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 Listeria monocytogenes is a foodborne pathogen that is widespread in natural 

and urban environments. L. monocytogenes is also commonly found in food 

processing facilities where specific strains or subtypes have been shown to persist over 

time. Listeriaphages are phages that can specifically infect L. monocytogenes and 

other Listeria spp. Phages have been approved for use as a biocontrol agent for this 

pathogen; however knowledge on its efficacy against diverse L. monocytogenes, 

particularly from food associated environments, is still limited. We developed a 

collection of diverse phages for further studies which included (i) phenotypic and 

genotypic characterization of listeriaphages isolated from dairy farms, (ii) evaluation 

of phage susceptibility and development of phage cocktails against persistent subtypes 

from food-associated environments, and (iii) whole genome sequencing and 

comparative genomics of selected phages. Over 100 listeriaphages were isolated from 

silage samples collected over the course of 1.5 years on two dairy farms. Initial 

phenotypic and genotypic characterization of phages from this collection revealed 

considerable host range (9 lysis groups) and genomic diversity (genome sizes of 25–

140 kb). Among the 9 major Listeria serotypes used to determine the host range, the 

serotype 3c strain was found to be highly resistant to phages while serotype 4 strains 



 

were the most susceptible to phages. Variation in phage susceptibility (4.6–95.4%) 

was observed among different persistent isolates of multiple ribotypes from a food 

processing facility. While phage cocktails could temporally reduce the bacterial 

populations of some subtypes, others were unaffected by phage treatment. L. 

monocytogenes isolates also rapidly developed phage-resistance characteristics in 

laboratory challenge studies. Whole genome sequencing of 10 listeriaphages revealed 

considerable genomic diversity of listeriaphages on dairy farms. The phage genome 

sizes could be classified into 3 ranges: small (36–38 kb; n=3), mid-sized (64–67 kb; 

n=4), and large (133–135 kb; n=3). All genomes were found to be organized into 3 

functional modules: (i) DNA packaging and structural proteins; (ii) cell lysis; (iii) 

DNA replication, modification, and metabolism. Genomes of six newly sequenced 

phages appear to resemble three previously described listeriaphages. However, four 

phages showed no sequence homology to any bacteriophages in the NCBI databases, 

suggesting they are novel listeriaphages. Our data provide valuable information for 

further development of effective and suitable phage-based biocontrol agents and other 

applications. 
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CHAPTER ONE 
 

Introduction 

 

 L. monocytogenes is a Gram-positive, facultative intracellular foodborne 

pathogen that causes listeriosis, a rare but severe disease as indicated by a mortality 

rate between 20-30% (Vazquez-Boland et al., 2001). According to the US CDC, about 

1,600 human listeriosis cases, including 255 deaths occur annually in the US. Of the 

vast majority of human listeriosis cases, 99% appears to be caused by consumption of 

foods contaminated with L. monocytogenes (Mead et al., 1999). On average from 

1998-2008, 2.4 outbreaks per year were reported to the CDC. It has been shown that 

medical costs and productivity losses due to listeriosis are estimated to be $2.3 billion 

a year in the US (Ivanek et al., 2005). Foodborne listeriosis cases have been shown to 

be decreased since FoodNet began the active surveillance for laboratory-confirmed of 

listeriosis cases in 1996. Although FoodNet surveillance preliminary data for 2009 

show a modest increase in the incidence of listeriosis, the incidence of listeriosis 

continues to be substantially lower than at the start of FoodNet surveillance in 1996 

(Anonymous, 2010).  

L. monocytogenes is widely distributed in nature and has been isolated from a 

variety of environmental sources, e.g. water, soil, silage, plant vegetation, and food 

processing plants (Beuchat, 1996; Fenlon, 1999; Fenlon, 1985; Gianfranceschi et al., 

2003; Lyautey et al., 2007; Ho et al., 2007). A number of studies have reported a high 
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prevalence of L. monocytogenes in dairy farm environments (Borucki et al., 2005; 

Fenlon et al., 1995; Fox et al., 2009; Husu, 1990; Skovgaard and Morgen, 1988). 

Silage (i.e., fermented plant material that is commonly used as feed for ruminants), if 

spoiled or not fermented properly, has often been found to contain L. monocytogenes 

(Fenlon et al., 1996; Arimi et al., 1997), including at high numbers (>107 CFU/g 

silage) (Wiedmann, et al. 1999) and appears to be the most important source of L. 

monocytogenes responsible for listeriosis cases and outbreaks in ruminants (Borucki et 

al., 2005; Fenlon et al., 1996). The high prevalence of L. monocytogenes on dairy 

farms not only suggests that these environments may represent a major reservoir for L. 

monocytogenes (Ivanek et al., 2006), but also suggests that silage may be a superior 

source for listeriaphage isolation.  

L. monocytogenes has also been commonly found in various types of food 

processing facilities (e.g., meat, poultry, dairy, and seafood processing plants) (Autio 

et al. 2002; Eifert et al., 2005; Lappi et al., 2004; Ojeniyi et al., 1996). L. 

monocytogenes have ability to grow over a wide range of temperatures (Farber and 

Peterkin, 1991), including refrigeration temperatures (<4°C to 5°C) (Walker et al., 

2008), and pHs (Farber and Peterkin, 1991; Phan-Thanh and Montagne, 1998). These 

characteristics allow this pathogen to survive under stressful environmental 

conditions, and thus it is difficult to control this pathogen in the environment, 

particularly in food processing environments. In the seafood industry, specifically in 

smoked-fish processing plants, the major source of L. monocytogenes in RTE seafood 

products is cross-contamination in the processing plant environments (Norton et al., 

2001; Hoffman et al., 2003; Hu et al., 2006; Rørvik et al, 1995; Thimothe et al., 2004). 
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Previous studies have shown that specific strains or subtypes could persist in these 

environments for months to more than a decade (Lappi et al., 2004; Orsi et al., 2008; 

Williams et al., 2011).  

In the recent years (2008-2011), this pathogen has become an important public 

health problem in the US due to recurrent multistate outbreaks of listeriosis in a 

variety of foods (e.g., dairy products, meats, processed ready-to-eat (RTE) foods, 

fruits, and vegetables) (CDC, 2011). The most recent multistate outbreak of listeriosis 

was linked to cantaloupes which led to over 30 deaths, resulting in the deadliest 

foodborne illness outbreak in the US since 1924 (CDC, 2011). For decades, L. 

monocytogenes has been an important issue for the economy of the US food industry 

as demonstrated by a number of recalls of processed food products in the US. The 

annual cost of these recalls has been estimated as high as $1.2 to $2.4 billion in the US 

(Ivanek et al., 2006).  

Listeriaphages are viruses that can specifically infect and lyse Listeria spp. 

However, at present, no listeriaphages with the ability to infect L. grayi have been 

found (Loessner and Rees, 2005). Listeriaphages have been successfully isolated from 

diverse sources, e.g., silage, water, sewage, soil, milk, cheese, as well as from 

lysogenic L. monocytogenes strains (Hodgson, 2000; Loessner et al., 1991). Overall, 

listeriaphages have been isolated from three different methods: (i) from environmental 

samples contaminated with Listeria spp., (ii) from L. monocytogenes lysogenic strains, 

and (iii) from listeriaphage collections around the world (Hodgson, 2000). 

Listeriaphages are well adapted to their hosts, and most of them can complete the lytic 

cycles between 10 and 37°C, except for some temperature-sensitive phages that can 
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only multiply at 25°C and below (Hodgson, 2000). Comparative genomic analysis has 

shown that listeriaphages have dsDNA genomes with size ranging from ca. 36 kb to 

ca. 131 kb, with G+C content of ca. 34.8 mol % to ca. 40.8 mol % (Dorscht et al., 

2009; Klumpp et al., 2008). The functional modules of listeriaphage genome are 

organized into three clusters (Dorscht et al., 2009): (i) left cluster represents “late 

genes”, which are transcribed rightward and encoding structural proteins, DNA 

packaging, and lysis system, (ii) gene cluster in the middle which is transcribed mostly 

in the opposite direction and encoding the lysogeny functions (integrase and 

repressor), and the prophage attachment and integration locus attP, and (iii) right 

cluster represents “early genes”, which are transcribed rightward (similar to the late 

genes) and encoding products required for the early stage of phage reproduction 

(products for replication, recombination, and modification of the phage DNA). In 

addition, in virulent phages (strictly lytic), the lysogeny control functions are absent, 

therefore, the organization of the phage genomes will show only the early and late 

genes modules (Dorscht et al., 2009). 

Listeriaphage has been studied and investigated its effectiveness as a 

biocontrol agent for L. monocytogenes in a variety of foods (e.g., hot dogs, soft 

cheese, and salmon fillet) (Carlton et al., 2005; Guenther et al., 2009; Leverentz et al., 

2004; Soni and Nannapaneni, 2010). In addition, GRAS (generally recognized as safe) 

status has been granted to the listeriaphage P100, a virulent, wide-host-range phage 

with the ability to infect multiple serotypes and species of Listeria (Anonymous, 

2007). While use of bacteriophage is recognized as an alternative strategy for 

controlling L. monocytogenes in raw and RTE foods (Anonymous, 2012), information 
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on the phage susceptibility of diverse L. monocytogenes strains that have been 

recovered from and persisted in food processing plant environments is still limited.  

 An improved understanding of listeriaphage ecology and diversity, including 

in primary production environments, is critically needed. In this study, we used dairy 

farms as a model system in a longitudinal study to (i) gain a better understanding of 

the ecology and diversity of listeriaphages in farm environments and in silage in 

particular; and (ii) further develop listeriaphage collections. In addition to 

development of a diverse phage collection, we also evaluated phage susceptibility 

(individual phages, phage cocktails, and a commercial phage product) of diverse 

persistent subtypes from food-associated environments, and whole genome sequencing 

and comparative genomic analysis of selected phages were performed to better 

understand genomic diversity and relationships of phages obtained from dairy farms.  
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CHAPTER TWO 

 
Listeriaphages are abundant and reveal considerable host range and genomic 

diversity in silage samples collected on dairy farms 

 

 
ABSTRACT 

As the foodborne pathogen Listeria monocytogenes is common in dairy farm 

environments, it is likely that phages infecting this bacterium (“listeriaphages”) are 

abundant on dairy farms. To better understand the ecology and diversity of 

listeriaphages on dairy farms and to develop a diverse phage collection for further 

studies, silage samples collected on two dairy farms were screened for L. 

monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive 

for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing 

up to >1.5 x 104 PFU/g. Host range characterization of the 114 phage isolates 

obtained, with a reference set of 13 L. monocytogenes strains representing the 9 major 

serotypes and four lineages, revealed considerable host range diversity; phage isolates 

were classified into 9 lysis groups. While one serotype 3c strain was not lysed by any 

phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 

63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed narrow host 

range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range 

(lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from 

approx. 26 to 140 kb. The extensive host range and genomic diversity of phages 
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observed here suggests an important role of phages in the ecology of L. 

monocytogenes on dairy farms. In addition, the phage collection developed here has 

the potential to facilitate further development of phage-based biocontrol strategies 

(e.g., in silage) and other phage-based tools. 

 

INTRODUCTION 

Listeria monocytogenes is a Gram-positive pathogenic bacterium that can cause a 

severe foodborne disease, listeriosis, in humans and farm ruminants. L. 

monocytogenes is considered ubiquitous in nature and has been isolated from a variety 

of environmental sources, e.g. water, soil, silage, plant vegetation, and food processing 

plants (5, 18, 19, 24, 30, 43). A number of studies have reported a high prevalence of 

L. monocytogenes in dairy farm environments (7, 20, 22, 34, 56). In addition, a 

previous study has found a considerably higher prevalence of L. monocytogenes in 

dairy farm environments than in urban and natural environments (46). Ruminants, 

including cattle, sheep, and goats, are not only often fecal shedders of L. 

monocytogenes, but are also hosts in which L. monocytogenes can cause a severe 

disease (42). Silage (i.e., fermented plant material that is commonly used as feed for 

ruminants), if spoiled or improperly fermented, has often been found to contain L. 

monocytogenes (3, 21), including at high numbers (>107 CFU/g silage) (63). Spoiled 

silage has also been reported to be the most important source of L. monocytogenes 

responsible for listeriosis cases and outbreaks in ruminants (7, 21). The high 

prevalence of L. monocytogenes on dairy farms and particularly in silage not only 

suggests that these environments may represent a major reservoir for L. 
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monocytogenes, but also suggests that silage may be a superior source for listeriaphage 

isolation (35).  

Bacteriophages infecting L. monocytogenes and other Listeria spp. have been isolated 

from diverse sources (e.g., sewage, silage, water, food processing plant environments) 

as well as from lysogenic L. monocytogenes strains (31, 37, 41). Listeriaphages 

isolated from different sources have also previously been evaluated for host range 

diversity. For example, Loessner and Busse (41) observed 16 different lysis patterns, 

which could be classified into four lysis groups, among 16 listeriaphages isolated from 

sewage or lysogenic strains. While most L. monocytogenes serotype 1/2a and 4b 

strains were lysed by at least one of these phages, the majority of serotype 3a, 3b, and 

3c strains were resistant to all phages. In another study, Hodgson (31) found that 6/59 

phages represented broad host range, exhibiting ability to lyse all four strains of 

serotype 1/2 and all eleven strains of serotype 4b tested. Similarly, Kim et al. (37) 

reported that 9/12 listeriaphages isolated from two turkey processing plants were 

characterized as broad host range phages, exhibiting ability to lyse the majority of L. 

monocytogenes serotype 1/2a strains (16/26) and 4b strains (38/39). A number of 

listeriaphages from these and other studies have been well characterized, including by 

genome sequencing (12, 38, 38, 66), and have been developed for biocontrol and other 

applications, such as phage A511 (28, 29) and P100 (12, 29, 52). While listeriaphages 

A006, A500, B025, P35, and P40 have been characterized as members of the 

Siphoviridae, phages B054, A511, and P100 are members of the Myoviridae; all of 

them have double-stranded DNA genomes (12, 16, 38). 
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Recent studies suggest potential uses of listeriaphage as a biocontrol agent for L. 

monocytogenes in a variety of ready-to-eat (RTE) foods (12, 29, 32, 39, 40, 52). Some 

studies have also suggested the suitability of phages in controlling foodborne 

pathogens at the preharvest level and reducing shedding in animals (10, 11, 54). Only 

one study, by Kim et al. (37), has evaluated phage diversity in food processing plant 

environments; a better understanding of ecology and diversity of listeriaphage, 

including in primary food production environments, is thus still needed. Further 

establishment of diverse phages collections will also facilitate the development, 

improvement, and evaluation of listeriaphage based-biocontrol strategies. In this 

study, we used dairy farms as a model system in a longitudinal study to (i) gain a 

better understanding of the ecology and diversity of listeriaphages in farm 

environments, particularly in silage; and (ii) further develop listeriaphage collections. 

 

MATERIALS AND METHODS 

Sample collection. A total of 134 silage samples were collected from silage bunkers 

of two dairy farms in New York State between October 2007 and July 2009. The two 

dairy farms were selected based on owner’s willingness to allow for frequent sample 

collection. No information on previous prevalence of Listeria spp. or bacteriophages 

was available for these farms. For farm 1, two preliminary sampling visits were 

completed in 10/2007 and 01/2008, with 19 samples collected (Table 2.1). Phage 

recovery results for the preliminary visits are not reported here as these collected 

samples were used to optimize phage isolation procedures. Subsequently, 62 samples 

were collected on farm 1 over seven sampling visits, one visit in 04/2008, followed by  



 

Table 2.1. Recovery of Listeria spp., L. monocytogenes, and listeriaphages from silage samples collected. 

Farm visit # 
(Sample collection date 

[mo/yr]) 

No. of 
silage 

samples 
tested 

No. of samples positive for: 

Listeria 
spp.a 

L. monocytogenes 
 (No. of isolates) 

No. of samples that yielded plaques 
(no. of phage isolates) 

Direct isolation Enrichment method 

Farm 1 - Preliminary samplingb     
3 (10/2007) 9 2 1 (2) n/a n/a 
4 (01/2008) 10 2 3 (5) n/a n/a 

Total 19 4 4 (7) n/a n/a 
Farm 1      

5 (04/2008) 10 7 0 4 (7) 4 (6) 
6 (08/2008) 10 0 0 4 (7) 3 (7) 
7 (09/2008) 10 0 0 0 5 (0)c 

8 (10/2008) 7 5 0 1 (2) 1 (0)c 

9 (11/2008) 8 3 0 3 (3) 4 (6) 
10 (12/2008) 9 2 0 1 (2) 2 (3) 
11 (01/2009) 8 1 0 2 (2) 4 (4) 

Total 62 18 0 15 (23)d 23 (26)d 

Farm 2      
1 (02/2009) 10 2 0 3 (6) 5 (7) 
2 (03/2009) 9 3 0 4 (6) 4 (7) 
3 (04/2009) 10 0 0 3 (3) 1 (1) 
4 (05/2009) 9 3 0 4 (7) 5 (7) 
5 (06/2009) 7 6 2 (2) 2 (4) 3 (5) 
6 (07/2009) 8 0 0 2 (5) 4 (7) 

Total 53 14 2 (2) 18 (31)e 22 (34)e 
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Table 2.1. (Continued) 

a Listeria spp. refers to Listeria spp. other than L. monocytogenes. 

b Preliminary sampling visits 1 to 4 were used to collect samples for optimizing phage isolation 

procedures; results for phage isolation from these preliminary efforts are not reported. Visits 3 

and 4 also included silage samples that were tested for Listeria spp. and L. monocytogenes; 

results were reported here as L. monocytogenes isolates were only obtained during visits 3 and 4 

to farm 1.  

c Positive samples yielded no phages that could be propagated. 

d For farm 1, 12 samples were positive after enrichment only, while 4 samples were positive only 

by direct isolation and 11 samples were positive by both methods 

e For farm 2, 10 samples were positive after enrichment only, while 6 samples were positive only 

by direct isolation and 12 samples were positive by both methods. 
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6 monthly sampling visits between 08/2008 and 01/2009. For farm 2, a total of 53 

samples were collected during 6 monthly visits (Table 2.1). At each sampling visit, 

seven to ten silage samples were collected from silage bunkers into a sterile Whirl-Pak 

bag (Nasco, Modesto, CA). Only silage samples with a pH > 5.5 were collected as a 

pH at this level indicates improperly fermented silage, increasing the likelihood of 

Listeria spp. and listeriaphage isolation. Silage samples used for isolation here showed 

pH values of 6 to 6.5. Silage samples were processed for Listeria spp. and 

listeriaphage isolation within 6 h of collection; samples were thus not refrigerated 

upon collection. 

Isolation of L. monocytogenes. Each silage sample (10 g) was transferred to a sterile 

Whirl-Pak bag and mixed with 90 ml of Listeria enrichment broth (LEB; Difco, 

Becton Dickinson, Sparks, MD). After 24 h and 48 h of incubation at 30°C, 50 µl of 

the enrichment was streaked onto Oxford plating medium (Difco, Becton Dickinson, 

Sparks, MD), followed by incubation at 30°C
 
for 48 h. For each sample, up to four 

Listeria-like colonies were substreaked onto L. monocytogenes plating medium 

(LMPM; R-F Laboratories, Downers Grove, Il). Plates were incubated at 37°C
 
for 48 

h. On LMPM, L. monocytogenes and L. ivanovii appear as blue colonies, indicating 

phospholipase activity, while other Listeria spp. appear as white colonies (49). Blue 

colonies on LMPM plates were further characterized, as detailed below, to classify 

them to species and subtypes, while samples with white colonies representing Listeria-

like characteristics were classified as positive for Listeria spp. other than L. 

monocytogenes.  
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Automated EcoRI ribotyping. Isolated blue colonies from LMPM were substreaked 

onto Brain Heart Infusion (BHI; Difco, Becton Dickinson, Sparks, MD) agar plates for 

characterization by an automated EcoRI ribotyping using the RiboPrinter® System 

(Dupont Qualicon™, Wilmington, DE). The RiboPrinter® software classifies ribotype 

patterns into DuPont IDs (e.g., DUP-1043) and a given DuPont ID can contain more 

than one distinct ribotype pattern (i.e., patterns that differ by a single weak band 

within a given DuPont ID). Different patterns within a given DuPont ID were 

designated with an additional letter (e.g., DUP-1043A and DUP-1043B). 

Pulsed Field Gel Electrophoresis (PFGE) analysis. L. monocytogenes isolates were 

also characterized using the standard CDC L. monocytogenes PulseNet PFGE protocol 

(25, 26) with two restriction enzymes (ApaI and AscI). PFGE was performed using the 

Bio-Rad™ CHEF Mapper electrophoresis unit. Images of PFGE patterns were 

acquired using the Bio-Rad™ Gel Doc software version 1.1 and analyzed using 

BioNumerics Software version 4.2 (Applied Maths, Sint-Martens-Latem, Belgium).  

Bacterial strains and cultures for listeriaphage isolation. Four L. monocytogenes 

strains, representing serotypes 1/2a, 1/2b, 4a, and 4b, were consistently used as hosts 

for listeriaphage isolation and enrichment (Table 2.2). These serotypes include the 

most common L. monocytogenes serotypes and have been commonly used for 

listeriaphage isolation in other studies (31, 37, 41). While inclusion of L. 

monocytogenes isolates found on either farm would potentially improve detection of 

phages on a specific farm, this approach would have affected our ability to compare 

isolation frequency or levels of phages between farms without bias. 

  



34 

Table 2.2. L. monocytogenes strains used for listeriaphage isolation and phage host 

range determination. 

L. monocytogenes 
strain (previous ID)a Lineage Source Serotype Ribotype Reference(s) 

FSL J1-175* I Water 1/2b DUP-1042A (4) 

FSL J1-169 I Human 3b DUP-1052A (23, 27) 

FSL J1-049 I Human 3c DUP-1042C (23, 65) 

FSL R2-574 (F2365)* I Food 4b DUP-1038B (45) 

FSL F6-367 (MACK)*  II Lab strain 1/2a DUP-1030A (31) 

FSL C1-115 II Human 3a DUP-1039C (23, 27) 

FSL J1-094 II Human 1/2c 116-1501-S-4 (6, 23) 

FSL F2-695 IIIA Human 4a DUP-1061A (50) 

FSL F2-501 IIIA Human 4b DUP-18606 (50) 

FSL J2-071 IIIA Animal 4c DUP-1061A (48, 50) 

FSL W1-110 IIIC Unknown 4b DUP-1055 (15, 23) 

FSL J1-208* IV Animal 4a DUP-10142 (50) 

FSL J1-158 IV Animal 4b DUP-10142 (15, 23) 

a L. monocytogenes used as host strains for listeriaphage isolation are indicated with 

*; strains FSL J2-071, FSL J1-208, and FSL J1-158 were isolated from ruminants 

with clinical listeriosis symptoms. 
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Host strains were stored at -80°C in BHI broth with 15% glycerol and were streaked 

onto BHI agar plates before use. An overnight broth culture of each host strain was 

prepared by inoculating an isolated colony from a BHI agar plate into 5 ml of LB 

MOPS (LB medium buffered with 50 mM MOPS, pH 7.6). Cultures were incubated 

for 18 h at 30°C, with shaking at 220 rpm, to reach an OD600 of 0.5–0.6 (approx. 1 x 

109 CFU/ml).  

Isolation of listeriaphages. Listeriaphage isolation was performed, on the same 

samples used for L. monocytogenes isolation, following two methods: (i) direct phage 

isolation, and (ii) phage isolation after enrichment. Phage isolation after enrichment 

was used to isolate phages that may be present at low levels, while direct isolation 

facilitated isolation of phages with distinct plaque morphologies and allowed for 

phage quantification. 

For direct phage isolation, silage samples (10 g) were mixed with 90 ml of Phosphate 

Buffered Saline (PBS), pH 7.4, in a sterile Whirl-Pak bag with a filtered screen 

(Nasco), followed by a manual homogenization. Each sample (approx. 90 ml) was 

then filtered through a 0.45-μm bottle-top filter, followed by filtration of a 1-ml 

aliquot through a 0.2-μm syringe filter. While we appreciate that recovery of some 

large phages may be jeopardized when using a 0.2-μm filter, this pore size has been 

used by others to isolate listeriaphages (37, 41). Filtrates from a 0.2-μm filter were 

used for phage isolation using the double-layer plate method (41), with minor 

modifications. Briefly, an overlay was prepared by mixing 300 µl of a 1:10 dilution of 

an overnight culture of a host strain (approx. 3 x 107 CFU/ml) with 100 µl of the 

sample filtrate and 4 ml of the soft agar, 0.7% LB MOPS/Glu/Salts agarose (LB 



36 

medium buffered with 50 mM MOPS, pH 7.6; 10 mM each MgCl2 and CaCl2) (31). 

This overlay mixture was poured onto a freshly prepared bottom agar plate (1.5% LB 

MOPS/Glu/Salts agarose). For each filtrate, this double-layer isolation was performed 

separately with each of the four host strains. Overlay plates were incubated at 30ºC for 

24 h, followed by phage purification as detailed below.  

For phage isolation after enrichment, 10 g of silage was transferred to a sterile Whirl-

Pak bag with a filtered screen and mixed with 90 ml of LB MOPS, followed by 

addition of a 1 ml of the mixed overnight cultures of the four host strains (Table 2.2). 

The mixed cultures were prepared with 250 µl of each overnight host grown as 

described in the above section, thus containing approx. 2.5 x 108 CFU of each host 

strain. The sample enrichment was incubated at 30°C for 24 h. An aliquot (100 μl) of 

each sample enrichment was used for sequential filtration and phage isolation as 

detailed above.  

Phage purification and preparation of high-titer phage lysate stock. One 

representative of each plaque morphology present on a given plate was used for phage 

purification. An isolated plaque was picked with a sterile Pasteur pipette and 

suspended in 100 µl of PBS. Four 10-fold serial dilutions of the plaque-PBS 

suspension were used to prepare overlay plates as described above, using the 

appropriate host strain. After incubation for 24 h at 30ºC, the overlay plate yielding 

the lowest number of isolated plaques was used for two more phage purification 

passages. An isolated plaque from the third passage was used to prepare three overlay 

plates. After 24 h incubation at 30ºC, 5 ml of PBS was used to harvest the overlay, 

followed by addition of chloroform to a final concentration of 2% (vol/vol), 
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centrifugation at 5500 rpm (rotor JA-17, Beckman Instruments, Palo Alto, CA) for 15 

min, and filtration of the supernatant using a 0.2-μm syringe filter. While we 

appreciate that some phages may be sensitive to chloroform, phage titers sufficient for 

our experiments were obtained with this approach. Titers for each phage were 

determined by a spot test using the respective host strain used for phage growth. Eight 

10-fold serial dilutions of the phage lysate (10 µl each) were spotted onto the host 

lawn, followed by incubation at room temperature for 24 h. Phage titers were also 

used to determine the routine test dilution (RTD), which was defined as the highest 

dilution that just fails to give confluent lysis. Phage lysate stocks were stored at 4ºC. 

Listeriaphage host range determination. Spot tests of the 114 phages isolated here 

were performed, as two independent replicates, on 13 L. monocytogenes reference 

strains (see Table 2.2 for details on strains). These strains were chosen to represent the 

9 most common serotypes as well as all four currently recognized L. monocytogenes 

lineages. Lawns for each reference strain were prepared as described above and spot 

tests were performed with 10 µl of phage lysates adjusted to a 100x RTD, representing 

approx. 1 x 105 to 5 x 106 PFU/ml (Table S2.1 in suppl. materials). Absence of 

bacterial inhibitory effects caused by high-titer phage suspensions was confirmed in 

the serial dilution spot tests detailed above. After 24 h of incubation at room 

temperature, each spot on the lawn was evaluated for lysis (+) or no lysis (-). Lysis 

was defined as occurrence of multiple single plaques or turbid or confluent lysis at a 

spot. 

Phage lysis profiles on the 13 host strains were used to identify clusters of phages with 

similar host ranges. For this analysis, a spot test was considered as lysis if plaquing 
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was observed in at least one replicate. Hierarchical clustering was performed using 

Ward’s method and binary distance in the R software (version 2.14.0; R Development 

Core Team, Vienna, Austria [http://www.R-project.org]). Clusters with a reference 

approximately unbiased (AU) value of >45% were assigned a cluster designation (e.g., 

cluster A). 

Listeriaphage genome size determination. At least 25% of phage isolates obtained 

from each visit to a given farm (and at least one phage isolate from each visit) were 

selected for genome size determination. To the extent possible, phage isolates were 

selected to represent multiple isolation hosts. DNA extraction was performed using 

phage lysates prepared as described above, except that SM (NaCl-MgSO4) buffer, pH 

7.4, was used for phage harvest. Phages were precipitated using Polyethylene glycol 

8000, in the presence of 1 M NaCl, followed by resuspension in SM buffer. DNase I 

(Promega BioScience, San Luis, Obispo, CA) (5 μg/ml final concentration) and RNase 

A (Sigma) (30 μg/ml final concentration) were added to digest nucleic acids from 

lysed bacterial cells. After addition of EDTA to a final concentration of 20 mM, phage 

DNA was purified using digestion with proteinase K (0.2 mg/ml) and SDS (0.5%), 

followed by extraction with phenol/chloroform, and ethanol precipitation. Genome 

sizes were then estimated using PFGE as previously described (33, 57). Briefly, the 

gel was run for 22 h in 1X TBE buffer (pH 8.0), at a 0.5 s to 5 s switch time, 6 V/cm, 

and an angle of 120°. Size standards of 8 ̶ 48 kb and a λ PFGE marker (both Bio-Rad, 

Hercules, CA) were used to facilitate estimation of genome sizes, which was 

performed using BioNumerics (Applied Maths, Sint-Martens-Latem, Belgium). 
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Transmission Electron Microscopy (TEM). TEM characterization was performed 

on seven selected phage isolates representing various genome sizes and lysis groups. 

Grids were prepared by placing 5 µl of phage lysate (>107 PFU/ml), prepared as 

described above, onto 200-mesh Formar-carbon-coated copper grids. After adsorption 

for 5 s, excess phage lysate was removed with a filter paper. Grids containing phage 

lysate were stained for 5 s with 5 µl of three different stains: 2% uranyl acetate, 2% 

sodium phosphotungstate, and 2% ammonium molybdate. Images were acquired with 

a Tecnai T-12 TWIN TEM (FEI, Hillsboro, OR). 

Statistical Analysis. To estimate odd ratios for phage susceptibility of (i) serotype 4 

and non-serotype 4 strains, and (ii) strains of different lineages, logistic regression was 

performed using a generalized linear model. The final model was then used to predict 

prevalence of phage susceptibility for strains with different characteristics, including 

95% confidence intervals. All statistical analyses were performed using the R software 

(version 2.14.0; R Development Core Team, Vienna, Austria [http://www.R-

project.org]). 

 

RESULTS 

Despite infrequent isolation of L. monocytogenes, listeriaphages are commonly 

isolated from silage samples collected on dairy farms. Among the 134 silage 

samples collected on two dairy farms (81 and 53 samples from farms 1 and 2, 

respectively), four samples from farm 1 and two samples from farm 2 were positive 

for L. monocytogenes. For farm 1, seven L. monocytogenes isolates obtained from 4 

different samples collected during the two preliminary visits (10/2007 and 01/2008; 
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Table 2.1) were further characterized. These seven isolates represented four different 

PFGE types as well as three different ribotypes (DUP-1039C, DUP-1045A, DUP-

1042C; see Figure S2.1 in suppl. materials), and were classified into lineage I (3 

isolates) and II (4 isolates). The two L. monocytogenes isolates from farm 2 (Table 

2.1) represented the same PFGE type as well as the same ribotype (DUP-1052A), and 

both were classified into lineage I (Figure S2.1). In addition, Listeria spp. other than L. 

monocytogenes were also isolated from a number of silage samples (Table 2.1). 

Excluding the 19 samples collected during the two preliminary sampling visits to farm 

1, a total 115 silage samples (62 and 53 samples from farms 1 and 2, respectively) 

were screened for listeriaphages. Of these, 55 samples were positive for phages and 

114 listeriaphage isolates were recovered, using four L. monocytogenes hosts and two 

phage isolation methods (i.e., direct isolation and isolation after enrichment). For farm 

1, 27/62 samples were positive for phages, yielding 49 phage isolates (Table 2.1); 12 

samples were positive after enrichment only, while 4 samples were positive only by 

direct isolation and 11 samples were positive by both methods. For this farm, 23 and 

26 of the 49 phage isolates were obtained from direct isolation and isolation after 

enrichment, respectively. For farm 2, 28/53 samples were positive for phages, yielding 

65 phage isolates (Table 2.1); 10 samples were positive after enrichment only, while 6 

samples were positive only by direct isolation and 12 samples were positive by both 

methods. For this farm, 31 and 34 of the 65 phage isolates were obtained from direct 

isolation and isolation after enrichment, respectively. A possible explanation for 

detection of phages, in some samples, by direct isolation but not by enrichment would 

be either (i) degradation of phages during enrichment (e.g., due to proteases or 
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nucleases present in the enrichment or produced by bacteria, other than the host 

strains), or (ii) entry into a lysogenic cycle during enrichment.  

The direct phage isolation method also allowed for enumeration of listeriaphages 

present in a given sample with a detection limit of 1.0 x 102 PFU/g (Table 2.3). Phage 

levels in 15 samples from farm 1 that were positive by direct isolation ranged from 1.0 

x 102 to 1.5 x 104 PFU/g, with two samples showing phage levels that were "too 

numerous to count (TNTC)" on at least one host strain (Table 2.3). For farm 2, phage 

levels in 18 samples that were positive by direct isolation ranged from 1.0 x 102 to 1.2 

x 104 PFU/g, with eight samples showing phage levels that were TNTC on at least one 

host strain. Due to variations in plaque sizes, TNTC could represent between 100 and 

200 plaques per plate, therefore TNTC is estimated to represent >2.0 x 104 PFU/g in 

our study.  

Listeriaphages isolated here represent a wide diversity of host range 

characteristics.  Host range determination of all 114 phage isolates, with 13 diverse 

L. monocytogenes reference strains (Table 2.2), classified these phage isolates into 56 

different lysis profiles. Clustering analysis classified these lysis profiles into 9 distinct 

lysis groups (Figure 2.1 and Table S2.2 in suppl. materials). Each lysis group included 

between 4 (lysis group G) and 27 (lysis group I) phage isolates. While most lysis 

groups were comprised of similar numbers of phage isolates from each farm, three 

groups (E, G, and H) included phage isolates predominantly from farm 2, and group I 

included phage isolates predominantly from farm 1 (Table S2.2). Among the 9 lysis 

groups, two groups (E and F; representing about 28.9% of phages tested) 

demonstrated broad host range, exhibiting ability to lyse 11 to 12 of the 13 reference 
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strains. Only 5/49 phage isolates from farm 1, but 28/65 phage isolates from farm 2 

fell into these two broad host range groups (Table S2.2). Two lysis groups (A and C), 

representing a narrow host range phages with ability to lyse 1 to 5 strains, included 

12.3% of the 114 phages characterized. The majority of the 114 phages (58.7%) 

showed ability to lyse between 6 and 10 of the reference strains tested and were 

classified into five lysis groups (B, D, and G–I). 

Most listeriaphages lyse all serotype 4 strains as well as the serotype 1/2a strain 

Mack. Among the 13 reference strains, seven strains representing serotypes 4a (n=2), 

4b (n=4), and 4c (n=1) were lysed by 63.2 to 88.6% of the 114 phages (Table 2.4). 

Among the “non-serotype 4” strains, only the serotype 1/2a strain Mack was also 

lysed by a large proportion of phage isolates (74.6%), while the other serotype 1/2b, 

1/2c, 3a, and 3b strains were lysed by 22.8 to 40.4% of phage isolates. The serotype 3c 

strain FSL J1-049 was not lysed by any phage isolates (Table 2.4). Hierarchical 

clustering of these reference strains based on similarities in phage susceptibility was 

consistent with these findings. The seven serotype 4 strains and the serotype 1/2a 

strain Mack were classified into the same major cluster (X), while the serotype 3c 

strain FSL J1-049, which was highly resistant to all phages, was classified into its own 

cluster (Z; see Figure 2.1). The other serotype 1/2b, 1/2c, 3a, and 3b strains were 

grouped into cluster Y (Figure 2.1). Overall prevalence of phage susceptibility was 

51.9% (95% CI: 35.5–67.8) among the non-serotype 4 strains and 88.9% (95% CI: 

80.3–94.0) among the serotype 4 strains (Table 2.4), indicating a significant difference 

in phage susceptibility among these two groups (p<0.001).  
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Table 2.3. Enumeration of listeriaphages for samples positive by direct phage 

isolation. 

Sample 
collection 

date (mo/yr) 
Sample  

Enumerationa (PFU/g) of listeriaphages on host 
strain (serotype) 

J1-175 
(1/2b) 

F2365 
(4b) 

MACK 
(1/2a) 

J1-208 
(4a) 

Farm 1      
04/2008 H-S5-S31D 

H-S5-S32D 
H-S5-S39D 
H-S5-S40D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 

4.3 x 103 
>2.0 x 104 

<1.0 x 102 
2.0 x 102 

<1.0 x 102 
<1.0 x 102 

4.0 x 102 
5.3 x 103 
1.2 x 103 

>2.0 x 104 

08/2008 H-S6-S44D 
H-S6-S46D 
H-S6-S47D 
H-S6-S50D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

2.0 x 102 
5.0 x 103 
3.0 x 102 

<1.0 x 102 

<1.0 x 102 
1.0 x 103 
1.0 x 102 

<1.0 x 102 

2.0 x 102 
>2.0 x 104 

1.0 x 103 
4.0 x 102 

09/2008 None None None None None 

10/2008 H-S8-S64Db <1.0 x 102 <1.0 x 102 <1.0 x 102 (i) 7.0 x 102  
(ii) 2.6 x 103 

11/2008 H-S9-S68D 
H-S9-S72D 
H-S9-S73D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

2.5 x 103 
1.1 x 103 
1.2 x 103 

12/2008 H-S10-S80D 
 

<1.0 x 102 1.0 x 102 <1.0 x 102 2.0 x 102 

01/2009 H-S11-S85D 
H-S11-S90D 

<1.0 x 102 
<1.0 x 102 

1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
1.5 x 104 

Farm 2      

02/2009 A-S1-S1D 
A-S1-S8D 
A-S1-S10D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

6.0 x 102 
<1.0 x 102 
<1.0 x 102 

6.0 x 102 
<1.0 x 102 
>2.0 x 104 

8.0 x 102 
1.2 x 103 
1.0 x 104 

03/2009 A-S2-S15D 
A-S2-S16D 
A-S2-S17D 
A-S2-S18D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

1.0 x 102 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

1.0 x 102 

>2.0 x 104 
>2.0 x 104 

1.2 x 104 
>2.0 x 104 

04/2009 A-S3-S22D 
A-S3-S23D 
A-S3-S24D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

1.0 x 102 
>2.0 x 104 
>2.0 x 104 

05/2009 A-S4-S30D 
A-S4-S31D 
A-S4-S34D 
A-S4-S36D 

<1.0 x 102 
<1.0 x 102 
<1.0 x 102 
<1.0 x 102 

<1.0 x 102 
4 x 102 

<1.0 x 102 
1.0 x 102 

<1.0 x 102 
1.2 x 103 
2.0 x 102 

<1.0 x 102 

1.0 x 102 
3.2 x 103 

<1.0 x 102 
1.0 x 102 

06/2009 A-S5-S42D 
A-S5-S43D 

<1.0 x 102 
<1.0 x 102 

3.0 x 103 
<1.0 x 102 

3.8 x 103 
1.0 x 102 

>2.0 x 104 
<1.0 x 102 

07/2009 A-S6-S47D 
A-S6-S48D 

<1.0 x 102 
<1.0 x 102 

3.0 x 102 
8.0 x 102 

1.0 x 102 
3.3 x 103 

<1.0 x 102 
>2.0 x 104 

a Samples that did not yield plaques on a given host were reported as <1.0 x 102 

PFU/g of silage, the detection limit of the method used.  
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Table 2.3. (Continued). 
Due to variations in plaque sizes, presence of 100-200 plaques typically 

represented the cut-off for countable plaque numbers; samples that yielded too 

numerous plaques to be counted were thus reported as >2.0 x 104 PFU/g of 

silage. 

b This sample showed two plaque morphologies, number of PFU/g was reported 

for each type of plaque morphology, indicated as (i) and (ii).



 

Figure 2.1. Heatmap and hierarchical clustering of lysis profiles from the host range determination of 114 listeriaphages. Beige 

represents lysis (+) and blue represents no lysis (-) on a given strain. Phage isolates are shown on the horizontal axis; clusters are 

designated (A to I) above the figure based on similarities of the lysis profiles using Ward’s method and binary distance in the R 

software with a reference approximately unbiased (AU) value of >45%. Host strains are shown on the vertical axis; clusters are 

designated (X to Z) on the left of the figure based on similarities in susceptibility to phages. 
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Strains of lineages III and IV were lysed by a large proportion of phage isolates (77.2–

88.6%; see Table 2.4). This is consistent with the fact that all strains from these two 

lineages represent serotype 4. Lineage I strains showed considerable diversity 

regarding phage susceptibility, representing the range from 0 to 63.2% (Table 2.4). 

Overall, prevalence of phage susceptibility was higher among strains in lineage III 

(98.5%; 95% CI: 75.2–89.2) and IV (83.3%; 95% CI: 75.2–89.2) as compared to those 

in lineage I (68.1%; 95% CI: 47.4–83.4) and II (25.4%; 95% CI: 12.3–45.3). 

Consistent with the high phage susceptibility of serotype 4 of lineage III and IV 

strains, the majority of phages were isolated on the lineage IV serotype 4a host strain 

FSL J1-208 (60/114 phages) and the lineage I serotype 4b host strain F2365 (25/114 

phage isolates) (Table S1 and Figure S2.2 in suppl. materials). 

Listeriaphages markedly differ in genome sizes, indicating genetic diversity of 

phages on dairy farms. Phage genome sizes were determined, for at least one phage 

isolate per visit to a given farm, to initially characterize the genetic diversity of the 

phages isolated here. Among 72 phage isolates tested (30 and 42 from farms 1 and 2, 

respectively), ten (four from farm 1, and six from farm 2) did not yield a clear band (or 

bands) after PFGE analysis, even though OD260 measurements suggested presence of 

appropriate amounts of nucleic acid to yield a detectable band. These 10 phage 

isolates represented 4 different lysis groups. While further analysis on a 0.7% agarose 

gel showed a nucleic smear, suggesting a single stranded RNA or DNA genome, 

additional experiments will be needed to characterize the genome of these isolates. 

The other 62 phage isolates showed a genome size range from 26 to 140 kb (Table 

2.5). One phage from farm 2, classified into lysis group F, initially showed three bands  
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Table 2.4. Susceptibility of L. monocytogenes reference strains to listeriaphages. 

L. 
monocytogenes 

Strain 

Serotype 
(Lineage)  

No. of phage 
lysis groupsa 

lysing 
specific 

strain (%) 

No. of phages 
lysing specific 

strain (%) 

% Prevalence of 
phage 

susceptibilityb  
(95% CI) 

Non-serotype 4 
strains    51.9 (35.5–67.8) 

MACK 1/2a (II) 8 (89) 85 (74.6)  
FSL J1-175 1/2b (I) 4 (44) 29 (25.4)  
FSL J1-094 1/2c (II) 6 (67) 46 (40.4)  
FSL C1-115 3a (II) 6 (67) 35 (30.7)  
FSL J1-169 3b (I) 4 (44) 26 (22.8)  
FSL J1-049 3c (I) 0 0  

Serotype 4 
strains    88.9 (80.3–94.0) 

FSL F2-695 4a (IIIA) 8 (89) 101 (88.6)  
FSL J1-208 4a (IV) 9 (100) 101 (88.6)  
F2365 4b (I) 8 (89) 72 (63.2)  
FSL F2-501 4b (IIIA) 8 (89) 93 (81.6)  
FSL J1-158 4b (IV) 8 (89) 84 (73.7)  
FSL W1-110 4b (IIIC) 7 (78) 88 (77.2)  
FSL J2-071 4c (IIIA) 8 (89) 99 (86.8)  

a See Table S2.2 for details on the 9 lysis groups. A phage lysis group was 

classified as lysing a reference strain if any phages in a given lysis group showed 

lysis on a given host strain.   

b Prevalence of phage susceptibility (p<0.001) among reference strains that were 

classified into (i) non-serotype 4 strains and (ii) serotype 4 strains.  
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of approx. 41, 83, and 115 kb; PFGE analysis of this phage DNA after heating at 75°C 

for 15 min showed a single band at 40 kb, indicating presence of cohesive ends that 

facilitated genome multimerization. For 35 phage isolates, PFGE analysis revealed 

two bands of similar size. The size difference of these two bands was approx. 3–6 kb. 

Twenty-three phage isolates from farm 1 showed the “two-band” pattern with sizes of 

58–64 kb for the small band and 63–68 kb for the large band; for farm 2, 12 phage 

isolates showing the “two-band” patterns with sizes of 57–63 kb for the small band 

and 61–68 kb for the large band. These phages represented seven lysis groups (A–F, 

and I). Although all phage lysates were prepared after purification for three passages, 

selected phage isolates with these two-band patterns were re-purified, but still 

maintained the same patterns. PFGE after heat treatment at 72ºC for 15 min 

(performed for selected phages) also yielded the same patterns, suggesting that 

secondary structures (or presence of cohesive ends) may not be responsible for the 

observed two-band patterns. While both bands typically showed different DNA 

concentrations, there was no consistent pattern such that either the larger or smaller 

band was always at a higher concentration (see Table S2.3 in suppl. materials). Full 

genome sequencing of four phage isolates from different lysis groups with these 

banding patterns (unpublished data) allowed for assembly into a single genome of a 

size nearly the same as the larger band, suggesting the presence of a single phage. 

While a variety of packaging mechanism may explain these two chromosome variants, 

phages with these patterns might be “headful packaging” phages which contain 

genomes that are terminally redundant and circularly permuted as observed in phages 

P1, P22, and T4 (14, 58, 60, 64). Assembly of two capsid variants with different sizes  
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Table 2.5. Genome size diversity of selected listeriaphagesa  

Phage 
lysis 
group 

Genome sizeb (kb) of representative phage isolates from each 
farm [visit no.c] {phage familyd} 

Farm 1 Farm 2 
A 61/65 [6] 

31 [9] 
 

57/61 [4] {Sipho} 
58/63 [5] 

B 62/65 [5] {Sipho} 
61/66 [6] 
58/63 [8] 

60/66 [10] 
61/65 [11] 

66; 60/65 [1] 
65 [2] 

58/63 [3] 
57/62 [4] 
60/65 [5] 
60/63 [6] 

 
C 64/68 [6] 

62/67 [10] 
63 [1] 

61/65; 63/68 [2] 
 

D    62/67 [6] 
61/66; 63/68 [11] 

 

62; 63; 60/65 [1] 
61/65 [2] 

68 [6] 
 

E N/D 97; 119  [1] 
140 [5] 

 59/63; 70; 117; 
127 {Myo}; 131; 

132; 134; 135; 
136 [6] 

 
F 61/65 [5]  

59/63; 61/67 [9] 
 

121 [1] 
64 [2] 

41/83/115 [4] 
 

G None 123 [4] 
 

H 123 [9] 32 [2] {Myo} 
26 [4] 

 
I 59/63 [5] 

33 {Myo}; 60/64; 
61/65 [6]  
58/64 [8] {Sipho} 
62/66 [9] 

61/65 [10] 

32 [2] 
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Table 2.5. (Continued). 
a At least 25% of phage isolates obtained from each visit to a given farm 

were selected for genome size estimation; for each visit at least one 

isolate was characterized. To the extent possible, phage isolates were 

selected to represent multiple isolation hosts. 

b Phage genome sizes were estimated by PFGE analysis and size 

estimation using the BioNumerics software. ‘None’ indicates no phage 

isolate was classified into this lysis group; ‘N/D’ indicates genome size 

determination was not performed with phage isolates of this lysis group. 

For some phage isolates, two bands of similar sizes were observed by 

PFGE analysis and the estimated sizes for both bands are indicated (e.g., 

60/65 kb).  

c See Table 2.1 for details on farm sampling visits. 

d TEM characterization was performed on seven selected phage isolates 

representing various genome sizes and different lysis groups. Phage 

family classification is indicated in {}; ‘Myo’ represents Myoviridae, and 

‘Sipho’ represents Siphoviridae. 
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could lead to packaging of two distinct chromosome lengths which could then result in 

variants of two sizes. This is consistent with data on T4, which has been shown to 

form a petite variant, which could be more or less common than the full-size capsid, 

e.g., depending on time after infection (17).   

Overall, all nine lysis groups included phages with various genome sizes (Table 2.5). 

Genome size diversity was also observed among phages in a given lysis profile from 

the same farm. For example, phages in lysis group F from farm 2 revealed three 

distinct genome sizes (Table 2.5). These findings suggest that phages exhibiting 

similar host ranges, even among phages from the same farm, still show considerable 

genetic diversity. Genome sizes of phages from farm 1 ranged from approx. 31 kb 

(one phage of lysis group A) to 123 kb (one phage of lysis group H). For farm 2, the 

smallest phage genome size was approx. 26 kb (one phage of lysis group H), while 

12/42 phage isolates, classified into 3 lysis groups (E–G), showed large genome sizes 

with the range of 97 to 140 kb (Table 2.5).  

Combined analysis of phage genome size and lysis patterns of phages from a given 

farm also provided preliminary evidence of phage persistence. For example, for farm 

1, phages representing genomes of the “two-band” patterns (approx. 60 and 65 kb), 

classified into lysis group I, were isolated from samples collected during five visits to 

farm 1 (Table 2.5). For farm 2, phages that grouped into lysis group B and showed 

these two-band patterns were also isolated over multiple visits (Table 2.5). While data 

on genome size and host range patterns indicate re-isolation of the same or similar 

phages from a given farm over time, analysis of these phages (e.g., restriction 
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fragment length polymorphism (RFLP) analysis) is needed to assess persistence of 

specific phages on these two farms.  

TEM shows that selected listeriaphages represent two families of tailed phage. 

Seven selected phages (four and three phage isolates from farm 1 and 2, respectively) 

were characterized by TEM. Phage images allowed for classification of these phages 

as tailed phages of two phage families, Myoviridae and Siphoviridae (Table 2.5 and 

Figure 2.2). Three phage isolates, representing lysis groups E, H, and I, exhibited 

morphotype A1 (binary symmetry with contractile tail) and were thus classified in the 

Myoviridae family (1, 2) (Table 2.5). Four phage isolates, representing lysis groups A 

(n=1), B (n=1), and I (n=2), exhibited morphotype B3 (binary symmetry with a long, 

noncontractile tail) and were thus classified in the Siphoviridae family (1, 2) (Table 

2.5). 

 

DISCUSSION 

In this study we used dairy farms as a model system to develop a better understanding 

of the ecology and diversity of listeriaphages, with a focus on silage, which is well 

established to support growth of L. monocytogenes to high levels and to be a source 

associated with animal listeriosis. Our data specifically demonstrate that (i) 

listeriaphages are abundant in silage available on dairy farms, (ii) L. monocytogenes 

lineage III and IV and serotype 4 strains are highly susceptible to phages, and (iii) 

except for a largely conserved ability to lyse serotype 4 strains, listeriaphages show 

considerable host range and genome size diversity. The diverse phage collection 

described here also represents a promising resource for further development of  
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   (A)         (B) 
   

Figure 2.2. TEM images of selected listeriaphages. (A) listeriaphage LP-124 

(lysis group E), obtained from farm 2 on host strain F2365 (serotype 4b). 

This phage exhibits morphotype A1 with long contractile tail; this phage is 

thus classified into the Myoviridae family. (B) listeriaphage LP-010 (lysis 

group B), obtained from farm 1 on host strain FSL J1-208 (serotype 4a). This 

phage exhibits morphotype B3 with long non-contractile tail; this phage is 

thus classified into the Siphoviridae family. Size bar applies to both panel A 

and B.  
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listeriaphages as a biocontrol agent (e.g., to control L. monocytogenes in silage) and 

other phage-based applications as well as for further genomic studies of listeriaphages. 

Listeriaphages are abundant in farm environments and may be persist over time. 

While phages are in general well known to be the most abundant entities in the 

environment (8, 9, 51), the relative abundance of species-specific phages (e.g., 

listeriaphages) in different environments is less well studied. In our study, 

listeriaphages were isolated from the majority of silage samples with some samples 

representing phage levels of >1.5 x 104 PFU/g of silage. Interestingly, a high 

prevalence of phages infecting L. monocytogenes was observed despite the fact that 

the majority of silage samples were not positive for L. monocytogenes, possibly 

suggesting that L. monocytogenes were eliminated by phages present. On the other 

hand, as Listeria spp. other than L. monocytogenes were isolated from a number of 

silage samples, other Listeria spp. may be hosts that facilitated replication of these 

phages. In addition, it is possible that members of other closely related Gram-positive 

bacterial genera could serve as natural hosts of listeriaphages as supported by the 

finding that some Staphylococcus aureus phages had been shown to facilitate 

horizontal transfer of DNA into Listeria (13). Further phage host range 

characterization with other potential hosts, particularly Listeria spp. isolates, would be 

needed to better understand whether hosts other than L. monocytogenes could facilitate 

propagation of phages isolated here.  

While silage samples have previously been used to isolate listeriaphages for further 

characterization (31) and while it is well known that poorly fermented silage is 

commonly contaminated with high levels of L. monocytogenes (18, 19, 22, 30), 
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prevalence and levels of listeriaphages in silage have not previously been reported. In 

one previous study that reported listeriaphage prevalence among samples collected 

from two turkey processing plants, 12 listeriaphage isolates were obtained from 8 out 

of 113 samples tested (37). The high prevalence of listeriaphages observed in silage 

samples here, not only suggests that improperly fermented silages, and possibly dairy 

farm environments in general, are good substrates for listeriaphage isolation, but also 

suggests that phage mediated horizontal gene transfer in L. monocytogenes may be 

particularly frequent in these environments. This hypothesis is consistent with the 

previous finding that lineage III and IV L. monocytogenes strains, which are highly 

susceptible to phages (see below) and most common among ruminants, also show high 

level of horizontal gene transfer (44, 47, 50). 

Based on phage lysis and genome size patterns, our data also provide preliminary 

evidence that listeriaphages persist in dairy farm environments over time. While no 

other studies have reported or investigated listeriaphage persistence in natural 

environments, some studies provide evidence for persistence of other phages in 

different environments (e.g., marine environment, dairy processing plants, and 

slaughter facility) (33, 36, 53, 61). For example, Rousseau and Moineau (53) reported 

that two lactococcal phages, isolated from the same cheese factory over 14 months 

apart, showed not only the same lysis pattern (determined using 30 L. lactis strains), 

but also showed "100% identical genomes", suggesting persistence of these phages in 

this facility for more than a year.  

L. monocytogenes lineage III and IV strains (serotypes 4a, 4b, and 4c) are highly 

susceptible to phages and represent superior hosts for phage isolation. Host range 
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determination of the 114 phage isolates showed that L. monocytogenes lineage III and 

IV strains (all represent serotypes 4a, 4b, and 4c) as well as the only lineage I serotype 

4b strain included in our host strain set were lysed by the majority of our phage 

isolates. These observations are consistent with a number of previous studies (31, 37, 

41, 59), including a report by Loessner and Busse (41), who reported that most 

serotype 4 strains (96%) were sensitive to at least 1 of the 16 phages tested. By 

comparison, Kim et al. (37) found that serotype 4b strains were typically sensitive to 

most phages isolated from the turkey processing plants. Somewhat contradictory to 

our findings, Shen et al. (55) reported that 5/8 L. monocytogenes isolates, classified 

into serogroup 4b based on PFGE typing, showed resistance to listeriaphage cocktail 

consisting of 6 phages. Our study also showed that the serotype 1/2a strain Mack 

(classified into lineage II) was lysed by most phages. This finding is consistent with 

the study by Kim et al. (37) that found the majority of serotype 1/2a strains (16/26) to 

be sensitive to most phages tested. A study by Rossi et al. (52) also showed that a 

serotype 1/2a strain spiked in Brazilian fresh sausage samples was sensitive to 

listeriaphage P100. 

The findings that the one serotype 3c strain evaluated was resistant to all phages tested 

here and that the serotype 3a and 3b host strains were resistant to a considerable 

number of phages are consistent with previous report by Loessner and Busse (41) that 

serotype 3a, 3b, and 3c strains were typically untypable by phage typing, due to their 

resistance to all 16 phages tested. Kim et al. (37) also found that all 3 isolates from 

turkey processing plants representing serotypes 3c or 1/2c were not lysed by phage 

A511 and two broad host range listeriaphages obtained from the same environment. 
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Moreover, Shen et al. (55) found that 11/51 L. monocytogenes isolates classified based 

on PFGE typing, into serogroup 3b or 1/2b, were resistant to a listeriaphage cocktail. 

While specific mechanisms of phage resistance for serotype 3 and 1/2c strains remain 

unknown, cell wall teichoic acids (TA) and glucosamine in particular have been 

shown to be receptors for listeriaphages and absence or alteration of this TA 

substituent can convey phage resistance [e.g., Wendlinger et al. (62)].  

Overall, our data not only provide further evidence that, on a population basis, L. 

monocytogenes serotypes differ in phage resistance, but also suggest that selection of 

L. monocytogenes strain(s) as hosts for phage isolation can considerably affect phage 

isolation frequency. Lineages III and IV and serotype 4b strains, as well as the 

serotype 1/2a strain Mack are likely to facilitate better phage recovery and thus are 

highly recommended as hosts for phage isolation. In addition, use of strains with 

serotypes that are typically resistant to phages as hosts for phage isolation will 

facilitate isolation of phages that may be able to lyse these strains and thus can be 

important for biocontrol and other applications.  

Except for a largely conserved ability to lyse serotype 4 strains, listeriaphages 

show considerable host range and genome size diversity. Host range determination 

of the 114 phage isolates showed that these phage isolates could be classified into 9 

lysis groups. Lysis groups E and F, which included broad host range phages with 

ability to lyse 11 to 12 strains, accounted for 28.9% of the 114 phages. By comparison, 

Loessner and Busse (41) found that only 3/16 phages characterized in their study were 

classified into the broad host range phage group, whereas most phages in this 

collection represented narrow host range (lysis of 9 to 21 out of 57 strains). 
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Interestingly, all broad host range phages in their study (41) were isolated from 

environmental samples (i.e., sewage). Similarly, all 6 broad host range phages 

reported by Hodgson (31) were isolated from sewage and silage samples. However, a 

study by Kim et al. (37) reported that the majority of phages (i.e., 9/12) from the 

turkey processing plants were classified in the broad host range group with ability to 

lyse all 27 L. monocytogenes strains and 4/5 Listeria spp. tested. Differences in 

sources of phages and protocols, including host strains used for enrichment and phage 

isolation, may contribute to the differences in host ranges observed among the phages 

from these studies. 

While a considerable number of listeriaphages (>400 phages) have previously been 

isolated and characterized, genome sizes of <20 listeriaphages have been determined 

using PFGE analysis or genome sequencing (12, 16, 31, 38). The majority of 

previously reported listeriaphages showed genome sizes with a range of 35.6 kb 

(phage P40; accession no. EU855793) to 48.2 kb (phage B054; accession no. 

DQ003640). While no previous listeriaphage genome between 50 and 130 kb has been 

reported, two Myoviridae-family listeriaphages showed large genome sizes, of 131.4 

kb (phage P100; accession no. DQ004855) and 137.6 kb (phage A511; accession no. 

DQ003638). By comparison, the 72 phages whose genome sizes were determined here 

showed genome sizes ranging from approx. 26 to 140 kb, including several phages 

with genome sizes of between 55 and 70 kb. A number of phages isolated in the 

current study thus show genome sizes that have not been previously reported among 

listeriaphages, suggesting that these are novel listeriaphages. However, additional 
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analyses, including, for example, genome sequencing, are still needed to assess 

similarities among phages in our collection and previously described phages.  

The phage collection developed here will provide opportunities for further studies on 

the genomics and biology of listeriaphages, in addition to providing a potential 

initiation of further development of phage-based biocontrol strategies (e.g., control of 

L. monocytogenes in silage) and other applications. However, additional 

comprehensive characterization of these phages is necessary for identification of 

specific phages appropriate for these applications. For example, full genome 

sequencing is particularly needed to confirm that phages to be used as a biocontrol 

agent do not carry antibiotic resistance or putative virulence genes. 
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CHAPTER THREE 

 
Listeriaphage susceptibility of persistent Listeria monocytogenes subtypes isolated 

from a smoked fish processing plant 

 

 

ABSTRACT 

Contamination of Ready-To-Eat foods with Listeria monocytogenes can 

typically be traced back to post-processing contamination from environmental sources; 

contamination is often linked to subtypes that persist in food associated environments. 

Although phage-based biocontrol strategies have been proposed for controlling this 

pathogen, information on the efficacy of phage treatments against diverse L. 

monocytogenes subtypes from food associated environments is still limited. We 

identified subtypes that were repeatedly found (“persistent”) in a smoked fish 

processing facility by using EcoRI ribotyping data for isolates obtained in 1998–2009. 

PFGE analysis of 141 isolates (9 ribotypes) confirmed persistence for up to 11 years. 

Characterization of selected isolates representing persistent subtypes showed a wide 

range of susceptibility to a panel of 28 phages, ranging from 4.6% (ribotype DUP-

1043A) to 95.4% (ribotype DUP-1044A). In challenge studies using phage cocktails 

and a commercial phage product, one isolate (ribotype DUP-1043A) was not affected 

by any treatments. In phage susceptible isolates, a reduction in L. monocytogenes 

counts of up to 4 log units was observed within 8 h after treatments, but subsequent re-

growth occurred. Survivor isolates obtained after 24 h of treatment showed decreased 

susceptibility to individual phages included in the phage cocktail, suggesting rapid 

emergence of resistant subtypes.  
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1. Introduction 

The foodborne pathogen L. monocytogenes is widely distributed in nature and 

has been isolated from the environment of various types of food processing facilities 

(e.g., meat, poultry, dairy, and seafood processing facilities) (Autio et al., 2002; Eifert 

et al., 2005; Lappi et al., 2004; Ojeniyi et al., 1996) as well as retail establishments 

(Sauders et al., 2004). Contamination of Ready-To-Eat (RTE) foods usually occurs at 

the post-processing stage, with food processing environment representing the key 

source of L. monocytogenes that contaminates RTE foods (Kathariou, 2002; Kornacki 

and Gurtler, 2007; Tompkin, 2002). In many cases, contamination of food with L. 

monocytogenes can be linked to strains that were repeatedly found (“persistent”) in a 

food processing facility or other environment (e.g., at retail). Specific L. 

monocytogenes subtypes have also been shown to persist in food associated 

environments for months to more than a decade (Lappi et al., 2004; Orsi et al., 2008; 

Williams et al., 2011).  

Listeriaphages (Listeria-specific bacteriophages) have been studied and 

evaluated for their efficacy as a biocontrol agent for L. monocytogenes in a variety of 

foods (e.g., hot dogs, soft cheese, and salmon fillet) (Carlton et al., 2005; Guenther et 

al., 2009; Leverentz et al., 2004; Soni and Nannapaneni, 2010). In addition, GRAS 

(generally recognized as safe) status has been granted to the listeriaphage P100, a 

virulent, broad-host-range phage with the ability to infect multiple serotypes and 

species of Listeria (Anonymous, 2007). While use of bacteriophage has been proposed 

as an alternative strategy for controlling L. monocytogenes in raw and RTE foods 

(Anonymous, 2012), some concerns have been raised about routine application of 
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phage treatment in foods (EFSA, 2009). Specifically, previous studies have shown that 

phages could not completely eliminate L. monocytogenes populations in different food 

matrices and that subsequent re-growth of L. monocytogenes occurred (Guenther et al., 

2009; Bigot et al., 2011; Leverentz et al., 2003; Soni et al., 2009), raising concerns 

about emergence of phage resistant populations during or after treatment. Other 

concerns about the presence of phage-resistant strains of L. monocytogenes have also 

been raised (EFSA, 2009; Ferreira et al., 2011). Kim et al. (2008) evaluated for phage 

resistance among L. monocytogenes isolated from turkey processing plants, including 

some apparent persistent strains, and found that some isolates in their study were 

resistant to all phages tested. In a similar study, Ferreira et al. (2011) evaluated for 

resistance against 26 phages among the 41 isolates obtained from sausages and 

environments associated with sausage production and distribution, and could identify 

one isolate that was resistant to all 26 phages as well as a number of isolates that 

showed weak lysis (or resistance) with all phages tested in the study. While these 

studies provide some initial characterization of phage resistance patterns among L. 

monocytogenes isolates from food associated sources, further comprehensive data are 

still needed on (i) susceptibility of diverse L. monocytogenes strains which have been 

recovered from and persisted in food processing plant environments to individual 

phages as well as phage cocktails (mixture of several phages), and (ii) emergence of 

phage resistance after treatment with phages.  

In the current study, we thus identified persistent subtypes in a smoked fish 

processing facility using EcoRI ribotyping data for isolates recovered from 1998–

2009. Selected isolates representing these persistent subtypes were used to (i) further 
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characterize by Pulsed Field Gel Electrophoresis (PFGE) analysis to confirm 

persistence; (ii) evaluate phage susceptibility of selected isolates against phages, phage 

cocktails, and a commercial phage product; and (iii) evaluate survivor isolates 

recovered after 24 h from phage challenge experiments for resistance against 

previously challenged phages. 

 

2. Materials and methods 

2.1. L. monocytogenes isolates 

 Most L. monocytogenes isolates selected for characterization in this study had 

previously been isolated from environmental, raw fish, and finished product samples 

from a single smoked fish processing facility. These isolates were recovered from 

1998–2004 (Lappi et al., 2004; Hoffman et al., 2003; Hu et al., 2006; Norton et al., 

2001; Thimothe et al., 2004), and all of these isolates were previously characterized by 

automated EcoRI ribotyping. Isolates have been stored at -80°C in Brain Heart 

Infusion (BHI; Difco, Becton Dickinson, Sparks, MD) broth with 15% glycerol and 

were streaked onto BHI agar plates followed by incubation at 37°C for 24 h before 

use. 

 

2.2. Sample collection  

 In addition to analysis of previously reported isolates, sample collection from 

the same processing facility was performed in two sampling periods for Listeria 

isolation and characterization (Table 3.1): (i) 10/2007 to 09/2008 and (ii) 10/2008 to 

10/2009. In the first sampling period, a total of 226 samples representing a variety of 
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environmental, raw fish, and finished product samples were collected and tested for L. 

monocytogenes (Figure S3.1). In the second sampling period, 11 drain locations were 

sampled 12 times throughout approx. one year. A total of 132 environmental samples 

collected from this period were tested for L. monocytogenes as well as listeriaphages. 

Samples from environmental sites (e.g., drains and floors), food contact surfaces (e.g., 

slicing machine), and non-food contact surfaces (e.g., pellet jack) were collected using 

sterile sponges, essentially as described previously (Lappi et al., 2004). Bags 

containing sponges were shipped overnight on ice to the laboratory and processed 

within 24 h of sample collection. 

 

2.3. L. monocytogenes isolation 

 For samples collected during the first sampling period (10/2007 to 09/2008), 

Listeria enrichment was performed by transferring each sample sponge into a sterile 

Whirl-Pak bag containing 90 ml of Listeria enrichment broth (LEB; Difco, Becton 

Dickinson, Sparks, MD), followed by homogenization in a stomacher for 60 s. After 

incubation at 30°C for 24 and 48 h, a 50-µl aliquot was streaked onto Oxford plating 

medium (Difco, Becton Dickinson, Sparks, MD) and plates were incubated at 30°C 

for 48 h. For each sample that showed Listeria-like colonies on Oxford, four Listeria-

like colonies (or fewer if less than four colonies were obtained) were substreaked onto 

L. monocytogenes plating medium (LMPM; R-F Laboratories, Downers Grove, Il), 

which was subsequently incubated at 37°C for 48 h. On LMPM, L. monocytogenes 

and L. ivanovii appear as blue colonies (indicating phospholipase activity), while other 

Listeria spp. appear as white colonies (Restaino et al., 1999). Blue colonies on LMPM 
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Table 3.1. Recovery of Listeria spp., L. monocytogenes, and listeriaphages from samples collected from a smoked fish 

processing facility between Nov. 2007 and Nov. 2009. 

Sampling visit 
(date, m/d/y) 

No. of 
samples 
tested 

No. of samples positive for 
 

No. of L. monocytogenes isolates characterized as specific 
ribotype (DUP-) 

Listeria 
spp.a LM Listeria

phagesb 
 1039

C 
1040

A 
1043

A 
1045

B 
1052

A 
1062

A 
1062

C Otherc 

Frist sampling 
period     

 
        

1 
(10/10/07) 35 0 9 n/a 

 
1 5         3   

2 
(10/17/07) 5 0 2 n/a 

 
  2             

3 
(10/18/07) 8 1 3 n/a 

 
1 2             

4 
(10/31/07) 42 2 10 n/a 

 
  9     1       

5 
(11/14/07) 42 5 15 n/a 

 
3 1 5 1 5       

6 
(12/5/07) 48 3 15 n/a 

 
8 2 1   1 1   2 

7 
(2/4/08) 5 0 0 n/a 

 
                

8 
(5/20/08) 12 0 0 n/a 

 
                

9 
(5/21/08) 7 0 0 n/a 

 
                

10 
(9/16/08) 22 0 2 n/a 

 
  2             
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Table 3.1. (Continued). 
Second 
sampling 
period     

 

        
11 

(10/28/08) 11 2 2 2 
 

1 1             
12 

(11/25/08) 11 2 2 0 
 

1   1           
13 

(01/13/09) 11 2 3 1 
 

2   2         2 
14 

(02/25/09) 11 4 3 0 
 

1   1     1     
15 

(03/25/09) 11 4 2 0 
 

1   1           
16 

(04/28/09) 11 5 2 0 
 

    1         1 
17 

(05/27/09) 11 0 2 0 
 

1             1 
18 

(06/23/09) 11 3 1 0 
 

    1           
19 

(07/29/09) 11 5 0 0 
 

                
20 

(08/25/09) 11 3 1 0 
 

1               
21 

(09/29/09) 11 6 2 0 
 

1        1       
22 

(10/26/09) 11 4 4 0 
 

2        1   1 

Total 
35
8 

51 
(14.2%) 

80 
(22.3%) 

    3 
(2.3%) 

 
24 24 13 1 8 3 3 7 
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Table 3.1. (Continued). 
a Listeria spp. excludes L. monocytogenes (LM). 

b Collected samples from the first sampling period (i.e., visit 1 to 10) were not used for listeriaphage isolation, therefore, 

results this period are indicated as “n/a”. 

c Other ribotype patterns included DUP-18042 (n=1); DUP-1451S2 (n=2); DUP-1042A (n=2); DUP-1030A (n=1); DUP-

1053A (n=1).
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plates were thus further characterized, as detailed below, to classify them into species 

and subtype.  

The protocol for L. monocytogenes isolation from samples collected in the 

second sampling period (10/2008 to 10/2009) required some modifications as each 

sample sponge was used for both L. monocytogenes and listeriaphage isolation. 

Briefly, a given sponge was added to a sterile Whirl-Pak bag with a filtered screen 

containing 10 ml of Phosphate Buffer Saline (PBS), pH 7.4. This sample was 

manually homogenized and then a 5 ml aliquot from this sample was transferred to a 

new sterile Whirl-Pak bag without a filtered screen, which was used for Listeria 

enrichment and isolation following the protocol detailed above. The Whirl-Pak bag 

containing the sponge and the remaining PBS was used for listeriaphage enrichment 

and isolation as detailed below.  

 

2.4. L. monocytogenes characterization  

2.4.1. Automated EcoRI ribotyping 

 At least one L. monocytogenes isolate from each sample that was positive for 

L. monocytogenes was selected for ribotyping. Isolated positive blue colonies 

recovered from LMPM were substreaked onto BHI agar, followed by incubation at 

37°C for 24 h. An isolated colony from BHI plate was used for characterization by 

automated ribotyping using the EcoRI enzyme and the RiboPrinter® System (Dupont 

Qualicon™, Wilmington, DE), following to the manufacturer’s instruction. While the 

RiboPrinter® software classifies ribotype patterns into DuPont IDs (e.g., DUP-1042), a 

given DUP ID can contain more than one distinct ribotype pattern (i.e., patterns differ 
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by a single weak band within a given DuPont ID); distinct patterns within a given 

DUP ID were designated with an additional letter (e.g., DUP-1043A and DUP-

1043B). 

 

2.4.2. Pulsed Field Gel Electrophoresis (PFGE) analysis 

 Ribotype data for both previously reported isolates and isolates obtained as 

part of the study reported here, were analyzed together to select isolates for PFGE 

analysis. Initial analysis identified 9 different EcoRI ribotypes that were represented 

by ≥ 10 isolates among 1,849 samples collected from this facility (Table 3.2). For each 

ribotype, at least two isolates recovered from the first and the last sampling visits of 

each sampling period were selected for characterization by PFGE. If available, 

additional isolates for each ribotype were selected conveniently to represent different 

sampling sites and sampling types (e.g., samples from door handle, apron, floor, raw 

salmon, or RTE products). Overall, 141 isolates were selected for PFGE 

characterization in our study (Table 3.3). 

PFGE was performed using the standard CDC PulseNet PFGE protocol for L. 

monocytogenes (Graves and Swaminathan, 2006; Graves and Swaminathan, 2001), 

with two restriction enzymes (i.e., ApaI and AscI). PFGE gels were run on the Bio-

Rad CHEF Mapper electrophoresis unit. PFGE images were acquired using the Bio-

Rad Gel Doc software version 1.1. Patterns were normalized and further analyzed with 

BioNumerics Software (Applied Maths, Sint-Martens-Latem, Belgium) using 

unweighted pairs group matching, a Dice correlation coefficient with a tolerance of 

1.5%, and an optimization of 1.5%. AscI and ApaI patterns were initially analyzed 



 

81 
 

separately; unique patterns were assigned separate Cornell University (CU) numbers 

(e.g., CU-121) for both restriction patterns. PFGE profile was designated by using the 

CU number of AscI PFGE pattern, followed by the CU number of ApaI PFGE pattern. 

For example, if the AscI PFGE pattern is CU-19 and the ApaI PFGE pattern is CU-22, 

the PFGE profile was designated as CU-19, 22. 

 

2.5. Listeriaphage enrichment and isolation  

 For phage enrichment, 95 ml of LB MOPS (LB medium buffered with MOPS, 

final conc. 50 mM, pH 7.6) was added to a bag containing a sponge and the remaining 

PBS as detailed above. The mixture was homogenized for 60 s with a stomacher, 

followed by addition of a 1 ml mixture (250 µl of overnight culture for each of the 

four host strains; Table S3.1). These strains were selected to represent the 4 most 

common L. monocytogenes serotypes (1/2a, 1/2b, 4a, and 4b), which have been 

previously used for phage isolation (Kim et al., 2008; Hodgson, 2000; Loessner and 

Busse, 1990). Each host was grown overnight in 5 ml of LB MOPS at 30°C (with 

shaking at 220 rpm) to reach an OD600 of 0.5–0.6 (approx. 109 CFU/ml). The phage 

enrichment was incubated at 30°C for 24 h, followed by initial filtration through a 

0.45 μm filter and subsequent filtration of a 1 ml aliquot through a 0.2 μm filter. 

Phages were than isolated separately with each of the four host strains, using an 

overlay method as previously detailed by Ferreira et al. (2011), and followed by phage 

purification as also detailed by Ferreira et al. (2011). Phage stocks were stored at 4°C.
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Table 3.2. Common L. monocytogenes ribotypes isolated, between 1998 and 2009, 

from samples collected in the smoked fish processing facility studied here.  

Ribotype 
(DUP-) 

No. of L. monocytogenes isolates representing specific 
ribotype in each sampling year or perioda 

Total no. 
of 

isolates  
[no. of 

years this 
ribotype 

persisted] 

1998  2000 2001 2002 2004 2007/08 2008/09 

1027A 0 7 1 3 0 0 0 10 [2] 
1042B 1 6 3 1 0 0 0 11 [4] 
1044A 7 5 1 7 0 0 0 20 [4] 
1042C 1 6 0 7 1 0 0 12 [6] 
1043A 0 19 18 9 2 6 7 61 [9] 
1045B 2 12 2 0 0 1 0 15 [10] 
1039C 23 52 9 6 0 13 11 97 [11] 
1052A 1 13 7 10 1 7 1 39 [11] 
1062b 7 17 5 1 1 4 2 33 [11] 
Total no. 
of 
samples 
tested 
(total 
sampling 
visits) 

229 
(5) 

256 
(16) 

524  
(22)c 

482 
(5) 

226 
(10) 

132 
(12) 

1849 
(70) 

a Data for 1998, 2000, 2001-2002, and 2004 were previously published (Lappi et al., 

2004; Hoffman et al., 2003; Hu et al., 2006; Norton et al., 2001; Thimothe et al., 

2004). Samples tested included environmental samples, fish in process, and raw 

fish. 

b Isolates reported as DUP-1062, DUP-1062A, and DUP-1062C were  grouped 

together and are listed here as “DUP-1062”. 

c Sampling visits in 2001 and 2002 were reported in a single manuscript (Lappi et 

al., 2004). 
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Table 3.3. Summary of PFGE profiles of L. monocytogenes isolates representative of persistent ribotypes and selection of 

isolates for evaluation of phage susceptibility. 

Ribotype 
(DUP-) PFGE profilea  

[Total no. of 
isolates 

characterized] 
 No. of isolates 

representing 
specific PFGE 

profile 

No. of band(s) 
different between 

PFGE 
profilesb (AscI 
pattern, ApaI 

pattern) 
 

L. monocytogenes isolates selected for phage testingd 

First sampling period 
 Middle sampling 

period 
 Last sampling 

period 

Isolate ID 
(FSL-) 

Isolation 
date 

 Isolate 
ID (FSL-

) 

Isolation 
date 

 Isolate 
ID (FSL-

) 

Isolation 
date 

1027A   [11]                 
 CU-58, 99 8 0 H1-038 02/2000  L3-043 02/2002  L4-162 10/2002 
 CU-58, 98 3 0, 2 H1-050 02/2000  H1-163 03/2000  T1-227 06/2001 
            
1039C  [13]          
 CU-182, 173 5 0 H1-003* 03/2000  L4-396 12/2002  V1-009 10/2008 
 CU-182, 174 2 0, 2 N1-449 09/1998  - -  H1-486 07/2000 
 CU-182, 172 1 0, 1 T1-061 03/2001  - -  - - 
 CU-80, 173 1 >3 - -  - -  - - 
 CU-118, 218 1 >3 - -  - -  - - 
 CU-182, 233 1 >3 - -  - -  - - 
 CU-180, 231 1 >3 - -  - -  - - 
 CU-81, 219 1 >3 - -  - -  - - 
            
1042B  [12]          
 CU-55, 98 6 0 H1-099 03/2000  H1-412 07/2000  T1-384 05/2001 
 CU-55, 99 2 0, 2 H1-174 03/2000  - -  H1-406 08/2000 
 CU-200, 227 1 >3 - -  - -  - - 
 CU-182, 172 1 >3 - -  - -  - - 
 CU-159, 95 1 >3 - -  - -  - - 
 CU-241, 51 1 >3 - -  - -  - - 
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 Table 3.3. (Continued). 
1042C  [13]          
 CU-18, 22 7 0 H1-178 03/2000  H1-459 08/2000  L3-397 05/2002 
 CU-156, 5 2 >3 - -  - -  - - 
 CU-5, 5 2 >3 - -  - -  - - 
 CU-287, 5 2 >3 - -  - -  - - 
            
1043A  [26]          
 CU-35, 248 19 0 H1-006* 02/2000  R6-819 11/2007  V1-098 06/2009 
 CU-35, 289 4 0, 1 T1-930 11/2001  H6-154 06/2004  R6-836 11/2007 
 CU-35, 291 1 0, 2 R6-850 11/2007  - -  - - 
 CU-289, 99 1 >3 - -  - -  - - 
 CU-9, 240 1 >3 - -  - -  - - 
            
1044A  [16]          
 CU-258, 67 12 0 N1-114 08/1998  T2-083 12/2001  L4-412 12/2002 
 CU-258, 69 1 0, 1 H1-139 03/2000  - -  - - 
 CU-259, 67 3 2, 0 N1-052 08/1998  N1-061 08/1998  H1-490 08/2000 
            
1045B  [16]          
 CU-200, 227 11 0 N1-315 08/1998  H1-426 08/2000  T1-269 07/2001 
 CU-199, 228 1 >3 - -  - -  - - 
 CU-167, 173 1 >3 - -  - -  - - 
 CU-280, 222 1 >3 - -  - -  - - 
 CU-286, 175 1 >3 - -  - -  - - 
 CU-175, 212 1 >3 - -  - -  - - 
            
1052A  [13]          
 CU-40, 248 4 (i)c 0 N1-350 10/1998  H1-470 08/2000  T1-127 04/2001 
 CU-42, 253 4 (ii)c 3, 2 R6-740 10/2007  R6-913 12/2007  V1-119 09/2009 
 CU-42, 246 2 (i) >3; (ii) 0, 1 T2-075 12/2001  - -  L3-055 02/2002 
 CU-8, 96 2 (i) >3; (ii) >3 - -  - -  - - 
 CU-167, 173 1 >3 - -  - -  - - 
            
1062A  [21]          



 

 
 

85 

 Table 3.3. (Continued). 
 CU-107, 140 12 0 N1-053* 08/1998  H6-175 06/2004  V1-142 10/2009 
 CU-100, 140 2 2, 0 T1-261 07/2001  T1-938 11/2001  - - 
 CU-270, 126 3 >3 - -  - -  - - 
 CU-195, 159 3 >3 - -  - -  - - 
 CU-182, 173 1 >3 - -  - -  - - 
                     

a Only the most common PFGE profiles and those representing their closely related PFGE profiles (band differences <3) are shown in Figure 

3.2. Profiles were designated by using the CU numbers (CU-AscI pattern, ApaI pattern). 

b No. of band(s) different between each observed PFGE profile and the most common PFGE profile. Differences between profiles included 

the comparison of both AscI and ApaI patterns. The most common PFGE profiles refer to unique PFGE profiles that were frequently 

observed among these representative isolates characterized. In this table, the most common PFGE profiles are listed as the first profile under 

a given ribotype. “>3” indicates that no. of bands different is >3 for either AscI pattern or ApaI pattern or both. 

c These two PFGE profiles tied for the most common PFGE profile observed in representative L. monocytogenes isolates of the ribotype 

DUP-1052A. 

d For a spot test, isolates were selected among those that represented the most common PFGE profiles and the profiles that show less than 3-

band different (closely related profiles). In addition, three isolates indicated with (*) were selected for phage cocktail treatments. 
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2.6. Evaluation of phage susceptibility of persistent L. monocytogenes subtypes  

 Of the 114 isolates that were characterized by PFGE, 50 isolates were selected 

for evaluation of susceptibility against a panel of 28 phages. Briefly, within a given 

EcoRI ribotype, 3 isolates were selected among isolates that represented the 

predominant PFGE profile (“the most common PFGE profile”) to include 3 major 

sampling periods (Table 3.3): (i) the earliest sampling visit and (ii) the latest sampling 

visit, as well as (iii) a sampling visit representing a date approx. centered between the 

earliest and the latest sampling visit that yielded this common PFGE profile (“middle 

sampling period”). Within a given ribotype, additional isolates representing all PFGE 

profiles closely related to the most common PFGE profiles (i.e., profiles that differed 

by ≤3 bands from the most common PFGE profile for either AscI or ApaI pattern 

(Tenover et al., 1995)) were also tested. While these additional isolates were selected 

to include one isolate from each of the three sampling periods if available, isolates 

with PFGE profiles closely related to the most common profile were often available 

for only 1 or 2 sampling periods. For example (Table 3.3), among the 5 isolates of the 

ribotype DUP-1039C representing the most common PFGE profile, 3 were selected to 

include (i) the earliest sampling period (i.e., 03/2000); (ii) the latest sampling period 

(i.e., 10/2008); and (iii) the middle sampling period (i.e., 12/2002). Another closely 

related PFGE profile was identified in only 2 isolates, these two additional isolates 

were also selected represent only (i) the earliest sampling period (i.e., 09/1998), and 

(ii) the latest sampling period (i.e., 07/2000).  

The 50 isolates selected as detailed above were tested for susceptibility to 28 

listeriaphages (Table S3.2), including (i) 23 phages previously isolated from three 
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dairy farms, representing diverse host ranges, and (ii) 5 phages recovered from this 

food processing facility. A spot test was performed by spotting 3 µl of each phage, 

representing a titer range of 1 x 106 to 5 x 108 PFU/µl, on a lawn of each isolate as 

previously described (Ferreira et al., 2011). Absence of bacterial inhibitory effects 

caused by high-titer phage suspensions was confirmed in the serial dilution spot tests 

previously described by (Loessner and Busse, 1990). After incubation for 24 to 48 h, 

phage lysis present on the lawn was scored either (+) for phage lysis or (-) for no lysis. 

Lysis was defined as multiple single plaques or turbid or confluent lysis. Three 

independent replicates of the spot test were performed for each isolate; the overall 

result for a given phage-L. monocytogenes isolate pair was considered lysis (+) if 

plaquing was observed in at least 2 replicates. 

 

2.7. Treatments of persistent L. monocytogenes isolates with phage cocktails and a 

commercial phage product 

 Based on ribotyping and PFGE results, we identified three persistent subtypes, 

defined as identical ribotype/PFGE profile combinations, that were isolated over the 

longest times. These included (i) ribotype DUP-1039C, PFGE profile CU-182, 173 

(isolated over 8 years), (ii) ribotype DUP-1062A, PFGE profile CU-107, 140 (isolated 

over 11 years), and (iii) ribotype DUP-1043A, PFGE profile CU-35, 248 (isolated 

over 9 years) (Table 3.3). For each of these three persistent subtypes, a single isolate 

from the earliest isolation date (i.e., isolates FSL H1-003; FSL N1-053; FSL H1-006) 

was selected for phage challenge experiments aimed at evaluating the efficacy of 



 

88 
 

phage cocktail treatment. The lab strain Mack (ribotype DUP-1030A) (Hodgson, 

2000), was included in the experiments as a control strain.  

Phage cocktails included three phages (combined with the same PFU/ml for 

each phage), selected based on their ability to lyse all or the highest number of the 

isolates of a given ribotype tested with a spot test. Specifically, isolates FSL H1-003, 

FSL N1-053, and Mack were challenged with a phage cocktail that included phages 

LP-039, LP-040, and LP-048; while the isolate FSL H1-006 was challenged with a 

unique phage cocktail that included phages LP-030, LP-038, and LP-125. The phages 

included in a given phage cocktail were selected to include phages from various 

sources and phages with various genome sizes (Table S3.2). Challenge experiments 

with these phage cocktails were conducted using an overnight culture of each L. 

monocytogenes isolate, grown to an OD600 of 0.5–0.6 (approx. 109 CFU/ml) at 30°C, 

as detailed above. To yield a measurable L. monocytogenes counts after the phage 

treatments, initial inoculum levels of 105 CFU/ml and 106 CFU/ml were used. Phage 

challenge experiments were performed in a volume of 10 ml at MOI (multiplicity of 

infection) levels of 1, 10, and 100. All treatments were adjusted to the same final 

volume with SM buffer, including CaCl2 and MgCl2 to a final conc. of 10 mM. For 

comparison, we also performed challenge experiments of these 4 strains with the 

commercial phage product (which has been approved for use by the USDA and FDA), 

following the same procedures detailed above. The commercial phage product was 

diluted in SM buffer to allow for challenge experiments at the 3 MOI levels. For the 

mock-treated controls, SM buffer was used instead of the phage cocktails or the 

commercial phage product. All treatments and controls were incubated at 30°C with 
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aeration (shaking at 220 rpm). Samples were taken every 4 h for 24 h and a 50-µl 

aliquot from each treatment and control was plated, using a spiral plater, onto BHI 

agar in duplicate for the enumeration of surviving L. monocytogenes (after incubation 

of BHI plates at 37°C for 18 to 24 h). 

An isolated L. monocytogenes colony recovered after 24 h of the phage and the 

mock treatments was collected to (i) perform PFGE analysis to confirm the strain 

identity (following the protocols detailed above); and (ii) re-evaluate phage 

susceptibility against the individual phages that were included in the phage cocktails 

or the commercial phage product using the spot test protocol detailed above).  

 

2.8. Statistical analysis  

 Logistic regression was used to estimate the percent likelihood of phage 

susceptibility of randomly selected isolates within each of the nine ribotypes that were 

repeatedly found in this facility; 95% confidence intervals for susceptibility were 

calculated from parameters estimates. Analysis was performed with JMP Software 

(version 9.0; SAS Institute Inc., Cary, NC). 

 

3. Results 

3.1. Isolation of L. monocytogenes and listeriaphages  

 Overall, 80 of 358 samples tested (22.3%) were positive for L. monocytogenes 

and 51 samples (14.2%) were positive for other Listeria spp. (Table 3.1). Among the 

226 samples from the first sampling period (visits 1 to 10), 56 were positive for L. 
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monocytogenes (24.8%); and among the 132 samples from the second sampling period 

(visits 11 to 22), 24 were positive for L. monocytogenes (18.2%) (Table 3.1). 

Among the 132 samples tested for listeriaphages in the second sampling 

period, only 3 samples (2.3%) were listeriaphage-positive (Table 3.1). These three 

samples yielded 5 phage isolates as each of two samples yielded plaques on two 

different host strains (Table S3.2). 

 

3.2. Characterization of representative L. monocytogenes isolates by the automated 

EcoRI ribotyping  

 For each of the 80 L. monocytogenes-positive samples identified in the study 

reported here, one L. monocytogenes isolate was conveniently selected for EcoRI 

ribotyping. For two samples collected during visit 13, one and two additional isolates 

were characterized by EcoRI ribotyping as the isolate from each sample initially 

yielded a ribotype that had been rarely found in this facility; this approached was used 

to determine whether these samples may have included isolates representing multiple 

ribotypes. Overall, 12 ribotype patterns were observed among the 83 isolates 

characterized here (Table 3.1). The majority of these isolates represented ribotypes, 

DUP-1039C (n=24) and DUP-1040A (n=24); the other 10 ribotype patterns were 

observed in 1 to 13 isolates (Table 3.1). A number of environmental samples collected 

from food contact surfaces as well as 3 raw fish samples collected during visits 1 to 10 

yielded isolates that represented ribotype DUP-1040A (Figure S3.1).  
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3.3. Identification of ribotypes isolated over multiple sampling periods between 1998 

and 2009 

 To identify subtypes of L. monocytogenes that appear to have persisted in the 

food processing facility studied here, ribotyping data for L. monocytogenes isolated 

during the 5 previous studies from this facility in 1998–2004 (Lappi et al., 2004; 

Hoffman et al., 2003; Hu et al., 2006; Norton et al., 2001; Thimothe et al., 2004) were 

evaluated together with the ribotyping data from the current study (2007–2009). We 

identified 9 EcoRI ribotypes that were recovered ≥ 10 times from environmental 

samples collected in this facility; all of these ribotypes were identified over at least 

three sampling periods/years (Table 3.2). Specific ribotypes were isolated in this 

facility over approx. 2 years (i.e., DUP-1027A) to 11 years (i.e., DUP-1039C, DUP-

1052A, and DUP-1062). 

 

3.4. Characterization of representative L. monocytogenes isolates by PFGE  

 Overall, AscI and ApaI PFGE of 141 L. monocytogenes isolates yielded 31 and 

30 patterns, respectively, resulting in 44 PFGE profiles based on both restriction 

enzymes (Figure 3.1 and Table 3.3). Within a given ribotype, 2 to 8 different PFGE 

profiles were identified. For most ribotypes, at least one PFGE profile was clearly the 

most common PFGE profile among the isolates characterized. For example, 8 of 11 

isolates with ribotype DUP-1027A were classified into PFGE profile CU-58, 99. On 

the other hand, among the 13 isolates with ribotype DUP-1052A, we found two most 

common PFGE profiles (CU-40, 248 and CU-42, 253) with each profile represented 
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Figure 3.1. AscI and ApaI patterns of the predominant PFGE profiles, and the closely 

related PFGE profiles within each ribotype, that were observed among L. 

monocytogenes isolates repeatedly recovered from a smoked fish processing facility 

between 1998 and 2009. PFGE profiles were assigned CU numbers (CU-AscI pattern, 

ApaI pattern).

 Isolate        RT        Source            Sampling date      PFGE profile 
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by 4 isolates. These two PFGE profiles differed by 3 bands in the AscI pattern and two 

bands in the ApaI pattern. 

Within most ribotypes, some isolates with different PFGE profiles could be 

considered closely related to the most common PFGE profile. Relatedness is based on 

the “3-band rule” (Tenover et al., 1995), which proposes that isolates that differ by ≤3 

bands in a PFGE pattern with a given enzyme can be considered closely related if they 

are linked epidemiologically. For example, while 8 isolates with ribotype DUP-1027A 

were classified as CU-58, 99, 3 isolates with this ribotype were classified into profile 

CU-58, 98; these two profiles showed the same AscI pattern, but differed by 2 bands in 

the ApaI pattern (Figure 3.1 and Table 3.3), suggesting closely related PFGE profiles. 

On the other hand, characterization of 13 isolates with ribotype DUP-1042C identified 

two distinct types of PFGE profiles. Among these isolates, 7 isolates represented the 

most common PFGE profile (CU-18, 22) while 6 other isolates representing 3 

different PFGE profiles that differed by >3 bands from CU-18, 22 in each AscI and 

ApaI patterns (Table 3.3). Relative to each other, these 6 isolates had the same ApaI 

pattern but differed by ≤3 bands in their AscI pattern. Overall, these data suggest that 

the ribotype 1042C isolates characterized here represent two distinct clonal groups. 

Overall, PFGE analysis confirmed that genetically similar L. monocytogenes 

isolates were recovered from multiple visits, providing further evidence for L. 

monocytogenes persistence, in this facility, for 1 to 11 years (Figure 3.1). For example, 

we identified 12 isolates with ribotype DUP-1062A, PFGE profile CU-107, 140, 

including samples collected in 08/1998 (the first recovery) and 10/2009 (the latest 

recovery), indicating persistence over at least 11 years (Table 3.3). We also identified 
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5 isolates with ribotype DUP-1039C, PFGE profile CU-182, 173; this subtypes was 

recovered from samples collected in 03/2000 (first recovery) and 10/2008 (latest 

recovery), suggesting persistence over 8 years.  

 

3.5. Evaluation of phage susceptibility in L. monocytogenes isolates of persistent 

subtypes  

 Overall, 50 L. monocytogenes isolates (3–7 isolates per ribotype; Table 3.3) 

were selected for a spot test with 28 selected listeriaphages (Table S3.2). For 7 

ribotypes, all isolates tested were lysed by multiple phages, with 2 to 23phages lysing 

all isolates of a given ribotype (Table 3.4). On the other hand, even though several 

phages could lyse some isolates with ribotypes DUP-1043A and DUP-1042B, not a 

single phage was capable of lysing all isolates of either of these ribotypes. For 

example, 23 of 28 phages (82%) lysed all 7 ribotype DUP-1044A isolates, while the 

other 5 phages (18%) lysed between 4 and 6 isolates with this ribotype (Table S3.4). 

Only 5 phages (18%) lysed all 6 isolates with ribotype DUP-1039C, one of the most 

common ribotypes in this food processing facility; 9 phages did not lyse any of these 

isolates.  

 To further characterize phage susceptibility of L. monocytogenes isolates 

grouped into one of the nine ribotypes repeatedly found in this facility, we also 

calculated the likelihood that a randomly selected isolate within a given ribotype is 

lysed by a randomly selected phage from our set of 28 phages. Phage susceptibility 

calculated with this method ranged from 4.6 % (for isolates with ribotype DUP-

1043A) to 95.4% (for isolates with ribotype DUP-1044A, Table 3.4).
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Table 3.4. Phage susceptibility of the 9 most common persistent ribotypes. 

Ribotype, DUP- 
(no. of L. 

monocytogenes 
isolates testeda) 

No. of phagesb 
capable of lysing 
all isolates of a 
given ribotype 

tested (%)  

No. phages that 
could not lyse 

any isolates of a 
given ribotype 

tested (%) 

Likelihood (%) of 
phage 

susceptibility for 
isolates within 

ribotype (95% CI)c 
1043A (n=7) 0 (0.0) 23 (82.1) 4.6 (2.1–8.9) 

1045B (n=3) 9 (32.1) 17 (60.7) 35.7 (23.8–49.4) 

1042C (n=3) 7 (25.0) 15 (53.6) 36.9 (24.8–50.6) 

1052A (n=8) 2 (7.1) 10 (35.7) 42.4 (32.5–52.9) 

1042B (n=5) 0 (0.0) 6 (21.4) 45.0 (33.6–56.8) 

1062A (n=5) 5 (17.9) 3 (10.7) 45.0 (41.4–48.7) 

1039C (n=6) 5 (17.9) 9 (32.1) 45.8 (34.9–57.1) 

1027A (n=6) 5 (17.9) 7 (25.0) 54.2 (42.9–65.1) 

1044A (n=7) 23 (82.1) 0 (0.0) 95.4 (91.1–97.9) 
a For a spot test, isolates were selected among those that represented the 

most common PFGE profiles and the closely related PFGE profiles to the 

common ones (see Table 3.3). 

b 28 selected phages (Table S3.2) isolated from dairy farms and this food 

processing facility, representing diverse host ranges and genome sizes, 

were used in a spot test with L. monocytogenes isolates. 

cThis represents the likelihood that a randomly selected isolate within a 

given ribotype is lysed by a randomly selected phage. 
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3.6. Phage cocktail treatment against L. monocytogenes isolates from a smoked fish 

processing facility 

 To evaluate the efficacy of phage cocktails to control persistent L. 

monocytogenes, we tested the susceptibility of three isolates representing 

ribotype/PFGE type combinations that were isolated over the longest times (8 to 11 

years) in this facility (Table 3.2). Each phage cocktail was made of 3 phages that were 

able to lyse the highest number to all of isolates of a given persistent ribotype tested. 

The cocktail that was used to treat isolates with ribotypes DUP-1062A (FSL N1-053) 

and DUP-1039C (FSL H1-003) contained 3 phages that each could lyse all isolates 

tested within a given ribotype. It was not possible to select a phage cocktail with 3 

diverse phages that each could effectively lyse all isolates with ribotype DUP-1043A 

(FSL H1-006) as isolates with this ribotype were resistant to most phages (4.6% phage 

susceptibility; Table 3.4). Each of the 3 phages selected for this cocktail could lyse 

only 2 of the 6 isolates with this ribotype in the spot test experiments.  

Overall, phage cocktail challenge experiments showed initial killing of isolates 

FSL H1-003, FSL N1-053, and Mack at both initial inoculum levels tested (105 and 

106 CFU/ml) more rapidly with treatments at MOI 10 and 100 as compared to 

treatment at MOI 1 (Figure 3.2). After 4 to 8 h of phage cocktail treatment, L. 

monocytogenes numbers typically showed approx. 3 to 4 log lower counts as 

compared to the mock-treated control. The control strain Mack showed less noticeable 

killing as compared to persistent isolates FSL H1-003 and FSL N1-053. After 8 to 12 

h, these 3 isolates showed re-growth in virtually all treatments (expect for Mack with 

initial inoculum level of 106 CFU/ml and treated with MOI 1).  
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Figure 3.2. Effects of phage cocktail treatment (3 MOIs) of 3 persistent L. 

monocytogenes strains and a lab strain (Mack). Symbols: (●), mock-treated 

control; (), MOI 1; (▲), MOI 10; (♦), MOI 100. Initial L. monocytogenes 

inoculum levels: (A) 105 CFU/ml, and (B) 106 CFU/ml. 
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Figure 3.3. Effects of commercial phage product treatment (3 MOIs) of 3 

persistent L. monocytogenes strains and a lab strain (Mack). Symbols: (●), 

mock-treated control; (), MOI 1; (▲), MOI 10; (♦), MOI 100. Initial L. 

monocytogenes inoculum levels: (A) 105 CFU/ml, and (B) 106 CFU/ml.
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Overall, phage treatments showed 0.2–2.8 log lower counts after 24 h as 

compared to the mock-treated control (Figure 3.2 and Table S3.3). Another isolate 

FSL H1-006, approx. 1.7–2.5 log lower counts at 24 h were observed in treatments at 

MOI 10 and 100 with initial inoculum level of 105 CFU/ml as compared to the mock-

treated control. On the other hand, no reduction of L. monocytogenes populations was 

observed in all treatments with initial inoculum level of 106 CFU/ml (Figure 3.2 and 

Table S3.3). 

 Treatments with a commercial phage product showed virtually no reduction of 

L. monocytogenes counts for isolates FSL H1-006 and FSL N1-053 with both initial 

inoculum levels and all 3 MOIs (Figure 3.3). Isolates FSL H1-003 and Mack showed 

clear reduction of bacterial counts after treatments with this commercial phage product 

(with both initial inoculum levels and all 3 MOIs), with maximum reductions after 8 

or 12 h of treatment (Figure 3.3). Similar to treatment with our phage cocktails, both 

isolates showed re-growth after 8 to 12 h of treatment and bacterial counts after 24 h 

showed between 0.3 and 2.3 log lower counts as compare to the mock-treated control 

(Figure 3.3 and Table S3.3).   

 Nine surviving isolates recovered from challenge studies of the 3 persistent 

isolates with either of our phage cocktails, L. monocytogenes isolates recovered after 

24 h of treatment (one isolate for each MOI, inoculum level of 105 CFU/ml) were 

confirmed to have the same PFGE pattern as the isolate used to prepare the inoculum 

(Figure S3.2). These surviving isolates were also re-evaluated for susceptibility to (i) 

individual phages used in the phage cocktails and (ii) a commercial phage product, as 

appropriate to their previous treatments only. For FSL H1-003 and FSL N1-053, all 
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Table 3.5. Phage susceptibility of persistent L. monocytogenes 

isolates recovered after 24 h of phage treatment at different MOIs. 

Isolate (ribotype, 
DUP-) 

Treatment with 
phage cocktailb or a 
commercial phage 

product which 
isolate was 

recovered froma 

Post-treatment susceptibility to 
listeriaphagec 

A B C 
 A commercial 

phage product 

Isolates treated with phage cocktail containing LP-039 (phage A), LP-040 
(phage B), and LP-048 (phage C) 

H1-003 
(1039C) 

Mock + + +  + 

 1 - - -  - 
 10 - - -  - 
 100 - - -  - 
N1-053 
(1062A) 

Mock + + +  + 

 1 - - -  - 
 10 - - -  - 
 100 - - -  - 
MACK 
(1030A) 

Mock + + +  + 

 1 - - +  - 
 10 - - +  - 
 100 - - +  - 

Isolates treated with phage cocktail containing LP-030 (phage A), LP-038 
(phage B), and LP-125 (phage C) 

H1-006 
(1043A) 

Mock - + +  + 

 1 - + -  + 
 10 - + -  + 

 100 - + -  + 
a Isolates tested for phage susceptibility included (i) an isolate recovered 

from the Mock treated control at t=24 h, (ii) isolates recovered, at t=24 h, 

after treatment with the phage cocktail at MOIs of 1, 10, and 100, and 

(iii) isolates recovered, at t=24 h, after treatment with a commercial 

phage product at MOIs of 1, 10, and 100.   
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Table 3.5. (Continued). 

b Different phage cocktails were used for treatment of (i) FSL H1-003, 

FSL N1-053, and Mack (phages LP-039, LP-040, and LP-048) and (ii) 

FSL H1-006 (LP-030, LP-038, and LP-125). 

c Isolates recovered from treatment with the phage cocktails were tested 

against phages A, B, and C, while isolates recovered from treatment with 

a commercial phage product were tested against only the commercial 

indicates lysis and (-) indicates no lysis. 
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isolates recovered after phage treatment were resistant to each phage in phage cocktail 

as well as a commercial phage product (Table 3.5). For FSL H1-006 and Mack, the 

isolates recovered after phage treatment showed resistance to two of the three phages 

in our custom phage cocktail as well as a commercial phage product. Importantly, 

plaques of phage LP-038 as well as a commercial phage product on the lawn of the 

isolate FSL H1-006 showed only turbid, consistent with the observation that isolate 

FSL H1-006 showed limited or no reduction of bacterial numbers during phage 

treatment (Figure 3.2). 

 

4. Discussion 

Isolation and characterization of L. monocytogenes isolated from a smoked-

fish processing facility in the current study (2007–2009), along with data collected in 

the same facility in 1998–2004 (Lappi et al., 2004; Hoffman et al., 2003; Hu et al., 

2006; Norton et al., 2001; Thimothe et al., 2004), allowed us to identify a number of 

subtypes (based on both EcoRI ribotyping and PFGE) that appear to have persisted in 

this facility for up to 11 years. Evaluation of selected L. monocytogenes isolates, 

representing different persistent subtypes, for susceptibility against individual 

listeriaphages and phage cocktails showed that (i) persistent subtypes include both 

phage susceptible and phage resistant L. monocytogenes isolates; and (ii) while phage 

cocktails appear to temporally reduce L. monocytogenes populations, isolates can 

rapidly develop a phage-resistance characteristic in laboratory challenge studies. 

 



 

105 
 

4.1. Within a given food processing facility, a number of distinct L. monocytogenes 

subtypes can persist over prolonged times (>10 years). 

 Initial analysis of the EcoRI ribotyping data for L. monocytogenes isolates 

obtained over 11 years in a single facility through previous studies (Lappi et al., 2004; 

Hoffman et al., 2003; Hu et al., 2006; Norton et al., 2001; Thimothe et al., 2004) and 

the current study reported here, identified 9 ribotype that were repeatedly found over 

the time from 2 to 11 years. While one cannot exclude re-introduction of isolates (e.g., 

from the surrounding environment) with these ribotypes, however, since Good 

Manufacturing Practices (GMPs) are in place to control this re-introduction issue, our 

data could particularly suggest persistence of these subtypes in this food processing 

facility. Long-term persistence of L. monocytogenes has been reported in the 

environments of food processing facilities manufacturing a range of products, 

including dairy products (Kabuki et al., 2004; Unnerstad et al., 1996), meat products 

(Williams et al., 2011; Ferreira et al., 2011; Senczek et al., 2000), poultry products 

(Rørvik et al., 2003), and seafood products (Lappi et al., 2004; Hoffman et al., 2003; 

Rorvik et al., 2000) as well as in retail environments (Sauders et al., 2004).  In 

addition, full genome sequencing of multiple isolates has supported persistence for > 

10 years of a specific L. monocytogenes strains in a food processing facility (Orsi et 

al., 2008).  

We also used PFGE to further characterize isolates with the same ribotype that 

were repeatedly recovered over time in an effort to independently confirm persistence. 

PFGE in all cases confirmed persistence, as supported by identification of the most 

common PFGE profile among isolates that were repeatedly recovered over time. For 7 
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ribotypes, we also identified at least some isolates that appear to be unrelated to the 

most common PFGE profile, as supported by PFGE patterns that differed by >3 bands 

from the most common profile. This finding is consistent with the well supported 

notion that 2-enzyme PFGE usually provides more subtype discrimination of L. 

monocytogenes as compared to EcoRI ribotyping (Fugett et al., 2007). Interestingly, in 

a number of cases we found that multiple isolates, which we initially identified as 

persistent, represented closely related PFGE profiles within a given ribotype. 

Consistent with (Ferreira et al., 2011), data suggest that some persistent L. 

monocytogenes strains may diversify during prolonged times (e.g., through acquisition 

or replacement of prophages; for example, see Orsi et al. [2008]). Overall, the 

combination of ribotyping and PFGE data allowed for robust identification of 

persistent strains, providing a unique data set for characterization of phage 

susceptibility among food-associated strains as discussed below. 

 

4.2. Persistent L. monocytogenes subtypes include both highly phage susceptible and 

phage resistant L. monocytogenes isolates. 

 

A number of studies have also reported the ability of phages or phage cocktails 

to reduce individual L. monocytogenes strains inoculated into foods, including catfish 

fillets, hot dogs, soft cheese (Carlton et al., 2005; Guenther et al., 2009; Soni et al., 

2009). Nevertheless, limited peer reviewed data are available on phage susceptibility 

of diverse L. monocytogenes strains and subtypes associated with foods and food 

processing environments. As it is well established that a considerable proportion of L. 
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monocytogenes contamination in RTE foods can be linked to persistence of L. 

monocytogenes in food processing facilities, it is particularly relevant to characterize 

phage resistance among these persistent L. monocytogenes strains in food-associated 

environments. At present, only two previous studies (Ferreira et al., 2011; Kim et al., 

2008) evaluated phage susceptibility in multiple L. monocytogenes strains that were 

repeatedly isolated from food processing environments. Another study by Carlton et 

al. (2005) evaluated the effectiveness of the listeriaphage P100 on the surface of soft 

cheese that was spiked with a strain of L. monocytogenes found to persist in the 

production equipment of a dairy plant. 

Initial characterization, by a spot test, showed considerable variation in phage 

susceptibility among isolates representing 9 ribotypes found to persist in a food 

processing facility for up to 10 years. While one subtype (DUP-1044A) was found to 

be susceptible to most phages tested, two subtypes (DUP-1043A and DUP-1042B) 

were resistant to most phages. Kim et al. (2008) evaluated phage susceptibility among 

different L. monocytogenes isolates from turkey food processing plants, including 

some that represented persistent subtypes, and found considerable variation in 

susceptibility, with a number of isolates showing resistant to all three phages tested. A 

previous study by Ferreira et al. (2011) similarly observed that 8 of 19 persistent 

isolates were resistant to or showed only weak lysis with all 26 phages tested in the 

study. While susceptibility of different serotypes varies among studies, a number of 

studies suggest that serotype 4b isolates are typically more likely to be susceptible to 

phages (for example, Kim et al. [2008]), while serotypes 3c isolates appear to often be 

resistant to many phages (Loessner and Busse, 1990). While mechanisms responsible 
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for variations in phage susceptibility in L. monocytogenes are not well elucidated, 

several phage-resistance mechanisms have been identified in different organisms; for 

example, inhibition of phage adsorption or phage DNA injection, restriction and 

modification systems in the hosts, abortive infection (Labrie et al., 2010). 

Overall, our data not only support considerable variation in phage 

susceptibility among L. monocytogenes strains and isolates, but also show that phage 

resistant strains are commonly found among L. monocytogenes isolates that have 

persisted in food associated environments. A number of previous studies used L. 

monocytogenes representing serotypes 1/2a or/and 4b, which are typically highly 

susceptible to phages (Kim et al., 2008; Loessner and Busse, 1990), in challenge 

experiments to evaluate the ability of phages to reduce L. monocytogenes populations 

inoculated into foods (Guenther et al., 2009; Leverentz et al., 2004; Soni and 

Nannapaneni, 2010; Leverentz et al., 2003; Soni et al., 2009; Rossi et al., 2010). 

Although these previous experiments support as proof of principle the capability of 

phages in reducing L. monocytogenes loads in foods under certain conditions (Soni et 

al., 2009; Rossi et al., 2010), the presence of phage resistant L. monocytogenes isolates 

in food associated environments indicates that phage treatment may fail to eliminate 

some strains that are likely to naturally contaminate foods.  

 

4.3. While phage cocktails appear to temporally reduce L. monocytogenes populations, 

isolates can rapidly develop a phage-resistance characteristic in laboratory challenge 

studies.  
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In addition to presence of phage resistant L. monocytogenes subtypes, rapid 

emergence and/or selection of phage resistant mutants may lead to a concern 

associated with use of phages to control L. monocytogenes. Consistent with this 

concern, our data show that even with susceptible L. monocytogenes strains, where 

phage cocktails showed considerable reduction of L. monocytogenes within the first 8 

to 12 h of treatment, subsequent re-growth of L. monocytogenes was observed in most 

treatments. A similar pattern was observed by Bigot et al. (2011) who reported a 4-

log-unit reduction in L. monocytogenes counts after 5 h of the phage treatment (at 

30°C in the broth model) with subsequent re-growth to the same level as that of the 

phage-free control after 24 h. In addition, a number of studies also reported evidence 

of L. monocytogenes re-growth in foods treated with phages (Guenther et al., 2009; 

Bigot et al., 2011; Leverentz et al., 2003; Soni et al., 2009). On the other hand, Soni 

and Nannapaneni (2010) reported no evidence for L. monocytogenes re-growth over 

48 h at 30°C, based on optical density (OD630) monitoring of L. monocytogenes co-

cultured with listeriaphage P100. This may reflect limited sensitivity of OD-based 

measurements as compared to bacterial enumeration or that re-growth after phage 

treatment may be less likely for certain phage-host combinations used in various 

studies. Reduction in phage titers over time could be one possible explanation for the 

re-growth of L. monocytogenes in some phage challenge experiments. Soni et al. 

(2009) reported a decrease in phage population on phage-treated catfish fillet of about 

2 log10 PFU over a 10-day storage period, and hypothesized that this could be 

responsible for the regrowth of L. monocytogenes on the fillet. However, in our study 

phage titers remained unchanged or slightly increased over 24 h in the broth challenge 
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experiments (data not shown), suggesting that decreased phage titers are not 

responsible for the re-growth patterns we observed here. 

Interestingly, characterization of L. monocytogenes isolates recovered after 24 

h of phage cocktail treatment showed diminished susceptibility of these isolates to 

individual phages used in the phage cocktails, suggesting that emergence or selection 

for phage-resistant L. monocytogenes strains may be responsible for the re-growth 

patterns observed. Similar to our findings, O’Flynn et al. (2004) reported re-growth of 

E. coli O157:H7 after an initial 5-log reduction of E. coli O157:H7 counts within 5 h 

of treatment with a phage cocktail using a broth model. These surviving isolates 

recovered from these experiments were also found to be the bacteriophage-insensitive 

mutants (BIMs) with reduced susceptibility to each phage in the phage cocktail. 

Recovery of phage-resistant bacterial cells was also observed after cell lysis of S. 

aureus challenged with phages (Synnott et al., 2009). On the other hand, several 

studies that showed re-growth of L. monocytogenes, in inoculated foods, after 

treatment with listeriaphages P100 and/or A511 (Carlton et al., 2005; Guenther et al., 

2009) did not find evidence for emergence or selection of phage-resistant L. 

monocytogenes. Some of these authors hypothesized that the re-growth was caused by 

surviving cells which remained uninfected due to immobilized phage particles in the 

food matrices that were unable to diffuse to reach theses target cells. While different 

mechanism may be responsible for L. monocytogenes re-growth in different model 

systems (e.g., broths versus inoculated foods) and with different phages and host 

strains, our data clearly support that phage resistant L. monocytogenes can rapidly 

emerge under certain conditions. We appreciate that emergence of phage resistant L. 
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monocytogenes after phage treatment in broth at 30°C does not necessarily reflect 

conditions encountered in foods stored at refrigeration temperatures. Further studies 

on emergence of phage resistant L. monocytogenes after different phage treatment 

conditions will be necessary.  

 

5. Conclusions 

Identification of L. monocytogenes strains that have persisted in food 

associated environments provides relevant set of strains which should be used for 

evaluation of treatments aimed at reducing or controlling L. monocytogenes in food 

processing plant environments and contaminated foods. Using L. monocytogenes 

isolates representing diverse subtypes that have persisted in a food processing facility, 

we not only found evidence that some of the subtypes may be resistant to the majority 

of phages, leading to the potential treatment failures, but we also found, at least under 

some conditions, rapid emergence of phage resistant L. monocytogenes clones. Our 

data are consistent with a recent EFSA report (EFSA, 2009) whose conclusions 

included that (i) “bacteriophage insensitive mutants might exist among the populations 

of target bacteria”; and that (ii) the “frequency of these mutations and their 

consequences are likely to vary according to the bacteriophage, the conditions of its 

application and the target bacteria”.  

Future efforts for research and development are thus clearly needed before 

application of phage-based biocontrol for L. monocytogenes become widely used. Key 

research needs include, but are not limited to (i) resistance to phages and phage 

cocktails of L. monocytogenes subtypes that are commonly found in food processing 
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plant environments, with a focus on isolates that have persisted in a given facility (as 

these isolates are particularly likely to contaminate foods and may be more likely to be 

phage resistant, facilitating persistence); (ii) mechanisms of phage-resistance in L. 

monocytogenes; and (iii) frequency and mechanisms of emergence of phage resistant 

L. monocytogenes mutants.  
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CHAPTER FOUR 

 

Genomic diversity of Listeria phages isolated from farm environments 

 

 

ABSTRACT  

Listeria phages have been reported to have a high prevalence on dairy farm 

environments. To obtain information on genome characteristics and diversity of 

Listeria phage isolated from dairy farms, genomes of 10 Listeria phages, representing 

different host ranges, were sequenced on the Illumina platform. Newly sequenced 

phages showed genome sizes that could be classified into 3 ranges; small (36-38 kb; 

n=3), mid-sized (64-67 kb; n=4), and large (133-135 kb; n=3). Of the three small-sized 

phages, one phage contained a lysogeny control module suggesting this phage has a 

lysogenic lifecycle. All other phages sequenced in this study lack this lysogeny control 

module, suggesting these phages have lytic lifecycle. The lysogenic phage showed 

similarity to Listeria phage PSA, while the other small-genome size phages show 

similarity to Listeria phage P35. Three large-genome phages showed high amino acid 

sequence similarity to one another and to the genome of Listeria phages A511 and 

P100. Genomes of the four mid-sized phages were highly similar, but did not show 

similarity to any previously described Listeria phages, suggesting these are novel 

Listeria phages. The genomes of these phages appear to have a considerable mosaic 

origin; with many genes showing similarity to genes found in Firmicute-specific 

phages. Our findings show considerable genomic diversity of Listeria phages on dairy 

farms. Genomes of the newly described Listeria phages here feature a high degree of 
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mosaicism, which may have arisen from horizontal transfer of specific genes or 

functional modules during the evolution of these Listeria phages. 

 

INTRODUCTION 

 Listeria monocytogenes is an important foodborne pathogen responsible for 

severe infections, listeriosis, in both animals and humans (14, 29). Previous studies 

have also shown that phages play an important role in the evolution and virulence of 

many pathogens (for review see (4)), however, knowledge on the roles of Listeria 

phages contributing to their Listeria hosts’ pathogenicity and biology is still limited. 

The focus of Listeria phage research has been previously studied on host range (19, 

25), ability to transduce (16), and genomic structure and gene functions (5, 11, 20, 26, 

42). 

 Currently available genomes of Listeria phages show the range in size of 35.6 

to 134.4 kb (available at www.ncbi.com; (11)). Molecular and in silico analyses by 

Dorscht et al. (11) showed that Listeria phage genomes, particularly temperate phages, 

can be found in several phylogenetic clades and display a conserved genome 

organization. Dorscht et al. (11) also showed that some phages contained regions in 

different parts of their genomes that showed high homology to proteins encoded by 

various non-Listeria hosts such as Enterococcus faecalis V583 (32), Staphylococcus 

phages 77 and 3A (21). 

 Horizontal gene transfer (HGT) is a major cause of mosaic genomes and 

genomic diversity in bacteriophages (15). A phage genome is considered mosaic when 

a genome contains regions of obvious sequence similarity to closely related phages, 

http://www.ncbi.com/


 

 122 

while regions are interspersed with segments that are apparently unrelated (15). 

Phages are known to exhibit a mosaic relationship with phages infecting the same or 

different host species (10, 28). Mosaic relationship can occur at the level of genetic 

module, at the level of the gene, and within genes (30). Mosaicism is not uniform 

across phages; it can found across phages of different genome sizes, phages with 

variations in genome organization or mechanisms in DNA packaging and replication 

(15). Some phages have genes encoding proteins that enhance recombination between 

phage genomes, which can result in speeding up their evolution or improving their 

competitive fitness (4, 28).  

 In this paper we present a comparative genomic analysis of 10 phages to probe 

the genomic diversity of Listeria phages, as well as the evolutionary mosaic 

relationships among Listeria phages and other closely related bacteriophages. We 

performed our analysis on phages isolated from dairy farms. As farm environments 

display a high abundance and diversity of Listeria hosts (31), they provide a good 

source for a wide diversity of Listeria phages. 

 

MATERIALS AND METHODS 

Bacterial strains and bacteriophages. The 10 Listeria phages sequenced in this 

study were isolated from silage samples collected on 2 dairy farms in New York State 

between 08/2008 and 07/2009 (Table 1). Phages were isolated using three L. 

monocytogenes host strains; FSL J1-208 (lineage IV, serotype 4a), F2365 (lineage I, 

serotype 4b), and Mack (lineage II, serotype 1/2a). The 10 Listeria phages here 

exhibited diverse host ranges observed as determined by a spot test on 13 L. 
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monocytogenes isolates representing the nine most common serotypes as well as the 

four phylogenetic lineages (Vongkamjan et al., submitted, 2012). Genome sizes of the 

10 phages have been estimated by Pulsed Field Gel Electrophoresis (PFGE) and three 

phages sequenced in this study (LP-037, LP-110, LP-124) were characterized by 

Transmission Electron Microscopy (TEM) in a previous study (Vongkamjan et al., 

submitted, 2012).  

Preparation of phage lysate and phage DNA extraction. Phage lysates and genomic 

DNA were prepared according to the following protocol. An isolated plaque from the 

third purification passage was picked with a sterile Pasteur pipette and suspended in 

100 μl of SM buffer (100 mM NaCl, 8 mM MgSO4 and 50 mM Tris-HCl, pH 7.4). A 

10-fold dilution of the plaque-SM suspension was used to prepare three overlay plates 

by mixing 100 μl of this diluted suspension with 300 μl of a 1:10 dilution of an 

overnight culture (approx. 108 CFU/ml) of an appropriate host strain (the strain which 

was used for phage isolation). The overlay plates were incubated at 30°C for 24 h. 

After 24 h 5 ml of SM buffer was added to each plate and the overlay was scraped into 

a 25-ml centrifuge tube with a sterile cell scraper (Becton Dickinson, Sparks, MD). 

Chloroform was added to the overlay to reach a final concentration of 2% (vol/vol), 

and the overlay-chloroform mixture was centrifuged at 4200 x g for 15 min. The 

supernatant was subsequently filtered using a 0.2 μm syringe filter. The resulting 

phage lysate was then used for DNA extraction. Polyethylene glycol 8000 in the 

presence of 1 M NaCl was added to the phage lysate to purify and concentrate the 

phages. Removal of bacterial nucleic acid contamination was performed using DNase 

I (Promega BioScience, San Luis, Obispo, CA) (5 μg/ml final concentration) and 
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RNase A (Sigma) (30 μg/ml final concentration). After 30 min of incubation at room 

temperature, the digestion reactions were inhibited by addition of EDTA to a final 

concentration of 20 mM.  Subsequently proteinase K (0.2 mg/ml) and SDS (0.5%) 

were added to break down phage capsids and particles. Phage DNA was subsequently 

extracted using a standard phenol/chloroform protocol, followed by an ethanol 

precipitation step (34). 

Phage genome sequencing, annotation, and analysis. Library preparation and DNA 

sequencing was performed at the Cornell University Life Science Core Laboratory 

Facilities, using the Illumina GA II sequencing platform (Illumina Inc., San Diego, 

CA). Thirty-six base pair reads were assembled by de novo using the Velvet (41). 

Assemblies consisting of one contig were obtained for three phages. For the remaining 

seven phages with multiple contig pseudogenomes were created as detailed below. 

Mauve genome alignment software (9) was used to visualize genome similarities 

between phages sequenced in this study and previously described Listeria phages. 

Contigs of phage genome assemblies consisting of multiple contigs were ordered 

according to their alignment to finished genome sequences of Listeria phages with 

high sequence homology to the genome to be ordered. To create a pseudogenome, the 

ordered contigs were concatenated and 5 Ns were inserted between the 3’ end of the 

first contig and the 5’ of the following contig to designate the start and stop of the 

original contigs. All sequences were submitted to the RAST (available 

at http://rast.nmpdr.org/) genome annotation service (3) for automatic annotation. 

Additionally tRNAs were predicted using tRNAscan-SE 1.21 (27). Further homology 

searches of nucleotide and predicted amino acid sequences manual annotation were 

http://rast.nmpdr.org/
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performed through NCBI databases (http://www.ncbi.nlm.nih.gov) using the BLAST 

algorithms (2). Sequence alignments were performed with CLUSTALW version 2.0 

(22). Phage genome maps were drawn using Easyfig (37). 

Large terminase subunit analysis. Comparative analysis of the large terminase 

(TerL) subunit can predict in which different functional classes these terminases fall 

and thus predicting the putative packaging strategies of phages encoding certain 

terminase (6). To infer the putative DNA packaging strategies of individual phages, a 

phylogenetic analysis of the large terminase subunit was performed. Amino acid 

sequences of the large terminase subunit of the newly sequenced phages and AA 

sequences of the  previously sequenced phages with known packaging strategies were 

aligned using MAFFT version v6.846b (17) using the EINSI algorithm. This 

algorithm aligns conserved domains among sequences while aligning divergent 

regions only between closely related entrees. This alignment was used to infer a 

maximum likelihood (ML) tree using RAxML version 7.30 (36) using a BLOSUM62 

plus Gamma model of amino acid evolution. Hundred rapid bootstrap replicates were 

performed to assess the robustness of the individual clades. 

Extended pan-genome analysis. To infer to what extend the environmental phages 

sequenced in this study attribute new gene families to the pan-genome of L. 

monocytogenes, we used the binomial mixture model for pan-genome size estimation 

of Snipen et al (35) to estimate the size of the L. monocytogenes pan-genome with and 

without the phages sequenced in this study. To infer the L. monocytogenes pan-

genome, we used high quality draft and finished genome sequences representing all 

major phylogenetic lineages; 10403S (Genbank accession CP002002.1), 08-5923 

http://www.ncbi.nlm.nih.gov/
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(Genbank accession CP001604.1), EGD-e (Genbank accession AL591824.1), Finland 

1998 (Genbank accession CP002004.1), FSL R2-561 (Genbank accession 

CP002003.1), J0161 (Genbank accession CP002001.1), 08-5578 (Genbank accession 

NC_013766.1), F2365 (Genbank accession NC_002973.6), CLIP 80459 (Genbank 

accession FM242711.1), Scott A (Genbank accession AFGI00000000.1), FSL J1-208 

(Genbank accession CM001469.1) and HCC23 (Genbank accession NC_011660.1). 

Addition of the phage genomes to the analysis would decrease the core genome to a 

number far below the expected core genome of L. monocytogenes, we created artificial 

genomes consisting of genes of L. monocytogenes FSL J1-208 and the individual 

phage genomes. The pan-genome size estimate of the L. monocytogenes and the 

environmental phages was based on the L. monocytogenes genomes mentioned above 

and the ‘artificial genomes’. 

 

RESULTS 

Genomes of Listeria phages feature diversity. Genomes of the 10 Listeria phages 

could be classified into 3 major size ranges (Table 1): (i) small genomes: 36-38kb 

[n=3]; (ii) mid-sized genomes: 64-67kb [n=4]; (iii) large genomes: 133-135kb [n=3]. 

The number of predicted ORFs correlated with genome sizes for all phages. Small-

genome phages contained 57-67 predicted ORFs. Mid-sized and large genome -phages 

showed about 110-114 and 171-181 predicted ORFs, respectively. Previous 

characterization by Electron Microscopy revealed that phages LP-037, LP-110 were 

classified into the Siphoviridae family, while the large-genome phage LP-124, was 

classified into the Myoviridae family (Vongkamjan et al., submitted, 2012). Among 
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the newly sequenced phages, 8 phages showed average G+C contents of 35 to 37%, 

which is slightly lower than those observed in most L. monocytogenes strains available 

in Genbank as of July 26, 2012 (38 to 39%). Phage LP-030-1 and LP-083 and showed 

an average G+C content of 39.8 and 40.9%, respectively.  tRNA genes were not found 

in Siphoviridae-family phages, however, 17 tRNAs were found in all 3 Myoviridae-

family phages. 

Genomes of phages LP-030-1 and LP-083 are similar to the previously described 

Listeria phage P35 and their genome organization is highly conserved. Sequence 

analysis of two phages with the smallest genomes observed in this study, LP-030-1 

and LP-083, revealed that these genomes resembled genome of the previously 

described Listeria phage P35 (11). Their genome sizes and numbers of predicted 

ORFs were found to be nearly identical (Figure 4.1A). To predict the life cycle, we 

conducted a Blast search for sequence homology and conserve domain of the lysogeny 

control (i.e, integrase, repressor, cro repressor, or cro-like repressor) (11, 26, 42); the 

analysis revealed no sequence similarity of any of these genes in their genomes, 

indicating a lytic life style of these phages. Overall, the three lytic phages shared an 

identical genome organization and sequence similarity > 80% at the amino acid level 

for all functional modules (Figure 4.1A). All ORFs on these genomes were transcribed 

rightwards and could be divided into 3 major functions. The first module (ORFs 1-18), 

located at the left-arm of the genome map, comprises genes encoding proteins 

responsible for DNA packaging (e.g., TerL) as well as structural proteins, including 

head and tail morphogenesis. The second module, located in the middle of the 

genomes (ORFs 19-29), comprises “cell lysis” genes encoding a putative holin and
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A. 

 
B. 

 
 

 

Figure 4.1. Genome map alignments of small-genome Listeria phages (<40 

kb). Gene products with amino acid sequence identities are linked by color-

shaded areas as follows: grey, 25 to 40% identity; purple, > 55%. Putative 

functions of selected genes under specific cluster modules are indicated here. 
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endolysin. These genes were also clustered together with multiple small ORFs with 

unknown function. The last module at the right-arm of the genome map includes genes 

encoding a relative large number of proteins involving in DNA processing 

(replication, recombination, and modification) which is considered the “early” 

functions. Among ORFs in this early gene cluster, several genes revealed high 

sequence similarity not only to those of phage P35, but also Listeria phages P40 (11), 

Bacillus subtilis phage SPP1 (NC_004166.2), and Enterococcus faecalis V583 (32). 

Putative holins of phages LP-030-1 and LP-083 were classified in a phage_holin_4 

family which also showed high sequence homology to that of Listeria phages P35 and 

P40, Lactococcus phage 1358 (12) and Streptococcus phage Cp-1 (33). Putative 

endolysins in phages LP-030-1 (ORF 29) and LP-083 (ORF 28) displayed moderate 

(60% AA identities) and high (99% AA identities) homology to the endolysin of 

phage P35, PlyP35.  

Genome of phage LP-030-2 shows high similarity to the previously described 

Listeria phage PSA, while the cell lysis module is diverse among these phages. 

Although the genome of the sequenced phage LP-030-2 is slightly smaller than that of 

the previously described phage PSA (42), both phages shared sequence similarity at 

the amino acid level of approximately 80% of their genomes. Among the predicted 67 

ORFs, only 25 were found to be homologous to proteins with a functional assignment, 

while 42 ORFs encode proteins without known functions. Overall, both LP-030-2 and 

PSA showed a similar genome organization displaying defined modules of the early 

and late genes similar to those described in lytic phages above. However, an additional 

lysogeny control module, comprised of genes encoding an integrase and a repressor 
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for the lysogeny functions was also observed in both genomes. The lysogeny control 

was located in between the cell lysis cluster and the early gene cluster (DNA 

replication and DNA modification). In addition, genes in this lysogeny control module 

(ORFs 33-39) were found to be oriented in the opposite direction to the other three 

functional modules (Figure 4.1B). Having ability to encode both integrase and 

repressor suggests that these phages could have both lytic and temperate life cycles. 

While genes in most functional modules showed homology to previously genes in 

Genbank, genes in the cell lysis module and several ORFs coding for proteins with 

unknown function in the DNA replication and modification module (Figure 4.1B) 

showed no similarity to genes in the public databases. The endolysin (ORF 31; 308 aa) 

of phage LP-030-2 is not only different from that of phage PSA (ORF 31, 314 aa), it is 

also unique due to its protein structure, which consists of a peptidoglycan recognition 

protein (PGRP) domain and is classified in a class of N-acetylmuramoyl-L-alanine 

amidase (24). An endolysin with this domain has not been previously described in any 

Listeria phages, however, this N-acetylmuramoyl-L-alanine amidase was found to be 

homologous to Xly of L. monocytogenes HPB2262 and L. innocua Clip11262. 

Moreover, a homolog of this gene has been also found in many Bacillus phages or 

Bacillus spp. (13). Interestingly, the holin protein in this phage contains a 

phage_holin_5 family domain (PF06946), which is different to that in phage PSA, but 

also found in phages A118 and A500. Interestingly, the temperate Listeria phage B025 

revealed most regions of homology in the lysogeny control (e.g., integrase and 

repressor proteins), part of the DNA replication module, and the terminase large 

subunit. This may suggest that these temperate phages are likely to have (i) identical 
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attP/attB sites; tRNAArg has been identified as attB integration site in phages PSA and 

B025 (11, 42); (ii) identical DNA packaging strategy or genome structure; genomes of 

phages PSA and B025 have been identified to have a complementary single-stranded 

overlapping (cohesive) ends (11, 42). However, most proteins for head and tail 

morphogenesis, and the endolysin in the cell lysis cluster of B025 and phages LP-030-

2 and PSA showed only limited sequence homology, indicating that phage B025 may 

exhibit different morphology than the other two phages. This finding also suggests that 

endolysins are not conserved in these phages.  

Genomes of the three sequenced Myoviridae-family Listeria phages show high 

sequence homology to Listeria phages A511 and P100. Alignment of genome 

sequences showed that the three genomes of LP-048, LP-124 and LP-125 are very 

similar to each other, with a sequence similarity at the amino acid level of 

approximately 90% across the predicted ORFs in their genomes. These genomes are 

organized into two major functional modules: (i) a DNA packaging and structural 

protein module, and (ii) a DNA replication, metabolism, and repair module (Figure 

4.2). In addition to the two defined functional modules (early and late genes), genomes 

also contain a cluster at the left-arm of the genome map which comprises of mostly 

genes encoding proteins with no obvious function. Genes producing serine/threonine 

protein phosphatase (ORF 42), protein RtcB (ORF 66), and 17 tRNAs were also 

located in this cluster. Interestingly, RtcB was found in this cluster which is likely to 

act as RNA ligase that mediates the joining of broken tRNA-like stem-loop structures 

in case of tRNA damage as this has been previously proposed as a component of an 
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Figure 4.2. Genome map alignments of Listeria phages that display large 

genomes (>130 kb). Gene products with amino acid sequence identities > 90% 

are linked by purple-shaded areas. Putative functions of selected genes under 

specific cluster modules are indicated here. 
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Escherichia coli RNA repair operon (38). Overall, these genomes displayed the gene 

orders and defined modules similar to genome of phage A511 (Figure 4.2), while only 

a cluster at the left-arm was found in the opposite end of the genome of phage P100. 

All 17 tRNA genes found in these phages were homologous to those of phages P100 

and A511. 

 The first major module following the left-arm gene cluster starts at ca. 44 kb-

region, comprising DNA packaging and structural gene cluster. While the putative 

small terminase gene could not be identified, the putative large terminase genes (ORFs 

82-83) were located at the beginning of this gene cluster, followed by structural genes 

encoding for, for example, major capsid (ORF 95), tail sheath (ORF 102), and 

adsorption associated tail (ORF 115). The cell lysis cluster in these genomes was not 

identified in a separate module, such as the cell lysis module found in phages LP-030-

1, LP-083, and LP-030-2. However, the endolysin gene (ORF 88) was found to be 

embedded in the DNA packing and structural gene cluster. Putative endolysins of the 

three phages displayed significant homology to that of phages A511 and P100 

(Ply100), while a putative holin was not found in the cell lysis cluster of these 

genomes. Interestingly, two large ORFs (106-107) located near the genes encoding 

structural proteins were identified to encode putative tail lysins and one was found to 

be an endolysin of another class, endo-beta-N-acetylglucosaminidase 

(glucosaminidase) (24). This putative tail lysin showed high homology to the putative 

tail lysin of Enterococcus phage phiEF24C (39) and Lactobacillus phage Lb338-1 (1), 

as well as the ORF56 encoding an enzyme of phage K which is identified as phage 

tail-associated muralytic enzyme (TAME) (40).  
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 The second functional module comprises a gene cluster encoding proteins 

responsible for DNA replication, metabolism, repair, and modification. This gene 

cluster is flanked by a helicase gene (ORF 120) and ATPase gene (ORF 166). 

Predicted gene products required for DNA replication and repair observed in this 

module include the following proteins: helicase (ORFs 120), transcription regulator 

(ORF 121), exonuclease subunits (ORFs 123-124), primase (ORF 126), DNA 

polymerase (ORFs 146-147), DNA binding protein (ORF 149), recombinase (ORF 

150), DNA repair exonuclease (ORF 157), an integration host factor (ORF 162), and 

ATPase (ORF 166). Enzymes involved in nucleotide metabolism such as 

ribonucleotide reductase (ORFs 132-135), and ribose-phosphate pyrophosphokinase 

(ORF 141). A few other ORFs encode proteins that could facilitate the 

posttranslational modification such as flavodoxin and thioredoxin (ORFs 137-138) 

proteins. In addition, a lysogeny control module was not observed in these genomes, 

thus indicating a lytic life cycle of these phages. On an overall scale, genomes of these 

three sequenced phages contain a large region with a significant homology to (i) other 

known Listeria phages A511 and P100; (ii) other Myoviridae phages infecting 

Firmicutes, i.e., S. aureus phage K and Lactococcus phage LP65.  

Novel lytic Listeria phages of the Siphoviridae reveal a genome size of about 65-67 

kb and their genomes are organized into two major modules similar to phage 

A511. Genomes of four phages show the approximate size of 65-67 kb and similar 

numbers of predicted ORFs. These genomes revealed approximately 80% sequence 

identity at the nucleotide level (Figure 4.3). Of about 110-116 predicted ORFs, only 

16-18 encoded proteins with high sequence similarity to proteins of known function 



 

 135 

 
 

 

Figure 4.3. Genome map alignments of novel Listeria phages. Genomes of 

these phages show the range of 65-67 kb in sizes. Gene products with amino 

acid sequence identities > 80% are linked by purple-shaded areas. Putative 

functions of selected genes under specific cluster modules are indicated here. 
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from the database. However, a number of proteins show similarities to proteins 

involved particularly in the head and tail morphogenesis in a variety of phages such as 

Staphylococcus phage SAP6, Bacillus phage SPP1, and Brochothrix phage NF5 (18). 

Their terminase large subunits are also homologous to that of Staphylococcus phages 

SAP6 and phiNM, suggesting that they may have similar DNA packaging strategy, 

known as a headful packaging mechanism, producing a collection of circularly 

permuted, terminally redundant DNA molecules. In addition, some of the hypothetical 

proteins show homology to phage and prophage proteins of unknown function with 

DUF 1642 and DUF 2479 domains. These domains are commonly identified in 

Listeria spp. and various phages (e.g., Staphylococcus phage 187, Listeria phage PSA, 

Brochothrix phage NF5, and Enterococcus phage phiEF24C).  

 Based on the TEM characterization of LP-110, these phages are classified as 

members of the Siphoviridae family, featuring a binary (A1) head (55 nm) and a long 

tail (156 nm).  

We found that their structural proteins showed no sequence homology to those of 

Listeria phages, suggesting a likely cause of the morphology difference between these 

phages and other previously described Listeria phages. Overall, their genomes are 

organized into two major modules as in the three lytic Myoviridae-family phages 

described above. The first defined module following this cluster comprises genes 

encoding proteins for DNA packaging, head and tail morphogenesis, and is flanked by 

genes coding the terminase small subunit and minor structural protein. Similar to the 

three lytic phages, the cell lysis cluster in these phages (holin and endolysin genes) is 

also embedded in this module. A putative holin is identified with a domain of the 
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phage_phi LC3 family (TIGR01598) which is a homolog of a holin protein in Listeria 

phages A006 and B025 as well as Brochothrix phage NF5, and LysA in Lactococcus 

phage phiLC3 (23). An endolysin identified in these phages contain a domain that is 

classified into a class of L-alanyl-D-glutamate peptidase, the same class as PlyA006, 

PlyA500, PlyP35, and PlyP100 proteins of Listeria phages, but not identical to any of 

these. The second functional module includes genes for DNA replication, 

modification, and metabolism. A number of proteins in this cluster display homology 

to proteins of not only different phages, but also different bacterial species.  

 Overall, the genome organization is conserved across the four phages. 

Although some regions of the two major modules as well as the cell lysis gene cluster 

of these phages shared homology to several Listeria phages on the NCBI databases, 

these genomes did not resemble any Listeria phages currently in the public database. 

In addition, the range of their genome sizes has not been identified in previously 

described Listeria phages. These findings suggest that this set of Listeria phages 

reported here may represent novel lytic Listeria phages of a family of Siphoviridae. In 

addition, among the four phages, only phage LP-110 was isolated from a different 

farm from others, suggesting a wider geographical distribution of these phages. 

Interestingly, while three phages from the same origin exhibited relatively broad host 

range, phage LP-110 could not lyse other reference L. monocytogenes strains tested 

besides its host strain, indicating that any differences between their genomes may be 

responsible for the host range diversity among these phages.  

Large terminase subunit analysis.  The Listeria phages described in this study 

cluster into three clades with separate functional identities (Figure 4.4). One clade 
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Figure 4.4. Maximum likelihood tree based on analysis of the amino acid 

sequences of the large terminase subunit. Maximum likelihood bootstrap values 

>50 are indicated above the branches. Three moderately to well-supported clades 

could be recognized for the Listeria phages sequenced in this study; clade 1, a 

clade consisting of circularly permuted and terminally redundant phages, clade 2, 

a clade consisting of phage with long exact terminal repeats and a non-permuted 

genome, and clade 3, a clade consisting of phages with phages with single 

stranded cohesive ends. See Table S1 for additional information on the other 

phages used in this analysis. 
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with strong support (bootstrap >90) branches further into two subclades, also with 

strong support; the first subclade contained phages LP-083, LP-030-1 and the 

previously described circularly permuted and terminally redundant phages P35 and 

P40 (11), the second subclade consisted of the novel phages LP-032, LP-037, LP-026, 

and LP-110. Additionally, the circularly permuted and terminally redundant phages 

A118 and A500 also cluster within the greater clade, suggesting these phages follow a 

headful DNA packaging strategy, a characteristic of phages with circularly permuted 

genomes with random terminal redundancy (11, 26). The second clade identified by 

TerL analysis included LP-048, LP-124, and LP-125 which cluster with strong support 

to SPO1, a Bacillis subtilus phage with long exact terminal repeats and a non-

permuted genome, as well as to the SPO1-like listeriaphage A511 (20). The third clade 

with strong support contained LP-030-2 and the previously described phages PSA and 

B025, two phages with single stranded cohesive ends on their chromosomes (11, 42). 

There is also moderate support (bootstrap >70) for this clade clustering with HK97, a 

model Escherichia coli phage with cohesive ends (7). 

Environmental phages do not contribute a large number of genes to the pan-

genome. Estimates of the size of the Listeria monocytogenes pan-genome with or 

without the genes of the phages sequenced in this study were 8,043 genes and 7,429 

genes, respectively. This result indicates that these phages contribute limited number 

of rare/new genes to the pan-genome. 
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DISCUSSION 

 In the current study, we sequenced and analyzed 10 genomes of Listeria 

phages that were isolated from farm environments in New York State, to obtain 

information on genome organization, gene functions, genetic diversity, and relatedness 

to previously sequenced phages.  These analysis revealed (i) a novel group of Listeria 

phages characterized by a genome size of approximately 65-67 kb, (ii) three groups of 

phages with genome characteristics similar to previously sequenced phages, and (iii) a 

limited number contribution of new genes by these environmental phages to the pan-

genome of Listeria monocytogenes. 

Whole genome sequencing reveals a novel group of Listeria phages with a genome 

size of approximately 65-67 kb. In this study we found one group of four Listeria-

phages with genome sizes between 64,747 bp and 67,115 bp, which showed high 

(between 96 and 99 % average nucleotide identity) sequence similarity to each other, 

but only showed partial (i.e. one or two genes) similarity with other Listeria-phages 

and Firmicute-associated phages. This partial similarity suggests a mosaic origin of 

these phages, a phenomenon commonly encountered in bacteriophages (15). 

Phylogenetic analysis of the large terminase subunit indicates these phages have a 

circularly permuted and terminally redundant DNA packaging strategy similar to 

Listeria-phages P40, P35, A118 and A500. Electron Microscopy of at least one of the 

phages (i.e., LP-110) indicates that this novel group of putatively lytic phages belongs 

to the family of the Siphoviridae. The discovery of a group of novel Listeria-phages 

demonstrates that even within a small number of phage genome sequences, novel 

phages can be discovered. More effort to sequence Listeria phages from different 



 

 141 

environments will reveal more novel phages and give us a better understanding of 

Listeria phage diversity. 

Two groups of phages resemble previously sequenced phages. While mid-sized 

phages represent a novel group of Listeria phages, some of the small and large sized 

phages show a remarkable resemblance to previously sequenced phages. Phages LP-

030-1 and LP-083 showed a high sequence similarity, both on the amino acid and 

nucleotide level, to phage P35 (11). Phage P35 is a phage isolated from the same 

geographical area (New York State) and same environment (silage) as phages LP-030-

1 and LP-083 (16), which may explain the high sequence homology of this phage to 

some of the phages sequenced in this study. Overall we found the similarity in the 

genomic organization and homologous gene content of (i) phages LP-030-2 and PSA; 

and (ii) the large sized phages A511 as well as P100 and phages LP-048, LP-124, and 

LP-125. These findingsis remarkable because of the previously sequenced phages 

were isolated from sewage in central Europe within the last two decades (5, 20). The 

similarity between European phages and North American phages may either suggest a 

relative genomic conservedness of these phages. This would imply that while genomic 

mosaicism can be clearly observed in most of these phages, the rate of recombination 

responsible for this mosaicism is not high enough to cause observable recombination 

events after the divergence of European and North American host populations. 

Alternatively, it may indicate rapid dispersal of both phage and host populations, a 

scenario suggested for the major clonal groups of L. monocytogenes (8). 

Environmental phages potentially contribute a limited number of new genes to 

the pan-genome of Listeria monocytogenes. To infer the contribution of 
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environmental phage genomes to the pan-genome of L. monocytogenes, we estimated 

the size of the pan-genome with and without the environmental phages sequenced in 

this study. Addition of the 10 phages resulted in a limited (8.3%) increase in the pan-

genome, suggesting only limited contribution of environmental phages of potential 

new genes to the pan genome of the host. It should be noted, however, that only a 

small sample of phages was included in this study, and the genomes sequenced here 

represent only a limited selection of the diversity of the Listeria phages encountered in 

the environment. Moreover, the method of isolation of these phages is biased towards 

a lytic phenotype of the phages and may therefore give an even more unbalanced view 

of the diversity and thus the contribution of environmental phages to the pan-genome.  

 This study demonstrates that the sequencing of the genomes of a limited 

number of Listeria phages from a limited geographical region can increase our 

understanding on the diversity, evolution and putatively the biogeography of these 

phages. In particular the discovery of a group of novel Listeria phages shows that our 

understanding of these important drivers of the ecology and evolution of L. 

monocytogenes is far from complete. 
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CHAPTER FIVE 

 

Conclusions 

 

 Listeria monocytogenes is an important foodborne pathogen responsible for 

severe infections, listeriosis, in both animals and humans (Mead et al., 1999; Farber 

and Peterkin, 1991). The most recent multistate outbreak of listeriosis occurred in 

2011 was linked to cantaloupes which led to over 30 deaths, resulting in the deadliest 

foodborne illness outbreak in the US since 1924 (CDC, 2011). Development of control 

measures for this pathogen has become a high priority. A phage-based biocontrol 

agent for L. monocytogenes has been approved for use in a variety of RTE foods. 

However, knowledge of its efficacy against various strains of this pathogen present in 

food-associated environments has been limited. In this study, we developed a 

collection of diverse phages which is a valuable tool for further studies by (i) isolating 

and characterizing Listeria spp. and listeriaphages from dairy farms, (ii) evaluating 

phage susceptibility on persistent isolates and developing phage cocktails against 

persistent subtypes, and (iii) characterizing the genomic diversity and relationships of 

selected phages obtained from dairy farms.  

 Over 100 listeriaphages were isolated from silage samples collected on two 

dairy farms. Phenotypic and genotypic characterization of phages from this collection 

revealed considerable host range (9 lysis groups) and genomic diversity (genome sizes 

of 25–140 kb). Among the 9 major Listeria serotypes used in the host range 
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determination, serotype 3c strain was found to be highly resistant to phages while 

serotype 4 strains were the most susceptible to phages. Phage evaluation data in this 

study show variations (4.6–95.4%) in phage susceptibility among various persistent 

subtypes in food-associated environments, suggesting an importance to develop 

effective and suitable phage cocktails for specific subtypes. Results from phage 

cocktail treatments revealed that L. monocytogenes populations were temporally 

reduced for only 8 h after treatment initiation, while some subtypes were not affected 

by the treatment. Surviving isolates recovered after 24 h of treatment showed 

decreased susceptibility to individual phages included in the phage cocktail, 

suggesting rapid emergence of resistant subtypes. Our findings here also indicate that 

the use of phage cocktails may not always be an appropriate strategy for controlling 

pathogens. Whole genome sequencing and comparative genomic analysis of 10 

selected phages revealed high genomic diversity of Listeria phages from dairy farms. 

We also found that four newly sequenced phages here are novel listeriaphages. Nine 

phages showed a lytic life cycle while only one phage had a lysogeny control present 

in its genome. Genomes of three newly sequenced phages appeared to resemble the 

previously described listeriaphages A511 and P100, despite differences in isolation 

origins, suggesting geographical distribution of this phage family (Myoviridae).  

 Overall, our diverse phage collection, phage susceptibility data, and 

information from the comparative genomic analysis of phages will provide a 

promising tool for further development of phage-related applications, e.g., phage-

based biocontrol and phage-encoded lytic enzyme agents for L. monocytogenes, and 

diagnostic tools for foodborne pathogens, to reduce incidence of foodborne disease. 
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Appendix One 



 
 

 

 

 

Figure S2.1. PFGE types, sigB allelic types, and ribotype patterns of L. monocytogenes isolates obtained from two 

dairy farms. 
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Figure S2.2. Number of phage-positive samples, among silage samples collected on two dairy farms, detected on 

the four L. monocytogenes hosts by (i) direct phage isolation (D); and (ii) isolation after phage enrichment method 

(E).
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Figure S2.3. PFGE image of DNA of selected listeriaphages that 

showed two bands. Size markers: (A), lambda; (B), marker range 

48kb-1Mb; (C), marker range 8-48kb. Phage DNA: (D) and (F), 

LP-026 and LP-036 without heat treatment; (E) and (G); LP-026 

and LP-036 with heat treatment; (H), LP-037 without heat 

treatment.
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Figure S3.1. Ribotype pattern profile of L. monocytogenes isolated from 

samples collected from a variety of sampling sites in a smoked fish processing 

facility as well as raw product samples from Nov. 2007 to Nov. 2009; see 

Table 3 for details of sampling visits. (―) indicates that collected samples 

were tested negative for L. monocytogenes. “blank” in this table indicates that 

no sample was collected from these sites. Ribotype patterns that were 

frequently observed (> 2 sampling visits) during this sampling period were 

highlighted. Note that environmental samples used for isolation of L. 

monocytogenes and Listeria spp. during visit no. 11 to 22 were only obtained 

from drains 1 to 11. 



 

Sample type/sampling site Ribotype (DUP-) of representative L. monocytogenes isolates recovered from samples collected at visit no. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
Raw Product Samples 

                      

Meat 

1040A 

  1040A       ―       

                        

1062C                         

Skin 1062C                                           

Drains 

                      

Drain 1         

1039C 

1039C         ― 1039C 1039C 1039C ― ― ― ― ― ― ― 1039C 1052A 

Drain 2         1052A 1040A         ― ― ― 1062A ― ― ― ― ― ― ― ― 

Drain 3         1043A 1043A         ― ― ― ― ― 1043A 1039C 1043A ― ― 1052A ― 

Drain 4 1039C 1040A     ― 1039C         ― ― ― ― ― ― ― ― ― ― ― 1062A 

Drain 5   1040A     1052A 1053A         ― ― 1042A ― ― ― ― ― ― ― ― ― 

Drain 6         1043A ―         ― ― ― ― ― ― ― ― ― ― ― ― 

Drain 7         1040A ―         1040A ― ― ― ― ― ― ― ― 1039C 1039C 1039C 

Drain 8         ― 1040A         ― ― ― ― 1039C ― ― ― ― ― ― 1030A 

Drain 9         1052A           1039C 1043A 1043A 1043A 1043A 1451S2 1451S2 ― ― ― ― ― 

Drain 10                     ― ― ― ― ― ― ― ― ― ― ― ― 

Drain 11                     ― ― ― ― ― ― ― ― ― ― ― ― 

Drain 8A         ―                                   

Drain 10A         ―                                   

Drain 13A         ―                                   

Drain 14A         ―                                   

Drain 15A         1039C                                   

Drain 16A         1043A                                   

Drain 18A         1052A                                   

Drain 19A         1039C                                   

Drain 20A         ―                                   

Drain 21A         ―                                   

Drain 22A           ―                                 

Drain 25A           1039C                                 

Drain A         1043A 1039C                                 

Drain B         1043A 

18042 

        

                        

1062A                         

Microwave oven drain       ―                                     

Wet room drain        ―                                     

Floors/Walls 

                      Wet room floor ―                                           

Colonial floor ―     ―   1039C                                 

Colonial walls       ―                                     

Floor - slicing dept.       ―           ―                         

Floor - oven room         ―                                   

Floor - salad dept.                   ―                         

1
5
7
 



Sample type/sampling site Ribotype (DUP-) of representative L. monocytogenes isolates recovered from samples collected at visit no. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
Food Contact Surfaces 

                      Truck (empty screens) ―                                           

Skinning machine (incoming belt) ―             ― ―                           

Skinning machine (outcoming belt) ―     ―   ―       ―                         

Slicing machine (incoming belt)   ―       ― ― ― ―                           

Slicing machine (outcoming belt) 1040A ― 1040A   ― ― ―                               

Slicing machine (knife) ― ― ―                                       

Slicing machine (plastic scraper)       1040A                                     

Slicing machine (pin belt)       1040A ― ―   ―   1040A                         

Slicing machine (accumulating roller)       1040A                                     

Slicing machine (controls)       1040A   ―                                 

Slicing machine (outcoming belts & plastic scraper)       1040A                                     

Slicing machine (other food contact parts)           ―                                 

Table (trimming) ―     ―   ―   ― ― ―                         

Salad mixer (drum)                   ―                         

Salad mixer (belt)                   ―                         

Betcher knife ―                 ―                         

Bone separator                   ―                         

Scale remover       ―                                     

Gloves - slicing dept. 1040A                                           

Gloves - skinning dept. ―                 1040A                         

Gloves - filet layout           ―                                 

Paddle dip         ―                                   

Non-Food Contact Surfaces 

                      Cart handles - slicing dept.     1039C                                       

Cart wheels - slicing dept.                   ―                         

Pallet jack - wet room       1052A                                     

Pallet jack - finished product area       ―                                     

Plastic totes/tubes       1040A 1045B 1052A                                 

Handles        ―                                     

Conveyor                   ―                         

Tank drains - raw area     ―                                       

Soacking hoses - raw area     ―     ―                                 

Dumpster - raw area           1039C                                 

Forklift forks - wet room       ―                                     

Forklift wheels - wet room       ―                                     

Microwave handles       ―                                     

Plastic apron         ―                                   

Employee's shoes - slicing dept.                   ―                         

 

1
5
8
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Figure S3.2. AscI and ApaI patterns of (i) original L. monocytogenes isolates 

(prior to phage treatment); and (ii) L. monocytogenes isolates recovered after 24 h 

of phage cocktail treatment for MOIs 1, 10, and 100. 
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Table S2.1. .  Summary of listeriaphage isolates in the current study.

No. Host Phage Farm Plaque Morphology Genome size
(kb) [farm visit 

#] 100x RTD (PFU/ml)
1 J1-208 LP-009 Farm1 0.5 mm, clear, circular 7.0E+05
2 J1-208 LP-010 Farm1 0.5 mm, clear, circular 61.8/65.2 62/65 [5] 2.7E+05
3 J1-208 LP-011 Farm1 0.5 mm, clear, circular 1.2E+06
4 J1-208 LP-012 Farm1 1.5 mm, large, hazy, circular 3.2E+06
5 J1-208 LP-013 Farm1 0.5 mm, clear, circular 59.1/63.4 59/63 [5] 3.0E+06
6 J1-208 LP-014 Farm1 0.5 mm, clear, circular 2.1E+05
7 J1-208 LP-015 Farm1 0.5 mm, clear, circular 4.2E+06
8 J1-208 LP-016 Farm1 0.5 mm, clear/ a bit hazy, quite circular no band no band 5.0E+05
9 J1-175 LP-017 Farm1 0.5 mm, clear, circular 4.3E+06

10 MACK LP-018 Farm1 0.5 mm, clear/ a bit hazy, quite circular 2.7E+06
11 MACK LP-019 Farm1 0.5 mm, clear/ a bit hazy, quite circular 60.6/64.8 61/65 [5] 4.2E+06
12 F2365 LP-020 Farm1 1.5 mm, large, hazy, circular 1.5E+05
13 F2365 LP-021 Farm1 0.3-0.5 mm, clear/ a bit hazy, circular no band no band 1.5E+05
14 J1-208 LP-022 Farm1 0.5 mm, clear, circular 64.2/67.9 64/68 [6] 8.0E+05
15 J1-208 LP-023 Farm1 0.3 mm, clear, circular 61.0/66.2 61/66 [6] 3.3E+06
16 F2365 LP-024 Farm1 1.5 mm, large, hazy, circular 3.8E+05
17 MACK LP-025 Farm1 0.5 mm, clear/ a bit hazy, quite circular 60.6/64.6 61/65 [6] 1.9E+05
18 J1-208 LP-026 Farm1 0.3 mm, clear, circular 61.3/66.3 61/66 [6] 2.6E+05
19 F2365 LP-027 Farm1 1.5 mm, large, hazy, circular 1.1E+06
20 MACK LP-028 Farm1 0.5 mm, clear/ a bit hazy, quite circular 1.0E+05
21 J1-208 LP-029 Farm1 0.3 mm, clear, circular 4.8E+06
22 F2365 LP-030 Farm1 1.5 mm, large, hazy, circular 32.6 33 [6] 1.7E+06
23 MACK LP-031 Farm1 0.3-0.5 mm, clear/ a bit hazy, circular 59.7/64.4 60/64 [6] 4.1E+05
24 J1-208 LP-032 Farm1 0.3 mm, clear, circular 62.4/67.3 62/67 [6] 3.3E+05
25 F2365 LP-033 Farm1 1.5 mm, large, hazy, circular 3.8E+05
26 MACK LP-034 Farm1 0.3 mm, clear/a bit hazy, circular 1.5E+05
27 J1-208 LP-035 Farm1 0.5 mm, clear, circular 60.6/64.9 61/65 [6] 5.2E+05
28 J1-208 LP-036 Farm1 0.3 mm, clear/a bit hazy, circular 57.9/63.3 58/63 [8] 2.4E+06
29 J1-208 LP-037 Farm1 1.5 mm, large, clear/a bit hazy, circular 57.7/63.9 58/64 [8] 3.1E+06
30 J1-208 LP-041 Farm1 0.3 mm, clear/a bit hazy, circular 2.0E+06
31 J1-208 LP-042 Farm1 0.3 mm, clear/a bit hazy, circular 2.0E+05
32 J1-208 LP-043 Farm1 0.3 mm, clear/a bit hazy, circular 5.3E+06
33 J1-208 LP-044 Farm1 1.5 mm, large, clear/a bit hazy, circular 61.1/66.9 61/67 [9] 7.0E+05
34 J1-208 LP-045 Farm1 0.3 mm, clear/a bit hazy, circular 58.6/62.9 59/63 [9] 6.3E+05
35 J1-208 LP-046 Farm1 0.3 mm, clear/a bit hazy, circular 61.8/65.9 62/66 [9] 3.8E+06
36 MACK LP-047 Farm1 0.3 mm, clear/a bit hazy, circular 2.2E+06
37 MACK LP-048 Farm1 0.3 mm, clear/a bit hazy, circular 122.8 123 [9] 1.0E+05
38 MACK LP-049 Farm1 1.5 mm, large, clear/a bit hazy, circular 31.2 31 [9] 9.0E+04
39 J1-208 LP-050 Farm1 0.3 mm, clear/a bit hazy, circular 60.3/65.5 60/66 [10] 2.0E+05
40 J1-208 LP-051 Farm1 0.3 mm, clear/a bit hazy, circular 62.1/67.4 62/67 [10] 1.9E+06
41 J1-208 LP-052 Farm1 0.3 mm, clear/a bit hazy, circular 60.7/65.1 61/65 [10] 1.2E+06
42 F2365 LP-053 Farm1 1.5 mm, large, clear/a bit hazy, circular 1.7E+06
43 F2365 LP-054 Farm1 1.5 mm, large, clear/a bit hazy, circular no band no band 2.9E+06
44 F2365 LP-057 Farm1 1.5 mm, large, clear/a bit hazy, circular no band no band 1.8E+06
45 J1-208 LP-058 Farm1 0.3 mm, clear/a bit hazy, circular 61.2/65.7 61/66 [11] 3.8E+05
46 J1-208 LP-059 Farm1 0.3 mm, clear/a bit hazy, circular 60.6/64.7 61/65 [11] 5.1E+05
47 J1-208 LP-060 Farm1 0.3 mm, clear/a bit hazy, circular 62.8/67.8 63/68 [11] 3.6E+06
48 J1-208 LP-061 Farm1 0.3 mm, clear/a bit hazy, circular 60.9/64.9 61/65 [11] 4.0E+05
49 J1-208 LP-062 Farm1 0.3 mm, clear/a bit hazy, circular 61.2/66.3 61/66 [11] 5.8E+06
50 F2365 LP-063 Farm2 0.1 mm, pinprick, clear, circular no band 2x no band 2.7E+06
51 MACK LP-064 Farm2 1.5 mm, large, clear, circular 97.0 97 [1] 1.6E+06
52 J1-208 LP-065 Farm2 1.5 mm, large, clear, circular 62.6 63 [1] 4.4E+05
53 MACK LP-066 Farm2 1.5 mm, large, clear, circular no band no band 2.9E+05
54 J1-208 LP-067 Farm2 1.5 mm, large, clear, circular 61.7 62 [1] 3.6E+05
55 F2365 LP-068 Farm2 0.1 mm, pinprick, clear, circular 118.6 119 [1] 8.7E+05
56 MACK LP-069 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 2.2E+05
57 J1-208 LP-070 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 63.2 63 [1] 2.3E+06
58 J1-208 LP-071 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 66.1 66 [1] 4.5E+06
59 J1-208 LP-072 Farm2 1.5 mm, large, clear, circular 60.1/64.9 60/65 [1] 2.6E+06
60 J1-208 LP-073 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 60.7/65.6 61/66 [1] 3.6E+06
61 F2365 LP-074 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 4.0E+06
62 MACK LP-075 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 120.8 121 [1] 6.0E+05
63 F2365 LP-076 Farm2 0.5 mm, clear, circular no band 3x no band 1.4E+06
64 MACK LP-077 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular no band no band 1.9E+06
65 J1-208 LP-078 Farm2 1.5 mm, large, clear, circular 2.0E+06
66 J1-208 LP-079 Farm2 1.5 mm, large, clear, circular 3.5E+06
67 J1-208 LP-080 Farm2 1.5 mm, large, clear, circular 61.1/65.1 61/65 [2] 1.3E+06
68 J1-208 LP-081 Farm2 1.5 mm, large, clear, circular 61.2/65.0 61/65 [2] 3.4E+06
69 J1-208 LP-082 Farm2 1.5 mm, large, clear, circular 63.9 64 [2] 2.1E+06
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Table S2.1.        (Continued).

No. Host Phage Farm Plaque Morphology Genome size
Genome sizea 

(kb) [farm visit 100x RTD (PFU/ml)
70 MACK LP-083 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 32.0 32 [2] 2.0E+05
71 J1-208 LP-084 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 4.6E+06
72 F2365 LP-085 Farm2 1.5 mm, large, clear/a bit hazy, circular 31.7 32 [2] 9.0E+05
73 J1-208 LP-086 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 64.9 65 [2] 2.1E+05
74 J1-208 LP-087 Farm2 1.5 mm, large, clear, circular 62.8/67.7 63/68 [2] 3.5E+05
75 J1-175 LP-088 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular no band no band 2.0E+05
76 J1-208 LP-089 Farm2 0.5 mm, clear, circular 8.0E+05
77 J1-208 LP-090 Farm2 0.5 mm, clear, circular 58.0/63.3 58/63 [3] 2.7E+06
78 J1-208 LP-091 Farm2 0.5 mm, clear, circular 3.6E+05
79 J1-208 LP-092 Farm2 0.5 mm, clear, circular 2.2E+06
80 F2365 LP-093 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular no band 9/01/09 no band 1.4E+06
81 F2365 LP-094 Farm2 1.5 mm, large, clear/a bit hazy, circular 25.8 26 [4] 1.3E+06
82 F2365 LP-095 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 123.3 123 [4] 1.6E+06
83 F2365 LP-096 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 1.3E+06
84 MACK LP-097 Farm2 0.5 mm, clear, circular 1.3E+06
85 MACK LP-098 Farm2 0.5 mm, clear, circular 1.7E+06
86 MACK LP-099 Farm2 0.5 mm, clear, circular 1.6E+06
87 MACK LP-100 Farm2 0.5 mm, clear, circular 4.5E+06
88 MACK LP-101 Farm2 1.5 mm, large, clear, circular 40.7/83.4/115.1 41/83/115 [4] 8.5E+05
89 MACK LP-102 Farm2 0.5 mm, clear, circular 2.5E+05
90 MACK LP-103 Farm2 0.5 mm, clear, circular 9.0E+04
91 MACK LP-104 Farm2 0.5 mm, clear, circular 7.0E+05
92 F2365 LP-105 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 139.6 140 [5] 2.7E+05
93 F2365 LP-106 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 2.6E+05
94 F2365 LP-107 Farm2 0.3-0.5 mm, clear/ a bit hazy, circular 2.8E+06
95 J1-208 LP-108 Farm2 0.5 mm, clear, circular 1.9E+06
96 J1-208 LP-109 Farm2 0.5 mm, clear, circular 1.8E+06
97 J1-208 LP-110 Farm2 0.5 mm, clear, circular 56.5/61.1 57/61 [4] 3.2E+05
98 J1-208 LP-111 Farm2 0.5 mm, clear, circular 3.4E+05
99 J1-208 LP-112 Farm2 1.5 mm, large, clear, circular 56.6/61.5 57/62 [4] 1.1E+06

100 J1-208 LP-113 Farm2 0.5 mm, clear, circular 57.8/62.7 58/63 [5] 1.7E+06
101 J1-208 LP-114 Farm2 0.5 mm, clear, circular 2.9E+05
102 J1-208 LP-115 Farm2 0.5 mm, clear, circular 59.8/65.0 60/65 [5] 3.0E+05
103 F2365 LP-116 Farm2 0.3 mm, clear, circular 130.9 131 [6] 6.0E+05
104 MACK LP-117 Farm2 0.5 mm, clear, circular 117.0 117 [6] 2.7E+05
105 J1-208 LP-118 Farm2 0.5 mm, clear, circular 68.2 68 [6] 2.5E+05
106 F2365 LP-119 Farm2 0.5 mm, clear, circular 136.2 136 [6] 3.5E+05
107 MACK LP-120 Farm2 0.5 mm, clear, circular 134.0 134 [6] 7.0E+05
108 J1-208 LP-121 Farm2 0.5 mm, clear, circular 58.6/62.7 59/63 [6] 1.2E+06
109 J1-208 LP-122 Farm2 0.5 mm, clear, circular 59.4/63.4 60/63 [6] 3.3E+05
110 MACK LP-123 Farm2 0.5 mm, clear, circular 131.8 132 [6] 3.9E+06
111 F2365 LP-124 Farm2 0.5 mm, clear, circular 127.0 127 [6] 9.4E+05
112 MACK LP-125 Farm2 0.5 mm, clear, circular 135.0 135 [6] 2.6E+06
113 J1-208 LP-126 Farm2 0.5 mm, clear, circular 69.6 70 [6] 2.9E+05
114 F2365 LP-127 Farm2 0.3 mm, clear, circular 3.3E+06



 

Table S2.2. Lysis groups for listeriaphages isolated from two dairy farms.  

Phage 
lysis 

group 

No. of phage 
isolates from 

each farm 
(visit no.a) 

Lysis pattern of L. monocytogenes reference strain (serotype)b 
Phage lysis 

pattern 
description Mack 

(1/2a) 

J1-
175 

(1/2b) 

J1-
094 

(1/2c) 

C1-
115 
(3a) 

J1-169 
(3b) 

J1-049 
(3c) 

F2-695 
(4a) 

J1-208 
(4a) 

F2365 
(4b) 

F2-501 
(4b) 

J1-
158 
(4b) 

W1-
110 
(4b) 

J2-071 
(4c) 

A F1: 2 (6, 9) 

F2: 4 (3-5) 

+/- - +/- +/- - - - +/- - - +/- - - Lysis on 
specific 
hosts: 1/2a, 
1/2c, 3a, 4a, 
and 4b 
strains 

B F1: 10 (5, 6, 
8, 10, 11) 

F2: 10 (1- 6) 

+/- - - +/- +/- - + + +/- +/- +/- + + No lysis of 
1/2b, 1/2c 
and 3c 
strains 

C F1: 3 (6, 9, 10) 

F2: 5 (1, 2, 
5) 

 

- - - - - - + + - +/- - + +/- Lysis on 
specific 
hosts: mostly 
4a, 4b, and 
4c strains 

D F1: 4 (6, 11) 

F2: 5 (1, 2, 
6) 

+/- +/- +/- +/- +/- - +/- + - +/- +/- - +/- No lysis of 
only 3c and 
4b strains 

E F1: 1 (5) 

F2: 22 (1, 4-
6) 

+ + + + +/- - +/- +/- +/- + +/- +/- +/- Broad host 
range.  
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Table S2.2. (Continued). 

F F1: 4 (5, 9) 

F2: 6 (1, 2, 
4) 

+ +/- + - +/- - + + + + + + + Broad host 
range. No 
lysis of only 
3a and 3c 
strains 

G F1: 0 

F2: 4 (4, 5) 

+ - + +/- - - +/- +/- + - + +/- +/- Lysis on 
mostly 4a, 
4b, and 4c 
strains 

H F1: 1 (9) 

F2: 6 (2, 4, 
5) 

+ - + +/- - - +/- +/- + + + +/- +/- Lysis on 
mostly 4a, 
4b, and 4c 
strains 

I F1: 24 (5, 6, 
8-11) 

F2: 3 (2, 4) 

+/- +/- - - - - + + + + + + + Lysis on 
mostly 4a, 
4b, and 4c 
strains 

a “F1” and “F2” indicate farm 1 and farm 2, respectively; see Table 1 for details on farm visits and phage recovery results 

from each farm visit. 

b (-) indicates no lysis of a given strain by any phages in the lysis group; (+)indicates lysis of a given strain by phages in the 

lysis group; (+/-) indicates that while some phages in the lysis group showed lysis on a given strain, others did not. Heatmap 

and clustering analysis classifying phage lysis groups are shown in Fig. 1.
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Table S3.1. L. monocytogenes strains used as hosts for listeriaphage 

isolation 

L. monocytogenes 
strain (alias) Lineage Source Serotype Ribotype 

FSL J1-175 I Water 1/2b DUP-1042A 

FSL R2-574 (F2365) I Food 4b DUP-1038B 

FSL F6-367 (Mack)  II Lab strain 1/2a DUP-1030A 

FSL J1-208 IV Animal 4a DUP-10142 
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Table S3.2. Set of 28 phages used in the spot testa

No. Phage Farm Visit#/source Host Plaque Morphology Phage Titer (pfu/ml)
1 LP-022 Farm1 6/Bunker7Silage J1-208 0.5 mm, clear, circular 2.1E+08
2 LP-025 Farm1 6/Bunker6Silage MACK 0.5 mm, clear/ a bit hazy, quite circular 1.9E+06
3 LP-026 Farm1 6/Bunker6Silage J1-208 0.3 mm, clear, circular 2.6E+08
4 LP-030 Farm1 6/Bunker6Silage F2365 1.5 mm, large, hazy, circular 1.7E+06
5 LP-031 Farm1 6/Bunker6Silage MACK 0.3-0.5 mm, clear/ a bit hazy, circular 4.1E+06
6 LP-037 Farm1 8/Bunker4Silage J1-208 1.5 mm, large, clear/a bit hazy, circular 3.1E+08
7 LP-048 Farm1 9/Bunker7Silage MACK 0.3 mm, clear/a bit hazy, circular 1.0E+06
8 LP-054 Farm1 10/Bunker5Silage F2365 1.5 mm, large, clear/a bit hazy, circular 2.9E+06
9 LP-070 Farm2 1/Bunker1Silage J1-208 0.3-0.5 mm, clear/ a bit hazy, circular 2.3E+08

10 LP-082 Farm2 2/Bunker3Silage J1-208 1.5 mm, large, clear, circular 2.1E+08
11 LP-083 Farm2 2/Bunker3Silage MACK 0.3-0.5 mm, clear/ a bit hazy, circular 2.0E+07
12 LP-085 Farm2 2/Bunker3Silage F2365 1.5 mm, large, clear/a bit hazy, circular 3.2E+08
13 LP-086 Farm2 2/Bunker3Silage J1-208 0.3-0.5 mm, clear/ a bit hazy, circular 2.1E+08
14 LP-101 Farm2 4/Bunker2Silage MACK 1.5 mm, large, clear, circular 1.0E+06
15 LP-105 Farm2 5/Bunker1Silage F2365 0.3-0.5 mm, clear/ a bit hazy, circular 2.7E+06
16 LP-110 Farm2 4/Bunker2Silage J1-208 0.5 mm, clear, circular 3.2E+08
17 LP-124 Farm2 6/Bunker3Silage F2365 0.5 mm, clear, circular 2.9E+06
18 LP-125 Farm2 6/Bunker3Silage MACK 0.5 mm, clear, circular 2.6E+07
19 LP-128 Farm3 2/Silage J1-208 0.5 mm, clear, circular 1.0E+06
20 LP-129 Farm3 2/Silage J1-208 0.5 mm, clear, circular 1.0E+06
21 LP-141 Farm3 1/Silage J1-208 0.3 mm, clear, circular 1.0E+06
22 LP-143 Farm3 1/Silage F2365 1.5 mm, large, clear, circular 1.7E+06
23 LP-177 Farm3 6/Silage F2365 0.5 mm, clear, circular 1.0E+06
24 LP-038 Plant 1/Drain #3 MACK 0.5 mm, clear, circular 1.0E+06
25 LP-039 Plant 1/Drain #9 MACK 0.3-0.5 mm, clear/ a bit hazy, circular 1.1E+06
26 LP-040 Plant 1/Drain #9 J1-175 0.5 mm, clear, circular 1.1E+06
27 LP-055 Plant 3/Drain #9 MACK 0.5 mm, clear, circular 2.0E+07
28 LP-056 Plant 3/Drain #9 J1-175 0.5 mm, clear, circular 1.0E+06

a Details on phages no. 1-18 are reported by Vongkamjan et al. (submitted, 2012). Phages no. 24-28 

were isolated in the current study.



 167

Table S3.3. Reduction of L. monocytogenes in the phage challenge experiments.

MOI 1 MOI 10 MOI 100 MOI 1 MOI 10 MOI 100 MOI 1 MOI 10 MOI 100 MOI 1 MOI 10 MOI 100
H1-003 0 0.13 0.09 -0.04 -0.04 0.51 -0.03 -0.01 0.02 0.13 -0.11 0.06 0.14
H1-003 4 0.06 -0.04 0.93 0.30 1.95 2.95 -0.07 0.07 0.82 0.75 2.74 4.35
H1-003 8 0.35 1.23 2.38 4.26 4.26 4.26 0.42 2.14 4.63 4.33 4.12 4.09
H1-003 12 2.18 3.29 2.83 3.66 3.98 3.69 2.89 3.85 3.58 4.20 3.95 3.35
H1-003 16 3.43 3.09 2.27 2.11 2.22 1.96 3.27 3.41 2.15 2.80 2.51 2.21
H1-003 20 2.32 2.12 1.11 1.17 1.24 0.75 2.66 2.32 1.06 2.38 1.80 1.89
H1-003 24 2.12 1.21 0.75 1.09 0.79 0.64 2.09 1.76 0.25 2.76 1.56 2.42

H1-006 0 -0.04 -0.09 0.00 -0.06 -0.15 0.52 -0.21 -0.14 -0.01 -0.09 -0.18 -0.19
H1-006 4 0.08 -0.06 0.02 0.15 0.20 1.04 0.00 -0.02 0.08 0.00 -0.06 -0.13
H1-006 8 0.11 -0.07 0.02 0.15 0.17 1.34 -0.04 -0.17 0.19 0.08 0.30 -0.27
H1-006 12 0.35 0.26 0.21 0.46 0.48 1.53 0.10 0.15 0.05 -0.10 0.11 0.12
H1-006 16 -0.12 -0.78 -0.74 0.14 0.65 1.90 -0.19 -0.12 -0.10 -0.08 -0.24 -0.17
H1-006 20 0.04 0.13 -0.06 0.34 1.43 2.77 0.16 0.02 0.41 0.06 0.10 0.13
H1-006 24 0.03 0.11 0.08 0.54 1.74 2.45 0.09 -0.10 -0.17 0.01 -0.05 0.02

N1-053 0 -0.08 -0.14 0.04 -0.16 0.72 0.86 -0.13 0.04 -0.33 -0.07 0.08 0.82
N1-053 4 0.12 0.01 0.12 0.59 3.01 3.01 -0.02 -0.24 0.06 0.29 2.93 4.30
N1-053 8 -0.05 -0.15 -0.01 4.04 4.34 4.34 -0.32 -0.31 -0.42 4.22 4.34 3.97
N1-053 12 0.15 0.16 0.30 4.78 4.38 4.68 -0.10 -0.23 -0.17 3.54 3.00 2.75
N1-053 16 0.04 0.96 0.30 3.21 1.23 2.83 -0.03 0.06 0.02 2.10 1.64 1.58
N1-053 20 0.39 0.41 0.28 1.79 1.59 1.60 0.06 0.39 0.05 1.46 0.86 0.89
N1-053 24 0.01 0.14 -0.01 1.59 1.08 0.98 0.54 0.06 0.08 0.37 0.23 0.26

Mack 0 -0.28 -0.24 0.00 -0.31 -0.24 -0.12 -0.10 -0.14 0.47 -0.01 0.06 0.34
Mack 4 -0.66 -0.21 1.11 -0.50 -0.25 2.68 -0.08 0.46 2.09 0.05 0.72 2.44
Mack 8 2.22 0.53 4.16 0.61 0.71 4.16 3.81 4.03 4.21 1.31 3.73 3.60
Mack 12 4.68 4.86 4.86 3.98 3.71 3.80 3.75 3.51 3.51 1.89 3.85 3.36
Mack 16 3.22 3.52 3.97 3.81 3.82 2.93 2.95 3.09 2.21 2.39 2.76 2.05
Mack 20 2.91 2.82 3.22 3.17 3.18 1.97 2.61 2.55 1.47 3.02 2.39 1.33
Mack 24 1.90 1.82 2.33 2.65 2.54 1.38 1.35 1.30 0.75 2.70 2.36 1.81

Reduction of L.monocytogenes in each treatment as compared to the mock-infected control [log (cfu/ml)]

Time after 
treatment (h)

Strain
Commercial phage product Phage cocktail Commercial phage product Phage cocktail

Inoculum level of 106 cfu/mlInoculum level of 105 cfu/ml
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Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-038 1027A 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

H1-050 1027A 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1

H1-163 1027A 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1

L3-043 1027A 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1

L4-162 1027A 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1

T1-227 1027A 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1

4 0 4 0 1 6 5 6 6 5 0 4 5 6 3 0 2 0 3 5 3 5 5 3 4 0 0 6

1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1

0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-003 1039C 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

H1-486 1039C 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1

L4-396 1039C 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1

N1-449 1039C 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0

T1-061 1039C 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1

V1-009 1039C 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0

1 0 1 0 0 4 4 6 6 6 0 6 6 2 3 0 4 2 5 4 0 5 5 0 0 3 0 4

0 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-099 1042B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H1-174 1042B 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1

H1-406 1042B 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1

H1-412 1042B 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

T1-384 1042B 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1

4 0 4 1 0 4 2 4 4 4 0 4 4 3 2 0 2 1 2 3 0 3 3 2 2 0 1 4

1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-178 1042C 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

H1-459 1042C 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

H6-030 1042C 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1

2 0 3 0 0 3 0 3 2 0 0 2 2 0 0 0 0 0 0 3 0 3 3 1 1 0 0 3

1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-006 1043A 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

H6-154 1043A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R6-819 1043A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R6-836 1043A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

R6-850 1043A 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

T1-930 1043A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V1-098 1043A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-139 1044A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

H1-490 1044A 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L4-412 1044A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

N1-052 1044A 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N1-061 1044A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N1-114 1044A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1

T2-083 1044A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1

7 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 6 5 7 6 7 7 7 7 7 4 7

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-426 1045B 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

N1-315 1045B 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1

T1-269 1045B 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 3 0 0 3 0 3 3 0 0 1 3 2 0 0 0 0 0 3 0 3 3 0 0 0 0 3

0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1

0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H1-470 1052A 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

L3-055 1052A 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1

N1-350 1052A 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

R6-740 1052A 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1

R6-913 1052A 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1

T1-127 1052A 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T2-075 1052A 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1

V1-119 1052A 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1

0 0 0 0 0 5 8 5 5 8 0 5 5 0 5 2 5 4 5 6 0 5 7 5 5 0 0 5

0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isolate Ribotype (DUP-) LP-022 LP-025 LP-026 LP-030 LP-031 LP-037 LP-038 LP-039 LP-040 LP-048 LP-054 LP-055 LP-056 LP-070 LP-082 LP-083 LP-085 LP-086 LP-101 LP-105 LP-110 LP-124 LP-125 LP-128 LP-129 LP-141 LP-143 LP-177

H6-175 1062A 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

N1-053 1062A 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T1-261 1062A 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

T1-938 1062A 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

V1-142 1062A 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 2 1 0 2 2 5 5 5 0 5 5 2 2 2 3 2 2 1 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

No. of phages that lysed the majority of isolates

No. of phages that lysed all isolates tested

Total no. of isolates that phages lysed

Table S3.4. Phage susceptibilitya of persistent isolates recovered from 

a food processing facility.

aPhage susceptibility detected by a spot test performed in 3 independent replicates.

 "1" represents lysis from at least two replicates; "0" represents no lysis. 
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Table S4.1. Information of additional phages used in the terminase large 

subunit analysis. 

Phage 
GenBank 

Accession No. DNA Packaging Strategy 

T4 NP_049776.1 
Circularly Permuted, Terminally 
Redundant 

Lambda NP_040581.1 Cohesive Ends 
P100 AAY53308.1 Direct Terminal Repeats 
SPO1 YP_002300330.1 Direct Terminal Repeats 
A511 YP_001468454.1 Direct Terminal Repeats 

P40 YP_002261418.1 
Circularly Permuted, Terminally 
Redundant 

P35 YP_001468786.1 
Circularly Permuted, Terminally 
Redundant 

A500 YP_001468388.1 
Circularly Permuted, Terminally 
Redundant 

A118 NP_469451.1 
Circularly Permuted, Terminally 
Redundant 

B025 YP_001468641.1 Cohesive Ends 

A006 YP_001468842.1 
Circularly Permuted, Terminally 
Redundant 

PSA CAC85558.1 Cohesive Ends 

B054 AAY53107.1 
Circularly Permuted, Terminally 
Redundant 

Mu NP_050632.1 Host Ends 
T7 AAP34063.2 Direct Terminal Repeats 
T5 AAU05290.1 Direct Terminal Repeats 
HK97 NP_037698.1 Cohesive Ends 
P2 NP_046758.1 Cohesive Ends 

P22 YP_063734.1 
Circularly Permuted, Terminally 
Redundant 

D3112  NP_938233.1 Host Ends 

933W NP_049511.1 
Circularly Permuted, Terminally 
Redundant 

P1 YP_006576.1 
Circularly Permuted, Terminally 
Redundant 

vB_EcoM_CBA120 YP_004957856.1 
Circularly Permuted, Terminally 
Redundant 
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