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Summary

We consider the problem of comparing a set of p; test treatments with a

control treatment. This is to be accomplished in twé stages as follows: In the
first stage, Ny obser;ations are allocated among the pq treatments and the
control, and the subset selection procedure of Gupta and Sobel (1958) is
employed to eliminate "inferior" treatments. In the second stage, Np
observations are allocated among the (randomly) selected subset of Po(spq)
treatments and the control, and joint confidence interval estimates of the
treatment versus control differences are calculated using Dunnett's (1955)
procedure. Here both N1 and N, are assumed to be fixed in advance, and the so-
called square root rule is used to allocate observations among the treatments and
the control in each stage.

Dunnett's procedure is applied using two different types of estimates of
the treatment versus control meén differences: The unpooled estimates are based
on only the data obtained in the second stage, while the pooled estimates are
based on the data obtained in both the stages. The procedure based on unpooled
estimates uses the critical point from a P,-variate Student t-distribution,
while that based on pooled estimates uses the critical point from a p1—variate
Student t-distribution. The two procedures and a composite of the two are
compared via Monte Carlo simulation. It is shown that the procedure which yields
shorter confidence intervals on the average depends on the expected value of Po.
Applicability of the proposed two-stage procedures to a drug screening problem

is discussed.

Keywords and Phrases: Subset selection, Joint confidence interval estimation,
Multiple comparisons with a control, Drug screening, Gupta-Sobel procedure,
Dunnett procedure, Pooled estimates, Unpooled estimates.




1. Introduction

Two types of inferential goals have been proposed in the literature for use
in problems involving test treatments versus control comparisons. One of these
pertains to the elimination of test treatments that are "inferior" to the
control treatment. The test treatments that are selected as beiﬂg "superior"
(or "equal") to the control treatment can then be studied more intensively in

later experimentation. The other goal pertains to the joint estimation of the

test treatment versus control differences with stated precision. The reasons

for employing joint rather than separate estimation are explained in

Bechhofer and Tamhane (1988); also see Hochberg and Tamhane (1987, Chapter 1).
These two inferential goals have been treatedrseparately in the literature.

For the first goal, Gupta and Sobel (1958) proposed a subset selection procedure

(referred to herein as the GS-procedure), while for the second goal, Dunnett

(1955) proposed a joint confidence interval estimation procedure (referred to
herein as the D-procedure). In this paper we study a two-stage approach: The
first stage uses the GS-procedure to eliminate the apparently inferior test
treatments, while the second stage uses the D-procedure to estimate by joint
confidence intervals (one-sided or two-sided) the performances of the retained
test treatments relative to the control or placebo. In fact, we study two
different procedures for second stage estimation. The first uses only the data
obtained in the second stage for constructing the joint confidence intervals,
and is referred to as the Not Pool D- (ND-) procedure. The second pools the
data obtained in both the stages, and is referred to as the Pool D- (PD-)
procedure. Relative performances of the two procedures are studied via
simulation.

The outline of the paper is as follows: Section 2 introduces the notation

and states the basic assumptions. Section 3 provides descriptions of the two



two-stage procedures. Section 4 discusses the so-called square root rule for
allocating the total number of observations in each stage among the test
treatments and the control treatment. Section 5 gives a numerical example toO
illustrate the procedures. Section 6 gives a comparison of the ND- and PD-
procedures, and two of their variants, based on numgrical and simulation results.
Section 7 discusses the application of the proposed two-stage procedures in a

problem of drug screening.



2. Notation and Assumptions

We assume that at the first (elimination) stage of experimentation there
are available p, 2 2 test treatments labelled 1,2,...,pq and a control treatment

labelled 0. Let {Yijl(1535ni1)} denote a random sample of size njq on the ith

. P1
treatment (02iSp,) with Ny = I n;, being the given total sample size used at
i=0
the first stage. As in the usual fixed-effects one-way layout model, the random

sample on the ith treatment is assumed to be drawn from a N(ui,gz) distribution
nj1
: 2 - 1
(O$1$D1). Here the u; and ¢ are unknown parameters. Let ¥i1 =j£1 Ti351/041
denote the first stage sample mean for the ith treatment (0$i$p1) and let

P nj -
3] 211(Y.j1-yi1)2
i=0 j=1
82 == - i
v
1 N1‘(P1+1)

denote the first stage pooled sample variance based on v, = NT“(p1+1) degrees of
" freedom (d.f.). ‘

The corresponding quantities in the second (estimation) stage are denoted
by substituting subscript 2 in place of 1 in the above. Thus p, denotes the
(random) number of test treatments retained for experimentation in the second
stage. (If Py = 0 then there is no second stage experimentf) Without loss of
generélity we assume that the test treatments are labelled so that the first Py
test treatments are retained. The total sample size N, for the second stage is

assumed to be fixed in advance; this is allocated among the P, test treatments

and the control treatment so that no observations are taken on the ith

. Po _ njp
treatment (OSlsz) with Np = I njo. Let Yjp, = L Yijz/niz denote the second
i=0 . , j=1

stage sample mean for the ith treatment (OSisz) and let



p n;

£2 le(Y.jz-fmﬁ
1=0 j=1

se . :

Vv
2 Ng'(p2+?)

denote the second stage pooled sample variance based on vy = Nz-(p2+1) d.f.

P2
Note that both the n;, and v, are random variables, although N, = I nj, is
i=0

fixed.
Based on symmetry considerations, we will assume throughout that Njq = ny
(say) for i =1,...,p7 and njo = np (say) for i =1,...,pp. Thus Ny = ngq

Pyny and Ny = ngpy + ponp.



3. Two-Stage Procedures

In this section’we describe our two two-stage procedures. Both procedures
have the same goals for Stage 1 and for Stage 2. The goal for Stage 1 (Goal 1)
is to select a subset of the p, test treatments which contains all of the

treatments having means B 2 ug. (These test treatments are referred to as

"superior.") If this goal is achieved then a correct selection (CS) is said to

have been made. The goal for Stage 2 (gggi 2) 1s to estimate by means of joint
confidence intervals the p, differences uj-ug (1sisp,). For one-sided intervals
this latter goal is referred to as Goal 2-I and for two-sided intervals it is
referred to as Goal 2-II.

The probability requirement for Goal 1 is:

P(CS) 2 1-a, for all (“0’“1""’“;)1;02)' (3.1)

and that for Goal 2 is:
Joint Confidence Coefficient 2 1=a, for all (uo;u1,...,up ;02). (3.2)
2

Here 1’a1 and 1-a, are prespecified numbers between 0 and 1. Notice that

D }, and the requirement (3.2) must
1

{“1.---,up2} is a random subset of {uq,...,u
be guaranteed unconditionally. This éan be achieved by guaranteeing (3.2)

conditionally for every possible subset.

Both two-stage procedures use the GS-procedure in Stage 1 to guarantee
(3.1). The GS-procedure retains the test treatment i in the selected subset for

Second stage experimentation iff

- - 1 1 y1/2 .
Y12 :01—3v18v1(57 + Hg?)‘ (1sisp,). (3.3)

Here gv =

, 8V1,p1,p1,a1 is the 100a, equicoordinate percentage point of the p,-



variate Student t-distribution with v, d.f. and associated common correlation

s ’ 1/2
coefficient p, = n,/(ny+ng;). We refer to the quantity gv1sv1(1/n1 + 1/ngq)

as the allowance associated with the GS-procedure.
The ND-procedure yields the following joint one-sided and two-sided

confidence intervals, respectively, in the second stage:

1
(— + —)1/2 (15i%p,)} (for Goal 2-I) (3.%a)

Wi-ug 2 ¥3,-Ypom8, S n,  Toa

: 2 V2

and

- = 1 1172 . )
i-uoe(¥12-Yop ¢ hy Sy, (55 * 565) ] (15isp,)} (for Goal 2-II).  (3.4b)

Here g = g and h. =nh are the upper 100a

Vs V5P oiP 5, v, VoiPosP sty 2
equicoordinate percentage points of the P,-variate Student t- and ltt—
distributions, respectively, with v, d.f. and associated common correlation

coefficient p, = n,/(n,+ny,). The quantities g, S (1/n2+1/n02)?/2 and

2 2
1/2

hv Sv (1/n2+1/n02) are referred'to aé the allowances associated with the
2 B

2
joint confidence intervals (3.4a) and (3.4b), respectively. To date the most
complete and accurate tables of the critical points g, and h, have been given
by Bechhofer and Dunnett (1988).

We now describe the PD-procedure. The pooled estimates on which the

PD-procedure is based are calculated as follows: Let

2 2
P15 *+ Dypry
D, = — > 5 (3.5)
T,] + '[2
denote the pooled estimate of Hi=ug (1$i$p2) where

and



1? L N P S (3.7)
nJ- noj
Also let
2
V.S + vs5S
1 1 2 v2
se . : (3.8)
v v +
1 7 V2

be a pooled estimator of 02 based on v = Vi o+ v, d.f.
Finally let
-1
12 = (1/1? + 1/13) . (3.9)

and

S (3.10)
2, .2 »
1 12

The PD-procedure yields the following joint confidence intervals at the second

stage:
{ui-ug 2 Di8y,p.,0,a,5Sv7 (15152)} (for Goal 2-1) | (3.11a)
and )
{u;-ugelp; = hv,p1,p,a25vf] (1sigp,)} (for Goal 2-II). (3.11b)
T it |
he quantities gv,p1,p,a28vT and hv,p1,p,a28vt are referred to as the

allowances associated with the joint confidence intervals (3.11a) and (3.11b),
respectively.

The intuitive reasoning behind these "pooled" intervals is as follows: If
the random nature of p, (and hence that of ng,, n, and v,) is ignored, then Dj
given by (375) is the "best" (minimum variance) pooled estimator of Wi-ug among
all linear combinations of D;, and Dj,; this minimum variance is equal to 6212
where 12 is given by (3.9). Also note that in this case the Di are

equicorrelated with common correlation coefficient p given by (3.10).



We now turn to the question of whether or not the joint confidence
intervals (3.4) and (3.11) associated with the ND- and PD-procedures,
respectively, guarantee the probability requirement (3f2) for Goal 2. We can
restrict the discussion to the one-sided intervals in each case since the same
arguments apply to the two-sided intervals. For the joint one-sided confidénce
intervals (3.4a) associated with the ND-procedure, it is easy to see that they
have an unconditional joint confidence coefficient 2 1—a2, This is so because
conditional on the subset selected (assuming it is nonempty), po and hence

nz:noz are fixed. Therefore conditionally, the random variables

Y. o-Yro-(usi=un)
1271027 WHiTHQ »
; (15isp,)
s, 1. 1ty
2N  No2

have a joint Po-variate Student t-distribution with v, d.f. and common
correlation coefficient: = P5> =ny/(ny+ng,). Hence the conditional joint
conf idence coefficient for the intervals (é.Ua) is 1-a2 if p221, and it may be
taken to be unity if an empty subset is selected, i.e., if p, = 0. Therefore
the unconditional joint confidence coefficient is 2 1—a2,

No such rigorous argument can be given for the joint one-sided confidence
intervals (3.1ja) associated with the PD-procedure. The reason for this is that
conditional on the subset selected (assuming it is nonempty), the random

variables

D.-( -
i=(ug-ug)
e e—————————— <i<
5 (15isp,)
AY
do not have a Po-variate Student t-distribution even though p, and hence n,,ng,

are fixed. This is so because conditioning on a subset selected using (3.3)

restricts the D., to be greater than or equal to - g, S, (1/n1+1/n01)1/2 for
T :



1512p,, and hence the conditional distribution of the D; is not py-variate
normal. In fact, the individual D; are not even conditionally univariate normal.
It should alsoc be noted that in (3.j1a) we use the percentage point from the p,-
variate Student t-distribution even though the joint confidence statement is .
made concerning only p,(sp,) differences p;-ug (15iSp,). This is needed to
compensate for the fact that the pooled estimates D; are based in part on the

first stage data, which have already been used to select the treatments for the
first stage. Note that this compensation tends to make the procedure
conservative. In the simulation experiment described in Section 6, we will

examine the effect of using the percentage point from the py-variate Student t-

distribution instead of the p1-variate,



4. Allocation of Observations

In this section we discuss the choice of (an'nj) to be used in each stage
j =1,2. The particular choice that we recommend is based on the well-known

square root allocation rule (Dunnett (1955)) which yields

N; N

ng; = n;j I ng - n; 3§ =1,2). (4.1)
1+/p Vo (1+/5 ;) | |

J d J

As discussed below, for stage j this choice approximately minimizes the expected

allowance associated with (3.3) (for j = 1) and (3.4) (for j = 2) and exactly

minimizes (ignoring the integer restrictions on Noj and nj) the common value of

var(?i. - Yoj) - 242 subject to given N,

J J J
The expected allowance associated with the GS-procedure is given by

and‘pj and specified 1—dj(j =1,2).

1 1

1/2
g (— + —)'/°E(s )
VisPysPysQytng Ny M
=g {(ry+py)(r +1)/r>}1/2E(5 ) /¥, (4.2)
VPP gsa, 1%P1 1 11 v, 1 :

where we have let r, =ngq/ny and py = 1/(1+r;). Note that the minimizing value
of ry is independent of o; If the ﬁD—procedure for one-sided comparisons is
used in the second stage then the criterion to be minimized is the same as (4.2)
but with subscript 1 changed to 2 everywhere. If the ND-procedure for two-sided
comparisons is used in the second stage then, in addition, the critical constant
gvz must be replaced by hvz. For the PD-procedure the corresponding criteria
can be stated in an analogous manner, but they are functions of the first stage
quantities as well. We shall indicate later in this section how the allocation
(4.?) can be justified for the PD-procedure.

Minimization of the expected allowance criterion has a clear interpretation

for the joint confidence interval estimation problem. For the subset selection

10



problem we use the same criterion because decreasing the expected allowance has

the effect of decreasing the expected number of "inferior" test treatments

(i.e., those having means H; < ug) included in the selected subset.

In Bechhofer, Dunnett and Tamhane (1987) we demonstrated by extensive
*
J
root allocation (4.1), approximately minimizes the criterion (4.2) (as well as

numerical calculations that the choice ry=ry= /53, which gives the square

the criterion obtained by replacing g, with hv.)' For this allocation rule, Pj
equals 1/(1*/53). The corresponding ciitical cinstants g, and h for p =
1/(1+/p) needed to implement the GS- and ND-procedures were tabulated for
selected values of p,v and a in the aforementioned article. (A subset of these
tables may also be found in Bechhofer and Dunnett (1988).) The asymptotic (as
Nj + «) optimality of (u.j) for joint confidence interval estimation was shown
by Bechhofer (1969) for one-sided comparisons and by Bechhofer and Nocturne
(1972) for two-sided co@parisons.

As we pointed out, the square root allocation rule (4.1) exactly minimizes
var'('fi‘j - YOJ) = T§02 subject to given Nj and Pj J = j,Z). (This results in
only approximate minimization Qf the expected allowance criterion because the
critical constants Svj and hvj, which also are functions of rj = ng;/nj through
Dj = ?/(1+rj), do not vary much with °j for small aj (j = 1,2).) Therefore for
stage j = 2, (u.}) exactly minimizes t%¢2 for any given r$, and N, and p,.

Now the expected allowance (conditioned on p2) associated with the PD-
procedure (3.11) is proportional to t1; moreover, the critical constants

g,:P1spsa5 and h are relatively insensitive to the choice of r,.

V:D1 s P ,(12
Therefore it follows that (4.1) also approximately minimizes the expected
allowance associated with the PD-procedure.

I . * %
n practice, the (an’nj) values given by (4.1) must be rounded to one of

the nearest integer values, which are

11



(N.-p.[n:],[n50) (4.3a)
J J J J (j = 1)2)!

(Nj-pjtn;ﬂ],[n;ﬂ]) (4.3p)

(noj,nj) =
where [x] denotes the integer part of x. The choice between (4.3a) and (4.3b)
should be based on the minimum expected allowance criterion. To make this
comparison the critical constants associated with the two allocations (4.3a) and
(4.3b) with their respective p-values are needed. Linear interpclation with
respect to 1/(1rp) in the tables of Bechhofer and Dunnett (1988) is recommended

for this purpose if the exact values are not readily available.

12



5. Numerical Example

Suppose that a pharmaceutical laboratory has identified 20 chemical
compounds which it wishes to test against an existing standard drug (or
placebo). The testing is to be done in two stages. The purpose of the first
stage is to eliminate those compounds which are indicated as being "inferior" to
the control compound so that more observations can be allocated in the second
stage to the compounds retained which are presumably the "superior" ones.
Suppose that 70 animals are available for each stage of testing.

For the first stage it is desired to design an efficient experimeht so that
Wwith probability at least 0.90 the selected subset will contain all test
compounds at least as good as the control compound; thus ?_“1 = 0.90. Here Py =
20, Ny = 70; hence there will be vy = Ny=(pq+1) = 70-21 = 49 d.f. available for

estimating 02. From (4.1) we see that the asymptotically optimal allocation is

* N4 70

* Nq 70
n = = 1
10, 1+/20

vpy (1+/py)  /20(1+/20) -

= 2.86.

01 = 12.79 and n
From (4.3) the corresponding rounded pairs of integers are given by (n01,n1) =
(30,2) and (70,3); the associated p,-values are 0.0625 and 0.2308, respectively.
The corresponding critical constants are 849,20, .0625,.10 = 27533 and
8&9,20,.2308,.10 = 2.572. The expected allowance is phéportional to
2.633(1/30 + 1/2)V/2 = 1,923 1f (ngy,n;) = (30,2), and 2.572(1/10 + 1/3)1/2 =
1.693 if (n01,n1) = (10,3). Thus tﬁe iatter choice is preferred. (In fact, the
only other choice for (ngq,nq) is (50,1) which leads to p1 = 0.0196 and
849,20,.0196,.10 = 276M45A This choice is clearly inferior to eiﬁher of the
other two; Hehce the square root rule indeed yields the overall optimum
allocation in this case.)

Thus in the first stage, 10 observations will be taken on the control

compound and 3 observations on each of the 20 test compounds. Then those test

13



compounds whose sample means Y;, are no less tnan.fo1 - 1'693Sv] will be
retained for further experimentation.

Now suppose that 15 compounds are eliminated in the first stage, and 5 are
retained in the selected subset. In the second stage it is desired to obtain,
say, 95% joint one-sided confidence interval estimates of the five differences
Hi-ug (1s1s5); thus 1-a, = 0.95. Here p, =5, N, = 70; hence there will be
Vo = Ny=(po+1) = 70-6 = 64 d.f. available for estimating ¢2 from the second

stage. From (4.1) we obtain

% N, 70 N, 70

= = 21.63 and n; = —
‘ po(1+/5)  V5(1+/5)

Nyo = = 9,67,
/D, 14+/5

Using (4.3) we find that the corresponding rounded pairs of integers are

(noz,nz) = (25,9) and (20,10); the associated po-values are 0.2647 and 1/3,
respectively. Following the same steps as taken earlier, we find that (noz,nz) =
(20,10) is the preferred choice for the one-sided ND-procedure, the necessary
critical constant in this case being ggy 5 1/3,.05 = 2.329. This same choice
(noz,nZ) = (20,10) is also preferred for thé twé-sided ND-procedure, the
necessary critical constant in this case being hey,5,1/3,.05 = 2-6?6-

Now suppose that it is desired to employ the PD-brocedure at the second
stage. Using the square root allocation rule we are again led to choosing
between (noz,nz) = (25,9) or (20,10). The corresponding rg—values are 0.1511
and 0.1500, respectively, and the p,-values are 0.2647 and 1/3, respectively.
Assuming that (n01,n1) = (10,3) is used in the first stage, we have 1? =
(1/10*}/3) = 0.4333 and Py = 0.2308. Applying (3.9) and (3.10) we obﬁain
(12,p) = (0.1120,0.2558) for (ng,,n,) = (25,9) and (1%,p) = (0.111M,0.3070) for
(ny,,n,) = (20,10). Since the latter choice yields a smaller 12 and larger p,
it is clear that it will yield the smaller expected allowance. The critical

constants needed to implement the PD-procedure for this choice of (noz,nz) are

14



= = 3, f one-sided and
£113,20,.3070, .05 = 2-784 and hyy3 50, .3070,.05 = 3-039 for
tw6~sided Jjoint intervals, respectively; here the pooled d.f. are v =

4o+l = 113,

15



6. A Comparison of Procedures

In this section we compare the performances of the ND- and PD-procedures
via Monte Carlo simulation. We also study two variants of these two procedures
for making joint confidence statements at the second stage. The rationale
behind these variants will become clear after we make a preliminary comparison
between the ND- and PD-procedures. For convenience, in this section we will
refer to these two procedures as'd% and 6%, respectively.

It is clear from the description off?z that it will tend to be conservative
if the true number, say q (s Py), of "superior" test treatments is small
relative to Dq- This is so because*gé uses the critical point from the P17
variate Student t-distribution when, in fact, only P, (s pT) joint confidence
statements about apparently "superior" test treatments are made. A natural

question to ask is whether a procedure that uses g in place of

\),pz,p,az
Sv’pT’p,az in (3.jja) will still guarantee the probability requirement (3.2) for
Goal 2-I. We refer to such a procedure as‘Sg. We will show by simulation that

4&2 does not guarantee (3.2) in all cases, ile., it can be liberal;

Based on the above discussion we can surmise thatlsg Wwill yield a wider

allowance thangéa.if po/Py is small and vice versa. We will now compare the

one-sided allowahces for the two procedures for Py = 20, pp = 1(1)10(2)20, N,

[l

70, Ny = 70, (ngq,nq) = (10,3) and thus (15,p;) - (0.4333,0.2308), vi = 49,9,
70‘(92+1) and 1—&2 - 0.95. In this comparison, for each given p,, (ﬁoz,nz) is
chosen using the square root allocation rule given in Section 4. Furthermore,
the sampling variations in S,V2 and S,, are ignored because v, and v = Vi * v, are
large; both sz and S are taken to be equal to unity, which is the assumed
value of ¢. The results are presented in Table I. ThGJS%—allowances also are
included in this table for additional information.

From Table I we see that among the three procedures,<§g yields the smallest

allowance for all values of pps however, this is at the expense of not

16
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guaranteeing (3.2) in all cases, as noted above. Between’éa and'éj, the former
yields the smaller allowance for p, <. 5 and the latter yields the smaller
allowance for Po > 57 This observation suggests .an adaptive composite procedure
451 which uses‘da for making the joint confidence statements at the second stage
if P, s 5 and which uses‘é% if Py, > 5. (More generally, the precise value of Ps
at which the’G%~allowance becomes smaller than the%?%-allowance will depend on
the values of p,, N;, N, and whether the square root or some other allocation
rule is employed at each stage.)

In summary, the following four procedures, all of which use the GS-procedure

for subset selection in the first stage, were compared in our simulation study:

45%: ND-procedure.

PD-procedure.

instead of g in (3.11a).
’p2’p’a2 \)’pT’p’aZ ..

o
4&%: PD-procedure which uses g,
/@u Uses 1 if p2 < 5 and 2 if p2 > 5.

The procedures were simulated under-sevén different u;-configurations for
P1 = 20, The ui—configurations were chosen so as to cover three different
values of q, the true number of "superior" test treatments (q = 5,10 and 20).
Without loss of generality, throughout we assumed My = 0 and 02 = 1. The Mi-
values for "superior" test treatments were taken to be equal to Mg, but the u;-
values for "inferior" test treatments were varied over the range -1 to -4 in

different combinations. The seven configurations are listed below.

Config.1l: wuy = ... = yuyy =0 (q = 20)

Config.2: }J.1 z"'=“10="1’u11=“’=u20=0(q 10)

10)

]
L}

Config.3: Hy = oo = Hgp = =2, Uyg = ... = Uy = 0 (q
Config.l: By = y

5)

er T H15 = 72, Wy = ... =y = 0 (q

Config.S: u,‘ = ..“ =u8 = —}4’ ug = L .. = u15 = —2’ u16 B L. = uzo = 0 (q = 5)
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Config.b: My =

#

5)

"3, Mg = --+ =M =0 (q

-.,. U15

i
]
]
]

Config.7: u; = cee = U5 -4, uqg see = Mpp = 0 (q =5).

For each configuration a total of 50,000 independent replications were
performed, which constituted one simulation run. Each replication consisted of
two stages: In the first stage the mutually independent random variables Y01 ~
2 _ 2,2

v, 0 X;, /vq were generated and

2 = 2 .
N(ug,0%/ng4), ¥31 ~ N(uy,0°/0q) (15igpy) and S v,

the GS-procedure (3.3) was applied to select a subset of p, test treatments.
Here we used N, = 70 with the associated square root allocation (ngy,,n;) = (10,3)
and 1-a, = 0.90. As noted in Section 5, in this case we have v; = 49, p; =

= 2,633. In the second stage the mutuall -
002308 and gug’zo’.23o8,'10 ’ 33 X g y
independent random variables (which are independent of the first stage random

; b - X 2 2
variables) ¥02 ~ N(uo,o2/n02), Yio - N(pi,cz/nz) (15isp,) and sz - cZXv /vy

were generated and each of the four procedures was applied to the result?ng data
to construct one-sided joint confidence intervals for Hi-ug for the selected
test treatments. For a given procedure the proportion of replications that
resulted in the correct coverage of 2;; of the Hi-ug for the selected test
treatments was used as an estimate of the joint confidence coefficient of that
procedure. In the second stage we used 1~a2 = 0.95 and N, = 70. For each given
P, (15p,520) we used the square root allocation (ng2,np) given in Table I such
that ng, + ppony = Np = 7Of These allocations and the associated critical
constants needed to implement the four procedures were determined in advance and
stored in memory, so that they did not have to be recomputed each time.

All simulation runs were performed on McMaster University's VAX-8600
computer using a Fortran program. IMSL subroutines GGNPM and GGCHS were used to
generate the normal and chi-square random variables, respectively. A single

simulation run consisting of 50,000 replications of the four procedures took

approximately 5 minutes of CPU time at a rate of $20 per hour. The simulation
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results are reported in Table II.

Table II

Simulation Estimates of the Joint Confidence Coefficient

and Expected Subset Size

Procedures
Config.
No. E(p,) ’Ga 452 4§g Aﬂi
1 19.87 .9505 .9500 .9499 .9500
2 18.37 .9510 .9499 L9476 .9499
3 13.14 .9497 .9489 .9311 .9u89
4 9.60 .9507 .9508 .9183 L9470
5 7.22 .9524 .9697 .9321 .9609
6 5.37 L9494 L9737 .9278 L9437
7 4.97 .9498 .9843 9472 L9490

The primary quantities of interest in Table II are the estimated joint
confidence coefficients of the proceduresxsz- These are to be compared with the

nominal level 1~a2 = 0.95. In making this comparison it must be Kkept in mind

that the standard error of each estimate is approximately (.O‘jx.9‘5/50,0(1)0)1/2 z0-00(0O.

Ths Hhe estmated values weuld be ex pected + Lo v e indeie

0.95 ¢ Zx0.00TO if the corresponding joint confidence coefficients are
controlled at the nominal level of 0.95. Using this criterion we find that‘ca
controls the joint confidence coefficient quite accurately at the nominal level;
this is, of course, to be expected in view of the proof of this fact given in
Section 3.

We next note that for large values of the expected subset size, E(pz),4§%
controls the joint confidence coefficient accurately at the nominal level but
the conservatism 0f<§; increases with decreasing E(p,)-values. 4;2 is extremely
conservative for configurations 5,6 and 7, which involve small values of q and
large negative Hj-values for the "inferior" test treatments. These latter

configurations result in small expected subset sizes. This behavior of'dé is to
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be anticipated in view of our previous discussionf

Next note that%gé is liberal under all configurations except under
configuration no. 1 and possibly under configuration no. 2. Thus*§% is not an
acceptable procedure.

Finally'Q% a;pears to control the joint confidence coefficient in most
cases, but under one configuration (config. no. 6) it is liberal. Thus there is
some question about its validity under all configurations.

As a matter of additional interest, in Table III we give the simulation
estimates for each’ca of the probability of the joint event that a correct
selection is made in the first stage (i.e., all "superior" test treatments are
included in the subset) and all the Hi—Hg for the selected test treatments are
covered by their respective confidence intervals. We refer to this probability

as the overall probability of no error.

Table III

Simulation Estimates of the Overall Probability

of No Error

Procedures
Config.
No. 4571 AGZ /C% 451
1 8574 .8536 .8536 .8536
2 .8981 .8954 .8933 .8954
3 .8963 .8936 L8767 .8936
y .9215 .9207 .8890 9175
5 .9243 .9U406 .9037 .9329
6 .9196 9426 .8976 .9142
7

.9201 .9529 .9166 .9196

The estimates in Table III may be compared with the nominal value (1~a1)x

(1”“2) = 0.90x0.95 = 0.855, which is the overall probability of making no error
under configuration no. 1 (the least favorable configuration for the GS-

procedure) if the inferences in the two stages were statistically independent.
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However, this independence holds only for‘éa- We note that the probabilities for
all the@i are within two standard errors (= 2x(0.855x0.145/50,000)'/2 = 0.0032)
of the nominal value under configuration no. 1. For other configurations, the
achieved probabilities for all the é% are strictly higher than the nominal value
because the first stage GS-procedure achieves P(CS) > ?-u1 = ,90 under these
more fa?orable configurations.

In conclusion, if the unknown proportion of "superior" test treatments
number ofxtest treatments are expected to be "superior") than'ﬂg is the
preferred procedure; other‘wise'@ is the preferred procedure. '@u provides a
compromise between the two procedures, and is a good practicél alternative.-<§g
is not an acceptable proceduref

In practice it would seem wasteful not to pool the data from the two stages.
Therefore, in future research it would be desirable to develop a less
conservative version of the PD—procedufe for small pz-values, which can be

recommended in all situations.
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7. Application to Drug Screening

Drug screening is generally an on-going program consisting of a series of
experiments in each of which perhaps 20 to 30 chemical compounds are tested for
some specific type of activity. The total number of compounds tested is very
large, but the number of compounds included in each experiment depends on the
available laboratory facilities and resources. The purpose of the screening is
to eliminate the compounds which have little or no activity. A false positive
is a compound which, although not having the desired level of activity,
nevertheless by chance gives a result on the screening test that falls in the
"acceptable" range. Even though the accept/reject rule used in the screening
test may be designed to have a very small probability of such an occurrence, the
actual number of false positives that accrue over a period of time may be quite
large, perhaps even exceeding the number of true positives. Hence, before
proceeding further with more definitive testing of the compounds that have been
identified by the initial screening procedure, it may be desirable to carry out
a speclal experiment to eliminate the false positi&es and obtain preciée
estimates of the biological activity of the compounds indicated as being true
positives.

We suggest that the two-stage approach described in this article may be
appropriate for such an experiment. The purpose of the first stage (GS-
procedure) would be to eliminate most of the false positives accrued in previous
screening tests, while the purpose of the second stage would be to estimate the
activity levels of the retained treatments in the first stage relative to a
reference standard. For the latter, a known active compound would be used if
one were available; otherwise an inactive control could be used.

An important design problem now arises, namely, how to allocate a fixed
total amount of resources (e.g., a fixed total number of animals available to

carry out the entire experiment) between the two stages. In other words, what



are the "optimal" values of Ny and N, for fixed given N = N; + Nj- This problem
is not easy to formulate mathématically. A reasonable formﬁlation would involve
the expected number of "inferior" test treatments retained at the first stage,
and errors of estimation at the second stage as measured by the expected values
of the allowances of joint confidence intervals (for specified values of 1—a1
and 1'02). The solution would depend on unknown parameters, e.g., the actual
proportion of "inferior" test treatments. For instance, if this proportion were
thought to be small, it might be desirable to omit the first stage entirely and
allocate all the available experimental resources to the second stage.

The goal associated with the GS-procedure (Goal 1) states that all test
compounds with means u; 2 u, be included in the selected subset. (If an active
compound is used as a reference standard then Mg would be its unknown mean.
However, if an inactive control is used as a reference standard then Uy should
be its mean plus a specified constant § > 0; here § is the minimum threshold
that the mean of the test compound must exceed that of the inactive control in
order for it to be considered "superior.") In practice, the number of such
compounds and also the number of compounds with means Ui < ug is unknown. The
constants necessary to implement the GS-procedure are derived under the so-called
"least favorable" configuration in which all test compounds are assumed to have
means Bi = ug (1sisp,). However, this assumption may be much too conservative
if the experimenter has reason to believe that a number of the compounds actually
have mean values i < ug. In this case, it may be modified as follows: Prior
to the start of experimentation the experimenter may be prepared to state an
upper bound m, g py on the number of true positive test compounds. Then the
asymptotically optimal allocation is still given by (4.1) but the critical

constant to be used in the associated GS-procedure (3.3) is reduced from

&y

[P eP o g\)1 m, .00 where p; still equals 1/(1+/py). In particular,
? 4 1 ? s X
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if M; =1 then this latter critical constant equals tv -- the upper aq-point

1%

of the univariate Student's t-distribution with v, 4.f. Tables of g
sl b il odhdd 1 AY ,m1191:a1

for my = 2,...,p;-1 are not available. The case my = p; dealt with in the

preseht paper would correspond to the situation in»which a series of structurally
related compounds are submitted together for testing. However, even in this
situation the experimenter may not require that the selected subset contain all
"superior" compounds; i.e., he may be satisfied with selecting only a specified
fraction.

Another difficulty with the use of the GS-procedure is that since the
number of freatments in the selected subset is random, problems may arise in the
second stage (the D-procedure) if the total amount of experimentation (NZ) that
can be carried out in that stage is fixed in advance, as is assumed in the
present article. Therefore one may wish to use a procedure with a prespecified
upper bound on the number of test treatments in the selected subset as proposed
by Santner (1975) for a different problem.
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