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Abstract 

Confidence intervals for the parameters of different 

discrete distributions can be derived through a similar underly­

ing method, a method with roots in fiducial inference. This 

method is seen to be an application of the fundamental theorem of 

calculus, and thus is not tied to the theory of fiducial infer-

ence. 

Some of the intervals derived through this method are well 

known (binomial, Poisson); however, the results for the negative 

binomial distribution are new. An advantage of the intervals is 

that they are given explicitly in terms of cut-off points of 

continuous distributions. Because of this, we are able to show 

that the intervals for the Poisson and negative binomial distri­

butions are sharp (the infimum of the coverage probabilities is 

the nominal level). Optimality considerations, in terms of the 

size of the intervals, are also examined. 

KEY WORDS AND PHRASES: Binomial; Poisson; Negative binomial; 

Coverage probability; Length optimality. 



1. INTRODUCTION 

Explicit formulas exist for nonrandomized confidence intervals for the 

parameters of the most commonly used discrete distributions (binomial, 

Poisson and negative binomial). These formulas require only standard (F 

and x2 ) statistical tables. Availability of the explicit formulas makes it 

easier to derive properties of the intervals. 

The intervals presented here are not all new. Indeed, the binomial 

interval is that of Clopper and Pearson (1934), while the Poisson interval 

was first derived by Garwood (1936). The negative binomial interval, as 

far as we can tell, has not been derived by other authors. 

The intervals can all be derived through a common methodology, which 

has its roots in fiducial inference. (Indeed, Clapper-Pearson and Garwood 

were deriving fiducial intervals.) Part of the purpose of this paper is to 

illustrate the common, underlying technique used in deriving the intervals, 

and to show that the technique is not dependent on fiducial theory, and may 

be applicable in other situations. 

We will call a confidence interval sharp if the infimum (over the 

parameter space) of the coverage probability achieves the nominal level. 

We will call an interval conservative if the infimum of the coverage 

probability is strictly greater than the nominal level. The derivation 

used here is a conservative one, i.e., the intervals are guaranteed to have 

coverage probability at least 1-a. The surprising fact, however, is that 

for both the Poisson and negative binomial distributions, the intervals are 

in fact sharp. 
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In Section 2 we present the derivation of the intervals, and in 

Section 3 we prove sharpness for the Poisson and negative binomial 

intervals. Some aspects of length optimality are discussed in Section 4. 

The case of the binomial distribution is somewhat different from that 

of the Poisson and negative binomial: in general, the binomial intervals 

are not sharp. These intervals are not discussed in detail here, the 

interested reader is referred to McCulloch and Casella (1983). 
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2. DERIVATION OF THE INTERVALS 

A usual way (Lehmann, 1959) of deriving confidence intervals is to 

invert the acceptance region of an «-level test of the hypotheses 

versus 

A similar approach, called the "statistical method" by Mood, Graybill and 

Boes (1974) is to solve in each of the statements 

and ( 2. 1) 

for regions in the parameter space that make the statements true. Each of 

the statements in (2.1) will give rise to sharp one-sided confidence 

intervals. If each of them is used to derive a 1-(«/2) one-sided interval, 

their intersection can be used as a conservative 1-« two-sided confidence 

interval. In general, these intervals are not sharp. In fact, when using 

this method to derive intervals for a binomial success probability (for any 

n), the actual coverage probability of the intervals will be as high as 

1-(a/2) for a nominal 1-a interval (McCulloch and Casella, 1983). 

The advantage of using the statistical method is that we can exploit 

the following identity for discrete, integer-valued distributions. First 

write 

e . m1n 

(2.2) 

where 9 i • smallest possible value of e. After differentiation and m n 

integration with respect to the parameter, it is sometimes possible to 
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simplify the expression inside the integral. Mechanistically, this is the 

same as the fiducial approach, and indeed, whenever the term inside the 

integral actually is a density, it is a fiducial density. In such cases, 

the integral is the fiducial cumulative distribution function of a contin-

uous distribution and the solution to (2.1) can be written explicitly in 

terms of percentage points of that distribution. For the binomial, Poisson 

and negative binomial distributions, these are percentage points of well 

tabulated distributions (F and xt). 

For example, for X • • • X 1 ' • n 
iid Poisson (8), 

Poisson (ne), and write 

co -ne (n9)k 
P 9 (Y~y) • I e k! 

k•y 

k 
!.. [ -nt illL] d at e kl t ( 2. 3) 

After differentiating and interchanging the order of summation and 

integration, one is left with a telescoping sum, thus, 

(2.4) 
8 

·! y-1 
n(nt) e-ntdt 

(y-1)! 
0 

Making the transformation ~·2nt allows us to write 

( 2. 5) 

which is a well-known relationship between the Poisson and chi-squared 

distributions. 

The above argument also shows that the fiducial argument is not 

necessary, and the method works even when 
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(2.6) 

or its absolute value is not a density in e. In fact. it is advantageous 

at times only to differentiate and integrate a portion of P9(X•x). 

The fiducial approach also runs into slight difficulty since two 

different fiducial distributions arise when working with discrete distri-

butions. Stevens (1950) calls these a pair of fiducial distributions. 

Again, these technicalities do not create problems since the derived 

intervals are still 1-a confidence intervals. 

Using (2.2) the following 1-a confidence intervals can be derived (see 

McCulloch and Casella, 1983, for details). For the parameter 9 in a 

binomial distribution, i.e., P9(X•x) • (:) ex(1-e)n-x the interval is 

L. 1 
n-X+1 F2(n-X+1) ' l 

X 2X,a/2 

X+l F2(X+1) ] 
n-X 2(n-X),a/2 
+ &!:1.. F2(X+1) 

n-X 2(n-X),a/2 

x -e 
8 e in a Poisson distribution, i.e., P8(X•x) • 1 , the interval is x. 

( 1 2 

2n x2Y,1-a/2' 
1 2 ) 
2n x2(Y+1),a/2 

( 2. 7) 

(2.8) 

where Y • IXi and x2 satisfies P(x2 > x2 ) • a. For the parameter e in v,a v v,a 

a negative binomial distribution (r assumed known), i.e., P9(X•x) • 

(r+~- 1 ) er(l-e)x the interval is 

1 
X+l F2(X+l) 

r 2r,a/2 

X 2X,a/2 £ F2r ] 
(2.9) 
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3. SHARPNESS OF THE POISSON AND NEGATIVE BINOMIAL INTERVALS 

In this section we address the question of whether the coverage 

probabilities of the Poisson and negative binomial intervals ever achieve 

the infimum, 1-u. We show, somewhat surprisingly, that even though these 

intervals were constructed in a 'conservative' manner, they achieve the 

stated infimum, i.e., they are sharp. 

For notational simplicity, and without loss of generality, we assume 

in this section that n•1. 

Theorem 3.1: Let X~ Poisson(9). For fixed u, the confidence intervals 

are sharp. That is, 

inf Pe(tx2x,1-(u/2) ~ 9 ~ tx2<x+1),o/2) • 1-u a 

(3.1) 

( 3. 2) 

Proof: We will show that, as 9 ~ ~. the limit of the coverage probabili-

ties is 1-o. We use the notation Xzx to denote a chi-squared random 

variable with 2X degrees of freedom, where X~ Poisson(9). [More precise-

ly, the distribution of x2x given X•x is x2x• while X is marginally 

Poisson (9).] 

and 

It is straightforward to check that E[xzxl = 29 and Var(xzx> • 89, 

x. 2 - 29 
~2X~--~ ~ Z in distribution as 9 ~ ~ 

(8a)t 
( 3. 3) 

where Z is a standard normal random variable. The convergence in (3.3) can 

be established by using the moment generating function of 

exp{-e + [9/(l-2t)]}. 
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Next 

( 3. 4) 

An application of (3.3) shows that 

x2x.1-(u/2)-29 ~ z 
(Ba)t 1-(u/2) 

(3. 5) 

and (3.3), together with the fact that xix/29 ~ 1 in probability as 

9 ~ m, shows that the middle term in (3.4) converges to a standard normal 

variate. Similarly, it can be shown that the rightmost term in (3.4) 

converges to zu12 . Hence, 

• 1-u ( 3. 6) 

establishing the theorem. II 

A similar result holds for the negative binomial intervals. The proof 

is similar to that of Theorem 3.1, and hence will only be sketched. 

Theorem 3.2: Let X N NB(r,e). For fixed u, the confidence intervals given 

in (2.9) are sharp, i.e., 

i:f p 9 (-+-(,...X-+r.;..~ ,....) -F-2..,..( X_+_1_)_ S 9 
~ 2r,u/2 

!. F2r 
S X 2X,u/2 

r 2r 
1 + X F2X,u/2 

( 3. 7) 
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Proof: We use the facts that, as e ~ 0, 

i) 

ii) 

iii) 

in distribution 2ex ~ xir 
F2(X+l) 

2r 1 
--~2-r-- ~ ~ in distribution 

F2(X+l) 
2r,a/2 ~ 

2r 

X2r 

1 
2 in probability 

x2r,1-(a/2) 

From (3.7), we can write the coverage probability as 

F2(X+l) 
(Zex)( 2r,a/2) +! F2(X+l)] 

2r r 2r,a/2 

As e ~ 0, using i) -iii), we see that (3.8) converges to 

J 2 ( 1 ) $ 1 $ 2 ( 1 )] 
~Lx2r Xzr,a/2 x2r Xzr,l-(a/2) 

• 1-a II 

. (3.8) 

( 3. 9) 

Here we see the theoretical advantage of having the explicit formulas 

for the discrete intervals. The proofs of sharpness rely heavily on their 

use. We also note that the same proofs will work even if the tail probabil-

ities are not equally split, i.e., putting r in the upper tail and 1-a+y in 

the lower tail (O$y$a) will still result in a sharp 1-a procedure. 
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4. OPTIMALITY CONSIDERATIONS 

In the previous section it was shown that the Poisson and negative 

binomial intervals were sharp at level 1-a for all possible combinations of 

tail probabilities that add to a. It is natural to next investigate the 

size of the intervals as a function of the "a-split." 

Having the explicit formulas for the confidence intervals makes such 

an investigation somewhat easier. It is simple to calculate the size of an 

interval for a given a-split and compare it with a second a-split. Unfortu­

nately, calculations of expected size are still quite unwieldy. Even if 

these were undertaken, it would not be clear as to what optimality criteria 

should be investigated. Criteria usually used in the continuous case 

(unbiasedness, probability of false coverage) are really not applicable in 

discrete problems. 

To get some idea of how small the intervals can be made, the following 

"procedure" was considered: For each x, select the a-split dependent on x 

in order to minimize the size of the confidence interval. This strategy 

does not give a 1-a confidence procedure, but a procedure with confidence 

less than 1-a. Still, it serves as a measure of absolute size of the 

confidence intervals, and comparison of a fixed a-split procedure to this 

"optimal procedure" will give an indication of the performance of the fixed 

a-split procedure. 

4.1. Poisson Intervals/ 

A natural measure of size of the Poisson intervals is the ratio of the 

upper to the lower endpoint, i.e., for fixed r, 0 ~ r ~a, define 
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For each x, we can calculate an optimal value of 1 by minimizing S (x). 
1 

This is a straightforward minimization, and the minimizing value, say 

y*(x), is easily found numerically. 

In ~igure 1, for a•.l and u=.OS, we plot the ratio Sa/ 2(x)/S7*(x)(x) 

and sa 12 (e)/S 7*(0) • for x•O, • • • , 30. (For x•O we define 

x. 2 /x. 2 ) The results, surprisingly, show that for most 2(x+1),a/2 2(x+1),r • 

values of x, Sa/ 2(x) is nearly as good as s 7*(x). 

not correspond to a 1-a confidence procedure.) 

(Recall that S *(x) does 
7 

As x ~ w, normal theory 

takes over so we know that a/2 is optimal for large x. It is surprising, 

however, that for x as small as 2 the equal-tail interval is nearly 

optimal. 

4.2. Negative Bino.ial Intervals 

A similar analysis was carried out for the negative binomial inter-

vals, but here we use length as our criterion. For each r, define, 

S (x) = ----~r ______ _ 
·r r + xF2x 

2r,l-a+y 

r 

r + (x+l)F2(x+1) 
2r,·r 

(4.2) 

We similarly define r*(x) as the value that minimizes (4.2) for each x, and 

again investigate the ratio sa 12 (x)/S 7*(x). For a•.OS and .1 these are 

shown in Figures 2 and 3 for r•2,5,10,20 and x•0,···,35. 

Examination of these plots shows that, although the equal split 

performs well, the performance is not nearly as good as in the Poisson 

case. In particular, as x ~ w, the equal split is not optimal as the ratio 

Sa/ 2(x)/S.1*(x)(x) approaches a limit ~ 1. To evaluate this limit, 

consider 

1 1 

sal2(x). 1 + X F2x 1 + ~x+l~ F2(x+l) 

,tim • ,tim r 2r 1 1-~al2~ r 2r 1 al2 ( 4. 3) 
S (x) 1 1 

X~ ·r X~ 
F2x ~ F2(x+1) 1 + X 1 + r 2r,l-u+y r 2r,-r 
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i idi d b b d lli h 1. F2x _,. ( l! )-1 D v ng top an ottom y x, an reca ng t at " x. as 
r 2r,a 2r,1-a 

x ~ co, we have 
l! l! 

X.zr,u/2 - X.zr,l-(u/2) 
- :t l! 

X.zr,u-y X.zr,l-y 
(4.4) 

We can now find y*(co), the value which minimizes x2 - x. 2 
2r,u-y 2r,1-·y 

subject to the probability constraint. The values s012 (co)/S7*(co)(co) are 

the asymptotes in Figures 2 and 3. 

We next investigated whether y*(co) might provide a better means for 

splitting the probability between the two tails. (Note that y*(co) is 

independent of x, so it does provide a 1-u confidence procedure.) A plot 

of s7*(co)(x)/S 7*(x)(x) produces pictures very much like that in Figure 1 

(the Poisson case) and shows that y*(co) is indeed a reasonably good choice 

for the probability split. Comparing ·r*(co) to u/2 (Figure 4) shows that 

for all but the smallest values of x, y*(co) gives shorter intervals than 

u/2, with the improvement diminishing as r increases. 

Overall, it appears that y*(co) is the better choice for negative 

binomial confidence intervals. Of course, by using r*(co) rather than u/2, 

it is not longer possible to use standard F-tables to construct the 

confidence intervals. However, with the use of a computer or even a 

programmable calculator, the intervals based on y*(co) are not difficult to 

construct. Table 1 gives values of y*(<O) for u•.05 and .1, r•1,···,50. 
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Figure 1. Ratio of the Size of the Poisson Interval Using 

Equal Tail Probabilities to the Size of the "Optimal" Intervals. 
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Figure 2. Ratio of the Length of the Negative Binomial Intervals 

Based on Equal Tail Probabilities to the Length of the "Optimal" Intervals. 
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Figure 3. Ratio of the Length of the Negative Binomial Intervals 

Based on Equal Tail Probabilities to the Length of the "Optimal" Intervals. 
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Figure 4. Ratio of the Length of the Negative Binomial 

Intervals Based on r*(oo) to Those with Equal Tail Probabilities. 
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Table 1. Tail Probabilities to be Used to Get F Cutoff Points 

Based on Infinite Optimal Split 

r Alpha Upper Tail Alpha Upper Tail 

1 .050 .000 .100 .000 
2 .050 .001 .100 .003 
3 .050 .004 .100 .010 
4 .050 .006 .100 .015 
5 .050 .008 .100 .019 
6 .050 .009 .100 .022 
7 .050 .010 .100 .024 
8 .050 .011 .100 .025 
9 .050 .012 .100 .027 

10 .050 .013 .100 .028 
11 .050 .013 .100 .029 
12 .050 .014 .100 .030 
13 .050 .014 .100 .031 
14 .050 .015 .100 .032 
15 .050 .015 .100 .032 
16 .050 .015 .100 .033 
17 .050 .016 .100 .033 
18 .050 .016 .100 .034 
19 .050 .016 .100 .034 
20 .050 .016 .100 .035 
21 .050 .017 .100 .035 
22 .050 .017 .100 .035 
23 .050 .017 .100 .036 
24 .050 .017 .100 .036 
25 .050 .017 .100 .036 
26 .050 .017 .100 .036 
27 .050 .018 .100 .037 
28 .050 .018 .100 .037 
29 .050 .018 .100 .037 
30 .050 .018 .100 .037 
31 .050 .018 .100 .038 
32 .050 .018 .100 .038 
33 .050 .018 .100 .038 
34 .050. .018 .100 .038 
35 .050 .018 .100 .038 
36 .050 .019 .100 .039 
37 .050 .019 .100 .039 
38 .050 .019 .100 .039 
39 .050 .019 .100 .039 
40 .050 .019 .100 .039 
41 .050 .019 .100 .039 
42 .050 .019 .100 .039 
43 .050 .019 .100 .040 
44 .050 .019 .100 .040 
45 .050 .019 .100 .040 
46 .050 .019 .100 .040 
47 .oso .019 .100 .040 
48 .050 .019 .100 .040 
49 .050 .019 .100 .040 
50 .050 .019 .100 .040 
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