HOW MISLEADING CAN SAMPLE ACF’S OF STABLE MA’S BE? (VERY!)

SIDNEY RESNICK, GENNADY SAMORODNITSKY AND FANG XUE

ABSTRACT. For the stable moving average process
X :/ fit+z)M(dz),t =1,2,...

we find the weak limit of its sample autocorrelation function as the sample size n increases to cc.
It turns out that, as a rule, this limit is random! This shows how dangerous it is to rely on sample
correlation as a model fitting tool in the heavy tailed case. We discuss for what functions f this
limit is non-random for all (or only some this can be the case, too!) lags.

1. INTRODUCTION

The sample autocorrelation function (acf) of a stationary process { X; }1<¢< oo has played a central
statistical role in traditional time series analysis, where the assumption is made that the marginal
distribution has a second moment (see e.g. Brockwell and Davis, 1991). However, more and more
data sets from fields like telecommunications, economics, insurance and finance exhibit infinite
variance (see Duffy et al., 1993, 1994; Meier-Hellstern et al., 1991; Resnick, 1997a; Willinger et al.,
1997). It is therefore natural to question whether the classical methods based on acfs are still
applicable in heavy tailed modeling, where the corresponding version of the acf is often defined by

and
) 1o
(1.2) %my:;EQ&XHmh:QLz“.

are the sample covariance functions.

Continuing interest in the sample acf for the heavy tailed case seems to be based on the relative
success of the acf for analyzing data from an infinite order moving average process (MA(o0)).
Consider the process

o0
Xt = Z Cth,j, t= 1,2,...,

j=—oo

where {Z;} are iid random variables in the domain of attraction of an a-stable law, 0 < o < 2.
Davis and Resnick (1985) have shown under appropriate summability conditions on the coefficients

{¢;} that for all A > 0,
~ P
pn(h) — p(h)
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P . o1e
where “—” denotes convergence in probability and

> e 00 CiCj+h
p(h) = W
j=—00 ")
is a constant.

However, if for some heavy tailed processes, the sample acf loses this desirable feature of con-
verging to a constant, the usual model fitting and diagnostic tools such as the Akaike Information
Criterion or Yule-Walker estimators will be of questionable applicability. In this case, the mischief
potential for misspecifying a model is great, and more care must be taken in using the sample
correlations for model fitting and estimation (see e.g. Resnick, 1997b).

Recent studies seem to indicate that processes with asymptotically degenerate sample acf (like
MA (00)) form a very limited class in the heavy tailed world. For bilinear time series and some
variations of MA(co) (sum of two MA(c0)’s, coefficient permutation with reset), it is shown that
the sample acf converges in finite dimensional distribution to a random limit (Davis and Resnick,
1996; Resnick and Van Den Berg, 1998; Cohen et al., 1997).

In order to understand what happens to sample correlations in heavy tailed cases, it is natural to
look at stationary a-stable processes, 0 < o < 2. This class of processes can be viewed as a heavy
tailed analog of Gaussian processes, and its structure is relatively well understood. Cohen et al.
(1997) conducted empirical studies on two examples of ergodic symmetric a-stable (SaS) processes
of the form

Xt:/Eft(Qi)M(d:E), t:1,2,...,

where M is a SaS random measure on E with o-finite control measure m, f; € L*(E,m) for all ¢,
and 0 < a < 2 (see Samorodnitsky and Taqqu, 1994). Simulation evidence was found in both cases
that the limit of the sample acf as the sample size n goes to co is random .

This article focuses on the class of a-stable moving average processes

(1.3) XF/Oo Flt+z)M(de), t=1,2,...,

where f € L*(R!), M is a SaS random measure on R! with Lebesgue control measure, and
0 < a < 2. Although one might think this class is quite close to the MA(c0) class, that is
not the case. We will evaluate for these processes the weak limits of the sample acfs, using the
series representation of {X;} and certain results on tetrahedral multi-linear forms provided by
Samorodnitsky and Szulga (1989). Despite {X;}’s kinship with MA(oc0), these limits are usually
(with notable exceptions) random, thus confirming the empirical results. The limits, of course,
depend on the lag A and the function f.

In §2, we give the series representation of the sample covariance 9, (h) and write it as sum of
“diagonal” and “off-diagonal” parts; §3 finds the weak limit of the diagonal part under suitable
normalization; §4 shows that the off-diagonal part, when compared with the diagonal part, can
be neglected. In §5, we summarize our findings and discuss when the weak limit of p,(h) is
degenerate. Examples are used to demonstrate the arbitrary limit behavior of acfs when different
lags are studied. In particular we construct examples which show that the sample acf may be
asymptotically constant for some lags, but asymptotically random for other lags.

A simulation result is presented in Figure 1 for one particular stable moving average process
which can be written as sum of two MA (o) processes. The sample acfs of eight independent copies
are drawn in the first eight plots and overlaid in the last. For this process, the sample acfs appear
to have a degenerate limit for lags no bigger then 10, but randomness takes over afterwards, as
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indicated by the fuzziness in the last plot. Evidence continues to accumulate which casts doubt on
the appropriateness of the acf as a tool for model fitting and parameter estimation in heavy tailed
models.

2. DECOMPOSITION OF THE SERIES REPRESENTATION OF COVARIANCE FUNCTIONS
Let () be any density function that is strictly positive on R'. A change of variable (Samorod-
nitsky and Taqqu, 1994) in (1.3) gives

(2.1) (Xp,t=1,2,...} % {/OO f(t+a)q(@) YMi(dz),t =1,2,... }

(the equality is in the sense of finite dimensional distributions), where Mj is a symmetric a-stable
random measure on R! whose control measure has density g(z) with respect to the Lebesgue
measure. Unlike M, M; has a finite control measure, hence has the following series representation
(Samorodnitsky and Taqqu, 1994):

{Mi(4), A€ B} = {C;MZeir;”“l(w €4),A¢€ B} :
=1
where B is the Borel o-algebra on R1,
oo -1 -« :
e, ifa#1
2.9 = —a ; d — I'(2—a) cos(ma/2)? !
(2.2) C (/_Ooas sinz :c) {2/7r, e 1

is a constant, and
(2.3) {¢;} are iid Rademacher random variables with Ple; = 1] = Ple; = —1] = 1/2;
(2.4) {I'j} are arrival times of a Poisson process with unit rate on [0, c0);

(2.5) {V;} are iid random variables with the density g(z).
All of the above three sequences are independent.

We now write down the series representation of X;. Define
(2.6) Sy = CY N eV f(Vi+ t(Ve) TVt =1,2,...

=1
Then the series in (2.6) converges almost surely (Samorodnitsky and Taqqu, 1994), and
{Xet 2 1} £ {Sp,t 2 1}.

With 4,,(h) defined by (1.2), we have for all H > 0,

(2.7) {n4,(h),h=0,1,... H} < {ZStSt+h,h = 0,1,...,H} .
t=1

From (2.6), the following holds almost surely.

(2.8) > SiSpn=) (Ci/a > (fir;l/af(vi + t)Q(W)_l/a5t+h)>
t=1

t=1 =1

-y (c;/afj (el /2 F Vit Da(v) Hece

t=1 =1
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FIGURE 1. Stable Moving Average: Sample Correlation Functions
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(& Yo r Vit t+R)a(i) Yo+ 30 6T F (v + ¢+ h)a(v) ) )
J#

= SIS F(Vid O F (Vi+ t+ h)q(Vi) 2/
=1 t=1

+ O YD e T TN (Vi 05 (V4 o+ R)g(Vi) T (V) T
i=1 j#i t=1
= Y, (h)+Y!(h),
where

@0)  wm = (F) oI Y S ik W)
@ i=1 t=1

is the sum of the “diagonal” terms where 7 = j in the double sum »7°; 3°°%, and Y;/(h) is the
sum of the “off-diagonal” terms. We will see that both series converge almost surely. As a matter
of fact, for all H > 0,

(2.10) {Y!(h),h=0,1,..., H} £

2a poo M ]
{(o) / Zf(t+:c)f(t+h+:E)Q(m)—2/aM1(dm),h=0,1,...,H},

Ca/2 -0 31

where Mj is a positive strictly a/2-stable random measure on R!, whose control measure has
density g(z) with respect to Lebesgue measure (Samorodnitsky and Taqqu, 1994). Being the series
representation of the stable integrals in (2.10), the series of the diagonal terms (2.9) converges
almost surely to Y,!(h). So the series of the off-diagonal terms also converges almost surely. But a
Rademacher series converges unconditionally whenever it converges almost surely (Samorodnitsky
and Szulga, 1989). Hence the convergence to Y,”(h) is unconditional. This will enable us to rewrite
this sum with an arbitrary deterministic change of order.
With (2.7), (2.8) and a change of variable in (2.10), we have the following.

Proposition 2.1. For any H > 0 and any n > 0,
. d
(nAn(h),h=0,1,...,H) = (Y (h)+ Y, (h),h=0,1,...,H),

with
(211)  {Yi(h),h=0,1,...,H} £
Ca 2/a poo M )
{(C/Q) /Zf(t+m)f(t+h+m)M(da:),h=0,1,...,H},
« T ¢=1
and

(212)  Y(h)=C? > e DT VAN f(+ Vi) F (E+h+ V) q(Vi) TV g (V)Y
1<ij<oo t=1
i#)
and where M is a positive strictly stable random measure on R! with indez a/2 and Lebesgue
control measure, q(x) is any density function that is strictly positive on R, {¢;}, {T;} and {V;}
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are independent sequences of random variables defined by (2.3), (2.4) and (2.5), and the constant
Cy is defined by (2.2).

Remark 2.1. Here we are only interested in the distributions of Y,!(h) and Y,”(h) and will not
care about the dependence structure between them. As we will see later, Y,”(h) is dominated
asymptotically by Y,/ (h), and Slutsky’s Theorem (see e.g. Durrett, 1996) will be used to deduce the
limit behavior of 4,,(h) based on the limit behavior of Y,!(h).

Remark 2.2. Although the density g(z) appears in (2.12), it is not involved in (2.11). Thus the
distribution of Y,!(h) does not depend on g(z), and it turns out that neither does the distribution
of Y”(h). This is because Y;”(h) has the same distribution as the stable integral of f(z,y) on R2
with respect to the product measure M x M, if we let

Flay) = { %?zlf(t+:r)f(t+h+y), gziz,

Note that, if desired, ¢ could be chosen to depend on n.

3. THE DIAGONAL PART

We begin with several lemmas used in the derivation of the weak limit of Y,! when normalized
by n~2/,
First a notation: <P~ := |a[’sign(a).

Lemma 3.1. If0 < g < 1, then for any real number a,b and c,

(@+b)<P — (a+ c)<ﬂ>‘ <2 (el +1e”)

Proof. If (a + b)(a + ¢) > 0, then the triangle inequality gives
@+ =@+ )| < l@+b) - @+ < (1o +1cl’)

If (a +b)(a+c) < 0, then either a(a +b) < 0 or a(a + ¢) < 0. Without loss of generality, assume
a(a + b) < 0, which means ab < 0 and |a| < |b], thus

@+ =@+ )| = la+ b’ +la+ el <o + (lal +1cl”) <20 + el

Lemma 3.2. If0 < 8 <1 and ¢(z) € LP(—00,0), then

1 00 B 1
(3.1) —/ dz —>/
nJ 0

and

o n <p> 1 o <B>
1
(3.2) ﬁ/_oo <t_1 B(t + m)) dx —>/0 < Z ¢(t+m)> de.

t=—o00

o p
> (t+a)| da,

t=—o0

> o(t+a)
t=1

Proof. First note that ¢(z) € L? guarantees that all the above integrals are finite. We will only
prove (3.2) when n takes just even values. The odd case can be treated exactly the same, and the
proof of (3.1) is similar and actually easier.
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Let
1 0 2n <p>
A, = — t de,
[ (Goeen) o
1 n n—1 <p>
B, = ) <t:z_:n¢(t+m)> de,
1 /n—1 <p>
6 - | (zqs(m)) &,
0 t=—n
1/ oo <p>
p - | (Z qu(t—I—m)) dz.
0 t=—0o0
Since
n—1 <p> o]
(Sowesn)  |< 3 owrar
t=—mn t=—o0
and
1 < [eS)
[ X wttreifde= [ 1gle)de < ox,
0 " " —o0
from the dominated convergence theorem,
(3.3) lim C,, = D.
n—oo
Moreover,

1 o n—1 <p>
An = oo (Z ¢(t+a:)> dz,

0 \t=—n

1 n—1 <p>
A,—B,| = — t d
| | 2n /|z|>n (Z i +m)> ¢

and

t=—n

1 n—1
< — T ﬂda:
< 5 /| X ottt
_ 1 SH e B - [ B
= <Z [ et ) JE dw>
_ 1 S B S B
= (; [ eras3 [ o) dx>

1 2n
S _

> [ el
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But this is the Cesaro mean of the sequence f\z‘\>" |¢(z)|Pdz, which goes to zero as n goes to oo, so
(3.4) lim |4, — B,| =0.
n—od
Next we estimate the distance between B,, and C,,.

1 n—1 j+1 n—1 <p>

j:—n t=—n

1 n—1 1 / n—-1 <p>
= o Z/O (Z¢(t+]+m)> dz — 2nC,,

j:—n t=—n
1 n—1 1 n+j—1 <p> n—1 1 /n—-1 <pB>
= o Z/O > b(t+a) da:—z/o <Z¢(t+x)> de
j=—n t=—n-+j j=—n t=—n
1 & 1 n+j—1 <p> n—1 <p>
< %Z /0 > H(t+e) —(Z ¢(t+az)> dz.
j=—n t=—n+j t=—n
Applying Lemma 3.1, the above can be bounded by
1 n 1 n+j—1 B —n+j5—1 B
EZ/ ST oslt+a) +| > ¢t+a)| |de+
7=1 0 t=n t=—n

1 -1 1 —n—1 A n—1 A
E‘Z 0 Z?(t”) + Z.¢(t+w) da
j=—n t=—n-+j t=n-+j
1 n 1 /ntj—1 —n+j5—1
< S [ eeraf+ Yl )de+
nj:l 0 t=n t=—n
1 -1 1 —n—1 n—1
S [ X seraf e X et el | do
j=—n 0 t=—n-+j t=n+j
1 n 1 0o —n+j—1
< Y [ (Teeraf+ Y jo+a)f)det
nj:l 0 t=n t=—o0
—1 1 —n—1 [e'e]
23 [ X eeraf+ Y s ol | da
j=—n’0 \t=—o0 t=n+j

-1 o
z)Pdx 1 z)Pdz
a0 Y [ o)

n
—00 j=—n

= /noo|¢(:p)|ﬂdm+%jzi;/_;l+j|¢(m)|ﬂdm+/_
n—1

= [ el S [ (sl
|z|>n j=0 |

z|>j
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With the same reasoning as applied to (3.4),

(3.5) lim |By — Ca| = 0.
n—oo
From (3.3),(3.4) and (3.5), 4, =& D as n — oo. O

Proposition 3.3. Suppose M is a positive strictly stable random measure on R' with index a/2
and Lebesgue control measure, and
Ca
Ca/Z

2/a 1 oo _
(3.6) &(h)::( ) /OZf(t—l—a:)f(t-l—:c—l—h)M(dm).

Then for all H > 0,
(3.7) {n—z/ay,;(h),h =0,1,... H} — {4(h),h=0,1,...,H}, as n — oo,
where “=—" denotes weak convergence.

Proof. For any real 6y,01,...,0q, if we take ¢(z) = f(z) Efzof(a: + h)8j, in Lemma 3.2, then
(2.11) shows that both the scale parameter and skewness parameter of the strictly o/2-stable
random variable n =2/« Ztho 6,Y,!(h) converge to the corresponding parameters of Ef:o Ory(h),
which is also a strictly «/2-stable random variable. So

H H
(3.8) n_z/aZGthi(h) = Zeh’y(h), as n —» co.
h=0 h=0
Thus (3.7) follows from the Cramér-Wold device (see e.g. Billingsley, 1995). O

4. THE OFF-DIAGONAL PART

In this section, we need the following notation:

| ) Inz, ifz>1;
O+ @ = 0, otherwise.

Lemma 4.1. (Samorodnitsky and Szulga, 1989, Proposition 5.1) If {€;}1<j<cc and {T'j}1<j<co are
independent sequences that are defined by (2.8) and (2.4), then

(a) there exist constants mo,C, and [ < «, such that for any m > mg and any identically
distributed random variables W; that are independent of {¢;} and {I';},

—1/apn—1
Bl > aq 0T Wit ecipy| < COB(IWG]*(1+ Iny [Wig]))?,
m<1<)<oo

IN

—1/an—1/a a
Bl > el VO Wi, e iy CE(|Wi|*(1 + In% [Wi)));

m<i<j<oo

(b) there exist constants mi,C, and B < «, such that for any m > my and any identically
distributed random variables W; that are independent of {€;} and {I';},

(a3
oo

—1/a a
E| Y o, /*“Wilpw,ecy| < CEW;P,
j=m+1
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(a4
[ @]

E| Y T Wilyw,esy| < CE(W*(1 + Ing [Wy))).
j=m-+1

Lemma 4.2. Using the notation of §2, define

(4.1) U =02 f (Vi) f (E+ R+ V) g (Vi) g (vy) Y

Then for all i # j, B|U™|"

i — 0, asn — co.

Proof.

(n) « _ n72 /'OO /oo

If a <1, then from the triangle inequality,

< / / Z|ft+a: (t+h+y)|*dzdy

0 =1

_ %(/mu(:gnadm) —o0.

If @ > 1, then from the convexity of |z|“,

oo oc
= n? / /
—0o0 —00 t—

1
n®2 Z/ / flt+a)f(t+h+y)|*dedy

no=? (/_oou( )|°‘dm> 0.

We are now ready to prove that the off-diagonal part Y,”(h) does not grow as fast as the diagonal
part Y, (h).

E|U

dxdy.

> ft+a)f(t+h+y)
t=1

g |*

%)

(a3

E dzdy

n) | 1 «
™) -
n

)

f(t+a:)f(t+h+y)

IN

O

Proposition 4.3. For all h > 0, n=2/*Y" (k) Lo

Proof. From (4.1), we write

(42) n72/ay7il(h) :Ci/a Z GZGJF_I/Q —1/(1 (n) CQ/a Z Z] ,
1<i,5< 00 1<4,j<00
i7] i#£j
where
(4.3) O3 = e T VUl

Due to symmetry and the unconditional convergence of the series in (4.2) (cf. comments before

Proposition 2.1), it is enough to show ZK] ™) 0. For m1 and mgy specified by Lemma 4.1, we
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can always assume mj > my. Since

ma 0o

PRSI DR/ AL D DR
i<j i=1 j=i+1 Ma<i<j<oo
mz mp ma 00
DD IR AR DD DI LT D A
i=1 j=i+1 i=1 j=mi+1 ma<i<j<oo

we need only prove

(i) ﬁi(;) L0 for all 1,7;

(i) 227241 ﬁi(jn) — 0 in L* for all 4;
(111) E7n2<’i<j<oo [71(]”) — 0in L%

From Lemma 4.2, Ui(jn) — 0 in L%, thus in probability, so [72-(]@)

To prove (i), we observe that ) -~ gm = eryt/e > iyt ejI’j_l/aU(n). Because of

j=mi+1 zaj 7 7]
Uzgﬂ\ (1+Iny UZ-(].")‘) - 0.

— 0 in probability, yielding (i).

Lemma 4.1, it will be enough to prove E
For (iii), Lemma 4.1 says that E Ui(]n)

With the help of Lemma 4.2, though, all of (i), (ii) and (iii) will follow if In
bounded, that is, for any fixed A > 0, the functions

: (1+In* |Ui(]n)|) — 0,k = 1,2 will suffice.

U i(;l) ’ are uniformly

B (a,y) = 07" Y f(t+2)f (t+ b+ y)a(e) ™ q(y)
t=1

are bounded uniformly in (z,y) € R? and n > 1.
Now recall that for each n the density g(z) can be chosen arbitrarily without affecting the
distribution of ¥,/ (cf. Remark 2.2). To suit our need, let g(z) = Q(z)/ [~ Q(u)du with

n+h /2
Q(z) := max < go(z), (Z flz+ t)2> ,
t=1

where go(z) is any density that is strictly positive on (—c0,00). With this choice, by the Cauchy-
Schwartz Inequality,

n fo) 2/
B @] = e sk s b4 Q@)™ ([ Q)
t::L n 1/2
< n72e (Z i+ flt+ h+y)2>
t=1 t=1
fe%) n+h /2 2/a
(Q)Q(y)) ™M/ / qo(u) + (Z f(u+t)2> du
- =1
2/a
<

T =1

1/2 oo nth )
n 2 Q@) Qy)Y) T (Q=)Q(w) (1 + / > If(ut t)l“du>
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= n 2%« (1 + (n+h) /Z If(U)IadU>2/a,

which only depends on n and has a finite limit, thus uniformly bounded. O

5. SAMPLE CORRELATION FUNCTIONS

Proposition 4.3 and Proposition 3.3 have established the asymptotic dominance of the diagonal
part over the off-diagonal part. Together with Proposition 2.1, they yield the following theorem.

Theorem 5.1. Let Xy, 4,(h) and p,(h) be defined by (1.3),(1.2) and (1.1). For all H > 0,
(nl_Q/o‘?yn(h),h =0,1,... H) — (4(h),h =0,1,...,H)
and pp(h) = p(h), as n — oo, where (h) is defined by (3.6) and p(h) = 5(h)/5(0).

What Theorem 5.1 indicates is that p,(h) usually has a random weak limit. The following
corollary specifies when this limit is nonrandom.

Corollary 5.2. For p,(h) to have a constant limit, it is necessary and sufficient that there exists
a constant p, such that Et——oo (z+t)f(z+t+h)=p> _ flz+1t)? almost everywhere in
[0,1). In this case, pn(h) ER p(h) = p.

Proof. Sufficiency follows from Theorem 5.1, using the definition (3.6).

Conversely, suppose the distribution of p(h) concentrates on one point p. Then 4(h)/¥(0) = p
and

0 = 4(h)— p¥(0)
C, 2/a
B (Ca/z) / <Z flat+t)f@+t+h)—p Z f(:c+t)2> M (de).

t=—o0 t=—oc0

But the right hand side is a stable random variable, and it is zero only if its scale parameter is zero
(Samorodnitsky and Taqqu, 1994, page 5). Hence

-

Z fle+t)f(z+t+h)=0p Z f(z+1t)? almost everywhere.

t=—o00 t=—00

Z fa+t)f@+t+h)—p Y flz+1)?

t=—o0 t=—o0

and

O

Before we present some examples that illustrate Corollary 5.2, we define for all f € L*(—oc0, c0)
the following periodic function

(5.1) gn(frz) =Y fl@+t)f(z+t+h),

t=—o0

usually abbreviated as gp(x) when there is no ambiguity. With this notation, what Corollary 5.2
says is that p,(h) has a nonrandom limit p if and only if g, (z) = pgo(x) almost everywhere.
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Example 5.1. Suppose f(z) = > 7= _ cxlp1y(z — k), with {cz} € L*(Z) =: I*. In this case,
gn(x) =Y ;o _ . cicitp are constants, therefore p,,(h) have degenerate limits gp(z)/go(z). Actually,
if we let Z_, = M([k,k + 1)), then {Z;} are iid stable (thus with regularly varying tails) with
index a and Xy = ), ckZi— is a traditional moving average process MA(co) (see Davis and
Resnick, 1985).

Example 5.2. Set f(z) =>" > 00 c,(:)lA (z — k), where {c,(:),k € Z} €l*i=1,2,...,m,
and A, As,..., A, are Borel sets with U™, A4; = [0,1), Ay N Aj» = 0 if ¢/ # ¢". This time
gn() = T T oc cp ey 14, (@), and
SO gn(@)M(dz) T, DO L
%) Y - 27
s go@Mda) gm g5 (o)
where €@ = M(A;) are positive strictly stable random variables with index «/2. This limit is
N o\ 2 .
usually random unless Zc,(;)cgih/z (c,(:)) does not depend on ¢. If we let Z(f;g = M(A4; + k),

pn(h) =

then {Z,(:)} are independent sequences of iid stable random variables with index «, and X; =

PR DA c,(j)Zt(i)k is a sum of m independent moving average processes (see Cohen et al.,

1997).

Besides the MA (o0) process in Example 5.1, are there any other stable moving average processes
with the same property that the limits p(h) are degenerate for all lags h? We will see from examples
later that the answer is yes. However, we have the following conditions which guarantee that the
process must be a finite order classical moving average.

Corollary 5.3. Suppose gp(f,z) is defined by (5.1), and

(i) there exists ¢ > 0 such that f(z) =0 whenever x < 0 orz > q+1;
(ii) f(z) ts continuous on (k,k+1) for allk € Z;
(iii) go(f,x) > 0 for all z € (0,1);
(iv) there exist constants pp,h > 0, such that p(h) = pn almost surely.

Then there exist constants cg,c1,...,cq and a sequence of iid SaS random variables {7} _ oo <h<oo,
such that Xy = > 1 _ycuZi—p,t =1,2,....

Proof. Let g(z) = (go(f,«))Y/?. Then for any k € Z, we have on (k,k + 1) that g(z) > 0 and is
continuous, thanks to assumptions (i), (ii) and (iii). So we can define on R\Z a function f(z) =
f(z)/g(x), which is also continuous on (k,k + 1) for all k € Z, and satisfies for all z € (0,1) and
h>0

q—h

(5.2) Fa@+t)fz+t+h) = Z flett)f@+t+h) _ gn(f,2)

go(f, ) T olfie) M

where the infinite sum has actually only ¢ + 1 — h nonzero terms, since f has a compact support.
We now proceed by introducing the following polynomials. Let

~
Il
o

t=—o0

F(z) := Zf(m + k)"
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and
q
H(z) = 294 Z Pk (zq_k + zq"'k)
k=1

(5.3) = pgtpg1zt+p12l 20+ pr2?t 4 pp2ttE 4 4 py2®e
By (5.2)

g q

H(z) = (Z fa+ k)z”) (Z fla+ k)zk>
k=0 k=0
(5.4) = 21F, (z71) Fy(2).
For each z € (0,1), there exist K € C, r € {0,1,...,q}, and b; € C\{0}, : =1,2,...,r, such that
(5.5) Fo(z) = K24 " [[(2 - ba).
i=1
Substitute (5.5) into (5.4), we have
H(z) = 21K? H ;) (2 — bi)
(5.6) = <K2 I )) <H z—b; 1) (z— bi)> .
=1

Comparing (5.3) with (5.6), we observe
(a) r =max{h : pp # 0,0 < h < g} is completely determined by the p’s and doesn’t depend on z.
(b) b1,b7 %, b2,b5", ..., by, b L are all the non-zero roots of H(z). So given H(z), there are at most
2" possible choices for the set {b1,b2,...,b.} (the number of choices can be less than 2" if
H (z) has repeated non-zero roots).
(c) K2[[i_{(=bi) = p,. So given {b1,b2,...,b,}, there are at most 2 choices for K.
To sum up, given H(z), there are at most 2-2" polynomials F;(z) that satisfy (5.4). Consequently,
for each k, f (z+k) can take at most 2-2" possible values. Therefore from the continuity assumption,
for every fixed k, f(z + k) has to be a constant for all x E (0,1). Call this constant cg, and we have

f(z+k)=crg(z) for all z € (0,1). If Z_;, = fk M (dx), then {Z}} are iid and
k41 q
xi= [ ferom@ = 3 a / de) =Y eri,
k=—o0 k=0
since ¢, =0 when k < 0 or k > q. O

The following examples indicate that assumptions (ii) and (iii) are necessary in Corollary 5.3.

Example 5.3. In the setting of Example 5.2, let m = 2, 41 =[0,1/2), As =[1/2,1), and
¢, =cp=0,ifk<0ork>2,
cﬁ:2,c1—9 02—4
g =1, =6,cf =8,
(1) (2

where ¢, denotes ¢; ' and ¢j, denotes ¢, for every k € Z. In this case, (ii) of Corollary 5.3 fails.
But since go(z) = 101, gl(m) = 54, go(x) = 8 are all constants and gp(z) =0if k < 0 or k > 2,
p(h) is nonrandom for all h. However, this process is not a classical finite moving average.
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Example 5.4. The process of Example 5.3 has, up to a multiplicative constant, another represen-
tation. In the notation of that example, let

N cfm]{m}, if {z} <0
I )—{ ¢ {z}, if{e} >0

where [z] := max(Z N (0,z]), {z} := = — [z] — 1/2, and ¢}, and ¢ are defined in Example 5.3.
Here f is continuous on (k,k + 1) for all k£ € Z, but (iii) of Corollary 5.3 fails as g,(f,1/2) = 0.

The next example shows that without assumption (i) in Corollary 5.3, assumptions (ii), (iii) and
(iv) are not enough to guarantee that the process is a classical moving average of finite or infinite
order.

Example 5.5. Let ¢ : (0,1) — (0,1) be any continuous function. For all z € (0,1), the function
F,(z) := exp (¢(z) (z — z71)) is analytic on {z : 0 < |z| < oo}, thus has Laurent expansion (see
e.g. Ahlfors, 1979)

[o @]

(5.7) Fo(z2)= > a(z),

k=—oc

where

2=t 2 (=DFay(2), if k <O0.

2me
Let f(z+k) = ap(x) for all z € (0,1) and k € Z. Then f(x) satisfies (ii) and (iii) of Corollary 5.3,
and is in L*(R), since

RS 3 / ' Joa(e) [ da

k=—oc0
«

o0 1 [ 2+ k|
é(z) J+|
< YRR dx
- k_z_:oo/o JZ::O]!(]‘FM’D!
< f: ii .1 < oo.
2=\ & TG+ TR

Moreover, for all @ € (0,1), the Laurent series F,(271) = Y270 __ aj(z)z~* and (5.7) both
converge absolutely on {z: 0 < |z| < o0}, so

1 = F,(27YF,(2)

— ( i ak(m)z_k> ( i ak(m)zk>

k:—oo k:—OO

oo [e @]

= Y > a(@apin(x)"

h=—o00c k=—¢

oo o @]

= Y D fe+k)f@+k+h)"

h=—o00 k=—o0
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= Z gh(f) m)zh'
h=—o0
From the uniqueness of the Laurent series of the constant function 1, we have go(f,z) = 1 and
gn(f,z) = 0 for all A > 0. So p(0) = 1 almost surely, and for all h > 0, p(h) = 0 almost surely.
However, {X;} is rarely a classical moving average process (not, e.g., if ¢(z) = z, since the spectral
measure of (X7, X3) is not discrete).

Remark 5.1. This example shows that one classical method of testing whether data comes from
an iid model, namely testing if p(h) ~ 0, h > 0, is extremely unreliable. The process in Example 5.5
is far from iid.

Our final result considers special cases of Example 5.2. It is significant because it shows the
variety of the asymptotic behavior of acfs, which seriously questions the viability of the sample
correlation function as an appropriate tool for statistical estimation or model fitting of heavy tailed
time series models.

Proposition 5.4. Under the setting of Example 5.2 with m = 2, let N be the set of positive integers
and A,B subsets of N. If A and B satisfy any one of the following three conditions, then we can
choose ¢}, and cf, such that p(h) is degenerate when h € A and random when h € B.

(i) A={H,H+1,...},B=N\AH € N.

(i) B={H,H+1,...},A=N\B,H € N.

(iii) A,B are finite and AN B = {).

Proof. As we have seen in Example 5.2, p(h) is degenerate if and only if
[e ] !l oo /1
Y b oo Cklhth D b oo CkChth
00 ;2 oo 72
Zk:—oo Ck Ek:—oo L

(1) (2)

where ¢}, denotes ¢;’ and ¢, denotes ¢’ for every k € Z. There are many ways to choose ¢} and
¢} to make (5.8) hold when h € A and fail when h € B. We will show just one example.

(i) If ¢, = ¢}, = 0 whenever k > H or k < 0, then (5.8) holds for all h € A. Most choices of ¢},
and ¢} will fail (5.8) when h € B.
(ii) Let ¢f, = #0if k=0,-1,-2,...,—H + 1, and ¢{; # —5/3, ¢, # 5;
dy =2, =3;
Ay =23kl =21k ifk=123, .. ;
¢, = ¢y = 0, otherwise.
With these ¢}, and ¢f,

(5.8)

o 0 o] 0 o o
Z clkzz Z c%2+4+22672k= Z c'k'2+9+22272k= Z clklz.
k=—00 k=1-H k=2 k=1-H k=2 k=—oc0
It h < H,
%) —h —h o
Z Clkc;ﬁ-h = Z CIkCIk+h = Z CIkICZ+h = Z Clklclkl-s-h-
k=—00 k=1-H k=1-H k=—o0
Ifh=kH-+kyk1>1,k=1,2,...,H—-1,
oo oo

[ 1 / " " _ n 1
E Cklk+h = C—kyChn H 7 C kyCkyH = E CrClhth>

k:—oo k:—r_)o
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since ¢, =c"; #0and ¢ gy # ¢ g
If h =FkiH, ky > 1, it can be similarly checked that 372 cici , # > 02 chchop-
(ili) Suppose I = max(AU B). Pick ¢}, such that ¢}, = 0if k < 0 or k > I and ¢)” +¢}> > 0. Define

aj, = i;g ciCyyp, and
I .
n__ | a,+e ifheB
(5.9) = { aj,, otherwise
. . ;T l no_ [.n l
where € awaits to be decided. Let A" = [a |j—k|]j,k=0 and A" = [a U—k\]j,kzo be two

(I41)x (I4+1) matrices. Linear algebra shows that A’ is positive definite. Since all the main sub-
determinants of A" are continuous functions of €, we can find an € # 0 to keep A" positive defi-
nite. This achieved, there must exist cjj, ¢, ..., ¢/ such that o} = i;é{ il g, h=0,1,...,1
The last assertion can be proved via linear algebra or through a probability approach (see
Brockwell and Davis, 1991, Theorem 1.5.1, Proposition 3.2.1, Theorem 3.2.1).
With ¢}, and ¢ chosen this way, (5.8) becomes
d o
(5.10) —h =k
a4 9

From (5.9), we have that (5.10) fails if and only if A € B.
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