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In the United States, joint diseases affect more than 50 million people, a number
that is expected to rise in the next few decades. Hallmarks of joint disease often involve
degradation of articular cartilage tissue, which leads to patient disability and pain.
Avrticular cartilage cannot heal very effectively on its own, and there is a limited
understanding on which therapeutics would be most effective in disease treatment.
Because of the inherent complexities of cartilage, it is often difficult to predict how
therapeutics will be transported through the tissue, especially for larger molecules.

For proper development of effective therapeutic strategies, a better
understanding of transport of larger therapeutics is needed. First, a review of molecular
transport in cartilage is presented to better motivate this work (Chapter 1). There are
many molecular and environmental factors that affect transport for larger solutes, such
as hydrodynamic size and/or molecular weight (Chapter 2), charge (Chapter 3), and the
presence of fluid flow within the tissue (convective transport) (Chapter 2 — 4).
Additionally, the heterogeneities in composition within the tissue is important and can
be used to predict cartilage transport (Chapter 5). Finally, this new macromolecular data
informed the development of a predictive framework under which transport of solutes

over a wide range of sizes can be accurately predicted (Chapter 6).
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LIST OF FIGURES

Main Figures

Figure 1| Molecules used for arthritis therapy range from ~ 200 Da — 150 kDa and 0.35
—5 nm in hydrodynamic size. Some of the most common agents are: nonsteroidal anti-
inflammatory drugs (NSAIDSs), corticosteroids, growth factors, and antibodies. All of
these molecules need to reach chondrocytes, which are embedded in a dense,
heterogeneous matrix that varies in composition with depth. This matrix is thought to
have a hierarchy of pore sizes from ~ 6 nm between glycosaminoglycan (GAG) chains
to ~ 50 — 100 nm between collagen fibrils21. Notably, larger solutes, such as antibodies,
are about the same size as the smaller pores in cartilage. The breadth of sizes of potential
therapeutics and heterogeneity of articular cartilage results in a highly complex
molecular transport problem.

Figure 2| Graphical depiction of experimental techniques used to determine solute
diffusivity and partition coefficient. Fluorescence recovery after photobleaching
(FRAP) (A) uses transient changes in local fluorescence to determine local solute
diffusivities in the region of interest (AS: articular surface, MZ: middle zone, DZ: deep
zone). In diffusion cell (B) experiments, cartilage is placed in between two baths, with
one filled with the solute that is tagged by a fluorophore or radiolabel. By monitoring
how much solute permeates through the sample into the other bath over time, solute
diffusivity can be calculated. Solute desorption (C) allows a known amount of solute to
fully exude from the sample in a set time, which enables calculation of partition
coefficient and diffusivity. This technique is one of the most commonly used techniques
to examine solute partition coefficient. Nuclear magnetic resonance and computed
tomography (NMR/CT) (D) and fluorescence gradient (E) techniques rely on
visualization of local solute signal within the cartilage sample, and can be used to
determine either local or bulk diffusivities.

Figure 3: Schematic of experimental procedure. The left shows the experimental setup
of an individual well and the right shows a radial fluorescence profile of an individual
sample. Cylindrical samples are bisected and that cut surface is imaged under the
confocal microscope. Only the middle 50% of the sample is shown in the confocal
image.

Figure 4. Normalized fluorescence intensity vs radial depth from the sample edge for a
representative middle portion of loaded and passive sample exposed to the antibody
solution for 3 hours. The loaded sample was exposed to loading at 5% cyclic strain at 1
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Hz. Solid lines denote a radial 1D diffusion curve derived from Fick’s 2nd law, while
dotted lines denote experimental data. Diffusivities and goodness of fits from each
sample are shown.

Figure 5: Transport enhancement vs. strain amplitude at 1 Hz (A) and transport
enhancement vs. loading frequency at 2.5% strain (B). Enhancement was found to be
linearly correlated with strain amplitude (at 1 Hz) for both neonatal bovine tissue (slope:
0.30) and mature equine tissue (slope: 0.24) (R2 > 0.93). The two correlations were
forced to have an intercept of 1 and were not statistically different from one another (p
=0.11). All strain amplitudes were statistically different from a value of one (p < 0.05),
except for 0.25% strain. The maximum enhancement was found to be at 1 Hz. All
loading frequencies were statistically different from a value of one (p < 0.05), except
for 0.25 Hz.

Figure 6: Predicted fluid velocities for different strains at 1 Hz (A) and frequencies at
2.5% cyclic strain (B) vs. radial depth into the tissue. Experimental local transport
enhancement from neonatal cartilage experiments for different strains at 1 Hz (C) and
frequencies at 2.5% strain (D). A normalized radius of 1 corresponds to the sample
radial edge. Local diffusivity curves closely followed the curvature of fluid velocity
profiles. The highest transport enhancement was found near the edge, near areas of
highest fluid flow. Normalized radii of at least 0.925, 0.875, and 0.900 correspond to
enhancements greater than 1 for 1.25% 2.5%, and 5.0%, respectively (p < 0.05,
ANOVA). Normalized radii of at least 0.8750, 0.8750, and 0.9375 correspond to
enhancements greater than 1 for 0.25 Hz, 1 Hz, and 2.6 Hz, respectively (p < 0.05,
ANOVA). All fluid velocity profiles were obtained at steady state conditions (occurred
within 10 minutes).

Figure 7: Correlative plot of enhancement ratio and maximum fluid velocity for various
loading conditions that were previously analyzed. The best fit line is forced to have an
intercept of 1; the correlation was statistically significant (p < 0.001). Artifacts from lift-
off could have caused transport enhancements from higher loading amplitudes (5%) and
frequencies (2.6 Hz) to have data points higher than expected. However, correlations
between individual loading regimes were not significantly different from one another.

Figure 8: Schematic of sample preparation and experimental setup (left and center) with
the fluid flow induced by the platen being perpendicular to the deep zone (DZ) and the
articular surface (AS). A 4-mm diameter sample 2-mm thick was bisected, then a slice
was cut from each half to obtain a final sample dimension of 4x2x1.15 mm.
Fluorescence image obtained from the Ab (150 kDa) solute using confocal microscopy
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(right). Red box (~1000 pum wide, 500 um tall) indicates the region of interest that was
examined for this study.

Figure 9: Representative normalized fluorescence curve for the Ab (150 kDa) solute
under passive conditions (blue) compared against the 16-layer diffusion model (solid
black) (left). For this sample, average coefficient of variance was 6.4%. All solutes had
average coefficient of variances less than 12.5%. Loaded and passive samples had
equally good fits overall for all solutes. Average normalized fluorescence curve for Ab
(150 kDa) through the articular surface shown (right). Standard deviations are
represented by the shaded region for n = 8. For this solute, distinct changes in concavity
were observed and therefore profiles could be roughly broken into three distinct regions.
The articular surface region is characterized by a sharp decrease in fluorescence for the
first 100 pm or so, followed by the plateau region where the fluorescence is relatively
constant, followed by the deep region where there is a more rapid drop off of
fluorescence.

Figure 10: Passive fluorescence profile comparison of the four differently sized solutes
used. Error bars (standard deviation for n = 6-8) for all solutes are shown in shades
surrounding average profiles.

Figure 11: Passive fluorescence profile comparison of the four differently sized solutes
used (left) along with the multi-layer diffusivities (right). Error bars denote standard
deviations for all solutes (n = 7, 8, 7, 6 for DVD, Ab, Fab, scFv, respectively).
Fluorescence curves for these solutes were visually similar up until 400 um, where
solute fluorescence diverged according to size. Overall, local diffusivities were
heterogeneous throughout the depth of the tissue, and there were three distinct sections
of these curves for each solute. On average, diffusivities for the DVD, Ab, Fab, and
scFv, were 3.3, 3.4, 5.1, and 6.0 pm2/s from 0-100 pum, but size did not affect diffusivity
significantly within this region (p > 0.05). Diffusivities increased to a maximum of 16.5,
18.5, 20.5, and 23.4 um?2/s for the DVD, Ab, Fab, and scFv, respectively, between 225-
325 pum. Calculated diffusivities at 225 pm, 275 um, and 325 um were higher than all
other diffusivities in the tissue, for all solutes (p < 0.05). Diffusivities then decreased to
similar values found within the surface region in the 400-800 pum range (deep region),
and had no significant dependence on size (p > 0.05). Values obtained from the 0-125
um range and 400-800 um range were not different from each other, for any solute (p >
0.05).

Figure 12: All four solutes’ fluorescence profiles for passive and loaded conditions.
Lighter shades of color indicate greater loading amplitude. All cyclic loading was
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conducted at 1 Hz for 3 hours. Most enhancement of the fluorescence profiles for all
solutes can be found from 0 — 400 um from the articular surface. Sample sizes: N = 7,
8, 4, 6 for passive, 1.25%, 2.5%, and 5% for DVD solute, respectively. Sample sizes: N
=8, 7, 6,5 for passive, 1.25%, 2.5%, and 5% for Ab solute, respectively. Sample sizes:
N =7,6,7, 7 for passive, 1.25%, 2.5%, and 5% for Fab solute, respectively. Sample
sizes: N =6, 8, 7, 8 for passive, 1.25%, 2.5%, and 5% for scFv solute, respectively.

Figure 13: All four solutes’ depth-wise diffusivities for passive and loaded conditions.
Lighter shades of color indicate greater loading amplitude. Error bars denote standard
deviations with n = 4-8 for all solutes (see Figure 5 for specific sample size information).
Loading increased diffusivities most from 0 — 400 um from the articular surface, with
highest diffusivity enhancement occurring between 225-325 pum (p < 0.05). For most
solutes, no significant transport enhancement was experienced in the first 125 pm of the
tissue, at any loading condition (p > 0.05). As expected, solutes undergoing higher
cyclic amplitudes (i.e. 5%) received more transport enhancement than solutes
undergoing less loading, from 125 um to 325 um (p < 0.05). In general, larger solutes
benefited from loading more than smaller solutes, especially within the range 225-325
um (p < 0.05). Almost no loading based enhancement can be observed deeper than 425
um into the tissue.

Figure 14: Cartilage cylinders were bisected and then sliced to obtain a final sample
dimension of 4x2x1.15 mm (A). Samples were loaded in a way that caused fluid flow
to be perpendicular to the articular surface (AS) and deep zone (DZ) (B). Representative
image from confocal microscopy showing the fluorescence gradient perpendicular to
the AS (C). The red box (~1000 um wide, 500 pum tall) indicates the region of interest
that was examined for this study.

Figure 15: Average normalized fluorescence curve for all solutes (pl 4.7, 5.4, 5.9)
through the articular surface. Standard deviations are represented by the shaded region
for n = 5-7. Fluorescence values trended higher as pl increased within the region 100-
300 um from the articular surface.

Figure 16: Fluorescence curves for all solutes (passive condition) tested (left) and local
diffusivities (right). Error bars denote standard deviations with n = 5-7 for all solutes.
Overall, local diffusivities were heterogeneous throughout the depth of the tissue. On
average, diffusivities for the pI 4.7, pI 5.4, and pI 5.9, were 3.8, 4.5, 4.6 um2/s at 50 um,
but pl did not affect diffusivity significantly within this region (p > 0.05). Diffusivities
increased to a maximum of 15.0, 16.9, and 19.0 um2/s for the pl 4.7, pI 5.4, and pI 5.9
solutes respectively, between 200-275 um. Calculated diffusivities at 125 um, 200 um,
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and 275 um were higher than all other diffusivities in the tissue, for all solutes (*: p <
0.05). Diffusivities for pl 5.9 were higher than that of pl 4.7, between 200-375 um (p <
0.05). Diffusivities then decreased to similar values found within the surface region in
the 400-800 um range, and had no significant dependence on pl (p > 0.05). Values
obtained from 50 um and 425-800 um range were not different from each other, for any
solute (p > 0.05).

Figure 17: Fluorescence curves for pl 5.9 and 5% cyclic loading (left) and local
diffusivities for all solutes at 5% cyclic loading (right). Error bars denote standard
deviations with n = 5-7 for all solutes. Orange solid line denotes average passive
diffusivity levels in the passive condition for all solutes. Cyclic loading at 5% cyclic
strain and at 1 Hz increased fluorescence values between 150 and 400 um. Solutes did
not experience any significant differences in diffusivity values or trends at this loading
amplitude (p > 0.05). Additionally, there were no differences between solute
diffusivities at 1.25% or 2.5% (shown in supplement). However, maximal transport
enhancement increased for all solutes with increasing loading amplitude, as expected.

Figure 18: During sample preparation (A), cartilage explants were randomly assigned
to three groups: 2 mg/ml collagenase, 200 pg/ml trypsin, or healthy controls. With the
bottom third of all samples submerged in PBS, drops (~10 pl) of collagenase or trypsin
were added to the articular surface of samples. After rinsing with protease inhibitors,
samples were cut to obtain slices measuring 4x2x1.15 mm. Degraded and healthy slices
were then exposed to a fluorescent antibody solution (B) so that diffusion would occur
perpendicularly to the articular surface. After 3 hours of exposure, samples diffusion
was examined with confocal microscopy. Compositional analysis was also performed
with Fourier transform infrared spectroscopy (FTIR), second harmonic generation
(SHG) imaging, biochemistry, and histology. Bulk aggrecan and collagen content were
calculated with biochemistry techniques, and was normalized to dry weight for each
group (N) (mg/mg). Using the average relative composition from FTIR and SHG (R),
relative concentrations were scaled point by point by the ratio of N and R.

Figure 19: Fluorescence images allow calculation of fluorescence profiles for all three
groups and determination of how degradation affects local solute diffusivities (left).
Transport analyses showing the fluorescence curves of all experimental conditions
(middle) and their respective local diffusivities throughout the depth of the cartilage
(right). Samples with the surfaces degraded by either enzyme (collagenase or trypsin)
exhibited higher fluorescence compared to the healthy controls within the first 400 um
from the articular surface. Degradation with either trypsin or collagenase led to higher
diffusivities compared to healthy within the first 350 um (*: p <0.05, repeated-measures
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two-way ANOVA), and all groups were statistically similar at depths more than 400 pm
(with an average of 4 um %/s). Collagenase-treated samples exhibited the highest local
diffusivities (70 um2/s at 250 um), compared to the trypsin-treated (40 um2/s at 250
um) or healthy samples (20 um2/s at 250 um), and highest diffusivities at the surface (0
um) of the tissue (45 um2/s), compared to the trypsin (10 um2/s) or healthy (4 um2/s)
groups (p <0.05). Error bars (both shaded and standard) denote standard deviations with
n=4-8.

Figure 20: Safranin-O histology images (left) demonstrate how trypsin and collagenase
degrade the proteoglycans near the surface zone of the cartilage. Absorbance spectra
from FTIR analysis for the degraded samples compared to normal healthy controls
(middle) at a depth of 100 um. Collagenase and trypsin both drastically changed the
absorbance spectra by altering the carbohydrate peak height near (1140 — 985 cm-1),
suggesting collagenase caused greater loss of proteoglycans (including aggrecan)
compared to trypsin. Local aggrecan composition (right) was obtained by calculating
the depth-dependent aggrecan fitting coefficient by decomposing FTIR absorbance data
152. This coefficient was scaled to the average dry-weight aggrecan concentration
obtained from biochemical analysis for each group (21 — 23%) (see Supplementary
Figure 1). Degradation with collagenase or trypsin led to significant decreases (up to
40%) in aggrecan content, within the first 210 and 420 um, respectively (p < 0.05).
Aggrecan content was statistically similar past 420 um.

Figure 21: SHG images demonstrate how these enzymes affect the distribution of
organized collagen in the tissue (left) and normalized SHG intensity profiles (middle).
As anticipated, organized collagen concentrations in trypsin-treated samples did not
differ significantly from healthy controls (right), but collagenase-treated samples
exhibited significantly lower organ