.74 -46993.50 20.13 0.00 

m18 0.15 0.0000 0.0001 0.0000 
       

0.0000 
   

6 23502.23 -46992.50 21.13 0.00 

m22 0.17 0.0000 0.0002 
  

0.0000 
     

0.0000 
   

6 23501.47 -46990.90 22.67 0.00 

m41 0.15 0.0000 0.0001 0.0000 
     

0.0000 
 

0.0000 
   

7 23502.30 -46990.60 23.01 0.00 

m4 0.15 0.0000 0.0000 0.0000 + 
          

6 23500.57 -46989.10 24.46 0.00 

m36 0.15 0.0000 0.0000 0.0000 + 
        

+ 
 

7 23501.47 -46988.90 24.66 0.00 

m21 0.16 
 

0.0003 -0.0001 
 

0.0000 
    

0.0000 
    

6 23500.29 -46988.60 25.01 0.00 

m8 0.15 0.0000 
 

0.0000 
           

4 23497.85 -46987.70 25.89 0.00 

m37 0.15 0.0000 0.0000 0.0000 + 
         

+ 7 23500.80 -46987.60 26.00 0.00 
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m35 0.15 0.0000 0.0000 0.0000 + 
       

+ 
  

7 23500.77 -46987.50 26.07 0.00 

m23 0.15 0.0000 
 

0.0000 
     

0.0000 
     

5 23498.41 -46986.80 26.78 0.00 

m5 0.15 0.0000 0.0000 0.0000 
           

5 23498.26 -46986.50 27.09 0.00 

m17 0.15 0.0000 0.0000 0.0000 
     

0.0000 
     

6 23498.99 -46986.00 27.62 0.00 

m25 0.15 0.0000 0.0002 
        

0.0000 
   

5 23497.73 -46985.40 28.15 0.00 

m6 0.17 0.0000 0.0001 
  

0.0000 
         

5 23496.68 -46983.30 30.25 0.00 

m24 0.14 
 

0.0004 -0.0001 
      

0.0000 
    

5 23495.90 -46981.80 31.79 0.00 

m9 0.15 
 

0.0001 0.0000 
           

4 23493.55 -46979.10 34.49 0.00 

m10 0.15 0.0000 0.0001 
            

4 23492.77 -46977.50 36.05 0.00 
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CHAPTER 3  

 

Range-wide variation in skull morphometry in the American red squirrel, 

Tamiasciurus hudsonicus 
 

Fríða Jóhannesdóttir, Brian R Magnier, Cassandra Ramirez & Jeremy B Searle  

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853, USA 

 

ABSTRACT 

Environmental factors, both abiotic and biotic, provide important selective pressures on species 

and can shape both their morphology and genetic makeup. For many species large scale factors 

such as temperature and elevation can both determine the range limits and physiological limits 

attained by adaptation. In mammals, adaptation to low temperature is often linked with 

adaptation to high elevation since temperature goes down with increased elevation. A number of 

ecogeographical rules have been established to describe patterns of morphological variation 

observed in response to temperature changes, three of which are applicable to skull morphology. 

In response to cold, Bergmann’s rule posits increased size and Allen’s rule posits reduced 

protuberances/appendages in order to reduce heat loss (minimizing the surface area to volume 

ratio). Dehnel’s phenomenon is a reduction in size, especially skull depth, in winter compared to 

other seasons, thereby reducing absolute energy expenditure. 

In this study we examined skull features of the American red squirrel, Tamiasciurus 

hudsonicus, a small arboreal mammal found throughout most of Alaska and Canada and down 

the Rocky Mountains and the Appalachians in the US. We used multimodel inference to explore 

how elevation, latitude, longitude, season and sex impact a suite of skull variables (length, width, 

depth and volume measurements, and including ratios). 
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Our results provide support for Bergmann’s rule, with the skull tending to be larger both 

at higher elevation and latitude indicating adaptive change in relation to temperature. Seasonal 

changes in skull morphology do not relate to Dehnel’s phenomenon in a straightforward way. 

Allen’s rule was tested using nose length (estimated by measuring the nasal bones). We did find 

a decline in nose length with latitude, but not with elevation; different functional adaptations 

may underlie these two contrasting trends. 

INTRODUCTION 

Wild mammals are found over an extraordinary range of environments on the planet (Macdonald 

2009). While some are only found in a limited area or active only for limited times others are 

very widespread and are active for a large part of the day or year. The activity patterns are 

clearly going to impact the exposure of individuals to the environment where they live, with 

some mammals substantially limiting that exposure (e.g. daily and seasonal dormancy in the 

edible dormouse: Wilz & Heldmaier 2000). Overall, the current distribution of a species can be 

explained by a combination of ecological factors (ability to live in particular abiotic and biotic 

environments), which we are focusing on here, and historical factors (relating to their origin, 

their dispersion from there and influences of humans restricting where the species can live) (Cox, 

Moore & Ladle 2016). The manner in which species are adapted to that environment in which 

they live will be reflected in morphology, and some of the most exquisite adaptations reflect that, 

responding to biotic resources, competition, predation, abiotic conditions etc. More wide ranging 

species generally show more striking morphological variation since they are exposed to a greater 

range of environmental conditions that can shape their morphology, and this can be seen very 

readily in mammals (e.g. vervet monkey: Elton, Dunn & Cardini 2010). In some cases 

researchers have felt it is possible to generalize about this variation in morphology. Various so-
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called ecogeographical rules have been proposed to explain patterns that have been observed in 

mammals, and other groups, as a reaction to the environment they live in (Cox, Moore & Ladle 

2016).  

Here we focus on thermal adaptation in a biogeographical context. The ecogeographical 

rules relating to this provide a backdrop to that consideration. Bergmann’s rule is important in 

this respect. First proclaimed by Carl Bergmann in 1847, it is one of the oldest and most widely 

cited ecogeographical rules, which was originally based on work on endotherms and states that 

within a large geographical range larger individuals are found in colder environments, i.e. at 

higher latitudes and elevation, and smaller individuals in warmer areas (Clauss et al 2013). The 

original, and widely accepted, explanation for this is that larger individuals have a smaller 

surface area to volume ratio and will therefore lose less energy through radiation in colder 

environments while smaller animals will be able to increase heat loss in warmer climates (Clauss 

et al 2013). For an endotherm, substantial resources may be needed to maintain a core body 

temperature under cold conditions (Ruben 1995); therefore Bergmann’s rule makes intuitive 

sense as a means to mitigate that cost. In a mammalian context, larger species may not only be at 

an advantage in cold conditions because of minimizing their surface area to volume ratio, they 

may also be better able to increase the density and/or length of hair to prevent heat loss than 

smaller species; however, empirical data are equivocal on this point (Freckleton, Harvey & Pagel 

2003; Wasserman & Nash 1979).  

There has been much consideration of the validity of Bergmann’s rule in mammals (e.g. 

Ashton, Tracy & de Queiroz 2000; Meiri & Dayan 2003). In addition to the influence of 

temperature, it has been suggested that there may be other selective pressures influencing 

geographical variation in body size of endotherms such as food supply (McNab 1971; Ralls & 
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Harvey 1985). It has even been hypothesized that if food supplies decline with lower 

temperature, as is often the case, individuals may be expected to show decreased size since larger 

bodies are more energetically costly and will require more resources (McNab 1971). 

Additionally, when resources are scarce, larger individuals may be favored because they need to 

forage over a larger area or since they might better be able to withstand periods of starvation. For 

these reasons some authors have suggested that biotic factors may be more important than abiotic 

when it comes to body size determination (Freckleton, Harvey & Pagel 2003). These alternative 

explanations have been applied to mammals that show the converse trends to those expected 

under Bergmann’s rule, e.g. in tuco-tucos (Medina, Martí & Bidau 2007). 

Building on the same original explanation as Bergmann’s rule, i.e. reduction of heat loss 

in colder climates, Allen’s rule (dating to 1877) predicts that certain external body parts will vary 

more than body size in endotherms with the peripheral parts, such as nose, ears and feet, 

decreasing in size under low temperature towards the poles and at higher elevation. The rule has 

been applied to certain mammals such as jack rabbits (Griffing 1974) and hominins (e.g. Tilkins 

et al 1987). Again, smaller protuberances/appendages would be expected to minimize heat loss 

under cold conditions and larger elements maximize heat loss under hot conditions, because of 

the large surface area to volume ratio associated with such structures.  

A final ‘rule’ relating to temperature adaptation is Dehnel’s phenomenon, first described 

in 1949. This relates to changes in body size and other features such as skull depth during the 

annual cycle, with individuals decreasing in size in winter and increasing again in size come 

spring (Pucek 1970). While Bergmann’s rule and Allen’s rule have been found to hold true for a 

variety of taxa, both intra- and interspecifically, Dehnel’s phenomenon has to date only been 

described for mammalian species in the shrew genus Sorex and in some within the rodent 
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subfamily Arvicolinae (Iverson & Turner 1974; Merritt & Zegers 1991; Churchfield, Rychlik & 

Taylor 2012). The phenomenon is associated with lowered energy expenditure through reduced 

body mass, not only by loss of fat reserves but reduction in the size of the skeleton, including the 

skull, and the brain. Dehnel’s phenomenon is consistent with arguments from McNab (1971) and 

others against an energetic basis for Bergmann’s rule, given that the absolute energetic 

requirements for a larger individual are greater than the absolute energetic requirements for a 

smaller individual. Thus, Dehnel’s phenomenon aligns with the converse of Bergmann’s rule, 

and indeed in shrews of the genus Sorex, their geographic variation in body size follows a 

converse Bergmann trend (Ochocińska & Taylor 2003). Thus, for these shrews, it appears that 

absolute energetic requirements may be the driving force behind body size evolution.  

The three rules, ecogeographical or seasonal, that we have described are far from 

universal in mammals. However, they have a clear mechanistic basis, and can act as null models 

when considering geographical and seasonal variation in morphology in mammals. Here we 

describe morphological variation in a very widespread species which is active all the year round 

and therefore shows high exposure to temperature extremes. We examine specimens throughout 

that distribution thereby not restricted to simple transects along particular geographical axes (e.g. 

latitude) allowing a more multivariate approach on the relationship of morphology to geography. 

That geography can be interpreted in terms of thermal conditions, as can the season in which 

each individual is caught. We focus on geography rather than direct temperature measurements 

to test for these rules based on their original assumptions. Our methodology allows a richer 

approach to the ecogeographical rules than is normally possible. 

Our study species is the American red squirrel (Tamiasciurus hudsonicus). This is a small 

mammal (110-255 g; Reid 2006; Bowers, Bowers & Kaufman 2007) found in coniferous forests 
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throughout northern North American and south along the Appalachian Mountains in the east and 

the Rocky Mountains in the west (figure 3.1; Steele 1998). T.hudsonicus is active all year round 

in areas spanning wide temperature ranges, from an average coldest temperature during January 

more extreme than -30C (with the average high around -20C at the same time) to areas with July 

average temperatures higher than 30C (with lowest temperature close to 20C). Within a single 

location the species may face either extreme annual cycles with low average temperatures in 

January below -20C and high average temperatures over 25C, or more moderate cycles with July 

annual temperature around 30C and average low January temperature at around -3C (all 

temperature data from http://www.usclimatedata.com). Given that the species is most active 

during dawn and dusk some of the extreme temperatures may be expected to be avoided through 

behavioral modification, however they are reliant on diurnal vision and are active at all times of 

day at all times of the year thereby limiting the extent of behavioral avoidance possible. 

Therefore, they are still bound to be seriously impacted by an extraordinary range of 

temperatures.  

Over the last 150 years museum collections have become a crucial repository for 

biological specimens (Suarez & Tsutsui 2004). In the case of mammals the standard items 

preserved from collection expeditions are whole study skins, and even more commonly skulls. 

Species such as T.hudsonicus are well represented in major museums in the USA with 

collections spanning wide elevational and latitudinal range, providing large numbers of skulls for 

analysis. Mammalian skulls reflect body size (relating to Bergmann’s rule), and the nose can be 

measured (Allen’s rule) and skull variation with season can be examined (Dehnel’s 

phenomenon). For these reasons it is possible through skull measurements, and with reference to 
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the ecogeographical rules relating to thermal conditions, to answer the question ‘to what extent is 

the morphology of T.hudsonicus shaped by temperature?’  

MATERIALS AND METHODS  

Specimens  

Skulls were accessed at the Cornell University Museum of Vertebrates (CUMV), the American 

Museum of Natural History (AMNH), the Field Museum of Natural History (FMNH) and the 

National Museum of Natural History (NMNH) and were derived from individuals that had been 

collected in the years between 1876 and 2004 throughout a large part of the species distribution 

(figure 3.1). A small minority of the specimens had coordinates already associated with the 

collection site. Coordinates for the remaining specimens were found using Google Earth (version 

7.1.5.1557 using the WGS84 reference system, http://earth.google.com) and using information 

from primary literature and historical documents on a case by case basis. Specimens that could 

not be accurately georeferenced were dropped from analysis.   
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Figure 3.1 – Distribution of the American red squirrels, collection sites for specimens used in this study 

and size data. The distribution is indicated by a solid line and follows Steele (1998). Colors indicate 

categories for TSL (total skull length), with equal representation of each category. Red = 45.8-49.6mm, 

orange = 44.9-45.8mm, green = 43.9-44.9mm, blue = 42.8-43.9mm, purple = 39.7-42.8mm. In some 

cases sample points were moved slightly to allow all points to be visible.  

All specimens included in the analysis were adults. For skulls where the age of the 

specimen had not been determined by the collector, approximate age was determined either by 

tooth wear or inspection of the accompanying skin (coloration of scrotum and presence of 

mammae; Flyger & Gates 1982). Data on weight and total body length was not used as an 

indicator of age due to difference in size of described subspecies (Steele 1998). We used a 

simplified estimation of age categories based on Layne (1954), Nellis (1969) and Lindsay (1987) 

and classified adults as individuals where complete permanent dentition was present and wear 
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was found on all molars. The age of what was classified as adults was most likely no less than 

five months (Nellis 1969).   

Skull measurements  

Skull measurements were recorded using 

digital calipers to the nearest 0.01mm. We 

estimated eight skull measures (figure 3.2): 

total skull length (TSL; the distance from the 

anterior end of the nasal bones to the surface 

of the occipital condyles), condylobasal 

length (CBL; the distance from the prosthion 

to the posterior surface of the occipital 

condyles), least interorbital breadth or eye 

width (EW), maximum zygomatic width 

(MZW), length of diastema (LD), length of 

posterior occipital suture (POS), nasal bone 

length (NB) and distance from occipital suture 

to posterior vomer (Depth). These measurements were chosen based on previous work (Findley 

1961; Lindsay 1987). Three measurements were dropped from the analysis due to lack of 

repeatability of measurements (LD and POS) and lack of homology (EW). Additionally, we 

calculated the ratio of nasal bones to total skull length, NB/TSL (TSL was used as opposed to 

CBL since CBL does not include the total length of the nasal bones), and the ratio of the 

maximum zygomatic width to condylobasal length (MZW/CBL).  

Figure 3.2 – Skull measures used in the study: 

TSL = total skull length; NB = nasal bone 

length; MZW = maximum zygomatic width; 

CBL = condylobasal length; Depth. 
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The volume of the brain cavity was measured by pouring 1mm glass beads into the skull, 

gently shaking the skull until all beads were settled and level with the foramen magnum and then 

pouring the beads into a graduated cylinder and measuring to the nearest 0.1ml (Volume). A 

simpler measure of endocranial volume was made by multiplying three other measurements: 

Depth, MZW, CBL (Cranial box) (following Logan & Clutton-Brock 2012). In cases where 

tissue remains were found within the brain cavity, Volume was not measured. When skulls were 

partially damaged measurements were dropped accordingly.  

Analysis  

We used multimodel inference to explore how skull variables are impacted by geographical 

factors (latitude, longitude and elevation), season and sex (Burnham & Anderson 2002). We did 

not include year as a factor in the analysis because of biased sampling by year in the data set. 

The collinearity of these factors was determined using a variance inflation factor test in R using 

the car package (R version 1.15.6, R Core Team 2016; Fox et al 2016) and determined to be 

within an acceptable range to allow the factors to be used for further analysis. We evaluated a 

total of 49 models (table S3.1) that were determined most suitable based on the known biology 

of the species. We used the second-order Akaike information criterion (AICc) to compare models 

– the best-fitting model in the set of candidate models is indicated by the lowest AICc value, and 

every other model i is compared to the best model using the AICc differences (Δi). By 

convention, we consider models with ΔAICc < 2 (Burnham & Anderson 2002). We used the 

MuMIn package in R (version 1.15.6, R Core Team 2016; Bartoń 2015) to select the top models 

for each skull variable (we excluded TSL from the analysis since TSL and CBL were extremely 

similar measurements and highly correlated).  
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RESULTS  

The model most often found to well describe the variation in the skull measurements included 

four out of the five main factors, i.e. elevation, latitude, longitude and sex, and the interactions 

elevation:longitude, elevation:latitude and longitude:latitude (table 3.1). This model was well 

supported for six out of the eight skull variables and the best model for four of those (where the 

best model is defined as Δi =0 and well supported models defined as Δi < 2). Among these eight 

skull variables, the factors found in the well supported models were as follows: latitude, 

elevation and longitude in all models, sex in nine and season in six. The interaction between 

elevation and longitude was found in five models, between elevation and latitude in five and 

between latitude and longitude in six. Interaction between season and longitude was only found 

for MZW/CBL and interactions involving sex were only found for Depth (sex:elevation and 

sex:longitude). 
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Table 3.1 – Well supported models for all skull variables in the study (as defined by Δi <2) based on the following factors: elevation (Elev), 

latitude (Lat), longitude (Long), sex and season, with the best models (Δi = 0) shown in bold 

Model Variable AICc* Δi* Wi* 

Elev + Lat + Sex + Long + Elev:Long + Elev:Lat + Long:Lat MZW 1802.5 0 0.275 

 CBL 2238.9 0 0.625 

 NB/TSL 1773.7 0 0.408 

 Cranial box -3529.0 0 0.369 

 NB 1622 0.16 0.3 

 Volume 214.0 0.32 0.325 

Elev + Lat + Season + Sex + Long + Elev:Long + Elev:Lat + Long:Lat Cranial box 11121.3 0.2 0.335 

 MZW 1803.9 1.31 0.143 

 NB 1623.4 1.39 0.162 

 NB/TSL -3527.2 1.81 0.165 

Elev + Lat + Sex + Long + Elev:Long + Long:Lat Volume 213.7 0 0.381 

 MZW 1802.6 0.09 0.263 

Elev + Lat + Sex + Long + Lat:Long + Elev:Lat NB 1622 0 0.325 

 CBL 2240.9 1.98 0.232 

Elev + Lat + Season + Sex + Long + Elev:Long + Long:Lat MZW 1803.7 1.18 0.153 

 Volume 215.5 1.84 0.152 

Elev + Lat + Season + Sex + Long + Lat:Long + Elev:Lat NB 1623.1 1.14 0.184 

Elev + Season + Lat + Long + Season:Long MZW/CBL -3467.4 0 0.316 

Elev + Season + Sex + Lat + Long + Sex:Elev Depth 944.2 0 0.517 

Elev + Season + Sex + Lat + Long + Sex:Long Depth 945.9 1.68 0.223 

Elev + Lat + Sex + Long + Elev:Long + Elev:Lat NB/TSL -3527.2 1.82 0.164 
* AICc = second-order Akaike information criterion; Δi difference between a model and the highest scoring mode; Wi = model weight, the relative likelihood of 

a model.  
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Considering each of the eight skull variables in turn, tables S3.2-S3.9 provide details of 

all the models compared variable-by-variable and their ranking according to Δi score. For CBL, 

MZW, NB, NB/TSL, Volume and Cranial box it is evident that elevation, latitude and longitude 

and interactions between them are important factors as is sex. For Depth, the factors elevation, 

latitude, longitude, season and sex are all important, but only interaction terms associated with 

sex are important. The results with MZW/CBL are completely different from all the others. Only 

one model is well supported and the relative likelihood of that model is only 0.316. In 

comparison the combined likelihood of the well supported models for other skull variables 

ranged from 0.737 (NB/TSL) to 0.971 (NB).  

It is also informative to consider each factor in turn, adopting a univariate approach. 

Figures 3.3 – 3.5 relate to the geographical factors, elevation, latitude and longitude. If Allen’s 

rule was supported we would expect to see shorter noses at high elevation and latitude. If 

Bergmann’s rule was supported we would expect to see all variables to have greater values at 

high elevation and latitude. Elevation shows a positive relation with all skull variables other than 

Depth and MZW/CBL (figure 3.3), the relationships between latitude and most variables is weak 

(figure 3.4) and there is a negative relationship between longitude and most variables other than 

MZW/CBL (figure 3.5). The relationship between elevation and TSL is well illustrated by 

plotting TSL categories on a map of North America (figure 3.1). The largest values tend to be 

found in the high elevation areas in the Rocky Mountains. 

With regards geographical interactions, the largest specimens were most often found at 

high elevation (i.e. in the southwest) and at low elevation far north. The smaller specimens were 

more often found at low elevation, in the east and along the west coast. These relationships are 

evident in figure 3.1. 
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Figure 3.3 – Bivariate plot between elevation and skull variables, with a linear regression and 95% 

confidence intervals 

 

Figure 3.4 – Bivariate plot between latitude and skull variables, with a linear regression and 95% 

confidence intervals 
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Figure 3.5 – Bivariate plot between longitude and skull variables, with a linear regression and 95% 

confidence intervals  

With regards to the sexes, males were larger than females for all variables other than 

NB/TSL and MZW/CBL (table 3.2). Geographic location did not impact this.  

Table 3.2 – Means and standard deviations for each skull variable for males and females  

 Males Females 

CBL (mm) 43.26 ± 1.90 42.84 ± 1.73 

NB (mm) 14.10 ± 1.15 13.94 ± 1.09 

MZW (mm) 26.86 ± 1.25 26.60 ± 1.18 

Depth (mm) 16.46 ± 0.56 16.34 ± 0.51 

Volume (ml) 4.32 ± 0.33 4.22 ± 0.34 

NB/TSL 0.32 ± 0.02 0.32 ± 0.02 

MZW/CBL 0.62 ± 0.02 0.62 ± 0.02 

Cranial box (mm3) 19221.65 ± 2085.06 18680.40 ± 2085.29 

 

The effect of season was not constant between variables with most showing individuals 

being largest in the spring and smallest in the winter (table 3.3). NB/TSL, which does not change 

with age or body size (Findley 1961), did not change with season. For those skull size variables 

that do change with season, if Dehnel’s phenomenon was true we would expect to see size 

reduction in fall with smallest skulls in winter and largest in the summer.  
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Table 3.3 – Means and standard deviations for each skull variable for each season  

 Spring Summer Fall Winter 

CBL (mm) 43.38 ± 1.75 43.09 ± 1.78 42.97 ± 1.93 42.69 ± 1.84 

NB (mm) 14.21 ± 1.14 13.96 ± 1.11 14.07 ± 1.17 13.93 ± 1.10 

MZW (mm) 26.96 ± 1.20 26.76 ± 1.21 26.69 ± 1.21 26.45 ± 1.24 

Depth (mm) 16.61 ± 0.53 16.37 ± 0.53 16.33 ± 0.55 16.34 ± 0.50 

Volume (ml) 4.32 ± 0.39 4.28 ± 0.33 4.27 ± 0.32 4.18 ± 0.33 

NB/TSL 0.32 ± 0.02 0.31 ± 0.02 0.32 ± 0.02 0.32 ± 0.02 

MZW/CBL 0.62 ± 0.02 0.62 ± 0.02 0.62 ± 0.02 0.62 ± 0.02 

Cranial box (mm3) 19493 ± 1912.27 18946.17 ± 1965.31 18818.56 ± 1976.40 18538 ± 1957.34 

 

DISCUSSION  

Considering the multimodel inference on skull variables of T.hudsonicus, the most common 

models describing all variables other than Depth and MZW/CBL included all three geographical 

interactions (elevation:longitude, elevation:latitude and longitude:latitude)(table 3.1). All 

variables other than Depth and MZW/CBL increased with elevation (figure 3.3). Latitude did not 

show a strong relationship with most variables apart from NB and NB/TSL (figure 3.4). The 

expectations based on Bergmann’s rule would be that size would increase with elevation and 

latitude, because these would be indicators of colder conditions. While we see the expected 

relationship for elevation we do not for latitude. This could be predicted due to the nature of the 

species distribution i.e. the species is found at low elevation at high latitudes and high elevation 

at low latitudes. This can be seen when examining the distribution of TSL categories (figure 3.1). 

Among the lower elevation populations, those at higher latitude in the north-west (Alaska and 

nearby areas of Canada) tend to be larger than the eastern populations of Canada and the US. The 

largest TSL values are found in very high elevation but low latitude areas in the Rocky 

Mountains. Also in the east, the largest skulls are associated with the high elevation populations 

of the Appalachians. 
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When considering longitude all variables other than MZW/CBL show a reduction to 

lower longitudes with smallest skulls being found in eastern North America (figure 3.5). This 

again can be seen as a support for Bergmann’s rule given that higher elevation can be found in 

the western part of the distribution along the Rocky Mountains.   

Although the skull data generally support a Bergmann trend, there is need for caution. It 

is evident from the distribution of the TSL categories in figure 3.1 that large geographic regions 

have similar sized skulls and such a pattern need not necessarily come about through adaptive 

processes - it could also come about through historical processes. Squirrels from large coherent 

geographical regions could derive from single refugia at the Last Glacial Maximum (LGM; 

Hewitt 2000) and their skull characteristics could, at least in part, reflect that common history. 

The locations of the LGM refugia are not precisely clear from phylogeographic studies that have 

been carried out to date on T.hudsonicus. However, according to Hope et al (2016), the eastern 

North American populations derive from a different refugium from the Alaskan populations, and 

populations in the southern Rocky Mountains and along the north Pacific coast also have a 

different history. 

As well as examining Bergmann’s rule with the skull data, it is possible to test for Allen’s 

rule in T.hudsonicus. When looking at the results for nasal bones simply for latitude they might 

suggest support for Allen’s rule where you would expect smaller extremities at higher latitudes. 

Both NB and NB/TSL decrease with latitude (figure 3.4). However, the response of nasal bones 

to elevation does not seem to support this, with an increase in both NB and NB/TSL up an 

elevational gradient (figure 3.3). It is possible that there are two factors at work here. 

Temperature might be an important factor in the reduction of the nose as the species goes further 

north but not as it goes up an elevational gradient. It might also be possible that the latitudinal 
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trend seen is mainly being driven by elevation in the southern part of the distribution. Another 

possibility is that the length of nasal bones may be an adaptive response to humidity. In North 

America the driest areas can be found in the south-western part of the T.hudsonicus distribution, 

where the species is found at high elevation, with greater humidity in the north and east 

(https://nelson.wisc.edu/sage/data-and-models/atlas/maps/avgannrh/atl_avgannrh_nam.jpg). This 

fits with both the lengthening of the nasal bones up an elevation gradient and further south. The 

importance of humidity might be tested by detailed studies of the turbinate bones in the nose. 

One of their main function is the humidification of inhaled air and water retention of exhaled air 

(Jackson & Schmidt-Nielsen 1964). By increasing the length of the nasal bones, and therefore 

the size of the nose, the surface area of the turbinate bones is expected to be greater, potentially 

reducing water loss under the drier conditions. This needs to be further tested by including data 

on humidity in the models.       

The only previous test of Bergmann’s and Allen’s rules in T.hudsonicus using skulls was 

limited to the Rocky Mountains and used a multivariate approach (Lindsay 1987). The results are 

not easily related to ours because elevation was not considered as one of the factors, and the 

geographical scale of the study was much more limited than ours. In our companion paper 

(chapter 2), we found Bergmann trends for external measurements such as total body length, 

consistent with what we find here with skulls. Tail length, hind foot length and ear length did not 

show an Allen trend, and although nose length may show an Allen trend with respect to latitude 

in our study here, there may be confounding issues with possible counteracting selective 

pressures, and caution is needed with regards demonstration of Allen’s rule in T.hudsonicus. 

At first sight our data provides indications of Dehnel’s phenomenon with smaller values 

of most skull variables in the winter compared with other seasons (table 3.3). This includes 



81 

 

Volume and Cranial box which relate to brain size. However, skull depth, which provides one of 

the most striking decreases in skull dimensions recorded in winter in Sorex shrews (Pucek 1970) 

does not vary between summer, fall and winter. Also, spring values are systematically larger than 

other values at other seasons. Therefore, it is not that winter is exceptional as a season of 

decreased size because of response to temperature. There is also a decline from spring to 

summer, when there is an increase in temperature. Dehnel’s phenomenon in shrews derives from 

changes in size of individuals; individuals get smaller in various ways in the winter, and this is 

believed to be an adaptive response of individuals to a decline in food supply (Churchfield et al 

2012). It is possible that the decline in size in winter in T.hudsonicus reflects a loss of relatively 

large individuals from the population, leading to a reduction in average size among those 

individuals collected. If so, this would be interesting as a selective response to temperature 

change, but it would not be Dehnel’s phenomenon, which is a developmental process. 

The inclusion of sex as a main factor in all of the most common models and for all 

variables apart from MZW/CBL, with males always being bigger than females is somewhat 

unexpected. The species is not considered to be strongly sexually dimorphic and previously 

described sexual dimorphism has only been for some measurements and while males have 

generally been larger where a difference has been found that has not always been the case 

(Durrant & Hansen 1954; Layne 1954; Findley 1961; Nellis 1969; Kramm, Maki & Glime 

1975). This is however strongly supported by our data and does not seem to be driven by isolated 

populations.  

The two ratios used (NB/TSL and MZW/CBL) have previously been shown not to be 

impacted by the age of the specimen (Findley 1961) and were included, in part, as definitive 

bias-free variables. Moreover since neither are dependent on the size of the skull they should be 
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serve as independently variable characters. The difference between the two is striking. Only one 

model is well supported when it comes to explaining the variation in MZW/CBL, a model not 

shared with another variable. Sexual dimorphism does not appear to be important and while the 

interaction between season and longitude is found in the best model this is most likely to reflect 

the small number of samples west of the Rocky Mountains in fall and spring and lack of more 

suitable models, allowing the sampling bias to increase in apparent importance. NB/TSL 

however is a very different story. In all cases the best models are the same as those found with 

other variables with males showing relatively longer noses than females and the size of the nose 

relative to the skull decreasing slightly northwards and increasing up an elevation gradient.   

The most interesting results to this study relate to elevation. From a range of skull 

dimensions, T.hudsonicus get larger with elevation and, as a further characteristic, their noses get 

proportionally longer with elevation. There is a likelihood that this reflects adaptive responses to 

temperature and humidity (with elongation of the nose being a response to humidity but not 

elevation in itself), but further studies would be desirable to confirm this. Microgeographical 

studies of a very large number of skulls such as Lindsay (1987) carried out in the Rocky 

Mountains would be worthwhile, but with the incorporation of elevation as a factor. A thorough 

phylogeographic analysis is needed to provide a historical perspective, and an integration of 

studies on adaptation and studies on postglacial colonization (e.g. Zamudio, Bell & Mason 

2016). 
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SUPPLEMENTARY MATERIAL 3  

Table S3.1 – Models evaluated for the study 

Model 

Number 

Model factors  

Model 1 Elevation + Latitude + Season + Sex + Longitude 

Model 2 Elevation + Season + Sex + Longitude 

Model 3 Elevation + Season + Longitude + Latitude 

Model 4 Elevation + Latitude + Sex + Longitude 

Model 5 Elevation + Latitude + Longitude 

Model 6 Elevation + Season + Latitude 

Model 7 Elevation + Season + Longitude 

Model 8 Elevation + Longitude 

Model 9 Latitude + Longitude 

Model 10 Latitude + Elevation 

Model 11 Elevation + Season + Latitude + Longitude + Season:Elevation 

Model 12 Elevation + Season + Latitude + Longitude + Season:Longitude 

Model 13 Elevation + Season + Latitude + Longitude + Season:Latitude 

Model 14 Elevation + Season + Latitude + Longitude + Elevation:Longitude 

Model 15 Elevation + Season + Longitude + Latitude + Latitude:Longitude 

Model 16 Elevation + Season + Longitude + Latitude + Elevation:Latitude 

Model 17 Elevation + Latitude + Longitude + Elevation:Longitude 

Model 18 Elevation + Latitude + Longitude + Elevation:Latitude 

Model 19 Elevation + Latitude + Longitude + Longitude:Latitude 

Model 20 Elevation + Season + Longitude + Elevation:Longitude 

Model 21 Latitude + Season + Longitude + Latitude:Longitude 

Model 22 Latitude + Season + Elevation + Latitude:Elevation 

Model 23 Elevation + Longitude + Elevation:Longitude 

Model 24 Latitude + Longitude + Latitude:Longitude 

Model 25 Latitude + Elevation + Latitude:Elevation 

Model 26 Elevation + Latitude + Season + Sex + Longitude + Elevation:Longitude + 

Elevation:Latitude + Longitude:Latitude 

Model 27 Elevation + Latitude + Season + Sex + Longitude + Elevation:Season + 

Season:Latitude 

Model 28 Elevation + Latitude + Season + Sex + Longitude + Elevation:Latitude + 

Season:Latitude + Longitude:Latitude 

Model 29 Elevation + Latitude + Sex + Longitude + Elevation:Longitude + Elevation:Latitude + 

Longitude:Latitude 

Model 30 Elevation + Latitude + Season + Longitude + Elevation:Longitude + Elevation:Latitude 

+ Longitude:Latitude 

Model 31 Elevation + Latitude + Longitude + Elevation:Longitude + Elevation:Latitude + 

Longitude:Latitude 

Model 32 Elevation + Season + Sex + Latitude + Longitude + Sex:Elevation 

Model 33 Elevation + Season + Sex + Latitude + Longitude + Sex:Latitude 

Model 34 Elevation + Season + Sex + Latitude + Longitude + Sex:Longitude 
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Model 35 Elevation + Sex + Latitude + Longitude + Sex:Elevation 

Model 36 Elevation + Sex + Latitude + Longitude + Sex:Latitude 

Model 37 Elevation + Sex + Latitude + Longitude + Sex:Longitude 

Model 38 Elevation + Latitude + Season + Sex + Longitude + Elevation:Longitude + 

Elevation:Latitude 

Model 39 Elevation + Latitude + Sex + Longitude + Elevation:Longitude + Elevation:Latitude 

Model 40 Elevation + Latitude + Season + Longitude + Elevation:Longitude + Elevation:Latitude 

Model 41 Elevation + Latitude + Longitude + Elevation:Longitude + Elevation:Latitude 

Model 42 Elevation + Latitude + Season + Sex + Longitude + Latitude:Longitude + 

Latitude:Elevation 

Model 43 Elevation + Latitude + Sex + Longitude + Latitude:Longitude + Latitude:Elevation 

Model 44 Elevation + Latitude + Season + Longitude + Latitude:Longitude + Latitude:Elevation 

Model 45 Elevation + Latitude + Longitude + Latitude:Longitude + Latitude:Elevation 

Model 46 Elevation + Latitude + Season + Sex + Longitude + Longitude:Elevation + 

Longitude:Latitude 

Model 47 Elevation + Latitude + Sex + Longitude + Longitude:Elevation + Longitude:Latitude 

Model 48 Elevation + Latitude + Season + Longitude + Longitude:Elevation + 

Longitude:Latitude 

Model 49 Elevation + Latitude + Longitude + Longitude:Elevation + Longitude:Latitude 
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Table S3.2 – Results from model selection for CBL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model.  

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

29 19.72 0.00047 0.33530 -0.25590 
 

+ 
   

0.00001 0.00391 0.00002 
   

9 -1110.31 2238.90 0.00 0.63 

43 22.39 -0.00078 0.29000 -0.23170 
 

+ 
    

0.00351 0.00002 
   

8 -1112.33 2240.90 1.98 0.23 

47 19.20 0.00103 0.35480 -0.24990 
 

+ 
   

0.00001 0.00386 
    

8 -1113.68 2243.60 4.69 0.06 

26 20.06 0.00044 0.32980 -0.25000 + + 
   

0.00001 0.00382 0.00002 
   

12 -1109.70 2243.90 4.99 0.05 

42 22.68 -0.00073 0.28540 -0.22600 + + 
    

0.00343 0.00002 
   

11 -1111.48 2245.40 6.47 0.03 

46 19.56 0.00099 0.34870 -0.24370 + + 
   

0.00001 0.00377 
    

11 -1112.95 2248.30 9.41 0.01 

28 22.70 -0.00076 0.28570 -0.22590 + + 
  

+ 
 

0.00343 0.00002 
   

14 -1110.95 2250.60 11.67 0.00 

31 19.18 0.00068 0.35090 -0.26110 
     

0.00001 0.00401 0.00002 
   

8 -1119.94 2256.10 17.20 0.00 

24 20.88 
 

0.32920 -0.23980 
      

0.00369 
    

5 -1124.22 2258.50 19.63 0.00 

45 22.12 -0.00069 0.30140 -0.23450 
      

0.00358 0.00002 
   

7 -1122.31 2258.80 19.90 0.00 

49 18.71 0.00119 0.36880 -0.25530 
     

0.00001 0.00397 
    

7 -1122.80 2259.80 20.87 0.00 

19 21.06 0.00004 0.32740 -0.23580 
      

0.00364 
    

6 -1124.11 2260.30 21.45 0.00 

30 19.17 0.00069 0.35270 -0.25790 + 
    

0.00001 0.00398 0.00002 
   

11 -1119.24 2260.90 22.00 0.00 

44 22.11 -0.00064 0.30300 -0.23090 + 
     

0.00354 0.00002 
   

10 -1121.45 2263.20 24.35 0.00 

21 20.73 
 

0.33150 -0.24050 + 
     

0.00371 
    

8 -1123.64 2263.50 24.61 0.00 

48 18.71 0.00120 0.36990 -0.25180 + 
    

0.00001 0.00393 
    

10 -1122.00 2264.30 25.45 0.00 

15 21.05 0.00009 0.32880 -0.23210 + 
     

0.00360 
    

9 -1123.21 2264.70 25.80 0.00 

38 41.50 -0.00221 -0.08143 -0.04476 + + 
   

-0.00002 
 

0.00002 
   

11 -1146.08 2314.60 75.69 0.00 

39 41.75 -0.00227 -0.08811 -0.04633 
 

+ 
   

-0.00002 
 

0.00002 
   

8 -1150.86 2317.90 79.04 0.00 

33 39.10 0.00036 -0.03501 -0.04642 + + 
       

+ 
 

10 -1151.37 2323.10 84.19 0.00 

34 39.24 0.00035 -0.05121 -0.05229 + + 
        

+ 10 -1151.54 2323.40 84.53 0.00 

1 39.72 0.00037 -0.04858 -0.04631 + + 
         

9 -1153.05 2324.40 85.48 0.00 

36 39.27 0.00033 -0.03934 -0.04801 
 

+ 
       

+ 
 

7 -1155.85 2325.90 86.97 0.00 

32 39.69 0.00040 -0.04882 -0.04631 + + 
      

+ 
  

10 -1152.88 2326.10 87.20 0.00 

37 39.42 0.00031 -0.05751 -0.05473 
 

+ 
        

+ 7 -1155.97 2326.10 87.22 0.00 

27 37.94 0.00054 -0.01727 -0.04791 + + + 
 

+ 
      

15 -1148.09 2326.90 88.03 0.00 

4 39.96 0.00033 -0.05444 -0.04786 
 

+ 
         

6 -1157.92 2328.00 89.07 0.00 

35 39.93 0.00036 -0.05462 -0.04785 
 

+ 
      

+ 
  

7 -1157.79 2329.80 90.86 0.00 

2 38.28 0.00064 
 

-0.03545 + + 
         

8 -1159.33 2334.90 95.99 0.00 

40 41.49 -0.00205 -0.07454 -0.04404 + 
    

-0.00002 
 

0.00002 
   

10 -1157.70 2335.70 96.84 0.00 

14 40.88 -0.00161 -0.05612 -0.04140 + 
    

-0.00002 
     

9 -1159.29 2336.90 97.95 0.00 

41 41.78 -0.00212 -0.08276 -0.04609 
     

-0.00001 
 

0.00002 
   

7 -1161.41 2337.00 98.09 0.00 

17 41.17 -0.00167 -0.06389 -0.04344 
     

-0.00002 
     

6 -1163.09 2338.30 99.41 0.00 

16 40.87 -0.00065 -0.07189 -0.04833 + 
      

0.00002 
   

9 -1160.56 2339.40 100.51 0.00 

18 41.16 -0.00072 -0.07981 -0.05028 
       

0.00002 
   

6 -1164.22 2340.60 101.67 0.00 

13 39.09 0.00038 -0.03136 -0.04729 + 
   

+ 
      

11 -1160.18 2342.80 103.88 0.00 

3 39.83 0.00038 -0.04449 -0.04570 + 
          

8 -1163.63 2343.50 104.59 0.00 

5 40.10 0.00033 -0.05183 -0.04768 
           

5 -1167.42 2344.90 106.04 0.00 

12 38.67 0.00038 -0.04068 -0.05568 + 
  

+ 
       

11 -1161.59 2345.60 106.69 0.00 
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11 39.75 0.00045 -0.04436 -0.04537 + 
 

+ 
        

11 -1162.56 2347.50 108.64 0.00 

20 38.95 -0.00059 
 

-0.03135 + 
    

-0.00001 
     

8 -1166.90 2350.00 111.13 0.00 

7 38.50 0.00063 
 

-0.03574 + 
          

7 -1168.76 2351.70 112.80 0.00 

9 41.13 
 

-0.08771 -0.05725 
           

4 -1173.69 2355.40 116.54 0.00 

23 38.96 -0.00042 
 

-0.03279 
     

-0.00001 
     

5 -1173.79 2357.70 118.78 0.00 

8 38.58 0.00061 
 

-0.03642 
           

4 -1175.09 2358.20 119.34 0.00 

6 38.72 0.00110 0.06014 
 

+ 
          

7 -1215.11 2444.40 205.50 0.00 

22 38.67 0.00115 0.06113 
 

+ 
      

0.00000 
   

8 -1215.10 2446.40 207.53 0.00 

10 39.46 0.00102 0.05255 
            

4 -1227.59 2463.30 224.35 0.00 

25 39.34 0.00114 0.05525 
        

0.00000 
   

5 -1227.55 2465.20 226.30 0.00 

 

  



92 

 

Table S3.3 – Results from model selection for MZW; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model.  

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

29 11.86 0.00079 0.22210 -0.15270 
 

+ 
   

0.00001 0.00237 0.00001 
   

9 -892.13 1802.50 0.00 0.28 

47 11.67 0.00101 0.22940 -0.15020 
 

+ 
   

0.00001 0.00235 
    

8 -893.20 1802.60 0.09 0.26 

46 12.31 0.00094 0.21810 -0.14120 + + 
   

0.00001 0.00220 
    

11 -890.65 1803.70 1.18 0.15 

26 12.49 0.00073 0.21120 -0.14380 + + 
   

0.00001 0.00223 0.00001 
   

12 -889.68 1803.90 1.31 0.14 

43 13.86 -0.00014 0.18800 -0.13470 
 

+ 
    

0.00207 0.00001 
   

8 -894.35 1804.90 2.37 0.08 

42 14.33 -0.00009 0.17990 -0.12700 + + 
    

0.00195 0.00001 
   

11 -891.44 1805.30 2.74 0.07 

28 14.61 -0.00012 0.17430 -0.12750 + + 
  

+ 
 

0.00197 0.00001 
   

14 -890.49 1809.60 7.09 0.01 

49 11.41 0.00110 0.23710 -0.15330 
     

0.00001 0.00241 
    

7 -899.73 1813.60 11.09 0.00 

31 11.58 0.00090 0.23060 -0.15570 
     

0.00001 0.00243 0.00001 
   

8 -898.87 1814.00 11.41 0.00 

19 13.43 0.00011 0.20140 -0.13660 
      

0.00212 
    

6 -901.67 1815.50 12.93 0.00 

48 11.83 0.00106 0.23040 -0.14610 + 
    

0.00001 0.00230 
    

10 -897.57 1815.50 12.93 0.00 

30 11.98 0.00087 0.22430 -0.14850 + 
    

0.00001 0.00232 0.00001 
   

11 -896.79 1816.00 13.45 0.00 

24 12.95 
 

0.20610 -0.14740 
      

0.00227 
    

5 -903.21 1816.50 13.97 0.00 

15 13.72 0.00016 0.19690 -0.13020 + 
     

0.00203 
    

9 -899.18 1816.60 14.09 0.00 

45 13.73 -0.00010 0.19410 -0.13630 
      

0.00211 0.00000 
   

7 -901.37 1816.90 14.38 0.00 

44 14.01 -0.00004 0.18990 -0.13000 + 
     

0.00201 0.00000 
   

10 -898.90 1818.10 15.59 0.00 

21 13.16 
 

0.20160 -0.14490 + 
     

0.00223 
    

8 -901.92 1820.10 17.52 0.00 

34 23.80 0.00030 -0.01688 -0.03034 + + 
        

+ 10 -915.63 1851.60 49.06 0.00 

38 24.91 -0.00081 -0.02756 -0.02463 + + 
   

-0.00001 
 

0.00001 
   

11 -914.84 1852.10 49.54 0.00 

33 23.82 0.00032 -0.00715 -0.02576 + + 
       

+ 
 

10 -916.41 1853.20 50.61 0.00 

1 24.17 0.00032 -0.01494 -0.02572 + + 
         

9 -917.50 1853.30 50.73 0.00 

2 23.73 0.00040 
 

-0.02237 + + 
         

8 -918.77 1853.80 51.21 0.00 

32 24.16 0.00033 -0.01506 -0.02572 + + 
      

+ 
  

10 -917.41 1855.20 52.62 0.00 

27 24.09 0.00033 -0.01472 -0.02620 + + + 
 

+ 
      

15 -912.22 1855.20 52.66 0.00 

37 23.96 0.00027 -0.02264 -0.03249 
 

+ 
        

+ 7 -922.43 1859.00 56.49 0.00 

39 25.15 -0.00088 -0.03369 -0.02609 
 

+ 
   

-0.00001 
 

0.00001 
   

8 -922.11 1860.40 57.91 0.00 

36 23.99 0.00028 -0.01160 -0.02722 
 

+ 
       

+ 
 

7 -923.48 1861.10 58.60 0.00 

4 24.39 0.00028 -0.02047 -0.02717 
 

+ 
         

6 -924.87 1861.90 59.33 0.00 

35 24.38 0.00030 -0.02056 -0.02717 
 

+ 
      

+ 
  

7 -924.81 1863.80 61.25 0.00 

14 24.74 -0.00059 -0.01847 -0.02352 + 
    

-0.00001 
     

9 -923.91 1866.10 63.56 0.00 

20 24.10 -0.00024 
 

-0.02025 + 
    

-0.00001 
     

8 -925.66 1867.50 65.00 0.00 

40 24.93 -0.00072 -0.02400 -0.02430 + 
    

-0.00001 
 

0.00001 
   

10 -923.61 1867.60 65.01 0.00 

7 23.87 0.00040 
 

-0.02255 + 
          

7 -926.76 1867.70 65.14 0.00 

12 24.57 0.00036 -0.00945 -0.02021 + 
  

+ 
       

11 -922.71 1867.80 65.30 0.00 

3 24.25 0.00032 -0.01293 -0.02545 + 
          

8 -925.83 1867.90 65.33 0.00 

16 24.62 -0.00004 -0.02246 -0.02634 + 
      

0.00001 
   

9 -925.03 1868.30 65.80 0.00 

13 24.23 0.00033 -0.01332 -0.02581 + 
   

+ 
      

11 -923.67 1869.70 67.20 0.00 

17 24.99 -0.00065 -0.02508 -0.02520 
     

-0.00001 
     

6 -930.04 1872.20 69.68 0.00 

11 24.21 0.00034 -0.01261 -0.02544 + 
 

+ 
        

11 -925.43 1873.30 70.73 0.00 
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41 25.18 -0.00079 -0.03103 -0.02603 
     

-0.00001 
 

0.00001 
   

7 -929.69 1873.50 71.01 0.00 

5 24.49 0.00028 -0.01930 -0.02714 
           

5 -932.00 1874.10 71.54 0.00 

18 24.87 -0.00010 -0.02935 -0.02805 
       

0.00001 
   

6 -931.12 1874.40 71.83 0.00 

8 23.93 0.00038 
 

-0.02292 
           

4 -934.25 1876.60 74.02 0.00 

23 24.12 -0.00015 
 

-0.02103 
     

0.00000 
     

5 -933.50 1877.10 74.56 0.00 

9 25.35 
 

-0.04976 -0.03535 
           

4 -941.45 1891.00 88.43 0.00 

6 23.66 0.00072 0.04492 
 

+ 
          

7 -960.46 1935.10 132.54 0.00 

22 23.46 0.00093 0.04930 
 

+ 
      

0.00000 
   

8 -960.20 1936.60 134.08 0.00 

10 24.14 0.00067 0.03974 
            

4 -973.70 1955.50 152.92 0.00 

25 23.90 0.00092 0.04516 
        

-0.00001 
   

5 -973.33 1956.80 154.22 0.00 
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Table S3.4 – Results from model selection for NB; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model. 

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

43 4.57 0.00082 0.12910 -0.10960 
 

+ 
    

0.00168 -0.00002 
   

8 -802.88 1622.00 0.00 0.33 

29 5.71 0.00029 0.10980 -0.09933 
 

+ 
   

-0.00001 0.00151 -0.00002 
   

9 -801.93 1622.10 0.16 0.30 

42 4.17 0.00087 0.13890 -0.11030 + + 
    

0.00172 -0.00002 
   

11 -800.36 1623.10 1.14 0.18 

26 5.32 0.00036 0.11920 -0.09976 + + 
   

-0.00001 0.00155 -0.00002 
   

12 -799.45 1623.40 1.39 0.16 

28 4.45 0.00088 0.13330 -0.10830 + + 
  

+ 
 

0.00168 -0.00002 
   

14 -799.48 1627.60 5.63 0.02 

47 6.14 -0.00016 0.09386 -0.10400 
 

+ 
   

0.00000 0.00154 
    

8 -807.60 1631.40 9.44 0.00 

44 3.95 0.00091 0.14630 -0.11220 + 
     

0.00176 -0.00002 
   

10 -805.95 1632.20 10.26 0.00 

46 5.76 -0.00010 0.10330 -0.10480 + + 
   

0.00000 0.00158 
    

11 -805.24 1632.90 10.91 0.00 

30 4.93 0.00048 0.12960 -0.10320 + 
    

0.00000 0.00162 -0.00002 
   

11 -805.30 1633.00 11.02 0.00 

45 4.49 0.00086 0.13380 -0.11050 
      

0.00170 -0.00002 
   

7 -809.62 1633.40 11.42 0.00 

31 5.48 0.00040 0.11700 -0.10150 
     

0.00000 0.00155 -0.00002 
   

8 -808.91 1634.00 12.05 0.00 

15 5.11 0.00012 0.11800 -0.11070 + 
     

0.00170 
    

9 -811.46 1641.20 19.21 0.00 

24 5.30 
 

0.10910 -0.11630 
      

0.00174 
    

5 -815.95 1642.00 20.00 0.00 

19 5.63 0.00008 0.10580 -0.10900 
      

0.00163 
    

6 -815.00 1642.10 20.13 0.00 

48 5.37 0.00000 0.11350 -0.10860 + 
    

0.00000 0.00166 
    

10 -811.42 1643.20 21.19 0.00 

21 4.70 
 

0.12140 -0.12180 + 
     

0.00185 
    

8 -813.52 1643.30 21.27 0.00 

49 5.93 -0.00007 0.10060 -0.10650 
     

0.00000 0.00159 
    

7 -814.94 1644.10 22.06 0.00 

39 14.21 -0.00078 -0.05369 -0.01850 
 

+ 
   

-0.00002 
 

-0.00002 
   

8 -818.69 1653.60 31.61 0.00 

38 14.00 -0.00073 -0.04750 -0.01687 + + 
   

-0.00002 
 

-0.00002 
   

11 -815.99 1654.40 32.40 0.00 

40 14.01 -0.00065 -0.04435 -0.01649 + 
    

-0.00002 
 

-0.00002 
   

10 -823.16 1666.70 44.66 0.00 

41 14.24 -0.00070 -0.05113 -0.01835 
     

-0.00002 
 

-0.00002 
   

7 -826.29 1666.80 44.77 0.00 

37 13.73 0.00020 -0.06738 -0.02908 
 

+ 
        

+ 7 -829.71 1673.60 51.60 0.00 

34 13.54 0.00024 -0.06173 -0.02751 + + 
        

+ 10 -827.41 1675.20 53.18 0.00 

4 14.09 0.00021 -0.06551 -0.02459 
 

+ 
         

6 -832.05 1676.20 54.23 0.00 

35 14.05 0.00025 -0.06585 -0.02460 
 

+ 
      

+ 
  

7 -831.09 1676.40 54.36 0.00 

1 13.90 0.00025 -0.05990 -0.02313 + + 
         

9 -829.66 1677.60 55.61 0.00 

32 13.86 0.00030 -0.06031 -0.02316 + + 
      

+ 
  

10 -828.71 1677.80 55.77 0.00 

17 14.95 -0.00123 -0.07313 -0.02149 
     

-0.00001 
     

6 -832.86 1677.90 55.87 0.00 

14 14.74 -0.00120 -0.06683 -0.01977 + 
    

-0.00001 
     

9 -829.91 1678.10 56.11 0.00 

36 14.09 0.00021 -0.06562 -0.02459 
 

+ 
       

+ 
 

7 -832.05 1678.30 56.27 0.00 

33 13.91 0.00025 -0.06017 -0.02313 + + 
       

+ 
 

10 -829.66 1679.70 57.67 0.00 

27 13.61 0.00028 -0.05497 -0.02351 + + + 
 

+ 
      

15 -825.56 1681.90 59.88 0.00 

18 13.56 0.00083 -0.04768 -0.02285 
       

-0.00001 
   

6 -836.16 1684.40 62.46 0.00 

16 13.32 0.00089 -0.04105 -0.02108 + 
      

-0.00001 
   

9 -833.30 1684.90 62.89 0.00 

5 14.18 0.00021 -0.06425 -0.02444 
           

5 -839.33 1688.80 66.76 0.00 

3 13.96 0.00026 -0.05798 -0.02277 + 
          

8 -836.58 1689.40 67.39 0.00 

13 13.79 0.00026 -0.05503 -0.02315 + 
   

+ 
      

11 -834.06 1690.50 68.53 0.00 

12 13.58 0.00028 -0.05468 -0.02490 + 
  

+ 
       

11 -834.84 1692.10 70.10 0.00 

11 13.95 0.00027 -0.05800 -0.02279 + 
 

+ 
        

11 -835.94 1694.30 72.30 0.00 
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9 14.83 
 

-0.08704 -0.03049 
           

4 -846.41 1700.90 78.89 0.00 

2 12.13 0.00060 
 

-0.00969 + + 
         

8 -855.44 1727.10 105.11 0.00 

20 12.43 0.00004 
 

-0.00779 + 
    

-0.00001 
     

8 -859.35 1734.90 112.92 0.00 

7 12.23 0.00059 
 

-0.00976 + 
          

7 -860.38 1734.90 112.95 0.00 

22 12.32 0.00170 0.01789 
 

+ 
      

-0.00003 
   

8 -863.75 1743.70 121.73 0.00 

8 12.30 0.00056 
 

-0.01037 
           

4 -871.33 1750.70 128.73 0.00 

23 12.43 0.00021 
 

-0.00915 
     

0.00000 
     

5 -870.93 1752.00 129.96 0.00 

25 12.69 0.00170 0.01455 
        

-0.00003 
   

5 -874.52 1759.10 137.13 0.00 

6 13.38 0.00062 -0.00523 
 

+ 
          

7 -873.69 1761.50 139.56 0.00 

10 13.82 0.00056 -0.01012 
            

4 -885.17 1778.40 156.40 0.00 
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Table S3.5 – Results from model selection for Depth; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order Akaike 

information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model. 

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

32 16.50 -0.00001 -0.02686 -0.00962 + + 
      

+ 
  

10 -461.92 944.20 0.00 0.52 

34 16.35 -0.00006 -0.02751 -0.01197 + + 
        

+ 10 -462.76 945.90 1.68 0.22 

1 16.54 -0.00005 -0.02646 -0.00959 + + 
         

9 -464.73 947.70 3.55 0.09 

42 16.32 -0.00026 -0.02332 -0.01434 + + 
    

0.00008 0.00000 
   

11 -463.44 949.30 5.12 0.04 

38 16.70 -0.00015 -0.03180 -0.01044 + + 
   

0.00000 
 

0.00001 
   

11 -463.46 949.30 5.15 0.04 

33 16.58 -0.00005 -0.02728 -0.00959 + + 
       

+ 
 

10 -464.68 949.70 5.52 0.03 

26 15.82 -0.00004 -0.01486 -0.01889 + + 
   

0.00000 0.00016 0.00001 
   

12 -462.97 950.40 6.25 0.02 

46 15.71 0.00010 -0.01058 -0.01738 + + 
   

0.00000 0.00014 
    

11 -464.31 951.00 6.84 0.02 

35 16.67 -0.00004 -0.03103 -0.01081 
 

+ 
      

+ 
  

7 -469.40 953.00 8.80 0.01 

37 16.50 -0.00009 -0.03182 -0.01343 
 

+ 
        

+ 7 -469.77 953.70 9.53 0.00 

27 16.62 -0.00006 -0.02835 -0.00981 + + + 
 

+ 
      

15 -462.10 955.00 10.78 0.00 

28 16.33 -0.00026 -0.02369 -0.01473 + + 
  

+ 
 

0.00009 0.00000 
   

14 -463.40 955.50 11.28 0.00 

4 16.70 -0.00008 -0.03066 -0.01080 
 

+ 
         

6 -472.13 956.40 12.21 0.00 

43 16.02 -0.00030 -0.01841 -0.02006 
 

+ 
    

0.00017 0.00000 
   

8 -470.16 956.50 12.37 0.00 

29 15.37 0.00000 -0.00729 -0.02600 
 

+ 
   

0.00000 0.00027 0.00001 
   

9 -469.29 956.90 12.69 0.00 

39 16.87 -0.00019 -0.03624 -0.01166 
 

+ 
   

0.00000 
 

0.00001 
   

8 -470.76 957.70 13.57 0.00 

47 15.25 0.00014 -0.00265 -0.02446 
 

+ 
   

0.00000 0.00025 
    

8 -470.79 957.80 13.63 0.00 

36 16.72 -0.00008 -0.03104 -0.01079 
 

+ 
       

+ 
 

7 -472.12 958.40 14.23 0.00 

3 16.58 -0.00005 -0.02544 -0.00940 + 
          

8 -471.54 959.30 15.12 0.00 

16 16.76 -0.00023 -0.03028 -0.00984 + 
      

0.00000 
   

9 -470.71 959.70 15.52 0.00 

15 15.93 -0.00006 -0.01247 -0.01587 + 
     

0.00013 
    

9 -471.14 960.60 16.39 0.00 

12 16.60 -0.00006 -0.02715 -0.01018 + 
  

+ 
       

11 -469.24 960.90 16.71 0.00 

21 16.11 
 

-0.01395 -0.01087 + 
     

0.00006 
    

8 -472.35 960.90 16.74 0.00 

44 16.17 -0.00023 -0.01840 -0.01563 + 
     

0.00011 0.00000 
   

10 -470.40 961.10 16.95 0.00 

14 16.54 0.00003 -0.02501 -0.00957 + 
    

0.00000 
     

9 -471.49 961.30 17.07 0.00 

40 16.70 -0.00010 -0.03000 -0.01024 + 
    

0.00000 
 

0.00000 
   

10 -470.50 961.30 17.16 0.00 

30 15.56 0.00004 -0.00809 -0.02121 + 
    

0.00000 0.00020 0.00001 
   

11 -469.69 961.80 17.61 0.00 

48 15.46 0.00016 -0.00429 -0.01979 + 
    

0.00000 0.00019 
    

10 -470.78 961.90 17.73 0.00 

11 16.59 -0.00005 -0.02561 -0.00933 + 
 

+ 
        

11 -470.28 963.00 18.80 0.00 

13 16.61 -0.00005 -0.02615 -0.00943 + 
   

+ 
      

11 -471.50 965.40 21.24 0.00 

19 15.71 -0.00010 -0.00922 -0.02102 
      

0.00020 
    

6 -477.47 967.10 22.89 0.00 

5 16.75 -0.00008 -0.03002 -0.01072 
           

5 -478.50 967.10 22.92 0.00 

18 16.95 -0.00028 -0.03514 -0.01117 
       

0.00000 
   

6 -477.59 967.30 23.14 0.00 

31 15.21 0.00007 -0.00268 -0.02753 
     

0.00000 0.00030 0.00001 
   

8 -475.58 967.40 23.20 0.00 

45 15.96 -0.00028 -0.01530 -0.02077 
      

0.00019 0.00000 
   

7 -476.69 967.60 23.38 0.00 

49 15.10 0.00020 0.00150 -0.02609 
     

0.00000 0.00029 
    

7 -476.82 967.80 23.64 0.00 

41 16.88 -0.00014 -0.03482 -0.01158 
     

0.00000 
 

0.00001 
   

7 -477.37 968.90 24.72 0.00 

17 16.71 -0.00001 -0.02957 -0.01089 
     

0.00000 
     

6 -478.45 969.00 24.85 0.00 

9 16.50 
 

-0.02112 -0.00830 
           

4 -481.79 971.60 27.45 0.00 
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24 16.11 
 

-0.01309 -0.01182 
      

0.00007 
    

5 -481.64 973.40 29.19 0.00 

2 15.76 0.00010 
 

-0.00364 + + 
         

8 -480.30 976.80 32.64 0.00 

20 15.67 0.00048 
 

-0.00511 + 
    

0.00000 
     

8 -484.17 984.60 40.38 0.00 

7 15.82 0.00010 
 

-0.00368 + 
          

7 -485.71 985.60 41.41 0.00 

6 16.36 0.00010 -0.00426 
 

+ 
          

7 -490.78 995.70 51.56 0.00 

22 16.35 0.00012 -0.00386 
 

+ 
      

0.00000 
   

8 -490.78 997.80 53.60 0.00 

23 15.69 0.00057 
 

-0.00596 
     

0.00000 
     

5 -497.34 1004.80 60.59 0.00 

8 15.88 0.00008 
 

-0.00416 
           

4 -499.78 1007.60 63.44 0.00 

10 16.62 0.00007 -0.00692 
            

4 -505.03 1018.10 73.95 0.00 

25 16.58 0.00012 -0.00588 
        

0.00000 
   

5 -504.98 1020.10 75.87 0.00 
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Table S3.6 – Results from model selection for Volume; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order 

Akaike information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model. 

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

47 0.72 0.00045 0.05099 -0.03475 
 

+ 
   

0.00000 0.00051 
    

8 -98.72 213.70 0.00 0.38 

29 0.78 0.00038 0.04902 -0.03552 
 

+ 
   

0.00000 0.00052 0.00000 
   

9 -97.85 214.00 0.32 0.33 

46 1.02 0.00042 0.04550 -0.03190 + + 
   

0.00000 0.00046 
    

11 -96.54 215.50 1.84 0.15 

26 1.06 0.00035 0.04364 -0.03270 + + 
   

0.00000 0.00047 0.00000 
   

12 -95.71 215.90 2.26 0.12 

43 1.63 -0.00003 0.03471 -0.02779 
 

+ 
    

0.00040 0.00000 
   

8 -102.31 220.90 7.18 0.01 

42 1.88 -0.00003 0.02992 -0.02519 + + 
    

0.00035 0.00000 
   

11 -99.50 221.40 7.77 0.01 

28 2.00 -0.00003 0.02740 -0.02531 + + 
  

+ 
 

0.00035 0.00000 
   

14 -99.09 226.90 13.22 0.00 

34 3.47 0.00005 -0.00554 -0.00908 + + 
        

+ 10 -104.30 229.00 15.29 0.00 

32 3.60 0.00008 -0.00457 -0.00712 + + 
      

+ 
  

10 -105.90 232.20 18.49 0.00 

37 3.47 0.00005 -0.00620 -0.00941 
 

+ 
        

+ 7 -109.21 232.60 18.92 0.00 

49 0.59 0.00048 0.05471 -0.03626 
     

0.00000 0.00054 
    

7 -109.25 232.70 19.01 0.00 

31 0.64 0.00042 0.05298 -0.03696 
     

0.00000 0.00055 0.00000 
   

8 -108.58 233.40 19.72 0.00 

1 3.62 0.00006 -0.00441 -0.00709 + + 
         

9 -108.03 234.40 20.68 0.00 

2 3.49 0.00008 
 

-0.00611 + + 
         

8 -109.22 234.70 21.01 0.00 

33 3.57 0.00006 -0.00321 -0.00708 + + 
       

+ 
 

10 -107.71 235.80 22.12 0.00 

48 0.79 0.00045 0.05121 -0.03420 + 
    

0.00000 0.00051 
    

10 -108.16 236.70 23.01 0.00 

30 0.83 0.00040 0.04960 -0.03493 + 
    

0.00000 0.00051 0.00000 
   

11 -107.52 237.50 23.82 0.00 

38 3.66 0.00005 -0.00620 -0.00745 + + 
   

0.00000 
 

0.00000 
   

11 -107.53 237.50 23.84 0.00 

24 1.39 
 

0.04010 -0.03085 
      

0.00045 
    

5 -113.91 237.90 24.23 0.00 

35 3.61 0.00008 -0.00511 -0.00719 
 

+ 
      

+ 
  

7 -112.06 238.30 24.63 0.00 

19 1.48 0.00002 0.03917 -0.02888 
      

0.00042 
    

6 -113.43 239.00 25.32 0.00 

4 3.64 0.00006 -0.00495 -0.00716 
 

+ 
         

6 -113.89 239.90 26.24 0.00 

36 3.56 0.00006 -0.00330 -0.00715 
 

+ 
       

+ 
 

7 -113.31 240.80 27.14 0.00 

45 1.53 -0.00002 0.03801 -0.02887 
      

0.00042 0.00000 
   

7 -113.34 240.90 27.19 0.00 

21 1.55 
 

0.03714 -0.02937 + 
     

0.00042 
    

8 -112.53 241.30 27.61 0.00 

15 1.65 0.00003 0.03619 -0.02692 + 
     

0.00039 
    

9 -111.82 241.90 28.27 0.00 

39 3.68 0.00004 -0.00677 -0.00750 
 

+ 
   

0.00000 
 

0.00000 
   

8 -113.42 243.10 29.39 0.00 

27 3.72 0.00005 -0.00698 -0.00731 + + + 
 

+ 
      

15 -106.26 243.30 29.66 0.00 

44 1.70 -0.00001 0.03500 -0.02691 + 
     

0.00038 0.00000 
   

10 -111.73 243.80 30.15 0.00 

7 3.55 0.00008 
 

-0.00612 + 
          

7 -122.34 258.90 45.20 0.00 

3 3.65 0.00006 -0.00357 -0.00692 + 
          

8 -121.59 259.40 45.75 0.00 

20 3.51 0.00017 
 

-0.00645 + 
    

0.00000 
     

8 -122.13 260.50 46.81 0.00 

16 3.71 0.00000 -0.00506 -0.00704 + 
      

0.00000 
   

9 -121.39 261.10 47.41 0.00 

14 3.63 0.00011 -0.00328 -0.00703 + 
    

0.00000 
     

9 -121.54 261.40 47.70 0.00 

5 3.68 0.00006 -0.00441 -0.00708 
           

5 -125.67 261.40 47.76 0.00 

12 3.79 0.00006 -0.00308 -0.00527 + 
  

+ 
       

11 -119.54 261.50 47.85 0.00 

8 3.55 0.00008 
 

-0.00612 
           

4 -126.91 261.90 48.21 0.00 

40 3.68 0.00007 -0.00491 -0.00724 + 
    

0.00000 
 

0.00000 
   

10 -121.27 262.90 49.23 0.00 

18 3.74 0.00000 -0.00597 -0.00721 
       

0.00000 
   

6 -125.46 263.10 49.37 0.00 
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23 3.51 0.00018 
 

-0.00649 
     

0.00000 
     

5 -126.62 263.30 49.66 0.00 

17 3.65 0.00010 -0.00415 -0.00718 
     

0.00000 
     

6 -125.63 263.40 49.71 0.00 

13 3.71 0.00006 -0.00509 -0.00699 + 
   

+ 
      

11 -120.90 264.20 50.57 0.00 

41 3.71 0.00006 -0.00581 -0.00739 
     

0.00000 
 

0.00000 
   

7 -125.34 264.90 51.20 0.00 

11 3.65 0.00006 -0.00359 -0.00688 + 
 

+ 
        

11 -121.39 265.20 51.54 0.00 

9 3.84 
 

-0.01040 -0.00872 
           

4 -129.50 267.10 53.39 0.00 

6 3.50 0.00017 0.01197 
 

+ 
          

7 -148.86 311.90 98.22 0.00 

22 3.42 0.00025 0.01382 
 

+ 
      

0.00000 
   

8 -148.41 313.10 99.39 0.00 

10 3.58 0.00016 0.01091 
            

4 -155.89 319.80 106.16 0.00 

25 3.49 0.00025 0.01293 
        

0.00000 
   

5 -155.38 320.90 107.18 0.00 
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Table S3.7 – Results from model selection for MZW/CBL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order 

Akaike information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model. 

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

12 0.63 0.00000 0.00037 0.00027 + 
  

+ 
       

11 1744.93 -3467.40 0.00 0.32 

10 0.61 0.00000 0.00019 
            

4 1736.60 -3465.10 2.30 0.10 

25 0.61 0.00001 0.00030 
        

0.00000 
   

5 1737.35 -3464.60 2.84 0.08 

18 0.60 0.00001 0.00047 0.00006 
       

0.00000 
   

6 1738.23 -3464.30 3.10 0.07 

5 0.61 0.00000 0.00029 0.00005 
           

5 1737.11 -3464.10 3.31 0.06 

9 0.62 
 

0.00012 0.00000 
           

4 1736.02 -3464.00 3.47 0.06 

45 0.61 0.00001 0.00041 0.00009 
      

0.00000 0.00000 
   

7 1738.24 -3462.30 5.13 0.02 

41 0.60 0.00001 0.00047 0.00006 
     

0.00000 
 

0.00000 
   

7 1738.24 -3462.30 5.15 0.02 

17 0.61 0.00000 0.00031 0.00004 
     

0.00000 
     

6 1737.20 -3462.30 5.17 0.02 

8 0.62 0.00000 
 

-0.00002 
           

4 1735.13 -3462.20 5.25 0.02 

19 0.62 0.00000 0.00017 0.00011 
      

0.00000 
    

6 1737.14 -3462.20 5.29 0.02 

4 0.61 0.00000 0.00029 0.00005 
 

+ 
         

6 1737.11 -3462.10 5.35 0.02 

24 0.61 
 

0.00024 -0.00005 
      

0.00000 
    

5 1736.05 -3462.00 5.45 0.02 

6 0.61 0.00000 0.00020 
 

+ 
          

7 1737.64 -3461.10 6.34 0.01 

16 0.60 0.00001 0.00052 0.00008 + 
      

0.00000 
   

9 1739.57 -3460.90 6.58 0.01 

3 0.61 0.00000 0.00033 0.00006 + 
          

8 1738.38 -3460.50 6.90 0.01 

22 0.61 0.00001 0.00032 
 

+ 
      

0.00000 
   

8 1738.38 -3460.50 6.91 0.01 

43 0.61 0.00001 0.00041 0.00009 
 

+ 
    

0.00000 0.00000 
   

8 1738.25 -3460.30 7.16 0.01 

37 0.61 0.00000 0.00028 0.00003 
 

+ 
        

+ 7 1737.23 -3460.30 7.16 0.01 

39 0.60 0.00001 0.00047 0.00006 
 

+ 
   

0.00000 
 

0.00000 
   

8 1738.25 -3460.30 7.18 0.01 

31 0.61 0.00001 0.00040 0.00010 
     

0.00000 0.00000 0.00000 
   

8 1738.24 -3460.30 7.18 0.01 

49 0.61 0.00000 0.00028 0.00006 
     

0.00000 0.00000 
    

7 1737.21 -3460.20 7.21 0.01 

23 0.62 0.00000 
 

-0.00001 
     

0.00000 
     

5 1735.15 -3460.20 7.25 0.01 

35 0.61 0.00000 0.00029 0.00005 
 

+ 
      

+ 
  

7 1737.13 -3460.10 7.35 0.01 

36 0.61 0.00000 0.00029 0.00005 
 

+ 
       

+ 
 

7 1737.12 -3460.10 7.39 0.01 

44 0.61 0.00001 0.00029 0.00019 + 
     

0.00000 0.00000 
   

10 1739.69 -3459.00 8.41 0.01 

15 0.62 0.00000 0.00005 0.00020 + 
     

0.00000 
    

9 1738.57 -3458.80 8.59 0.00 

40 0.60 0.00001 0.00052 0.00008 + 
    

0.00000 
 

0.00000 
   

10 1739.58 -3458.80 8.64 0.00 

11 0.61 0.00000 0.00034 0.00005 + 
 

+ 
        

11 1740.58 -3458.70 8.70 0.00 

14 0.61 0.00001 0.00035 0.00005 + 
    

0.00000 
     

9 1738.48 -3458.70 8.77 0.00 

1 0.61 0.00000 0.00033 0.00006 + + 
         

9 1738.38 -3458.50 8.96 0.00 

29 0.61 0.00001 0.00041 0.00010 
 

+ 
   

0.00000 0.00000 0.00000 
   

9 1738.25 -3458.20 9.22 0.00 

47 0.61 0.00000 0.00028 0.00005 
 

+ 
   

0.00000 0.00000 
    

8 1737.21 -3458.20 9.25 0.00 

21 0.62 
 

0.00011 0.00002 + 
     

0.00000 
    

8 1737.05 -3457.90 9.56 0.00 

7 0.62 0.00000 
 

-0.00002 + 
          

7 1736.00 -3457.80 9.62 0.00 

30 0.62 0.00001 0.00023 0.00022 + 
    

0.00000 0.00000 0.00000 
   

11 1739.72 -3457.00 10.43 0.00 

42 0.61 0.00001 0.00029 0.00019 + + 
    

0.00000 0.00000 
   

11 1739.69 -3457.00 10.48 0.00 

48 0.62 0.00000 0.00010 0.00018 + 
    

0.00000 0.00000 
    

10 1738.58 -3456.80 10.63 0.00 

38 0.60 0.00001 0.00052 0.00008 + + 
   

0.00000 
 

0.00000 
   

11 1739.58 -3456.70 10.71 0.00 
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34 0.61 0.00000 0.00033 0.00004 + + 
        

+ 10 1738.45 -3456.60 10.89 0.00 

32 0.61 0.00000 0.00034 0.00006 + + 
      

+ 
  

10 1738.40 -3456.40 11.00 0.00 

33 0.61 0.00000 0.00032 0.00006 + + 
       

+ 
 

10 1738.39 -3456.40 11.01 0.00 

20 0.62 0.00000 
 

-0.00001 + 
    

0.00000 
     

8 1736.02 -3455.80 11.64 0.00 

2 0.62 0.00000 
 

-0.00002 + + 
         

8 1736.01 -3455.80 11.65 0.00 

27 0.63 0.00000 0.00001 0.00006 + + + 
 

+ 
      

15 1743.15 -3455.50 11.91 0.00 

13 0.62 0.00000 0.00020 0.00007 + 
   

+ 
      

11 1738.69 -3455.00 12.49 0.00 

26 0.62 0.00001 0.00023 0.00022 + + 
   

0.00000 0.00000 0.00000 
   

12 1739.72 -3454.90 12.51 0.00 

46 0.62 0.00000 0.00010 0.00018 + + 
   

0.00000 0.00000 
    

11 1738.58 -3454.70 12.70 0.00 

28 0.62 0.00001 0.00018 0.00019 + + 
  

+ 
 

0.00000 0.00000 
   

14 1739.88 -3451.10 16.35 0.00 
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Table S3.8 – Results from model selection for NB/TSL; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order 

Akaike information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model. 

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

29 0.27 0.00000 0.00041 -0.00065 
 

+ 
   

0.00000 0.00001 0.00000 
   

9 1773.66 -3529.00 0.00 0.41 

26 0.27 0.00000 0.00058 -0.00067 + + 
   

0.00000 0.00001 0.00000 
   

12 1775.86 -3527.20 1.81 0.17 

39 0.33 -0.00001 -0.00062 -0.00014 
 

+ 
   

0.00000 
 

0.00000 
   

8 1771.72 -3527.20 1.82 0.16 

31 0.27 0.00000 0.00050 -0.00068 
     

0.00000 0.00001 0.00000 
   

8 1770.94 -3525.70 3.38 0.08 

30 0.26 0.00000 0.00070 -0.00071 + 
    

0.00000 0.00001 0.00000 
   

11 1773.77 -3525.10 3.91 0.06 

38 0.32 0.00000 -0.00053 -0.00012 + + 
   

0.00000 
 

0.00000 
   

11 1773.73 -3525.00 3.99 0.06 

41 0.33 0.00000 -0.00059 -0.00014 
     

0.00000 
 

0.00000 
   

7 1768.77 -3523.40 5.68 0.02 

43 0.23 0.00002 0.00116 -0.00105 
 

+ 
    

0.00002 0.00000 
   

8 1769.61 -3523.00 6.05 0.02 

40 0.32 0.00000 -0.00050 -0.00011 + 
    

0.00000 
 

0.00000 
   

10 1771.27 -3522.20 6.85 0.01 

42 0.22 0.00002 0.00135 -0.00109 + + 
    

0.00002 0.00000 
   

11 1771.85 -3521.30 7.75 0.01 

45 0.23 0.00002 0.00121 -0.00107 
      

0.00002 0.00000 
   

7 1767.23 -3520.30 8.76 0.01 

44 0.22 0.00002 0.00143 -0.00111 + 
     

0.00002 0.00000 
   

10 1770.11 -3519.90 9.17 0.00 

28 0.22 0.00002 0.00126 -0.00103 + + 
  

+ 
 

0.00002 0.00000 
   

14 1772.44 -3516.20 12.82 0.00 

18 0.31 0.00002 -0.00053 -0.00022 
       

0.00000 
   

6 1759.98 -3507.80 21.20 0.00 

16 0.31 0.00002 -0.00044 -0.00019 + 
      

0.00000 
   

9 1762.06 -3505.80 23.20 0.00 

47 0.28 -0.00001 -0.00004 -0.00080 
 

+ 
   

0.00000 0.00001 
    

8 1759.95 -3503.70 25.37 0.00 

46 0.28 -0.00001 0.00014 -0.00083 + + 
   

0.00000 0.00001 
    

11 1762.17 -3501.90 27.11 0.00 

24 0.25 
 

0.00052 -0.00115 
      

0.00002 
    

5 1755.24 -3500.40 28.65 0.00 

19 0.26 0.00000 0.00047 -0.00103 
      

0.00001 
    

6 1755.88 -3499.60 29.40 0.00 

49 0.28 -0.00001 0.00005 -0.00083 
     

0.00000 0.00001 
    

7 1756.87 -3499.60 29.47 0.00 

15 0.25 0.00000 0.00069 -0.00108 + 
     

0.00002 
    

9 1758.82 -3499.40 29.68 0.00 

48 0.27 -0.00001 0.00026 -0.00088 + 
    

0.00000 0.00001 
    

10 1759.79 -3499.20 29.81 0.00 

21 0.24 
 

0.00074 -0.00124 + 
     

0.00002 
    

8 1757.54 -3498.90 30.18 0.00 

17 0.35 -0.00002 -0.00119 -0.00023 
     

0.00000 
     

6 1754.24 -3496.30 32.69 0.00 

14 0.34 -0.00002 -0.00110 -0.00020 + 
    

0.00000 
     

9 1756.73 -3495.20 33.86 0.00 

37 0.33 0.00000 -0.00111 -0.00033 
 

+ 
        

+ 7 1754.38 -3494.60 34.46 0.00 

4 0.33 0.00000 -0.00108 -0.00027 
 

+ 
         

6 1753.26 -3494.40 34.66 0.00 

35 0.33 0.00000 -0.00108 -0.00027 
 

+ 
      

+ 
  

7 1753.87 -3493.60 35.47 0.00 

36 0.34 0.00000 -0.00116 -0.00027 
 

+ 
       

+ 
 

7 1753.72 -3493.30 35.77 0.00 

34 0.33 0.00000 -0.00102 -0.00031 + + 
        

+ 10 1756.14 -3491.90 37.11 0.00 

22 0.30 0.00003 0.00009 
 

+ 
      

0.00000 
   

8 1754.01 -3491.80 37.24 0.00 

1 0.33 0.00000 -0.00100 -0.00025 + + 
         

9 1754.96 -3491.60 37.40 0.00 

32 0.33 0.00000 -0.00100 -0.00025 + + 
      

+ 
  

10 1755.56 -3490.80 38.26 0.00 

33 0.33 0.00000 -0.00107 -0.00025 + + 
       

+ 
 

10 1755.40 -3490.40 38.60 0.00 

5 0.33 0.00000 -0.00107 -0.00027 
           

5 1750.22 -3490.30 38.70 0.00 

3 0.33 0.00000 -0.00097 -0.00025 + 
          

8 1752.39 -3488.60 40.49 0.00 

25 0.31 0.00003 0.00005 
        

0.00000 
   

5 1748.78 -3487.50 41.57 0.00 

9 0.34 
 

-0.00133 -0.00034 
           

4 1747.44 -3486.80 42.22 0.00 

12 0.33 0.00000 -0.00093 -0.00027 + 
  

+ 
       

11 1753.41 -3484.40 44.64 0.00 
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13 0.33 0.00000 -0.00093 -0.00025 + 
   

+ 
      

11 1753.28 -3484.10 44.91 0.00 

11 0.33 0.00000 -0.00098 -0.00025 + 
 

+ 
        

11 1752.74 -3483.10 45.98 0.00 

27 0.33 0.00000 -0.00095 -0.00025 + + + 
 

+ 
      

15 1756.84 -3482.90 46.13 0.00 

6 0.33 0.00001 -0.00041 
 

+ 
          

7 1739.22 -3464.30 64.78 0.00 

10 0.33 0.00001 -0.00048 
            

4 1733.01 -3457.90 71.09 0.00 

2 0.30 0.00001 
 

-0.00003 + + 
         

8 1733.97 -3451.70 77.34 0.00 

7 0.30 0.00001 
 

-0.00003 + 
          

7 1732.29 -3450.40 78.63 0.00 

20 0.31 0.00000 
 

0.00000 + 
    

0.00000 
     

8 1732.79 -3449.40 79.68 0.00 

8 0.30 0.00001 
 

-0.00004 
           

4 1723.74 -3439.40 89.63 0.00 

23 0.30 0.00000 
 

-0.00003 
     

0.00000 
     

5 1723.83 -3437.60 91.46 0.00 
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Table S3.9 – Results from model selection for Cranial box; Model = Model number; (Int) = intersection; Elv = Elevation; Ltt = Latitude; Lng = Longitude; Ssn = Season; df = degrees of freedom; logLik = log likelihood; AICc = second-order 

Akaike information criterion; delta = difference between a model and the highest scoring mode; weight= model weight, the relative likelihood of a model ;”+” = factor incorporated into  the model. 

Model (Int) Elv Ltt Lng Ssn Sex Elv:Ssn Lng:Ssn Ltt:Ssn Elv:Lng Ltt:Lng Elv:Ltt Elv:Sex Ltt:Sex Lng:Sex df logLik AICc delta weight 

29 -3723.0 1.04 310.10 -256.30 
 

+ 
   

0.01901 3.81800 0.02352 
   

9 -5551.39 11121.10 0.00 0.37 

26 -2686.0 0.93 293.20 -240.30 + + 
   

0.01692 3.57100 0.02266 
   

12 -5548.38 11121.30 0.20 0.34 

46 -3192.0 1.47 311.50 -234.30 + + 
   

0.01288 3.52000 
    

11 -5550.79 11124.00 2.92 0.09 

42 858.6 -0.66 232.90 -207.90 + + 
    

3.03500 0.01711 
   

11 -5550.85 11124.10 3.04 0.08 

47 -4247.0 1.60 329.30 -250.40 
 

+ 
   

0.01483 3.76900 
    

8 -5553.97 11124.20 3.09 0.08 

43 137.1 -0.76 244.60 -221.50 
 

+ 
    

3.24400 0.01724 
   

8 -5554.51 11125.30 4.18 0.05 

28 1037.0 -0.70 229.80 -208.40 + + 
  

+ 
 

3.05600 0.01796 
   

14 -5550.47 11129.60 8.55 0.01 

31 -4396.0 1.28 329.60 -262.90 
     

0.02046 3.94600 0.02141 
   

8 -5562.90 11142.00 20.96 0.00 

30 -3802.0 1.22 321.70 -250.40 + 
    

0.01877 3.77200 0.02055 
   

11 -5560.24 11142.90 21.83 0.00 

49 -4861.0 1.78 346.80 -257.50 
     

0.01662 3.90000 
    

7 -5564.96 11144.10 23.03 0.00 

48 -4243.0 1.71 337.80 -244.80 + 
    

0.01506 3.72200 
    

10 -5562.15 11144.60 23.57 0.00 

21 -1039.0 
 

279.00 -222.50 + 
     

3.32200 
    

8 -5564.36 11145.00 23.88 0.00 

24 -1046.0 
 

280.40 -224.30 
      

3.34700 
    

5 -5567.43 11145.00 23.88 0.00 

15 -787.3 0.08 277.00 -215.70 + 
     

3.23100 
    

9 -5564.14 11146.60 25.49 0.00 

44 111.9 -0.54 255.40 -214.60 + 
     

3.18100 0.01432 
   

10 -5563.16 11146.70 25.60 0.00 

19 -1151.0 -0.03 281.40 -226.70 
      

3.38100 
    

6 -5567.40 11146.90 25.86 0.00 

45 -248.8 -0.66 259.40 -225.60 
      

3.33100 0.01460 
   

7 -5566.39 11147.00 25.89 0.00 

38 17340.0 -1.59 -91.07 -48.62 + + 
   

-0.00965 
 

0.01920 
   

11 -5573.25 11168.90 47.85 0.00 

34 15270.0 0.29 -65.95 -56.95 + + 
        

+ 10 -5574.48 11169.30 48.24 0.00 

1 15920.0 0.32 -62.52 -48.97 + + 
         

9 -5576.65 11171.60 50.51 0.00 

32 15860.0 0.39 -63.13 -48.98 + + 
      

+ 
  

10 -5575.86 11172.10 51.00 0.00 

33 15470.0 0.32 -52.66 -49.02 + + 
       

+ 
 

10 -5575.95 11172.30 51.18 0.00 

37 15640.0 0.21 -77.98 -61.21 
 

+ 
        

+ 7 -5582.00 11178.20 57.10 0.00 

27 15070.0 0.39 -48.85 -50.35 + + + 
 

+ 
      

15 -5573.71 11178.20 57.11 0.00 

39 17790.0 -1.68 -103.50 -51.90 
 

+ 
   

-0.00952 
 

0.01991 
   

8 -5581.26 11178.70 57.67 0.00 

4 16360.0 0.24 -74.11 -52.17 
 

+ 
         

6 -5584.70 11181.50 60.46 0.00 

36 15830.0 0.24 -62.37 -52.24 
 

+ 
       

+ 
 

7 -5583.74 11181.70 60.58 0.00 

35 16300.0 0.31 -74.67 -52.18 
 

+ 
      

+ 
  

7 -5584.01 11182.20 61.13 0.00 

2 14060.0 0.68 
 

-34.99 + + 
         

8 -5585.06 11186.30 65.26 0.00 

16 16970.0 -0.55 -81.41 -50.48 + 
      

0.02021 
   

9 -5587.92 11194.10 73.05 0.00 

40 17360.0 -1.42 -83.28 -47.84 + 
    

-0.00925 
 

0.01660 
   

10 -5587.07 11194.50 73.41 0.00 

14 16770.0 -1.00 -65.90 -45.45 + 
    

-0.01195 
     

9 -5588.21 11194.70 73.64 0.00 

3 16070.0 0.33 -58.10 -48.37 + 
          

8 -5589.73 11195.70 74.61 0.00 

13 15680.0 0.33 -51.76 -49.47 + 
   

+ 
      

11 -5587.80 11198.00 76.94 0.00 

12 16020.0 0.34 -56.15 -47.85 + 
  

+ 
       

11 -5589.13 11200.70 79.61 0.00 

18 17470.0 -0.68 -95.33 -54.14 
       

0.02097 
   

6 -5594.51 11201.10 80.07 0.00 

11 16020.0 0.37 -57.96 -48.17 + 
 

+ 
        

11 -5589.44 11201.30 80.23 0.00 

41 17850.0 -1.52 -97.37 -51.65 
     

-0.00898 
 

0.01747 
   

7 -5593.72 11201.60 80.54 0.00 

17 17250.0 -1.08 -79.23 -49.22 
     

-0.01183 
     

6 -5594.97 11202.10 81.00 0.00 
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5 16550.0 0.23 -71.23 -52.04 
           

5 -5596.43 11202.90 81.87 0.00 

9 17280.0 
 

-96.74 -58.90 
           

4 -5598.96 11206.00 84.90 0.00 

7 14330.0 0.66 
 

-35.36 + 
          

7 -5596.73 11207.60 86.57 0.00 

20 14490.0 0.22 
 

-33.77 + 
    

-0.00410 
     

8 -5596.54 11209.30 88.24 0.00 

8 14450.0 0.62 
 

-36.59 
           

4 -5607.87 11223.80 102.73 0.00 

23 14490.0 0.50 
 

-36.18 
     

-0.00108 
     

5 -5607.86 11225.80 104.74 0.00 

6 14960.0 1.10 51.08 
 

+ 
          

7 -5635.71 11285.60 164.52 0.00 

22 14800.0 1.25 54.48 
 

+ 
      

-0.00371 
   

8 -5635.65 11287.50 166.46 0.00 

10 15920.0 0.99 40.94 
            

4 -5652.91 11313.90 192.81 0.00 

25 15670.0 1.24 46.60 
        

-0.00606 
   

5 -5652.77 11315.60 194.56 0.00 
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Gene expression responses of the American red squirrel (Tamiasciurus 

hudsonicus) to temperature and elevation  

 

Fríða Jóhannesdóttir1, Jacob Tyrell1, Brian R. Magnier1, Brian O’Toole1,2, Cassandra Ramirez1, 

Jeremy B. Searle1 

1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY14853, USA 

2. American Museum of Natural History, New York NY10024, USA 

 

ABSTRACT  

Animals are faced with varied environmental conditions throughout their distribution. Many of 

these will put severe strains on their physiology and often species limits are determined by 

physiological constraints. Populations of mammals faced with extreme temperatures may show 

physiological responses reflecting adaptive evolutionary changes or there may be plastic 

responses mediated through changes in gene expression.  

The focus of our work was the American red squirrel Tamiasciurus hudsonicus, a small 

widespread North American boreal forest mammal. T.hudsonicus does not hibernate or go into 

torpor and over its species range is exposed to widely varying climatic conditions, when 

considering seasons, elevation and latitude. Here we examine changes in gene expression 

relating to geographical and seasonal differences using RNAseq. We interpreted these in terms of 

broad gene ontology (GO) categories. We found upregulation in genes relating to oxidative 

metabolism and lipid metabolic reactions in populations found in cold or high elevation areas 

although this trend was mainly due to pronounced effects at high elevation. We found 
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upregulation relating to mitochondrial function in all warm or low elevation population and 

upregulation relating to iron binding in summer samples from New York compared to winter 

samples from the same population.  

Overall, from the comparisons among T.hudsonicus that we were able to make, those that 

involved exposure to a combination of different elevation and different temperature showed 

greater differential gene expression than those comparisons that only involve exposure to a 

different temperature but not a different elevation. However, for the summer versus winter 

comparison, the differential gene expression suggests reduced metabolic activity in the winter.  

INTRODUCTION 

Adaptation can take on many forms including evolutionary change or plastic responses, and this 

can be illustrated by adaptation to different thermal conditions, of interest here. Thermal 

adaptations can include changes in gross morphology such as reducing size to increase heat 

exchange with the environment in warm areas (Shrestha et al 2014; Yom-Tov 1986) or changes 

in DNA sequences leading to, for example, structural changes in proteins allowing for better 

transfer of oxygen to enhance metabolism at cold temperatures. Adaptive plastic responses 

relating to thermal conditions include behavioral changes such as individuals maximizing 

foraging time during dusk and dawn under high temperatures to avoid being out during the 

hottest time of day when they would be out of the thermoneutral zone (Cain et al 2006), or 

changes in gene expression e.g. upregulation of uncoupling proteins in brown adipose tissue to 

generate heat through non-shivering thermogenesis during cold conditions (Nedergaard et al 

2001).  

One aspect of thermal adaptation is coping with extreme conditions. Even if temperatures 

are tolerable for much of the time (perhaps directed behavior may contribute to the maintenance 
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of such generally tolerable conditions), individuals may be exposed to extreme temperatures for 

a period, leading to cold or heat stress. An individual in cold or heat stress is outside its thermal 

neutral zone and having to expend energy to maintain an appropriate constant core body 

temperature (Feldhamer et al 2016). There are various ways in which endotherms can deal with 

cold and heat stress through physiological changes. When individuals suffer cold stress heat 

production needs to be increased to compensate increased heat loss in order to maintain constant 

body temperature (Venditti et al 2016). This heat production can take the form of shivering, in 

muscles, or non-shivering, in brown adipose tissue. When individuals face heat stress they may 

increase evaporative cooling (such as sweating or panting) and increase blood flow close to the 

skin (Huey et al 2012). Many of the metabolic changes observed in one tissue, such as the non-

shivering thermogenesis response in brown adipose tissue, can also be detected in other tissues 

such as liver, skeletal muscle and kidney (Guernsey & Stevens 1977; Shore et al 2013). These 

physiological changes are likely to be associated with changes in gene expression. There is a 

large literature on patterns of up- and down-regulation of particular genes that are associated 

with hot or cold stress (Sonna et al 2002; Fujita 1999; Lindquist 1986). Examples include the 

heat response of down-regulation of gene transcripts associated with protein synthesis and 

cellular metabolism in response to morphological changes and reduced cell growth, upregulation 

of genes associated with DNA and protein repair and short term elevation of expression of 

HSP70 before ultimate cell death, as recorded in bovine mammary epithelial cells (Collier et al 

2005; Collier et al 2008). An example of cold response is the upregulation of UCP1 (or 

Themogenin) in brown adipose tissue which increases permeability of the inner mitochondrial 

membrane thereby increasing heat dissipation and lowering ATP production (Cannon & 

Nedergaard 2004) 
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To understand thermal tolerance in terms of evolutionary adaptation and thermal plastic 

responses it is important to know how species cope with a wide range of temperatures over their 

natural geographical range. It is particularly instructive to examine species with large 

geographical ranges that incorporate different thermal conditions. Under those circumstances it 

may be possible to examine a single species that is subject to hot and cold stresses in different 

parts of their distribution at different times of year. This reflects systematic differences in the 

thermal regime that may have influence on the adaptive response. 

The American red squirrel, Tamiasciurus hudsonicus, a small highly active mammal, is 

exceptional in this respect. It has an extremely wide distribution in North America, from Alaska 

in the northwest, through most of Canada to the eastern seaboard and following the coniferous 

and mixed coniferous forest along the Rocky Mountains in the west and Appalachians in the east 

(Steele 1998). The species does not hibernate nor go into daily torpor (Brigham & Geiser 2011). 

It is therefore active all year round over a very large geographical range, with limited behavioral 

protection (it needs to forage frequently, defend its territory etc. and therefore is exposed to the 

external environment for much of the time: Gurnell 1984; Pauls 1978). When examining the 

conditions throughout the species distribution it becomes apparent that T.hudsonicus potentially 

has to be able to handle quite extreme thermal conditions.  

In other chapters we investigate evolutionary adaptation of T.hudsonicus to extreme 

thermal conditions in terms of morphology. In this chapter, we investigate geographical and 

seasonal differences in gene expression using RNAseq (Nagalakshmi et al 2008; Wang, Gerstein 

& Snyder 2009). This could be due to constitutive changes in gene expression with a genetic 

basis; therefore evolutionary adaptation. It could also be a plastic response, in which an 

individual varies gene expression according to particular conditions. 
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This study is preliminary in various respects. It is restricted to a single organ type (liver), 

to a small number of comparisons with low replication. However, we focus on genes that are 

upregulated in multiple comparisons comparing warmer and colder conditions and vice versa, 

and through gene ontology we interpret the function of these genes. Although it does not provide 

the complete picture of gene expression differences between T.hudsonicus in different thermal 

settings, liver is a particularly appropriate organ to study. Shore et al (2013) note, for instance, 

that the metabolic response to cold in mammals critically involves liver (e.g. through 

gluconeogenesis), and it is also an organ of choice in analyzing aspects of heat stress (e.g. for the 

detection of heat shock proteins Salway et al 2011). In short, liver is an exceptionally important 

mammalian organ for studying metabolic processes (Rui 2014). 

MATERIALS AND METHODS 

Sample collection 

Red squirrels were collected between January 2013 and June 2014 in New York, West Virginia, 

Colorado, Montana and Alaska (table 4.1) with appropriate permitting and following an 

approved Cornell IACUC protocol. Immediately after euthanasia individuals were dissected 

using sterilized instrument and liver tissues collected. Tissue samples were placed directly into 

RNAlater (Invitrogen) in the field and placed and stored at -80C until RNA was extracted. Only 

males were used in this analysis. 

Table 4.1 – Samples (collected in the summer unless otherwise stated) used in the study with location 

data and group allocation (NYw and NYs being winter and summer samples from New York State)   

Sample Group Location Latitude Longitude Elevation (m) Date 

Th024 NYw Adirondacks 44.249031 -73.985689 550 30 Jan ‘13 

Th025 NYw Adirondacks 44.249031 -73.985689 550 31 Jan ‘13 

Th069 NYs Adirondacks 44.249031 -73.985689 550 09 Jul ‘13 

Th079 NYs Adirondacks 44.249031 -73.985689 550 29 Jul ‘13 

Th031 MT Lubrecht Forest 46.8937 -113.44779 1256 16 Jun ‘13 

Th034 MT Lubrecht Forest 46.8937 -113.44779 1256 17 Jun ‘13 

Th050 COs West Elk 38.79333 -107.245556 2744 29 Jun ‘13 
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Th052 COs West Elk 38.79333 -107.245556 2744 29 Jun ‘13 

Th090 COw West Elk 38.79333 -107.245556 2744 13 Feb ‘14 

Th091 COw West Elk 38.79333 -107.245556 2744 13 Feb ‘14 

Th071 WV Cheat Mountain 38.629051 -79.925799 626 22 Jul ‘13 

Th073 WV Cheat Mountain 38.629051 -79.925799 626 22 Jul ‘13 

Th120 AK Tanana State Forest 63.214167 -143.06555 550 21 Jun ‘14 

Th122 AK Tanana State Forest 63.214167 -143.06555 550 21 Jun ‘14 

 

Molecular work 

Total RNA was extracted using an RNAdvance tissue kit (Beckman Coulter). RNA was 

quantified and integrity assessed using a Bioanalyzer 2100.  

Libraries were generated using the Illumina TruSeq RNA sample preparation kit v2 

following the low sample protocol according to the manufacturer’s instructions. RNA (1 µg) was 

subjected to poly-A messenger RNA (mRNA) selection using oligo-dT attached magnetic beads 

followed by chemical fragmentation (8 min, 94 °C). Cleaved RNA fragments were then copied 

into first strand cDNA using SuperScript II reverse transcriptase (Invitrogen) and Illumina 

proprietary random hexamer primers. After second strand synthesis using Illumina-supplied 

consumables, purification of the cDNA with Agencourt AMPure XP beads (Beckman Coulter), 

and overhang end repair with adenylation of the 3' blunt ends, the cDNA was ligated to barcoded 

adapters. The barcoded cDNA was then enriched for fragments that have adapter molecules on 

both ends and amplified with PCR reagents of the same kit. The final libraries were amplified 

using 14 PCR cycles. We quantified and assessed library quality on an Advanced Analytical 

Fragment Analyzer using Standard Sensitivity NGS Fragment Analysis.  

Following the standard quality filtering by Illumina we estimated the read quality using 

FastQC version 0.11.4 (Andrews 2010). To ensure the quality of downstream analysis 

Trimmomatic 0.36 (Bolger, Lohse & Usadel 2014) was used to trim the first 15 bp of each read, 

trim the 5’ and/or 3’ end of reads where the quality score went below Q20, trim off anywhere 
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within a read where the quality of a 5bp window was below Q20, and remove any reads less than 

36bp long.  

We used multidimensional scaling plots to visualize the genetic structure of the data and 

following that excluded sample Th091 based on that result and due to low number of reads.  

Gene expression analysis  

Reads were aligned to an annotated thirteen-lined ground squirrel (Ictidomys tridecemlineatus) 

transcriptome using TopHat 2.1.1 (Trapnell et al 2012). A range of 14.3-43.3% of reads from 

different samples mapped to the transcriptome. Mapped reads were sorted and indexed using 

SAMtools (Li & Durbin 2009). We analyzed differential gene expression and carried out TMM 

normalization (Robinson & Oshlack 2010) using the edgeR (Robinson, McCarthy & Smyth 

2010) R package (R version 3.2.5, R Development Core Team). We considered genes with more 

than two fold change and a false discovery rate corrected P value of less than 0.05 to be 

differentially expressed. We discarded all genes where there were fewer than 20 reads and when 

more than 50% of the samples had no reads. We tested differential gene expression for a number 

of comparisons (table 4.2). To reduce bias in comparisons due to unequal sample sizes we 

excluded the second Colorado winter sample (Th090) at this stage.  

It is worth noting that when denoting upregulation we are simply comparing the two 

populations in question and calling the genes upregulated when more reads are found in one 

population. This is done for the sake of convenience but another explanation for the difference 

could also be that the genes in the second population are being downregulated.  
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Table 4.2 – Group comparisons made for gene expression differences, with groups and samples defined 

as in table 4.1  

Comparison Samples being tested Variables being tested 

NYs vs NYw  Th069 & Th079 vs Th024 & Th025 Temperature – All samples come from the same 

location and same population but collected in 

the warmest vs coldest months of the year.  

NY vs WV Th069 & Th079 vs Th071 & Th073 Temperature – Elevation is nearly identical 

while New York is further north than West 

Virginia and therefore lower temperature.  

NY vs AK Th069 & Th079 vs Th120 & Th122 Temperature – The locations are different 

latitude and therefore New York has higher 

temperatures in the summer. Elevation is 

similar. 

WV vs CO Th071 & Th073 vs Th050 vs Th052 Elevation and temperature – While both 

locations are at similar latitude Colorado is at a 

much higher elevation and therefore also colder.  

NY vs MT Th069 & Th079 vs Th031 & Th034 Elevation and temperature – The locations are at 

a similar latitude but Montana is at higher 

elevation and therefore lower temperature.   

 

In total we made five comparisons in order to identify gene expression differences that 

may be related to either thermal or elevational tolerance (table 4.2). It should be noted that the 

New York summer samples were used in all comparisons except for one (WV vs CO). Our 

sample sizes are small and in order to be even more stringent in our selection of upregulated 

genes, we selected genes which were upregulated in more than one geographical comparison for 

particular scrutiny; we call these ‘comparative comparisons’. Even more than that, we 

particularly focus on genes that appear in more than one comparative comparison. We also 

include the New York summer vs. New York winter comparison as an additional contrast in 

these analyses. Gene ontology (GO) terms and descriptions of gene activities were acquired 

using the Gene Ontology Consortium resources (Ashburner et al 2000; www.geneontology.org) 

and Genecards (www.genecards.org). For our GO term choices we followed Shore et al’s (2013) 

study on cold exposure in mice plus additional terms important in metabolism.  
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RESULTS 

The highest number of differentially expressed genes was found between West Virginia and 

Colorado and fewest in the comparison between seasons in New York (table 4.3). 

Table 4.3 – Number of differentially expressed genes in comparisons described in table 4.2  

Comparison Upregulated in 1 Upregulated in 2  Number of differentially expressed genes 

NYs vs NYw 36 20 56 

NY vs AK 90 104 194 

NY vs WV  31 32 63 

NY vs MT 115 123 238 

WV vs CO 252 338 590 

 

Over the 20 comparative comparisons, there were plentiful examples of genes that were 

upregulated in both comparisons (‘co-upregulated’)(table 4.4). Considering co-upregulation in 

cold or high elevation conditions, the highest number of co-upregulated genes were found in the 

high elevation populations in Colorado and Montana when compared to low elevation 

populations at similar latitudes. Similarly, considering co-upregulation in warm or low elevation 

conditions, a large number of genes were found to be co-upregulated in the low elevation 

populations compared to the high elevation populations. No co-upregulated genes were found in 

comparisons involving the three populations at the same elevation (New York, Alaska and West 

Virginia), although there were upregulations in common between Alaska (vs New York) and 

New York winter (vs New York summer) and between New York (vs Alaska) and New York 

summer (vs New York winter).  
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Table 4.4 – Co-upregulation of genes in comparative comparisons (see text) 

Comparative comparisons 
Upregulated in 1 Upregulated in both Upregulated in 2 

1 2 

Cold or high elevation      

CO(vsWV) MT(vsNY) 307 31 92 

NY(vsWV) CO(vsWV) 10 21 317 

AK(vsNY) CO(vsWV) 92 12 326 

AK(vsNY) MT(vsNY) 97 7 116 

AK(vsNY) NYw(vsNYs) 13 7 97 

MT(vsNY) NYw(vsNYs) 117 6 14 

CO(vsWV) NYw(vsNYs) 337 1 19 

NY(vsWV) MT(vsNY) 30 1 122 

NY(vsWV) NYw(vNYs) 31 0 20 

NY(vsWV) AK(vsNY) 31 0 104 

Warm or low elevation     

NY(vsMT) WV(vsCO) 92 23 229 

WV(vsNY) WV(vsCO) 10 22 230 

NY(vaAK) NY(vsMT) 71 19 96 

NY(vsAK) WV(vsCO) 77 13 239 

NY(vsMT) NYs(vsNYw) 107 8 28 

WV(vsCO) NYs(vsNYw) 245 7 29 

NY(vsAK) NYs(vsNYw) 84 6 30 

WV(vsNY) NY(vsMT) 31 1 114 

WV(vsNY) NYs(vsNYw) 32 0 36 

WV(vsNY) NY(vsAK) 32 0 90 

 

Various genes were found to share 

upregulation between several of the comparative 

comparisons from table 4.4 and are listed in table 

4.5 together with examples of sharing with the New 

York summer vs. New York winter comparison. In 

almost all cases the shared upregulation was found 

within either the cold/high elevation category or the 

warm/low elevation category; this is particularly 

true when there are three or more shared 

comparisons (figure 4.1). The most commonly 

Figure 4.1 - Number of genes showing 

upregulation for different numerical 

combinations of cold and warm 

comparative comparisons.  
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upregulated gene in the winter (ENSSTOG00000011815) was not found annotated in the 

thirteen-lined ground squirrel and no results were found using BLAST (Altschul et al 1990; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi). This gene was found upregulated in both the high 

elevation sites (MT and CO) compared to their latitudinal counterparts (NY and WV), found in 

many cold vs hot comparisons (such as AK(vsNY) and NYw(vsNY)) and in comparisons 

grouping high elevation (CO(vsWV) and low temperatures (NYw(NYs)). Two genes (CYP7B1, 

CYP26B1), members of the cytochrome P450 oxidoreductase group of enzymes were found 

upregulated in three and two cold or high elevation comparisons, respectively. The most 

commonly shared upregulated gene in warm or low elevation sites (ENSSTOG00000028432) 

relates to metabolic activity and was found upregulated in all comparisons apart from those 

involving upregulation in WV vs NY.  

Table 4.5 – Differentially expressed genes upregulated in more than one of the comparative comparisons 

from table 4.4 in addition to the comparison between New York winter and New York summer  

Gene name Symbol Description Comparison* 

ENSSTOG00000011815 NA NA  
 
 
 

 

 

 

ENSSTOG00000020259 NA Carbohydrate metabolic process  

 

 

 

ENSSTOG00000024583 CISH Degradation of this protein in involved in 

inactivation of erythropoietin receptors 
 
 
 

 
ENSSTOG00000024724 SLC16A11 Involved in hepatic lipid metabolism  

 
 

ENSSTOG00000010923 CYP7B1 Member of the cytochrome P450 group. 

Endoplasmic reticulum protein important in 

cholesterol catabolic pathway converting 

cholesterol to bile 
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ENSSTOG00000006538 ATOH8 Transcription factor that binds an E-box 

element 
 
 
 

ENSSTOG00000021006 FGF21 Stimulates the uptake of glucose in adipose 

tissue 
 

 

ENSSTOG00000007640 ID1 Inhibitor of DNA binding, may play a role 

in cell growth, senescence and 

differentiation.  

 

 

ENSSTOG00000019401 ID2 Inhibitor of DNA binding, may play a role 

in negatively regulating cell differentiation.  
 
 

ENSSTOG00000024534 NA NA  
 

ENSSTOG00000002629 KDELR3 Endoplasmic reticulum protein, required for 

normal vesicular traffic through the Golgi.  
 
 

ENSSTOG00000021197 NA NA  
 

ENSSTOG00000021898 CYP26B1 Member of the cytochrome P450 group. 

Found in the endoplasmic reticulum, a 

regulator of all-trans retinoic acid levels  

 
 

ENSSTOG00000028432 NA Involved with metabolic activity in relation 

to the mitochondrion 
 
 
 
 
 
 
 

ENSSTOG00000001482 RET Involved in numerous processes including 

cell proliferation, migration and 

differentiation.  

 
 
 
 
 
 
 

ENSSTOG00000004459 NA Component of membrane  
 
 
 

ENSSTOG00000004982 TRIM63 Regulates degradation of muscle proteins 

under amino acid starvation  
 
 
 

ENSSTOG00000008679 CRISPLD1 NA  
 
 

ENSSTOG00000020350 EIF4EBP3 Repressor of translation initiation that 

regulates EIF4E  
 
 
 

ENSSTOG00000021636 PPP1R3G Involved in the regulation of hepatic 

glycogenesis coupled to the fasting-feeding 

cycle 
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ENSSTOG00000022426 TSPAN32 Tumor suppressing gene, a member of the 

tetraspanin superfamily 
 
 
 

ENSSTOG00000022668 EVPL Component of the cornified envelope of 

keratinocytes 
 
 
 

ENSSTOG00000026217 SACS Regulator of the Hsp70 chaperone 

machinery, may regulate other ataxia 

proteins.  

 
 
 

ENSSTOG00000027573 COMT Involved in the metabolic degradation of 

catecholamine neurotransmitters and 

catechol hormones 

 
 
 

ENSSTOG00000005711 IRF7 Plays a critical role in the innate immune 

response against viruses 
 
 

ENSSTOG00000007829 TNNI2 Responsible for calcium-dependent 

regulation of striated muscle concentration.  
 
 

ENSSTOG00000028109 CPNE6 Calcium dependent, phospholipid-binding, 

may play a role in membrane trafficking  
 
 

ENSSTOG00000007820 NA Integral component of Golgi membrane, 

involved in transferase activity 
 
 

ENSSTOG00000025236 CFAP100 Cilia and flagella associated protein  
 

ENSSTOG00000001180 CD163 Expressed in monocytes and macrophages. 

May play a role in the uptake and recycling 

of iron 

 
 

ENSSTOG00000026716 VCAN Plays a central role in tissue morphogenesis 

and maintenance 
 
 

ENSSTOG00000020288 ISG15 Ubiquitin-like protein which plays a key 

role in the innate immune response to viral 

function 

 
 

ENSSTOG00000006404 PTCH2 May function as a tumor suppressor and as a 

receptor for Sonic hedgehog 
 
 

ENSSTOG00000009418 PLCD3 Activated by calcium induces the creation 

diacylglycerol and IP3 
 
 

ENSSTOG00000003382 TNC Relating to neural pathways   
 

ENSSTOG00000028862 EEF1A2 Translation elongation factor essential in 

protein synthesis 
 
 

ENSSTOG00000003590 ROPN1L Only described function in sperm tails   
 

ENSSTOG00000027370 GADD45G Responds to environmental stresses   
 

ENSSTOG00000011601  Involved in sodium ion transport across 

membranes  
 
 

ENSSTOG00000024424 NA Involved with exocytosis   
 

ENSSTOG00000003422 CAPN9 Calcium binding. Implicated in 

neurodegenerative processes as their 

activation can be triggered by calcium 

influx and oxidative stress 
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ENSSTOG00000000900 SERPINA6 Transport protein for glucocorticoids and 

progestins in the blood 
 
 

*Color codes for comparisons    

 NY(vsWV) & CO(vsWV)  WV(vsNY) & WV(vsCO) 

 NY(vsWV) & MT(vsNY)  WV(vsNY) & NY(vsMT) 

 AK(vsNY) & CO(vsWV)  NY(vsAK) & WV(vsCO) 

 CO(vsWV) & NYw(vsNYs)    WV(vsCO) & NYs(vsNYw) 

 AK(vsNY) & MT(vsNY)  NY(vsAK) & NY(vsMT) 

 AK(vsNY) & NYw(vsNYs)  NY(vsAK) & NYs(vsNYw) 

 MT(vsNY) & CO(vsWV)  NY(vsMT) & WV(vsCO) 

 MT(vsNY) & NYw(vsNYs)    NY(vsMT) & NYs(vsNYw) 

 NYw(vsNYs)    NYs(vsNYw) 

 

Data relating to frequently represented GO-terms are summarized in table 4.6. More 

genes and hits were found associated with the GO terms Oxidoreductase activity and 

Endoplasmic reticulum membrane when there is co-upregulation in cold or high elevation 

populations while the GO term Mitochondrion was more commonly encountered when there was 

co-upregulation in warmer or lower elevation populations (table 4.6; tables S4.1- S4.18). All four 

genes associated with Iron ion binding in warm or low elevation populations were found 

upregulated in New York summer compared to New York winter. For cold or high elevation 

populations co-upregulated genes associated with Iron ion binding always also showed 

Oxidoreductase activity. No co-upregulated genes in warm or low elevation populations were 

associated with more than one of the target GO terms. The GO term Mitochondrion was 

associated with at least one co-upregulated genes in all of the warm or low elevation comparative 

comparisons in table 4.4. In contrast, Mitochondrion was only associated with two co-

upregulated genes over all the cold or high elevation comparative comparisons in table 4.4 in one 

case associated with Oxidoreductase activity (in the CO(vsWV) & MT(vsNY) comparison) and 

in the other associated with Carbohydrate metabolic processes (in the CO(vsWV) & NY(vsWV) 

comparison). Five of the hits for Oxidoreductase activity seen in the cold or high elevation 

comparative comparisons was in the comparison CO(vsWV) & MT(vsNY), four of those hits 

were due to genes that were only upregulated in this comparison and three of those were also 
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associated with Lipid metabolic processes. Twelve out of 38 total hits in cold or high elevation 

populations were due to the CO(vsWV) & MT(vsNY) comparative comparison. For the warm or 

low elevation populations the NYs(vsNYw) accounted for nine out of 30 hits.   

Table 4.6 – Frequently represented GO-terms in differentially expressed genes, co-upregulated in 

comparative comparisons (table 4.4), identifying numbers of genes involved and also number of hits 

which includes examples where the same gene is involved in multiple comparisons 

GO Term 

Upregulated in cold or high 

elevation populations 

Upregulated in warm or low 

elevation populations 

Number of 

genes 

Number of 

hits 

Number of 

genes 

Number of 

hits 

Endoplasmic reticulum 

membrane 

3 8 0 0 

Iron ion binding 2 5 4 4 

Oxidoreductase activity      8 11 0 0 

Carbohydrate metabolic process 2 5 3 3 

Lipid metabolic process 5 7 3 4 

Mitochondrion 2 2 8 19 

 

DISCUSSION 

There are reasons for caution with our study given low sample sizes (requiring reuse of some 

samples for different comparisons) and the fact that we have not been able to support our data 

from field-collected specimens by controlled studies in the laboratory. However, despite these 

limitations, our wide geographic comparisons in T.hudsonicus are particularly unusual, 

interesting and informative in relationship to the role of temperature and elevation in differential 

gene expression in wild organisms. Also, we have very good sequencing coverage for each 

sample with a large number of reads aligning to the reference genome (mostly around 15 million 

reads per sample), allowing us to make the very best of the samples that we do have for 

analyzing gene expression.  

Based on the frequency of GO terms in upregulated genes, overall we can see an increase 

in oxidative metabolism in cold or higher elevation populations. We see in these areas relatively 
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more upregulation in genes involved with lipid metabolic reactions, cholesterol and bile transport 

and metabolism. The comparative comparison that contributes most to this result is CO(vsWV) 

and MT(vsNY). However, there is also a strong tendency in the warm or low elevation 

populations for the upregulation of genes related to the mitochondrion.  

In interpreting our results, while there is a common trend in active mammals of an 

increase in metabolic activity in cold conditions (e.g. Merritt 1986; Wang, Zhang & Wang 2006) 

it should not necessarily be assumed to be the case for this species. T.hudsonicus has been found 

to lower its body temperature in winter compared to summer, and outside of the nest compared 

to inside the nest (Pauls 1979). Additionally, in contrast to what has been found in many 

mammals, the field metabolic rate of T.hudsonicus is much lower in the winter than it is in the 

summer, indicating that the species is able to impressively minimize its energy expenditure 

during cold conditions (Humphries et al 2005; Hollerman, White & Feist 1982; Feist & White 

1989). The species has been found to behaviorally reduce its energy requirements by basing 

nesting choices on thermal needs (individuals have multiple nests in their territory, they can be 

grass nests in trees, hollows in trees or burrows; Guillemette et al 2009) and by minimizing 

activity during winter compared to summer when activity is again reduced at temperatures above 

20C (Pauls 1978; Ferron, Oullet & Lemay 1985).  

That being said when we looked at comparative comparisons involving latitudinal 

differences but not elevational differences we did not see upregulation of shared genes. This 

could be due to the fact that while there is a considerable difference in the temperatures in these 

areas the northern location does not reach temperatures that would make it difficult to 

thermoregulate. Moreover, while temperature can be presumed to be higher further south, 

endotherms have been shown to alter their behavior to minimize time spent active during the 
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hottest period of the day such as having a rest phase during midday (Váczi, Koósz & Altbäcker 

2006). T.hudsonicus has been shown to have the most biphasic activity pattern during the 

summer (Layne 1954) but has additionally been seen to reduce its activity when temperatures go 

beyond 20C (Ferron, Oullet & Lemay 1985) indicating that behavior thermoregulation may be a 

factor in our results.  

With this in mind two suggestions can be made to explain the data.  

First of all it seems that metabolic responses to elevation are pronounced, although they 

may be confounded with temperature. The two comparisons showing the greatest number of 

differentially expressed genes are the NY vs MT and WV vs CO elevational comparisons. 

Additionally when we look at the comparative comparisons we find that most shared genes are 

found between MT(vsNY) and CO(vsWV) in the cold or high elevation populations and between 

WV(vsCO) and NY(vsMT) in the warm or low elevation populations. Species living at high 

elevation are faced with both lower temperatures than in nearby low elevation and reduced 

oxygen levels. If cold is a stressor endotherms will increase metabolic heat production to 

maintain a constant body temperature. This requires increased usage of oxygen due to usage of 

oxidative pathways. While work on humans has shown that acclimation to elevation is achieved 

through increased carbohydrate utilization (Marconi, Marzorati & Cerretelli 2006; Brooks et al 

1991) perhaps to enhance O2 economy rather than maximize aerobic capacity (Storz, Scott & 

Cheviron 2010), research on deer mice (Peromyscus maniculatus) has shown a shift towards the 

use of lipids instead of carbohydrates as fuels (Cheviron et al 2012). Our findings suggest that 

T.hudsonicus may have similar adaptive responses to elevational acclimation as P.maniculatus. 

We found the most upregulation in genes involved with oxidoreductase and lipid metabolism 

suggesting that the species is maximizing aerobic capacity rather than just O2 economy.  
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Secondly, the increase in mitochondrial activity observed in all warm or low elevation 

comparisons could be due to the increase activity of T.hudsonicus in the summer months 

compared to the winter months. It might additionally be that rather than upregulation of these 

genes in warm and low elevation populations there is downregulation in cold and high elevation 

populations. If that is the case we might be seeing indicators of the lowered activity, reduced 

body temperature and lowered field metabolic rate in colder environments. Moreover, genes 

relating to iron binding are differentially expressed in winter vs summer in NY, again 

upregulated in summer (or downregulated in winter). Given the importance of iron ion oxygen 

transport this again could be an indicator of difference in metabolic activity between cold and 

warm environments.  

Overall our data supports adaptive response to elevation based on shift to lipid 

metabolism in response to oxidative stress and hints at a possible change in metabolic activity 

between colder and warmer areas/seasons.  
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SUPPLEMENTARY MATERIAL 4 

Table S4.1 - Over expressed genes in both AK and MT (NYvsMT and NYvsAK).  

Gene Name Description Gene cards  GO Terms 

ENSSTOG00000011815 Missing Missing    Calcium ion binding 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

cell adhesion 

 Extracellular exosome 

 Cytoplasm 

 Corticospinal tract morphogenesis 

ENSSTOG00000015287 CXCL13 C-X-C motif 

chemokine ligand 

13  

B lymphocyte 

chemoattractant.  

May function in the homing 

of B lymphocytes to 

follicles.  

 

Diseases associated with the 

gene include 

angoioimmunoblastic t-cell 

lymphoma and burkitt 

lymphoma  

 Chemokine activity 

 Immune response 

 Chemotaxis 

 Cytokine activity 

 Extracellular space 

 Extracellular region 

 Defense response to bacterium 

 Protein heterodimerization activity 

 Cell surface receptor signaling pathway 

 Cell-cell signaling 

 B cell chemotaxis 

 Positive regulation of cytosolic calcium ion 

concentration 

 Heparin binding 

 Receptor agonist activity 

 CXCR3 chemokine receptor binding 

 Positive regulation of T cell chemotaxis 

 CCR10 chemokine receptor binding 
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 Fibroblast growth factor binding 

 CXCR5 chemokine receptor binding 

 Endothelial cell chemotaxis to fibroblast 

growth factor 

 Negative regulation of endothelial cell 

chemotaxis to fibroblast growth factor 

 Activation of GTPase activity 

 Positive regulation of integrin activation 

 Positive regulation of cell-cell adhesion 

mediated by integrin 

 Lymph node development 

 Lymphocyte chemotaxis across high 

endothelial venule 

 B cell chemotaxis across high endothelial 

venule 

 Cell chemotaxis 

ENSSTOG00000020259 Missing Missing 
 

 Hydrolase activity, hydrolyzing O-glycosyl 

compounds 

 Carbohydrate metabolic process 

ENSSTOG00000021006 FGF21 fibroblast growth 

factor 21  

Member of the fibroblast 

growth factor family. FGF 

family members possess 

broad mitogenic and cell 

survival activities.  

This protein is a secreted 

endocrine factor that 

functions as a major 

metabolic regulator.  

The encoded protein 

stimulates the uptake of 

glucose in adipose tissue.  

 Fibroblast growth factor receptor signaling 

pathway 

 Growth factor activity 

 Fibroblast growth factor receptor binding 

 Receptor binding 

 Extracellular region 

 Protein binding 

 Positive regulation of ERK1 and ERK2 

cascade 

 Positive regulation of glucose import 

 Positive regulation of cell proliferation 

 Positive regulation of MAPKKK cascade by 

fibroblast growth factor receptor signaling 

pathway 



132 

 

ENSSTOG00000022144 ARNTL aryl hydrocarbon 

receptor nuclear 

translocator like  

The protein encoded by this 

gene is a basic helix-loop-

helix protein that forms a 

heterodimer with CLOCK. 

This heterodimer binds E-

box enhancer elements 

upstreams of Period (PER1, 

PER2, PER3) and 

Cryptochrome (CRY1, 

CRY2) genes and activates 

transcription of these genes.  

Defects in this gene have 

been linked to infertility, 

proglems with 

gluconeogenesis and 

lipogenesis, and altered sleep 

patterns.  

 

Among its related pathways 

are metabolism and 

regulation of lipid 

metabolism by Peroxisome 

proliferation-activated 

receptor alpha (PPARalpha).   

 DNA binding 

 Transcription factor complex 

 Transcription from RNA polymerase II 

promoter 

 Transcription factor activity, sequence-

specific DNA binding 

 Transcription, DNA-templated 

 Cytoplasm 

 Protein dimerization activity 

 Regulation of transcription, DNA-templated 

 Nucleus 

 Protein binding 

 Positive regulation of transcription from RNA 

polymerase II promoter 

 Positive regulation of transcription, DNA-

templated 

 Nucleoplasm 

 Intracellular membrane-bounded organelle 

 Aryl hydrocarbon receptor binding 

 Circadian regulation of gene expression 

 Regulation of hair cycle 

 Response to redox state 

 Hsp90 protein binding 

 Repressing transcription factor binding 

 E-box binding 

ENSSTOG00000024583 CISH cytokine inducible 

SH2 containing 

protein  

The expression of this gene 

can be induced by IL2, IL3, 

GM-CSF and EPO in 

hematopoietic cells . 

Proteasome-mediated 

degradation of this protein 

has been shown to be 

 Intracellular 

 Protein ubiquitination 

 Intracellular signal transduction  

 Protein binding 

 Plasma membrane 

 Protein kinase C-activating G-protein coupled 

receptor signaling pathway 
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involved in the inactivation 

of the erythropoietin 

receptors.  

ENSSTOG00000024724 SLC16A11 solute carrier 

family 16 member 

11  

Probably involved in hepatic 

lipid metabolism: 

overexpression results in an 

increase of triacylglycerol 

(TAG) levels, small increase 

in intracellular 

diacylglycerols and 

decreases in 

lysophosphatidycholine, 

cholesterol ester and 

sphingomyelin lipids.  

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Endoplasmic reticulum membrane 

 Lipid metabolic process 
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Table S4.2 - Over expressed genes in both CO and MT (NYvsMT and COvsWV).  

Gene Name Description Gene cards GO Terms  

ENSSTOG00000002703 MYO7A myosin VIIA  This gene encodes an 

unconventional myosin with 

a very short tail, defect 

causes Usher syndrome 

(hearing loss, night 

blindness and loss of 

peripheral vision).  

 Myosin complex 

 ATP binding 

 Actin binding 

 Motor activity 

 Nucleotide binding 

 Cytoskeleton 

 Cytoplasm 

 Cytosol 

 Protein binding 

 Actin filament binding 

 Sensory perception of sound 

 Actin filament-based movement 

 Photoreceptor outer segment 

 Visual perception 

 Synapse 

 Calmodulin binding 

 Lysosomal membrane 

 Photoreceptor inner segment 

 Spectrin binding 

 Lysosome organization 

 Microfilament motor activity 

 Sensory perception of light stimulus 

 Equilibrioception 

 Intracellular protein transport 

 Protein domain specific binding 

 Stereocilium 

 Inner ear development 

 Inner ear morphogenesis 

 Apical plasma membrane 

 Phagolysosome assembly 

 Photoreceptor connecting cilium 
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 Cell projection organization 

 Phagocytosis 

 Innear ear receptor stereocilium organization 

 Auditory receptor cell stereocilium 

organization 

 Melanosome 

 Sensory perception 

 Post-embryonic organ morphogenesis 

 Mechanoreceptor differentiation 

 Inner ear receptor cell differentiation 

 Auditory receptor cell differentiation 

 Pigment granule localization 

 Pigment granule transport 

ENSSTOG00000003382 TNC tenascin C  It is implicated in guidance 

of migrating neurons as well 

as axons during 

development, synaptic 

plasticity, and neuronal 

regeneration.  

 Extracellular matrix 

 Cell adhesion 

 Regulation of cell proliferation 

 Extracellular space 

 Membrane 

 Focal adhesion 

 Response to wounding 

 Syndecan binding 

 Osteoblast differentiation 

 Extracellular region 

 Positive regulation of gene expression 

 Positive regulation of cell proliferation 

 Basement membrane 

 Neuromuscular junction development 

 Interstitital matrix 

 Prostate gland epithelium morphogenesis 

 Peripheral nervous system axon regeneration 

 Mesenchymal-epithelial cell signaling 

involved in prostate gland development 
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ENSSTOG00000003707 POLA2 polymerase 

(DNA) alpha 2, 

accessory subunit  

May play an essential role at 

the early stages of 

chromosomal DNA 

replication by coupling the 

polymerase alpha/primase 

complex to the cellular 

replication machinery.  

 

Among its related pathways 

are Metabolism and Cell 

cycle.  

 DNA binding 

 DNA biosynthetic process 

 DNA-directed DNA polymerase activity 

 DNA replication 

 Nucleus 

 Cytoplasm 

 Neucleoplasm 

 Protein heterodimerization activity 

 Protein binding 

 Protein import into nucleus, translocation 

 Alpha DNA polymerase: primase complex 

ENSSTOG00000003970 Missing Missing   Extracellular exosome 

 Cognition 

ENSSTOG00000004186 EXOC3L4 exocyst complex 

component 3 like 

4  

  Exocyst 

 Exocytosis 

ENSSTOG00000004270 Missing Missing   Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Oxidoreductase activity, acting on paired 

donors, with oxidation of a pair of donors 

resulting in the reduction of molecular 

oxygen to two molecules of water 

 Fatty acid biosynthetic process 

 Lipid metabolic process 

ENSSTOG00000004294 CCSER2 coiled-coil serine 

rich protein 2] 

  Microtubule cytoskeleton 

 Microtubule binding 

 Microtubule bundle formation 

ENSSTOG00000004984 Missing Missing   Intracellular 

 Positive regulation of GTPase activity 
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 Guanyl-nucleotide exchange factor activity 

 Small GTPase mediated signal transduction 

ENSSTOG00000005853 Missing Missing   Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Oxidoreductase activity, acting on paired 

donors, with oxidation of a pair of donors 

resulting in the reduction of molecular 

oxygen to two molecules of water 

 Fatty acid biosynthetic process 

 Lipid metabolic process 

ENSSTOG00000007105 FNDC1 fibronectin type III 

domain containing 

1  

  Nucleoplasm 

ENSSTOG00000008137 COL19A1 collagen type XIX 

alpha 1 chain  

The function of this collagen 

are not known but others in 

the family are found in 

association with fibril-

forming collagens such as 

type I and II, and serve to 

maintain the integrity of the 

extracellular matrix.  

 Proteinaceous extracellular matrix 

 Extracellular matrix organization 

 Skeletal muscle tissue development 

ENSSTOG00000008633 CADPS2 calcium dependent 

secretion activator 

2  

Calcium-binding protein 

involved in exocytosis of 

vesicles filled with 

neurotransmitters and 

neuropeptides. Probably acts 

upstream of fusion in the 

biogenesis or maintenance of 

mature secretory vesicles. 

Regulates neurotrophin 

 Dense core granule exocytosis 

 Synaptic vesicle exocytosis 

 Cytosol 

 Nucleoplasm 

 Intracellular membrane-bounded organelle 

 Protein binding 

 Postsynaptic membrane 

 Cytoplasmic, membrane-bounded vesicle 

 Cytoplastic vesicle 
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release from granule cells 

leading to regulate cell 

differentiation and survival 

during cerebellar 

development. 

 Presynaptic membrane 

 Cellular response to starvation 

 Positive regulation of exocytosis 

 Synaptic vesicle priming 

 Presynapse 

 Synapse 

ENSSTOG00000010923 CYP7B1 cytochrome P450 

family 7 subfamily 

B member 1  

The cytochrome P450 

proteins are 

monooxygenases which 

catalyze many reactions 

involved in drug metabolism 

and synthesis of cholesterol, 

steroids and other lipids. 

This endoplasmic reticulum 

membrane protein catalyzes 

the first reaction in the 

cholesterol catabolic 

pathway of extrahepatic 

tissues, which converts 

cholesterol to bile acids. 

This enzyme likely plays a 

minor role in total bile acid 

synthesis, but may also be 

involved in the development 

of atherosclerosis, 

neurosteroid metabolism and 

sex hormone synthesis 

 Iron ion binding 

 Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Metal ion binding 

 Heme binding 

 Monooxygenase activity 

 Endoplastic reticulum membrane 

 Endoplasmic reticulum 

 Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen 

 Positive regulation of epithelial cell 

proliferation 

 Bile acid biosynthetic process 

 Prostate gland epithelium morphogenesis 

 Negative regulation of intracellular estrogen 

receptor signaling pathway 

 Oxysterol 7-alpha-hydroxylase activity  

ENSSTOG00000011031 CSAD cysteine sulfinic 

acid decarboxylase  

This gene encodes a member 

of the group 2 decarboxylase 

family. A similar protein in 

rodents plays a role in 

multiple biological processes 

as the rate-limiting enzyme 

 Carboxy-lyase activity 

 Pyridoxal phosphate binding 

 Lyase activity 

 Carboxylic acid metabolic process 

 Catalytic activity 

 Taurine biosynthetic process 
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in taurine biosynthesis, 

catalyzing the 

decarboxylation of 

cysteinesulfinate to 

hypotaurine 

ENSSTOG00000011808 Missing Missing   Integral component of membrane 

 Membrane 

 Glucuronosyltransferase activity 

 Transferase activity, transferring hexosyl 

groups 

 Metabolic process 

 Transferase activity, transferring glycosyl 

groups 

 Transferase activity 

ENSSTOG00000011815 

 

Missing Missing   Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Cell adhesion 

 Calcium ion binding 

 Extracellular exosome 

 Cytoplasm 

 Corticospinal tract morphogenesis 

ENSSTOG00000012666 Missing Missing   Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Oxidoreductase activity, acting on paired 

donors, with oxidation of a pair of donors 

resulting in the reduction of molecular 

oxygen to two molecules of water 

 Fatty acid biosynthetic process 
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 Lipid metabolic process 

ENSSTOG00000012740 Missing Missing   Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Oxidoreductase activity, acting on paired 

donors, with oxidation of a pair of donors 

resulting in the reduction of molecular 

oxygen to two molecules of water 

 Fatty acid biosynthetic process 

 Lipid metabolic process 

ENSSTOG00000014440 SPINT2 serine peptidase 

inhibitor, Kunitz 

type, 2  

The protein inhibits HGF 

activator which prevents the 

formation of active 

hepatocyte growth factor. 

This gene is a putative tumor 

suppressor, and mutations in 

this gene result in congenital 

sodium diarrhea 

 Integral component of membrane 

 Membrane 

 Serine-type endopeptidase inhibitor activity 

 Negative regulation of endopeptidase activity 

 Cytoplasm 

 Negative regulation of cell-cell adhesion 

 Negative regulation of cell motility 

 Establishment or maintenance of cell polarity 

 Neural tube closure 

 Basement membrane organization 

 Epithelial cell morphogenesis involved in 

placental branching  

ENSSTOG00000014490 AS3MT arsenite 

methyltransferase  

AS3MT catalyzes the 

transfer of a methyl group 

from S-adenosyl-L-

methionine (AdoMet) to 

trivalent arsenical and may 

play a role in arsenic 

metabolism 

 Arsenite methyltransferase activity 

 Methylation 

 Cytosol 

 Mitochondrion 

ENSSTOG00000019453 Missing Missing   Integral component of membrane 

 Membrane 

 Glucuronosyltransferase activity 
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 Transferase activity, transferring hexosyl 

groups 

 Metabolic process 

 Transferase activity, transferring glycosyl 

groups 

 Transferase activity 

ENSSTOG00000021006 FGF21 fibroblast growth 

factor 21  

Theis gene encodes a 

member of the fibroblast 

growth factor (FGF) family. 

FGF family members 

possess broad mitogenic and 

cell survival activities and 

are involved in a variety of 

biological processes. This 

protein is a secreted 

endocrine factor that 

functions as a major 

metabolic regulator. The 

encoded protein stimulates 

the uptake of glucose in 

adipose tissue 

 Fibroblast growth factor receptor signaling 

pathway 

 Growth factor activity 

 Fibroblast growth factor receptor binding 

 Receptor binding 

 Extracellular region 

 Protein binding 

 Positive regulation of ERK1 and ERK2 

cascade 

 Positive regulation of glucose import 

 Positive regulation of cell proliferation 

 Positive regulation of MAPKKK cascade by 

fibroblast growth factor receptor signaling 

pathway 

ENSSTOG00000021833 NRG1 neuregulin 1  The protein encoded by this 

gene is a membrane 

glycoprotein that mediates 

cell-cell signaling and plays 

a critical role in the growth 

and development of multiple 

organ systems. 

 Integral component of membrane 

 Membrane 

 Embryo development 

 Receptor binding 

 Positive regulation of cell proliferation 

 Negative regulation of transcription, DNA-

templated 

 Activation of MAPK activity 

 Integrin binding 

 Transcription cofactor activity 

 Activation of protein kinase B activity 
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 Positive regulation of protein targeting to 

mitochondrion 

 Negative regultaion of secretion 

 ErbB-3 class receptor binding 

 Regulation of protein heterodimerization 

activity 

 ERBB signaling pathway 

 Endocardial cell differentiation 

 Ventricular trabecula myocardium 

morphogenesis 

 Cardiac muscle cell myoblast differentiation 

 Cytoplasm 

 Nucleus 

 Extracellular region 

 External side of plasma membrane 

 Plasma membrane 

 Integral component of plasma membrane 

 Protein binding 

 Postitive regulation of transcription from 

RNA polymerase II promoter 

 Synapse assembly 

 Peripheral nervous system development 

 Cell migration 

 MAPK cascade 

 Postitive regulation of gene expression 

 Nervous system development 

 Axon 

 Brain development 

 Positive regulation of Ras protein signal 

transduction 

 Neurogenesis 

 Cell morphogenesis 

 Startle response 

 Cardiac conduction system development 
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 ErbB-2 class receptor binding 

 Heart development 

 Muscle organ development 

 Locomotory behavior 

 Axon ensheathment 

 Glial cell differentiation 

 Positive regulation of phosphatidylinositol 3-

kinase signaling 

 Glial cell fate commitment 

 Chemorepulsion involved in interneuron 

migration from the subpallium to the cortex 

 Dendrite 

 Axolemma 

 Neuromuscular junction 

 Postive regulation of myelination 

 Negative regulation of protein catabolic 

process 

 Cell body 

 Synapse 

 Neurotransmitter receptor metabolic process 

 Chemorepellent activity 

 Regulation of cell differentiation 

 Positive regulation of axon extension 

 Positive regulation of protein kinase activity 

 Neuron fate commitment 

 Oligodendrocyte differentiation 

 Cardio muscle tissue development 

 Positive regulation of peptidyl-tyrosine 

phosphorylation 

 Positive regulation of protein kinase B 

signaling 

 Positive regulation of dendritic spine 

development 
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 Positive regulation of calcineurin-NFAT 

signling cascade 

 Positive regulation of protein localization to 

cell surface 

 Negative regulation of neuron migration 

 Positive regulation of cardiac muscle cell 

differentiation 

ENSSTOG00000024724 SLC16A11 solute carrier 

family 16 member 

11  

Probably involved in hepatic 

lipid metabolism: 

overexpression results in an 

increase of 

triacylglycerol(TAG) levels, 

small increases in 

intracellular diacylglycerols 

and decreases in 

lysophosphatidylcholine, 

cholesterol ester and 

sphingomyelin lipids 

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Endoplasmic reticulum membrane 

 Lipid metabolic process 

ENSSTOG00000024978 Missing Missing   Transferase activity, transferring hexosyl 

groups 

 Integral component of membrane 

 Membrane 

 Glucuronosyltransferase activity 

 Metabolic process 

 Transferase activity, transferring glycosyl 

groups 

 Transferase activity 

ENSSTOG00000025261 ANKRD23 ankyrin repeat 

domain 23  

The protein is localized to 

the nucleus, functioning as a 

transcriptional regulator. 

Expression of this protein is 

 Cytoplasm 

 Nucleoplasm 

 Actin cytoskeleton 

 Titin binding 
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induced during recovery 

following starvation 

ENSSTOG00000026220 Missing Missing   Intracellular 

 Positive regulation of GTPase activity 

 Guanyl-nucleotide exchange factor activity 

 Small GTPase mediated signal transduction 

ENSSTOG00000026222 Missing Missing   Integral component of membrane 

 Membrane 

 Glucuronosyltransferase activity 

 Transferase activity, transferring hexosyl 

groups 

 Metabolic process 

 Transferase activity, transferring glycosyl 

groups 

 Transferase activity 

ENSSTOG00000028144 Missing Missing   Transferase activity, transferring hexosyl 

groups 

 Metabolic process 

ENSSTOG00000028862 EEF1A2 eukaryotic 

translation 

elongation factor 1 

alpha 2  

This gene encodes an 

isoform of the alpha subunit 

of the elongation factor-1 

complex, which is 

responsible for the 

enzymatic delivery of 

aminoacyl tRNAs to the 

ribosome 

 GTPase activity 

 Translational elongation 

 Translation elongation factor activity 

 GTP binding 

 Nucleotide binding 

 Cytoplasm 

 Protein binding 

 Protein kinase binding 

 Positive regulation of lipid kinase activity 

 Eukrayotic translation elongation factor 1 

complex 

 Positive regulation of apoptotic process 

 Myelin sheath 

ENSSTOG00000028954 Missing Missing   Integral component of membrane 

 Membrane 
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 Glucuronosyltransferase activity 

 Transferase activity, transferring hexosyl 

groups 

 Metabolic process 

 Transferase activity, transferring glycosyl 

groups 

 Transferase activity 
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Table S4.3 - Over expressed genes in both NY and WV (NYvsMT and COvsWV).  

Gene Name Description Gene Cards GO Terms 

ENSSTOG00000001477 LPL lipoprotein lipase  Expressed in heart, muscle 

and adipose tissue.  

 

Primary function is the 

hydrolysis of triglycerides of 

circulating chylomicrons and 

very low density lipoproteins 

 Membrane 

 Plasma membrane 

 Chylomicron 

 Very-low-density lipoprotein particle 

 Anchored component of membrane 

 Response to glucose 

 Lipoprotein lipase activity 

 Heparin binding 

 Carboxylic ester hydrolase activity 

 Lipid catabolic process 

 Lipid metabolic process 

 Hydrolase activity 

 Extracellular region 

 Fatty acid biosynthetic process 

 Extracellular space 

 Protein binding 

 Extracellular exosome 

 Receptor binding 

 Positive regulation of sequestering of 

triglyceride 

 Triglyceride catabolic process 

 Cholesterol homeostasis 

 Positive regulation of chemokine secretion 

 Apolipoprotein binding 

 Triglyceride homeostasis 

 Very-low-density lipoprotein particle 

remodeling 

 Positive regulation of cholesterol storage 

 Triglyceride lipase activity 

 Cell surface 
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 Positive regulation of macrophage derived 

foam cell differentiation  

ENSSTOG00000001482 RET ret proto-oncogene Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine kinases, 

which are cell-surface 

molecules that transduce 

signals for cell growth and 

differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion mediated 

by integrin 

 Cellular response to reinoic acid 

 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 

 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 

 Nervous system development 
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 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine phosphorylation 

of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000002475 Missing Missing   Membrane 

 Protein binding 

 Identical protein binding 

 Synapse 

 Neuron projection 

 NMDA glutamate receptor activity 

 NMDA selective glutamate receptor complex 

 Neuronal cell body 

 Glycine binding 

 Response to ethanol 

 Postsynaptic membrane 

 Calcium channel activity 

 Calcium ion transport 

 Dendrite development 

 Prepulse inhibition 

ENSSTOG00000003062 TAT tyrosine 

aminotransferase  

Encodes a mitochondrial 

protein which is present in 

the liver and catalyzes the 

 Aromatic amino acid family catabolic 

process 

 Transaminase activity 
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conversion of L-tyrosine into 

p-hydroxyphenylpyruvate 

 L-tyrosine:2-oxoglutarate aminotransferase 

activity 

 Aromatic amino acid family metabolic 

process 

 Cellular amino acid metabolic process 

 Biosynthetic process 

 Pyridoxal phosphate binding 

 Catalytic activity 

 Tyrosine catabolic process 

 2-oxoglutarate metabolic process 

 Gluatamate metabolic process 

 Mitochondrion 

ENSSTOG00000004136 IL1RL2 interleukin 1 

receptor like 2  

Receptor for interleukin-36. 

The IL-36 signaling system 

is thought to be present in 

epithelial barriers and to take 

part in local inflammatory 

responses.  

 Integral component of membrane 

 Membrane 

 Interleukin-1-mediated signaling pathway 

 Interleukin-1, Type I, activating receptor 

activity 

 Interleukin-1 receptor activity 

 Cytokine-mediated signaling pathway 

 Signal transduction 

 Positive regulation of interleukin-6 

production 

 Positive regulation of T cell differentiation 

 Regulation of inflammatory response 

ENSSTOG00000004982 TRIM63 tripartite motif 

containing 63  

This protein plays an 

important role in the atrophy 

of skeletal and cardiac 

muscle and is required for 

the degradation of myosin 

heavy chain proteins, 

myosin light chain, myosin 

binding protein, and for 

 Intracellular 

 Metal ion binding 

 Zinc ion binding 

 Cytoplasm 

 Protein binding 

 Titin binding 
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muscle-type creatine 

kinases.  

ENSSTOG00000005266 PNPLA2 patatin like 

phospholipase 

domain containing 

2  

This gene encodes an 

enzyme which catalyzes the 

first step in the hydrolysis of 

triglycerides in adipose 

tissue.  

 Lipid metabolic process 

 Metabolic process 

 Lipid particle 

 Positive regulation of triglyceride catabolic 

process 

 Negative regulation of sequestering 

triglyceride 

 Protein binding 

 Cytosol 

 Lipid storage 

 Triglyceride catabolic process 

 Triglyceride lipase activity 

 Lipid particle organization 

ENSSTOG00000008679 CRISPLD1 cysteine rich 

secretory protein 

LCCL domain 

containing 1  

  Extracellular region 

 Extracellular exosome 

 Face morphogenesis 

ENSSTOG00000009371 ACE angiotensin I 

converting 

enzyme  

Converts angiotensin I to 

angiotensin II by release of 

the terminal His-Leu, this 

results in an increase of the 

vasoconstrictor activity of 

angiotensin. Also able to 

inactivate bradykinin, a 

potent vasodilator. Has also 

a glycosidase activity which 

releases GPI-anchored 

proteins from the membrane 

by cleaving the mannose 

linkage in the GPI moiety 

 Integral component of membrane 

 Membrane 

 Metal ion binding 

 Peptidyl-dipeptidase activity 

 Carboxypeptidase activity 

 Peptidase activity 

 Hydrolase activity 

 Metallopeptidase activity 

 Proteolysis 

 Plasma membrane 

 Extracellular space 

 Zinc ion binding 

 External side of plasma membrane 
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 Extracellular exosome 

 Endosome 

 Lysosome 

 Peptide catabolic process 

 Drug binding 

 Endopeptidase activity 

 Tripeptidyl-peptidase activity 

 Mitogen-activated protein kinase binding 

 Kidney development 

 Arachidnoic acid secretion 

 Chloride ion binding 

 Exopeptidease activity 

 Beta-amyloid metabolic process 

 Regulation of systemic arterial blood 

pressure by renin-angiotensin 

 Mitogen-activated protein kinase kinase 

binding 

 Bradykinin receptor binding 

 Hormone catabolic process 

 Regulation of angiotensis metabolic process 

 Metallodipeptidase activity 

 Cytoplasm 

 Spermatogenesis 

 Protein binding 

 Regulation of blood pressure 

 Negative regulation of gene expression 

 Posttranscriptional regulation of gene 

expression 

 Negative regulation of protein binding 

 Positive regulation of protein binding 

 Positive regulation of protein tyrosine kinase 

activity 

 Heart contraction 
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 Positive regulation of systemic arterial blood 

pressure 

 Positive regulation of peptidyl-tyrosine 

autophophorylation 

 Regulation of hematopoietic stem cell 

proliferation 

 Neutrophil mediated immunity 

 Cell proliferation in bone marrow 

 Negative regulation of gap junction assembly 

 Positive regulation of peptidyl-cysteine S-

nitrosylation 

ENSSTOG00000010457 SUSD4 sushi domain 

containing 4  

Acts as complement 

inhibitor by disrupting the 

formation of the classical C3 

convertase. Isoform 3 

inhibits the classical 

complement pathway, while 

membrane-bound isoform 1 

inhibits deposition of C3b 

via both the classical and 

alternative complement 

pathways. 

 Integral component of membrane 

 Membrane 

 Regulation of complement activation 

ENSSTOG00000012413 IMPA2 inositol 

monophosphatase 

2  

This locus encodes an 

inositol monophosphatase. 

The encoded protein 

catalyzes the 

dephosphoylration of 

inositol monophosphate and 

plays an important role in 

phosphatidylinositol 

signaling. This locus may be 

associated with 

 Phosphatidylinositol phosphorylation 

 Cytoplasm 

 Protein binding 

 Protein homodimereization activity 

 Inositol monophosphate 1-phosphatase 

activity 

 Inositol phosphate dephosphorylation 
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susceptibility to bipolar 

disorder. 

ENSSTOG00000014794 CTCFL CCCTC-binding 

factor like  

Testis-specific DNA binding 

protein responsible for 

insulator function, nuclear 

architecture and 

transcriptional control, 

which probably acts by 

recruiting epigenetic 

chromatin modifiers. Plays a 

key role in gene imprinting 

in male germline, by 

participating in the 

establishment of differential 

methylation at the IGF2/H19 

imprinted control region 

(ICR) 

 Metal ion binding 

 Nucleic acid binding 

 Cytoplasm 

 Nucleus 

 DNA binding 

 RNA polymerase II core promoter proximal 

region sequence-specific DNA binding 

 Protein binding 

 Positive regulation of transcription from 

RNA polymerase II promoter 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transcription regulatory region DNA binding 

 Transcriptional activator activity, RNA 

polymerase II core promoter proximal region 

sequence-specific binding 

 Regulation of histone H3-K4 methylation 

 Sequence-specific DNA binding 

 Histone binding 

 Regulation of gene expression by genetic 

imprinting 

 Histone methylation 

 DNA methylation involved in gamete 

generation 

ENSSTOG00000020323 MT1X metallothionein 

1X  

Metallothioneins have a high 

content of cysteine residues 

that bind various heavy 

metals; these proteins are 

transcriptionally regulated 

 Metal ion binding 

 Cytoplasm 

 Nucleus 

 Protein binding 

 Cellular response to erythropoietin 

 Cellular response to zinc ion 
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by both heavy metals and 

glucocorticoids. 

 Cellular response to cadmium ion 

 Cellular zinc ion homeostasis 

 Nitric oxide mediated signal transduction 

 Detoxification of copper ion 

ENSSTOG00000020350 EIF4EBP3 eukaryotic 

translation 

initiation factor 4E 

binding protein 3  

This gene encodes a member 

of the EIF4EBP family, 

which consists of proteins 

that bind to eukaryotic 

translation initiation factor 

4E and regulate its assembly 

into EIF4F, the multi-

subunit translation initiation 

factor that recognizes the 

mRNA cap structure. 

 Negative regulation of translational initiation 

 Eukaryotic initiation factor 4E binding 

 Membrane 

 Protein binding 

ENSSTOG00000021209 FSD2 fibronectin type III 

and SPRY domain 

containing 2  

  Protein binding 

ENSSTOG00000021636 PPP1R3G protein 

phosphatase 1 

regulatory subunit 

3G  

Glycogen-targeting subunit 

for protein phosphatase 1 

(PP1). Involved in the 

regulation of hepatic 

glycogenesis in a manner 

coupled to the fasting-

feeding cycle and distinct 

from other glycogen-

targeting subunits 

 Cytoplasm 

 Glucose homeostasis 

 Protein phosphatase binding 

 Positive regulation of glycogen biosynthetic 

process 

 Positive regulation of glycogen (starch) 

synthase activity 

 Glycogen binding 

ENSSTOG00000022426 TSPAN32 tetraspanin 32  This gene, which is a 

member of the tetraspanin 

superfamily, is one of 

several tumor-suppressing 

subtransferable fragments 

located in the imprinted gene 

 Integral component of membrane 

 Membrane 

 Intracellular 

 Cell surface 

 Integrin-mediated signaling pathway 

 Cytoskeleton organization 
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domain of chromosome 

11p15.5, an important 

tumor-suppressor gene 

region. 

 Negative regulation of cell proliferation 

 Regulation of defense response to virus 

 Defense response to protozoan 

 Blood coagulation 

 Platelet aggregation 

 Hemostasis 

 Negative regulation of myeloid dendritic cell 

activation 

 Integrin alphaIIb-beta3 complex 

ENSSTOG00000022668 EVPL envoplakin  Component of the cornified 

envelope of keratinocytes. 

May link the cornified 

envelope to desmosomes and 

intermediate filaments. 

Gene Wiki entry for EVPL 

Gene 

 Intermediate filament binding 

 Epidermis development 

 Cornified envelope 

 Cytoskeleton 

 Structural molecule activity 

 Cytoplasm 

 Extracellular exosome 

 Protein binding 

 Peptide cross-linking 

 Keratinocyte differentiation 

 Intermediate filament cytoskeleton 

ENSSTOG00000024849 Missing Missing   Intracellular 

 Metal ion binding 

 Cell 

ENSSTOG00000026217 SACS sacsin molecular 

chaperone  

Co-chaperone which acts as 

a regulator of the Hsp70 

chaperone machinery and 

may be involved in the 

processing of other ataxia-

linked proteins. 

 Cytoplasm 

 Nucleus 

 Mitochondrion 

 Proteasome binding 

 Chaperone binding 

 Hsp70 protein binding 

 Negative regulation of inclusion body 

assembly 

ENSSTOG00000026420 FBP1 fructose-

bisphosphatase 1  

Catalyzes the hydrolysis of 

fructose 1,6-bisphosphate to 

fructose 6-phosphate in the 

 Fructose 1,6-bisphosphate 1-phosphatase 

activity 

 Phosphoric ester hydrolase activity 
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presence of divalent cations, 

acting as a rate-limiting 

enzyme in gluconeogenesis. 

Plays a role in regulating 

glucose sensing and insulin 

secretion of pancreatic beta-

cells. Appears to modulate 

glycerol gluconeogenesis in 

liver. Important regulator of 

appetite and adiposity; 

increased expression of the 

protein in liver after nutrient 

excess increases circulating 

satiety hormones and 

reduces appetite-stimulating 

neuropeptides and thus 

seems to provide a feedback 

mechanism to limit weight 

gain. 

 Hydrolase activity 

 Carbohydrate metabolic process 

 Cytoplasm 

 Metal ion binding 

 Protein binding 

 Identical protein binding 

 Extracellular exosome 

 Dephosphoylation 

 Negative regulation of Ras protein signal 

transduction 

 Gluconeogenesis 

 Negative regulation of cell growth 

 Cellular response to drug 

 Protein homotetramerization 

 Negative regulation of glycolytic process 

 Fructose 6-phosphate metabolic process 

 AMP binding 

 Regulation of gluconeogenesis 

 Cellular response to magnesium ion 

ENSSTOG00000027573 COMT catechol-O-

methyltransferase  

Catalyzes the O-methylation, 

and thereby the inactivation, 

of catecholamine 

neurotransmitters and 

catechol hormones. Also 

shortens the biological half-

lives of certain neuroactive 

drugs, like L-DOPA, alpha-

methyl DOPA and 

isoproterenol. 

 Integral component of membrane 

 Membrane 

 Neurotransmitter catabolic process 

 Catechol O-methyltransferase activity 

 Catecholamine metabolic process 

 O-methyltransferase activity 

 Methylation 

 Magnesium ion binding 

 Protein binding 

 Extracellular exosome 

 Mitochondrion 

 Dopamine metabolic process 

 Catechol-containing compound metabolic 

process 
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 Cellular response to phosphate starvation 

 Dopamine catabolic process 

ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 
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Table S4.4 - Over expressed genes in both NY winter and MT (NYwvsNYs and NYvsMT).  

Gene Name Description Gene Cards GO Terms 

ENSSTOG00000007640 ID1 inhibitor of DNA 

binding 1, HLH 

protein  

  Negative regulation of transcription, DNA-

templated 

 Cytoplasm 

 Protein dimerization activity 

 Nucleus 

 Protein binding 

 Nucleoplasm 

 Golgi apparatus 

 Negative regulation of sequence-specific 

DNA binding transcription factor activity 

 Transcription factor activity, sequence-

specific DNA binding 

 Transcription, DNA templated 

 Negative regulation of apoptotic process 

 Negative regulation of gene expression 

 Negative regulation of transcription from 

RNA polymerase II promoter 

 Negative regulation of DNA binding 

 Heart development 

 Circadian rhythm 

 Protein self-association 

 Endothelial cell morphogenesis 

 Regulation of angiogenesis 

 Collagen metabolic process 

 BMP signaling pathway 

 Negative regulation of osteoblast 

differentiation 

 Regulation of MAPK cascade 

 Lung morphogenesis 

 Reponse to antibiotic 

 Protein destabilization 
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 Lung vasculature development 

 Negative regulation of protein 

homodimerization activity 

ENSSTOG00000011815 Missing Missing   Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Cell adhesion 

 Calcium ion binding 

 Extracellular exosome 

 Cytoplasm 

 Corticospinal tract morphogenesis 

ENSSTOG00000019401 ID2 inhibitor of DNA 

binding 2, HLH 

protein  

  Negative regulation of transcription, DNA-

templated 

 Cytoplasm 

 Protein dimerization activity 

 Nucleus 

 Cytosol 

 Protein binding 

 Nucleoplasm 

 Ion channel binding 

 Centrosome 

 Negative regulation of sequence-specific 

DNA binding transcription factor activity 

 Regulation of G1/S transition of mitotic cell 

cycle 

 Protein complex 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Negative regulation of gene expression 

 Negative regulation of transcription from 

RNA polymerase II promoter 
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 Negative regulation of DNA binding 

 Heart development 

 Neuron fate commitment 

 Locomotor rhythm 

 Adipose tissue development 

 Positive regulation of fat cell differentiation 

 Oligodendrocyte development 

 Olfactory bulb development 

 Circadian rhythm 

 Cell maturation 

 Metanephros development 

 Circadian regulation of gene expression 

 Adult locomotory behavior 

 Negative regulation of neuron differentiation 

 Cell development 

 Positive regulation of blood pressure 

 Negative regulation of neural precursor cell 

proliferation 

 Negative regulation of osteoblast 

differentiation 

 Regulation of lipid metabolic process 

 Natural killer cell differentiation 

 Positive regulation of astrocyte 

differentiation 

 Regulation of circadian rhythm 

 Positive regulation of erythrocyte 

differentiation 

 Mammary gland alveolus development 

 Entrainment of circadian clock by 

photoperiod 

 Mammary gland epithelial cell proliferation 

 Positive regulation of cell cycle arrest 

 Embryonic digestive tract morphogenesis 

 Leukocyte differentiation 
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 Negative regulation of B cell differentiation 

 Positive regulation of smooth muscle cell 

proliferation 

 Membranous septum morphogenesis 

 Enucleate erythrocyte differentiation 

 Positive regulation of macrophage 

differentiation 

 Peyer's patch development 

 Cellular response to lithium ion 

 Cell morphogenesis involved in neuron 

differentiation 

 Cellular senescence 

 Endodermal digestive tract morphogenesis 

 Negative regulation of oligodendrocyte 

differentiation 

 Thigmotaxis 

 Bundle of His development 

 Entrainment of circadian clock 

 Epithelial cell differentiation involved in 

mammary gland alveolus development 

ENSSTOG00000020259 Missing Missing   Hydrolase activity, hydrolyzing O-glycosyl 

compounds 

 Carbohydrate metabolic process 

ENSSTOG00000024534 Missing Missing   Metal ion binding 

ENSSTOG00000024583 CISH cytokine inducible 

SH2 containing 

protein  

The expression of this gene 

can be induced by IL2, IL3, 

GM-CSF and EPO in 

hematopoietic cells . 

Proteasome-mediated 

degradation of this protein 

has been shown to be 

involved in the inactivation 

 Intracellular 

 Protein ubiquitination 

 Intracellular signal transduction 

 Protein binding 

 Plasma membrane 

 Protein kinase C-activating G-protein 

coupled receptor signaling pathway 
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of the erythropoietin 

receptors. 
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Table S4.5 - Over expressed genes in NY winter (NY winter and NY summer comparison) 

Gene Name Description Gene cards GO Terms 

ENSSTOG00000000294 ABCA4 ATP binding 

cassette subfamily 

A member 4  

  Transport 

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 ATPase activity, coupled to transmembrane 

movement of substances 

 ATPase activity 

 Integral component of plasma membrane 

 Transporter activity 

 Visual perception 

 ATP binding 

 Nucleotide binding 

 Photoreceptor outer segment 

 Phospholipid-translocating ATPase 

sensitivity 

 Phospholipid transporter activity 

 Photoreceptor cell maintenance 

 Phospholipid transfer to membrane 

ENSSTOG00000002629 KDELR3 KDEL 

endoplasmic 

reticulum protein 

retention receptor 

3  

  Transport 

 Integral component of membrane 

 Membrane 

 ER retention sequence binding 

 Protein retention in ER lumen 

 Protein transport 

 Endoplasmic reticulum membrane 

 Endoplasmic reticulum 

ENSSTOG00000003005 FOS Fos proto-

oncogene, AP-1 

transcription 

factor subunit  

  DNA Binding 

 Transcription factor complex 

 Sequence-specific DNA binding 
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 Transcription from RNA polymerase II 

promoter 

 Transcription factor activity, sequence-

specific DNA binding 

 Regulation of transcription from RNA 

polymerase II promoter 

Regulation of transcription, DNA-templated 

 Nucleus 

 Protein binding 

 Positive regulation of transcription from 

RNA polymerase II promoter 

 Positive regulation of transcription, DNA 

templated 

 Nucleoplasm 

 Transcription factor binding 

 Transcription regulatory region DNA binding 

 R-SMAD binding 

 Transforming growth factor beta receptor 

signaling pathway 

 SMAD protein signal transduction 

 Cellular response to reactive oxygen species 

 Chromatin binding 

 RNA polymerase II core promoter proximal 

region sequence-specific DNA binding 

 Transcriptional activator activity, RNA 

polymerase II core promoter proximal region 

sequence-specific binding 

 Skeletal muscle cell differentiation 

 Nervous system development 

 Response to drug 

 RNA polymerase II core promoter sequence-

specific DNA binding 

 Cellular response to calcium ion 

 Response to muscle stretch 
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 Positive regulation of osteoclast 

differentiation 

 Cellular response to extracellular stimulus 

ENSSTOG00000003590 ROPN1L rhophilin 

associated tail 

protein 1 like  

  Cytoplasm 

 Protein binding 

 Motile cilium 

ENSSTOG00000004163 MAGED1 MAGE family 

member D1  

  Circadian regulation of gene expression 

 Regulation of apoptotic process 

 Protein binding 

 Protein complex 

 Negative regulation of epithelial cell 

proliferation 

 Nucleus 

 Negative regulation of transcription, DNA 

templated 

 Chromatin 

 Positive regulation of transcription, DNA-

templated 

 Regulation of transcription from RNA 

polymerase II promoter 

 Transcription coactivator activity 

 Positive regulation of branching involved in 

ureteric bud morphogenesis 

 Positive regulation of apoptotic signaling 

pathway 

 Regulation of circadian rhythm 

 Postive regulation of MAP kinase activity 

ENSSTOG00000006538 ATOH8 atonal bHLH 

transcription 

factor 8  

  Cell differentiation 

 Transcription factor activity, sequence-

specific DNA binding 

 Protein dimerization activity 

Regulation of transcription, DNA templated 

 Nucleus 
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 Positive regulation of transcription, DNA 

templated 

 SMAD protein signal transduction 

 E-box binding 

 Negative regulation of endothelial cell 

proliferation 

 Postive regulation of endothelial cell 

migration 

 Tube formation 

 Postive regulation of endothelial cell 

differentiation 

 Cytoplasm 

 Transcription factor binding 

 Negative regulation of transcription, DNA 

templated 

 Activating transcription factor binding 

 Formation of primary germ layer  

 Myoblast proliferation 

ENSSTOG00000007587 NFKBIA NFKB inhibitor 

alpha  

  Cytoplasm 

 Plasma membrane 

 Nucleus 

 Protein binding 

 Positive regulation of transcription from 

RNA polymerase II promoter 

Identical protein binding 

 Ubiquitin protein ligase binding 

 Negative regulation of NF-kappB 

transcription factor activity 

 Nuclear locatlization sequence binding 

 Enzyme binding 

 Cytoplasmic sequestering of transcription 

factor 
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 NF-kappaB binding 

Positive regulation of cellular protein 

metabolic process 

 Cytoplasmic sequestering of NF-kappaB 

 Negative regulation of macrophage derived 

foam cell differentiation 

 Positive regulation of cholesterol efflux 

 Negative regulation of lipid storage 

 Regulation of gene expression 

 Cytosol 

 Postitive regulation of transcription, DNA 

templated 

 Regulation of cell proliferation 

 Response to Lipopolysaccharide 

 Response to muramyl dipeptide 

 Response to exogenous dsRNA 

 Lipopolysaccharide-mediated signaling 

pathway 

 Toll-like receptor 4 signaling pathway 

 Negative regulation of myeloid cell 

differentiation 

 Response to muscle stretch 

 Negative regulation of Notch signaling 

pathway 

 Protein import into nucleus, translocation 

 Nucleotide-binding oligomerization domain 

containing 1 signaling pathway 

 Nucleotide-binding oligomerization domain 

containing 2 signaling pathway 

ENSSTOG00000007598 SLC6A1 solute carrier 

family 6 member 

1  

  Transport 

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Gamma-aminobutyric acid transport 
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 Neurotransmitter transport 

 Gamma-aminobutyric acid:sodium symporter 

activity 

 Neurotransmitter:sodium symporter activity 

 Symporter activity 

 Integral component of plasma membrane 

 Mitophagy in response to mitochondrial 

depolarization 

 Plasma membrane 

 Axon 

ENSSTOG00000007640 ID1 inhibitor of DNA 

binding 1, HLH 

protein  

  Negative regulation of transcription, DNA-

templated 

 Cytoplasm 

 Protein dimerization activity 

 Nucleus 

 Protein binding 

 Nucleoplasm 

 Golgi apparatus 

 Negative regulation of sequence-specific 

DNA binding transcription factor activity 

 Transcription factor activity, sequence-

specific DNA binding 

 Transcription, DNA templated 

 Negative regulation of apoptotic process 

 Negative regulation of gene expression 

 Negative regulation of transcription from 

RNA polymerase II promoter 

 Negative regulation of DNA binding 

 Heart development 

 Circadian rhythm 

 Protein self-association 

 Endothelial cell morphogenesis 

 Regulation of angiogenesis 

 Collagen metabolic process 
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 BMP signaling pathway 

 Negative regulation of osteoblast 

differentiation 

 Regulation of MAPK cascade 

 Lung morphogenesis 

 Reponse to antibiotic 

 Protein destabilization 

 Lung vasculature development 

ENSSTOG00000011295 SAG S-antigen; retina 

and pineal gland 

(arrestin)  

  Signal transduction 

 Photoreceptor outer segment, opsin binding, 

phosphoprotein binding 

 Photoreceptor inner segment 

ENSSTOG00000011815 Missing Missing   Calcium ion binding 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Cell adhesion 

 Extracellular exosome 

 Cytoplasm 

 Corticospinal tract morphogenesis 

ENSSTOG00000012423 TG thyroglobulin    Thyroid gland development 

 Extracellular space 

 Thyroid hormone metabolic process 

 Regulation of myelination 

 Iodide transport 

ENSSTOG00000019401 ID2 inhibitor of DNA 

binding 2, HLH 

protein  

  Negative regulation of transcription, DNA-

templated 

 Cytoplasm 

 Protein dimerization activity 

 Nucleus 

 Cytosol 

 Protein binding 
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 Nucleoplasm 

 Ion channel binding 

 Centrosome 

 Negative regulation of sequence-specific 

DNA binding transcription factor activity 

 Regulation of G1/S transition of mitotic cell 

cycle 

 Protein complex 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Negative regulation of gene expression 

 Negative regulation of transcription from 

RNA polymerase II promoter 

 Negative regulation of DNA binding 

 Heart development 

 Neuron fate commitment 

 Locomotor rhythm 

 Adipose tissue development 

 Positive regulation of fat cell differentiation 

 Oligodendrocyte development 

 Olfactory bulb development 

 Circadian rhythm 

 Cell maturation 

 Metanephros development 

 Circadian regulation of gene expression 

 Adult locomotory behavior 

 Negative regulation of neuron differentiation 

 Cell development 

 Positive regulation of blood pressure 

 Negative regulation of neural precursor cell 

proliferation 

 Negative regulation of osteoblast 

differentiation 
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 Regulation of lipid metabolic process 

 Natural killer cell differentiation 

 Positive regulation of astrocyte 

differentiation 

 Regulation of circadian rhythm 

 Positive regulation of erythrocyte 

differentiation 

 Mammary gland alveolus development 

 Entrainment of circadian clock by 

photoperiod 

 Mammary gland epithelial cell proliferation 

 Positive regulation of cell cycle arrest 

 Embryonic digestive tract morphogenesis 

 Leukocyte differentiation 

 Negative regulation of B cell differentiation 

 Positive regulation of smooth muscle cell 

proliferation 

 Membranous septum morphogenesis 

 Enucleate erythrocyte differentiation 

 Positive regulation of macrophage 

differentiation 

 Peyer's patch development 

 Cellular response to lithium ion 

 Cell morphogenesis involved in neuron 

differentiation 

 Cellular senescence 

 Endodermal digestive tract morphogenesis 

 Negative regulation of oligodendrocyte 

differentiation 

 Thigmotaxis 

 Bundle of His development 

 Entrainment of circadian clock 

 Epithelial cell differentiation involved in 

mammary gland alveolus development 
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ENSSTOG00000020259 Missing Missing   Hydrolase activity, hydrolyzing O-glycosyl 

compounds 

 Carbohydrate metabolic process 

ENSSTOG00000021197 Missing Missing   Calcium ion binding 

 Cytoplasm 

 Nucleus 

 Membrane 

 Protein binding 

 Nucleolus 

Golgi apparatus 

 Positive regulation of calcium ion transport 

 Activation of store-operated calcium channel 

activity 

 Store-operated calcium entry 

ENSSTOG00000021898 CYP26B1 cytochrome P450 

family 26 

subfamily B 

member 1  

  Iron ion binding 

 Oxidation-reduction process 

 Oxidoreductase activity 

 Metal ion binding 

 Heme binding 

 Monooxygenase activity 

 Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen 

 Cytoplasm 

 Bone morphogenesis 

Retinoic acid binding 

 Retinoic acid 4-hydroxylase activity 

 Retinoic acid catabolic process 

 Spermatogenesis 

 Inflammatory response 

 Positive regulation of gene expression 

 Negative regulation of retinoic acid receptor 

signaling pathway 

 Establishment of skin barrier 
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 Cellular response to retinoic acid 

 Male meiosis 

 Retinoic acid receptor signaling pathway 

 Regulation of T cell differentiation 

 Cell fate determination 

 Embryonic limb morphogenesis 

 Proximal/distal pattern formation 

 Establishment of T cell polarity 

 Cornification 

 Regulation of retinoic acid receptor signaling 

pathway 

 Tongue morphogenesis 

 Positive regulation of tongue muscle cell 

differentiation 

ENSSTOG00000024485 TMEM200C transmembrane 

protein 200C  

  Integral component of membrane 

 Membrane 

ENSSTOG00000024534 Missing Missing   Metal ion binding 

ENSSTOG00000024583 CISH cytokine inducible 

SH2 containing 

protein  

The expression of this gene 

can be induced by IL2, IL3, 

GM-CSF and EPO in 

hematopoietic cells . 

Proteasome-mediated 

degradation of this protein 

has been shown to be 

involved in the inactivation 

of the erythropoietin 

receptors. 

 Intracellular 

 Protein ubiquitination 

 Intracellular signal transduction 

 Protein binding 

 Plasma membrane 

 Protein kinase C-activating G-protein 

coupled receptor signaling pathway 

ENSSTOG00000027370 GADD45G growth arrest and 

DNA damage 

inducible gamma  

  Response to stress 

 Regulation of cell cycle 

 Nucleus 



175 

 

 Cytoplasm 

Protein binding 

 Postive regulation of apoptotic process 

 Positive regulation of JNK cascade 

 Activation of MAPKKK activity 

 Positive regulation of p38MAPK cascade 
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Table S4.6 - Over expressed genes in CO and NY winter (CO vs WV and NYw vs NYs) 

Gene Name Description Gene card GO Terms 

ENSSTOG00000011815 Missing Missing   Calcium ion binding 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

cell adhesion 

 Extracellular exosome 

 Cytoplasm 

 Corticospinal tract morphogenesis 
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Table S4.7 - Over expressed genes in NY & NY (NYs vs NYw and NYs vs MT) 

Gene Name Description Gene card GO Terms 

ENSSTOG00000001482 RET ret proto-oncogene Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine kinases, 

which are cell-surface 

molecules that transduce 

signals for cell growth and 

differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion mediated 

by integrin 

 Cellular response to reinoic acid 

 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 

 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 
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 Nervous system development 

 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine phophoylation 

of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000005711 IRF7 interferon 

regulatory factor 7 

  Regulatory region DNA binding 

 Transcription factor activity, sequence-

specific DNA binding 

 Regulation of transcription, DNA-templated 

 Cytoplasm 

 Nucleus 

 DNA binding 

 Protein binding 

 Positive regulation of transcription from 

RNA polymerase II promoter 

 Positive regulation of transcription, DNA-

templated 

 Nucleoplasm 

 Positive regulation of interferon-alpha 

production 

 Positive regulation of interferon-beta 

production 
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 Transcription factor activity, RNA 

polymerase II core promoter proximal region 

sequence-specific binding 

 RNA polymerase II core promoter sequence-

specific DNA binding 

 Regulation of adaptive immune response 

 Immunoglobulin mediated immune response 

 Positive regulation of type I interferon-

mediated signaling pathway 

 Positive regulation of type I interferon 

production 

 Regulation of MyD88-dependent toll-like 

receptor signaling pathway 

 Type I interferon biosynthetic process 

 Interferon-alpha production 

 Interferon-beta production 

 Regulation of MyD88-independent toll-like 

receptor signaling pathway 

ENSSTOG00000007829 TNNI2 troponin I2, fast 

skeletal type 

  Troponin complex 

 Nucleus 

 Actin binding 

 Protein binding 

 Positive regulation of transcription 

 DNA-templated 

 Skeletal muscle contraction 

 Troponin T binding 

ENSSTOG00000010414 PALLD palladin, 

cytoskeletal 

associated protein 

  Integral component of membrane 

 Membrane 

 Cell migration 

 Actin cytoskeleton organization 

 Actin binding 

 Epithelial cell morphogenesis 

 Cytoplasm 

 Plasma membrane 
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 Nucleus 

 Mitochondrion 

 Protein binding 

 Actin cytoskeleton 

 Actin filament 

 Focal adhesion 

 Epithelial cell morphogenesis 

 Keratinocyte development 

ENSSTOG00000020847 Missing Missing   Thiol-dependent ubiquitinyl hydrolase 

activity 

 Protein deubiquitination 

 Ubiquitin-dependent protein catabolic 

process 

 Protein binding 

 Response to stilbenoid 

 ISG15-specific protease activity 

ENSSTOG00000025690 SYT8 synaptotagmin 8   Integral component of membrane 

 Membrane 

 Exocytosis 

 Cytoplasm 

 Acrosome reaction 

 Calcium-dependent protein binding 

 Membrane-bounded vesicle 

ENSSTOG00000028109 CPNE6 copine 6   Protein binding 

 Extracellular exosome 

 Positive regulation of dendrite extension 

 Cytoplasm 

 Plasma membrane 

 Membrane 

 Axon 

 Dendrite 

 Cellular response to calcium ion 

 Phosphatidylserine binding 

 Clathrin-coated endocytic vesicle 
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ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 
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Table S4.8 - Over expressed genes in NY and NY (NY vs AK and NY vs MT) 

Gene Name Description Gene card GO Terms 

ENSSTOG00000001482 RET ret proto-oncogene Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine kinases, 

which are cell-surface 

molecules that transduce 

signals for cell growth and 

differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion mediated 

by integrin 

 Cellular response to reinoic acid 

 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 

 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 
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 Nervous system development 

 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine phophoylation 

of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000003810 Missing Missing   Protein serine/threonine kinase activity 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Nucleotide binding 

 Cytoplasm 

 Nucleus 

 Magnesium ion binding 

 Protein binding 

 Intracellular signal transduction 

 Protein kinase binding 

 Regulation of mitotic cell cycle 

 Anoikis 

 Regulation of cell differentiation 

 Histone deacetylase binding 

 Cardiac muscle cell differentiation 

 Regulation of myotube differentiation 

 Negative regulation of gluconeogenesis 
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 Entrainment of circadian clock by 

photoperiod 

 cAMP response element binding protein 

binding 

 Negative regulation of CREB transcription 

factor activity 

 Negative regulation of triglyceride 

biosynthetic process 

ENSSTOG00000004982 TRIM63 tripartite motif 

containing 63  

This protein plays an 

important role in the atrophy 

of skeletal and cardiac 

muscle and is required for 

the degradation of myosin 

heavy chain proteins, myosin 

light chain, myosin binding 

protein, and for muscle-type 

creatine kinases.  

 Intracellular 

 Metal ion binding 

 Zinc ion binding 

 Cytoplasm 

 Protein binding 

 Titin binding 

ENSSTOG00000006748 ESR1 estrogen receptor 

1 

  DNA binding 

 Metal ion binding 

 Intracellular estrogen receptor signaling 

pathway 

 Estrogen receptor activity 

 Steroid binding 

 Intracellular receptor signaling pathway 

 Lipid binding 

 Steroid hormone mediated signaling 

pathway 

 Steroid hormone receptor activity 

 Sequence-specific DNA binding 

 Transcription factor activity, sequence-

specific DNA binding 

 Transcription, DNA-templated 

 Zinc ion binding 
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 Regulation of transcription, DNA-templated 

 Nucleus 

 Cytoplasm 

 Plasma membrane 

 Negative regulation of transcription from 

RNA polymerase II promoter 

 RNA polymerase II core promoter proximal 

region sequence-specific DNA binding 

 Protein binding 

 Positive regulation of transcription from 

RNA polymerase II promoter 

 Identical protein binding 

 Transcription from RNA polymerase II 

promoter 

 Positive regulation of transcription, DNA-

templated 

 Chromatin binding 

 Transcription factor binding 

 Beta-catenin binding 

 Negative regulation of gene expression 

 Enzyme binding 

 Nuclear chromatin 

 Negative regulation of sequence-specific 

DNA binding transcription factor activity 

 Positive regulation of sequence-specific 

DNA binding transcription factor activity 

 Core promoter sequence-specific DNA 

binding 

 ATPase binding 

 Transcriptional activator activity, RNA 

polymerase II core promoter proximal region 

sequence-specific binding 

 Response to estradiol 

 Response to estrogen 
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 Estrogen response element binding 

 Negative regulation of I-kappaB kinase/NF-

kappaB signaling 

 Protein localization to chromatin 

 Cellular response to estradiol stimulus 

 Negative regulation of production of 

miRNAs involved in gene silencing by 

miRNA 

 Transcriptionally active chromatin 

 RNA polymerase II transcription factor 

activity, estrogen-activated sequence-

specific DNA-binding 

 Regulation of apoptotic process 

 RNA polymerase II transcription factor 

activity, ligand-activated sequence-specific 

DNA binding 

 Epithelial cell development 

 Male gonad development 

 Regulation of inflammatory response 

 Uterus development 

 Vagina development 

 Regulation of toll-like receptor signaling 

pathway 

 Mammary gland alveolus development 

 Positive regulation of fibroblast proliferation 

 Prostate epithelial cord arborization involved 

in prostate glandular acinus morphogenesis 

 Cellular response to estrogen stimulus 

 Antral ovarian follicle growth 

 Androgen metabolic process 

 Prostate epithelial cord elongation 

 Regulation of branching involved in prostate 

gland morphogenesis 
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 Mammary gland branching involved in 

pregnancy 

 Epithelial cell proliferation involved in 

mammary gland duct elongation 

ENSSTOG00000008679 CRISPL

D1 

cysteine rich 

secretory protein 

LCCL domain 

containing 1 

  Extracellular region 

 Extracellular exosome 

 Face morphogenesis 

ENSSTOG00000011601 Missing Missing   Ion transport 

 Transport 

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Regulation of postsynaptic membrane 

potential 

 Sodium ion transmembrane transport 

 Sodium ion transport 

 Sodium channel activity 

 Voltage-gated sodium channel activity 

 Voltage-gated sodium channel complex 

 Ion transmembrane transport 

 Regulation of ion transmembrane transport 

 Voltage-gated ion channel activity 

 Ion channel activity 

ENSSTOG00000012159 MYRIP myosin VIIA and 

Rab interacting 

protein  

  Protein binding 

 Actin binding 

 Actin cytoskeleton 

 Rab GTPase binding 

 Photoreceptor outer segment 

 Exocyst 

 Synapse 

 Protein kinase A binding 

 Myosin binding 
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 Melanosome 

ENSSTOG00000014041 MYO5C myosin VC   Metal ion binding 

 Myosin complex 

 ATP binding 

 Actin binding 

 Motor activity 

 Nucleotide binding 

 Extracellular exosome 

ENSSTOG00000020834 C6orf132 chromosome 6 

open reading 

frame 132  

  

ENSSTOG00000021507 Missing Missing   Glutathione transferase activity 

 Metabolic process 

ENSSTOG00000021636 PPP1R3

G 

protein 

phosphatase 1 

regulatory subunit 

3G 

Glycogen-targeting subunit 

for protein phosphatase 1 

(PP1). Involved in the 

regulation of hepatic 

glycogenesis in a manner 

coupled to the fasting-

feeding cycle and distinct 

from other glycogen-

targeting subunits 

 Cytoplasm 

 Glucose homeostasis 

 Protein phosphatase binding 

 Positive regulation of glycogen biosynthetic 

process 

 Positive regulation of glycogen (starch) 

synthase activity 

 Glycogen binding 

ENSSTOG00000022426 TSPAN3

2 

tetraspanin 32  This gene, which is a 

member of the tetraspanin 

superfamily, is one of several 

tumor-suppressing 

subtransferable fragments 

located in the imprinted gene 

domain of chromosome 

11p15.5, an important tumor-

suppressor gene region. 

 Integral component of membrane 

 Membrane 

 Intracellular 

 Cell surface 

 Integrin-mediated signaling pathway 

 Cytoskeleton organization 

 Negative regulation of cell proliferation 

 Regulation of defense response to virus 

 Defense response to protozoan 

 Blood coagulation 
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 Platelet aggregation 

 Hemostasis 

 Negative regulation of myeloid dendritic cell 

activation 

 Integrin alphaIIb-beta3 complex 

ENSSTOG00000022668 EVPL envoplakin Component of the cornified 

envelope of keratinocytes. 

May link the cornified 

envelope to desmosomes and 

intermediate filaments. 

Gene Wiki entry for EVPL 

Gene 

 Intermediate filament binding 

 Epidermis development 

 Cornified envelope 

 Cytoskeleton 

 Structural molecule activity 

 Cytoplasm 

 Extracellular exosome 

 Protein binding 

 Peptide cross-linking 

 Keratinocyte differentiation 

 Intermediate filament cytoskeleton 

ENSSTOG00000024424 Missing Missing   Exocytosis 

 Vesicle docking 

 Cytoplasm 

 Ral GTPase binding 

 Protein N-terminus binding 

ENSSTOG00000024594 A3GALT

2 

alpha 1,3-

galactosyltransfera

se 2  

  Integral component of membrane 

 Membrane 

 Transferase activity, transferring hexosyl 

groups 

 Carbohydrate metabolic process 

 Alpha-1,3-galactosyltransferase activity 

 Glycosphingolipid biosynthetic process 

ENSSTOG00000026217 SACS sacsin molecular 

chaperone 

Co-chaperone which acts as 

a regulator of the Hsp70 

chaperone machinery and 

may be involved in the 

 Cytoplasm 

 Nucleus 

 Mitochondrion 

 Proteasome binding 

 Chaperone binding 

 Hsp70 protein binding 
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processing of other ataxia-

linked proteins. 

 Negative regulation of inclusion body 

assembly 

ENSSTOG00000027573 COMT catechol-O-

methyltransferase 

Catalyzes the O-methylation, 

and thereby the inactivation, 

of catecholamine 

neurotransmitters and 

catechol hormones. Also 

shortens the biological half-

lives of certain neuroactive 

drugs, like L-DOPA, alpha-

methyl DOPA and 

isoproterenol. 

 Integral component of membrane 

 Membrane 

 Neurotransmitter catabolic process 

 Catechol O-methyltransferase activity 

 Catecholamine metabolic process 

 O-methyltransferase activity 

 Methylation 

 Magensium ion binding 

 Protein binding 

 Extracellular exosome 

 Mitochondrion 

 Dopamine metabolic process 

 Catechol-containing compound metabolic 

process 

 Cellular response to phosphate starvation 

 Dopamine catabolic process 

ENSSTOG00000027585 LGR6 leucine rich repeat 

containing G 

protein-coupled 

receptor 6  

  Integral component of membrane 

 Membrane 

 Protein-hormone receptor activity 

 G-protein coupled receptor signaling 

pathway 

 G-protein coupled receptor activity 

 Protein binding 

 Positive regulation of cell migration 

 Vesicle 

 Positive regulation of Wnt signaling 

pathway 

ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 
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Table S4.9 - Over expressed genes in NY summer (NYs and NYw) 

Gene Name Description Gene card GO Terms 

ENSSTOG00000007820 Missing Missing   Integral component of membrane 

 Membrane 

 Carbohydrate binding 

 Golgi membrane 

 Transferase activity, transferring glycosyl 

groups 

 Protein glycosylation 

 Golgi apparatus 

 Transferase activity 

ENSSTOG00000001482 RET ret proto-oncogene Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine kinases, 

which are cell-surface 

molecules that transduce 

signals for cell growth and 

differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion 

mediated by integrin 

 Cellular response to reinoic acid 
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 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 

 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 

 Nervous system development 

 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine phophoylation 

of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000025236 CFAP100 cilia and flagella 

associated protein 

100  

  

ENSSTOG00000019659 FAM111A family with 

sequence 

  Cytoplasm 

 Nucleus 

 DNA replication 

 Protein binding 
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similarity 111 

member 

 Negative regulation of viral genome 

replication 

 Chromatin 

ENSSTOG00000004459 Missing Missing  
 Integral component of membrane 

ENSSTOG00000011224 TINAG tubulointerstitial 

nephritis antigen 

  Polysaccharide binding 

 Scavenger receptor activity 

 Cysteine-type peptidase activity 

 Immune response 

 Receptor-mediated endocytosis 

 Proteolysis 

 Cell adhesion 

 Basement membrane 

ENSSTOG00000028109 CPNE6 copine 6   Protein binding 

 Extracellular exosome 

 Positive regulation of dendrite extension 

 Cytoplasm 

 Plasma membrane 

 Membrane 

 Axon 

 Dendrite 

 Cellular response to calcium ion 

 Phosphatidylserine binding 

 Clathrin-coated endocytic vesicle 

ENSSTOG00000025690 SYT8 synaptotagmin 8    

ENSSTOG00000024345 EBI3 Epstein-Barr virus 

induced 3 

  Membrane 

 Cytokine receptor activity 

 Protein binding 

 T-cell proliferation 

 Interleukin-27 receptor binding 

ENSSTOG00000028463 MKX mohawk 

homeobox  

  DNA binding 

 Sequence-specific DNA binding 

 Regulation of transcription, DNA-templated 



195 

 

 Nucleus 

ENSSTOG00000007829 TNNI2 troponin I2, fast 

skeletal type 

  Troponin complex 

 Nucleus 

 Actin binding 

 Protein binding 

 Positive regulation of transcription 

 DNA-templated 

 Skeletal muscle contraction 

 Troponin T binding 

ENSSTOG00000020847 Missing Missing   Thiol-dependent ubiquitinyl hydrolase 

activity 

 Protein deubiquitination 

 Ubiquitin-dependent protein catabolic 

process 

 Protein binding 

 Response to stilbenoid 

 ISG15-specific protease activity 

ENSSTOG00000001180 CD163 CD163 molecule    Integral component of membrane 

 Membrane 

 Scavenger receptor activity 

 Receptor-mediated endocytosis 

 Protein binding 

ENSSTOG00000026716 VCAN versican   Hyaluronic acid binding 

 Cell adhesion 

 Calcium ion binding 

 Extracellular space 

 Membrane 

 Protein binding 

 Extracellular matrix 

 Intracellular membrane-bounded organelle 

 Osteoblast differentiation 

ENSSTOG00000020288 ISG15 ISG15 ubiquitin-

like modifier  

  Extracellular region 

 Defense response to bacterium 

 Protein binding 
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 Negative regulation of viral genome 

replication 

 Defense response to virus 

 Negative regulation of protein 

ubiquitination 

 ISG15-protein conjugation 

 Regulation of interferon-gamma production 

 Response to type I interferon 

 Protein tag 

 Modification-dependent protein catabolic 

process 

 Positive regulation of erythrocyte 

differentiation 

ENSSTOG00000003422 CAPN9 calpain 9    Intracellular 

 Digestion 

 Calcium-dependent cysteine-type 

endopeptidase activity 

 Cysteine-type peptidase activity 

 Peptidase activity 

 Calcium ion binding 

 Hydrolase activity 

 Proteolysis 

ENSSTOG00000028862 EEF1A2 eukaryotic 

translation 

elongation factor 1 

alpha 2 

This gene encodes an isoform 

of the alpha subunit of the 

elongation factor-1 complex, 

which is responsible for the 

enzymatic delivery of 

aminoacyl tRNAs to the 

ribosome 

 GTPase activity 

 Translational elongation 

 Translation elongation factor activity 

 GTP binding 

 Nucleotide binding 

 Cytoplasm 

 Protein binding 

 Protein kinase binding 

 Positive regulation of lipid kinase activity 

 Eukrayotic translation elongation factor 1 

complex 

 Positive regulation of apoptotic process 
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 Myelin sheath 

ENSSTOG00000007570 CLEC4F C-type lectin 

domain family 4 

member F  

 

 Integral component of membrane 

 Membrane 

ENSSTOG00000000900 SERPINA6 serpin family A 

member 6  

  Extracellular space 

 Extracellular exosome 

 Steroid binding 

 Glucocorticoid metabolic process 

ENSSTOG00000012655 SLCO2B1 solute carrier 

organic anion 

transporter family 

member 2B1 

  Ion transport 

 Transport 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Transporter activity 

ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 

ENSSTOG00000008000 ALAS2 5'-aminolevulinate 

synthase 2  

  Mitochondrion 

 Heme biosynthetic process 

 Protoporphyrinogen IX biosynthetic process 

 Porphyrin-containing compound metabolic 

process 

 5-aminolevulinate synthase activity 

 Biosynthetic process 

 Tetrapyrrole biosynthetic process 

 Transferase activity, transferring acyl 

groups 

 Pyridoxal phosphate binding 

 Metabolic process 

 Transferase activity 

 Mitochondrial matrix 

 Catalytic activity 

 Mitochondrial inner membrane 
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 Protein binding 

 Response to hypoxia 

 Cellular iron ion homeostasis 

 Erythrocyte differentiation 

 Hemoglobin biosynthetic process 

ENSSTOG00000012846 MX1 MX dynamin like 

GTPase 1  

  GTPase activity 

 GTP binding 

 Nucleotide binding 

 Cytoplasm 

 Cytosol 

 Protein binding 

 Perinuclear region of cytoplasm 

 Response to virus 

 Negative regulation of viral genome 

replication 

 Nuclear membrane 

ENSSTOG00000003382 TNC tenascin C It is implicated in guidance of 

migrating neurons as well as 

axons during development, 

synaptic plasticity, and 

neuronal regeneration. 

 Extracellular matrix 

 Cell adhesion 

 Regulation of cell proliferation 

 Extracellular space 

 Membrane 

 Focal adhesion 

 Response to wounding 

 Syndecan binding 

 Osteoblast differentiation 

 Extracellular region 

 Positive regulation of gene expression 

 Positive regulation of cell proliferation 

 Basement membrane 

 Neuromuscular junction development 

 Interstitital matrix 

 Prostate gland epithelium morphogenesis 

 Peripheral nervous system axon 

regeneration 
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 Mesenchymal-epithelial cell signaling 

involved in prostate gland development 

ENSSTOG00000022777 Missing Missing   Iron ion binding 

 Transport 

 Metal ion binding 

 Heme binding 

 Hemoglobin complex 

 Oxygen binding 

 Oxygen transport 

 Oxygen transporter activity 

ENSSTOG00000010129 FABP7 fatty acid binding 

protein 7 

  Transport 

 Lipid binding, transporter activity 

 Cytoplasm 

 Nucleoplasm 

 Cell periphery 

 Cell-cell junction 

 Neuronal cell body 

 Neurogenesis 

 Startle response 

 Cell body 

 Cell projection 

 Prepulse inhibition 

 Cell proliferation in forebrain 

ENSSTOG00000023860 Missing Missing   Integral component of membrane 

 Membrane 

 Protein binding 

 Integral component of plasma membrane 

 Apoptotic process 

 Cellular response to tumor necrosis factor 

 Negative regulation of myelination 

 Myelination 

 T cell receptor signaling pathway 

 Axon 

 Neuron apoptotic process 
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 Adaptive immune response 

 Humoral immune response 

 Negative regulation of T cell proliferation 

 Intrinsic component of plasma membrane 

 B cell apoptotic process 

 Regulation of oligodendrocyte 

differentiation 

 Oligodendrocyte apoptotic process 

 Negative regulation of B cell proliferation 

 Negative regulation of interleukin-10 

secretion 

 Negative regulation of interleukin-5 

secretion 

 Negative regulation of interleukin-13 

secretion 

 Signal transduction 

ENSSTOG00000006404 PTCH2 patched 2   Integral component of membrane 

 Membrane 

 Hedgehog receptor activity 

 Signal transduction 

 Smoothened binding 

 Hedgehog family protein binding 

 Epidermis development 

 Skin development 

 Positive regulation of epidermal cell 

differentiation 

 Hair cycle 

 Cell fate determination 

 Epidermal cell fate specification 

ENSSTOG00000025073 Missing Missing   Iron ion binding 

 Transport 

 Metal ion binding 

 Heme binding 

 Hemoglobin complex 
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 Oxygen binding 

 Oxygen transport 

 Oxygen transporter activity 

ENSSTOG00000024317 Missing Missing   Iron ion binding 

 Transport 

 Metal ion binding 

 Heme binding 

 Hemoglobin complex 

 Oxygen binding 

 Oxygen transport 

 Oxygen transporter activity 

ENSSTOG00000009418 PLCD3 phospholipase C 

delta 3  

  Intracellular 

 Lipid catabolic process 

 Phosphoric diester hydrolase activity 

 Lipid metabolic process 

 Signal transducer activity 

 Phosphatidylinositol phospholipase C 

activity 

 Regulation of cell proliferation 

 Signal transduction 

 Angiogenesis 

 Intracellular signal transduction 

 Hydrolase activity 

 Labyrinthine layer blood vessel 

development 

ENSSTOG00000010414 PALLD palladin, 

cytoskeletal 

associated protein 

  Integral component of membrane 

 Membrane 

 Cell migration 

 Actin cytoskeleton organization 

 Actin binding 

 Cytoplasm 

 Plasma membrane 

 Nucleus 

 Mitochondrion 
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 Protein binding 

 Actin cytoskeleton 

 Actin filament 

 Focal adhesion 

 Epithelial cell morphogenesis 

 Keratinocyte development 

ENSSTOG00000010650 Missing Missing   Iron ion binding 

 Transport 

 Metal ion binding 

 Heme binding 

 Hemoglobin complex 

 Oxygen binding 

 Oxygen transport 

 Oxygen transporter activity 

ENSSTOG00000002545 Missing Missing   GTPase activity 

 GTP binding 

 Nucleotide binding 

ENSSTOG00000005711 IRF7 interferon 

regulatory factor 7 

  Regulatory region DNA binding 

 Transcription factor activity, sequence-

specific DNA binding 

 Regulation of transcription, DNA-templated 

 Cytoplasm 

 Nucleus 

 DNA binding 

 Protein binding 

 Positive regulation of transcription from 

RNA polymerase II promoter 

 Positive regulation of transcription, DNA-

templated 

 Nucleoplasm 

 Positive regulation of interferon-alpha 

production 

 Positive regulation of interferon-beta 

production 
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 Transcription factor activity, RNA 

polymerase II core promoter proximal 

region sequence-specific binding 

 RNA polymerase II core promoter 

sequence-specific DNA binding 

 Regulation of adaptive immune response 

 Immunoglobulin mediated immune response 

 Positive regulation of type I interferon-

mediated signaling pathway 

 Positive regulation of type I interferon 

production 

 Regulation of MyD88-dependent toll-like 

receptor signaling pathway 

 Type I interferon biosynthetic process 

 Interferon-alpha production 

 Interferon-beta production 

 Regulation of MyD88-independent toll-like 

receptor signaling pathway 

ENSSTOG00000013516 IFI44 interferon induced 

protein 44 
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Table S4.10 - Over expressed genes in NY winter & AK (NYw vs NYs and AK vs NYs) 

Gene Name Description Gene card GO Terms 

ENSSTOG00000002629 KDELR3 KDEL 

endoplasmic 

reticulum protein 

retention receptor 

3  

  Transport 

 Integral component of membrane 

 Membrane 

 ER retention sequence binding 

 Protein retention in ER lumen 

 Protein transport 

 Endoplasmic reticulum membrane 

 Endoplasmic reticulum 

ENSSTOG00000006538 ATOH8 atonal bHLH 

transcription 

factor 8 

  Cell differentiation 

 Transcription factor activity, sequence-

specific DNA binding 

 Protein dimerization activity 

 Regulation of transcription, DNA 

templated 

 Nucleus 

 Positive regulation of transcription, DNA 

templated 

 SMAD protein signal transduction 

 E-box binding 

 Negative regulation of endothelial cell 

proliferation 

 Postive regulation of endothelial cell 

migration 

 Tube formation 

 Postive regulation of endothelial cell 

differentiation 

 Cytoplasm 

 Transcription factor binding 

 Negative regulation of transcription, DNA 

templated 
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 Activating transcription factor binding 

 Formation of primary germ layer 

 Myoblast proliferation 

ENSSTOG00000011815 Missing Missing   Calcium ion binding 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Cell adhesion 

 Extracellular exosome 

 Cytoplasm 

 Corticospinal tract morphogenesis 

ENSSTOG00000020259 Missing Missing   Hydrolase activity, hydrolyzing O-glycosyl 

compounds 

 Carbohydrate metabolic process 

ENSSTOG00000021197 Missing Missing   Calcium ion binding 

 Cytoplasm 

 Nucleus 

 Membrane 

 Protein binding 

 Nucleolus 

 Golgi apparatus 

 Positive regulation of calcium ion transport 

 Activation of store-operated calcium 

channel activity 

 Store-operated calcium entry 

ENSSTOG00000021898 CYP26B1 cytochrome P450 

family 26 

subfamily B 

member 1  

  Iron ion binding 

 Oxidation-reduction process 

 Oxidoreductase activity 

 Metal ion binding 

 Heme binding 

 Monooxygenase activity 
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 Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen 

 Cytoplasm 

 Bone morphogenesis 

Retinoic acid binding 

 Retinoic acid 4-hydroxylase activity 

 Retinoic acid catabolic process 

 Spermatogenesis 

 Inflammatory response 

 Positive regulation of gene expression 

 Negative regulation of retinoic acid 

receptor signaling pathway 

 Establishment of skin barrier 

 Cellular response to retinoic acid 

 Male meiosis 

 Retinoic acid receptor signaling pathway 

 Regulation of T cell differentiation 

 Cell fate determination 

 Embryonic limb morphogenesis 

 Proximal/distal pattern formation 

 Establishment of T cell polarity 

 Cornification 

 Regulation of retinoic acid receptor 

signaling pathway 

 Tongue morphogenesis 

 Positive regulation of tongue muscle cell 

differentiation 

ENSSTOG00000024583 CISH cytokine inducible 

SH2 containing 

protein 

The expression of this gene 

can be induced by IL2, IL3, 

GM-CSF and EPO in 

hematopoietic cells . 

 Intracellular 

 Protein ubiquitination 

 Intracellular signal transduction 

 Protein binding 

 Plasma membrane 
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Proteasome-mediated 

degradation of this protein has 

been shown to be involved in 

the inactivation of the 

erythropoietin receptors. 

 Protein kinase C-activating G-protein 

coupled receptor signaling pathway 
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Table S4.11 - Over expressed in AK and CO (AK vs NY and CO vs WV) 

Gene Name Description Gene Card GO Terms 

ENSSTOG00000001380 RASGRF2 Ras protein specific 

guanine nucleotide 

releasing factor 2 

  Intracellular  

 Regulation of Ras protein signal 

transduction 

 Positive regulation of GTPase activity 

 Regulation of Rho protein signal 

transduction 

 Rho guanyl-nucleotide exchange factor 

activity 

 Guanyl-nucleotide exchange factor activity 

 Small GTPase mediated signal 

transduction 

ENSSTOG00000007918 RBM46 RNA binding motif 

protein 46 

  Nucleic acid binding 

 Nucleotide binding 

ENSSTOG00000008371 PIP5KL1 phosphatidylinositol-

4-phosphate 5-

kinase like 1 

  Phosphatidylinositol metabolic process 

 Phosphatidylinositol phosphate kinase 

activity 

 Cytoplasm 

 Protein binding 

 Cell projection 

 1-phosphatidylinositol-4-phosphate 5-

kinase activity 

ENSSTOG00000011815 Missing Missing   Calcium ion binding 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Cell adhesion 

 Extracellular exosome 

 Cytoplasm 
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 Corticospinal tract morphogenesis 

ENSSTOG00000012025 LBP lipopolysaccharide 

binding protein 

  Defense response to Gram-negative 

bacterium 

 Lipopolysaccharide binding 

 Lipid binding 

 Innate immune response 

 Extracellular space 

 Acute-phase response 

 Protein binding 

 Extracellular exosome 

 Response to lipopolysaccharide 

 Cell surface 

 Cellular response to lipopolysaccharide 

 Negative regulation of tumor necrosis 

factor production 

 Lipopolysaccharide-mediated signaling 

pathway 

 Positive regulation of interleukin-6 

production 

 Positive regulation of interleukin-8 

production 

 Positive regulation of tumor necrosis 

factor production 

 Defense response to Gram-positive 

bacterium 

 Cellular response to lipoteichoic acid 

 Positive regulation of macrophage 

activation 

 Positive regulation of toll-like receptor 4 

signaling pathway 

 Lipoteichoic acid binding 

 Detection of molecule of bacterial origin 

 Macrophage activation involved in 

immune response 



210 

 

 Lipopolysaccharide transport 

 Receptor binding 

 Positive regulation of chemokine 

production 

 Positive regulation of neutrophil 

chemotaxis 

 Negative regulation of growth of symbiont 

in host 

 Positive regulation of tumor necrosis 

factor biosynthetic process 

 Leukocyte chemotaxis involved in 

inflammatory response 

 Positive regulation of respiratory burst 

involved in inflammatory response 

ENSSTOG00000020720 WFDC2 WAP four-disulfide 

core domain 2 

  Peptidase inhibitor activity 

 Extracellular region 

 Extracellular exosome 

 Serine-type endopeptidase inhibitor 

activity 

 Aspartic-type endopeptidase inhibitor 

activity 

ENSSTOG00000021630 Missing Missing   Oxidation-reduction process 

 Oxidoreductase activity 

 3-beta-hydroxy-delta5-steroid 

dehydrogenase activity 

 Steroid biosynthetic process 

 Oxidoreductase activity, acting on the CH-

OH group of donors, NAD or NADP as 

acceptor 

ENSSTOG00000023922 SCARA3 scavenger receptor 

class A member 3 

  Integral component of membrane 

 Membrane 

 Protein binding 
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ENSSTOG00000024724 SLC16A11 solute carrier family 

16 member 11 

Probably involved in 

hepatic lipid metabolism: 

overexpression results in an 

increase of 

triacylglycerol(TAG) levels, 

small increases in 

intracellular diacylglycerols 

and decreases in 

lysophosphatidylcholine, 

cholesterol ester and 

sphingomyelin lipids 

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Endoplasmic reticulum membrane 

 Lipid metabolic process 

ENSSTOG00000026668 LAMA5 laminin subunit 

alpha 5 

  Regulation of embryonic development 

 Regulation of cell adhesion 

 Regulation of cell migration 

 Receptor binding 

 Cell adhesion 

 Nucleus 

 Extracellular space 

 Extracellular exosome 

 Extracellular matrix 

 Basement membrane 

 Integrin-mediated signaling pathway 

 Cell migration 

 Integrin binding 

 Substrate adhesion-dependent cell 

spreading 

 Laminin-10 complex 

 Protein binding 

 Proteinaceous extracellular matrix 

 Regulation of cell proliferation 

 Cilium assembly 

 Muscle organ development 

 Odontogenesis of dentin-containing tooth 
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 Morphogenesis of embryonic epithelium 

 Hair follicle development 

 Basal lamina 

 Organ morphogenesis 

 Lung development 

 Establishment of protein localization to 

plasma membrane 

 Branching involved in ureteric bud 

morphogenesis 

 Branching morphogenesis of an epithelial 

tube 

 Neural crest cell migration 

 Branching involved in salivary gland 

morphogenesis 

 Morphogenesis of a polarized epithelium 

ENSSTOG00000026865 SHC2 SHC adaptor protein 

2 

  Intracellular 

 Activation of MAPK activity 

 Receptor tyrosine kinase binding 

 Intracellular signal transduction 

 Protein binding 

ENSSTOG00000028017 CHRNA4 cholinergic receptor 

nicotinic alpha 4 

subunit 

  Ion transport 

 Transport 

 Integral component of membrane 

 Membrane 

 Plasma membrane 

 Extracellular ligand-gated ion channel 

activity 

 Acetylcholine-activated cation-selective 

channel activity 

 Postsynaptic membrane 

 Synapse 

 Cell junction 

 Ion channel activity 

 Signal transduction 
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 Response to oxidative stress 

 DNA repair 

 Acetylcholine receptor activity 

 Response to hypoxia 

 Cognition 

 Neurological system process 

 Acetylcholine-gated channel complex 

 Response to nicotine 

 Behavioral response to nicotine 

 External side of plasma membrane 

 Protein binding 

 B cell activation 

 Action potential 

 Regulation of membrane potential 

 Calcium ion transport 

 Locomotory behavior 

 Synaptic transmission, cholinergic 

 Respiratory gaseous exchange 

 Regulation of dopamine secretion 

 Sensory perception of pain 

 Exploration behavior 

 Membrane depolarization 

 Inhibitory postsynaptic potential 
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Table S4.12 - Over expressed in CO & NY (CO vs WV and NY vs WV) 

Gene Name Description Gene Card GO Terms 

ENSSTOG00000000004 MYO3A myosin IIIA   Myosin complex 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Actin binding 

 Motor activity 

 Nucleotide binding 

 Filopodium 

 Sensory perception of sound 

 Calmodulin binding 

 Filamentous actin 

 Protein autophosphorylation 

 ADP binding 

 Microfilament motor activity 

 Actin-dependent ATPase activity 

 Plus-end directed microfilament motor 

activity 

ENSSTOG00000000314 Missing Missing   Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Sulfate transmembrane transport 

 Basolateral plasma membrane 

 Sulfate transport 

 Secondary active sulfate transmembrane 

transporter activity 

 Gastric acid secretion 

 Anion transmembrane transport 

 Anion transmembrane transporter activity 

 Anion transport 
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ENSSTOG00000000900 SERPINA6 serpin family A 

member 6  

  Extracellular space 

 Extracellular exosome 

 Steroid binding 

 Glucocorticoid metabolic process 

ENSSTOG00000002740 GCK glucokinase    Carbohydrate phosphorylation 

 Phosphotransferase activity, alcohol group 

as acceptor 

 Glycolytic process 

 Glucose binding 

 Hexokinase activity 

 Cellular glucose homeostasis 

 Transferase activity 

 Phosphorylation 

 Kinase activity 

 Carbohydrate metabolic process 

 ATP binding 

 Nucleotide binding 

 Protein binding 

 Negative regulation of gluconeogenesis 

 Positive regulation of insulin secretion 

 Regulation of insulin secretion 

 Glucose homeostasis 

 Positive regulation of glycogen biosynthetic 

process 

 Glucokinase activity 

 Detection of glucose 

 Nucleus 

 Mitochondrion 

 Cytosol 

 Glucose metabolic process 

 Calcium ion import 

 Regulation of potassium ion transport 

 NADP metabolic process 
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ENSSTOG00000003422 CAPN9 calpain 9    Intracellular 

 Digestion 

 Calcium-dependent cysteine-type 

endopeptidase activity 

 Cysteine-type peptidase activity 

 Peptidase activity 

 Calcium ion binding 

 Hydrolase activity 

 Proteolysis 

ENSSTOG00000006286 TNFSF10 tumor necrosis 

factor superfamily 

member 10  

  Membrane 

 Tumor necrosis factor receptor binding 

 Immune response 

 Cytokine activity 

 Extracellular space 

 Protein binding 

 Extracellular exosome 

 Positive regulation of I-kappaB kinase/NF-

kappaB signaling 

 Positive regulation of apoptotic process 

 Positive regulation of release of cytochrome 

c from mitochondria 

 Positive regulation of cysteine-type 

endopeptidase activity involved in apoptotic 

process 

 Positive regulation of extrinsic apoptotic 

signaling pathway 

 Tumor necrosis factor receptor superfamily 

binding 

ENSSTOG00000007004 Missing Missing   Integral component of membrane 

 Membrane 

 Plasma membrane 

 Protein binding 

 Cell-matrix adhesion 

 Cell surface 
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ENSSTOG00000009959 FLNB filamin B   Actin cytoskeleton organization 

 Cell differentiation 

 Actin binding 

 Cytoplasm 

 Plasma membrane 

 Poly(A) RNA binding 

 Protein binding 

 Identical protein binding 

 Extracellular exosome 

 Focal adhesion 

 Epithelial cell morphogenesis 

 Keratinocyte development 

 Stress fiber 

 Brush border 

 Skeletal muscle tissue development 

ENSSTOG00000010036 COL27A1 collagen type 

XXVII alpha 1  

  Proteinaceous extracellular matrix 

 Collagen trimer 

 Extracellular matrix structural constituent 

 Extracellular matrix organization 

 Fibrillar collagen trimer 

 Growth plate cartilage chondrocyte 

development 

ENSSTOG00000010923 CYP7B1 cytochrome P450 

family 7 subfamily 

B member 1  

The cytochrome P450 

proteins are 

monooxygenases which 

catalyze many reactions 

involved in drug 

metabolism and synthesis 

of cholesterol, steroids and 

other lipids. This 

endoplasmic reticulum 

membrane protein catalyzes 

the first reaction in the 

cholesterol catabolic 

 Iron ion binding 

 Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Metal ion binding 

 Heme binding 

 Monooxygenase activity 

 Endoplastic reticulum membrane 

 Endoplasmic reticulum 
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pathway of extrahepatic 

tissues, which converts 

cholesterol to bile acids. 

This enzyme likely plays a 

minor role in total bile acid 

synthesis, but may also be 

involved in the 

development of 

atherosclerosis, 

neurosteroid metabolism 

and sex hormone synthesis 

 Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen 

 Positive regulation of epithelial cell 

proliferation 

 Bile acid biosynthetic process 

 Prostate gland epithelium morphogenesis 

 Negative regulation of intracellular estrogen 

receptor signaling pathway 

 Oxysterol 7-alpha-hydroxylase activity 

ENSSTOG00000011601 Missing Missing   Ion transport 

 Transport 

 Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Regulation of postsynaptic membrane 

potential 

 Sodium ion transmembrane transport 

 Sodium ion transport 

 Sodium channel activity 

 Voltage-gated sodium channel activity 

 Voltage-gated sodium channel complex 

 Ion transmembrane transport 

 Regulation of ion transmembrane transport 

 Voltage-gated ion channel activity 

 Ion channel activity 

ENSSTOG00000019919 Missing Missing   Glutathione transferase activity 

 Metabolic process 

ENSSTOG00000023978 OSGIN1 oxidative stress 

induced growth 

inhibitor 1 

  Oxidation-reduction process 

 Oxidoreductase activity 

 Positive regulation of apoptotic process 

 Negative regulation of cell growth 
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 Protein binding 

 Growth factor activity 

ENSSTOG00000024039 KLHDC7B kelch domain 

containing 7B 

   

ENSSTOG00000024424 Missing Missing   Exocytosis 

 Vesicle docking 

 Cytoplasm 

 Ral GTPase binding 

 Protein N-terminus binding 

ENSSTOG00000026191 ANGPTL8 angiopoietin like 8   Extracellular region 

 Protein binding 

 Regulation of lipid metabolic process 

 Triglyceride homeostasis 

 Positive regulation of protein processing 

 Regulation of lipoprotein metabolic process 

 Hormone activity 

 Fat cell differentiation 

 Cell maturation 

 Cellular lipid metabolic process 

 Type B pancreatic cell proliferation 

ENSSTOG00000027194 MID1IP1 MID1 interacting 

protein 1 

  Protein binding 

 Cytoplasm 

 Nucleus 

 Microtubule cytoskeleton 

 Cytosol 

 Protein C-terminus binding 

 Protein polymerization 

 Negative regulation of microtubule 

depolymerization 

 Positive regulation of fatty acid biosynthetic 

process 

 Positive regulation of ligase activity 
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ENSSTOG00000027330 MUC5AC mucin 5AC, 

oligomeric 

mucus/gel-forming 

  Extracellular region 

 Cytoplasm 

 Extracellular space 

 Extracellular exosome 

 Fibril 

 Phosphatidylinositol-mediated signaling 

 Extracellular fibril organization 

ENSSTOG00000027918 Missing Missing   Integral component of membrane 

 Membrane 

 Plasma membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Cell adhesion 

 Calcium ion binding 

ENSSTOG00000027993 LONRF1 LON peptidase N-

terminal domain and 

ring finger 1 

  Metal ion binding 

 ATP-dependent peptidase activity 

 Zinc ion binding 

 Proteolysis 

 Ubiquitin-protein transferase activity 

 Protein binding 

ENSSTOG00000028594 Missing Missing   Signal transduction 

 Protein binding 

 Axon extension 

 Cell leading edge 
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Table S4.13 - Over expressed in NY & MT (NY vs WV and MT vs NY) 

Gene Name Description Gene Card GO Terms 

ENSSTOG00000010923 CYP7B1 cytochrome P450 

family 7 subfamily 

B member 1  

The cytochrome P450 

proteins are 

monooxygenases which 

catalyze many reactions 

involved in drug 

metabolism and synthesis 

of cholesterol, steroids and 

other lipids. This 

endoplasmic reticulum 

membrane protein catalyzes 

the first reaction in the 

cholesterol catabolic 

pathway of extrahepatic 

tissues, which converts 

cholesterol to bile acids. 

This enzyme likely plays a 

minor role in total bile acid 

synthesis, but may also be 

involved in the 

development of 

atherosclerosis, 

neurosteroid metabolism 

and sex hormone synthesis 

 Iron ion binding 

 Oxidation-reduction process 

 Oxidoreductase activity 

 Integral component of membrane 

 Membrane 

 Metal ion binding 

 Heme binding 

 Monooxygenase activity 

 Endoplastic reticulum membrane 

 Endoplasmic reticulum 

 Oxidoreductase activity, acting on paired 

donors, with incorporation or reduction of 

molecular oxygen 

 Positive regulation of epithelial cell 

proliferation 

 Bile acid biosynthetic process 

 Prostate gland epithelium morphogenesis 

 Negative regulation of intracellular estrogen 

receptor signaling pathway 

 Oxysterol 7-alpha-hydroxylase activity 
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Table S4.14 - Over expressed in NY & NY (NYs vs NYw and NYs vs AK) 

Gene Name Description Gene Card GO Term 

ENSSTOG00000001482 RET ret proto-oncogene Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine 

kinases, which are cell-

surface molecules that 

transduce signals for cell 

growth and differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion 

mediated by integrin 

 Cellular response to reinoic acid 

 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 

 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 
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 Nervous system development 

 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine phophoylation 

of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000004459 Missing Missing   Integral component of membrane 

ENSSTOG00000007820 Missing Missing   Integral component of membrane 

 Membrane 

 Carbohydrate binding 

 Golgi membrane 

 Transferase activity, transferring glycosyl 

groups 

 Protein glycosylation 

 Golgi apparatus 

 Transferase activity 

ENSSTOG00000009418 PLCD3 phospholipase C 

delta 3 

  Intracellular 

 Lipid catabolic process 

 Phosphoric diester hydrolase activity 

 Lipid metabolic process 

 Signal transducer activity 

 Phosphatidylinositol phospholipase C 

activity 
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 Regulation of cell proliferation 

 Signal transduction 

 Angiogenesis 

 Intracellular signal transduction 

 Hydrolase activity 

 Labyrinthine layer blood vessel 

development 

ENSSTOG00000025236 CFAP100 cilia and flagella 

associated protein 

100  

  

ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 
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Table S4.15 - Over expressed genes in NY & WV (NY vs AK and WV vs CO) 

Gene Name Description Gene Card GO Terms 

ENSSTOG00000001482 RET ret proto-oncogene Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine 

kinases, which are cell-

surface molecules that 

transduce signals for cell 

growth and differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion 

mediated by integrin 

 Cellular response to reinoic acid 

 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 

 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 
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 Nervous system development 

 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine phophoylation 

of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000004459 Missing Missing   Integral component of membrane 

ENSSTOG00000004955 SLC30A2 Solute carrier family 

30 member 2 

  Integral component of membrane 

 Membrane 

 Transmembrane transport 

 Cation transmembrane transporter activity 

 Cation transmembrane transport 

 Cation transport 

 Cytoplasm 

 Protein binding 

 Late endosome 

 Lysosomal membrane 

 Positive regulation of sequestering of zinc 

ion 

ENSSTOG00000004982 TRIM63 tripartite motif 

containing 63  

This protein plays an 

important role in the 

atrophy of skeletal and 

cardiac muscle and is 

 Intracellular 

 Metal ion binding 

 Zinc ion binding 

 Cytoplasm 
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required for the degradation 

of myosin heavy chain 

proteins, myosin light chain, 

myosin binding protein, and 

for muscle-type creatine 

kinases.  

 Protein binding 

 Titin binding 

ENSSTOG00000008679 CRISPLD1 cysteine rich 

secretory protein 

LCCL domain 

containing 1 

  Extracellular region 

 Extracellular exosome 

 Face morphogenesis 

ENSSTOG00000020175 Missing Missing   Integral component of membrane 

 Membrane 

 Scavenger receptor activity 

 Receptor-mediated endocytosis 

ENSSTOG00000021636 PPP1R3G protein phosphatase 

1 regulatory subunit 

3G  

Glycogen-targeting subunit 

for protein phosphatase 1 

(PP1). Involved in the 

regulation of hepatic 

glycogenesis in a manner 

coupled to the fasting-

feeding cycle and distinct 

from other glycogen-

targeting subunits 

 Cytoplasm 

 Glucose homeostasis 

 Protein phosphatase binding 

 Positive regulation of glycogen biosynthetic 

process 

 Positive regulation of glycogen (starch) 

synthase activity 

 Glycogen binding 

ENSSTOG00000022426 TSPAN32 tetraspanin 32  This gene, which is a 

member of the tetraspanin 

superfamily, is one of 

several tumor-suppressing 

subtransferable fragments 

located in the imprinted 

gene domain of 

chromosome 11p15.5, an 

 Integral component of membrane 

 Membrane 

 Intracellular 

 Cell surface 

 Integrin-mediated signaling pathway 

 Cytoskeleton organization 

 Negative regulation of cell proliferation 

 Regulation of defense response to virus 

 Defense response to protozoan 
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important tumor-suppressor 

gene region. 

 Blood coagulation 

 Platelet aggregation 

 Hemostasis 

 Negative regulation of myeloid dendritic 

cell activation 

 Integrin alphaIIb-beta3 complex 

ENSSTOG00000022668 EVPL envoplakin Component of the cornified 

envelope of keratinocytes. 

May link the cornified 

envelope to desmosomes 

and intermediate filaments. 

Gene Wiki entry for EVPL 

Gene 

 Intermediate filament binding 

 Epidermis development 

 Cornified envelope 

 Cytoskeleton 

 Structural molecule activity 

 Cytoplasm 

 Extracellular exosome 

 Protein binding 

 Peptide cross-linking 

 Keratinocyte differentiation 

 Intermediate filament cytoskeleton 

ENSSTOG00000026217 SACS sacsin molecular 

chaperone 

Co-chaperone which acts as 

a regulator of the Hsp70 

chaperone machinery and 

may be involved in the 

processing of other ataxia-

linked proteins. 

 Cytoplasm 

 Nucleus 

 Mitochondrion 

 Proteasome binding 

 Chaperone binding 

 Hsp70 protein binding 

 Negative regulation of inclusion body 

assembly 

ENSSTOG00000027573 COMT catechol-O-

methyltransferase 

Catalyzes the O-

methylation, and thereby the 

inactivation, of 

catecholamine 

neurotransmitters and 

catechol hormones. Also 

shortens the biological half-

lives of certain neuroactive 

drugs, like L-DOPA, alpha-

 Integral component of membrane 

 Membrane 

 Neurotransmitter catabolic process 

 Catechol O-methyltransferase activity 

 Catecholamine metabolic process 

 O-methyltransferase activity 

 Methylation 

 Magensium ion binding 

 Protein binding 
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methyl DOPA and 

isoproterenol. 

 Extracellular exosome 

 Mitochondrion 

 Dopamine metabolic process 

 Catechol-containing compound metabolic 

process 

 Cellular response to phosphate starvation 

 Dopamine catabolic process 

ENSSTOG00000027956 Missing Missing   Mitochondrion 

 Glycine N-acyltransferase activity 

ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 
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Table S4.16 - Over expressed genes in NY & WV (NY vs NYw and WV vs CO) 

Gene Name Description Gene Card GO Terms 

ENSSTOG00000001180 CD163 CD163 molecule   Integral component of membrane 

 Membrane 

 Scavenger receptor activity 

 Receptor-mediated endocytosis 

 Protein binding 

ENSSTOG00000001482 RET ret proto-oncogene  Plays crucial role in neural 

crest development.  

 

Is a member of the cadherin 

superfamily, encodes one of 

the receptor tyrosine kinases, 

which are cell-surface 

molecules that transduce 

signals for cell growth and 

differentiation.  

 Membrane 

 Homophilic cell adhesion via plasma 

membrane adhesion molecules 

 Peptidyl-tyrosine phosphorylation 

 Protein tyrosine kinase activity 

 Calcium ion binding 

 Protein phosphorylation 

 ATP binding 

 Protein kinase activity 

 Cytoplasm 

 Plasma membrane 

 Protein binding 

 Integral component of plasma membrane 

 Receptor complex 

 Endosome membrane 

 Intracellular membrane-bounded organelle 

 Positive regulation of cell migration 

 Regulation of cell adhesion 

 Positive regulation of cell adhesion 

mediated by integrin 

 Cellular response to reinoic acid 

 Neuron cell-cell adhesion 

 Positive regulation of neuron projection 

development 

 Membrane protein proteolysis 
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 MAPK cascade 

 Positive regulation of transcription, DNA 

templated 

 Positive regulation of gene expression 

 Transmembrane receptor protein tyrosine 

kinase signaling pathway 

 Nervous system development 

 Positive regulation of cell size 

 Neuron differentiation 

 Regulation of axonogenesis 

 Ureteric bud development 

 Positive regulation of serine 

phosphorylation of STAT3 protein 

 Neural crest cell migration 

 Enteric nervous system development 

 Response to pain 

 Neuron maturation 

 Embryonic epithelial tube formation 

 Ureter maturation 

 Positive regulation of metanephric 

glomerulus development 

 Peyer's patch morphogenesis  

ENSSTOG00000004459 Missing Missing   Integral component of membrane 

ENSSTOG00000006404 PTCH2 patched 2   Integral component of membrane 

 Membrane 

 Hedgehog receptor activity 

 Signal transduction 

 Smoothened binding 

 Hedgehog family protein binding 

 Epidermis development 

 Skin development 

 Positive regulation of epidermal cell 

differentiation 
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 Hair cycle 

 Cell fate determination 

 Epidermal cell fate specification 

ENSSTOG00000020288 ISG15 ISG15 ubiquitin-like 

modifier  

  Extracellular region 

 Defense response to bacterium 

 Protein binding 

 Negative regulation of viral genome 

replication 

 Defense response to virus 

 Negative regulation of protein 

ubiquitination 

 ISG15-protein conjugation 

 Regulation of interferon-gamma 

production 

 Response to type I interferon 

 Protein tag 

 Modification-dependent protein catabolic 

process 

 Positive regulation of erythrocyte 

differentiation 

ENSSTOG00000026716 VCAN versican   Hyaluronic acid binding 

 Cell adhesion 

 Calcium ion binding 

 Extracellular space 

 Membrane 

 Protein binding 

 Extracellular matrix 

 Intracellular membrane-bounded organelle 

 Osteoblast differentiation 

ENSSTOG00000028432 Missing Missing   Metabolic process 

 Catalytic activity 

 Mitochondrion 
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Table S4.17 - Over expressed genes in WV & NY (WV vs NY and NY vs MT) 

Gene Name Description Gene Cards GO Terms 

ENSSTOG00000020350 EIF4EBP3 eukaryotic 

translation initiation 

factor 4E binding 

protein 3 

This gene encodes a member 

of the EIF4EBP family, 

which consists of proteins 

that bind to eukaryotic 

translation initiation factor 

4E and regulate its assembly 

into EIF4F, the multi-

subunit translation initiation 

factor that recognizes the 

mRNA cap structure. 

 Negative regulation of translational

initiation

 Eukaryotic initiation factor 4E binding

 Membrane

 Protein binding
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Table S4.18 - Over expressed genes in WV & WV (WV vs NY and WV vs CO) 

Gene Name Description Gene Card GO Terms 

ENSSTOG00000000695 DDIT4 DNA damage 

inducible transcript 

4 

 Negative regulation of signal transduction

 Cytoplasm

 Intracellular

 Response to hypoxia

 Negative regulation of TOR signaling

 Mitochondrion

 Reactive oxygen species metabolic

process

 Intrinsic apoptotic signaling pathway in

response to DNA damage by p53 class

mediator

 14-3-3 protein binding

 Negative regulation of

 Glycolytic process

 Protein complex disassembly

ENSSTOG00000000928 SEMA4D semaphorin 4D  Integral component of membrane

 Membrane

 Positive regulation of GTPase activity

 Negative regulation of transcription from

RNA polymerase II promoter

 Protein binding

 Integral component of plasma membrane

 Positive regulation of protein

phosphorylation

 Receptor binding

 Transmembrane signaling receptor

activity

 Receptor activity

 Positive regulation of cell migration

 Regulation of cell shape
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 Positive regulation of phosphatidylinositol

3-kinase signaling

 Negative regulation of cell adhesion

 Semaphorin-plexin signaling pathway

 Semaphorin receptor binding

 Ossification involved in bone maturation

 Regulation of dendrite morphogenesis

 Positive regulation of collateral sprouting

 Negative regulation of alkaline

phosphatase activity

 Regulation of cell projection organization

 Leukocyte aggregation

 Extracellular space

 Positive regulation of peptidyl-tyrosine

phosphorylation

 Positive regulation of axonogenesis

 Negative regulation of osteoblast

differentiation

 Negative regulation of peptidyl-tyrosine

phosphorylation

 Semaphorin-plexin signaling pathway

involved in bone trabecula morphogenesis

ENSSTOG00000001668 ARPC1B actin related protein 

2/3 complex subunit 

1B 

 Regulation of actin filament

polymerization

 Actin cytoskeleton

 Arp2/3 complex-mediated actin

nucleation

 Arp2/3 protein complex

 Structural constituent of cytoskeleton

 Actin filament binding

 Extracellular exosome

 Focal adhesion
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ENSSTOG00000002137 CIDEC cell death inducing 

DFFA like effector c 

 Intracellular

 Apoptotic process

ENSSTOG00000003534 MEDAG mesenteric estrogen 

dependent 

adipogenesis 

 Cytoplasm

 Positive regulation of fat cell

differentiation

ENSSTOG00000003590 ROPN1L rhophilin associated 

tail protein 1 like 

 Cytoplasm

 Protein binding

 Motile cilium

ENSSTOG00000003699 ACP5 acid phosphatase 5, 

tartrate resistant 

 Acid phosphatase activity

 Hydrolase activity

 Extracellular exosome

 Ferrous iron binding

 Ferric iron binding

 Defense response to Gram-positive

bacterium

 Response to lipopolysaccharide

 Dephosphorylation

 Lysosome

 Response to cytokine

 Bone morphogenesis

 Negative regulation of inflammatory

response

 Negative regulation of interleukin-12

production

 Negative regulation of nitric oxide

biosynthetic process

 Bone resorption

 Negative regulation of tumor necrosis

factor production

 Negative regulation of interleukin-1 beta

production
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 Negative regulation of superoxide anion

generation

ENSSTOG00000006055 C1orf54 chromosome 1 open 

reading frame 54 

ENSSTOG00000006335 BPIFB4 BPI fold containing 

family B member 4 

 Lipid binding

ENSSTOG00000006538 ATOH8 atonal bHLH 

transcription factor 8 

 Cell differentiation

 Transcription factor activity, sequence-

specific DNA binding

 Protein dimerization activity

Regulation of transcription, DNA

templated

 Nucleus

 Positive regulation of transcription, DNA

templated

 SMAD protein signal transduction

 E-box binding

 Negative regulation of endothelial cell

proliferation

 Postive regulation of endothelial cell

migration

 Tube formation

 Postive regulation of endothelial cell

differentiation

 Cytoplasm

 Transcription factor binding

 Negative regulation of transcription, DNA

templated

 Activating transcription factor binding

 Formation of primary germ layer

 Myoblast proliferation
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ENSSTOG00000008554 Fabp4 Fatty acid-binding 

protein, adipocyte 

 Transport

 Hibernation

 Regulation of inflammatory response

 Fatty acid binding

 Lipid binding

 Transporter activity

 Cytoplasm

 Nucleus

 Extracellular exosome

 Negative regulation of transcription,

DNA-templated

 Cholesterol homeostasis

 White fat cell differentiation

 Brown fat cell differentiation

 Cytokine production

 Negative regulation of protein kinase

activity

 Positive regulation of inflammatory

response

 Cellular response to lithium ion

ENSSTOG00000011283 KLHDC8A kelch domain 

containing 8A 

ENSSTOG00000019839 GABRR3 gamma-

aminobutyric acid 

type A receptor rho3 

subunit 

(gene/pseudogene)  

 Ion transport

 Transport

 Integral component of membrane

 Membrane

 Plasma membrane

 Extracellular ligand-gated ion channel

activity

 Synapse

 Ion transmembrane transport

 Cell junction
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ENSSTOG00000020350 EIF4EBP3 eukaryotic 

translation initiation 

factor 4E binding 

protein 3 

This gene encodes a member 

of the EIF4EBP family, 

which consists of proteins 

that bind to eukaryotic 

translation initiation factor 

4E and regulate its assembly 

into EIF4F, the multi-

subunit translation initiation 

factor that recognizes the 

mRNA cap structure. 

 Negative regulation of translational

initiation

 Eukaryotic initiation factor 4E binding

 Membrane

 Protein binding

ENSSTOG00000021850 Missing Missing  Lysozyme activity

ENSSTOG00000022135 S100A4 S100 calcium 

binding protein A4 

 Metal ion binding

 Calcium ion binding

 Nucleus

 Extracellular space

 Poly(A) RNA binding

 Protein binding

 Perinuclear region of cytoplasm

 Extracellular exosome

 Positive regulation of I-kappaB

kinase/NF-kappaB signaling

 RAGE receptor binding

 Identical protein binding

ENSSTOG00000023060 Missing Missing  Lysozyme activity

ENSSTOG00000023809 POPDC2 popeye domain 

containing 2  

 Integral component of membrane

 Membrane

 Sarcolemma

ENSSTOG00000024173 FAM134B family with 

sequence similarity 

134 member B 

 Integral component of membrane

 Membrane

 Reticulophagy

 Integral component of endoplasmic

reticulum membrane
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 Protein binding

 Negative regulation of neuron apoptotic

process

 Sensory perception of pain

 cis-Golgi network

ENSSTOG00000025781 PPP1R3C protein phosphatase 

1 regulatory subunit 

3C 

 Protein phosphatase regulator activity

 Glycogen metabolic process

 Regulation of catalytic activity

 Carbohydrate metabolic process

 Protein binding

 Glycogen biosynthetic process

 Protein phosphatase binding

ENSSTOG00000027370 GADD45G growth arrest and 

DNA damage 

inducible gamma  

 Response to stress

 Regulation of cell cycle

 Nucleus

 Cytoplasm

Protein binding

 Postive regulation of apoptotic process

 Positive regulation of JNK cascade

 Activation of MAPKKK activity

 Positive regulation of p38MAPK cascade

ENSSTOG00000028838 FAM166B family with 

sequence similarity 

166 member B 




