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1. Introduction ~Definitions. This paper represents a contribution to the 

statistical and mathematical theory of orthogonal latin and F-squares. The re-

sults will be usefUl in designing experiments either simultaneously or sequentially 

using the same set of experimental units. After some preliminary definitions below, 

2m we present our main theorem relating sets of single degrees of freedom in an s 

factorial (s a prime power) to the sm treatments in a latin square. We demonstrate 

m the necessary and sufficient conditions for these s -1 single degrees of freedom 

to construct a latin square and for another set of sm-1 single degrees of freedom 

to form a second latin square of order sm which is orthogonal to the first. The 

complete set of orthog~nal latin squares is constructed in this manner. 

In the next section we demonstrate the one-to-one correspondence between fac-

torial effects and treatments in F-squares and latin squares. Three theorems are 

presented showing how to decompose latin squares into F-squares with differing 

numbers of symbols. These three theorems are called ~-comwosition theorems, 

whereas theorems relating to construction ofF-squares with fewer symbols are 

denoted as co!Position theorems (see Mandeli [1975]). 

In section 4 a theorem is given which shryws, for s a prime power, and for a 

pair of orthogonal latin squares of order s, how to obtain the complete set of 

orthogonal latin squares of order s. In the last section of the paper, the com­

plete set of orthogonal latin squares of order 8 is used to illustrate the results. 

An F-square has been defined by Hed&yat [1969] and Hedayat and Seiden [1970] 

as follows: 
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Definition 1.1. Let A = [~ 1 ] be an n X n matrix a?liJi}J.~t E = (At, ~~ • • ·, A8 ) 

be the ordered set of m ··distinct elements or symbols o-r A. In addition, suppose 

that for each k = 1, 2, ••• , m, ~ appears exactly ~k times (xk ~ 1) in each row 

and column of A. Then A will be called a frequency square or, more concisely, an 

F-square on~ of order nand frequency vector (~1 , ~a' .•• , A.). 

The notation we use to denote this F-square _differs somewhat from that given 

by Hedayat and Seiden [1970]. We call such a square an r( ~1 , ~>.a, • · •, ~· )· 

Note that .A.1 + ha + • ~ • + A• = n and that when ~" = 1 for all k and m = n, a latin 

squa.re of order n results. 

As with latin squares, one may consider orthogonality of a pair ofF-squares 

of the same order. The above cited authors have given the following definition to 

cover this situation: 

Definition 1.2. Given an F-square F1 ( ~1, Aa~, • • ·, ~ll) and an F-square 

F2 ( 1\~, Balla, • • •, B:' ), we say F3 is an orthogonal mate for F1 (and write F3 l F1 ), 

if upon superposition of F3 on F1 , A1 appears ).1 u3 times with BJ. Note that when 
k t 

A1 = l = u 1 for all i and j and E ~~ = n = .E uj, we have the familiar definition 
i=l J=l 

of the orthogonality of two latin squares of order n. In passing we .mention that 

we shall denote the co~lete set of n-1 orthogonal latin squares of order n, by the 

notation OL(n,n-1). 

2. ~-to-~ Correspondence Between Factorial Eft'ects and Orthogonal Latin Squares. 

Federer et ~· [1969] discuJ3S a technique for constructing a set of mutually orthog-

onal latin squares and denote it as "factorial colllplete confounding construction of 

OL(sm, sm -1) sets" for s a prime power. Let the s2m factorial be of the form 

m m 
s X s = 

m m 
ll X1 X ll Y1 , when each ~ a.nd each Y1 are at s levels, 0, 1, • • •' s-1, 

i=l i=l 
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and where the Xs denote main effects of one set of m factors and the Y1 denote 

main effects of the second set of m factors. Let the row effects of an sm-row 

by sm -column square be associated (completely confounded) with main effects X1 

and all interactions of the X1 ; likewise, let the column effects of the square 

be completely confounded with the main effects Y, and all interactions of the Y1 • 

Thus, (sm-1)/(s-1) effects involving the X1 will be confounded with rows and 

(sm-1)/(s-l) effects involving the Y1 will be confounded with the column effects. 

Following Raktoe and Federer [1960] we utilize their method of decomposing 

the (s2m-l)/(s-l) effects each with (s-1) degrees of freedom plus the mean with 

one degree of freedom into s2m single degree of freedom contrasts. We then set 

m m 2m m up an s X s square for the s combinations such that the s -1 single degree of 

freedom contrasts forming the row effects are closed under multiplication. (By 

being closed under multiplication we .mean that the product of any two effects is 

a third effect contained within the set or is the mean (1} effect. ) Likewise, 

the sm-1 single degree of freedom contrasts completely confounded"' th column 

effects are also closed under multiplication. In an OL(sm,sm-1) set there are 

sm+l entities, i.e. rows, columns, and the treatments from the sm-1 mutually 

orthogonal latin squares. We assign the s2m factorial effects to the rows, columns, 

and the sm-1 sets of treatments as follows: 
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Source of variati.on 

Correction for the mean 

m Rows of the sqUare: a. set of s -1 single degree of freedom 

contrasts from a.n s2m factorial, which is closed under 

multiplication 

Columns of the square: a set of sm -1 single degree of freedom 

contrasts from an s2m factorial, which is closed under 

lllUltiplication 

m Latin square number one treatments: a set of s -1 single degree 

e rees of freedom 

1 

m s -1 

·m 
s -1 

2m . m 
of freedom contrasts from an s factorial, which is closed s -1 

under multiplication 

m . · m · 
La. tin square number s -1 treatments: a set of s -1 single 

2m degree of freedom contrasts from an s factorial, which m s -1 

is closed under multiplication 

Total 

To construct latin square number j, say, from the above analysis of variance 
m m · 2m 

table, we first construct an s X s square consisting of the s . treatment com-

bination such that main effects Xa., X3, • • •, X. and their interactions are con­

founded with rows and main effects Y1 , Ya, • • ·, Y• and their interactions are 

m m confounded with columns; then we call each of the s levels of the set of s -1 

effects, under latin square number j 's treatments in the above analysis of variance 

m table, a "treatment" J\c where k = l, 2, • • ·, s and we put At next to al.l treatment 

combinations, in the sm x sm square of row-column intersection, which makes up the 

kth level of the set· of sm-1 effects under latin square number j 's treatments in 

the above analysis of variance. An example and details ot this construction pro-

cedure is illustrated in section 5. 
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Theorem 2:1: If!.~ of sm-1 = n-1 single ~egree of freedom effects .!!:£!!!! 

s2m = n2 factorial treatment design ~ unconfounded ~ ~ ~ column effects 

~!!:!:!!. closed~ multiplication, they~:!;?! used~ construct!. latin sg,uare 

£! ~ sm. Likewise, if' given another~.£! sm-1 = n-1 single degree of'.~­

~ eff'ec.ts unconfounded ~ .!::2! ~ column effects ~ closed under mul tipllca­

tion, then ~ set ~ ~ used ~ construct !! second lat.in square of order sm 

orthogonal!£~ first. ~ ~ entire ill~ (sm-1)2 single degree £! freedom 

~e;:.;ff::.;e;.;c;.;t;.;;;.s uncontounded ~ .!:2! ~ column effects .£!!! ~ ~ ~ construct ~ .£9!1!-

plete !!:! E_! orthogonal latin sg,uares !2!_ order sm, !:!_. the OL( sm, sm -1) ~· 
m m Conversely, given! latin square £! order s , ~ s -1 = n•l degrees £!. ~-

~ associated~~ treatments ~£!partitioned~ sm-1 = n-1 sing1e 

degree 2f freedom effects !!!E:£h !:!:! unconfounded with ~ ~ columns ~ ~ 

~ closed under multiplication. 

Proof: It can be shown that the set, say G, of s2m single degree of freedom effects 

is an abelian group of s2m elements under multiplication where the inverse of an 
~ Xa s-X1 s-Xa 

effect X Y would be X Y Since we are in mod s, our group has the special 
s s 

property that X = n X = 1, where 1 is the mean effect and X is any effect in the 
i=l 

set of s2m effects. By relabelling the effects, we can say that we have an abelian 

group under addition (instead of multiplication) with the special property that 
s s 
E X = 0 for all X€G (in place of n X = 1 for all Xe:G). This can be done by 

i=l i=l 
using the symbol 0 to denote the mean effect (instead of 1) and by using the sym-

bol + (instead of juxtaposition) to denote the interaction of effects. Thus, we 

write ~ + ~ + Y2 + Xa, for example, in place of ~ ~~ • 

If H is an abelian group of s2m elements under addition with the property 
s 2m 

that E X = 0 for all Xe:H and if K is another abelian group of s elements under 
i=l s 

addition with the property that t X = 0 for a.ll X€K, then H is isomorphic to K. 
i=l 
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s 2m 2m 
Now if we can show that E X = 0 for every XEGF(s ), then GF(s · ) will be iso-

. i=l e 
morphic to our group G, and hence G would be a finite field or s2m elements. Since 

GF( s2m) has s2m elements, GF( s2m) has characteristic s and z., the field of integers 

· 2m 
mods, in a subfield of GF(s ). However in Z1 , 

s ) . . ~ 2 x( s ) 
y( E 1 = x(o) for all XEGF( s m). Since t 1 
~i=l i=l . 2m 
the group G is isomorphic to GF(s ) • Yet }\ be 

. s 
t 1 = 0, and therefore 

i=l s 
2m = t X = 0 for all XEGF(s ), 

1=1 m . 
a set of s -1 single d.f. effects 

unconfounded with rows and columns, which is closed under addition together with 

the mean effect o. In the same manner as above, it can be shown that }\ is isomor-
m · m , 

phic to the finite field GF ( s ) with s elements. Hence the set }\ can be denoted 

{ ~ a· by the ordered set o, 1, x, x2, ···, x - J• A one-to-one correspondence exists 
. m 

between a latin square of order s , say ~ and the addition table for }\ (see, e.g., 
. . 

Mann [1949] and R&ghavarao (1971]). Thus, a one-to-one correspondence exists be-

tween the "treatments" of the latin square ~ and the set }\ • Now let Ha be a 

second set of sm -1 single degree of' freedom effects unconfounded with rows and 

columns that is closed under addition with the condition that no element in this 

set is in 1\, • Again, as for }\, Ira is isomorphic to the finite field with sm 

elements GF(sm). Hence H.,. must be equal to xr}\ for some 1 ~ r lli sm-2. That is, 

~ is just }\ multiplied by some non-zero element of }\, say xr, and since a field 

is a group under addition xr}\, i.e. :92, is si'mply a permutation of the ordered 

set }\ • A one-to-one correspondence exists between a latin square of' order sm, 

say~~ orthogonal to~' and the addition table for Ita (Mann [1949] and Raghavarao 

[1971]). Thus, a one-to-one.correspondence exists between the "treatments" of the 

latin square ~ and the set ~. It can be shown (Mann [1949]) that the complete 

set of' (sm-1)2 single degree of freedom effects unconfounded with rows and columns 

· m m 
can be decomposed into (s -1) sets of (s -1) effects that are closed under addition. 

.. m . . . . 
Hence we have s -1 sets l\ 1 ~' ••• 1 H1 •_1 , each re~ectively in one-to-one corre-

sponden~e with the "treatments" of the latin square~' ~~ •••, L1 a_ 1 of order sm, e 
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Wh~re· ~ 1 ~ 1 • · · 11\ ._1 • So the complete set of (sm-1) 2 'single degree of 

freedom effects unconfounded with rows and columns is in one-to-one correspondence 
. m m ·. 

with the "treatments 11 in the OL(s ,s -1) set. 

3. One-to-Q!!!. Correspondence Between Factorial Effects ~ Orthogonal !:-squares 
~ ~ Decomposition .£! Latin Squares ~ !_•squares. 

By a generalization of the method of constructing orthogonal latin squares, if a 

set of sm-r -1 single degree of freedom effects in the s2m factorial treatment de-

sign is closed under multiplication then it can be used to construct an 

~ sr sr sr ) 
~\Al , ~., ···, A,m~r -square, where 0 ~ r s m-1. This F-square can be con-

structed by first constructing a~ sm x sm square consisting of the s2m treatment 

combinations such that main effects Ji , X,.., • • ·, X11 and their interactions are 

confounded with rows and main effects Y1 , Ya, • • ·, Y• and their interactions are 

m-r ·m-r confounded with columns; then we call each of the s levels of a set of s -1 

effects single degree of freedom effects, unconfounded with rows and columns that 

m-r 
are closed under multiplication, a "treatment" ~ ~ere k = 1, 2, · • · 1 s and 

m m 
we put J\ next to all treatment combinations, in the s X s square of rQ\If:~9.lumn 

intersections, which make up the kth level of the set of the sm-r_l effects men­

tioned above. An example and details of the construction procedure are g1 v~n in 

section 5· 

We now have the following theorem that relates factorial effects to F-squares. 

Theorem 3.1: There is ! ~-to-~ correspondence between ! set of (s-1) single 

degree of freedom effects, unconfounded ~ ~ ~ columns, that is closed 

under multiplication in the s2m factorial treatment design.and ~ 

Also, there 1! ! ~-!£~~ correspondence 
(sm-1)2 

set of - - orthogonal - - s-1 __.. _ _,_.___ 
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Proof': Each set of s-1 single degree of freed an. effects, .unconfounded with rows 

and columns, that is closed under multiplication t9rm&:M effect with s-1 degrees 

(s•-1)2 (s•-1)2 
of freedom and the 1 sets of this type form< 1 effects, each with s-1 s- s-

degrees of freedom in the s2m factorial treatment design. By Hedaya.t, Raghava.rao, 

(s• 1)2 
and Seiden [1975] these s:l _effects can be us~~ to construct the complete set 

(s11 -1)2 TAl s••1 s=-1 .· s•-1)·.... · 
of 8 _1 orthogonal ., Aj_ , AS , • • ·, A; squares. 

Q.E.D. 

In the following three theorems, which are called decomposition theorems, 

we show how to decompose an OL(sm, sm-1) set into a set of orthogonal F-squares. 

Theorem l:_g: ~latin square!!!~~ of orthogonal latin squares OL(sm,sm-1) 

s11 -l J s•-1 sm-l s••') 
~ E! decomposed into s-l orthogonal "'\ Ai 1 ~ , • • ·, A; squares; that 

m m (s11 -1)2 
.!!_., ~ entire OL(s , s -1) set .£!:!.! ~ deCOliiPOSed into s-l orthogonal 

( s•-1 sm-1 sm-1) 
F A1 1 AS , • • ·, A8 squares. 

The proof follows immediately from Theorems 2.1 and 3.1 . 

The next theorem decomposes the OL(s:m., ~m-1) set into F-squares with sm-l 

symbols and s symbols. 

Theorem i:J.: Each latin ~~ F(.t\, Aa' • • ·, ~~~) in the set OL(sm1 sm-1) ~ 

( s s s ) m-1,..( s•-1 sm""l sm-1) 
be decomposed into 1F Ai, ~~ • • ·, A,.-1 + s .. \ Al , .A2 , • • •, ~ 

orthogonal I-squar~s !£! ~ ~ 2. 

posed .!E.!£ ( sm -l)F( ~ 1 ~, • • ·, 

orthogonal ~-squares for m ~ 2. 

m m 
~~entire OL(s , s -1) ~ .£..!!! ~ deco·m-

s ) m-1 m wf sa-1 s•-1 sra-1) · A1 m -l + S ( S -1). \ Ai 1 A; , • • • , A; 

Proof: This will be proved if we can prove that each of the (sm-1) sets of (sm-1) 

effects unconfounded with rows and columns that are closed under addition has a 

subset of (sm-1-1) effects that is also closed under addition. This in turn will 

be proved if we can prove that the group Hs (1 = l, 2..J • • ·, sm-1) of sm elements, e 
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where each H1 is one of the above (sm-1) sets plus the mean (0) effect, has a 

m-l subgroup of s elements. This is just a result of the ~ Sylow Theorem in 

k modern algebra which tells us that H1 contains subgroups of s elements for 

k = 1, 2, •.• , m. 

A further decomposition of the OL(sm, sm-1) set is given in Theorem 3.4. 

Theorem 3.4. If p divides m, ~~latin square F(~, Aa, • • •1 ~~~) !!! ~ 
m m s•-1· 

~of orthogonal latin ~quares OL(s ,s -1) £!£be deco~osed ~-;--orthogonal 
~ s•-P s•-P s•-P) m m s -1 
... \IIi 1 ~ , ···, A1 p squares, i,e., the entire OL(s ,s -1) set.£!!!~ 

(s•-1)2 F\ s• ... P s•-P s•-P) decomposed ~ orthogonal At 1 At 1 • • ·, A1 p squares. 
sP -1 

Proof: This will be pro-ved if we can prove that if p divides m then each of the 

(s111-l) sets of (s111-l) effects unconfounded with rows and columns that are closed 

s•-1 p under addition can be decomposed into---- sets of (s -1) effects such that each 
sP-1 

set is closed under addition and the intersection of any two sets is empty. This 

in turn will be proved if we can prove that the group}\ (i = 1, 2, ••• 1 s111-l) of 

sm elements, where each H, is one of the above (s111-l) sets plus the mean (0) 
s111 -l p effect, has -- subgroups of s elements such that if K3 is one such subgroup 
sP -1 

and K3 1 is another such subgroup (j ~ j 1 ), then K~ n K~ 1 = {OJ and every X€1~ is 

in some KJ. The proof of this is very similar to the proof of Theorem 2.1. 

For further details the reader is referred to Mann [1949]. 

4. Constructing the Complet~ Set £!_ Orthogonal Latin Sg,uares ~ Two Orthogonal 
Latin Squares. 

Theorem 2.1 dealt with first confounding s 111-1 single degree of freedom effects 

that are closed under addition with rows and confounding sm-1 ftifferent single 

degree of freedom effects that are closed under addition with columns and then 

constructing the complete set of orthogonal latin squares OL{sm,sm-1) from the row-
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column interactions. Theorem 4.1 presented below first starts with two orthog­

onal latin squares of order sm and then from them finds the effects associated 

with rows, columns, and the remaining sm-3 mutually orthogonal latin squares. 

Theorem 4.1: Given ! pair of orthogonal latin squares £! ~ sm for s !!: prime 

and m!!: positive integer~ given that the levels of !£ effect X correspond to 

~ treatments in ~ latin sgqare and that ~ levels of ~ effect Y correspond 

to ~ treatments ~ the second latin square, ~ the generalized interaction 

2.! X !!:!!!! Y, ~· 

s•-1 
X X Y =-- L. XYu mod(sm) 

U=l 
' 

m produces the effects associated~ rows, columns, and the remaining s -3 mutually 

orthogonal latin s~uares. 

For the proof the reader is referred to Mann [1949]. 

5. Example. AB an example consider the OL(~, ZS-1) = OL(8,7) set. We may 

relate the compl~te set of 7 orthogonal latin squares of order 8 to a ~< 3 > = ~ 

factorial treatment design. Let the six main effects be A, B, C; D, E, and F 

each at two levels 0 and 1. We set up a 8 X 8 square consisting of the ~ = 64 

treatment combinations, confounding three main effects and their interactions 

with rows and three main effects and their interactions with columns. Let us 

confound main effects A, B, C and their interactions AB, AC, BC, ABC with rows 

and let us confound main effects D, E, F and their interactions DE, DF, EF, DEF 

with columns. Then we have the square in figure 1. 
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Columns 

Rows 1 2 3 4 5 6 7 8 

1 000000 000100 OOC>f>10 000110 000001 000101 000011 000111 

2 100000 100100 1000010 100.110 100001 100101 100011 100111 

3 010000 010100 010010 010110 010001 010101 010011 010111 

4 110000 110100 110010 110110 110001 110101 110011 110111 

5 001000 001100 001010 OOlllO 001001 001101 001011 OOllll 

6 101000 101100 101010 lOlllO 101001 101101 101011 101111 

7 OllOOO 011100 011010 Olli10 0~001 01ll01 011011 Olllll 
... -':' 

8 111000 111100 111010 lll110 111001 111101 111011 111111 

Figure 1 

We obtain the following analysis of variance table relating F-squares and latin 

squares to the effects in the 28 .factoria1 treatment design: 

CFM 

ROWS 
A 

Source of variation 

B 
AB 
c 
AC 
BC 
ABC 

COLUMNS 
D 
E 
DE 
F 
DF 
EF 
DEF 

LATIN SQUARE NUMBER ONE TREATMENTS 

{
AJJ = F1 (~ ,~) treatments 

F1 (.Ai,~,~~A!) treatments BE = F1 (At,~) treatments 
ABDE = F8 (Af ,~) treatments 
CF = F4 (At,~) treatments 
ACDF = F5 (.Af ,~) treatments 
BCEF = F6 (At,~) treatments 
ABCDEF = F7 CAt 1 A:;) treatments 

d. f. 

1 

7 
1 
1 
1 
1 
1 
1 
1 

7 
1 
1 
1 
l 
l 
1 
1 

7 

n 3 

1 
1 
1 
1 
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LATIN SQUARE NUMBER 'IWO TREATMENTS 7 

{ ADEF = F8 (~ ,~) treatments n F2 (P?,~,P.i,A!) treatments BD = F9 (At,~) treatments 3 
ABEF = Flo (At~~) treatments 

CDE = Fu (At~~) treatments 1 

ACF = Fla(At,~) treatments 1 

BCE = Fu~(~,~) treatments 1 

ABCDF=. F14 (~ ,~) treatments 1 

LATIN SQUARE NUMBER THREE TREATMENTS 7 

Fa(Af,~)P.i,A~) treatments 
J AEF = F16 (A,t,~) treatments n l BCF = F18 (~ ,~) _treatments 3 

ABCE = F17 CAt,~) treatments 

ABDF = FlB CAt~~) treatments 1 

BDE = Fl9(At,~) treatments 1 

ACD =Flo(~,~) treatments 1 

CDEF = F81 (Af ,~) treatments 1 

LATIN SQUARE NUMBER FOUR TREATMENTS 7 f ADF = Faa(At,~) treatments n F4 (~,~~Ai,A:) treatments l ABCF = F23 (A~ ,Ai) treatments 3 
BCD = F:a (At,~) treatments 

ABE = Fas (~,~) treatments 1 

BDEF = F26 (At,~) treatments 1 

CEF = Fa7(At,~) treatments 1 

ACDE = F88 (Ai,~) treatments 1 
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LATIN SQUARE NUMBER FIVE TREATMENTS 7 

trea-nts~ 
=Fag(~,~) treatments u Fs(/if,Ai,~,A:) = FaoC.At,~) treatments 3 

= F11 (.A~,~) treatments 

CE = Fal (J.t ~~) treatments l 

ACEF =Faa CAt,~) treatments 1 

BCDEF = F84 (~ ,~) treatments 1 

ABCDE = F36 (~ ,~) treatments 1 

LATIN SQUARE NUMBER SIX TREATMENTS 1 

fADE = F38 (~ ,~) treatments 

~} F6 (~,~~~,A:) treatments BF = F3~(~,~) treatments 3 

ABDEF = Fae (At~~) treatments 

BCDF = Fas<At,~) treatments 1 

ABCEF = F40 (.At,~) treatments 1 

CD =Fu(At,~) treatments 1 

ACE = F•a CAt~~) treatments 1 

LATIN SQUARE NUMBER SEVEN TREATMENTS 1 

f~ 
.., F4e(At,~) treatments 

n F7 (~,~~~,A~) treatments BCDE = F44t (~ ~~) treatments 3 

CDF =F.s(At,~) treatments 

AE = F4s(At,~) treatments 1 

ABF = F47 (At ,A~) _treatments 1 

ABCD = F48 (At,~ J treatments 1 

ACDEF = F49 (At,~) "treatments 1 

TOTAL 64 
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To construct latin square number one from effects AD, BE, ABDE, CF, ACDF, 

BCEF, and ABCDEF we let the symbols I, II, • • ·, VIII in the latin s~are be 

represented as shown on the following page. We now take the 8 x 8 square of 

the ~ treatment combinations (Figure 1) and put our "treatments" I, II, • • ·, VIII 

in the appropriate cells. We then get the following 8 x 8 latin square: 

I v III VII II VI IV VIII 

v I VII III VI II VIII IV 

III VII I v IV VIII II VI 

VII III v I VIII IV VI II 

II VI IV VIII I v III VII 

VI II VIII IV v I VII III 

IV VIII II VI III VII I v 
VIII IV VI II VII III v I 

The remaining six latin squares are constructed in the same manner from their 

corresponding set of seven single degree of freedom effects in the analysis of 

variance table. The seven latin squares of order 8 constructed in this manner 

are pairwise orthogonal. Hence we have. constructed the OL(8,7) set from the 

analysis of variance of the 2B factorial treatment design. 

Each single degree of freedom effect can in turn be used to construct an 

F(pt ,~) square by Theorem 3.1. To construct the F-square F1 (~ ,~) from the 

AD effect in the analysis of variance table we let the symbols a and ~ in the 

F1 (Jl.t, ~ ) square be represented as follows: 

Level of Effect Combinations (see Illustration 1) 

I + II + III + IV = a 
V + VI + VII + VIII • ~ 

We now take the 8 X 8 square o'f the ~ treatment combinations (Figure 1) and put 
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Level of Effect Combinations 

(AD)0 , (BE)0 , ( CF)0 , (ABDE)0 , (ACDF)0 , (BCEF)0 , (ABCDEF) 0 OOOOOO+l00100+010010+ll0.110..00l001+10ll0l+Oll0ll+llllll = I 

(AD)0 , (BE)0 , (CF)l, (ABDE)0 , (ACDF)1 , (BCEF)1 1 (ABCDEF)1 001000+101100+011010+lll110+000001+100101+0100ll+ll0111 = II 

(AD)0 ,(BE)1 ,(CF)0 ,(ABDE)1 ,(ACDF)0 ,(BCEF)1 ,(ABCDEF)1 010000+110100+000010+100110+011001+111101+001011+101111= III 

(AD)0 ,(BE}1 ,(CF)1 ,{ABDE)1 ,(ACDF)1 ,(BCEF)0 ,(ABCDEF)0 011000+llll00+00l010+1011l0+01000l+ll0101+0000ll+100111= IV 

(AD)1 , (BE) 0 , (CF)0 , (ABDE)1 , (ACDF)1 , (BCEF)0 , (ABCDEF)~ l00000+000100+110010+010110+101001+001101+lll011+0lll11 = V 

(AD}1 , (BE)0 , (CF)1 , (ABDE)1 , (ACDF)0 , (BCEF)1 , (ABCDEF)0 101000+001100+lll010+0llll0+100001-t000101+110011+010111 = VI 

(AD)1 ,(BE)1 ,(CF)0 ,(ABDE)0 ,(ACDF)1 ,(BCEF)1 ,(ABCDEF)0 ll0000+010100+100010+000110+lll001+0lll01+101011+00llll= VII 

(AD )1 , (BE )1 , ( CF )1 , (ABDE) 0 , (ACDF )0 1 (BCEF )0 , (ABCDEF )1 lll()()()+()lllOO+ 101010+00lll0+ 110001 +010101 +100011-+000lll =VIII 

Illustration l 

I ..... 
\..11 
I 
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our "treatments" a and (3 in the appropriate cells. Or alternatively, we could 

take the previoosly constructed latin square number one and replace "treatments" 

I, II, ni, and rV by "treatment" a and "treatments" V, VI, VII, and VIII by 

"treatment" (3. In either case we get the following F1 (Af 1 ~) square: 

a (3 a (3 a t3 a: f3 
(3 a (3 a: t3 a (3 a 

a (3 a f3 ex (3 0: f3 

f3 a f3 a t3 a (3 a 
a (3 a f3 a f3 a t3 

t3 a (3 a (3 a f3 0 

a f3 0: f3 a (3 Ct t3 

t3 a (3 a f3 a (3 a 

The remaining forty eight F(J{ ,~) squares are constructed in the same manner 

from this corresponding single degree of' freedom effect in the analysis ot vari-

ance table. The forty nine F("t, ~) squares constructed in this manner are e 
pairwise orthogonal. Hence each latin square in the OL(8,7) set deco~oses into 

7 orthogonal F(At,~) squares and the entire OL(8,7) set decomposes into 49 

orthogonal F(At,~) s~ares. 

In the preceding analysis of variance table, under Latin Square Number One 

Treatments, we see that the set of three effects, AD, BE, and ABDE is closed 

under multiplication and hence can be used to construct an F1 (Af,~,~~A!) square. 

To construct this F1 (~,J4i,.Ai,A!) squa.re we let the symbols W, X, Y, and Z in 

the F1 (t?,~,~,A;) be represented as f'ol.)..ows: 

Level of Effect Combinations (see Illustration 1) 

(AD)0 ,(BE)0 ,(ABDE)0 

(AD)0 , (BE)1 , (ABDE)1 

(AD)1 , (BE)0 , (ABDE)i 

(AD)1 1 (BE)1 , (ABDE)0 

I + II =W 
III + IV =X 

v + VI = y 

VII+ vnr = z 
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We now take the 8 X 8 square of the 't! treatment combinations (t:igure 1) and put 
r.< >· I}-_ • 

our "treatments" W, X, Y, ~nd Z in the appropriate cells.' !()~ ~lternati vely, we 

. ' . " could take the previouqlY.•.(:Onstructed latin square numbef 5mef and replace treat-

ments" I and II by "treatment" W, "treatments" III and IV bY "tre;aiment" X, 
. .i 

"treatments" V and VI by Y, and "treatments" VII a~~ VIII by. Z. In either case 

we get the following F1 (~,J.i,~,A~) square: 

w y X z w y X z 
y w z X y w z X 

X z w y X z w y 

z X y w Z·."' ·~: X y w 
w y X z w y X z 
y w z X y w z X 

X z w y X z w y 

z X y w z X y w 

Note that the set of seven effects corresponding to each latin square has such a 

subset of three effects that is closed under multiplication. Hence we see that 

each latin square in the OL(8,7) set decomposes into one F(Af,Ai,~~A!) and four 

F(At,~) squares. And so we can say that the entire OL(8,7) set decomposes into 

seven F(J?,~'~'~) squares and twenty eightF(~,~) squares. This is a direct 

application of Theorem 3.3. 
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