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similtaneously or sequentislly on the same set of experimental units. The main
theorem relates sets of single degree of freedom contrasts in an 52m factorial
(s a prime power) to the s™ treatments in a latin square of order sm; necessary
end sufficient conditions for sets of s -1 single degree of freedom contrasts, to

‘ form the treatment contrasts in sets of orthogonal latin squares, are glven. The
one-to-one correspondence between factorial effects and treatments in F-squares
and latin squares is demonstrated. Theorems are presented on the decomposition of
latin squares into F-squares. Under certain conditions, a complete set of orthog-
onal latin squares may be obtained from a given pair. An example is used to

demonstrate the theoretical results.
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1. Introduction and Definitions. This paper represents a contribution to the

statistical and mathematical theory of orthogonal latin and F-sqnares. The re-
éults williﬁe useful in désigning experiments elther simultaneously or squentially
usiﬁg the samelset of experimental units. After some preliminary definitions below,
we present our main theorem relating sets 6f single degrees of freedom in an s
factorial (s a prime power) to the s” treatments in a latin square. We demonstrate
the necessary and sufficient conditions for these st-1 single degrees of freedom

to construct a latin square and for another set of st-1 single degrees of freedom
to form a second latin square of order s which is orthogonal to the first. The

complete set of orthogonal latin squares is constructed in this wanner.

In the next section we demonstrate the one-to-one correspondence between fac-
torial effects and treatments in F-squares and latin squares. Three theorems are
presented showing how to decompose latin squares into F-squares with differing

numbers of symbols. These three theorems are called decomposition theorems,

whereas theorems relating to construction of F-squares with fewer symbols are

denoted as composition theorems (see Mandeli [1975]).

In section b a theorem is given which shows, for s a prime power, and for a
pair of orthogonal latin squares of order s, how to obtain the complete set of
orthogonal latin squares of order s. In the last section of the paper, the com-

plete set of orthogonal latin squares of order 8 is used to illustrate the results.

An F-square has been defined by Hedsyat [1969] and Hedayat and Seiden [1970]

as follows:
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Definition 1.1. Let A = [Q,) be an n X n matrix andlet £ = (A, A, -+, A,)
be the ordered set of m‘_'distinct elements or symbo;Ls of A. In addition, suppose
that for each k = 1, 2, ..., m, A_appears exactly ), times (), 2 1) in each row
and column of A. Then A will be called a frequency square or, more concisely, an

F-square on T of order n and frequency vector (A, Az, ***» A,)-

The notation we use to denote this F-square differs somewhat from that given
by Hedayat and Seiden [1970]. We call such a square an i(Ai‘l, A;", see, Ai‘l)
Note that Ay + Ay + ¢+« + A, =n and that when A, = 1 for all k end m = n, a latin

square of order n results.

As with latin squares, one may consider orthogonality of a pair of F-squares
of the same order. The above cited authors have given the following definition to

cover this situation:

Definition 1.2, Given an F-square F1<A:‘1, A;‘a, sesy, A&k) and an F-square .
F2<31“1, Ba“a, ees, B:"t ), ‘'we say F, is an orthogonal mate for F, (and write F, | R),

if upon superposition of F, on F,, A, appears )\, u

3 times with B‘. Note that when

X t

A, =1 =u, for all i and j and 121).1 =n = 'Zlu" » we have the familiar definition
= J:

of the orthogonality of two latin squares of order n. 1In passing we mention that

we shall denote the complete set of n-1 orthogonal latin squares of order n, by the

notation OL(n,n-1).

2. One-to-One Correspondence Between Factorial Effects and Orthogonal Latin Squares.

Federer et al. [1969] discuss a technique for constructing a set of mutually orthog-

onal latin squares and denote it as "factorial complete confounding construction of

OL(sm, sm-l) sets" for s a prime power. Let the 20 factorial be of the form

. m m
st x st = 1 X, x N Y,, vhen each X, and each Y, are at s levels, 0, 1, *-+s s-1, ‘
i=1 i=1
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and where the Xy denote main effects of one set of m factors and the Y, denote
main effects of the second set of m factors. Let the row effects of an s -row
by s"-column square be associated (completely confounded) with main effects X,
and all interactions of the X, ; likewise, let the column effects of the square
be completely confounded with the main effects Y‘ and all interactions of the ¥, .
Thus, (s"-1)/(s-1) effects involving the X, will be confounded with rows and

(s™-1)/(s-1) effects involving the Y, will be confounded with the column effects.

Following Raktoe and Federer [1960] we utilize their method of decomposing
the (sam-l)/(s-l) effects each with (s-1) degrees of freedom plus the mean with
one degree of freedom into 82m single degree of freedom contrasts. We then set

up an s™ x 8™ square for the 52

™ combinations such that the g"-1 single degree of
freedom contrasts forming the row effects are closed under multiplication. (By
being closed under multiplication we mean that thé product of any two effects is
a third effect.contained within the set or is the mean (1) effect.) ILikewise,
the s"-1 single degree of freedom contrasts completely confounded wi th coluﬁn
effects are also closed under multiplication. In an oL(s", s"-1) set there are
g™+l entities, i.e. rows, columns, and the tfeatments from the s"-1 matually

2

orthogonal latin squares. We assign the s ® factorial effects to the rows, columns,

and the ém-l sets of treatments as follows:



Source of variation ‘ o Pegrees of freedom
Correction for the mean w¥ o 1 ‘
Rows of the square: a set of sT-1 single degree of freedom

contrasts from an 332"1 factorial, which is closed under s®-1
mltiplication

Columns of the square: a set of s7-1 single degree of freedom

contrasts from an s2“1 factorial, which is closed under st-1
miltiplication

Latin square number one treatments: a set of s™-1 single degree

of freedom contrasts from an 32m factorial, which is closed s7-1

under mltiplication

Iatin square number sP-1 treatments: a set of s -1 single

degree of freedom contrasts from an st factorial, which s™-1

is closed under multiplication

Total 52"

To construct latin square number j, say, from the abbve analysis‘ of variance
table, we first construect an zs‘m x g" square consisting of ther szm\treatment com-~
binatioﬁ sﬁch that main effects X, X,, ++-, X, and their interactions are con-
founded with rows and main effects Y, Y, .-+, Y, and their inferactions are
confounded with columns; then we call each of the s" levels of the set of s -1
effects, under latin square number j's treatments in the above analysis of variance
table, a "treatment" A, wherek =1, 2, ..., s™ and we put Ay, next to all treatment
combinations, in the st X gt square of row-column intersection, which makes up the

kth

level of the set of s"-1 effects under latin square number j's treatments in
the above analysis of variance. An example and details of this construction pro-

cedure is illustrated in section 5. : .
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Theorem 2:1: If a set g§ g1 = n-1 single degree of freedom effects from an

32m = n? factorial treatment design are unconfounded with row and column effects

and are closed under multiplication, they can be used to construct a latin square

of order s™. Likewise, if given another set of s"-1 = n-1 single degree of free-

dom effects unconfounded with row and column effects and closed under miltiplica-

tion, then this set can be used to construct a second latin square of order s"

orthogonal to the first. And the entire set of (sm-l)? single degree of freedom

_ gffects unconfounded with row and column effects can be used to construct the com-

plete set of orthogonal latin squares of order ", i.e. the OL(sm;sm-l) set.

Conversely, given a latin square of order sm, the sm-l = nel degrees of free-

dom associated with the treatments can be partitioned into sm;l = n-1 single

degree of freedom effeéts which are unconfounded with rows and columns and which

are clqsed undeyr multiplication.

Proof: It can be shown that the set, say G, of 20 single degree of freedom effects
is an abelian group of 32m elements under multiplication where the inverse of an
effect X Y would be xs-X;ys-Xé. Since we are in mod s, our group haé the special
property that X5 = 1§1X = 1, where 1 is the mean effect and X is any effect in the
set of s2m effects. -By relsbelling the effects, we can say that we have an abelian
group under addition (instead of multiplication) with the special property that
iglx = 0 for all XeG (in place of igzilx = 1 for all XeG). This can be done by

using the symbol O to denote the mean effect (instead of 1) and by using the sym-

bol + (instead of juxtaposition) to denote the interaction of effects. Thus, we

write X, + Y, + Y, + X,, for example, in place of X, YoX,.

If H is an abellan group of 52m elements under addition with the property
s
that iElX = 0 for all XeH and if K is another abelian group of 82m elements under

s
addition with the property that £ X = O for all XeK, then H is isomorphic to K.
i=1
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Now if we can show that izlx O for every XeGF(s ™), then GF(szm) will be iso-

morphic to our group G, and hence G would be a finite field of sem elements. Since
2m

GF(sem) has s elements, GF(s m) has characteristic s and Z,, the field of integers

, . s
mod s, in a subfield of GF(szm), However in Z_, 5_‘. 1 = 0, and therefore

8 L - i=1 g
x(izli) = X(0) for all XeGF(s™). Since x( 1) (B X = 0 for all XeGF(s2™),

the group G ié isomorphic to GF(sEm). Yet H be a set of sm-.l single 4.f. ‘effects
unconfouhded with rows and columns, which is closed under a.cldiﬁon together with
the mean effect 0. In the same u;ar;ner as above, it caﬁ be shown that -4 is isomor-
phic to the finite field GF(s™) with s elements. Hence the set H can be denoted
by the ordered set {O, 1, x, x3, <., xsa '2} A one-to-one correspondence exists
between a latin square of order sm, say L, and”the addition table for H (see, e.g.,
Mann [1949] and lia;gha.varao [197'1]'). I'mus, a one-to-one correspondence exists be-
tween the "treatments" of the latin square I, and the set H. Now let K, be a

second set of s”-1 single degree of freedom effects unconfounded with rows and .

columns that is closed under addition with the condition that no element in this
set is in K . Again, as for H, H, is isomorphic to the finite field with g™
elements GF(s"). Hence H, must be equal to erl for some 1 < r g s"-2. That is,
H, is just H, multiplied by some non-zero element of K, say xr, and since a field
is a group under addition er‘L ; i.e. H,, is simply a permutation of the ordered
set H, . A one-to-one correspondence exists between a latin square of order sm,

say I,, orthogonal to I,, and the addition table for H, (Mann [1949] and Raghavarao
[1971]). Thus, a one-to-one correspondence exists between the "treatments' of the
latin square I, and the set H,. It can be shown (Mann [1949]) that the complete
set of (sm-l)2 single degree of freedom effects unconfounded with rows and columns
can be decomposed into (s"-1) sets of (s ®.1) effects that are closed under addition.
Hence we ‘have s s | sets K, H, ¢, Hn_,, each respectively in one-to-one corre-

spondence with the "trea.tments" of the latin square L, I,, -+, Lya_, of order s y .
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where' L, | I, | cos | Ls_,+ So the complete set of (s™-1)2 single degree of
freedom éffects uhconfcunded with rows and columns is in one-to-one correspondence

with the "treatments" in the OL(s",s -1) set.

3. One-to-One Correspondence Between Factorial Effects and Orthogonal F-squeres
and the Decomposition of Latin Squares into F-squares.

By a generalization of the method of constructing orthogonal latin squares, if a
set of sT T-1 single degree of freedom effects in the s2m factorial treatment de-
sign is closed under multiplication then it can be used to construct an

F(Afr, A:f, tee, Af:-r)—square, where O g r < m-1. This F-square can be con-
structed by first constructing aﬁ g™ X st square consisting of the 82m treatment
combinations such that main effects %, X, ++-, X and their interactions are
confounded with rows and main effects ii, Yy, +++, Y, and their interactions are

m-r

confounded with columns; then we call each of the s%T levels of a set of s ~-1

effects single degree of freedom effects, unconfounded with rows and columns that
are closed under multiplication, a "treatment" A where k =1, 2, ..., s™F and
we put A& next to all treatment combinastions, in the s x s" square‘of rqw:gglumn
intersections, which make up the kEB level of the set of the g™ -1 effects men-

tioned above. An example and details of the construction procedure are given in

section 5.
We now have the following theorem that relates factorial effects to F-squares.

Theorem 3.1: There is & one-to-one correspondence between a set of (s-1) single

degree of freedom effects, unconfounded with rows and columns, that is closed

under multiplication in the s2™ factorial treatment design and an

-1
sm .-1 uu\l
F( PR Af square. Also, there is a one-to-one correspondence

B_v)2 ~13\2
between the Ligj%l— sets of this type and the complete set of ﬁé%:%l— orthogonal

F(Af‘d, A:'d’ cee, Af'-l) squares.
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. Proof: Each set of s-1 single degree of freedam effects, unconfounded with rows

'; and columns, that is closed under multiplication forms 'en effect with s-1 degrees

2

-1)2 B
of freedom and the S-s-.—lL sets of this type form-= s -1 effects, each with s-1

s~-1 s-1
degrees of freedom in the s2m factorial treatment design. By Hedayat, Raghavarao,

2
and Seiden [1975] these KS_S_%L effects can be used to constmct the complete set

e n-l : ne~l
of _(_s__l)_ orthogonal F( § Aas seey, Af ) squares. LE.D

In the following three theorems, which are called decomposition theorems,

we show how to decompose an OL(s",s"-1) set into a set of orthogonal F-squares.

Theorem 3.2: Each latin square in the set of orthogonal latin squares OL(s s 8 -l)

go—t gr! o=t
orthogonal F( y Ay o A ) squares; that
n_q3)2
is, the entire OL(s s 8 -l) set can be decomposed into E—i)— orthogonal

s-1
Sﬂ“l Sﬂ"l sh"“
F(A1 s Ay y ey A ) squares.

can be decomposed into 2

The proof follows immediately from Theorems 2.1 and 3.1 .
m-1

The next theorem decomposes the OL(s™,s"-1) set into F-squares with s

symbols and s symbols.

Theorem 3.3: Each latin square F(A , Ay, ---, Aja) in the set OL(s", s"-1) can

- gl -l -1
be decomposed into 1F(A,_s, As, ) Af-—x) +s" 1F<A18 ’ A:n ’ Sn )

orthogonal F-squares for m 2 2. Hence the entire OL(sm, sm-l) set can be decom-

posed into (sm-l)F(Af, AS, e, A,m-z) + s LD -l)F( sa-! sl-" ) Sm-l)

orthogonal F-squares for m 2 2.

Proof: This will be proved if we can prove that each of the (s"-1) sets of (s™-1)
effects unconfounded with rows and columns that are closed under addition has a
subset of (sm-l-l) effects that is also closed under addition. This in turn will

be proved if we can prove that the group H, 1 =1, 2, ee-, sm—l) of s® elements,



~9-

vhere each K, is one of the above (s™-1) sets plus the mean (0) effect, has a

subgroup of sm'l elements. This is Just a result of the First Sylow Theorem in

modern algebra which tells us that H, contains subgroups of sk elements for

k=1, 2 «-, m
A further decomposition of the OL(s",s"-1) set is given in Theorem 3.k.

Theorem 3.4. If p divides m, then each latin square F(A, Ay, +-+, An) in the

g8 -1

set of orthogonal latin squares OL(ém,sm-l) can be decomposed into

orthogonal
S - s*~P m m 8 -1
F(Ai » A, v, Al squares, i,e., the entire OL(s ,s -1) set can be
sl“, sl‘P n—-p

B _1)2
decomposed into LE:;%%— orthogonal F(A1 ) A PERER Afp squares.
8% =

Proof: This will be proved if we can prove that if p divides m then each of the

(s®-1) sets of (s™-1) effects unconfounded with rows and columns that are closed
s®-1

sP-1
set is closed under addition and the intersection of any two sets is empty. This

under addition can be decomposed into sets of (sp-l) effects such that each

in turn will be proved if we can prove that the grawp H (i =1, 2, -, s®-1) of

g™ elements, where each H, is one of the above (sm~1) sets plus the mean (0O)
sk-1

sP-1
and K, , is another such subgroup (J #£3'), then K, NK,, = {0} and every XeH, is

effect, has subgroups of sP elements such that if K, 1s one such subgroup

in some K,. The proof of this is very similar to the proof of Theorem 2.1.

For further details the reader is referred to Mann [1949].

4. Constructing the Complete Set of Orthogonal Latin Squares From Two Orthogonal
Latin Squares.

Theorem 2.1 dealt with first confounding s-1 single degree of freedom effects
that are closed under addition with rows and confounding st-1 different single
degree of freedom effects that are closed under addition with columns and then

constructing the complete set of orthogonal latin squares OL(suzsm~l) from the row-
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column interactions. Theorem 4.1 presented below first starts with two orthog-

onal latin squares of order s™ and then from them finds the effects associated

with rows, columns, and the remaining sm-3 mutually orthogonal latin squares.

Theorem 4.1: Given a pair of orthogonal latin squares of side s" for s a prime

and m a positive integer and given that the levels of an effect X correspond to

the treatments in one latin square and that the levels of an effect Y correspond

to the treatments in the second latin square, then the generalized interaction

of X and Y, i.e.
ss -1
XxY =Z xy* mod(s®) ,
' u=1l

produces the effects associated with rows, columns, and the remaining s"-3 mitually

orthogonal latin squares.

For the proof the reader is referred to Mann [1949]. .

5. Example. As an example consider the OL(2®, 2°-1) = OL(8,7) set. We way
relate the complete set of 7 orthogonal latin squares of order 8 to a 22¢(3) = 28
factorial treatment design. Let the six main effects be A, B, ¢; D, E, and F
each at two levels O and 1. We set up a 8 X 8 square consisting of the 2 = 64
treatment combinations, confounding three main effects and their interactions
with rows and three main effects and their interactions with columns. Let us
confound main effects A, B, C anc} their Ainteractions AB, AC, BC, ABC with rows
and let us confound main effects D, E, F and their interactions DE, DF, EF, DEF

with columns. Then we have the square in figure 1.




®
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000000 000100 000010 000110 000001 O0COL0l 00001l 00011l
100000 100100 1000010 100110 100001 100101 100011 100111
010000 010100 010010 010110 010001 010101 010011 010111
110000 110100 110010 110110 110001 110101 110011 110111
001000 001100 001010 001110 001001 001101 001011 00111l
101000 101100 101010 101110 101001 101101 101011 101111
011000 011100 011010 011110 011001 011101 011011 011111
111000 111100 111010 111110 111001 111101 111011 111111

O~ AANwv F W D

Figure 1

We obtain the following analysis of variance table rele.tiné F-sQua.res and latin

squafes to the effects in the 2° factorial treatment design:

Source of variation d.f.
‘ CFM 1
ROWS T
' A 1
B 1
AB 1
c 1
AC 1
BC 1
ABC 1
COLUMNS 7
D 1
E 1
DE 1
F 1
DF 1
EF 1
DEF 1
LATIN SQUARE NUMBER ONE TREATMENTS |7
AD = T, (Af,A}) treatments 1
F, (AZ,A2,A2,A2) treatments BE = Fo (A',A}) treatments 1) 3
. ABIE = Fg(A$,A$) treatments 1
CF = F,(A$,A}) treatments 1
ACDF = Fy (A},A]) treatments 1
BCEF = F, (A} ,A%) treatments 1
ABCDEF = F,(A},A]) treatments 1
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LATIN SQUARE NUMBER TWO TREATMENTS 7
ADEF = F (A},A}) treatments 1
F,(AZ,AZ,A2,A2) treatments { BD = F,(Af,A) treatments 1) 3
ABEF = F,,(A#,A8) treatments 1
CIE = F,, (A},A%) treatments 1
ACF = F ,(A},A]) treatments 1
BCE = Fy,(Af,A}) treatments 1
ABCIF= F, . (A},A%) treatments 1
LATIN SQUARE NUMBER THREE TREATMENTS T
AEF = Fy (Af,A}) treatments 1
Fo(A2,45,A5,A2) treatments | BCF = Fy,(A®,A) treatments 1)3
A 1 ABCE = Fy, (A},A3) ‘treatments 1
ABDF = F,, (Af,A%) treatments 1
BDE = F,,(Af,A}) treatments 1
ACD = Fp,(A},A%) treatments 1
CDEF = Fy, (A},A}) treatments 1
LATIN SQUARE NUMBER FOUR TREATMENTS T
ADF = F,, (A$,A}) treatments 1
F,(AZ%,A5,A5,A7) treatments { ABCF = F,q(A{,A%) treatments 1)3
Incn = F,,(Af,A}) treatments 1
ABE = Fyq(Af,A%) treatments 1
BDEF = F,, (A},A%) treatments 1
CEF = Fp,(A},Ad) treatments 1
ACDE = F,o(At,A) treatments 1




LATIN SQUARE NUMBER FIVE TREATMENTS 7
= F, (A},A}) treatments 1
Fo (AZ,AZ,A5,AZ) treatments{BDF = Fo,(Af,A§) treatments 1
D = F,, (Af,A]) treatments 1
CE = Fye(A},A]) treatments 1
ACEF = Fg,(A?,AS) treatments 1
BCDEF = Fy,(AY,A3) treatments 1
ABCDE = Fpq(A},A7) treatments 1
LATIN SQUARE NUMBER SIX TREATMENTS 7
ADE = Fpq(A},A}) treatments 1
Fo (A2,A2,A2,A2) treatments(BF = F,,(A},A]) treatments 1
EF = Fhq (A},AS) treatments 1
BCDF = F,, (A},A$) treatments 1
ABCEF = F,,(A},A}) treatments 1
CD = F,, (A},A3) treatments 1
ACE = F,,(Af,A]) treatments 1
LATIN SQUARE NUMBER SEVEN TREATMENTS T
. BEF = F 4(A},A}) treatments 1
F, (A2,A2,A3,A2) treatments(BCDE = F,,(A¥,AS) treatments 1
CDF = F, 5 (A},A$) treatments 1
AE  =F, (Af,A]) treatments 1
ABF = F,,(A},A$) treatments 1
ABCD = F,q (Af,A%) {reatments 1
ACDEF = F,_(A},A$) treatments 1
TOTAL 64




To construct latin square number one from effects AD, BE, ABDE, CF, ACDF,
BCEF, and ABCDEF we let the symbols I, II, ..., VIII in the latin square be .
represented as shown on the following page. ‘We now take the 8 x 8 square of
the 2® treatment combinations (Figure 1) and put our "treatments" I, II, ..., VIII

in the appropriate cells. We then get the following 8 x 8 latin square:

1 v III  VII II VI IV VIII
' I Vil III VI II  VIII IV
III VI I v IV  VIII II VI
VII  III v I VIII IV VI II
1I VI IV VIII I v IIT  VII
VI IT  VIII IV v I VII  III
IV VIII II Vi III VI 1 v
VIII IV VI II  VII @ III v I

The remaining six latin squares are constructed in the same manner from their
corresponding set of seven single degree of freedom effects in the analysis of .
variance table. The seven latin squares of order 8 constructed in this manner

are pairwise orthogonal. Hence we have constructed the OL(8,7) set from the

analysis of variance of the 282 factorial treatment design.

Each single degree of freedom effect can in turn be used to construct an
F(A#,A$) square by Theorem 3.1. To construct the F-square F, (Af,A$) from the
AD effect in the analysis of variance table we let the symbols & and f in the

F, (A¢,A}) square be represented as follows:

Level of Effect Combinations (see Illustration 1)
(AD), I+IT+III + IV =a
(AD), V+VI+VII +VIII =B

We now take the 8 x 8 square of the 2° treatment combinations (Figure 1) and put



Level of Effect

(AD),, (BE), , (CF),, (ABDE), , (ACDF), , (BCEF), , (ABCDEF),,
(AD),, (BE),, (CF), , (ABDE), , (ACDF), , (BCEF), , (ABCDEF),
(AD),, (BE), , (CF),, (ABDE), , (ACDF), , (BCEF), , (ABCDEF ),
(AD),, (BE), , (CF), , (ABDE), , (ACDF), , (BCEF),, (ABCDEF),
(AD), , (BE),, (CF),, (ABDE), , (ACDF), , (BCEF), , (ABCDEF),
(4D), , (BE), , (CF), , (ABDE), , (ACDF), , (BCEF), , (ABCDEF),
(aD), , (BE), , (CF),, (ABDE),, (ACDF), , (BCEF), , (ABCDEF),
(aD), , (BE), , (CF), , (ABDE),, (ACDF), , (BCEF),, (ABCDEF),

Combinations

000000+100100+010010+110110+001001+101101+011011+111111 = I
001000+101100+01_1010+111110+000001+lOOlOl40lOOll+110111 = II
021.0000+110100-++000010+100110+011001+111101+001011+101111 = III
011000+111100+001010+101110+010001+110101+000011+100111 = IV
100000+000100+110010+010110+101001+001101+111011+011111 =  V
101000+001100+111010+011110+100001+000101+110011+010111 = VI
110000+010100+100010+000110+111001+011101+101011+001111 = VII
111000+011100+101010+001110+110001+010101+100011+000111 = VIII

Illustration 1

..g-t_
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our "treatments" a and B in the appropriate cells. Or alternatively, we could
take the previously constructed latin square number one and replace "treatments" .
I, II, III, and IV by "treatment" @ and "treatments" V, VI, VII, and VIII by

"treatment" B. In either case we get the following F, (A},A}) square:

™ QU R R W Q
Q™ R D R @ R O
R T R ™ R O KR
R Q R ®» R O
™ QR ® Q ™ QR ™ R
Q W R R R ™
W R W R W R W
QW R R Q @

The remaining forty eight F(A¥,A§) squares are constructed in the same manner

from this corresponding single degree of freedom effect in the analysis of vari-

ance table. The forty nine F(A},A%) squares constructed in this manner are .
pairwise orthogonal. Hence each latin square in the OL(8,7) set decomposes into

T orthogonal F(Af,A}) squares and the entire OL(8,7) set decomposes into 49

orthogonal F(A?,A$) squares.

In the preceding gnalysis of variance table, under Latin Square Number One
Treatments, we see that the set of three effects, AD, BE, and ABDE is closed
under multiplication and hence can be used to construct an F, (AZ,A2,AZ,AZ) square.
To construct this F, (AZ,AZ,A3,AZ) squa¥e we let the symbols W, X, Y, and Z in

the Fi(Af,Af,A§,Af) be represented as follows:

Level of Effect Combinations (see Illustration 1)
(AD)O) (BE)o: (ABDE)Q I + 1T =W
(AD)O) (BE)1 ’ (ABDE)1 CIIT+ IV =X
(An)x ’ (BE)QJ (ABDE); vV +« VI =Y

(AD), , (BE), , (ABDE), VII + VIII = 2
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We now take the 8 X 8 square of the 2 treatment combina@;opsi(Figure 1) and put
our "treatments" W, X, Y, :and Z in the apprdprié£e cells. &k élferhafively, we
could take the previous;yaéonstructed:latin square numbe?wgné¢and repl;ce "treat-
ments" I and II by "treatment" W; "treatments" IIi and IV by "treatment" X,
"treatments" V and VI by Y, and "treatments" VII aﬁéiVIII byﬂz. 'in either case

we get the following F, (AZ,A%,AS,AZ) square:

ISEEC IR S S G -
N OE K XN =
MK X N XM < X N X
B o< M N <M ON
N X < X N M <R =
“
N OE KM N = R
M OE N M <K X N X
H K X N E < M N

Note that the set of seven effects corresponding to each latin square has such a
subset of three effects that is closed under multiplication. Hence we see that

each latin square in the OL(8,7) set decomposes into one F(AZ,AZ,AZ,AZ) and four
F(A#,A%) squares. And so we can say that the entire OL(8,7) set decomposes into
seven F(AZ,AZ,AZ,AZ) squares and twenty eight HA},AS) squares. This is a direct

application of Theorem 3.3.
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