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ROUNDING OFF TO POWERS OF TWO IN
CONTINUOUS RELAXATIONS OF CAPACITATED
LOT SIZING PROBLEMS

by Robin Roundy

ABSTRACT

In the capacitated version of the Divide and Conquer algorithm for lot sizing in
multi—stage production/inventory problems, feasibility is often lost when the reorder
intervals are rounded off to powers of two. We propose a new algorithm for rounding off
the reorder intervals which always produces a feasible policy. We have shown that the
relative increase in cost that occurs when the intervals are rounded off using to this
algorithm can not exceed 44% , and that for systems with a single capacity-constrained
machine (including the ELSP), the cost increase can not exceed 6%. Computational

experience with industrial data sets indicates that the algorithm performs very well.
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1. INTRODUCTION.

Consider the problem of scheduling a multi«-machine facility which produces a
number of different items. One or more items may be consumed in producing a given item.
External demand can occur at a constant rate for any or all of the items. Stockouts are not
allowed. The setup costs, setup times, production rates, and holding cost rates are known,
deterministic, and constant. The objective is to minimize the average setup and holding
cost per year over an infinite time horizon.

The following steps have been proposed by researchers for problems of this type.
First, approximate production frequencies for the items are computed by suppressing the
sequencing aspects of the problem and minimizing EOQ-type cost functions. These
production frequencies are expressed as order intervals, the intervals of time between
successive production runs of a product. The second step is to round off the approximate
order intervals to integer multiples of § for some positive number (. The third step is to
use these order intervals to find a feasible schedule.

The most extensively researched problem of this type is the economic lot scheduling
problem, hereafter called the ELSP. The ELSP is a special case of this problem in which
there is only one machine and only one stage on manufacture. Dobson [5] applied these
three steps to the ELSP in sequence. Other authors have implemented some or all of these
steps in different ways, often combining them with myopic improvement procedures
[1,2,3,4,5,6,7,8,9,11,12,13,14,15,17,21]. The first two of these steps have been applied to
multi-item, multi—stage production systems by Maxwell and Muckstadt [18], Roundy [20],
and Jackson, Maxwell, and Muckstadt [16], and research on the third step is under way.

In the first step, that of finding approximate order intervals for the products, most
authors do not consider setup times or machine capacity explicitly. The choice of order
intervals is guided solely by the setup and holding costs. Exceptions to this rule are Fujita

[10], Dobson [5], and Jackson, Maxwell, and Muckstadt [16]. When setup times are



present, the more successful approach is the one used by Dobson [5] for the ELSP and by
Jackson, Maxwell, and Muckstadt [16] for multi—item, multi—stage production systems. In
this approach the setup and holding costs are minimized subject to the constraint that the
average amount of time spent per year in setting up each machine does not exceed the total
yearly amount of time available for setups. This problem is solved by an extension of the
Divide and Conquer algorithm [16], which can be viewed as a generalization of Dobson’s
approach. A precise formulation of this problem is given in Section 2.

The second step is the subject of this paper. We follow other authors in requiring
that the order intervals be powers of two times [ rather than allowing them to be
arbitrary integer multiples of § [5,11,12,13,20]. Powers of two are chosen for two reasons.
First, for the ELSP it has been empirically observed that within the class of policies in
which all items are produced in equal amounts and at equal intervals of time, power—of-two
policies are almost always optimal, and when not optimal they are near—optimal
[7,8,13,19]. In addition, the special structure of power—of-two policies makes the third step
easier to solve and makes the policies easier to implement on the factory floor [18].

The purpose of this paper is twofold. First, we propose a new way of rounding off
the reorder intervals to powers of two times f#, f > 0. Second, we show that the cost
penalty incurred in so doing is at most 6.1% for problems with only one
capacity—constrained machine (including the ELSP), and at most 44% for multi—item,
multi—stage production systems. The latter bound is tight. Computational results with
industrial data sets indicate that the average cost penalty is much smaller. Therefore the
advantages of power—of—two order intervals can be had at a moderate cost.

We treat [ as a variable. In many situations it is important that [ be treated as
a constant, dictated by some aspect of the system being modeled [18]. For example, 3
might correspond to length of the time intervals used in planning production. The problem
of optimally rounding off the reorder intervals when [ is a constant is reminiscent of

bin—packing problems. Solution methods for that problem are also likely to be similar to



bin—packing heuristics, and to share the same strengths and weaknesses. Jackson,
Maxwell, and Muckstadt propose an extremely simple solution to this problem that does
not guarantee feasibility. They show that if for each machine, the number of items
produced on the machine that have distinct reorder intervals is sufficiently large, then
the central limit theorem implies that the solution is approximately feasible with high
probability [16].

For the ELSP, many different methods have been used to perform the third step,
that of finding a feasible schedule. We will not discuss them in detail. Methods that
require the items to be produced in equal amounts and at equal intervals tend to be
complex and often do not guarantee feasibility, probably because the problem of
determining whether a feasible equal—order-interval schedule exists for a given set of order
intervals is NP—complete [15]. The third step is much simpler when the order intervals are
allowed to be unequal [3,5,17]. For multi—item, multi—stage production systems only very
special cases of the third step have been studied. For .multi—stage systems, research on the
third step is currently under way at Cornell University.

The remainder of this paper is organized as follows. In Section 2 we review the
essential aspects of the way the approximate order intervals are computed, and describe
our algorithm for rounding off the order intervals to powers of two. The worst—case
relative cost increase incurred in rounding off the order intervals is studied for general
systems in Section 3 and for systems with a single bottleneck machine in Section 4. At the
end of Section 3 we summarize our computational experiments for multi—item, multi—stage

systems using industrial data sets, and in Section 5 we present our conclusions.



2. THE ROUNDOFF ALGORITHM
In this section we review the essential elements of the approach taken by Jackson,
Maxwell, and Muckstadt [16] and Dobson [5] for the first step, that of finding approximate
order intervals for the items. Then we present our algorithm for the second step, rounding
off the order intervals to power—of—two multiples of £.
For multi—item, multi—stage production systems, the mathematical formulation of

the problem of finding approximate order intervals for the products takes on the following

form:
(P) min: Y | X0 4 B(n)T(n) (1)
o L T(n)
SuChthat:ZT_’(l‘_I(lflSpm Y 1<m<M (2)
T(£)2T(n) V LneA - (3)

where K(n) , H(n), 7(n,m), and T(n) are respectively the setup cost, holding cost
coefficient, setup time on machine m , and order interval for item n. M is the number of
machines, P is the fraction of the total operating time that is available for setups on
machine m , and %&n € A is an arc from item ¢ to item n representing a bill-of-
material relationship. For the ELSP, M =1 and A = ¢ [5]. It is assumed that
H(n) >0, K(n)20,and 7(n,m)> 0 forall n. Often for each item n, 7(n,m) > 0 for
at most one machine m , but this is not necessarily the case. For example, the time of a
skilled worker can be modeled in this way.

The solution to (P) is obtained by applying lagrangean relaxation to (2) . The

algorithm that solves (P) groups the items into clusters C,,1<i<T that share a common



reorder interval T, = T(n) V ne C; . Let K; =% K(n), H = X H(n) , and
i

i nECi

Tim = EnECi 7(n,m) . The optimal order intervals J* = (T¥, 1<i< I) solve
| K
(P)) min: C(7 )= ) '"F+ H.T, (4)
i i
Tim
suchthat:i————-gp V 1<m<M. (5)
T m

1 1

The reason that constraint (3) no longer appears is that if (3) is binding for &n then
items £ and n are grouped into the same cluster.
It is easily verified that
K.+A_.
i""m im
(6)

-

1

T*2 =
1

where A > 0 is the dual multiplier for (5) and thus is complimentary slack with that

-+

inequality. For the ELSP each cluster contains a single item. /\1 =z v’ is the positive part

of v where v solves

i1 VH

(7)

PL=

We now proceed to describe the algorithm for rounding off the the order intervals

T’i“ to powers of two times 4, > 0. Forall i let z, and theinteger p; be defined by

p.
T’i"szi21,1$zi<2. (8)



p.
A simple approach to computing J would be to set Ti = [x2 ! forall i, and

choose # to minimize C(J) subject to (5). Note however that for any d > 0, in

(8) we

could have defined 2, and p; using d <z < 2d . Computing J using our simple

approach, different values of d would give rise to different J’s . Therefore setting d =1

seems rather arbitrary. The heuristic we propose can be described as applying our simple

heuristic to all d, % < d <1, and selecting the best J identified in this way.

We assume that the clusters are indexed so that z, $ Z; +1 forall i. Foreach k,

1<k <1, we consider a solution of the form 3k = (Tli{, 1<i<I) where

k

k. 3i

T za2

and ak

i <k, so (8) implies that

pf—qk 7Ff<1k

ZkSZI2 1=.—_,£:I-(—32zk forall i.
1

We wish to choose X 50 as to minimize C(Yk) subject to (5). Let

K k
KkEZKg i mm.HkEXHgl.

1 1

k

Then the cost of ¥ can be written as CT kX

minimizes C(&’k) is clearly

is a positive scalar. Note that p; — qli( =0 if i > k and that p; — qli(

)=Kk/ak+H @ . The value of ak

(9)

(10)

=1 if

(11)

(12)

that



= |5 (13)
7 ek
However (5) implies that & is greater than or equal to
k
km _ 1 4
i
Since C(ﬁ'k) is a convex function of ak., the optimal value of o is given by
oK = max(,@k,max 'ykm) : (15)

m

This identifies I policies, one for each value of k . We propose that among these I

*
policies, the policy %" that minimizes C(ﬁk) over k is selected. See Figure 1.

Figure 1. The Roundoff Algorithm.

Step 1. Determine z, and p; forall i using (8).
Step 2. Re—index the clusters so that z; <z 41 forall i.
Step 3. Foreach k,1< k<1, apply (10) and (12) through (15) to compute C(‘7k) .

*
Step 4. Select the vector of order intervals 3‘k with minimal cost.

*
We now show that J5 can be computed in O(IM + Ilog I) time. The sort in
Step 2 requires O(I log I) time. Clearly q} , k! , al , ot , and C(ﬁl) can be

computed in O(IM) time. Since qli{ = q]f-H for all i# k , it is easy to verify that given

¢f, K*, B*, and /™, 1< m <M, we can compute Qi gkl pgktl jk+im

*
and C(éﬂ"l) in O(M) time. Thus we can compute F in O(IM + IlogI) time.,



3. WORST-CASE EFFECTIVENESS FOR MULTI-ITEM,
MULTI-STAGE PRODUCTION SYSTEMS

In this section we show that the worst—case increase in cost incurred by applying
the Roundoff Algorithm is 1/log 2 — 1 ¥ 44% for multi—item, multi—stage production
systems. We also present computational results on a number of industrial data sets.

Recall that 9* solves

(P)) min: C(7) = )
i

(16)

K,
i

such that: Z—H—l-gpm V 1<m<M. (17)
T
i

* *
The Roundoff Algorithm produces a 5’k = (Tli{ , 1 <i<I) that approximately minimizes
(16) subject to (17) and to

p.
Q:ﬁ&l,ﬁ>0,mim%a,V1gm1. (18)

*
We want to find the worst—case cost of 7k relative to J* , i.e., to maximize
*
(3(3k )/C(T*) over all data sets. We solve this problem in several steps. In the first of
these steps we assume that the value of * that solves (P;) is known, and we select the

data M, 7, and p_ for constraint (17). Consider the following problem:

(Dy) Given J* | select M, (Timzlgigl,lgmgM),and (pp:1¢m
.
< M), so as to maximize the relative cost C(ﬁ’k )/C(9*) subject to

three constraints: 7, >0, p >0, and J* must solve (Pl)‘



Lemma 1. An optimal solution to (D) is

lifi=m 1 (19)
M=1, r_= and p. = 1/T*. 19
Mo loifi#m ! '
Under (19), (17) becomes
T, T V¥ 1¢i<I. (20)

Proof. Let (P}) be the problem of minimizing (16) subject to (20). Under (19),

(P,) and (P}) are the same problem. Since 7, >0 and J* satisfies (17), any J that
satisfies (20) must also satisfy (17). This and the fact that J* solves (P;) imply that
J* solves (P7). Furthermore & is more tightly constrained by (20) than by (17), so
C(ﬁ'k) is at least as high for (P]) as it is for (Py). Since this is true for each value of k,
C(ﬁ’k*) is at least as high for (P}) as it is for (Py)- @

In the remainder of this section we assume that (19) holds, so (17) can be replaced
by (20). We now consider the problem of selecting the setup costs K, . Assuming as

before that the solution J* to (Pl) is known and given, consider the following problem:

(D2) Given J* , and assuming that (19) holds, select setup costs (Ki :

*
1<i<I) so as to maximize the relative cost (3(‘7k )/C(F*) subject

to two constraints: K. > 0 and J* solves (Py)-

Lemma 2. The solution to (D) is

K, =0 forall i.



Proof. Let J* solve (P;). Let (PT) be the version of (P;) with K, =0 for all
i. Clearly J* solves (P7]). Let J satisfy (18) and (20). Then [ Ki/Ti]/[Ei Ki/Tﬂ <
1 ¢ CE)/cE*) = [g (K,/T; + B, T)I/[5; (K,/TT + HTY)] , so Ca)/CT*) <
[Z; BT]/[5 H.T¥]. Therefore if 7 satisfies (20) then C(7)/C(7*) is at least as high
for (P7) asit is for (Py)- o

We assume that K, =0 throughout the remainder of this section. Under (19), (14)

becomes

k
<
7km=T;12—qm___ 2z, m <k
z m>k

m 3

q.
by (8) and (10). Since 61( = 0 we have ak = 22) and Tli{ = 22y %2 1 Let

B
HiziZ
Wi=_—-i)_«'
Y Hz2 J
] JJ
By (8),
e
co¥y I Hz? 7, Q+1-p; zk
C(T*) = P; = zwi?-"2 Z i + 2 2W; 7o
T, Hz,2 i 1 i<k “i i>k %
ie.,
k
( =) w + Y 2w (21)
i<k i>k

10



The relative cost of the order intervals calculated by the Roundoff Algorithm is

R = miny C(ﬂk)/C(ﬁ*) . Let 1522 and w = Elgigl (Zi+1/zi — 1) . Setting

T+
1
2y = 52; wehave w= ElSigl (z;/2,_4 — 1).

Lemma 3. R ¢ 1/w. Furthermore this bound is tight.

Proof. Let vy = (Zk+1 - zk)/cuzk . Then v, 20 and lekg vie=1. By (21),

. k k i
R = min, C(7)/C(7*) < T, v C@)/CT*) = E -ﬁ {Zii itk + D 2% =

Ww. w

i e
L op oy — 5 + 25— 22) =L,

= 1/w. Setting w; = (z/7_; — 1)/w in (21),
i .

we see that the bound given by Lemma 3 is tight. 0

Applying Lemma 3 is equivalent to choosing Hi to maximize R . The final step in
determining the worst—case effectiveness of the heuristic is therefore choosing I and z; to

maximize 1/w , subject to the constraints 1< z £ z

: 1+1<2 for all i < I, and

2141 = 221 -

Theorem 4. R < 1/log 2 1.44 . Furthermore, this bound is tight.

Proof. Setting y; = log (2 +1/zi) , the problem of choosing I and z; to minimize
w becomes

(Dy) min: § (¢!

i

...1)

such that: 2 ;= log 2
i

yi>0.

11



zZ.
(il _ o/l
Zy

Since e is convex, the solution to (D3) is y; = % log 2 forall i,ie., for

all 1. Thus R ¢ 1/{1(21/ I—1)} . a non-decreasing function of I > 1 that tends to

1/(log 2) as I tendsto o. O

Summarizing, the worst case occurs when (19) holds, K. =0, w;= (z;/2,_; —
1)/w,and I is large., Of these conditions, (19) stands out as being highly unrealistic and
highly restrictive. Clusters are connected components of the bill-of—materials network.
Consequently they tend to follow the flow of products through the plant rather than
spreading out to include all of the products on a bottleneck machine. One would thus
expect bottleneck machines to intersect a number of different clusters.

To test the performance of the algorithm on real—world problems, we have run it on
five different industrial data sets, three small ones and two large ones. The results of these
runs are summarized in Table 1 below. Data sets one, two, three, four, and five come
respectively from companies that manufacture computers, industrial chain, aircraft,
pneumatic air tools, and automobiles.

We compare the cost of the policy computed by the Roundoff Algorithm to the
lower bound obtained by solving (P), and to the cost of the algorithm proposed by
Jackson, Maxwell, and Muckstadt (called the Simple Algorithm) in which the order
intervals are rounded off to powers of two without regard to feasibility. For this algorithm
we also report the maximum value of the ratio of the left-hand side of (2) to the right-hand
side. For a feasible policy this ratio will not exceed one.

The results in Table 1 confirm that the Roundoff Algorithm works much better on

industrial data sets than its worst—case performance bound indicates.
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Table 1: Computational Results.

Roundoff Simple Algorithm

Algorithm
Data Maximum
Set Nodes Arcs Machines Cost Cost Feasibility
Ratio Ratio Ratio
1 8 4 2 1.000 0.786 1.35
2 14 14 2 1.066 0.976 1.15
3 27 37 4 1.016 1.167 1.08
4 407 311 31 1.053 1.188 1.14
5 269 776 27 1.117 0.995 1.19

4. THE WORST—CASE EFFECTIVENESS FOR THE ELSP.

In this section we show that if there is only one capacity-constrained machine

(M =1 in (P)), then the worst—ase increase in cost that can result from applying the
Roundoff Algorithm is 6% , i.e., that C(yk*)/C(ﬁ'*) < %(ﬁ + 5 ). We also show that
C(ﬁ’k*)/ C(9*) can be as large as 1/[2 (log 2)2] v 1.04 . Since there is only one machine,
in this section we drop the machine subscripts. Therefore in (5), (6), and (14) we use p
k k

for Py T for Tim A for Al,and v for v

* —
T, r/TE<p and &, /TT=p.

m .
. There are two cases to consider,

T.
Case 1: 2 2L <.

*
i T3

Suppose we were to decrease the value of p from its current value to X, Ti/T’i‘ :
The cost C(9*) of I* would be unaffected because J* is still feasible for (P). However
the cost C(Yk) of 9% would either increase or remain unchanged. Therefore the relative

cost for Case 1 is bounded from above by the relative cost for Case 2.

13



T.
1

Ca,se2:‘2 ——-=p.
i

b e

k

k _ ok ko3i : . k .
Suppose we were to use 7 = (Ti =2 ,1<k<I) instead of using g . This

would be tantamount to choosing & 50 as to make (2) tight for all k, even though this
may be a suboptimal choice of X . Therefore C(?k) > C(J7k) for all k.

An upper bound on C(ﬁk*)/C(ﬁ*) can be found as follows. The minimum of
C(?k) over k is an upper bound on C(ﬁk*) . We use a weighted average of C(f?k) over

k as an upper bound on the minimum over k of C(?k) . The weight assigned to k is

W) where
w, =logo(z, , 1/2), k#1;
k 2V%k+1/"k (22)
wy = log2(2zl/z1) .
Let
k k .
z; =2z if i>k and z; = 2z if i<k. (23)

The following lemma is used in the proof.

k k
Z. Z.
Lemma5. If i < then Jw, | 4+ |<(2+V5).
k Zj ZJ
Proof. By (22) and (23)
k k
Z. Z1 Zi
L |tk =f{zt]
k z; 1z ]
j

where

f(x) = [x + }I—J log, (2x) + [2x + %’i] log,, E—J :

14



Z-

Since i < j, (8) implies that %5 El.s 1 . On the interval B— , l} , the function f is
J

concave and attains its maximum value of v2 + V5 at x=45. O

(V2 + V) C(F*) » 1.06 C(T™) .

[\3“_..

Theorem 6. C(ﬁk ) &

Proof. Note that (23), (10), and (8) imply that

£
Q
o2
L
ﬁ
~—
-
*
o9]
11}
=
—
#*
o
=
(oW
w)
]

K./T* . Then by (12) we have

B.
k _ k k _ i
K =) Dzf and H'= ) —.
i Zi

Aj
Let a; = ——. Note that a, 2 0 and Z.a =1. By assumption p =L, Ti/T’{ =

.
j A

T; Ay, 50 (14) 1mp1ies

k E. Dz B
sk
C(ﬁ')=-K—K+Hk'yk= Eaz {Z—f{ (24)
7 21 2i%j i %i

By (6) we have B, = /\Ai + D, ,s0

15



C(F)= T (B +D) = 2D, + A4 (25)

and
k
Y. D.z. D.
Ky _ i 7i%i k i
zwkC(ﬁ)-— Wy —_EE "y + Eaizi Z';E
k k i %1% i i1
A.
k
+ z Wk)‘ [z 3425 2—%{ (26)
k i iZi
%

The remainder of the proof is divided into two parts. In Part 1 we show that the
first term of (26) is at most % (v2 + +5) times the first term of (25), and in Part 2 we
show that the second term of (26) is at most %(JZ + -5) times the second term of (25).
Since C(ﬁk*) = mli( n C(7 k) < m]iin C& k) <Ty WkC(5 k) , this will complete the proof.

Part 1.
D;
Let d, = . Then d; >0 and X; d; = 1. We need to show that D < 2+
Y. D. '
J )
V-5 where
E dz d
DEZWk[ Zaz}{ k]}
k 1 3z i“i

By Jensen’s inequality and by Lemma 5,

16



k i i i
zl.{ Z}i{
= z [aJd1 + djai} z W j(- + ;E + Qaidi
j<i k i j i

¢ [+ 3] gaI] [Zdi] .

Part 2.
We need to show that A < %(ﬁ + -5) where

>
|
~1
g
w
>
frmm—
il e
£
5]
-
|
————
ol o |
NW‘I""N
CE—)

k i
By Lemma 5,
k k
Z; %y 2
A=2 a‘jaiEWk ;%'*';E -l-Zai
j<i k i j i

g%[,/g+,/_3] [ y 22, + Ea?} = Hﬂhﬁ]. 0

j<i i

Theorem 7. C(yk*)/c(y*) can be as high as —Z—l——)—? v 1.04.
2(In 2

Proof. Let K,=0. Then 6k =0 forall k,so T =7 forall k. (6) implies
that B, = AA, and T’{2 = Ar/H; ;50 D; =0, A, =7/Tt = vrH,/X , and we can
choose 7, and H, sothat T} =z = 2(i"1)/I and A; = 1/yX. Thus a, = 1/I for all
i. Equations (24) and-(25) imply that

17



o7 /C() < h aizli(} baﬂ D A e LS

1

a non-decreasing function of I > 1 that converges to —El_l—_? as I tendsto o. O
2(In 2

5. CONCLUSIONS.

We have proposed an algorithm for rounding off the reorder intervals computed by
the capacitated version of the Divide and Conquer algorithm for lot sizing in multi—stage
production /inventory problems, for capacity-constrained, multi—item lot sizing problems to
powers of two. We have shown that the relative increase in cost that occurs when the
intervals are rounded off using to this algorithm can not exceed 44% , and that for systems
with a single bottleneck machine (including the ELSP), the cost increase can not exceed
6%. Computational experience with industrial data sets indicates that for multi—machine

problems the algorithm performs much better than the worst—case bound indicates.
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