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Optimization and variational problems typically involve a highly structured

blend of smooth and nonsmooth geometry. In nonlinear programming, such

structure underlies the design of active-set algorithms, in which a globally con-

vergent process first simplifies the problem by identifying active constraints at

the solution; a second phase then employs a rapidly-convergent Newton-type

method, with linearmodels of the simplified problem playing a central role. The

theory of partial smoothness formalizes and highlights the fundamental geome-

try driving “identification.” This dissertation concentrates on the second phase,

and understanding accelerated local convergence in partly smooth settings.

A key contribution is a simple algorithm for “black-box” nonsmooth opti-

mization, that incorporates second-order information with the usual linear ap-

proximation oracle. Motivated by active sets and sequential quadratic program-

ming, amodel-based approach is used to prove local quadratic convergence for a

broad class of objectives. Promising numerical results onmore general functions,

as well as simple first-order analogues, are discussed. Beyond optimization, an

intuitive linearization scheme for generalized equations is formalized, with sim-

ple techniques based on classical differential geometry: manifolds, normal and

tangent spaces, and constant rankmaps. The approach illuminates fundamental

geometric ideas behind active-set acceleration techniques for variational inequal-

ities, as well as second-order theory and algorithms for structured nonsmooth

optimization.
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CHAPTER 1

INTRODUCTION

The algorithmic idea of approximating the solution to a difficult problem

with a sequence of solutions to easier problems has a long and rich history in

mathematics. A particularly early example is the Babylonian method of comput-

ing square roots. More generally, we can often formulate a problem as finding a

solution x to a system of equations in Euclidean space

F(x) � 0.

Works of Vieta, Newton, Raphson, and Simpson eventually gave rise to the first

modern formulation – in the language of calculus – of what is now most com-

monly known as Newton’s method. The algorithm is motivated by the fact that

the derivative provides a good approximation to the equations of interest:

F(x + z) ≈ F(x) + ∇F(x) z for all x and small z.

Therefore, given a candidate solution x, we instead solve a system where F is

replacedwith the local model F(x)+∇F(x)( · −x) to find a new candidate solution.

The resulting Newton iteration

x ← x − ∇F(x)−1F(x)

forms the core of countless numerical procedures due to its simplicity, intuitive-

ness, and good theoretical and practical performance.

However, situations abound in applied mathematics where the problem or

equation system of interest is not only not differentiable but may lack any classi-

cal notion of continuity. Central to modern theory is the idea of set-valued map-

pings, with the problem of interest being a generalized equation

0 ∈ Φ(x).
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Such mappings play fundamental roles in the study of optimization and varia-

tional inequalities. Broadly, this dissertation is concerned with understanding

local models, with the immediate aim of designing algorithms, in this setting.

Mathematical analysis has historically been plagued by pathological counterex-

amples, and nonsmooth analysis is no exception. This has led researchers to seek

suitable classes of structured problems, for example convexity, semialgebraicity, or

semismoothness, that provide interesting and relevant analysis, while remaining

general enough to encompass a broad landscape of practical applications. Of

particular importance in this work is the structure of partial smoothness. This the-

ory generalizes the notion of active sets in nonlinear programming to rigorously

root the observation that sets and functions arising in practice are typically a

highly structured blend of smooth and nonsmooth geometry.

One of the central contributions of this dissertation is providing a frame-

work for understanding local linearization models and algorithms for general-

ized equations in a partly smooth setting. The techniques are fundamentally

simple and based on classical differential geometry: manifolds, normal and tan-

gent spaces, and constant rank maps. Despite this simplicity the framework il-

luminates a variety of interesting applications, particularly in optimization and

variational inequalities.

Our second key contribution is to provide a practical and fully imple-

mentable Newton-type algorithm for local nonsmooth optimization, with the

first known superlinear convergence result for a broad class of nonsmooth func-

tions. Preliminary work and numerical experiments suggest several promising
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future directions.

1.1 Smooth and nonsmooth models in optimization

A core numerical problem in appliedmathematics and science is the accurate

local minimization of a continuous real-valued objective function f : Rn → R.

Standard optimization literature [106, 9, 104, 31] initially assumes very little on

the global structure of f : given a point x ∈ Rn , we are able to compute the ob-

jective value f (x), possibly the gradient ∇ f (x), and possibly the Hessian ∇2 f (x).

When f is sufficiently smooth, a complete theory is well understood. Local op-

timization techniques rely on the gradient to define an accurate linear model

f (x) + ∇ f (x)Ë( · − x) of the function around points of interest.

Figure 1.1: A quadratic model.

By minimizing the linear model augmented with a quadratic regularization

term (suitably chosen to ensure steps that are neither too large or too small),

f (x) + ∇ f (x)Ë( · − x) +
ρ

2 | · − x |2,

we recover gradient descent: we choose x − ρ∇ f (x) as a point with improved ob-

jective function value. Global convergence to stationary points can be achieved

with appropriate line search or trust region techniques [106].
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Assuming second-order smoothness allows us to derive conditions to deter-

mine which stationary points are minimizers. Furthermore, fast local rates of

convergence can be achieved by applying Newton’s method to the stationarity

condition ∇ f (x) � 0. In a region around a local minimizer, the Newton iteration

x ← x − ∇2 f (x)−1∇ f (x)

is well-defined and has an alternative interpretation as theminimizer of the local

quadratic model

f (x) + ∇ f (x)Ë( · − x) + 1
2( · − x)Ë∇2 f (x)( · − x).

More complex quasi-Newton algorithms, which aim to strike a balance between

the computational economy of gradient-based methods and the powerful con-

vergence rates of Newton’s method, are the traditional workhorses of numerical

optimization code and remain an active area of research [82, 10, 34].

In the nonsmooth case, when the objective function is not differentiable ev-

erywhere (and in particular not necessarily at minimizers), the situation is more

complicated. Convex sets and functions [115] have long been recognized as par-

ticularly amenable to computation and analysis, by appealing to the existence of

separating hyperplanes and subgradients,

g ∈ ∂ f (x) ⇔ f (z) ≥ f (x) + gË(z − x) for all z ,

which yield one sided estimates of the objective function. Knowledge of the en-

tire subdifferential ∂ f (x) is usually too stringent a requirement in practice, so

algorithms for unstructured or “black box” convex optimization instead assume

that a single subgradient can be computed via a subgradient oracle g(x) ∈ ∂ f (x).

(The vast field of structured convex optimization, in which explicit representa-

tions of f are assumed, for example linear or conic programming, is beyond the

scope of this work and not treated here.)
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Cutting plane methods [27, 64] aim to construct a global model of the objec-

tive function by incorporating information from multiple subgradients. Specifi-

cally, given a finite set of points X ⊂ Rn and a subgradient oracle g, the cutting

plane model of f is the piecewise linear function

y 7→ max
x∈X

{
f (x) + g(x)Ë(y − x)

}
.

The fundamental idea is that the cutting plane model becomes an increasingly

accurate lower model as more points are added to the set X.

Figure 1.2: A cutting plane model.

Naive cutting plane implementations suffer from instability and poor practi-

cal performance [104, 5], but more sophisticated cutting plane techniques can be

effective at moderate scale [2, 126, 76, 103, 74].

Proximal algorithms, based on the proximal mapping

x 7→ arg min
y

{
f (y) + 1

2 |y − x |2
}

introduced in the seminal works of Moreau [100, 101] and popularized by the

proximal point algorithm for monotone operations of Rockafellar [116], play

fundamental roles in modern optimization theory and applications [111, 30,
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11, 83]. For convex optimization, proximal algorithms and their various opera-

tor splitting generalizations [3] possess more favourable convergence properties

than subgradient-based algorithms [5]. However, computation of the proximal

point is itself a nonsmooth optimization problem, and is thus not necessarily

easier than the original problem. Successful application is therefore limited to

cases where the objective function can be decomposed into smooth and “prox-

friendly” ingredients. In other words, nonsmoothness is handled analytically

and not modeled numerically.

Proximal cutting plane or bundle methods [75, 129, 93, 68] (see also the sur-

vey [107]) are a combination of cutting plane and proximity control ideas, and

involve subproblem models of the form

y 7→ max
x∈X

{
f (x) + g(x)Ë(y − x)

}
+
ρ

2 |y − z |2

for a bundle of points X and subgradients g(x) ∈ ∂ f (x) for x ∈ X. With appropri-

ate parameter selection and judicious updates of the center z, a bundle method

can be viewed as an “implementable proximal point algorithm” [120]. Despite

their popularity over the past several decades, results on convergence rates for

bundle methods are sparse [67, 44] and several aspects of the behaviour of the

method remain poorly understood [96].

In the nonsmooth and nonconvex setting, designing even local minimization

algorithms is much more difficult. Bundle methods have been extended to the

nonconvex case [54, 69, 92, 122, 128], however implementation is delicate, and

nonconvexity is handled in a heuristic way that is not supported by strong con-

vergence theory or well-defined models of the objective function. A recent line

of work [58, 57] improves upon previous nonconvex bundle methods by consid-

ering the class of prox-regular functions (nonconvex functions that admit well-
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defined proximal points), but no convergence rates are given.

When the objective function is locally Lipschitz, an alternate direction is to

appeal to Rademacher’s theorem and work with the Clarke subdifferential [29]

∂c f (x̄) � conv
{

lim
r→∞
∇ f (xr) : xr → x̄ , xr ∈ D

}
,

where D is the (full measure) set of points where f is differentiable. Stationary

points can thus be recognized when zero is a convex combination of gradients

of nearby points. Gradient sampling [18] strategies attempt to model the Clarke

subdifferential as

∂c f (x̄) ≈ conv{∇ f (x) : x randomly sampled near x̄}.

With large enough samples, this approximation can then be used to generate de-

scent directions, leading to algorithms that are globally convergent to stationary

points with high probability.

1.2 Partial smoothness

Even in the convex case, nonsmooth algorithms based on subgradients are

theoretically limited to poor rates of convergence [104]. Despite this, the folklore

in the optimization community (verified experimentally during the course of

writing this dissertation) is that bundle methods usually perform much better

in practice than the theory suggests. One reason for this may be that typical

nonsmooth functions are highly structured; minimizers tend to lie on “ridges” of

the nonsmooth graph. This, in fact, holds generically for semialgebraic functions

[40].

The theory of partial smoothness [79] formalizes this with the existence of an

active manifoldM relative to which the restricted function f
��
M is smooth. Or-
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Figure 1.3: A partly smooth function.

thogonal toM the function behaves in a nonsmooth manner. A simple example

is the two-dimensional function

f (u , v) � u2
+ |v | (u , v ∈ R),

which relative to the manifold R×{0} behaves as the smooth univariate function

t 7→ t2. In the language of VU-theory [77, 97, 94], we decompose R2 into the

complementaryU-subspace R × {0} andV-subspace {0} × R.

Based on these decompositions, one can envision a conceptual algorithm that

learnsM [98, 84] so as to employ a smooth model on the reduced function f
��
M .

An implementable algorithm combining the equivalent (in the convex case)VU-

theory with a typical bundle method is given in [95], but the method has several

drawbacks. Implementation is complicated, and since VU-theory and bundle

methods are only well understood for convex functions, the algorithm does not

immediately generalize to nonconvex objectives. Fast convergence is also only

proven for a sequence of “serious steps,” and a bound on the total computation

required to reach accurate solutions remains unknown.
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In contrast to these carefully structured approaches for fast nonsmooth min-

imization, another line of work [82] investigates the baffling success of applying

quasi-Newton algorithms to nonsmooth functions. A rigorous theory does not

exist, but there is a large amount of numerical evidence, that the BFGS algorithm

automatically identifies partly smooth structure. When applied to nonsmooth

functions, the Hessian approximations generated by the algorithm become in-

creasingly ill-conditioned precisely in directions orthogonal to the active mani-

fold (“V-space”). Some recent algorithmic frameworks [32, 34] have found prac-

tical success in employing gradient sampling techniques to improve the accuracy

of solutions found via BFGS.

In Chapter 3 we take a fresh look at partly smooth models for nonsmooth

optimization with a novel semi-structured approach, driven by considering the

simple but broad class of max functions of the form

f (x) � max
i

fi(x)

that are partly smooth with respect to the manifold

M � {x : fi(x) equal for all i}.

Weshowhow it is easy to estimate the dimension ofM using existing algorithms,

and armed onlywith this dimension k, we develop a new class of algorithms that

converge at local quadratic rates by incorporating second-order information, and

without full knowledge of the underlying structure functions fi . We also discuss

some preliminary first-order extensions of this model.
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1.3 Beyond optimization: Generalized equations

Generalizing Newton’s method beyond smooth equations has long been an

active area of research. We refer the reader to the monographs [49, 38, 61], or the

recent survey [62]. In the case of a nonsmooth equation F(x) � 0, one avenue is

to work with the Clarke generalized Jacobian

∂F(x̄) � conv
{

lim
r→∞
∇F(xr) : xr → x̄

}
.

For the class of semismooth functions (see e.g., [49]), elements of the Clarke Jaco-

bian define an adequate Newton model in the sense that

lim
x→x̄

G∈∂F(x)

F(x) + G(x̄ − x) − F(x̄)
|x − x̄ | � 0,

and therefore we can consider Newton iterations of the form

x ← x − G−1F(x) for G ∈ ∂F(x).

Since semismooth functions arise broadly andnaturally [7], semismoothNewton

methods [113] have enjoyed broad practical success, especially in the infinite-

dimensional setting [125].

In the set-valued or generalized equation setting, equations often take the

form 0 ∈ F(x) + Ψ(x) where F is smooth and Ψ is set-valued. In this setting

the Josephy-Newtonmethod [63] can be employed which considers the partially

linearized model equation

0 ∈ F(x) + ∇F(x)( · − x) +Ψ( · ).

(Obvious extensions to semismooth F can also be considered.) Under suitable

“metric regularity” assumptions – which generalize nonsingularity of the Jaco-

bian in classical Newton’s method – these methods are well-defined and fast
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rates of convergence can be established [38, 62]. However, a limitation of these

methods is that they ultimately rely on linearizing single-valued mappings, and

leave the set-valued ingredient alone, precluding their application to generalized

equations unless the problem can be reformulated so thatΨ is simple enough to

work with directly. As an example, consider the optimization problem of mini-

mizing a linear function x 7→ cËx over the convex constraint set

K � {x : gi(x) ≤ 0 for i � 1, . . . ,m}.

Minimizers x̄ satisfy the generalized stationarity equation −c ∈ NK(x̄). The nor-

mal cone operator NK is a complicated object, but by introducing dual variables

y ∈ Rm and a Lagrangian, assuming a constraint qualification we can write the

stationarity condition as

0 ∈ ©­«
c + ∇g(x)y

g(x)
ª®¬ + NE(x , y),

where E is the simpler set Rn × Rm
+ . Applying the Josephy-Newton model cap-

tures the class sequential quadratic programming methods. But this generality fails

to capture the practically important active-set philosophy: when the active con-

straints A(x̄) (those j for which g j(x̄) � 0) have been identified, the problem

reduces to minimization over the smooth lower-dimensional constraint set

{x : g j(x) � 0 for j ∈ A(x̄)},

for which direct Newton methods can be employed.

In Chapter 4, we consider generalized equations in a partly smooth setting.

Based on the recent extension [80] of partial smoothness to set-valued maps, we

develop an intuitive linearization scheme in broad generality. The approach il-

luminates fundamental geometric ideas behind active-set algorithms for varia-
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tional inequalities and higher-order schemes for modern composite optimiza-

tion.

We end this dissertation in Chapter 5 with a return to unstructured non-

smooth minimization. Based on insights gained from the previous chapter, we

modify the algorithms of Chapter 3 to derive an implementable partly smooth

Newton algorithm. While a rigorous convergence theory is left as a topic for

future research, promising numerical results are shown.
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CHAPTER 2

PRELIMINARIES

This chapter lays out notation and collects preliminary definitions and well-

known results that will play important roles in this dissertation.

2.1 Euclidean space

Our setting is that of finite-dimensional inner product (or Euclidean) spaces,

denoted E, U, etc., over the real numbers R. We denote the inner product ⟨ · , · ⟩

and corresponding induced norm | · | �
√
⟨ · , · ⟩. The unit ball is fixed as

B � {x : |x | ≤ 1}

and the ball of radius δ > 0 centered at z as

Bδ(z) � {x : |x − z | ≤ δ}.

Inner products (and corresponding norms) of Cartesian product spaces U × V

are defined in the natural way as

⟨(u , v), (w , z)⟩ � ⟨u , w⟩ + ⟨v , z⟩.

We define the operator norm on the space of (necessarily bounded) linear maps

T : U→ V as

|T | � sup
u∈U

|Tu |
|u | .

We say a set {x0, x1, . . . , xn} ⊂ E is linearly independent if

n∑
i�0

λixi � 0 ⇒ λ � 0
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and affinely independent if {x1 − x0, . . . , xn − x0} is linearly independent. Given a

linear map A : U→ V the adjoint is the unique linear map A∗ : V→ U such that

⟨Au , v⟩ � ⟨u ,A∗v⟩.

A self-adjoint (A � A∗) map is called positive semidefinite if ⟨u ,Au⟩ ≥ 0 for all

u ∈ U. If the inequality is strict for all u , 0 we say A is positive definite.

We write O(t) to denote a term satisfying

lim sup
t→0

O(t)
t

< ∞

and o(t) to denote a term satisfying

lim
t→0

o(t)
t

� 0.

If z is a vector, we sometimes write O(z) and o(z) to mean O(|z |) and o(|z |) re-

spectively.

Given a sequence xk converging to x̄, we say that the convergence rate is linear

if there exists some r ∈ (0, 1) such that

|xk+1 − x̄ | ≤ r |xk − x̄ | for large k ,

superlinear if

|xk+1 − x̄ | � o
(
|xk − x̄ |

)
,

and quadratic if

|xk+1 − x̄ | � O
(
|xk − x̄ |2

)
.

2.2 Smooth maps

Let F : U → V be a map between Euclidean spaces U and V. We say F is

differentiable at u ∈ U if there exists a linear map T : U→ V such that

F(u + z) � F(u) + Tz + o(z).

14



When F is differentiable at u we call T the derivative of F at u, and denote it DF(u).

When the map u 7→ DF(u) is continuous and defined for all u ∈ U we say that F

is continuously differentiable, C(1)-smooth, or just C(1). Since DF maps U to linear

operators U→ V, we can define higher order derivatives and smoothness in an

identical manner.

For F : Rn → Rm : x 7→ ( f1(x), . . . , fm(x)), the derivative DF(x) can be

represented as the Jacobian matrix

©­­­­­«
∂ f1(x)
∂x1

· · · ∂ f1(x)
∂xm

...
. . .

...

∂ fm(x)
∂x1

· · · ∂ fm(x)
∂xm

ª®®®®®¬
C(k)-smoothness then amounts to the existence and continuity of all kth order

partial derivatives.

For real valued f : E→ R, the derivative takes the form D f (x) : z 7→ ⟨g , z⟩

for some g ∈ E which we call the gradient ∇ f (x). C(2)-smoothness amounts to

the functions hz : x 7→ ⟨∇ f (x), z⟩ being C(1)-smooth for all z. In this case we call

the bilinear operator ∇2 f (x)[w , z] � ⟨w ,∇hz(x)⟩ the Hessian of f .

When E � Rn with the usual dot product ⟨u , v⟩ � uËv the gradient can be

represented as the column vector of partial derivatives
(
∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xn

)
and the

Hessian takes the form ∇2 f (x)[w , z] � wË∇2 f (x)z for the Hessian matrix

∇2 f (x) �
©­­­­­«
∂2 f (x)
∂x2

1
· · · ∂2 f (x)

∂x1∂xm

...
. . .

...

∂2 f (x)
∂xm∂x1

· · · ∂2 f (x)
∂x2

m

ª®®®®®¬
.

The following results are central and will be used throughout, their proofs

can be found in any advanced calculus text.
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Theorem 2.2.1 (Taylor’s Theorem). For twice continuously differentiable f : E→ R,

f (x + tz) � f (x) + t ⟨∇ f (x), z⟩ + t2

2 ∇
2 f (x)[z , z] + o(t2)

for all x , z ∈ E.

Proposition 2.2.1. For f : E→ R with ∇ f L-Lipschitz,�� f (y) − f (x) − ⟨∇ f (x), y − x⟩
�� ≤ L

2 |y − x |2

for all x , y ∈ E.

Corollary 2.2.1. For twice continuously differentiable F : E→ Rm ,

F(u + z) � F(u) + DF(u)z + O(|z |2).

2.3 Convex and nonsmooth analysis

Following standard variational analysis [119], we denote the extended real

line R̄ � R ∪ {+∞,−∞}, with the convention that (+∞) + (−∞) � +∞ and 0 ×

(±∞) � 0. We denote the domain of an extended valued function f : E→ R̄ by

dom f �
{

x ∈ E : f (x) < +∞
}
.

f is proper if it never takes the value −∞ and dom f is nonempty. f is closed or

lower semicontinuous if its epigraph

epi f �
{
(x , t) ∈ E × R : t ≥ f (x)

}
is a closed set. The indicator function of a set S ⊂ E is defined by

δS(x) �


0 (x ∈ S),

+∞ (x < S).
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A point y ∈ E is a regular subgradient of f at x ∈ dom f if

f (x + z) ≥ f (x) + ⟨y , z⟩ + o(z).

The set of all regular subgradients at x is denoted ∂̂ f (x). y is a (limiting) subgra-

dient if there exist sequences (xr) and (yr) with yr ∈ ∂̂ f (xr) such that xr → x,

f (xr) → f (x), and yr → y. We say that f is regular at x ∈ dom f if ∂ f (x) , �

and ∂̂ f (x) � ∂ f (x). If f is differentiable at x, then ∂ f (x) � {∇ f (x)}.

For a closed set S ⊂ E, the regular normal cone to S at x is

N̂S(x) � ∂̂δS(x) �
{

y ∈ E : ⟨y , z − x⟩ ≤ o(|z − x |) for all z ∈ S
}
.

The (limiting) normal cone is NS(x) � ∂δS(x) and S is regular at x when NS(x) �

N̂S(x). The tangent cone to S at x is

TS(x) �
{

lim
r→∞

dr : ∃tr ↘ 0 with x + tr dr ∈ S
}
.

A set S ⊂ E is convex if λx + (1 − λ)y ∈ S for all x , y ∈ S and 0 ≤ λ ≤ 1. S is

affine if this holds for any real λ. The convex hull conv S is the smallest convex set

containing S. The affine hull is defined identically and the relative interior ri S is

the interior of S with respect to its affine hull.

A function f : E→ R̄ is convex if epi f is a convex set. f is µ-strongly convex

if f − µ
2 | · |2 is convex, and η-weakly convex if f + η

2 | · |2 is convex. Convex sets and

functions are everywhere regular in the sense that

NS(x) � N̂S(x) � {y : ⟨y , z − x⟩ ≤ 0 for all z ∈ S},

∂ f (x) � ∂̂ f (x) � {y : f (x) + ⟨y , z − x⟩ ≤ f (z) for all z ∈ E}.

Theorem 2.3.1. A closed convex and proper function f : E → R is locally Lipschitz

around any x ∈ int(dom f ), and moreover� , ∂ f (x) ⊂ LB where L is a local Lipschitz

constant.
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Theorem 2.3.2 ([29], Proposition 2.2.7 and Theorem 2.5.1). When f : E → R is

locally Lipschitz and regular at x̄,

∂ f (x̄) � conv
{

lim
r→∞
∇ f (xr) : xr → x̄ , xr ∈ D , xr < S for r � 1, 2, . . .

}
where S ⊂ E is any set of Lebesgue measure zero.

Normal cones and subdifferentials motivate the analysis of set-valued map-

pings. The most convenient way to work with a set-valued mapping Φ : U⇒ V

is through its graph

gphΦ � {(u , v) ∈ U ×V : v ∈ Φ(u)}.

Definition 2.3.1. The graphical derivative of Φ at u for v, DΦ(u , v) : U ⇒ V, is

characterized by

z ∈ DΦ(u |v)(w) ⇔ (w , z) ∈ TgphΦ(u , v).

The coderivative of Φ at u for v, D∗Φ(u , v) : V⇒ U, is characterized by

w ∈ D∗Φ(u |v)(z) ⇔ (w ,−z) ∈ NgphΦ(u , v).

Graphical derivatives and coderivatives can be viewed as a rudimentary kind

of generalized differentiation, with DF and D∗F coinciding with the classical

derivative and its adjoint when F : U→ V is a smooth singled-valued mapping,

and satisfying the following basic calculus.

Theorem 2.3.3 ([119], see 10.43). Consider set-valued Ψ : U ⇒ V and C(1)-smooth

F : U→ V. Then for any u and v,

D(F +Ψ)(u |v)(w) � ∇F(u)w + DΨ(u |v − F(u))(w) for all w ,

D∗(F +Ψ)(u |v)(y) � ∇F(u)∗y + D∗Ψ(u |v − F(u))(y) for all y.
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2.4 Smooth manifolds

Loosely speaking, a manifold is a set that is locally homeomorphic to Eu-

clidean space. A little more precisely, X is a manifold around z if there is some

homeomorphism between X and a coordinate space, ϕ : X → Rk , locally defined

around z, such that ϕ(z) � 0. We call ϕ a coordinate map and say it is centered

around z, and we say that the dimension of X is k. The following definitions and

results are standard [72].

Themost usefulmanifolds for the purposes of this work are those that are the

solution sets of smooth equations with linearly independent gradients. Specif-

ically, we will be concerned with C(r)-smooth embedded submanifolds (for some

r � 1, 2, . . .), and let the term C(r)-manifold refer to those of this type.

Definition 2.4.1. X is a C(r)-manifold around z ∈ E if and only if there exists a

C(r)-smooth defining map G : E → Rm with DG(z) surjective such that G−1(0) is

a neighbourhood of z in X.

Amanifold defined by G : E→ Rm has dimension dim E−m and codimension

m. It will sometimes be useful to work with an equivalent definition that makes

use of coordinate space.

Definition 2.4.2. X is a C(r)-manifold around z ∈ E if and only if there exists a

C(r)-smooth local parametrization H : Rk → E such that H(0) � z, with DH(0)

injective and H(δB) a neighbourhood of z in X for all small δ > 0.

The tangent and normal cones of a smooth manifold coincide with the clas-

sical tangent and normal spaces, which have the following algebraic representa-
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tions for defining map G and local parametrization H(w) � x.

TX(x) � Range(DH(w)) � Null(DG(x)),

NX(x) � Null(DH(w)∗) � Range(DG(x)∗).

It is important to note that TX(x) and NX(x) are geometric objects independent

of any specific choice of G and H.

Proposition 2.4.1. Let X be a C(1)-manifold around z ∈ E with local parametrization

H : Rk → E. If u , v ∈ Rk are sufficiently small then

u − v � O
(
H(u) − H(v)

)
and H(u) − H(v) � O(u − v).

Proof. Since DH(0) is injective, H is locally a bĳection between Rk and X, so

there exists some smooth inverse H−1 : X → Rk such that H−1(H(w)) � w for all

small w. Thus,

|u − v | ≤
��H−1�� ��H(u) − H(v)

��
≤

��H−1�� ��H�� |u − v |.

The result follows immediately. □

Definition 2.4.3. Given a smooth map P : X → Y between manifolds X ,Y ⊂ E,

the rank of P at ū is defined to be the rank of the derivative

DP(ū) : TX(ū) → TY(F(ū)).

If in some neighbourhood of ū the rank of P is constant, we say that P is constant

rank near ū.

The constant rank theorem is fundamental. It says that constant rank maps

look like simple projection maps when viewed in appropriate coordinate spaces.
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Theorem 2.4.1 (Constant Rank Theorem). Let X and Y be smooth manifolds of

dimension m , n respectively, and F : X → Y a smooth map with constant rank k. Then

for each x ∈ X there exists local parametrizations ϕ : Rk × Rm−k → X centered at x

and ψ : Rk × Rn−k →Y centered at F(x) such that

F(ϕ(w , u)) � ψ(w , 0) for small w , u.

2.5 Partial smoothness

The definition of partial smoothness first appeared in [79]. Here we adopt

the slightly modified definitions appearing in [42, 80]. We must first impose the

regularity conditions of prox-regularity, which bridges convex sets and smooth

manifolds, and subdifferential continuity ([119, see 13.F]). In the convex case, these

conditions hold automatically.

Definition 2.5.1. A closed function f : E → R̄ is prox-regular at ū for value v̄ ∈

∂ f (ū) if f (ū) is finite, and there exists a ρ ≥ 0 and ϵ > 0 such that

f (u′) ≥ f (u) + ⟨v , u′ − u⟩ −
ρ

2 |u
′ − u |2 for all u′ ∈ Bϵ(ū)

when u ∈ Bϵ(ū), v ∈ ∂ f (u) ∩ Bϵ(v̄), and f (u) < f (ū) + ϵ.

Definition 2.5.2. A function f : E→ R̄ is subdifferentially continuous at ū for v̄ ∈

∂ f (ū) if any sequence (uk , vk) → (ū , v̄) with vk ∈ ∂ f (uk) also satisfies f (uk) →

f (ū).

Definition 2.5.3. A closed set Q ⊂ E is prox-regular at ū ∈ Q for value v̄ ∈ NQ(ū)

when δQ is prox-regular at ū for v̄, i.e., there exists a ρ ≥ 0 and ϵ > 0 such that

⟨v , u′ − u⟩ ≤
ρ

2 |u
′ − u |2 for all u′ ∈ Q ∩ Bϵ(ū)

when u ∈ Bϵ(ū) and v ∈ NQ(u) ∩ Bϵ(v̄).
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In particular, prox-regularity of Q at ū for 0 implies that the projection map-

ping ProjQ is single-valued around ū.

Definition 2.5.4. Consider a closed function f : E → R̄, a C(r)-manifold M

around ū ∈ E and a subgradient v̄ ∈ ∂ f (ū). We that that f is C(r)-partly smooth

at ū for v̄ relative toM if

• f is prox-regular at ū for v̄.

• f is C(r)-smooth around ū relative toM.

• span ∂̂ f (ū) � NM(ū) + v̄.

• For any v ∈ ∂ f (ū) near v̄, and any sequence uk ∈ M converging to ū, there

exists a sequence vk ∈ ∂ f (uk) converging to v.

Definition 2.5.5. Consider a closed set Q ⊂ E, a C(r)-manifoldM around ū ∈ E

and a normal vector v̄ ∈ NQ(ū). We say that Q is C(r)-partly smooth at ū for v̄

relative toM if the following holds.

• Q is prox-regular at ū for v̄.

• span N̂Q(ū) � NM(ū).

• For any v ∈ NQ(ū) near v̄, and any sequence uk ∈ M converging to ū, there

exists a sequence vk ∈ NQ(uk) converging to v.

In particular, Q is partly smooth if δQ is partly smooth.

Definition 2.5.6. A set-valued mapping Φ : U ⇒ V is C(r)-partly smooth at ū for

v̄ ∈ Φ(ū) if gphΦ is a C(r)-manifold around (ū , v̄), and the projection

P : gphΦ→ U : (u , v) 7→ u
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is constant rank in a neighbourhood W of (ū , v̄). We call

M � P(gphΦ ∩W)

the active manifold.

Partly smooth set-valued mappings are related to partly smooth sets and func-

tions in the following way.

Theorem 2.5.1 ([80], Theorems 5.3 and 5.5). The following are equivalent for a closed

set Q ⊂ E and corresponding normal cone mapping NQ .

(i) Q is C(r)-partly smooth at ū for v̄ relative toM, and v̄ ∈ ri NQ(ū).

(ii) NQ is C(r−1)-partly smooth at ū for v̄ with active manifoldM.

(iii) gph NQ � gph NM in a neighbourhood of (ū , v̄).

The following are equivalent for a closed function f : E→ R̄ and corresponding subdif-

ferential mapping ∂ f .

(i) f is subdifferentially continuous at ū for v̄, C(r)-partly smooth at ū for v̄ relative

toM, and v̄ ∈ ri ∂ f (ū).

(ii) ∂ f is C(r−1)-partly smooth at ū for v̄ with active manifoldM.

(iii) In a neighbourhood of (ū , v̄),

gph ∂ f � {(u ,∇ f̄ (u) + v) : u ∈ M , v ∈ NM(u)},

where f̄ is any C(r)-smooth function agreeing with f onM.

Example (Partly smooth function and subdifferential). Consider the proper

closed convex function

f (x , y) � x2
+ |y |,
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and its subdifferential

∂ f (x , y) �


(u , v) : u � 2x , v �


1 if y > 0

[−1, 1] if y � 0

−1 if y < 0


,

which satisfies (0, 0) ∈ ri ∂ f (0, 0). Now, f is convex, therefore everywhere prox-

regular, and on the manifold

M � {(x , y) : y � 0}

it agrees with the smooth function (x , y) 7→ x2. Also, span ∂ f (0, 0) � {(u , v) :

u � 0}, which is the normal space NM(0, 0). Inner semicontinuity relative toM

clearly holds, so f is partly smooth at (0, 0) for (0, 0).

Locally, gph ∂ f around ((0, 0), (0, 0)) is parametrized by

(w , z) 7→ (w , 0, 2w , z),

which is a linear subspace, hence a manifold around 0. The projection onto the

first two coordinates is the subspace parametrized by w 7→ (w , 0), which has con-

stant dimension 1, so ∂ f is partly smooth at (0, 0) for (0, 0)with active manifold

M.

Example (Partly smooth set and normal cone). Suppose that Q is closed and

convex (therefore everywhere prox-regular) with the representation

Q � {u ∈ U : gi(u) ≤ 0 for i � 1, . . . , n},

where the functions gi are smooth. Denote the active constraints

A(ū) � {i : gi(ū) � 0},
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and assume the constraint qualification that the active gradients {∇gi(ū)}i∈A(ū) are

linearly independent. Then

NQ(ū) �
{ ∑

i∈A(ū)
λi∇gi(ū) : λ ≥ 0

}
,

and defining the manifold

M � {u ∈ U : gi(u) � 0 for i ∈ A(ū)},

we have that NM(ū) � span NQ(ū). Given a sequence uk ∈ M converg-

ing to ū, and a normal vector v̄ �
∑

i∈A(ū) λ̄i∇gi(ū), observe that we can con-

struct a corresponding sequence of normal vectors vk ∈ NQ(uk) by setting

vk �
∑

i∈A(ū) λ̄i∇gi(uk), which converge to v̄ by continuity. Hence Q is partly

smooth.

The condition v̄ ∈ ri NQ(ū) becomes the strict complementarity condition that

the multipliers λ̄i of the active constraints corresponding to the normal vector v̄

are uniformly bounded away from zero, which implies that NQ is partly smooth

with P(gph NQ) �M around (ū , v̄).
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CHAPTER 3

BUNDLE NEWTON ALGORITHMS

3.1 Introduction

In this chapter, we develop a local algorithm for finding a minimizer of a

continuous nonsmooth objective function. We assume that the objective f : E→

R is smooth around every point in some setD ⊂ E, and that at any point x ∈ D

we can access an oracle that returns the value f (x), gradient ∇ f (x), and Hessian

∇2 f (x).

First-order algorithms in this “black-box” model typically fall in one of three

categories: subgradient, cutting plane, or random sampling based. Subgradient

methods (originating in [124]), comprised of iterations of the form

x ← x −
ρ

|∇ f (x)| ∇ f (x) (x ∈ D),

are perhaps the most simplistic class of algorithms in this setting, with broad

general purpose appeal. In the nonsmooth setting, the gradient does not nec-

essarily vanish near a minimizer, so the step sizes ρ are typically chosen in ad-

vance and scaled towards zero. This leads a notoriously slow convergence rate

[102, 104, 36], both in theory and practice, limiting the basic subgradient itera-

tion to applications where accuracy is not a major concern, extremely large scale

settings where the computational burden of more complex methods is too great,

or problems with benign structure [37].

For convex functions, variations of bundle methods [129, 75] and level-set

bundle methods [76], which reuse previous gradient information, are often the

method of choice when gradient computations are expensive and solution accu-

26



racy is a concern [107]. In theory, bundle methods converge at sublinear rates

[67, 44], and generate difficult to analyze sequences of “null steps.” Though fast

convergence on a sequence of “serious steps” is possible [95], this drawback of

bundle methods remains an obstacle.

Gradient sampling [18, 33, 12] can be effective when gradients are relatively

cheap to compute, and readily extends to nonconvex settings, but does not scale

well to high dimensions. Based on the practical success of quasi-Newton meth-

ods applied to nonsmooth objectives [82], some recent work [59, 34] combines

gradient samplingwith quasi-Newton ideas to develop practical and robustmin-

imization routines. However, no convergence rates are known for these meth-

ods.

Still missing in nonsmooth optimization is the simplicity and fast local con-

vergence ofNewton’smethod. The aimof this chapter is a step in this direction: a

simple black-box local optimization method, supported by rigorous theory, and

able to incorporate second-order information to achieve a superlinear rate of con-

vergence. We take a semi-structured approach, and first consider minimizing a

pointwise maximum of finitely many smooth functions, using a black-box ora-

cle that cannot access the underlying component functions individually. (Such a

model was also analyzed in [60] in the context of gradient sampling algorithms.)

Our resulting algorithm converges at a local quadratic rate on nonsmooth func-

tions of this type, and in Chapter 5, we show promising experimental results on

more general functions. We also give some preliminary first-order extensions of

the algorithm. The majority of the chapter appears in the manuscript [87].

To keep the motivation and development clean, at the outset we focus on a

strongly convex objective. Extending to a broad class of nonconvex objectives
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turns out to be relatively straightforward, and is handled in following sections.

Specifically, we are able to handle weakly convex functions in a manner similar

to the bundle method [57].

3.2 Convex minimization

Techniques for smooth minimization rely critically on Fermat’s rule that

∇ f (x̄) � 0 at a minimizer, and the principle that |∇ f (x)| is small when x is close

to x̄. In the nonsmooth setting, we cannot in general hope to find a point with

a small gradient, and the generalized stationarity condition 0 ∈ ∂ f (x̄) is far too

stringent to verify in our black box setting. Instead, wewill use local information

at multiple points to build an approximate optimality measure. To borrow the

terminology of bundle methods, we seek a finite bundle S ⊂ D of reference points

with small diameter

diam S � max
s ,s′∈S

|s − s′| (3.2.1)

and small optimality measure

Θ(S) � min
��conv

(
∇ f (S)

) ��. (3.2.2)

By defining the unit simplex

∆S �
{
λ ∈ R|S |+ :

∑
s∈S

λs � 1
}
,

we can equivalently write the optimality measure as

Θ(S) � min
λ∈∆S

���∑
s∈S

λs∇ f (s)
���. (3.2.3)

Below we describe an algorithm that iteratively updates a bundle one refer-

ence point at a time. The minimizing λ of the optimality measure Θ(S), which
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we will later interpret as a Lagrange multiplier, plays an important role in defin-

ing the core subproblem of the algorithm: minimizing a weighted average of

local quadratic approximations

qs( · ) � f (s) + ⟨∇ f (s), · − s⟩ + 1
2 ⟨ · − s ,∇2 f (s)( · − s)⟩

on a subspace defined using the local linear approximations

ls( · ) � f (s) + ⟨∇ f (s), · − s⟩.

Algorithm 3.1: Local Newton algorithm to minimize convex f

Input : Bundle S ⊂ D, tolerances ϵ̄, δ̄ ≥ 0;
while diam S > δ̄ and Θ(S) > ϵ̄ do

for s ∈ S do
ls( · ) � f (s) + ⟨∇ f (s), · − s⟩;
qs( · ) � ls( · ) + 1

2 ⟨ · − s ,∇2 f (s)( · − s)⟩;
end
Choose λ ∈ ∆S to minimize

��∑s∈S λs∇ f (s)
��;

Choose x̂ ∈ arg min
{∑

s∈S λs qs(x) : ls(x) equal for all s ∈ S
}
;

if x < D then
Stop;

else
Choose s ∈ S minimizing Θ

(
(S \ s) ∪ x̂

)
;

S← (S \ s) ∪ x̂;
end

end

In contrast to most cutting plane and bundle methods, a crucial feature is

the fixed size of the bundle S, which is given as input to the algorithm. With

an input of |S | � 1 the method becomes exactly classical Newton’s method for

smooth minimization. The bundle size must be judiciously chosen. With too

small a choice the algorithm may fail to converge to a minimizer, as does New-

ton’s method applied to the nonsmooth objective max((x − 1)2, (x + 1)2), which

cycles between non-optimal points {±1}. A bundle size chosen too large causes

a type of degeneracy and algorithmic instability that we discuss in later sections.
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3.2.1 The optimality measures

The algorithm aims to construct a sequence of bundles S converging to a

minimizer x̄ (and hence diam S converging to zero), such that the optimality

measure Θ(S) also converges to zero. In practice, we can terminate when these

measures are small to deduce approximate optimality in the following way.

Given a bundle S let λ be the minimizing multiplier associated with optimal-

ity measure (3.2.3), and define the weighted average of the reference points

s̄ �
∑
s∈S

λs s .

By convexity, the linear approximations minorize f :

ls(x) � f (s) + ⟨∇ f (s), x − s⟩ ≤ f (x) for all x ∈ E,

and being continuous and convex, f is also locally Lipschitz. Let us denote by L

a Lipschitz constant for f on some open ball containing S, so that wemay bound

the size of the gradients:

|∇ f (s)|2 � ⟨∇ f (s), s − (s − ∇ f (s))⟩ ≤ f (s − ∇ f (s)) − f (s) ≤ L |∇ f (s)|,

which implies |∇ f (s)| ≤ L. Also, by convexity of the norm,∑
s∈S

λs |s − s̄ | ≤ max
s∈S
|s − s̄ |

≤ max
s∈S

∑
s′∈S

λs′ |s − s′|

≤ max
s∈S

max
s′∈S
|s − s′|

� diam S.
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Altogether, we have that for all x ∈ E

f (s̄) − L diam(S) ≤ f (s̄) − L
∑
s∈S

λs |s − s̄ |

≤ f (s̄) +
∑
s∈S

λs ⟨∇ f (s), s̄ − s⟩

≤
∑
s∈S

λs ls(s̄)

�
∑
s∈S

λs ls(x) +
∑
s∈S
⟨λs∇ f (s), s̄ − x⟩

≤
∑
s∈S

λs ls(x) +Θ(S) |x − s̄ |

≤ f (x) +Θ(S) |x − s̄ |,

which implies

min f ≤ f (s̄) ≤ min
{

f +Θ(S) | · − s̄ |
}
+ L diam(S). (3.2.4)

In other words, if the diameter and optimality measures are small, then the cur-

rent bundle constitutes an approximate certificate of optimality in the sense that

the point s̄ lies between min f and theminimum of a slightly perturbed function.

While this bound motivates the optimality measures, it is less useful com-

putationally. If a strong convexity constant is known, it is possible to terminate

with a guaranteed optimality gap. In addition to the trivial upper bound

min f ≤ f̄ � min
s∈S

f (s),

if f is ρ-strongly convex we also have the lower bound

min f ≥
¯
f � min

x∈E

{∑
s∈S

λs
(
ls(x) +

ρ

2 |x − s |2
)}
,

which is easy to compute since the right hand side is minimized at

¯
x � s̄ − 1

ρ

∑
s∈S

λs∇ f (s).
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When the gap f̄ −
¯
f is less than some tolerance τ > 0, it holds that

min
s∈S

f (s) < min f + τ.

To see that this condition will hold whenever diam S and Θ(S) are sufficiently

small, observe that for all s ∈ S,

ls(¯x) � ls(s̄) −
1
ρ

⟨
∇ f (s),

∑
s′∈S

λs′∇ f (s′)
⟩

≥ ls(s̄) −
L
ρ
Θ(S)

≥ ls(s̄) − L | s̄ − s | − L
ρ
Θ(S)

≥ f (s) − L diam S − L
ρ
Θ(S)

≥ f̄ − L diam S − L
ρ
Θ(S).

Hence we deduce that

f̄ −
¯
f � f̄ −

∑
s∈S

λs
(
ls(¯x) +

ρ

2 | ¯x − s |2
)

≤ f̄ −
∑
s∈S

λs ls(¯x)

≤ L diam S +
L
ρ
Θ(S). (3.2.5)

3.2.2 A lower bound on bundle size

For the algorithm to succeed, the optimality measure Θ(S)must converge to

zero for a sequence of bundles converging to minimizer x̄. In other words, zero

must be a convex combination of the limiting gradient set

Γ �

{
lim
r→∞
∇ f (xr) : xr → x̄ , xr ∈ D for r � 1, 2, . . .

}
. (3.2.6)

A lower bound on the bundle size required for the algorithm to succeed is

thus the minimum size of a subset of Γ whose convex hull contains zero: the
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Carathéodory number carΓ, which by Carathéodory’s theorem satisfies

1 ≤ carΓ ≤ dim(convΓ).

(Note that sinceD is full measure when f is continuous and convex, the convex

hull of Γ is simply the subdifferential ∂ f (x̄).)

3.2.3 The active subspace

Equipped with Θ(S) and associated multipliers λ, the algorithm next seeks

a new reference point. A standard cutting plane approach would consider the

model f̃ : E→ R defined by

f̃ (x) � max
s∈S

ls(x),

which minorizes f and approximates it up to first order at each of the reference

points. At every point on the active subspace

M � {x ∈ E : ls(x) equal for all s ∈ S},

the cutting plane model has subdifferential

∂ f̃ (x) � conv(∇ f (S)),

and hence nonsmooth slope equal to Θ(S). Therefore when the optimality mea-

sure is small, the cutting plane model is approximately minimized throughout

M, so this is where we seek a new reference point.

3.2.4 An upper bound on bundle size

Since the new reference point lies in the active subspace M, a basic require-

ment for algorithmic stability is that x̄ is close to M when max |S− x̄ | (and hence
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in particular diam S) is small. By convexity

0 ≤ f (x̄) − ls(x̄) � f (x̄) − f (s) + ⟨∇ f (s), s − x⟩ ≤ 2L |s − x̄ | for all s ∈ S,

so f (x̄) is close to ls(x̄). Therefore we equivalently ask that the point (x̄ , f (x̄)) ∈

E × R be close to the affine subspace

{(x , t) ∈ E × R : ls(x) � t for all s ∈ S}.

As we have observed, the residuals of the linear system defining this subspace

are small at (x̄ , f (x̄)) in the sense that

f (x̄) − ls(x̄) � O(|s − x̄ |) for all s ∈ S.

Standard linear algebra shows that this point is close to the nonempty solution

set providing that the linear operator L : (x , t) 7→ (ls(x)− t)s∈S is full rank, which

amounts to affine independence of the gradients ∇ f (S).

Fixing coordinates E � Rn , uniform affine independence amounts to the ma-

trix with columns
(∇ f (s)

1
)
for s ∈ S having smallest singular value greater than

some tolerance σ > 0 for all bundles near x̄. Success of the algorithm then re-

quires an upper bound on the bundle size, since by taking a convergent sub-

sequence of the matrices above we arrive at a limiting matrix with |S | linearly

independent columns of the form
(g
1
)
, where each vector g is a limiting gradi-

ent and hence lies in the subdifferential ∂ f (x̄). Therefore the function f has at

least |S | affinely independent subgradients at x̄, fromwhichwe deduce an upper

bound of 1 + dim(∂ f (x̄)) on the bundle size.

We will later prove that when the gradients ∇ f (S) are affinely independent,

the minimization problem (3.2.3) has a unique solution.
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3.2.5 Choosing the bundle size

To summarize, if the algorithm succeeds, the bundle size must satisfy the

bounds involving the Carathéodory number of the limiting gradient set (3.2.6)

and the dimension of the subdifferential:

carΓ ≤ |S | ≤ dim(∂ f (x̄)) + 1.

In general these bounds may be far apart, but in some cases they are equal.

Example (Euclidean norm). Consider the Euclidean norm ∥ · ∥2 and x̄ � 0. This

function is smooth onD � Rn \ {0} with gradient ∇ ∥ · ∥2(s) � 1
∥s∥2 s for s , 0, so

the limiting gradient set is simply the unit sphere, and subdifferential ∂ ∥ · ∥2(x̄)

the closed unit ball. Hence we have the bounds

2 ≤ |S | ≤ n + 1.

Example (Convex max functions). Consider a nonsmooth function of the form

f (x) � max
i�1,...,k

fi(x)

for smooth convex functions fi : E→ R for i � 1, . . . , k, and a point x̄ ∈ E with

function values fi(x̄) all equal, so that we have

∂ f (x̄) � conv{∇ fi(x̄) : i � 1, . . . , k}.

Assuming affine independence of the gradients {∇ fi}, we have

dim(∂ f (x̄)) � k − 1.

Furthermore, assuming that x̄ is a minimizer, so 0 ∈ ∂ f (x̄), the system

k∑
i�1

λi∇ fi(x̄) � 0,
k∑

i�1
λi � 1, λ ∈ Rk

+
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must have a unique solution λ̄. Since the limiting gradient set is

Γ � {∇ fi(x̄) : i � 1, . . . , k},

carΓ is simply the number of nonzero components of λ̂, which is exactly k when

x̄ is a nondegenerate minimizer, meaning 0 ∈ ri(∂ f (x̄)).

Estimating the lower bound on bundle size, carΓ, seems challenging in gen-

eral. On the other hand, global nonsmooth optimization methods – such bundle

methods, gradient sampling, and nonsmooth BFGS – typically suggest subdiffer-

ential dimension information. We defer a more detailed explanation to a future

section, but the general idea is that given any finite set of points Ω ⊂ D near

the minimizer x̄, motivated by the Clarke characterization of the subdifferential

(Theorem 2.3.2) we can write the approximation

conv(∇ f (Ω)) ≈ ∂ f (x̄).

This suggests that a reasonable estimate of the dimension of ∂ f (x̄) is the numer-

ical rank r of the matrix with columns
(∇ f (x)

1
)
for x ∈ Ω. A selection of r robustly

affinely independent vectors in {∇ f (x) : x ∈ Ω} might then serve as an initial

bundle to our Newton method.

3.2.6 The quadratic subproblem

At the end of each iteration we update the bundle by swapping out some

s ∈ S for a new reference point x̂ so as to minimize the optimality measure. The

Newtonian flavour of the algorithm arises from how we choose x̂, which solves

a simple linearly-constrained quadratic program, and which we motivate with a

model-based approach.
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Since we assume the gradients ∇ f (S) are affinely independent, this gradi-

ent information is inconsistent with any smooth model of f . We instead seek a

simple nonsmooth model. Motivated by the previous example, we use a max

function for the model, and consider smooth functions fs : E → R each satisfy-

ing

fs(s) � f (s), ∇ fs(s) � ∇ f (s), ∇2 fs(s) � ∇2 f (s), fs(s′) < f (s′)

for distinct s , s′ ∈ S. Such functions always exist in theory, e.g. by defining

fs(x) � qs(x) − α |x − s |4 (x ∈ E)

for large enough α > 0. In practice, their precise form is immaterial to the algo-

rithm. We now consider the function f̃ : E→ R defined by

f̃ (x) � max
s∈S

fs(x)

as an (unknown) model of the objective function f , which agrees with f up to

second order at each reference point. Minimizing this model is equivalent to

solving the nonlinear program

minimize t

subject to fs(x) − t ≤ 0 (s ∈ S)

x ∈ E, t ∈ R,

which cannot be solved exactly since the functions fs are unknown. Instead, we

loosely follow a classical sequential quadratic programming approach to solve

an approximation of the model, based on our reference bundle S.

One standard approach proceeds in two steps. The first would estimate the

optimal Lagrange multipliers µ ∈ ∆S by minimizing
��∑s∈S µs∇ fs(x̃)

�� at a trial
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point x̃. We instead use our bundle of reference points to arrive at exactly the

computation of the optimality measure

Θ(S) � min
λ∈∆S

���∑
s∈S

λs∇ f (s)
���.

Fixing the resulting Lagrangemultiplier λ, the second stepwould thenminimize

a quadratic model of the Lagrangian

(x , t) 7→
∑
s∈S

λs fs(x)

over a feasible region defined by linearized constraints. Following again our

philosophy of using information from multiple reference points, and restricting

our attention to the active subspace as discussed in Section 3.2.3, we arrive at

minimize
∑
s∈S

λs qs(x)

subject to ls(x) − t � 0 (s ∈ S)

x ∈ E, t ∈ R,

(3.2.7)

exactly the quadratic subproblem in the algorithm. This subproblem is feasible,

as we saw in Section 3.2.4, and bounded below by our assumption of convexity.

3.3 Smooth-nonsmooth sums

In the previous section we restricted our attention to a Newton algorithm for

convex functions to avoid complicating the motivation. The algorithm that we

will analyze, however, is a version for minimization problems with composite

objectives F : E→ R of the form

F(x) � f (x) + r(x) (3.3.1)

where f : E → R is nonsmooth but strongly convex, and r : E → R is C(2)-

smooth but possibly nonconvex. As previously, we assume that the nonsmooth
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function f is twice continuously differentiable around every point in some set

D ⊂ E.

The algorithm outlined below has one subtle change from the convex version

Algorithm 3.1. While the quadratic approximations qs and optimality measure

Θ(S) � min
��conv

(
∇F(S)

) ��
remain with respect to the overall objective, the linear approximations ls that de-

fine the subproblem constraints are only with respect to the nonsmooth portion.

In this nonconvex setting, we must also consider the possibility of the subprob-

lem being unbounded, since the quadraticmodel is no longer necessarily convex.

In this case, we halt the algorithm, since the bundle is most likely not near a local

minimizer of F.

Algorithm 3.2: Local Newton algorithm to minimize composite F

Input : Bundle S ⊂ D, tolerances ϵ̄, δ̄ ≥ 0;
while diam S > δ̄ and Θ(S) > ϵ̄ do

for s ∈ S do
ls( · ) � f (s) + ⟨∇ f (s), · − s⟩;
qs( · ) � F(s) + ⟨∇F(s), · − s⟩ + 1

2 ⟨ · − s ,∇2F(s)( · − s)⟩;
end
Choose λ ∈ ∆S to minimize

��∑s∈S λs∇F(s)
��;

if min
{∑

s∈S λs qs(x) : ls(x) equal for all s ∈ S
}
� −∞ then

Stop;
else

Choose optimal x̂;
if x < D then

Stop;
else

Choose s ∈ S minimizing Θ
(
(S \ s) ∪ x̂

)
;

S← (S \ s) ∪ x̂;
end

end
end
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Themotivation remains largely the same, with a few slight changes. Since the

objective function F is no longer convex, we of course cannot deduce a global op-

timality bound similar to (3.2.4). Instead we must settle for approximate Clarke

stationarity.

To motivate the active subspace and quadratic program, we instead consider

the partial cutting plane model

F̃(x) � max
s∈S

ls(x) + r(x),

and the nonlinear program in Section 3.2.6 becomes

minimize t + r(x)

subject to fs(x) − t ≤ 0 (s ∈ S)

x ∈ E, t ∈ R.

We note that the constraints have not changed, so neither does the active sub-

space.

The discussion on bundle size applies in this new setting as well, by noting

the simple relationship between the subdifferentials

∂F(x) � ∂ f (x) + ∇r(x) for all x ∈ E.

3.4 A sequential quadratic programming tool

In this section we develop a tool which is relatively independent of the rest

of the chapter, but will be critical in the analysis of our Newton algorithm. It is a

slight variant of a classical sequential quadratic programming result for noncon-

vex nonlinear programming. For completeness, and because a suitable reference

with our exact technical requirements could not be found, we prove it directly.
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Given twice continuously differentiable objective function f : E → R and

twice continuously differentiable constraints gi : E → R for i � 1, . . . , k, we

consider the optimization problem

minimize f (y)

subject to gi(y) � 0 (i � 1, . . . , k)

y ∈ E.

(NLP)

Suppose that at a feasible point ȳ ∈ E the constraint qualification

G � {∇gi( ȳ) : i � 1, . . . , k} is linearly independent,

stationarity condition that there exists a (necessarily unique) multiplier vector λ̄ ∈

Rk such that

∇ f ( ȳ) +
k∑

i�1
λ̄i∇gi( ȳ) � 0,

and second-order sufficient condition that

∇2 f ( ȳ) +
k∑

i�1
λ̄i∇2 gi( ȳ) is positive definite on G⊥

hold. Fix any α ∈ Rk such that∑k
i�1 αi � 1. Given a collection of reference points

yi ∈ E and a multiplier estimate λ ∈ Rk , define the quadratic program

minimize
k∑

i�1
αi

[
⟨∇ f (yi), y − yi⟩ +

1
2 ⟨y − yi ,∇2 f (yi)(y − yi)⟩

]
+

1
2

k∑
i�1

λi ⟨y − yi ,∇2 gi(yi)(y − yi)⟩

subject to gi(yi) + ⟨∇gi(yi), y − yi⟩ � 0 (i � 1, . . . , k)

y ∈ E.

(QP)

Theorem 3.4.1. For any y ∈ Ek near ȳ � ( ȳ , . . . , ȳ) and any multiplier vector λ �

λ̄ + O(|y − ȳ |), the problem (QP) has a unique stationary point satisfying ŷ � ȳ +

O(|y − ȳ |2), which furthermore is the unique minimizer.
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Proof. By continuity, the gradients {∇gi(yi) : i � 1, . . . , k} are also linearly in-

dependent, so necessary conditions for y to be a stationary point of (QP) are

k∑
i�1

αi
[
∇ f (yi) + ∇2 f (yi)(y − yi)

]
+

k∑
i�1

λi∇2 gi(yi)(y − yi) � −
k∑

i�1
µi∇gi(yi)

gi(yi) + ⟨∇gi(yi), y − yi⟩ � 0 (i � 1, . . . , k),

for some multiplier vector µ ∈ Rk . We can write these as a linear system

(M(y , λ))(y , µ) � b(y , λ)

for linear operator M(y , λ) : E × Rk → E × Rk and vector b(y , λ) ∈ E × Rk

depending continuously onparameter (y , λ). We claim that M(ȳ , λ̄) is invertible.

Indeed, any solution to the homogeneous system (M(ȳ , λ̄))(y , µ) � 0 satisfies(
∇2 f ( ȳ) +

k∑
i�1

λ̄i∇2 gi( ȳ)
)

y +

k∑
i�1

µi∇gi( ȳ) � 0

⟨∇gi( ȳ), y⟩ � 0 (i � 1, . . . k),

which implies that

⟨y , (∇2 f ( ȳ) +
k∑

i�1
λ̄i∇2 gi( ȳ))y⟩ � − ⟨y ,

k∑
i�1

µi∇gi( ȳ)⟩ � 0.

By the second-order sufficient conditions, y � 0, and hence µ � 0 by linear

independence of the constraint gradients.

As δ � |y − ȳ | → 0 with λ − λ̄ � O(δ), we have that for each i � 1, . . . , k

gi(yi) + ⟨∇gi(yi), ȳ − yi⟩ � gi( ȳ) + O(δ2) � O(δ2),
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and also

k∑
i�1

αi
[
∇ f (yi) + ∇2 f (yi)( ȳ − yi)

]
+

k∑
i�1

λi∇2 gi(yi)( ȳ − yi)

� ∇ f ( ȳ) +
k∑

i�1
λi∇gi( ȳ) −

k∑
i�1

λi∇gi(yi) + O(δ2)

�

k∑
i�1
(λi − λ̄i)∇gi( ȳ) −

k∑
i�1

λi∇gi(yi) + O(δ2)

�

k∑
i�1
−λ̄i∇gi(yi) + O(δ2).

Therefore

(M(y , λ))( ȳ , λ̄) − b(y , λ) � O(δ2),

and because the norm of M(y , λ) is uniformly bounded for (y , λ) near (ȳ , λ̄),

( ȳ , λ̄) − (M(y , λ))−1b(y , λ) � O(δ2).

So there exists a unique stationary point ŷ � ȳ + O(|y − ȳ |2). Since we assume

the second-order sufficient conditions, ŷ is in fact the unique global minimizer

of the equality constrained QP [106, Theorem 16.2]. □

In analyzing first-order variants of the algorithm, it will also be useful to refer

to the following approximation to (NLP) and make use of a known result.

minimize ⟨∇ f (z), y − z⟩ + 1
2 ⟨y − z , B(y − z)⟩

subject to gi(z) + ⟨∇gi(z), y − z⟩ � 0 (i � 1, . . . , k)

y ∈ E.

(FQP)

Theorem 3.4.2. For any z near ȳ and any B positive definite on G⊥, the problem (FQP)

has a unique minimizer ŷ satisfying

ŷ − ȳ � B−1V(B − H)(z − ȳ) + O(|z − ȳ |2)
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where

H � ∇2 f ( ȳ) +
k∑

i�1
λ̄i∇2 gi( ȳ)

V � I − ∇G(∇G∗B−1∇G)−1∇G∗B−1,

with ∇G being the operator defined by

∇G : µ 7→
k∑

i�1
µi∇gi( ȳ).

Proof. See [6, Section 3.2]. □

3.5 Max functions

In this sectionwe carefully analyze howAlgorithm 3.2 behaveswhen applied

to a max function. Specifically, we assume that the nonsmooth function f has the

form

f (x) � max
i�1,...,k

fi(x) (3.5.1)

for some structure functions fi : E → R for i � 1, . . . k that are assumed to be

C(2)-smooth but unknown. As previously, we also assume that r : E→ R is C(2).

Note that minimizing F � f + r is equivalent to the nonlinear program

minimize t + r(x)

subject to fi(x) − t ≥ 0 (i � 1, . . . , k)

x ∈ E, t ∈ R,

(3.5.2)

which could be solved via a standard nonlinear programming algorithm. Our

interest, however, in max functions is as local models for more general objective

functions, and as a relatively simple test for the general purpose Algorithm 3.2.

In this case, we assume that function value, gradient, and Hessian information
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of f is returned via an oracle with no access to the structure functions fi . Such a

setting destroys any classical approach to solving (3.5.2), since the constraints

are only implicitly defined, and cannot be evaluated.

Now, corresponding to the fixed implicit representation

F(x) � max
i�1,...,k

fi(x) + r(x), (3.5.3)

we consider Algorithm 3.2 on a neighbourhood of a strong nondegenerate local

minimizer x̄. Specifically, we assume the strong second-order conditions defined

below.

Definition 3.5.1. Given a max function of the form (3.5.3), we say that a point

x̄ ∈ E satisfies the strong second-order conditions when the following properties

hold.

(i) Full activity: the values fi(x̄) are equal for i � 1, . . . , k.

(ii) Independence: the gradients {∇ fi(x̄) : i � 1, . . . , k} are affinely independent.

(iii) Stationarity: there exists a (necessarily unique) Lagrange multiplier vector

λ̄ ∈ Rk
+ satisfying ∑k

i�1 λ̄i∇ fi(x̄) + ∇r(x̄) � 0 and ∑k
i�1 λ̄i � 1.

(iv) Second-order sufficiency: ∑k
i�1 λ̄i∇2 fi(x̄) + ∇2r(x̄) is positive definite on the

subspace
{

z ∈ E : ⟨∇ fi(x̄), z⟩ equal for i � 1, . . . , k
}
.

(v) Nondegeneracy: λ̄i > 0 for i � 1, . . . , k.

These assumptions closely mirror classical second-order conditions and con-

straint qualifications in nonlinear programming. Corresponding to the feasi-

ble point (x̄ , f (x̄)) for the problem (3.5.2), full activity amounts to all constraints

being active, and independence is the standard linear independence constraint

45



qualification (LICQ). Stationarity and second-order sufficiency correspond ex-

actly to the analogous nonlinear programming sufficient conditions for (x̄ , f (x̄))

to be a strict local minimizer. The last condition is frequently known as strict

complementary slackness, we refer to it as nondegeneracy since (assuming the first

three conditions) it is equivalent to −∇r(x̄) ∈ ri(∂ f (x̄)).

We will refer to the disjoint open sets

Di �
{

x ∈ Rn : fi(x) > f j(x) for all j , i
}

as activity regions of f . Notice that the values, gradients, and Hessians of f and

fi coincide onDi , and that f is twice continuously differentiable on the open set

D �

k∪
i�1
Di .

In theory, the algorithm must terminate if a point outside of D is encountered,

since the gradient andHessian are no longer defined. In practice E\D is usually

a small set, so this is rarely an issue, especially if computations are performed

in inexact or floating-point arithmetic. For the case of a max function under the

strong second-order assumptions, each equation fi(x)− f j(x) � 0 for j , i defines

a smoothmanifold of codimension 1 around x̄. Thus E\D is contained in a finite

union of (n−1)-dimensional smoothmanifolds, soD is a dense open set around

x̄.

Finally, we will only analyze Algorithm 3.2 with the choices of tolerances

ϵ̄ � δ̄ � 0, so the optimality checks never cause the algorithm to stop.

Full bundles

We consider initializing Algorithm 3.2 with full bundle, defined below, con-

tained in Bδ(x̄) for small radius δ. We will prove that the algorithm maintains
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bundles satisfying these properties as it proceeds.

Definition 3.5.2. S is a full bundle if it can be written in the form

S � {x1, . . . , xk}

where xi ∈ Di for i � 1, . . . , k.

At the outset of each iteration, we form the linear approximations to f

ls( · ) � f (s) + ⟨∇ f (s), · − s⟩,

and the quadratic approximations to F � f + r

qs( · ) � F(s) + ⟨∇F(s), · − s⟩ + 1
2 ⟨ · − s ,∇2F(s)( · − s)⟩,

for s ∈ S. We then compute a multiplier vector by solving

minimize 1
2

���∑
s∈S

λsF(s)
���2

subject to
∑
s∈S

λs � 1

λ ≥ 0.

(3.5.4)

The next proposition shows that this vector is a good approximation of the

optimal Lagrange multiplier λ̄.

Proposition 3.5.1. For all small δ > 0 and {x1, . . . , xk} ⊂ Bδ(x̄), the problem

minimize 1
2

��� k∑
i�1

λi
(
∇ fi(xi) + ∇r(xi)

) ���2
subject to

k∑
i�1

λi � 1

λ ∈ Rk

(3.5.5)

has a unique minimizer satisfying λ � λ̄ + O(δ).
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Proof. λ ∈ Rk solves (3.5.5) if and only if ∑k
i�1 λi � 1 and there exists some

multiplier α ∈ R such that

α +
⟨
∇ fi(xi) + ∇r(xi),

k∑
j�1

λ j(∇ f j(x j) + ∇r(x j))
⟩
� 0 (i � 1, . . . , k),

which is a linear system of the form

M(x1, . . . , xk)(λ, α) � b

for some linear operator M depending smoothly on x1, . . . , xk . Clearly, a so-

lution when x1 � . . . � xk � x̄ is (λ̄, 0). Moreover, we claim that the opera-

tor M(x̄ , . . . , x̄) is invertible. Indeed, suppose that M(x̄ , . . . , x̄)(λ, α) � 0. Then∑k
i�1 λi � 0 and

0 �

k∑
i�1

λi

[
α +

⟨
∇ fi(x̄) + ∇r(x̄),

k∑
j�1

λ j(∇ f j(x̄) + ∇r(x̄))
⟩]

�
⟨ k∑

i�1
λi∇ fi(x̄),

k∑
j�1

λ j∇ f j(x̄)
⟩
.

But then λ � 0 and hence α � 0 by the affine independence of {∇ fi(x̄) : i �

1, . . . k}, so the result follows from the implicit function theorem. □

Since S is a full bundle, and because of the nondegeneracy assumption, the

problems (3.5.4) and (3.5.5) have the same optimal solution for δ sufficiently

small.

We now address the quadratic program that computes the new reference

point. Since we assume full activity, x̄ is a strict local minimizer of the more

restrictive problem

minimize t + r(x)

subject to fi(x) − t � 0 (i � 1, . . . , k)

x ∈ E, t ∈ R.
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Therefore given a multiplier λ � λ̄+O(δ) computed via (3.5.4), we can apply

Theorem 3.4.1 to deduce that the quadratic program

minimize t +
k∑

i�1
λi

[
⟨∇r(xi), x − xi⟩ +

1
2 ⟨x − xi , (∇2 f (xi) + ∇2r(xi))(x − xi)⟩

]
subject to f (xi) + ⟨∇ f (xi), x − xi⟩ − t � 0 (i � 1, . . . , k)

x ∈ E, t ∈ R,

has a unique minimizer x̂ � x̄ + O(δ2). This x̂ is exactly the new reference point

computed by the algorithm, since for full bundles S, the problem is equivalent

to our quadratic subproblem

minimize
∑
s∈S

λs qs(x)

subject to ls(x) equal for s ∈ S

x ∈ E.

In particular the subproblem is never unbounded belowdue to our second-order

assumptions.

Finally, we address the reference set update procedure, replaces a single

point s ∈ S with the new reference point x̂ so as to minimize the optimality

measure

Θ(S) � min
��conv(∇F(S))

��.
This update procedure results in another full bundle, which we show by first

proving a simple tool.

Proposition 3.5.2. There exist constants ϵ, δ > 0 such that for all S ⊂ Bδ(x̄), all

indices i � 1, . . . , k and all points x̂ ∈ Di ∩ Bδ(x̄),

min
��conv

(
{∇F(x j) : j , p} ∪ ∇F(x̂)

) �� > ϵ
for all p , i.
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Proof. Suppose the result does not hold. Then there exists some p , i and se-

quences xr
j ∈ D j for j � 1, . . . , k and x̂r ∈ Di all approaching x̄ such that���µr(∇ f (x̂r) + ∇r(x̂r)) +

∑
j,p

λr
j (∇ f (x j) + ∇r(x j))

���→ 0

as r → ∞. By continuity of the gradients and dropping to a convergence subse-

quence it follows that

0 ∈ conv
(
{∇ f j(x̄) + ∇r(x̄) : j , p}

)
,

which contradicts our nondegeneracy assumption. □

With this we can deduce that the algorithm maintains full bundles as it pro-

gresses.

Corollary 3.5.1. For all small δ > 0, full bundles S ⊂ Bδ(x̄), and new reference point

x̂ ∈ D ∩ Bδ(x̄), there is a unique reference point s ∈ S that minimizes

min
��conv

(
{∇F(s′) : s , s′ ∈ S} ∪ ∇F(x̂)

) ��
and the set (S \ s) ∪ {x̂} is a full bundle.

Proof. Without loss of generality suppose x̂ ∈ Di . Let δ be sufficiently small so

that Proposition 3.5.2 holds. Then by continuity, and shrinking δ if necessary,

Proposition 3.5.1 implies that

min
��conv

(
{∇F(x j) : x j ∈ S}

) �� < ϵ.
Again shrinking δ if necessary, we can assume |∇ f (xi) − ∇ f (x̂)| < ϵ, so

min
��conv

(
{∇F(x j) : j , i} ∪ ∇F(x̂)

) �� < ϵ.
Then Proposition 3.5.2 implies that s � xi is the unique minimizer. □
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To summarize, we have proved the following.

Theorem 3.5.1. Given a max function of the form

F(x) � max
i�1,...,k

fi(x) + r(x)

with x̄ satisfying the strong second-order conditions, there exists a constants δ,M > 0

such that starting from any full bundle S ⊂ Bδ(x̄), Algorithm 3.2 generates a new point

x̂ satisfying

|x̂ − x̄ | ≤ M max
s∈S
|s − x̄ |2.

Assuming x̂ ∈ D, the algorithm replaces with x̂ the reference point in S from the same

activity region, generating a new full bundle.

While this guarantees the algorithm cannot diverge, we cannot yet guarantee

convergence to x̄, since it is conceivable the algorithm never updates the refer-

ence point arg max{|s − x̄ | : s ∈ S}. To guarantee that the sequence of bundles

shrink to x̄, we must impose a strong convexity assumption on the nonsmooth

function f . We first develop a simple tool for sequences of positive numbers.

Lemma 3.5.1. Let α,M > 0. Consider any sequence of vectors z ∈ Rk
+ such that each

successive pair z , z′ in the sequence has the property that there exists i such that

zi ≥ α ∥z∥max and z′i ≤ M ∥z∥2max,

and that z′j � z j for j , i. Then providing that the initial vector z satisfies ∥z∥max < 1
M ,

the sequence converges to zero at a k-step quadratic rate.

Proof. Given the initial bound, ∥z∥max is clearly nondecreasing. Now, fix an

arbitrary vector in the sequence zold, and fix γ � ∥zold∥max. At the next and every
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subsequent iteration, some element zi is set to a value in the interval [0,Mγ2].

Therefore the element zi cannot be updated again unless we have that

∥z∥max ≤
M
α
γ2,

since otherwise

α ∥z∥max > Mγ2 ≥ zi ,

which violates the rules of the sequence. Therefore after at most n iterations, we

arrive at a vector znew such that

∥znew∥max ≤
M
α
∥zold∥2max.

□

Theorem 3.5.2. Given a max function representation of the objective

F(x) � max
i�1,...,k

fi(x) + r(x)

for C(2)-smooth r, fi , suppose the point x̄ satisfies the strong second-order conditions of

Definition 3.5.1, and that the Hessians ∇2 fi(x̄) are positive definite. Then there exists

δ > 0 such that starting from a full bundle S ⊂ Bδ(x̄), as long as a point outside of D

is not encountered, Algorithm 3.2 with tolerances ϵ̄ � δ̄ � 0 generates a sequence of full

bundles that converge k-step quadratically to x̄.

Proof. There exists ρ > 0 such that each function fi is ρ-strongly convex on Bδ(x̄).

Shrinking δ if necessary, we can apply Theorem 3.5.1 for some full bundle S ⊂

Bδ(x̄). Then we have that every iteration of the algorithm replaces a reference

point xi with a new point x̂ ∈ Di ∩ Bδ(x̄) so that

|x̂ − x̄ | ≤ M max
j�1,...,k

|x j − x̄ |2.
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Since fi is C(2), there exists L ≥ ρ such that

fi(x) ≤ li(x) +
L
2 |x − xi |2 for all x ∈ Bδ(x̄).

On the other hand, by strong convexity

f j(x) ≥ l j(x) +
ρ

2 |x − x j |2 for all x ∈ Bδ(x̄) ( j � 1 . . . , k).

Also, by construction fi(x̂) ≥ f j(x̂) and li(x̂) � l j(x̂) for all j. Altogether we have

that for all j � 1, . . . , k,

li(x̂) +
L
2 |x̂ − xi |2 ≥ fi(x̂) ≥ f j(x̂) ≥ l j(x̂) +

ρ

2 |x̂ − x j |2,

which yields

|x̂ − xi | ≥ κ |x̂ − x j |

for κ �

√
ρ
L ≤ 1. Letting β � max j�1,...,k |x j − x̄ |2, this implies that

κ |x j − x̄ | ≤ κ |x j − x̂ | + κ |x̂ − x̄ |

≤ |x̂ − xi | + κMβ2

≤ |x̂ − x̄ | + |xi − x̄ | + κMβ2

≤ |xi − x̄ | + (1 + κ)Mβ2.

Maximizing over j yields

|xi − x̄ | ≥ κβ − (1 + κ)Mβ2.

For any c > 1, letting β ≤
(
1 − 1

c

)
κ

1+κ
1
M < 1

M (by shrinking δ if necessary) implies

that |xi − x̄ | ≥ κ
c β. To summarize, the new reference point x̂ and old reference

point xi satisfy the two inequalities

|xi − x̄ | ≥ κ
c

max
j
|x j − x̄ | and |x̂ − x̄ | ≤ M max

j
|x j − x̄ |2.
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Applying Lemma 3.5.1 with

z j � |x j − x̄ | ( j � 1, . . . , k)

completes the proof. □

The assumption that the Hessians ∇2 fi(x̄) are positive definite may seem

stringent, but the smooth-nonsmooth model (3.5.3) is quite flexible in practice.

In the following section we will show how to apply a bundle Newton algorithm

to weakly convex functions.

3.6 Weakly convex minimization

Recall a function F : E → R is weakly convex if F +
η
2 | · |2 is convex for η

sufficiently large (we can assume strong convexity by increasing η if necessary).

Then, assuming that F is twice continuously differentiable on the set D, we can

apply Algorithm 3.2 to the problem of minimizing F by defining

f � F +
η

2 | · |
2, r � −η2 | · |

2.

With some trivial simplifications we arrive at the following algorithm and con-

vergence result.

Corollary 3.6.1. Given a max function representation of the objective

F(x) � max
i�1,...,k

fi(x)

for C(2)-smooth fi , suppose the point x̄ satisfies the strong second-order conditions of

Definition 3.5.1. Then there exists δ > 0 such that starting from a full bundle S ⊂

Bδ(x̄), as long as a point outside ofD is not encountered, Algorithm 3.3 with tolerances

ϵ̄ � δ̄ � 0 and sufficiently large weak convexity parameter η > 0 generates a sequence

of full bundles that converge k-step quadratically to x̄.
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Algorithm 3.3: Local Newton algorithm to minimize weakly convex F

Input : Bundle S ⊂ D, tolerances ϵ̄, δ̄ ≥ 0, weak convexity parameter
η ≥ 0;

while diam S > δ̄ and Θ(S) > ϵ̄ do
for s ∈ S do

ls( · ) � F(s) + ⟨∇F(s), · − s⟩ + η ⟨s , · ⟩ − η
2 |s |2;

qs( · ) � F(s) + ⟨∇F(s), · − s⟩ + 1
2 ⟨ · − s ,∇2F(s)( · − s)⟩;

end
Choose λ ∈ ∆S to minimize

��∑s∈S λs∇F(s)
��;

if min
{∑

s∈S λs qs(x) : ls(x) equal for all s ∈ S
}
� −∞ then

Stop;
else

Choose optimal x̂;
if x < D then

Stop;
else

Choose s ∈ S minimizing Θ
(
(S \ s) ∪ x̂

)
;

S← (S \ s) ∪ x̂;
end

end
end

Proof. Define the functions

fi � gi +
η

2 |x |
2 (i � 1, . . . , k) and r � −η2 |x |

2.

Choosing

η > max
i�1,...,k

λmin(∇2Fi(x̄))

ensures that each function fi is strongly convex around x̄ with ∇2 fi(x̄) positive

definite. Also, it is easy to check that x̄ satisfies the strong second-order con-

ditions for maxi�1,...,k{ fi(x) − r(x)}, and that the activity regions for f and F

coincide. Thus we can apply Theorem 3.5.2 to yield the result. □

We remark that this approach seems to share some similarities with trust-

region Newton methods, which can also be interpreted as shifting the eigenval-
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ues of the Hessian to enforce convexity in the model (see for example [106, The-

orem 4.1]). It would be interesting to explore this connection in future work.

3.7 Numerical experiments

This section illustrates the local bundle Newton algorithm on several non-

smooth objective functions. These simple experiments are meant as a proof of

concept, not a comprehensive numerical study. Nonetheless, the results appear

clearly promising enough to invite future research.

3.7.1 Practical considerations

None of the stopping criteria were implemented, and the algorithm was ter-

minated manually when rounding error prevented any further progress.

Choosing an initial bundle

In each experiment, a standard global nonsmooth optimization method was

used to generate a finite set of points Ω ⊂ D near a minimizer x̄, and used the

corresponding gradients (normalized to unit length) to estimate the dimension

of the subdifferential ∂ f (x̄) and hence choose the bundle size k, as discussed

in Section 3.2.5. A heuristic subset selection procedure [56, Algorithm 5.5.1],

described below, was then used to choose a set of k points in Ω with robustly

affinely independent gradients to form the initial bundle.

For convex problems, weuse the simple “BundleMethodwithMultipleCuts”

[44], described in Algorithm 3.5. In the nonconvex case, we use BFGS [82].
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Algorithm 3.4: Bundle initialization heuristic
Input : Set of points Ω � {x1, . . . , xm} ⊂ Rn , singular value threshold σ̄;

1. Form the matrix G � [g1 · · · gm]with columns

gi �

(
|∇ f (xi)|−1∇ f (xi)

1

)
;

2. Compute SVD and determine numerical rank of G,

UT GV � Σ � diag(σ1, . . . , σn),
r � max{1 ≤ i ≤ m : σi > σ̄};

3. Apply QR with column pivoting to the first r columns of V ,
Vr � [v1 · · · vr],

QËVrP � R;

4. Let p be the list that results from permuting the list {1, . . . , n + 1}
according to the permutation matrix P. Return the bundle of points

{x j : j ∈ {p1, . . . , pr}};

For the bundle method, Ω is chosen to be the set of points whose cutting

planes were strongly active in the final iteration. That is,

Ω � {s ∈ S : αs > 0},

where αs is the dual variable associated with cutting plane ls . For BFGS,Ω is the

final 2n iterates.

Solving the quadratic subproblems

The algorithm involves two quadratic programming subproblems. The first

involves computing the optimality measure Θ(S), which amounts to choosing

the smallest element in the convex hull of vectors {∇ f (s) : s ∈ S}. This was
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Algorithm 3.5: Multiple cut bundle method to minimize convex f
Input : Initial bundle S ⊂ Rn , initial center z ∈ S, stopping tolerance ϵ̄,

proximal parameter ρ > 0, sufficient decrease parameter
β ∈ (0, 1);

for iteration � 1, 2, 3, . . . do
for s ∈ S do

gs ∈ ∂ f (s);
ls( · ) � f (s) + ⟨gs , · − s⟩;

end
Choose x̂ minimizing maxs∈S ls( · ) + ρ

2 | · −z |2;
if f (z) −maxs∈S ls(x̂) ≤ ϵ̄ then

Stop: nearly optimal;
else

if f (x̂) ≤ f (z) − β( f (z) −maxs∈S ls(x̂)) then
z ← x̂ (serious step);

else
z ← z (null step);

end
end
S← S ∪ {x̂};

end

implemented as the quadratic program

minimize
λ∈R|S |

1
2

���∑
s∈S

λs∇ f (s)
���2

subject to
∑
s∈S

λs � 1

λ ≥ 0,

and solved in Gurobi. For the equality-constrained quadratic programs,

minimize
t∈R, x∈E

∑
s
λs qs(x)

subject to ls(x) equal for all s ∈ S,
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we simply solve the linear optimality conditions directly:∑
s∈S

λs∇2 f (s)(x − s) +
∑
s∈S

µs∇ f (s) � 0∑
s∈S

µs � 1

ls(x) − t � 0 (s ∈ S).

(3.7.1)

The x variable of the solution is then our Newton iterate x̂.

3.7.2 Illustrative examples

Strongly convex problems

Our first experiment is to minimize max functions of the form

f (x) � max
i�1,...k

{
gËi x +

1
2xËHi x +

ci

24 |x |
4} (x ∈ Rn) (3.7.2)

for 1 ≤ k ≤ n + 1. Consider randomly generated positive constants ci , symmet-

ric positive definite matrices Hi , and affinely independent vectors gi satisfying∑
i λi gi � 0 for some λ randomly sampled in {λ > 0 : ∑i λi � 1}. Then

0 ∈ ∂ f (0) � conv{gi : 1 ≤ i ≤ k}

so f is nonsmooth at the minimizer of 0, and it is clear that 0 satisfies the strong

second-order conditions. This structure of f is unknown to the algorithms. Ac-

cess is limited to a black box procedure that returns the active function value,

gradient, and Hessian.

In random trials for dimension n � 50, the bundlemethodAlgorithm 3.5was

applied in a first phase, with parameters ρ � 1 and β � 10−5, and starting point

z � (1, . . . , 1). The stopping tolerance was ϵ̄ set to 10−6, at which point we initial-

ize and switch toAlgorithm 3.1. Results for a number of random trials are shown
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in Figures 3.1 and 3.2. For the bundle method, we observe a roughly linear rate

of convergence of function values to zero that is proportional to the “degree of

nonsmoothness” k. Switching to the bundle Newton algorithm results in rapid

convergence of function values to zero.

100 200 300
Black box evaluations

101

10−4

10−9

10−14

Bundle method
Bundle Newton

Figure 3.1: Best function value found for the bundlemethod and bundleNewton
algorithm against number of black box evaluations for random max functions
(3.7.2) for k � 10, 25, 40 in dimension n � 50.
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(a) Θ(S)

10 20 30 40
Iteration

10−2

10−4

10−6

10−8

k � 10
k � 25
k � 40

(b) diam S

Figure 3.2: Optimality measures against iteration count for the bundle Newton
algorithm for random max functions (3.7.2) in dimension n � 50.
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Nonconvex problems

As a nonconvex test, consider functions of the form

f (x) �
k∑

i�1

���gËi x +
1
2xËHix +

ci

24 |x |
4
��� (x ∈ Rn) (3.7.3)

for 1 ≤ k ≤ n + 1, with constants ci , vectors gi and matrices Hi randomly gen-

erated as in the previous experiment. As usual, access to f is limited to a black

box that returns function values, gradients, and Hessians.

In random trials for dimension n � 50, nonsmooth BFGS was applied in a

first phase until a breakdown occurred due to numerical instability (as usual

with this method [82]). At this point we switch to the Algorithm 3.3 with weak

convexity parameter dynamically chosen as

η � max
s∈S

λmax
(
−∇2 f (s)

)
at each iteration. We observe that the algorithm is quickly able to significantly

improve the solution returned by BFGS.

500 1000 1500 2000
Black box evaluations

100

10−4

10−8

10−12

BFGS
Bundle Newton

Figure 3.3: Best function value found for BFGS and the bundle Newton algo-
rithm against number of black box evaluations on random Euclidean sum func-
tions (3.7.3) for k � 10, 25, 40 in dimension n � 50
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Figure 3.4: Optimality measures against iteration count for the bundle Newton
algorithm for random Euclidean sum functions (3.7.3) in dimension n � 50.

3.8 First-order analogues

The Newton philosophy that we explored in this chapter is suggestive even

in the more usual setting where Hessians are unavailable. One straightforward

first-order analogue of our second-order methods replaces the Hessians by a

fixed multiple of the identity matrix, resulting in quadratic subproblem objec-

tives of the form ∑
s∈S

λs
[

f (s) + ∇ f (s)Ë( · − s) +
ρ

2 | · −s |2
]

for some suitable choice of ρ > 0.

This simple implementation is effective on max functions: a simple illustra-

tion is the nonsmooth Rosenbrock function

f (x) � 1
8(1 − x1)2 + |x2 − x2

1 |. (3.8.1)

It is easy to verify that f + | · |2 is strongly convex. Moreover, relative to the set

{x ∈ R2 : x2
1 � x2}, f behaves as the smooth univariate function 1

8(1− · )2, suggest-

ing parameter choices of η � 2 and ρ �
1
4 in a first-order implementation. Local

convergence (after using BFGS to initialize a bundle of size k � 2) is shown in
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Algorithm 3.6: First-order algorithm to minimize weakly convex f

Input : Bundle S ⊂ D, tolerances ϵ̄, δ̄ ≥ 0, weak convexity parameter
η ≥ 0, scaling parameter ρ > 0;

while diam S > δ̄ and Θ(S) > ϵ̄ do
for s ∈ S do

ls( · ) � f (s) + ⟨∇ f (s), · − s⟩ + η ⟨s , · ⟩ − η
2 |s |2;

qs( · ) � f (s) + ⟨∇ f (s), · − s⟩ + ρ
2 | · − s |2;

end
Choose λ ∈ ∆S to minimize

��∑s∈S λs∇ f (s)
��;

Choose x̂ ∈ arg min
{∑

s∈S λs qs(x) : ls(x) equal for all s ∈ S
}
;

if x < D then
Stop;

else
Choose s ∈ S minimizing Θ

(
(S \ s) ∪ x̂

)
;

S← (S \ s) ∪ x̂;
end

end

Figure 3.5, where we observe an overall linear rate. In the case of a max function,

we have the following extension of Theorem 3.5.1.

Theorem 3.8.1. Given a max function of the form

f (x) � max
i�1,...,k

fi(x)

with x̄ satisfying the strong second-order conditions, there exists a constant δ > 0 such

that starting from any full bundle S ⊂ Bδ(x̄), Algorithm 3.6 with η � 0 generates a new

point x̂ satisfying

x̂ − x̄ � ProjL
( 1
ρ

∑
s∈S

λ̄s
(
ρI − ∇2 fs(x̄)

)
(s − x̄)

)
+ O

(
max
s∈S
|s − x̄ |2

)
,

where L is the subspace {z ∈ Rn : ⟨∇ fi(x̄), z⟩ equal for all i}. Assuming x̂ ∈ D,

the algorithm replaces with x̂ the reference point in S from the same activity region,

generating a new full bundle.

Proof. Fix the full bundle S � {y1, . . . , yk}. We apply Theorem 3.4.2 to the con-
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sensus form of our quadratic subproblem

minimize t +
ρ

2

k∑
i�1

λi |xi − yi |2

subject to fi(yi) + ⟨∇ fi(yi), xi − yi⟩ − t � 0 (i � 1, . . . , k)

xi − z � 0 (i � 1, . . . , k)

x1, . . . , xk , z ∈ E.

with the operator B defined as (x1, . . . , xk , z) 7→ ρ(λ1x1, . . . , λk xk , 0). Then notic-

ing that B−1V is simply composed ofmultiple projections onto L, we deduce that

z − x̄ � ProjL
( 1
ρ

k∑
i�1

λ̄i
(
ρ(λi/λ̄i)I − ∇2 fi(x̄)

)
(yi − x̄)

)
+ O

(
max
s∈S
|yi − x̄ |2

)
.

Applying Proposition 3.5.1 and Corollary 3.5.1 completes the result. □

50 100 150 200
Black box evaluations

10−5

10−8

10−11

10−14

BFGS
Algorithm 3.6

Figure 3.5: Best function value found for BFGS and Algorithm 3.6 against num-
ber of black box evaluations on the nonsmooth Rosenbrock function (3.8.1).

To complete a local convergence proof, and exactly characterize the linear

convergence rate, an appropriate analogue of Lemma 3.5.1 should be developed.

How to do so is not immediately obvious, and is left as a topic for future research.
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3.9 Globalization

Since our method depends strongly on the local geometry of the objective

function around a minimizer, the results in this chapter have been purely local,

with the algorithms crucially depending on an initial full bundle being avail-

able. One potentially promising route to a more robust global algorithm is to en-

vision a two-stage approach in the vein of sequential linear-quadratic programming

[106]. In SLQP, a linear program is solved to estimate the set of active constraints,

which are then fixed in an equality-constrained quadratic subproblem. We have

experimentally observed that a similar strategy can be effective for convex max

functions, with a second linear subproblem introduced to control the size and

elements of the bundle, alongside a simple backtracking line search to choose

the scaling parameter in a first-order implementation. A more comprehensive

investigation is an ongoing study.

An early version of this work considered the algorithmic scheme described

below for minimizing max functions assuming each fi : E → R is convex and

L-Lipschitz continuous. (The extension to smooth-nonsmooth sums (3.3.1) is

straightforward.)

This algorithm can be analyzed in the framework of the model-based mini-

mization schemes of Davis and Drusvyatskiy [36], of which the following analy-

sis is essentially derived from. Notice that when a full bundle S is sufficiently

close to a strong minimizer x̄, we have for all t ≥ 1 that

gt(x) ≤ f (x) for all x ,

gt(xt) � f (xt).

The first inequality follows from convexity, and the second from the fact that the
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Algorithm 3.7: First-order model-based algorithm to minimize f
Input : Full bundle S ⊂ D, x0 ∈ S, step size sequence (ρt) > 0;
for t � 0, 1, . . . do

for s ∈ S do
ls( · ) � f (s) + ⟨∇ f (s), · − s⟩;

end
gt( · ) � maxs∈S ls( · );
xt+1 � arg minx gt(x) + ρt

2 |x − xt |2;
if xt+1 < D then

Stop;
else

Choose s ∈ S minimizing Θ
(
(S \ s) ∪ xt+1

)
;

S← (S \ s) ∪ xt+1;
end

end

bundle update rule maintains full bundles (Corollary 3.5.1).

Fixing arbitrary γ > 0, a convergence rate of Algorithm 3.7 can be given in

terms of the Moreau envelope

f γ(x) � inf
y∈E

{
f (y) + γ

2 |y − x |2
}
,

a smoothed version of f . It is well known from convex analysis that the Moreau

envelope is continuously differentiable, with gradient in terms of the proximal

point mapping given by

∇ f γ(x) � γ
(
x − proxγ−1 f (x)

)
.

When this gradient is small, x is close to strong minimizer x̄ [43].

Defining the exact proximal point

x̂t � proxγ−1 f (xt) � arg min
x∈E

{
f (x) + γ

2 |x − xt |2
}
,
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by strong convexity of the subproblems and the properties of gk we have that

ρt

2 |xt+1 − xt |2 +
ρt

2 |x̂t − xt+1 |2 −
ρt

2 |x̂t − xt |2

≤ gt(x̂t) − gt(xt+1)

≤ f (x̂t) − gt(xt+1)

≤ f (xt+1) +
γ

2 |xt+1 − xt |2 −
γ

2 |x̂t − xk |2 − gt(xt+1).

Rearranging and using that f and hence also gt are L-Lipschitz yields

|xt+1 − x̂t |2 ≤
ρt − γ
ρt
|x̂t − xt |2 +

γ − ρt

ρt
|xt+1 − xt |2 +

2
ρt

(
f (xt+1) − gt(xt+1)

)
≤
ρt − γ
ρt
|x̂t − xt |2 +

γ − ρt

ρt
|xt+1 − xt |2 +

2
ρt

2L |xt+1 − xt |.

Supposing without loss of generality that ρk > γ, by maximizing the above over

|xt+1 − xt | we deduce that

|xt+1 − x̂t |2 ≤
ρt − γ
ρt
|x̂t − xt |2 +

4L2

ρk(ρk − γ)
.

Therefore by definition,

f γ(xt+1) ≤ f (x̂t) +
γ

2 |x̂t − xt+1 |2

≤ f (x̂t) +
γ

2

(
ρt − γ
ρt
|x̂t − xt |2 +

4L2

ρk(ρk − γ)

)
� f γ(xt) −

γ2

2ρt
|x̂t − xt |2 +

2γL2

ρk(ρk − γ)
.

Fixing arbitrary T > 0 and iterating yields

min f ≤ f γ(xT+1) ≤ f γ(x0) −
γ

2

T∑
t�0

γ

ρt
|x̂t − xt |2 + 2γL2

T∑
t�0

1
ρk(ρk − γ)

,

and by rearranging we have that

T∑
t�0

γ

ρt
|x̂t − xt |2 ≤

2( f γ(x0) −min f )
γ

+ 4L2
T∑

k�0

1
ρk(ρk − γ)

.
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Recognizing that

|x̂t − xt |2 �
1
γ2 |∇ f γ(xt)|2,

we arrive at the inequality

min
t�0,...,T

|∇ f γ(xt)|2 ≤
2γ( f γ(x0) −min f ) + 4γ2L2 +

∑T
t�0

1
ρt(ρt−γ)∑T

t�0
γ
ρt

.

In particular, choosing ρt � γ + α
√

t + 1 for any α > 0 yields the complexity

guarantee

min
t�0,...,T

|∇ f γ(xt)|2 ≤
(
2( f γ(x0) −min f ) + 4γL2α2) (

γ

T + 1 +
1

α
√

T + 1

)
. (3.9.1)

Since we essentially do not use the special finite max structure of f , this rate

is not very useful practically, being no better than a simple subgradient method.

It would be interesting to investigate if this proof technique based onMoreau en-

velopes could be specialized to derive new convergence rates for more complex

bundle algorithms on functions with finite max structure.
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CHAPTER 4

ACTIVE-SET NEWTON METHODS

4.1 Introduction

For the one-dimensional equation p(x) � 0, Newton’s method has a simple

geometric motivation. At an approximate solution x, we intersect the tangent

line to the graph at (x , p(x)) with the x-axis, and take the intersection point as

an improved approximate solution. One key ingredient for rapid convergence

to solution x̄ is that the derivative p′(x̄) is well-defined and nonzero, in which

case the Newton iteration

x ← x − p(x)
p′(x)

converges quadratically to x̄. If this doesn’t hold, Newton’s method may con-

verge more slowly, such as linearly on the function p(x) � x2, or even diverge,

such as when applied to p(x) � 3√x. The extension to higher-dimensional set-

tings is straightforward in standard texts [106].

Due to the algorithm’s simplicity and effectiveness, there has been consider-

able interest over several decades in generalizing Newton’s method beyond the

smooth or even finite-dimensional setting. We refer the interested reader to the

monographs [49, 38, 61, 70, 125]. The setting we consider is that of generalized

equations in Euclidean space of the form

0 ∈ F(u) +Ψ(u), (4.1.1)

where F : U → V is smooth and Ψ : U ⇒ V is set-valued. One avenue to

generalize Newton’s method to this setting is the Josephy-Newton iteration [63]

defined by

u ← solution û of 0 ∈ F(u) + DF(u)(û − u) +Ψ(û). (4.1.2)
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Central to the analysis of algorithms of this type is metric regularity [114] of the

mapping Φ B F +Ψ, a generalization of invertibility, which allows us to stably

bound the distance to the solution set Φ−1(0) by some multiple of the residual

function u 7→ dist(0,Φ(u)). The monograph [38] is instructive as a modern refer-

ence on various notions ofmetric regularitywith connections to implicit function

theorems and applications.

Definition 4.1.1. Suppose v̄ ∈ Φ(ū). We say that Φ is metrically regular at ū for

value v̄ if there exists some K > 0 such that

dist(u ,Φ−1(v)) ≤ K dist(v ,Φ(u))

for all (u , v) near (ū , v̄). If, in addition, gphΦ−1 locally agrees with the graph of

a single-valued mapping around ( ȳ , x̄), we say Φ is strongly metrically regular.

Note that in the strongly metrically regular case, Φ−1 is locally single-valued

and Lipschitz with the same constant K ([38, Proposition 3G.1]). For example, a

linear map A : U→ V is metrically regular at 0 if and only if it is surjective, and

strongly metrically regular when it is invertible. In this setting, local superlinear

convergence rates of generalized Newton methods can be established [8, 51, 38,

62].

Some literature instead works with a slightly different regularity assumption

originating in [117] and named in [39], which generalizes injectivity of map-

pings.

Definition 4.1.2. Suppose v̄ ∈ Φ(ū). We say thatΦ is strongly metrically subregular

at ū for value v̄ if there exists some K > 0 such that

|u − ū | ≤ K dist(v̄ ,Φ(u))

for all u near ū.
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In particular, strong metric subregularity implies ū must be an isolated so-

lution of the generalized equation, and linear A : U → V is strongly metrically

subregular at 0 when A is injective. Under strong metric subregularity, superlin-

ear convergence for generalized Newton and inexact quasi-Newton algorithms

have been established [38, 28, 16]. In themain scenarios we consider in this chap-

ter however, these varying metric regularity definitions are all in fact equivalent.

One limitation of the iteration (4.1.2) is that the set-valued part of the equation

is left untreated. The recent work [55] incorporates a “linearization” ofΨ using

sophisticated graphical differentiation ideas. In this chapter, we adopt a simpler

and more geometrically motivated approach.

When Ψ is the normal cone operator NQ of some set Q ⊂ U, active-set ap-

proaches from standard texts [49, 106] offer a useful foundation upon which to

build practical algorithms. The active-set idea also extends to more contempo-

rary optimization settings [83, 90, 73]. In a first phase, these methods identify, ei-

ther explicitly or implicitly, some lower-dimensional “active manifold” defined

by some constraints. After this identification, accelerated local convergence can

be achieved, typically as a result of a linearization argument.

With roots in [130, 66, 19, 20, 22, 47, 50, 52], the theory of partial smoothness [79]

frames active sets in a broad setting. [42] thoroughly explores the relationship

with identifiability, and [80] recently extended partial smoothness to set-valued

operators. Motivated by these recent works and the classical linearization in-

terpretation of Newton’s method, we develop an intuitive geometric framework

for active-set Newton algorithms for generalized equations. The forthcoming

manuscript [85] contains many of the major results.

71



4.2 A Newton method for intersecting manifolds

We begin in the general setting of two manifolds X and Y intersecting

transversally, and study the intersection when one manifold is linearized. The

resulting “semi-linearized” algorithm generalizes the core geometric motivation

of Newton’s method.

Definition 4.2.1. Let X ,Y be manifolds around z ∈ E. We say that X and Y

intersect transversally at z, or that z is a transversal point in X ∩Y, if

NX(z) ∩ NY(z) � {0}. (4.2.1)

It is well known that if X ,Y ⊂ E are manifolds intersecting transversally at z,

the intersection X ∩Y is also a manifold around z, with dimension

dim(X ∩ Y) � dimX + dimY − dim E.

Proposition 4.2.1. The following are equivalent for smooth manifolds X ,Y around

z ∈ E.

(i) X andY intersect transversally at z.

(ii) There exists a local parametrization H : Rk → E of X around z and a defining

map G : E→ Rm ofY such that the derivative

D(G ◦ H)(0) : Rk → Rm : w 7→ DG(z)DH(0)w

is surjective.

In addition, z is isolated inX∩Y if and only if k � m (and so the derivative is invertible).

Proof. First, assume (i) holds. Since X, Y are manifolds around z, there exists

a local parametrization H : Rk → E of X and a defining map G : E → Rm
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for Y. Suppose DH(0)∗DG(z)∗w � 0 for some w ∈ Rk . (Due to our normal

rather than tangential definition of transversality, it will be more convenient to

prove that the adjoint is injective.) So DG(z)∗w ∈ Null(DH(0)∗) � NX(z). Since

NY(z) � Range(DG(z)∗), by transversality DG(z)∗w must be 0. But DG(z) is

surjective, so w � 0 and D(G ◦ H)(0) is injective. Furthermore if z is isolated in

X ∩Y, near z we have that

0 � dim(X ∩ Y)

� dimX + dimY − dim E

� k + (dim E − m) − dim E

� k − m.

Now assume (ii) holds and let v ∈ NX(z) ∩ NY(z). So DH(0)∗v � 0 and

v � DG(z)∗w for some w ∈ Rk . Then DH(0)∗DG(z)∗w � 0, which means that

w � 0 since D(G ◦ H)(0) is surjective. But then v � 0, so transversality holds.

To see that z is an isolated intersection point when the derivative is invertible,

observe that u ∈ X ∩Y can be characterized locally by solutions of

G(H(w)) � 0.

By the inverse function theorem, G ◦ H is a bĳection around 0, so z � H(0) is

isolated in X ∩Y. □

Theorem 4.2.1. LetX andY be C(2)-manifolds around isolated transversal point z ∈ E.

There exists a neighbourhood U of z and a unique C(1) function y : X ∩ U → Y ∩ U

satisfying y(x) − x ∈ TX(x) with

y(x) − z � O(|x − z |2)
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Proof. Let H : Rk → E and G : E→ Rk be a local parametrization and defining

map of X and Y, respectively. Thus points x near z have the form x � H(w) for

small w ∈ Rk , and we seek a point y(x) � H(w) + DH(w)v satisfying

G(H(w) + DH(w)v) � 0

for some small v ∈ Rk . Denote the function on the left hand side as F(w , v),

and notice that F(0, 0) � 0, and the derivative with respect to v when w � 0

is DvF(0, v) � DvG(H(0) + DH(0)v) � DG(H(0) + DH(0)v)DH(0). In particu-

lar DvF(0, 0) � DG(H(0))DH(0), which by transversality is invertible. By the

implicit function theorem, there exists a unique C(1) function v(w) defined for

small w and satisfying F(w , v(w)) � 0 and v(0) � 0.

Now, H and G are C(2), hence in particular locally Lipschitz and we have that

G(H(w + v(w))) � G(H(w) + DH(w)v(w) + O(|v(w)|2))

� G(H(w) + DH(w)v(w)) + O(|v(w)|2)

� O(|v(w)|2)

as w → 0, which implies w + v(w) � O(|v(w)|2) since G(H(0)) � 0. Hence

y(x) − z � H(w) + DH(w)v(w) − H(0)

� H(w + v(w)) − H(0) + O(|v(w)|2)

� O(|w + v(w)|) + O(|v(w)|2)

� O(|v(w)|2)

� O(|w |2)

� O(|H(w) − H(0)|2)

� O(|x − z |2).

□
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If there was a way to restore the point y(x) to the manifold X through some

Lipschitz “restoration map,” repeating this linearization process would gener-

ate a sequence converging quadratically to z. The following result forms the

foundation of the Newton algorithms we consider in this work.

Figure 4.1: Semi-linearized Newton method.

Corollary 4.2.1. Consider the setting of Theorem 4.2.1, and suppose there exists a Lip-

schitz map R : Y → X such that R(z) � z. Then given a starting point x ∈ X

sufficiently close to z, the iteration

x ← R(y(x)) (4.2.2)

converges quadratically to z.

Proof. By Theorem 4.2.1, we have that for x near z,

|R(y(x)) − z | � |R(y(x)) − R(z)| � O(|y(x) − z |) � O(|x − z |2).

□

An obvious candidate for R is the projection mapping ProjX , which is well-

defined and locally Lipschitz around z. But in applications, such a projection

may be complex anddifficult to perform, anddoes not providemuch algorithmic
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insight. We end this section by showing that when there exists a constant rank

map P fromX toY, it is always possible to construct a restorationmap consisting

of decoupled updates onto the image and preimage of P. Such a construction

turns out to be a more natural choice for R, and will be the foundation of later

active-set methods.

Theorem 4.2.2. Let X and Y be C(2)-manifolds around z ∈ E. Suppose there exists

a C(2)-smooth map P : X → Y that is constant rank near z � P(z). Then for any

sufficiently small neighbourhood U of z, the following holds:

(i) M � P(X ∩U) is a C(2)-manifold of dimension equal to the rank of P at z.

(ii) There exists a C(1) map S : Y ∩U →M such that S(z) � z. A particular choice

is the projection map ProjM .

(iii) There exists a C(1) map Q :M∩U →X such that Q(z) � z and is a left inverse

for P:

P(Q(u)) � u for all u ∈ M ∩U .

A particular choice is the projection onto the preimage of u:

Q(u) � ProjP−1(u)(u).

Proof. In the framework of the constant rank theorem, let ϕ : Rk×Rn−k → E and

ψ : Rk × Rm−k → E be local parametrizations around z of X and Y respectively.

(i) then follows immediately, as w 7→ ψ(w , 0) is clearly a local parametrization

ofM.

(ii) follows from the fact that for a C(2)-manifold around z, the projection onto

the manifold is well-defined and C(1) around z. (e.g., [119, see 13.38]).
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To prove (iii), consider local coordinates w for some u ∈ M. By the constant

rank theorem, the preimage P−1(u) has a local parametrization v 7→ ϕ(w , v), and

is thus a C(2)-manifold around ϕ(w , 0). So for w sufficiently small, the projection

of u onto this manifold is well-definedwith local coordinates given by the global

minimizer of minv |ϕ(w , v) − ψ(w , 0)|2. This minimizer must satisfy the first-

order necessary condition

Dvϕ(w , v)∗(ϕ(w , v) − ψ(w , 0)) � 0,

which is C(1)-smooth as a function of (w , v), and clearly satisfied when (w , v) �

(0, 0). The derivativewith respect to v of the left hand sidewhen (w , v) � (0, 0) is

Dvϕ(0, 0)∗Dvϕ(0, 0), which is invertible since Dϕ(0, 0) is injective. Therefore by

the implicit function theorem, for small w the first-order condition has a unique

small solution v(w) that is C(1)-smooth as a function of w, which implies that

ϕ(w , v(w))must be exactly ProjP−1(u)(u). □

Example (Linear maps). Consider a rank k linear map A between Euclidean

spaces X � E and Y � F. The manifoldM is then simply the range of A, and

ProjM the orthogonal projection onto this subspace. Given y ∈ Range(A), we can

define the left inverse Q(y) � A†y, where A† is the pseudo-inverse of A satisfying

AA†y � y. It is well known (see e.g., [56, Section 5.5]) that Q(y) then gives the

minimum norm solution of Ax � y.

4.3 Partly smooth generalized equations

Our aim is to apply the results of the previous section to generalized equa-

tions of the form

v ∈ Φ(u) (4.3.1)
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involving some partly smooth (Definition 2.5.6) set-valued mapping Φ : U⇒ V.

In particular, we assume that the graph

gphΦ � {(u , v) ∈ U ×V : v ∈ Φ(u)}.

is a smooth manifold around (ū , v̄) ∈ U × V. Given v̄, we cast the problem of

solving v̄ ∈ Φ(u) as a manifold intersection problem, and apply the results of

the previous section with X � gphΦ and Y � U × {v̄}. In this setting it will be

convenient to adopt the language of graphical differentiation (Definition 2.3.1). In

this language, the Newton step of Theorem 4.2.1 can be performed by solving

v̄ − v ∈ DΦ(u |v)(w − u) (4.3.2)

for w. SinceTgphΦ(u , v) andU×{v̄} are both affine, if (ū , v̄) is an isolated solution,

the transversality condition (4.2.1) guarantees that w is uniquely determined.

This is in fact equivalent to metric regularity of Φ, which we can conveniently

characterize via the coderivative.

Proposition 4.3.1. The following are equivalent when Φ is a smooth manifold around

(ū , v̄).

(i) gphΦ intersects U × {v̄} transversally at (ū , v̄).

(ii) 0 ∈ D∗Φ(ū |v̄)(v) ⇒ v � 0.

(iii) Φ is metrically regular at ū for value v̄.

Proof. Assume transversality, i.e.,

NgphΦ(ū , v̄) ∩ NU×{v̄} � {0}.

Noting that NU×{v̄}(ū , v̄) � {0} ×V, we have that

(0, v) ∈ NgphΦ(ū , v̄) ⇒ v � 0,

78



which is by definition

0 ∈ D∗Φ(ū |v̄)(−v) ⇒ v � 0.

Since v was arbitrary, (ii) follows. The reverse implication proceeds identically.

The equivalence (ii)⇔ (iii) is [38, Theorem 4C.2]. □

Example (Nonlinear equations). Consider the system of equations F(u) � 0

for single-valued C(2)-smooth F : Rn → Rn . Transversality then amounts to

the Jacobian ∇F being invertible at solution ū. Given (u , F(u)) near (ū , 0), the

Newton step (4.3.2) becomes exactly the classical Newton iteration

w � u − ∇F(u)−1F(u).

If we choose the “natural” restoration map R : (w , 0) 7→ (w , F(w)), then Theo-

rem 4.2.1 recovers the local quadratic convergence of Newton’s method.

Example (Monotone operators). Consider the equation 0 ∈ Φ(u) for maximally

monotone Φ : U ⇒ U [116]. In particular this case includes the optimality con-

dition 0 ∈ ∂ f (u) for proper closed convex function f : U → R̄. Following the

Newton step

w � u + DΦ(u |v)−1(−v),

a natural choice for the restoration map makes use of the fact that for any λ > 0,

the resolvent

JλΦ � (I + λΦ)−1

is single-valued and nonexpansive. A simple calculation shows that JλΦ(ū) � ū

and that (
JλΦ(u),

1
λ

(
u − JλΦ(u)

) )
∈ gphΦ (4.3.3)

for all u ∈ U. Hence we can define a restorationmap R as the function that maps

(u , 0) to the left hand side of (4.3.3).
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Even formonotoneΦ, calculating the resolventmaybe as difficult as inverting

Φ itself. To work around this, one approachmay be to decomposeΦ into simpler

mappings that can be handled independently, in the vein of splitting methods.

We explore some preliminary algorithms in this direction in Section 4.6. Here,

using the theory of partial smoothness, we take a different direction that does

not require monotonicity.

Theorem 4.2.2 describes a decoupled approach to the restoration map R, as-

suming the existence of some constant rank map between the manifolds of inter-

est. Recall that if Φ is partly smooth at ū for v̄, the projection map (u , v) 7→ u

is constant rank around (ū , v̄), and its image is some active manifoldM. By spe-

cializing to partly smooth generalized equations, the structure of the decoupled

restoration map becomes clear. A primal update that restores the variable u to

M is followed by a dual update that fixes u and chooses an appropriate v ∈ Φ(u).

Theorem 4.3.1. Let ū be an isolated solution to v̄ ∈ Φ(u), and suppose Φ : U → V

is C(2)-partly smooth at ū for v̄ with active manifold M ⊂ U. Then assuming the

transversality condition

0 ∈ D∗Φ(ū |v̄)(v) ⇒ v � 0,

for any sufficiently small neighbourhood U of ū the following holds.

(i) There exists a C(1) map S : U →M such that S(ū) � ū. A particular choice is

the projection map ProjM .

(ii) There exists a C(1) map Q :M ∩U → V such that Q(ū) � v̄ and

Q(u) ∈ Φ(u) for all u ∈ M ∩U .

A particular choice is

Q(u) � Proj
Φ(u)(v̄).
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(iii) For all (u , v) ∈ gphΦ near (ū , v̄), the linearized equation

v̄ − v ∈ DΦ(u |v)(w − u)

has a unique solution w(u , v).

Moreover, given any starting point (u , v) ∈ gphΦ sufficiently close to (ū , v̄), the itera-

tion

u ← S(w(u , v)), v ← Q(u)

converges quadratically to (ū , v̄).

Proof. Apply Corollary 4.2.1 and Theorem 4.2.2 with

X � gphΦ, Y � U × {v̄},

z � (ū , v̄), P(u , v) � (u , v̄).

□

4.4 Identification and smooth reductions

While the algorithm described in Theorem 4.3.1 is elegant and conceptually

appealing, several issues remain a barrier to a practical implementation. As in

any purely local algorithm, the question of how to initialize close to a solution

of interest is paramount. The algorithms also involves the potentially complex

operations of projecting onto the active manifoldM and imagesΦ(u), as well as

inverting the graphical derivative DΦ(u |v). The aim of this section is to address

these issues for a broad class of interesting applications.

Consider the generalized equation

0 ∈ Φ(u) (4.4.1)
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where Φ : U ⇒ U is partly smooth at ū for 0 with active manifoldM ⊂ U. We

focus on the case where Φ locally reduces to an operator of the form F + NM , in

the sense that

gphΦ � gph(F + NM) near (ū , 0) (4.4.2)

for some smooth function F : U→ U. We will show that this assumption, while

stringent, holds for a variety of interesting cases.

Partial smoothness is closely linked to the notion of identifiable sets. Indeed,

the definition of a partly smooth operator immediately yields the identification

property

vk ∈ Φ(uk) and (uk , vk) → (ū , 0) ⇒ uk ∈ M for all large k , (4.4.3)

which is remarkably broad and powerful. Given any algorithm producing a se-

quence uk , under a metric regularity assumption it is natural to seek a sequence

vk ∈ Φ(uk) converging to 0 as a guarantee that uk converges to ū. In this case

(4.4.3) says that uk must also identifyM.

The identification property and smooth reduction highlight the essence of

active-set strategies. Some iterative algorithm that identifies the active manifold

can be employed in a “global phase,” which is followed by a “local phase”where

the semi-linearizedNewtonmethod of Theorem 4.3.1 is performed (implicitly or

explicitly) on the simpler mapping F + NM .

Example (Variational inequalities). Following the terminology of [49], a varia-

tional inequality VI(Q , F) is a generalized equation of the form

0 ∈ F(u) + NQ(u)

for C(2)-smooth F : U→ U and closed set Q ⊆ U.
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Let ū be an isolated solution to VI(Q , F), and assume that Q is C(3)-partly

smooth at ū for −F(ū) along with the standard nondegeneracy condition

−F(ū) ∈ ri N̂Q(ū).

By Theorem 2.5.1, after applying a sum rule we have that F + NQ is C(2)-partly

smooth at ū for 0 and that

gph NQ � gph NM near (ū ,−F(ū)). (4.4.4)

To illustrate identification, for simplicity suppose that Q is convex. Consider

the mapping T defined by

T(u) � ProjQ(u − F(u)).

The fact that ū solves VI(Q , F) if and only if T(ū) � ū motivates the basic fixed

point iteration

u ← T(u).

Under reasonable conditions (see e.g., [49, Theorem 12.1.2]), this iteration yields

a sequence uk converging to a solution ū. By continuity,

T(uk) → ū and uk − T(uk) − F(uk) → −F(ū),

and hence

uk − T(uk) − F(uk) ∈ NQ(T(uk)).

Therefore by the reduction (4.4.4) we have that uk ∈ M for all k sufficiently large.

More sophisticated global algorithms for VI(Q , F) aim to drive the natural resid-

ual rk � uk −T(uk) to zero by way of a merit function. A similar calculation shows

that uk + rk ∈ M eventually.
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Example (Minimizing partly smooth functions). Consider the optimization

problem

min
u

f (u)

for a closed function f : U → R̄. Suppose that ū is a nondegenerate critical

point:

0 ∈ ri ∂̂ f (ū),

and that f is partly smooth at ū for 0 relative to manifoldM. By Theorem 2.5.1

the subdifferential satisfies

gph ∂ f � gph(∇ f̄ + NM) near (ū , 0),

where f̄ is a smooth function agreeing with f onM. Therefore Theorem 4.3.1

can be employed in a local phase following any global algorithm that generates

small subgradients.

Returning to the general case, we next discuss how to compute with the op-

erator Φ � F + NM . It will be convenient to fix G : U → Rm as a defining map

forM and define the function

H : U × Rm → U : (u , λ) 7→ DG(u)∗λ.

Note that since DG(u) is surjective, H(u , · ) is a local parametrization of NM(u),

and we will refer to λ as the local coordinates of some y ∈ NM(u).

In the setting of Theorem 4.3.1, we first address the restoration map R. The

exact manifold projection ProjM is often intractable and unnecessary in practice,

but required for our theoretical results. In the case of a variational inequality

VI(Q , F) for partly smooth Q, we could instead use ProjQ , which agrees with
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ProjM locally. The graph restoration ProjF(u)+NM(u)(0) can be computed by solv-

ing

min
λ∈Rm

��F(u) + ∇G(u)∗λ
��,

a simple least-squares problem.

Turning now to the Newton step, by the sum rule for graphical derivatives

(4.3.2) becomes

− v ∈ ∇F(u)(w − u) + DNM(u |v − F(u))(w − u), (4.4.5)

with transversality becoming

− ∇F(ū)∗v ∈ D∗NM(ū | − F(ū))(v) ⇒ v � 0. (4.4.6)

Since NM is the subdifferential of the indicator function δM , DNM and D∗NM

are second-order objects. The coderivative in particular has played an important

role in generalized second-order theory, with the Mordukhovich generalized Hes-

sian [99] of δM defined as

∂2δM � D∗(∂δM) � D∗NM .

It is well known that Hessian of a C(2)-smooth f : U→ R function is symmetric,

i.e.,

D(∇ f )(u) � ∇2 f (u) � D∗(∇ f )(u).

For general sets M, there does not exist a similar relationship between the

coderivative and graphical derivative. However for smooth manifolds, by a re-

sult of [86], DNM and D∗NM are in fact equivalent, and admit simple represen-

tations.

Theorem 4.4.1. Consider NM : U ⇒ U for a C(r)-smooth (r ≥ 2) manifoldM of

codimension m around u ∈ U. For any normal vector y ∈ NM(u)with local coordinates
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λ ∈ Rm , the graph of NM is a C(r−1)-manifold of dimension dim U around (u , y) with

derivatives

DNM(u |y)(w) � D∗NM(u |y)(w) �


DuH(u , λ)w + NM(u) w ∈ TM(u),

� w < TM(u).

Proof. Let ϕ : Rn → U be a local parametrization ofM (and hence n � dim U−

m). Define the map

P : Rn × Rm → U ×U : (α, λ) 7→
(
ϕ(α),DG(ϕ(α))∗λ

)
,

and its derivative in matrix block form

DP(α, λ) � ©­«
Dϕ(α) 0∑m

i�1 λiDα(DGi(ϕ(α))) DG(ϕ(α))∗
ª®¬ .

Since DP(α, λ) is clearly full rank, P is a local parametrization of gph NM , which

in particular implies that

dim(gph NM) � n + m � dim U.

To compute the tangent and normal spaces to gph NM , we apply [86, Theorem

2.8], whose proof we reproduce in our notation. Let (u , y) ∈ gph NM with local

coordinates (α, λ). Then we have that

(w , z) ∈ Tgph NM (u , y) ⇔ (w , z) ∈ Range(DP(α, λ))

⇔


w ∈ Range(Dϕ(α)),

z ∈
( ∑m

i�1 λiDu(DGi(u))
)
w + Range(DG(ϕ(α))∗)

⇔


w ∈ TM(u),

z − DuH(u , λ)w ∈ NM(u).
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Now use the fact that for any linear map A and subspace S,

{x : Ax ∈ S}⊥ � A∗S⊥.

By applying this with

A �
©­«

I 0

−DuH(u , λ) I

ª®¬ , S �
{
(a , b) : a ∈ TM(u), b ∈ NM(u)

}
,

since G is C(2) we have that

(w , z) ∈ Ngph NM (u , y) ⇔


w + DuH(u , λ)z ∈ NM(u),

z ∈ TM(u).

The result then follows from the definition of the derivative and coderivative. □

When specialized to partly smooth functions, an elegant consequence

emerges. Informally, generalized second derivatives of partly smooth functions

are symmetric.

Corollary 4.4.1. Consider a subdifferentially continuous function f : U → R̄ with

subgradient v̄ ∈ ri ∂ f (ū). If f is C(r) partly smooth (for r ≥ 2) at ū for v̄ relative to

manifoldM, then

D(∂ f )(ū |v̄) � D∗(∂ f )(ū |v̄) � ∂2 f (ū |v̄) � ∇2 f̄ (ū) + DNM(ū |v̄ − ∇ f̄ (ū))

where f̄ : U→ R is a C(r)-smooth function agreeing with f onM.

Proof. By Theorem 2.5.1, ∂ f admits the local representation

gph ∂ f � gph(∇ f̄ + NM) near (ū , v̄),

so the result follows by routine derivative-coderivative calculus and applying

Theorem 4.4.1. □
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Now, returning to the setting of Φ � F + NM , given some (u , v) ∈ gphΦ near

(ū , 0) we can write v � L(u , λ) for local coordinates λ in terms the Lagrangian

function

L(u , λ) � F(u) + H(u , λ).

Then the solution w of the Newton step (4.4.5) can be computed by solving the

linear system 
L(u , λ) + DuL(u , λ)d ∈ NM(u)

d ∈ TM(u),
(4.4.7)

and setting w � u + d.

The transversality condition (4.4.6) simply amounts to invertibility of the sys-

tem (4.4.7) around a solution ū, or equivalently, to the invertibility of DuL pro-

jected onto the tangent space TM(ū).

Corollary 4.4.2. Let 0 ∈ F(ū) + NM(ū), and λ̄ be the local coordinates of −F(ū) in

NM(ū). Let Z : Rn−m → TM(ū) be an injective linear map parameterizing the tangent

space TM(ū). Then the following are equivalent.

(i) F + NM is metrically regular at ū for value 0.

(ii) gph(F + NM) intersects U × {0} transversally at the isolated point (ū , 0).

(iii) −DF(ū)∗v ∈ D∗NM(ū | − F(ū))(v) ⇒ v � 0.

(iv) v ∈ TM(ū) and DuL(ū , λ̄)v ∈ NM(ū) ⇒ v � 0.

(v) The linear map Z∗DuL(ū , λ̄)Z is invertible.

Proof. The equivalence of (iv) and (v) follows from [9, Proposition 14.1]. Since

the proof is simple, we reproduce it here for completeness.
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((i)⇔ (ii)⇔ (iii)). Since gph(F + NM) and U × {0} are both submanifolds

of dimension dim U in U × U, if they intersect transversally, the intersection

is a submanifold of dimension 0, so any transversal point is automatically iso-

lated. Thus the equivalences follow from Proposition 4.3.1 and the sum rule for

coderivatives.

(iii)⇔ (iv) follows immediately from Theorem 4.4.1.

((iv)⇔ (v)). Suppose Z∗DuL(ū , λ̄)Zw � 0. Then Zw ∈ Range(Z) � TM(ū)

and DuL(ū , λ̄)Zw ∈ Null(Z∗) � NM(ū). So by (iii) we have Zw � 0, which

implies w � 0 since Z is injective. On the other hand, if v ∈ TM(ū) and

DuL(ū , λ̄)v ∈ NM(ū), then v � Zw for some w and Z∗DuL(ū , λ̄)Zw � 0, which

implies v � 0 if Z∗DuL(ū , λ̄)Z is invertible. □

Finally, we note that various notions of metric regularity of subdifferentials

are in fact equivalent in the partly smooth setting.

Corollary 4.4.3. Given a closed function f : E→ R̄, the following are equivalent when

∂ f is partly smooth at ū for value 0.

(i) ∂ f is metrically regular at ū for value 0.

(ii) ∂ f is strongly metrically regular at ū for value 0.

(iii) ∂ f is strongly metrically subregular at ū for value 0.

Proof. ∂ f is stronglymetrically regularwhen ∂ f −1 has a single-valued Lipschitz

continuous localization around 0 for ū, so (i)⇔ (ii) follows directly from from

Corollary 4.4.2 and the inverse function theorem. This mirrors an analogous

result of Dontchev and Rockafellar for KKT mappings [38, Theorem 4I.2]
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(ii)⇔ (iii) follows from graphical derivative characterization of strongmetric

subregularity ([38, Theorem 4E.1])

D(∂ f )(ū |0)−1(0) � {0}.

Since the graphical derivative and coderivative are equivalent in this setting, the

results follows from Corollary 4.4.2. □

4.5 Example: Smooth optimization and SQP

Classical theory of nonlinear programming offers connections and provides

a nice illustration of the results in this chapter. Let f :M → R be a C(3) function

defined on a C(3)-manifoldM ⊂ Rn , and consider the corresponding extended

value function

f̃ �


f (u) (u ∈ M)

+∞ (u <M)

and subdifferential

∂ f̃ (u) �

∇ f (u) + NM(u) (u ∈ M)

� (u <M).

Letting G : Rm → Rn be a defining map forM, critical points ū satisfy

−∇ f (ū) �
m∑

i�1
λ̄i∇Gi(ū)

for some λ ∈ Rm . When ū is a nondegenerate critical point, meaning λ̄ > 0, ∂ f̃

is partly smooth at ū for 0.

Suppose furthermore that ū a local minimizer around which f grows

quadratically, i.e., for some ϵ > 0,

f (u) ≥ f (ū) + ϵ |u − ū |2 for u ∈ M near ū.
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Then defining the LagrangianL(u , λ) � f (u)+∑m
i�1 λiGi(u), we have the second-

order sufficient condition that

∇2
uuL(ū , λ̄) � ∇2 f (ū) +

m∑
i�1

λ̄i∇2Gi(ū)

is positive definite on the null space of ∇G(ū). In this case condition (v) of The-

orem 4.4.2 holds, and transversality condition

−∇2 f (ū)v ∈ D∗NM(ū ,−∇ f (ū))(v) ⇒ v � 0

follows.

Now suppose (u , v) ∈ gph ∂ f̃ is close to (ū , 0). Letting λ be the local co-

ordinates of v − ∇ f (u) in NM(u), the system (4.4.7) defining the Newton step

becomes 
∇ f (u) + ∇G(u)∗λ + ∇2

uuL(u , λ)d ∈ NM(u)

d ∈ TM(u),

which in matrix form is

©­«
∇2

uuL(u , λ) ∇G(u)Ë

∇G(u) 0

ª®¬ ©­«
d

µ

ª®¬ �
©­«
−∇ f (u)

0

ª®¬ .
This can be immediately recognized as the first-order stationarity conditions of

the quadratic program

min
d∈U

{
⟨∇ f (u), d⟩ + ⟨d ,∇2

uuL(u , λ)d⟩ : ∇G(u)d � 0
}
,

a familiar subproblem in sequential quadratic programming algorithms.

At this point our algorithm diverges slightly from classical SQP methods

in requiring that u + d is restored to the manifold M. In practice this is far

too stringent, and SQP algorithms typically only achieve feasibility in the limit.
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However, robust implementations typically include a second-order “constraint-

restoration” step e � O(|d |2) of the form

e � −∇G(u)†G(u + d)

where ∇G(u)† is a right inverse of ∇G(u). Then e ∈ NM(u) and is a step towards

the manifold, so u + d + e can be viewed as an approximate manifold projection.

See [9, Chapter 17] or [98] for other discussions of this. Nonetheless, for our

theoretical purposes we require exact feasibility, so let w � ProjM(u + d).

To perform the graph restoration step which projects 0 onto ∂ f̃ (w), we can

solve the least-squares problem

min
λ



∇ f (w) + ∇G(w)Ëλ


2

2.

The solution λ(w) is given by

λ(w) � −(∇G(w)Ë)†∇ f (w),

where (∇G(w)Ë)† is a left inverse for ∇G(w)Ë, the least-squares update of the dual

variables in SQP terminology. Then

w 7→ ∇ f (w) + ∇G(w)Ëλ(w)

is exactly the projection we seek.

4.6 A second-order forward-backward method

As we alluded to in Section 4.3, projections are not the only way to build

restoration maps. An alternative is to use the resolvent (I + λΨ)−1 of monotone

operatorsΨ. Consider the generalized equation

0 ∈ Φ(u) B F(u) +Ψ(u) (4.6.1)
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for C(2)-smooth F : U→ U and maximal monotoneΨ : U⇒ U. Suppose thatΨ

is partly smooth with respect toM ⊂ U at ū for value −F(ū). Hence Φ is partly

smooth at ū for 0 with respect to the same manifold. Furthermore suppose that

ū is an isolated solution, and the transversality condition

− ∇F(ū)∗v ∈ D∗Ψ(ū | − F(ū))(v) ⇒ v � 0 (4.6.2)

holds.

A popular method for solving 4.6.1 is forward-backward splitting [3, Section

26.5]. The basic steps of the algorithm consist of a “forward” step u 7→ u− tF(u)

followed by an implicit “backward” step u 7→ (I + tΨ)−1u. (For simplicity, we fix

the step size t > 0 whereas in practice it may be allowed to vary at each iteration.)

Defining the forward-backward map

T(u) � (I + tΨ)−1(u − tF(u)),

it is clear that 0 ∈ Φ(ū) if and only if ū is a fixed point of T. An easymanipulation

shows that (
T(u), 1

t
(u − T(u)) − F(u) + F(T(u))

)
∈ gphΦ.

Since the resolvent operator (I+ tΨ)−1 is nonexpansive, and F is locally Lipschitz,

we can define the Lipschitz restoration map

(u , 0) 7→
(
T(u), 1

t
(u − T(u)) − F(u) + F(T(u))

)
(4.6.3)

that fixes the point (ū , 0). Applying our linearization framework immediately

yields the following algorithm, which is simply the regular forward-backward

method, but augmented with second-order steps once the active manifold has

been identified.
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Algorithm 4.1: Second-order forward backward algorithm to solve
partly smooth 0 ∈ F(u) +Ψ(u)

Input : Starting point (u , v) ∈ gphΦ, step size t > 0, stopping tolerance
ϵ;

while |v | > ϵ do
if u ∈ M then

Solve −v ∈ DF(u)w + DΨ(u |v − F(u))(w) for w;
u ← u + w;

end
v ← 1

t (u − T(u)) − F(u) + F(T(u));
u ← T(u);

end

A case of particular interest arises in considering sum-composite optimiza-

tion problems of the form

min
x∈E

f (x) + g(x)

for smooth, convex f : E → R with Lipschitz gradients and closed, convex,

proper g : E→ R̄. Minimizers x̄ are characterized by the stationarity condition

0 ∈ ∇ f (x̄) + ∂g(x̄),

which fits into the form of (4.6.1). In this case, the forward-backward method is

usually called the proximal-gradient algorithm, since

T(x) �
(
I + t∂g

)−1 (x − t∇ f (x)
)

� proxt g
(
x − t∇ f (x)

)
� arg min

z∈E

{
f (x) + ⟨∇ f (x), z − x⟩ + g(z) + 1

2t
|z − x |2

}
In this sum-composite optimization setting, the Newton step of Algo-

rithm 4.1 can be written

− v ∈ ∇2 f (x)w + ∂2 g(x |v − ∇ f (x))(w). (4.6.4)
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In many applications g is a simple partly smooth function, allowing us to cal-

culate ∂2 g analytically, which leads to simple implementable forms of Algo-

rithm 4.1. Suppose that x̄ is a nondegenerate strict local minimizer, meaning

−∇ f (x̄) ∈ ri(∂g(x̄)),

and that g is partly smooth at x̄ for value −∇ f (x̄) relative to the manifoldM ⊂ E.

By Theorem 2.5.1, the graph of ∂g decomposes as

gph ∂g � gph(∇ ḡ + NM) near (x̄ ,−∇ f (x̄)),

where ḡ is some C(2)-smooth function agreeingwith g onM. Thenwe can apply

Theorem 4.4.1 and Corollary 4.4.1 to calculate ∂2 g.

Algorithm 4.2: Second-order proximal gradient with damped line-
search

Input : Starting point (u , v) ∈ gphΦ, step size t > 0, linesearch
parameters β ∈ (0, 1), rmin > 0, stopping tolerance ϵ;

while |v | > ϵ do
if try Newton step then

Solve −v ∈ ∇2 f (x)w + ∂2 g(x |v − ∇ f (x))(w) for w;
r̄ � sup

{
r ∈ {1, β, β2, . . . , rmin} : f (x + rw) < f (x)

}
;

if r̄ > −∞ then
x ← x + r̄w;

end
end
T(x) � proxt g

(
x − t∇ f (x)

)
;

v ← 1
t (x − T(x)) − ∇ f (x) + ∇ f (T(x));

x ← T(x);
end

A simple algorithm is described above. Since the correct active manifoldM

at the optimal solution is usually unknown, the check “if u ∈ M” is replaced

with a suitable problem dependent heuristic. To guard against taking large steps

away from the minimizer, a damped linesearch that ensures function value de-

crease is employed.
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Example: Regularized minimization

The ℓ1-norm

∥x∥1 �

n∑
i�1
|xi | (x ∈ Rn),

is often used as a convex surrogate for sparsity. For example, we may be inter-

ested inminimizing a smooth function f , but also require a sparse solution. One

way to accomplish this is via the sum-composite optimization problem

min
x∈Rn

f (x) + λ ∥x∥1

for some choice of parameter λ > 0.

There already exist many approaches to second-order methods for this prob-

lem, and the immediate aim is not a new competitive implementation, but rather

a simple illustration. Proximal Newton methods [71, 121, 21, 132] incorporate a

second-order approximation to the smooth function f in the proximal gradient

step. Active-set orthant methods [1, 65, 26] seek to determine the optimal sign of

the variables, and minimize quadratic approximations to f over these orthants.

The algorithm we derive is most similar to the latter type in being an active-set

method, but in contrast to the existing methods our development is much sim-

pler by leveraging the more general framework of this chapter.

Defining the support functions

supp(x) �
{

i ∈ {1, . . . , n} : xi , 0
}
,

supp(x)′ �
{

i ∈ {1, . . . , n} : xi � 0
}
,

and letting {ei : 1 ≤ i ≤ n} be the canonical basis of Rn , it is easy to verify that

∥ · ∥1 is partly smooth at x̄ relative to the manifold

M � span{ei : i ∈ supp(x̄)}.
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Moreover, locally near x̄, ∥ · ∥1 agrees with the smooth function

ḡ(x) �
∑

i∈supp(x̄)
sign(x̄i)x

on the manifold M. Since M and ḡ are defined by linear functions, by The-

orem 4.4.1 the second-order subdifferential of ∥ · ∥1 at x for any v ∈ ∂ ∥x∥1 is

simply

∂2 ∥ · ∥1(x |v)(w) �


NM(x) w ∈ TM(x),

� w < TM(x).

Alternatively,

z ∈ ∂2 ∥ · ∥1(x |v)(w) ⇔


supp(w) ⊆ supp(x),

supp(z) ⊆ supp(x)′,

so the Newton step simply amounts to solving the linear system
(∇2 f (x))Ëi w � −vi i ∈ supp(x),

wi � 0 i ∈ supp(x)′.

Stated more simply, we solve∑
j∈supp(x)

∂2 f
∂xi∂x j

wi � −vi for all i ∈ supp(x), (4.6.5)

and set wi � 0 for i < supp(x).

The transversality condition (4.6.2) becomes
supp(v) ⊆ supp(x̄),

supp(∇2 f (x̄)v) ⊆ supp(x̄)′,
⇒ v � 0,

which holds whenever the matrix of second derivatives[
∂2 f
∂xi∂x j

: (i , j) ∈ supp(x̄)
]
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is nonsingular at x̄.

As an example, we consider the regression model of recovering an s-sparse

vector x̂ ∈ Rn from linear measurements

b � Ax̂ + ϵ, A ∈ Rm×n , b ∈ Rm , ϵ ∼ N(0, σ2)

via the optimization problem

min
x∈Rn

∥Ax − b∥22 + λ ∥x∥1. (4.6.6)

The proximal gradient algorithm, or iterative soft thresholding (ISTA), is a popular

method for solving (4.6.6) due to its simple iterations. For simplicity we fix the

step size t � ∥AËA∥−1
2 (in practice a backtracking line search can be employed to

choose the step size). Then the gradient step

x − t∇ f (x) � x − t(AËAx − AËb)

can be computed in O(nm) operations (ignoring the cost of pre-computing AËA

and AËb), and the proximal “shrinkage” step

proxtλ ∥ · ∥1(x)i �


xi − tλ (xi > tλ),

0 (|xi | ≤ tλ),

xi + tλ (xi < −tλ),

in O(n) operations. Letting k � |supp(x)|, the Newton step (4.6.5) involves solv-

ing a k × k linear system, or O(k3) operations.

While a comprehensive investigation is left as a topic for future research, pre-

liminary numerical experiments demonstrate the effectiveness of incorporating

second-order information. Following the experimental setup of [89], consider

a randomly generated vector x̂ with s nonzero entries, and matrix A with i.i.d.
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zero-mean and unit variance entries with dimensions n � 16s and m � 6s. If

σ is sufficiently small and λ chosen on the order of ϵ, (4.6.6) will have unique

nondegenerate minimizer x̄ [127]. Since ∇2 f (x) � AËA is positive definite with

high probability, the transversality condition holds. We compare ISTA against

the accelerated variant FISTA [4] with and without the second-order Newton

steps. With 200 nonzero entries for x̂ ∈ R3200, and m � 1200 measurements,

ISTA and FISTA were both found to take roughly 20 seconds to find the model

solution x̄ to an accuracy of 10−6. By incorporating second-order subdifferential

information and attempting a Newton step when the simple heuristic condition

k3 ≤ mn was satisfied, x̄ was found up to numerical error in about 3 seconds.

1000 2000 3000 4000
Iterations

102

100

10−2

10−4

10−6

ISTA
FISTA
FISTA with Newton steps

Figure 4.2: ∥x− x̄∥2 against iteration count for ISTA and FISTAwith andwithout
second-order acceleration on the problem (4.6.6) (accuracy beyond 10−6 for the
second-order method is not shown).

For a second experiment, consider the regularized logistic regression prob-

lem

min
x∈Rn

1
m

m∑
i�1

log(1 + e−yi dËi x) + λ ∥x∥1. (4.6.7)

This model is often used to find sparse solutions in binary classification prob-

lems, given data vectors d1, . . . , dm ∈ Rn and corresponding training labels
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y1, . . . , ym ∈ {±1} [105]. We again compare proximal-gradient (ISTA), an accel-

erated variant (FISTA), and our second-order acceleration scheme on the colon-

cancer (n � 2000,m � 62) dataset from LIBSVM [23], using a standard back-

tracking line search to choose the step size t. We again observe a fast superlinear

rate of convergence for the second-ordermethod once the iterates are sufficiently

sparse.
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100
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Figure 4.3: | f (x) − f (x̄)| against iteration count for ISTA and FISTA with and
without second-order acceleration on the problem (4.6.7).

4.7 Composite optimization

One direction for future research is to consider the more general composite

optimization problem

min
x∈Rn

h(c(x)) (4.7.1)

where h : Rm → R̄ is closed, convex, proper, and c : Rn → Rm is C(2)-smooth.

This model has long been recognized as an important class of optimization prob-

lems [112, 53, 13, 133, 14, 118, 131, 15, 17, 88], with most of this earlier research

driven by examples including nonlinear least-squares, nonlinear programming,
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and exact penalty functions. Recently there has been a resurgence of interest in

the composite model (4.7.1) due to its importance in a variety of modern appli-

cations [83, 41, 46, 45, 43, 25, 24]

Consider a stationary point 0 ∈ ∂(h ◦ c)(x̄) of the composite objective. By

[119, Theorem 10.9] we can apply a chain rule to deduce the existence of a vector

ȳ satisfying

ȳ ∈ ∂h(c(x̄)), ∇c(x̄)Ë ȳ � 0. (4.7.2)

It is well known that h and it’s conjugate

h∗(y) � sup
z∈Rm

{
⟨y , z⟩ − h(z)

}
satisfy the simple relationship

y ∈ ∂h(c) ⇔ c ∈ ∂h∗(y).

Therefore we can write the system (4.7.2) as the generalized equation

0 ∈ ©­«
∇c(x̄)Ë ȳ

−c(x̄)
ª®¬ + ©­«

{0}

∂h∗( ȳ)
ª®¬

0 ∈ F(x̄ , ȳ) +Ψ(x̄ , ȳ)

0 ∈ Φ(x̄ , ȳ). (4.7.3)

Building on the work of Robinson [114] for the nonlinear programming case,

recent manuscripts [28, 16] draw various connections between classical second-

order theory, metric regularity, and Newton methods for solving (4.7.3). Our

aim is the same in the partly smooth setting.

The map F is smooth with derivative

©­«
∑m

i�1 yi∇2ci(x) ∇c(x)Ë

−∇c(x) 0

ª®¬ ,
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and when h∗ is partly smooth at y for value v, the graphical derivative of Ψ at

(x , y) for value (0, v) is

DΨ((x , y)|(0, v)) � {0} × ∂2h∗(y |v) � D∗Ψ((x , y)|(0, v)),

sinceΨ is the subgradientmapping of the partly smooth function (x , y) 7→ h∗(y).

Now applying the framework of this chapter is straightforward. The transver-

sality condition becomes

− ©­«
∑m

i�1 ȳi∇2ci(x̄) ∇c(x̄)Ë

−∇c(x̄) 0

ª®¬ ©­«
v1

v2

ª®¬ ∈ ©­«
0

∂2h∗( ȳ |c(x̄))(v2)
ª®¬⇒ (v1, v2) � (0, 0),

and given a point (x , y) and value F(x , y) + (0, w) for w ∈ ∂h∗(y) , the Newton

step d � (d1, d2) is defined by

©­«
−∇c(x)Ëy

c(x) − w

ª®¬ ∈ ©­«
∑m

i�1 yi∇2ci(x) ∇c(x)Ë

−∇c(x) 0

ª®¬ ©­«
d1

d2

ª®¬ + ©­«
0

∂2h∗(y |w)(d2)
ª®¬ .

An interesting future directionwould be to explore settings wherewe can ap-

ply these simple observations. When h is a norm function, it’s conjugate is sim-

ply the unit ball of the dual norm | · |∗, which is partly smoothwith simple second-

order derivatives in many cases. Are there other interesting settings where ∂h∗

is partly smooth? What do the transversality condition and Newton step look

like in these scenarios? Do we recover any existing results or algorithms?

102



CHAPTER 5

A PARTLY SMOOTH NEWTON ALGORITHM

5.1 Introduction

While the theoretical results of the Newton algorithm in Chapter 3 were lim-

ited to objective functions with finite max structure, experiments suggest that

variants of this method may be effective much more broadly. One particular

implementation hurdle arises even for simple nonsmooth functions like the Eu-

clidean norm: solving the quadratic subproblem directly will be numerically

unstable, due to the ill-conditioning of the Hessians ∇2 f (s) when s is close to

zero.

However, for partly smooth functions (Definition 2.5.4) this ill-conditioning

is typically highly structured. Informally, when f : Rn → R is partly smooth at

x̄ relative to active manifoldM, the function behaves smoothly along directions

tangent toM, and in a nonsmooth manner or “sharply” along directions nor-

mal toM. Experimentally results suggest that for s close to x̄, the nonsmooth

subspace NM(x̄) is approximately spanned by the eigenvectors corresponding to

large eigenvalues of the Hessian ∇2 f (s). When projected onto TM(x̄), the Hes-

sian is well-conditioned. Motivated by this idea, we follow a simple strategy

for solving the system (3.7.1), similar to reduced system approaches for nonlin-

ear programming described in standard texts [106, 9] and avoiding full Hessian

computations.
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5.2 A reduced system approach

Given function f : Rn → R that isC(2)-smooth around every point inD ⊂ Rn ,

recall the local linear and quadratics approximations for s ∈ D

ls( · ) � f (s) + ⟨∇ f (s), · − s⟩,

qs( · ) � ls( · ) +
1
2 ⟨ · − s ,∇2 f (s)( · − s)⟩.

Given a finite bundle S ⊂ D, our Newton algorithms of Chapter 3 solve the

subproblem

minimize
t∈R, x∈Rn

∑
s
λs qs(x)

subject to ls(x) equal for all s ∈ S.

Let G and b be a matrix and vector satisfying

{x ∈ Rn : Gx � b} � {x ∈ Rn : ls(x) equal for all s ∈ S}.

Assuming the gradients ∇ f (S) are affinely independent, we can in particular

find a G that is full rank, and we can write the optimality conditions of the sub-

problem as ∑
s∈S

λs∇2 f (s)(x − s) + GËν � −
∑
s∈S

λs∇ f (s)

Gx � b ,

(5.2.1)

for multiplier vector ν ∈ R|S |−1. Suppose that we have also found matrices U

and V such that the matrix
[
U V

]
∈ Rn×n is full rank and GU � 0 (via a QR

factorization of GË, for example). The columns of U are then a basis for Null(G),

and we can write any solution of (5.2.1) as

x � Uxu + Vxv .
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The constraint Gx � b then implies GVxv � b, which can be solved for xv , since

G (and hence GV) is full rank. We deduce

{x : Gx � b} � Range(U) + p ,

where p is the particular solution V(GV)−1b. Substituting this into the stationar-

ity condition and multiplying through by UË yields the reduced system∑
s∈S

λsUË∇2 f (s)(Uxu + p − s) � −
∑
s∈S

λsUË∇ f (s).

In a slight modification to the algorithm, if we project each reference point onto

the active subspace we arrive at the linear system∑
s∈S

λsUË∇2 f (s)Uxu �
∑
s∈S

λs
[
(UË∇2 f (s)U)UË(s − p) −UË∇ f (s)

]
. (5.2.2)

This system only involves the projected Hessians UË∇2 f (s)U, which remain well-

conditioned if the span of V is close to the subspace NM(x̄), a property experi-

mentally observed to hold in practice.

A simple test involves “mixed norm” functions of the form

f (x) �
√

xËAx + xËBx (x ∈ Rn) (5.2.3)

for positive definite matrices A, B ∈ Rn×n . First introduced to study BFGS

[81], the function was recently reexamined in the context of VU-theory in the

ICM lecture [120]. The function is partly smooth with respect to the manifold

M � Null(A), and twice continuously differentiable on the open set Rn \ M,

with a unique minimizer of 0. Despite the impossibility of writing (5.2.3) as a

maximum of finite smooth functions, the reduced system modification to Algo-

rithm 3.1 is highly effective, illustrated in Figure 5.1. We observe that after using

the iterates of a first-order bundle method to estimate dimM, superlinear con-

vergence to theminimizer is possible by incorporating the reduced second-order

information.
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Figure 5.1: Best function value found for BFGS, a bundle method, and the re-
duced bundle Newton algorithm against number of black box evaluations on
the function (5.2.3) with A � diag(1, 0, 1, 0, . . .) and B � (1, 1/22, . . . , 1/n2) in
dimension n � 8.

5.3 Example: Eigenvalue optimization

Our final experiment is an eigenvalue problem. Specifically, given symmetric

matrices A0, . . . ,An ∈ Rm×m we seek to minimize

f (x) � λmax

(
A0 +

n∑
i�1

xiAi

)
, (x ∈ Rn) (5.3.1)

where λmax( · ) is the largest eigenvalue function. Typically minimizers occur at

pointswhere λmax hasmultiplicity t > 1, necessitating nonsmoothminimization

techniques. Under reasonable conditions, the set of points for which λmax has

fixed multiplicity t is a manifold of codimension t(t+1)
2 , relative to which f is

partly smooth (see e.g., [79]).

For illustration, Figure 5.2 shows convergence of the bundle method, BFGS,

and our Newton method on a typical trial for this problem using random data.

All algorithms were run without termination conditions until numerical issues

prevented any further progress. In this example for n � 50matrices inR25×25, the

106



optimal eigenvalue multiplicity was 6, and we again observe fast convergence of

the bundle Newton algorithm once the subdifferential dimension t(t+1)
2 − 1 � 20

can be identified.

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

BFGS
Bundle method
Bundle Newton

(a) f (x) −min f

50 100 150 200
Iteration

10−2

10−4

10−6

10−8

diam S
Θ(S)

(b) diam S and Θ(S)

Figure 5.2: Function value convergence and optimality measures for the max-
imum eigenvalue function (5.3.1) for n � 50 random symmetric matrices in
R25×25.

200 400 600 800
Iteration

101

10−4

10−9

10−14

BFGS
Bundle method
Bundle Newton

Figure 5.3: Clustering of the six largest eigenvalues for the random trial depicted
in Figure 5.2.

(Note that since the optimal objective value is unknown, the figureswere gen-

erated using the best objective value found after running the algorithms with a

large number of random starting points. This introduces a slight bias in the accu-

racy reported for the bundle Newton algorithm.) In Figure 5.3, we observe that
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the bundle Newton algorithm achieves an eigenvalue clustering several orders

of magnitude better than is possible with a bundle method or BFGS.

Using the active manifold to accelerate eigenvalue optimization is not new

[109, 123, 108]. What is remarkable is that the bundle Newton algorithm, com-

bined with a first phase such as a traditional bundle method, rapidly conver-

gences to the minimizer without any structural knowledge of the function.

5.4 Future directions

Development of a complete convergence theory in the partly smooth setting

is a topic for future research. For max functions

f (x) � max
i�1,...,k

fi(x) (x ∈ E)

with smooth components, the strong second-order conditions (3.5.1) for x̄ are

exactly that 0 ∈ ri ∂ f (x̄)with ∂ f partly smooth at x̄ for 0 relative to the manifold

M � {x ∈ E : fi(x) equal for all i}.

An immediate question is what is the correct generalization of a full bundle from

max functions to partly smooth functions? A convergence proof for the Newton

algorithm described above would likely need to combine ideas from Chapter 4

with the proof techniques of Chapter 3.

Also, our observation about the connections between partial smoothness and

structured ill-conditioning of Hessians is only anecdotal. A more rigorous the-

ory would be interesting. To what extent can Hessians of functions that are C(2)-

smooth almost everywhere illuminate partly smooth structure?
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