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Images of surface displacements in response to tectonic forces can provide independent, 

spatially dense observations that assist in understanding sub-surface processes. When 

considered independently or augmented with more traditional observations of active tectonics 

such as seismicity and ground mapping, these measurements provide constraints on spatially 

and temporally variable fault behavior across the seismic cycle. Models of fault behavior 

inferred from these observations in turn allow us to address topics in geologic hazards 

assessment, the long- and short-term character of strain in deforming regions, and the 

interactions between faults throughout the crust. In this dissertation, I use remotely sensed 

observations of ground displacements from interferometric synthetic aperture radar (InSAR) 

to approach several problems related to earthquake and aseismic fault slip. I establish image 

processing and inverse methods for better detailing subsurface fault slip and apply these to the 

2010-2011 Canterbury, New Zealand sequence. Then, I focus on the active tectonics of the 

Zagros Mountains in southern Iran. There, I show through orogen-wide InSAR time series 

analysis that active strain is accommodated across the width of the mountain belt. I also use a 

combination of InSAR, local seismicity, and structural modeling to demonstrate that strain is 

vertically partitioned within the Zagros fold-and-thrust belt, with earthquakes controlling 

deformation in the underlying basement while the overlying sedimentary section shortens in 

transient, earthquake-triggered aseismic slip events. In certain examples, these aseismic slip 

events directly contribute to the growth of fault-bend folds. I use these inferences to explore 

a previously noted discrepancy between observed shortening and that which is expected from 

known earthquakes. I show that the earthquakes and short-term aseismic slip cannot account 

for this discrepancy, and that additional deformation mechanisms must be active.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

Since the 1960s, global studies of earthquakes from seismology have provided a strong 

framework for our understanding of how strain is accommodated along active plate 

boundaries. More recently, geodetic observation of ground displacements in response to 

tectonic forces have illuminated a spectrum of “silent” modes of transient deformation 

[Barnhart and Lohman, accepted; Dragert et al., 2001; Peng and Gomberg, 2010], as 

well as providing independent and, often, spatially dense measurements of earthquake 

deformation [e.g., Bürgmann et al., 2000; Fialko et al., 2001; Simons et al., 2002]. When 

used in concert, seismic and geodetic observations, both in-situ and remotely sensed, can 

allow researchers to constrain the spatially and temporally variable complexities of active 

deformation - characteristics that are critical for the assessment of geologic hazards, plate 

boundary stress evolution, earthquake physics, and links between short- and long-term 

geologic strain rates. 

 This dissertation concentrates on the imaging, modeling, and interpretation of 

tectonically driven ground displacements captured by remote sensing geodetic 

observations, principally Interferometric Synthetic Aperture Radar (InSAR). I focus 

primarily on the active tectonics of the Zagros Mountains of southern Iran. The Zagros 

are an ideal natural laboratory for studies of active tectonics using InSAR owing to superb 

imaging conditions (arid, gentle relief, ample SAR acquisitions) and several frequently 

active sources of observable ground deformation (earthquakes, aseismic slip, groundwater 
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and hydrocarbon withdrawal). The Zagros are an exceptional example of an active salt-

detached fold-and-thrust belt with high seismicity rates wherein an 8-10km thick 

sedimentary section is separated from underlying crystalline Arabian basement by the 

extraordinarily thick (1-2km) infra-Cambrian Hormuz Salt [Falcon, 1974; Stocklin, 1974]. 

While likened to the early stages of the more famous Himalayan orogeny [Ni and 

Barazangi, 1986; Hatzfeld and Molnar, 2010], many aspects of the active tectonics of the 

Zagros orogeny are poorly resolved, due mainly to political inaccessibility and difficulties 

in seismic imaging of salt-laden regions. Satellite-based observation of deformation, 

integrated with seismic observations, provide the opportunity to address several 

unsettled questions concerning the active accommodation of continental collision in the 

Zagros. Issues specifically addressed in this dissertation include: 

1. What are the depths of common and moderate (<Mw 6.5) thrust and strike-slip 

type earthquakes? 

2. What are the time scales and modes of aseismic strain that account for the 

significant (~80%) seismic strain rate deficit inferred across the mountain belt 

[Jackson and McKenzie, 1988; Masson et al., 2005]? 

3. How does strain accommodation vary spatially and with depth within the fold-

and-thrust belt? 

4. Are large (>Mw 6.5-7.0) earthquakes likely in the future in this region, which has 

poor earthquake engineering standards and a history of devastating events, such 

as the 2003 Bam Earthquake (>26,000 deaths)? 

In Chapters 2 and 3, I establish the methodologies, advantages, and limitations of InSAR 
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imaging techniques and inverse methods for generating models of sub-surface fault slip 

[Barnhart and Lohman, 2010]. In Chapter 4, I apply these techniques to the 2010-2011 

Canterbury, New Zealand earthquake sequence to highlight one application of modeling 

earthquake fault slip and evaluating the stress interaction between earthquakes [Barnhart 

et al., 2011]. In Chapter 5, I develop and present an orogen-wide InSAR time series 

across the Zagros Mountains that images the currently deforming diapirs of Hormuz Salt 

across the mountain belt [Barnhart and Lohman, 2012]. I use these flowing diapirs as 

strain markers to show that shortening is distributed across the width of the mountain 

belt, not concentrated at the mountain front, and that the Zagros Mountains 

simultaneously undergo thin- and thick-skinned style deformation. In the final two 

chapters, I examine earthquake-like surface displacements that appear in co-seismic 

interferograms. I show that the displacements signals dominating individual interferograms 

result from significant aseismic fault slip within the 8-10km thick sedimentary section 

that is likely triggered by deeper earthquakes with similar magnitude in the underlying 

crystalline basement [Barnhart and Lohman, accepted]. These observations demonstrate 

that the style of shortening (aseismic vs. seismic fault slip) is vertically partitioned in the 

Zagros and that earthquakes are likely relegated to the basement while the sedimentary 

section shortens aseismically. The prodigious moment associated with the triggered 

aseismic slip, which is equal to or greater than the earthquake magnitude itself, shows that 

significant aseismic shortening in the Zagros is accommodated on the time scales of days 

to weeks following individual earthquakes. However, I show that these coupled 

earthquake-aseismic slip events cannot account for the full shortening inferred from GPS 
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across the mountain belt [Barnhart et al., in prep]. The remaining strain budget can be 

accounted for by one earthquake as large as Mw6.8-7.0 per year, but this is unlikely given 

the lack of such events in the instrumental and historical records. Instead, I suggest the 

remaining shortening occurs as a combination of long-term continuous deformation and, 

potentially, transient aseismic deformation events occurring during other portions of the 

interseismic period. 

1.2 References 

Barnhart, W. D., and R. B. Lohman (accepted), Phantom earthquakes and triggered 
aseismic creep: Vertical partitioning of strain during earthquake sequence in Iran, 
Geophys. Res. Lett. 

Barnhart, W. D., and R. B. Lohman (2010), Automated fault model discretization for 
inversions for coseismic slip distributions, J. Geophys. Res., 115(B10), B10419, 
doi:10.1029/2010JB007545. 

Barnhart, W. D., and R. B. Lohman (2012), Regional trends in active diapirism revealed 
by mountain range-scale InSAR time series, Geophys. Res. Lett., 39(8), L08309, 
doi:10.1029/2012GL051255. 

Barnhart, W. D., R. B. Lohman, and R. J. Mellors (in prep), Accommodation of active 
plate convergence in southern Iran from InSAR, GPS, and seismicity, 

Barnhart, W. D., M. J. Willis, R. B. Lohman, and A. K. Melkonian (2011), InSAR and 
Optical Constraints on Fault Slip during the 2010–2011 New Zealand Earthquake 
Sequence, Seismological Research Letters, 82(6), 815–823, 
doi:10.1785/gssrl.82.6.815. 

Bürgmann, R., P. A. Rosen, and E. J. Fielding (2000), Synthetic Aperture Radar 
Interferometry to Measure Earth’s Surface Topography and Its Deformation, 
Annual Review of Earth and Planetary Sciences, 28(1), 169–209, 
doi:10.1146/annurev.earth.28.1.169. 

Dragert, H., K. Wang, and T. S. James (2001), A Silent Slip Event on the Deeper Cascadia 
Subduction Interface, Science, 292(5521), 1525–1528, 
doi:10.1126/science.1060152. 

Falcon, N. (1974), Zagros Mountain, Mesozoic-Cenozoic Orogenic Belts, Geological 

4



 

Society, London, Spec. Pub. 4, 199–211. 

Fialko, Y., M. Simons, and D. Agnew (2001), The complete (3‐D) surface displacement 
field in the epicentral area of the 1999 MW 7.1 Hector Mine Earthquake, 
California, from space geodetic observations, Geophys. Res. Lett., 28(16), 3063–
3066, doi:10.1029/2001GL013174. 

Hatzfeld, D., and P. Molnar (2010), Comparisons of the kinematics and deep structures 
of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and 
geodynamic implications, Rev. Geophys., 48(2), RG2005, 
doi:10.1029/2009RG000304. 

Jackson, J., and D. McKenzie (1988), The relationship between plate motions and 
seismic moment tensors, and the rates of active deformation in the Mediterranean 
and Middle East, Geophysical Journal, 93(1), 45–73, doi:10.1111/j.1365-
246X.1988.tb01387.x. 

Masson, F., J. Chéry, D. Hatzfeld, J. Martinod, P. Vernant, F. Tavakoli, and M. 
Ghafory-Ashtiani (2005), Seismic versus aseismic deformation in Iran inferred 
from earthquakes and geodetic data, Geophysical Journal International, 160(1), 
217–226, doi:10.1111/j.1365-246X.2004.02465.x. 

Ni, J., and M. Barazangi (1986), Seismotectonics of the Zagros continental collision zone 
and a comparison with the Himalayas, J. Geophys. Res., 91(B8), 8205–8218, 
doi:10.1029/JB091iB08p08205. 

Peng, Z., and J. Gomberg (2010), An integrated perspective of the continuum between 
earthquakes and slow-slip phenomena, Nature Geoscience, 3(9), 599–607, 
doi:10.1038/ngeo940. 

Simons, M., Y. Fialko, and L. Rivera (2002), Coseismic Deformation from the 1999 Mw 
7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS 
Observations, Bulletin of the Seismological Society of America, 92(4), 1390–1402, 
doi:10.1785/0120000933. 

Stocklin, J. (1974), Possible ancient continental margins in Iran, in Geology of Continental 
Margins, pp. 873–877, Springer, New York. 

 

 

5



CHAPTER 2

BACKGROUND: INSAR AND INVERSE METHODS

2.1 Introduction

 In this chapter, I discuss the theory and application of basic methodologies implemented 

throughout this dissertation. I focus on my primary data source – Interferometric Synthetic 

Aperture Radar (InSAR) – and general inverse methods for generating maps of sub-surface fault 

slip. I also introduce statistical methods that are used to estimate the contributions of various 

assumptions to fault slip inversions. More focused and problem-specific methodologies, such as 

resolution-based fault parameterization, InSAR time series, and treatment of optical imagery in 

geodesy are explained in subsequent chapters. 

2.2 General Methods

2.2.1 InSAR

Interferometric Synthetic Aperture Radar (InSAR) is a form of imaging geodesy that 

records ground displacements between two Synthetic Aperture Radar (SAR) images (Figure 2.1). 

InSAR observations provide spatially dense (pixel sizes on the order of meters) measurements of 

ground displacement and topography on a nearly global scale over land. In deformation 

applications, images acquired at different times can record surface displacements due to 

earthquakes, volcanoes, landsliding, among other geologic activity. Because measurements are 

obtained remotely from air or space-borne platforms, InSAR allows the study of ground 

deformation events in inaccessible and/or remote regions without the fieldwork that would be 

necessary for other geodetic techniques such as GPS. Furthermore, radar allows measurements at 

night and over cloudy regions which is not possible with optical remote sensing methods. InSAR 
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observations used in the accompanying studies are satellite-

based from four instruments – the European Space Agency’s 

ERS-1, ERS-2, and Envisat C-band (6cm wavelength) 

radars and the Japanese Space Agency’s ALOS L-band 

(24cm wavelength) radar.

2.2.1.1 Interferogram Formation

 Interferograms are formed by differencing radar phase observations from two SAR 

acquisitions separated in space and/or time (Figure 2.1): 

  φ = 4π/λ (ρ2 - ρ1)  eq. 2.1

where φ is the phase shift between acquisitions, λ is the radar wavelength, and ρ is the distance 

between the satellite antennae and a point on the ground (the range direction, Figure 2.1d) 

[Burgmann et al. 2000]. In a single SAR acquisition, the phase of the reflected radar pulse is 

Figure 2.1: Illustration of interferogram formation for ground 
deformation events. a) Pre-seismic and b) post-seismic scenes measure 
radar phase returns from the ground. If the ground moves, a phase shift 
occurs that can be related to ground displacement. Phase shifts for 
every pixel in the scene are measured to produce an interferogram (c). 
Arrows and LOS indicate the satellite line-of-sight. d) Spatial geometry 
between subsequent SAR acquisitions. B |  : perpendicular baseline 
between satellites, ρ: the distance between the satellite and a pixel 
(range distance), and θ: the satellite incidence angle.

ρ ρ

d)
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random (Figure 2.2b) and the amplitude provides an image of the Earth’s surface within the radar 

footprint (Figure 2.2a). If the scattering properties of the pixel do not change dramatically 

between the two acquisitions, the differenced phases form a coherent image of phase shifts 

measured in radians (Figure 2.1c, 2.2c).  A single 2π cycle (or “fringe”) in an interferogram is 

equivalent to half the radar’s wavelength. These fringes can be thought of as contours of motion 

and topography; for example one cycle in a L-band (24cm) interferogram is 12cm of motion 

toward or away from the satellite (Figure 2.2c). Interferograms are sensitive to only one 

component of the full-three dimensional displacement field, the satellite’s line of sight (LOS), 

which is near-vertical for most satellites. When multiple viewing geometries are available, those 

Figure 2.2: Raw interferogram formation. a) Amplitude images from two acquisitions show a coherent image of 
the ground and are used to coregister (“line-up”) the two passes, b) phase in each acquisition is random. Phases 
from both acquisitions are differenced from coregistered images to produce a raw interferogram that is dominated 
by topographic signal (c).

Pass 1 Pass 2

Raw Interferogram 
with Topography

A
m

pl
itu

de
Ph

as
e _

=

a)

b)

c)

8



interferograms can place constraints on the full three-dimensional displacement field. This can be 

achieved by using multiple interferograms from different orbital look directions (descending 

tracks move from north to south, ascending tracks from south to north) or by augmenting with 

other data, including GPS or the offsets of individual pixels in optical and SAR imagery, as 

discussed in Chapter 4.

 The signal in a raw interferogram (φraw, Figure 2.3a) includes contributions from 

topography (φtopo), ground deformation (φdef), variations in the properties of the atmosphere 

(φatmos) and ionosphere (φion) along the path between the satellite and the ground, as well as 

inaccurate orbital position estimates (φinst) and changes in the reflective properties of the ground 

surface (φcorr):

  φraw = φtopo + φdef+ φatmos + φion + φinst + φcorr  eq. 2.2

The final four terms in equation 2.2 can be considered noise terms for tectonic deformation 

applications and are discussed in the following section. The phase from topography (φtopo) 

results when the satellite is not in the exact same orbit on both passes (Figure 2.1d). The 

magnitude of the topographic phase shift is linearly dependent on perpendicular baseline (B | , the 

Figure 2.3: Removal of topographic signal from the raw interferogram to produce an interferogram showing only 
ground displacement and noise.

Raw Interferogram Topography Deformation

_ =
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physical distance in orbit between the satellite passes, 

Figure 2.1d) [e.g., Burgmann et al., 2000]:

A model of topography, such as a digital elevation model 

(DEM), is used to remove the topographic signal, leaving 

measurements of phase shift caused by ground 

displacement and noise (Figure 2.3). To convert the 

interferogram signal into meaningful measurements of 

ground displacement, the interferogram phase is 

“unwrapped” (Figure 2.4) [Goldstein et al., 1988, Chen and 

Zebker, 2001], meaning the 2π phase contours are summed 

to produce an image of the physical ground displacements 

in the instrument line-of-sight. The unwrapped 

interferogram is then geocoded for modeling of 

deformation signals, mapping, or other applications 

(Figure 2.4 a-b). In most instances, I use the Caltech/JPL 

ROI_PAC processing package [Rosen et al., 2004] to 

form interferograms, remove topographic effects with the 

Shuttle Radar Topography Mission (SRTM) DEM [Farr et 

al., 2007], and unwrap using either a branch-cut algorithm 

Figure 2.4: Example of a wrapped (a) 
and unwrapped (b) ALOS interferogram.  
Earthquake is the 2010 Mw 6.5 Makran 
strike-slip event (Chapter 7). Arrows 
indicated satellite orbital path and look 
direction (LOS). c) Schematic 
comparison of wrapped vs. unwrapped 
phase in 2-dimensions.

Wrapped

Unwrapped

a)

b)

c)

eq. 2.3

LOS

LOS
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[Goldstein et al., 1988] or SNAPHU [Chen and 

Zebker, 2001]. 

2.2.1.2 InSAR Noises Sources

 In addition to topography and ground 

displacements, interferograms include signals that are 

attributed to various noise sources. One major source 

of noise in interferograms is correlated atmospheric 

noise caused by phase delays as the radar signal 

passes through the stratified atmosphere [e.g., 

Emardson et al. 2003] (Figure 2.5). Water vapor concentrations in the atmosphere vary in time, 

so different delays at each acquisition date result in apparent displacements called the “wet 

delay.” Wet delay can be substantial, as much as several centimeters [e.g., Emardson et al. 2003, 

Lohman and Simons 2005] over short spatial wavelengths (<10km), and wet delays signals are 

often spatially correlated with topography (Figure 2.5-2.7). This noise is problematic in studies 

of deformation sources that produce small magnitude surface displacements (e.g. deep, small 

source) or where the expected tectonic signal mimics topography (e.g. mountain uplift). In 

addition to correlating spatially, atmospheric noise is non-stationary, meaning the characteristics 

of spatial correlation change across a single interferogram [Barnhart and Lohman, in prep] 

(Figure 2.7). This means that wet delays in interferograms cannot simply be “corrected” by 

removing functional fits between signal and topography.

 There are several techniques to mitigate the effects of correlated atmospheric noise. In 

investigations of single deformation events, we exploit the redundancy of the signal of interest 

Figure 2.5: Illustration of SAR phase delays 
(black arcs) through the stratified atmosphere 
(gray lines). SAR phase is refracted through 
stratified layers, leading to topographically-
correlated signal in repeat acquisitions when 
atmospheric water vapor characteristics change.
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by using multiple interferograms with 

independent acquisitions dates. With this 

technique, a single interferogram with 

substantial atmospheric noise does not 

dominate the deformation source 

inversion. We can also estimate the 

covariance of the noise [Lohman and 

Simons, 2005a] in order to down-weight 

the contribution of a noisy interferogram 

during the inversion. 

 Another method for minimizing 

the impact of atmospheric noise is to stack 

(average) interferograms or generate 

InSAR time series. In theory, the sign of 

wet delay variations due to the atmosphere 

are random in time. For example, in one interferogram, a non-deforming basin may appear to 

uplift; whereas, in a separate interferogram with independent acquisitions, that same basin may 

appear to subside, both instances due to noise in the data. If sufficient interferograms are 

available, when we “stack” interferograms – adding multiple pairs then dividing by the total time 

interval to produce a mean LOS velocity map– the wet delay should average out to zero, leaving 

only the tectonic signal [e.g., Fialko 2006]. Similarly, in InSAR time series analysis, a technique 

that uses many interferograms to solve for the time-variable ground displacement history 

Figure 2.6: A single, one-month Envisat (C-band) wrapped 
interferogram over the stable (non-deforming) Mojave Desert 
in southern California. Observed signals are topo-correlated 
atmospheric noise. Points within the box are shown in Figure 
2.7.
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(discussed in Chapter 5) [Ferretti et al., 2001; 

Berardino et al., 2002; Hooper et al., 2004], the 

average displacement rates over the full set of 

interferograms caused by wet delay should 

average out to zero. In practice, because of the 

limited number of available SAR acquisitions 

and their irregular seasonal distribution, 

displacement rates from the wet delay do not 

average out to zero in InSAR time series, even 

in best-case scenarios where many SAR acquisitions exists (e.g. Southern California, Figure 2.8) 

[Barnhart and Lohman, in prep]. For tectonic applications, this non-zero apparent deformation is 

most problematic in locations of large topographic relief where we expect tectonic signals to 

both mimic topography and be near the detection threshold of the time series (e.g., interseismic 

deformation across faults). Interferogram stacking and time series techniques greatly reduce the 

magnitude of the wet delay (Figure 2.8); however, the aforementioned residual displacement 

rates across major topographic structures in non-deforming regions are often near the magnitude 

and spatial wavelength of expected interseismic displacements rates in deforming regions. 

 To understand the contribution of wet delay in InSAR time series measurements where 

ground-based measurements of atmospheric water vapor properties are not available, we can use 

independent measurements of atmospheric water vapor from remote sensing instruments such as 

the Moderate Resolution Imaging Spectroradiometer (MODIS, Figure 2.8) [e.g., Barnhart and 

Lohman, in prep; Li et al., 2005, Fournier et al., 2011]. MODIS is a multispectral satellite-borne 

Figure 2.7: InSAR displacements verses topography 
from the profile in Figure 2.6.  Trends indicate 
correlation between displacements and elevation.  
Variations in the slope of trends indicates the noise is 
non-stationary.
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instrument that senses the integrated concentration of water vapor in the atmosphere at the time 

of the acquisition. We create “MODIS Interferograms” by differencing two MODIS acquisitions 

at similar acquisition dates as the available SAR images. These measurements are then converted 

to a wet delay in the SAR line-of-sight to provide an estimate of the contribution of atmospheric 

noise to observed signals in a single SAR interferogram:

where IWD is the wet delay projected into the radar line-of-sight, PWV is precipitable water 

vapor measured with MODIS, Π is a dimensionless conversion factor analytically determined 

from GPS and weather models [Bevis et al., 1992], and θ is the radar incidence angle (Figure 

Figure 2.8: Comparison between an InSAR and single MODIS time series over the Mojave Desert, CA. The 
MODIS (right) and InSAR (left) time series exhibit similar topography correlated signals, showing that the wet 
delay does not average to zero for this particular set of acquisitions.

eq. 2.4
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2.1d) [Li et al., 2005]. MODIS observations are acquired on a nearly daily basis, but we cannot 

use these observations to directly correct interferograms because MODIS data is not acquired at 

the same time of day as SAR, is often not available due to cloudiness or nighttime observation, 

and is not acquired at the same look angle. Instead of directly comparing MODIS and InSAR 

noise, we construct many MODIS time series with similar date pairs as an InSAR time series 

(Figure 2.8). By building multiple MODIS time series, we can assess the likelihood of biases 

introduced by our SAR acquisition history, and we are able to identify InSAR time series surface 

displacements that are likely significant and larger than the expected noise [Barnhart and 

Lohman, in prep]. 

 Other sources of noise in InSAR are typically not as substantial as atmospheric noise but 

can nonetheless inhibit imaging of both large and small magnitude tectonic signals. Signal 

decorrelation (φcorr, eq.2.2; empty regions in Figure 2.8) caused by changes in ground properties 

from processes such as weathering, snow, or large ground displacements leads to phase shifts 

that are no longer spatially coherent and appear as white noise. While there are image filtering 

and coregistration techniques that can overcome some of these effects, decorellated signals 

cannot be used to determine useful ground displacements. Similarly, DEM errors introduce 

spurious phase shifts during topographic signal removal. Lastly, imprecise estimates of 

perpendicular baseline (φinst, eq. 2.2) between two SAR acquisitions leads to long-wavelength 

signals across an interferogram, commonly referred to as the orbital ramp. In most cases, orbital 

ramps can be estimated and removed by subtracting a polynomial surface from the scene. 

Although this step does not substantially degrade signals such as those associated with moderate-

sized earthquakes and volcanoes, it does remove signals with long spatial wavelengths such as 
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expected interseismic motion along plate 

boundaries or deformation during large 

subduction zone earthquakes [e.g., Fialko 

2006, Fournier et al. 2011].  

2.2.2 Source Inversions

 Observations of surface 

displacements from interferograms, GPS or 

other geodetic techniques can inform our 

understanding of the subsurface processes 

that produced the signal. In earthquake and 

aseismic fault slip studies, the goals are 

often to determine both the geometry and 

location of the responsible fault in addition 

to the distribution and magnitude of slip on 

the fault (Figure 2.9c). Fault slip inversions 

are important tools for learning about 

regional tectonics such as seismogenic depths, fault segmentation, and how earthquakes and 

aftershocks collocate. Slip distributions also allow researchers to drive sophisticated models of 

post-seismic stress change and fault interaction [e.g., Freed and Lin, 2001, Hearn et al., 2002]. 

Burgeoning research is now working to incorporate slip distributions inverted from high-rate 

GPS displacements into earthquake early warning systems [e.g., Bock et al., 2000, Crowell et al., 

2012]. 

a

b

c

Figure 2.9: Forward models showing response of a free 
surface to slip on a dipping fault patch (black rectangles). a) 
Shallow slip, b) deep slip, c) distributed slip. Surface 
displacements are projected into a common InSAR line-of-
sight. Surface motions are vertically exaggerated 500X.
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 Details of fault slip inversions are discussed in Chapter 3, but here I introduce the basic 

theory. The problem is treated as an inverse problem in which I relate finite displacement on a 

dislocation in a homogenous, elastic halfspace to displacements on a free surface [e.g., Okada, 

1992; Meade, 2007]:

  Gm=d  eq. 2.5

G is the Green’s function (a [P x S] matrix) relating slip on a dislocation (also termed a patch), m 

(a [S x 1] vector), to displacements on a free surface, d (a [P x 1] vector)(Figure 2.9). Before 

inverting for slip, interferograms are spatially downsampled from ~106 to a computationally 

feasible ~102 data points [Lohman and Simons, 2005a] (Figure 2.10b). To solve for the spatial 

distribution of slip (the “slip distribution”) that best fits the data, I take a two-part least squares 

approach that first solves for the geometry (centroid location, strike, dip) of a single fault patch 

using the Neighborhood Algorithm, a global optimization technique that efficiently searches 

multidimensional parameter spaces [Sambridge, 1999]. When the data require distributed slip, I 

fix the best-fit fault geometry from the Neighborhood Algorithm then use an iterative approach 

that generates a slip distribution where individual patches vary in size to reflect the resolution 

ability of the data (Figure 2.10) [Barnhart and Lohman, 2010, Chapter 3]. Slip direction (rake) in 

distributed slip inversions can be fixed (based on the Neighborhood Algorithm inversion, seismic 

focal mechanism, or other proxies) or allowed to vary from patch to patch. Spatially variable 

rake inversions are sometimes required by complexity in the data, such as during the 2010 

Darfield, New Zealand strike-slip earthquake [Barnhart et al., 2011, Chapter 4]. Variable rake 

inversions should be interpreted with caution, however, because of tradeoffs that can occur 

between slip on multiple faults.  I use a single fault with distributed slip to characterize an 
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earthquake unless the data 

or independent observations 

require multiple faults. In 

the Darfield example, I 

explicitly define a four-

segment fault geometry 

based on surface rupture 

observations and aftershock 

locations. 

2.2.3 Fault Slip Resolution

An essential 

consideration when 

analyzing co-seismic geodetic 

measurements is the choice of 

source type for modeling observed surface displacements. Substantial aseismic deformation can 

accompany an earthquake or earthquake swarm [e.g., Johanson et al., 2006; Lohman and 

McGuire, 2007; Barbot et al., 2009]. Geodetic observations (with the exception of high-rate GPS 

and strainmeters) are indifferent to whether the displacement source is seismic or aseismic. 

Because they measure the integrated ground displacements within a finite time period bounding 

an earthquake, geodetic observations include coseismic, postseismic, and aftershock 

deformation. By conflating aseismic and seismic fault slip sources, important information about 

modes of strain release is lost and impedes seismic hazard analysis and our understanding of 

Figure 2.10: Example slip inversion for the 2005 Qeshm aseismic slip 
event (Chapter 6). A wrapped interogram is unwrapped (a) then 
downsampled (b). The best-fit fault centroid from the Neighborhood 
Algorithm is then variably discretized (c, d). c: Model residual with 
surface projection of discretized fault geometry, d: Slip distribution, 
viewed orthogonal to the fault plane.
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plate motion dynamics. It is critical to fully understand 

the source of observed deformation by integrating 

independent data sources and careful and thoughtful 

treatment of the data.

 The resolution of slip distributions should always be 

considered when using inverse methods to learn about 

subsurface processes. We must address two aspects when 

considering the resolution of slip distributions (or any 

other inverse problem): the quantitative resolution of the 

inversion and the accuracy of the inversion with respect 

to the real Earth. The resolution of the inversion is 

dependent on the quality and spatial distribution of data 

with respect to the inferred fault plane. There are specific 

aspects of slip we can resolve very well with InSAR 

observations or reasonably dense GPS networks: the 

depth ranges and along-strike length extent of slip. In 

inverse problems with sufficient data, these two aspects are well-constrained (to within a 

kilometer) because they are directly related to the spatial characteristics of the surface 

displacement field (Figure 2.11). By comparison, teleseismic waveform inversions for 

earthquake location for moderate events (<Mw6.5) often exhibit errors as large as 50km in 

epicenter and ~10km in depth [e.g., Maggi et al., 2000; Lohman and Simons, 2005b; Engdahl et 

al., 2006; Devlin et al., 2012, Chapter 7]. While the spatial resolution of geodetic slip inversions 

Figure 2.11: Comparison of observed 
surface displacements (black profile) to 
predicted surface displacements from a 
shallow (red) and deep (green) slip source 
of the same magnitude and orientation. The 
shape and magnitude of the surface motions 
constrain the depth of slip very well. This 
example is from the 2005 Qeshm 
earthquake (Chapter 6).
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is not perfect, it can be an order of magnitude better than teleseismic inversions. Of course, if the 

earthquake is too deep or not under land, then available geodetic measurements cannot constrain 

the earthquake.

In terms of the accuracy of the slip distribution, we must acknowledge that we have 

extremely limited information on the geometry of the fault plane beneath the surface, whether 

slip occurs on a single surface, a diffuse shear zone, or multiple planes/shear zones, and how the 

mechanical behavior of rocks, which vary in three-dimensions and in time, affect the observed 

surface displacements. Adding complexity, whether realistic or not, that is neither well-

constrained nor required by the data to an inverse problem only serves to increase unquantifiable 

uncertainty to the slip distribution. While certain assumptions we make do not necessarily affect 

the quantitative resolution of the inverse problem, they play a significant role in how we interpret 

a slip distribution in a real tectonic setting and what attributes of the slip distribution we assign to 

real Earth behavior. As mentioned previously, inverting for slip with variable rake on a single 

fault may give an equivalent “best-fit” as slip on multiple faults. This particular scenario requires 

additional information from independent data sources. Furthermore, there are tradeoffs between 

the degree of complexity we allow in an inversion or forward model and computational 

feasibility. For example, it may be prudent to include vertical variations in rock behavior and 

complicated fault geometries in a study of long-term post-seismic deformation on a multi-cluster 

computer system, but the simplest assumptions are adequate to estimate the magnitude and 

location of an earthquake from GPS offsets on a home laptop.

We can quantitatively assess how specific assumptions (noise structure, elastic behavior, 

etc.) affect inversions. In cases where we have good constraints on the characteristics of the noise 
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(e.g., variance, spatial correlation), and when the inversion is linear, we can directly propagate 

data errors through the inversion. In scenarios where the inversion is non-linear, such as when we 

search for geometry or impose non-negative slip constraints, we use Monte Carlo methods to 

estimate the effects of data and model errors.  The Monte Carlo approach I use produces 

populations of inversions that reflect the ensemble behavior of fault inversions due to noise. For 

instance, when investigating the effects of the wet delay on inferred fault geometry, I produce 

1000 InSAR data sets that have similar noise statistics to the true data set [e.g., Devlin et al., 

2012]. I then invert each synthetic data set, generating a population of fault models where the 

spread in best-fit model parameters (e.g., location, depth, strike, dip, magnitude) is dependent on 

the characteristics of the noise. From this population, I can then extract meaningful statistics 

about the fault geometry that we can resolve given the noise (e.g., dip is 30o+11o). 

Another assumption often made for slip inversions is that the earth behaves as a 

homogeneous elastic halfspace. This assumption is common [e.g., Segall and Harris, 1986;  

Jonsson et al., 2002; Simons et al., 2011] because there is an analytical solution [Okada, 1992; 

Meade, 2007], because we have limited knowledge of the actual variations in elastic moduli in 

the subsurface, and because it is computationally efficient. We can assess the effects of this 

assumption by sampling reasonable ranges of rock rigidity using the Monte Carlo technique 

described above. One possible approach is to generate surface displacements in either a finite 

element model with complex subsurface properties or using analytical solutions for a layered-

elastic space, then invert these data sets with a homogenous elastic halfspace model.  The 

resulting variability will constrain how much bias is introduced by the assumption of elastic 

halfspace behavior in typical real-world scenarios. Previous work shows that lateral and depth-
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dependent variations in rock rigidity have a small effect on first order characteristics (depth, 

orientation) but likely contaminate the details of slip distributions [e.g., Savage, 1987, Hearn and 

Burgmann, 2005]. 

In my work, I apply Monte Carlo methods in several ways. First, I explore the example 

described above for determining the sensitivity of the inferred fault geometry given data noise 

[Devlin et al., 2012]. In Chapter 4, I apply this approach to constrain the effects of data noise on 

inferred static stress change between two faults [Lohman and Barnhart, 2010; Barnhart et al., 

2011]. I also apply the Monte Carlo approach to inversions for slip distributions to determine the 

bounds of moment magnitude that are allowable specific depth ranges [Chapter 6, Barnhart and 

Lohman, accepted]. Going forward, these Monte Carlo approaches will be used to understand the 

signals we observe in InSAR time series with the goal to discern between real ground 

displacements and atmospheric-induced signals [Barnhart and Lohman, in prep].
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CHAPTER 3

AUTOMATED FAULT MODEL DISCRETIZATION1

3.1 Abstract

Geoscientists increasingly rely on co-seismic slip distributions inferred from geodetic 

observations to drive sophisticated models of the seismic cycle.  To date, little work has been 

done on optimizing the parameterization of these fault models so that they reflect the resolving 

power of observed surface displacements.  The locations of noisy surface displacement 

observations are often widely scattered far from features we wish to analyze in the subsurface 

and result in highly variable resolving power on the fault plane at depth.  The few attempts to 

produce variably discretized fault planes [e.g. Simons et al. 2002, Pritchard et al. 2002] are 

generally done arduously by hand and may not correctly reflect the ability of the data to resolve 

slip features and magnitudes.  Motivated by the increasing size of geodetic data pools and the 

need for distributed slip models that accurately represent features the data can resolve, we 

present a fully automated algorithm that iteratively adjusts the sizes of dislocations in a fault 

model.  We use the concept of smoothing scales, derived from the model resolution matrix, to 

resize dislocations so that each dislocation is sized appropriately given the area over which slip 

in that region of the fault would be smoothed.  We present a series of synthetic tests that utilize 

both sparse and dense data sets and compare our variably discretized inversions to traditional 

regularly discretized inversions.  We also use our approach to invert for slip from geodetic 

observations of the 2004 Mw 6.0 Parkfield, California and the 1995 Mw 8.1 Antofagasta, Chile 

1 An edited version of this paper was published by AGU. Copyright 2010 American Geophysical 
Union. Barnhart,W.D., R.B. Lohman (2010), Automated fault model discretization for inversions 
for co-seismic slip distributions, J. Geophys. Res., 115, B10419.
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earthquakes.

3.2 Introduction

Efforts to understand the modes of strain release across plate boundaries often require inference 

of subsurface processes such as fault slip, interseismic creep, and postseismic deformation, 

which are based on surface observations that are necessarily located far from the processes of 

interest. Geodetic data provided by Interferometric Synthetic Aperture Radar (InSAR) and GPS, 

which historically have had less than ideal spatial and temporal coverage, can nonetheless place 

strong constraints on geophysical models when the data are available. The current growth of the 

catalog of InSAR observations represents a substantial increase in our understanding of 

deformation throughout the seismic cycle, and the potential addition of NASA’s Uninhabited 

Aerial Vehicle Synthetic Aperture Radar (UAVSAR), the Deformation, Ecosystem Structure and 

Dynamics of Ice (DESDynI), and ESA’s Sentinel data pools in the next decade will produce 

further constraints on surface deformation throughout the earthquake cycle. These increases in 

data require efficient, accurate, and fully automated means for assimilating them into inversions 

for co-seismic slip and other fault slip processes.

 Increasingly, co-seismic slip distributions are used to drive sophisticated simulations of the 

seismic cycle [e.g. Freed and Lin, 2001; Freed et al., 2006] that model processes such as static 

stress changes and mantle viscoelastic responses. In many instances, the co-seismic slip 

distributions are inverted using fault planes that are discretized with evenly sized dislocations 

(fault patches in the model that may or may not slip) [e.g. Johnson et al., 2001; Funning et al., 

2005; Johanson et al., 2006]. This type of parameterization often leads to an inverse problem in 

which the distribution of dislocation sizes is not well suited to constrain details of the slip 

27



distribution. In this situation, the inversion will reflect a slip distribution that is not optimally 

constrained by the data. Such distributions may mean we are modeling slip in too fine of detail in 

some parts of the fault plane and introducing slip features that the data cannot constrain. We also 

may be modeling slip in too broad of detail where the data can constrain much finer details 

[Menke, 2012]. In most cases, we encounter some combination of these issues depending on the 

location of dislocations in the fault model and the distribution and quality of data.

 Here, we aim to produce fault discretizations that accurately reflect the resolving power of 

available data and do not map spurious slip features that are unconstrained by the data. Our goal 

is to generate a fault model in which slip on each dislocation is robustly constrained by the data 

such that dislocations are sized so that they are independent of their neighboring dislocations. 

Previous works [Pritchard et al., 2002; Simons et al., 2002; Page et al., 2009] demonstrate 

different attempts at optimizing a slip model’s resolution through use of a variably discretized 

fault. However, in many cases these fault models are arduously constructed manually with the 

final discretization not necessarily reflecting the full potential resolution of the model. We 

introduce two fully automated methods in which variably sized fault dislocations are iteratively 

generated with consideration for the resolving power of the data until we have a fault model that 

is well constrained by the data and is unlikely to contain misleading slip artifacts. Our method is 

similar to the data resampling technique developed by Lohman and Simons [2005] for reduction 

of large volumes of InSAR observations. We apply our methods to various synthetic tests then 

derive slip distributions from surface displacements recorded with various geodetic tools for the 

2004 Mw 6.0 Parkfield, California, earthquake and the 1995 Mw 8.1 Antofagasta, Chile, 

earthquake. Both earthquakes are well documented in the scientific literature allowing us to 
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compare our results to previously published slip distributions.

3.3 Method

3.3.1 Slip Inversion and Model Resolution

Fault models discretized into equal area fault dislocations often lead to highly mixed determined 

inverse problems that do not accurately reflect the resolving ability of observed surface 

displacements [Menke, 2012]. Ideally, the discretization of a fault model for inversion of 

distributed slip would be driven by the locations and quality of data, which control the model 

resolution. Because spatial model resolution in fault slip inverse problems is reflected in the size 

of model dislocations, we desire a fault parameterization in which individual dislocations are 

sized to the dimensions over which slip can be accurately resolved at that location. For the 

methods we introduce here, we assume a fixed fault geometry. In a real scenario we would not 

necessarily know the correct fault geometry or slip direction (rake), but we can use nonlinear 

approaches such as the Neighborhood Algorithm [Sambridge, 1999] to first obtain a best fit fault 

geometry that we fix and discretize.

 We begin by considering the inverse problem to be solved for distributed co-seismic slip:

   Gm=d    (eq 3.1) 

where G is a matrix of Green’s functions which relate slip on a dislocation at depth to 

displacements at a free surface, m is the source model which is the fault we ideally construct to 

reflect the resolution of the data and geology, and d are noisy geodetic observations, such as GPS 

displacements or interferogram observations. To derive Greens functions, we use field equations 
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that assume either a rectangular or triangular slipping dislocation within an isotropic elastic 

halfspace [Okada, 1992; Meade, 2007]. In cases where the fault geometry (potentially 

nonplanar) and rigidity structure in the region of the earthquake are well constrained, more 

complicated Green’s functions can be utilized [Du et al., 1997; Zhao et al., 2004]. Interferograms 

are often resampled or spatially averaged for computational efficiency [e.g., Jónsson et al., 2002; 

Simons et al., 2002; Lohman and Simons, 2005]. We weight the data and Green’s functions so 

that the weighted data have uniform, unit variance by premultiplying both sides of equation (1) 

by the inverse of the Cholesky factorization of the data covariance matrix [Harris and Segall, 

1987].

 While there are many methods for solving the inverse problem for m [e.g., Parker, 1977; 

Menke, 2012], we use higher order Tikhonov Regularization where our preferred model 

minimizes the norm of:

   

€ 

min
G
λL
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ m −

d
0
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⎣ 
⎢ 
⎤ 

⎦ 
⎥   (eq. 3.2) 

where L is a Laplacian smoothing matrix that penalizes steep gradients in slip between 

neighboring dislocations and 

€ 

λ  is a regularization weighting parameter. To construct the 

Laplacian smoothing matrix for methods using triangular dislocations described later in sections 

3.3.1 and 3.3.2 we first identify if the dislocation of interest is in contact with either two (a 

corner dislocation) or three (an internal or side dislocation) other dislocations. We assign a 

weight of 

€ 

λ  to the dislocation of interest and equivalent values to each adjacent dislocation such 

that the sum of the weight of all the dislocations is 0. We do not weight each dislocation by its 
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area because we assume the area of adjacent dislocations is not significantly different since 

dislocation size should vary smoothly. We choose 

€ 

λ  using the jRi method [Barnhart and 

Lohman, 2010, Appendix A.1], an approach that balances the contribution from data noise 

(perturbation error) and oversmoothing (regularization error). Other popular techniques for 

choosing 

€ 

λ  include identifying the corner of the L-curve [Segall and Harris, 1987], cross‐

validation [Árnadóttir and Segall, 1994; Freymueller et al., 1994; Cervelli et al., 2001; 

Hreinsdóttir et al., 2003], and the Akaike Bayesian Information Criterion [Akaike, 1980; Jackson 

and Matsu’ura, 1985; Ide et al., 1996]. The jRi approach has the advantages of not requiring 

manual choice of a “corner”, allowing nonlinear inversion approaches, and having low 

sensitivity to the knowledge of the exact character of the noise. The jRi value associated with a 

set of smoothing values and fault parameterizations provides a metric for the quality of the 

inversion where a smaller jRi value is associated with a more appropriate regularization and fault 

geometry. Therefore, the jRi  value can help us compare discretization choice (e.g., more or fewer 

dislocations) as well as l. Once an appropriate value for 

€ 

λ  is chosen, we construct the 

generalized inverse:

  

€ 

G−g =
G
λL
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T

∗
G
λL
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1

GT   (eq. 3.3) 

Using equation (3), we can then calculate the model resolution matrix R:

  

  R= G-gG     (eq. 3.4) 

The model resolution matrix illustrates how well resolved each model parameter is given the data 
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kernel and a priori model inputs [Menke, 2012]. In cases where m is uniquely determined, R is 

an identity matrix. Otherwise, R reflects the relationship between the inverted model as a spatial 

averaging of the true model [Menke, 2012], such that:

  

  mestimated=Rmtrue    (eq. 3.5) 

For co-seismic slip, one row of R demonstrates 

how unit slip is smoothed across other 

dislocations in the model [Du et al., 1992]. In 

cases where a dislocation is very well resolved, 

slip on the row of R corresponding to that 

dislocation would appear as a delta function 

centered on the dislocation. When a dislocation 

is poorly resolved, inferred slip will be 

distributed onto neighboring dislocations. For a 

very poorly resolved dislocation, there may be 

significant contribution to slip on that 

dislocation from dislocations far away in the fault model. For example, large amounts of slip 

may be erroneously mapped to deep dislocations by the inversion when true co-seismic slip is 

physically concentrated in shallow regions of the rupture area.

 In each of the examples described later, we apply positivity constraints to the inversion. 

This ensures that each inversion forces the same sense of slip given the rake we define, and it 

Figure 3.1: Illustration of Gaussian fit between scale 
length and resolution for the ith dislocation in the ith row 
of R. Actual values in ith row of R are represented by 
black hexagons, ith dislocation is represented by a black 
star, and Gaussian fit is represented by open circles. The 
characteristic height of the Gaussian curve will be the 1‐
σ smoothing scale of the ith dislocation.
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makes each inversion nonlinear. Because we 

use positivity constraints, R may not be a 

perfect metric for model resolution, yet R still 

performs well and each inversion shown later 

is consistent in its assumptions of positivity.

3.3.2 Model Construction

 Using R, we can determine which 

dislocations are overdetermined or 

underdetermined and generate new 

distributions of dislocations that better reflect 

the resolving power of the data. We desire a 

fault discretization that minimizes the 

amount of slip smoothed onto neighboring 

dislocations. To do so, our dislocations must be the approximate size of the distance over which 

slip is smoothed.

 To assess the resolution of a dislocation, we fit a Gaussian curve to the relationship 

between the ith row of R associated with the ith dislocation and the distance to the center of all 

other dislocations (Figure 3.1). Other line‐fitting methods may be used, for example, Biggs et al. 

[2006]fit a negative exponential to the relationship of RMS data misfit to model roughness to 

determine an appropriate smoothing weight. The width of the Gaussian, which we designate as 

the smoothing scale, is the characteristic distance over which the slip from the dislocation of 

interest is smoothed across surrounding dislocations and represents the 1‐σ smoothing distance. If 

Figure 3.2: Schematic illustration of downsampling for 
rectangular and triangular dislocations. (a and b) The initial 
dislocation geometries with the centers of each dislocation 
marked (points) and the smoothing scale of each 
dislocation shown as a circle (some were not drawn for 
diagram clarity). (c and d) The newly discretized fault in 
which dislocations that were larger than their smoothing 
scale are downsampled and those that were smaller are left 
alone.
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the smoothing scale is either much larger or 

much smaller than the actual dimensions of 

the dislocation, then we claim the 

dislocation is incorrectly resolved. If the 

smoothing scale is on the order of the 

dislocation dimensions, then the dislocation 

is likely sized appropriately. Once we 

generate a new smoothing scale for each 

dislocation in the model, we then adjust the 

dislocation distribution by means of either 

downsampling or complete mesh resampling.

3.3.3 Downsampling

 The simplest form of constructing optimally 

parameterized fault models is by downsampling a coarsely discretized model (Figure 3.2). In 

order to downsample dislocations, we start with a user‐selected initial distribution of 

dislocations. Following the algorithm described above, we derive smoothing scales for each 

dislocation and compare the smoothing scale of each dislocation with the dislocations actual size. 

If a dislocation is larger than its smoothing scale, we claim the dislocation is overresolved and 

downsample it. For rectangular dislocations, we divide each dislocation equally into four smaller 

rectangles (quadtree approach, Figures 3.2a and 3.2b). For triangles, we downsample a single 

dislocation into four smaller triangles by allowing the midpoint of each side of the triangle to 

become a vertex for the four new triangles (Figures 3.2c and 3.2d). If the dislocation is smaller 

Figure 3.3: Illustration of complete mesh resampling 
through use of a size function. (a) Desired size distribution 
of disloca- tions across a fault model with smallest 
dislocations near the surface and largest dislocations at 
depth. (b) Rediscretized fault plane meshed according to 
the size function with triangles sized such that they 
approximate the desired size function.
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than its smoothing scale, we claim the dislocation is adequately well resolved and retain its 

current size. We then iterate until all dislocations are smaller than their smoothing scales.

 Downsampling of dislocations proves to be a simpler process than complete mesh 

resampling (described in section 3.3.4); however, there are many aspects of downsampling 

dislocation models that are unfavorable. First, dislocations can only be divided equally into four 

smaller dislocations one way, so our final model is highly dependent on the initial coarse model 

parameterization. Equal division into four smaller units requires a factor of two size change that 

imposes potentially undesirably steep gradients in dislocation size. Also, since dislocations 

cannot become larger in our algorithm and if our initial mesh is too fine some dislocations far 

from data points may remain poorly resolved following complete downsampling and inhibit the 

robustness of the inversion.

3.3.4 Complete Model Resampling

 Whereas downsampling is restricted by the initial model input, a method for resampling the 

fault after each iteration according to a size function behaves independent of the initial inputs 

and allows for a model parameterization that more accurately reflects the model resolution. 

Various meshing algorithms developed for use in finite element models are excellent tools for 

deriving such distributions with variable dislocation size.

 We begin by generating estimates of smoothing scales on a coarse, uniformly discretized 

triangular mesh over the target fault plane. To mesh the fault plane into triangles, we use the 

unstructured finite element meshing routine MESH2D developed by Engwirda [2005] which 

takes as inputs the overall fault plane geometry (length and width) and the desired dislocation 

sizes as a function of location on that fault plane (Figure 3.3a) after one iteration. We set the new 

35



smoothing scales as the desired size 

distribution. Instead of downsampling each 

dislocation individually, the MESH2D 

algorithm produces a fully resampled field of 

dislocations sized according to the size 

function and constrained by the geometric 

bounds of the fault plane (Figure 3.3b).

 As with the down sampling method, we 

iterate over the regularization and resampling 

process for each realization of the model. Because triangular dislocations can both grow and 

shrink via unstructured meshing, we cannot simply terminate resampling when all patches are 

smaller than their smoothing scales as is done in section 3.3.3. While meshing routines can take a 

desired size function as an input, there may always be dislocations that are sized inappropriately 

due to the geometric restrictions of triangles or because the Gaussian poorly fits a few points. We 

thus need to derive a resampling termination criterion that minimizes user bias introduced by 

manually terminating iterations. If we allow the algorithm to iterate over the same noisy data set 

many times, we find that the number of dislocations generated after each iteration stabilizes and 

each subsequent iteration produces only a slightly different number of dislocations. We define a 

tolerance criterion as some desired percent difference in total dislocation number (Figure 3.4). If 

the number of new dislocations after a single iteration is within the tolerance of the previous 

iteration, the algorithm is terminated. If not, we iterate over the algorithm again. Tests of various 

initial input models with the same geometry and noisy data set, but with different initial 

Figure 3.4: Example of criterion for termination of 
complete mesh resampling algorithm. Each line reflects a 
different starting number of dislocations and reflects the 
number of dislocations remaining after each iteration. 
Eventually, the number of dislocations stabilizes, allowing 
a termination tolerance range to be picked (boxed).

36



discretizations, produce the same final stable set of dislocations. This demonstrates that the 

unstructured mesh resampling method is not dependent on the initial manually parameterized 

input model unlike the downsampling approach discussed in section 3.3.3.

 An important factor to consider in using finite element meshing programs is the criterion 

used to assess the quality of individual triangular elements. In finite element models, it is usually 

advantageous to have triangular elements as close to equilateral as possible since solving 

routines are often evaluated at the vertices of each triangle. Meshing routines will generally have 

specific criteria for eliminating triangles that exceed some shape quality constraint. This 

effectively prevents steep spatial gradients in the element sizes used in the mesh. Because we are 

concerned with the size of each dislocation, not the shape, and spatial resolution of the model 

may change abruptly depending on data type, we allow the meshing routine to construct 

triangular meshes with large size gradients so as to avoid artifacts in model resolution caused by 

the meshing routine itself.

 For the following examples, we will use the resampling algorithm with triangles. 

Triangular dislocations prove to be more versatile than rectangles in meshing complicated 

surfaces such as undulating subduction interfaces or complex fault networks. Triangles also 

allow smoothly varying size distributions of dislocations that are easier to regularize. 

Rectangular dislocations are more difficult to adapt without gaps to these complex geometries 

without creating strain singularities at dislocation edges [e.g., Meade, 2007]. This extreme 

restriction imposed by rectangular dislocations leads us to favor methods that parameterize fault 

planes using triangular dislocations. The algorithm source code and relevant updates are 

available on www.roipac.org.
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3.4 Synthetic Tests

3.4.1 Setup

 We wish to demonstrate the ability of our resampling technique to optimally parameterize a 

fault model for inversion of co-seismic slip on a simple fault plane. We also wish to illustrate the 

Figure 3.5: Results of synthetic tests. (Left) Synthetic, imposed input slip distributions. (middle) Noisy synthetic 
interferograms. Dots indicate locations of data points. (right) GPS offsets. Top row: (a) Shallow slip test. Middle 
row: (b) Deep slip test. Bottom row: (c) Slip asperity tests. Fault trace and sense of offset are shown in black, and 
GPS errors are shown as ellipses. Mw is the synthetic seismic moment for each slip distribution. 
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sensitivity of the resampling routine to data locations and noise. A common approach in 

assessing the ability of an inversion technique to robustly constrain an unknown model is to 

invert synthetic noisy data sets where the input slip solution is prescribed. We use the following 

three synthetic tests: (1) a single region of shallow slip, (2) a single region of deep slip, and (3) 

two slip asperities (Figure 3.5).

 Each synthetic test is designed to demonstrate the ability of our fault discretizing algorithm 

to derive a fault parameterization that can resolve details related to the spatial distribution and 

magnitude of slip. In the shallow slip test, we will be able to demonstrate that our method can 

accurately resolve the maximum depth of slip and slip magnitude when slip is located in very 

well resolved regions, such as those close to data locations. In turn, the deep slip synthetic test 

will demonstrate that our algorithm will not infer fine details in slip where such details are not 

well resolved by the data. Lastly, the slip asperities test will illustrate the ability of our algorithm 

to distinguish between distinct slip regions where model resolution is good, as well as model the 

extent and magnitude of slip in each region. To demonstrate the dependence of dislocation sizes 

on data distribution, we also compare results using dense gridded data sets analogous to InSAR 

observations, and sparse, unevenly spaced data sets analogous to GPS. 

 Figure 3.5 shows the three synthetic slip distributions and the noisy data. We use a 20 × 10 

km vertical strike‐slip fault with purely right lateral strike‐slip motion. The fault is initially 

partitioned into a grid of 30 × 30 rectangular dislocations (Figure 3.5). Green’s functions are 

calculated for each geometry and noise‐free data are generated. For the sparse data set (GPS 

analogue), we add random noise with 1 cm variance at the 15 stations and only use the horizontal 

components of displacements. We model the dense data set as InSAR observations and add 
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spatially correlated noise with 1-cm variance on a spatial scale of 20 km and project deformation 

into a vertical line of sight. We create a synthetic resampled interferogram with more data points 

located close to the fault than far from the fault as would be the case if we used the data 

resampling technique of Lohman and Simons [2005] (Figure 3.5, middle column). For simplicity, 

we do not include a ramp, which is typically used to model the effects of satellite orbital errors or 

Figure 3.6: Results of using complete mesh resampling discretization technique applied to sparse (GPS) data sets. 
(left) Variably discretized plane with inverted slip. (middle) Regularly discretized plane with inverted slip. (right) 
A comparison of the jRi curves for each inversion. Points on jRi curves are the l value and corresponding jRi value 
used to weight the smoothing of each inversion shown. Inversions with a smaller jRi value are considered to be 
better. Variably discretized jRi curve is black, regularly gridded jRi curve is red, nd is number of dislocations in 
each model, and Mw is calculated seismic moment for each slip distribution. (a) Shallow test. (b) Deep test. (c) 
Slip asperities test. White circles show extent of synthetic input slip models shown in Figure 3.5. All inversions are 
shown with the same color scale as in Figure 3.5.
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long‐scale atmospheric noise [Hanssen, 2001] in any of the synthetic examples. To invert each 

noisy data set for distributed slip, we discretize the fault model using the complete mesh 

resampling technique with triangles discussed in section 3.3.4. We use the same fault geometry 

and slip direction used to derive the synthetic data, though as mentioned before, these parameters 

Figure 3.7: Results of using complete mesh resampling discretization technique applied to dense (InSAR) data 
sets. (left) Variably discretized plane with inverted slip. (middle) Regularly discretized plane with inverted slip. 
(right) A comparison of the jRi curves for each inversion. Notice differences in slip magnitudes. Points on jRi 
curves are the l value and corresponding jRi value used to weight the smoothing of each inver- sion shown. 
Inversions with a smaller jRi value are considered to be better. Variably discretized jRi curve is black, regularly 
gridded jRi curve is red, nd is number of dislocations in each model, and Mw is the seismic moment of each slip 
distribution. (a) Shallow test. (b) Deep test. (c) Slip asperities test. White circles show extent of synthetic input slip 
models shown in Figure 3.5. All inversions are shown with the same color scale as in Figure 3.5.

41



could first be solved using a nonlinear inversion in a real‐

world scenario where the fault geometry is not known.

3.4.2 Synthetic Inversion Results

 Figure 3.6 shows the results of discretizing and 

inverting the sparse (GPS) data set while Figure 3.7 shows 

the results of using the dense (InSAR) data set. The GPS 

examples demonstrate better resolution despite sparse data 

locations than the InSAR inversions. This is related to the 

SAR line-of-sight constraining a limited component of the 

displacement field. We also show inversions of the same data sets onto fault planes of the same 

geometry discretized into regularly gridded rectangular dislocations and compare the jRi values 

of each inversion. We discretize the regularly gridded faults with a number of dislocations 

similar to that derived from the variable fault discretizer in each case. In each example, the jRi 

value corresponding to the picked smoothing value (l) for the variably discretized fault is better 

(i.e., lower) than for the regularly gridded fault, suggesting that our variably discretized fault 

allows for an inversion that better balances the errors due to oversmoothing and from data noise. 

We are able to recover the moment of the input slip model in each of the inversions onto variably 

and evenly discretized grids.

 The greatest discrepancies between dislocation sizes between the variably and regularly 

discretized models occur in the dense (InSAR) examples (Figure 3.7). In each InSAR example, 

both the variably and regularly discretized fault models predict similar areas of fault slip. This is, 

perhaps, not surprising because in these examples, the dislocation sizes in the vicinity of fault 

Figure 3.8: The jRi curves for inversions 
of InSAR‐based test data onto variously 
discretizated planes (the numbers in the 
legend are the number of dislocations 
used). Curves with circles are derived from 
evenly discretized rectangular dislocations. 
The curve with a star is variably 
discretized. Asterisk indicates that 
inversions are shown in Figure 3.7a. 
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slip are fairly similar. However, the differences in dislocation size with depth, particularly in the 

GPS‐like slip asperities example (Figure 3.6c), allows the variably discretized planes to more 

accurately resolve details in the spatial extent of slip. Additionally, the variable discretizations 

concentrate the output resolution in the regions of the fault plane that are best resolved, resulting 

in good constraints on the region that did not slip: a characteristic that is often of great interest to 

geophysicists. In each of the GPS‐based variable discretizations, we observe an interesting trend 

along strike in which greater numbers of shallow dislocations are present in regions where near‐

fault surface offsets are greatest. This is particularly apparent in the shallow slip and slip 

asperities tests (Figures 3.6a and 3.6c), where two regions of denser fault dislocations are formed 

along strike where separate lobes of surface deformation exist. While slip is concentrated in the 

downdip center of the fault, high concentrations of shallow small dislocations are present at the 

end of the fault. In the sparse deep test (Figure 3.6b), the much sparser nature of the data and 

small displacements lead to a discretization where there is very little variability in dislocation 

size. This may initially seem surprising, since our fault discretization is based on the model 

resolution matrix, R. As Menke [2012] points out, R only reflects the data kernel and a priori 

knowledge of the model, such as geometry and number of dislocations. R does not have 

knowledge of the data magnitude. However, considering equations (3) and (4), the generalized 

inverse G-g is regularized by l, which is chosen with the jRi technique. jRi does utilize the 

magnitude (more specifically, the signal‐to‐noise ratio) of the data. Thus, there is a consideration 

for the data magnitudes in R inherited through our choice of regularization. This inheritance is 

reflected in the greater numbers of dislocations located where data offsets and signal‐to‐noise 

ratios are largest.
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 In each of the synthetic examples, we have 

inverted slip onto a fault evenly discretized with a 

number of dislocations analogous to the total 

number of dislocations derived using the variable 

meshing routine. In this case, the number of 

dislocations derived through variable meshing 

reflects the optimal number of dislocations given 

the model resolution. By inverting onto an evenly 

discretized fault with essentially the same number 

of dislocations as the variable model, we are using 

the “optimally evenly discretized” fault model; 

thus, we would not expect large differences in the 

slip distribution, jRi value, or data misfit. This 

assertion is consistent with what we observe in 

Figures 3.6 and 3.7, where in the vicinity of regions 

of fault slip, the dislocation sizes are similar. 

However, in a real scenario, we would not necessarily know a priori what the optimal number of 

dislocations would be for an evenly discretized model. Figure 3.8 demonstrates tests using the 

InSAR‐like data in which we compare the optimized fault discretization and inversion for the 

shallow slip test (Figure 3.7a) with inversions onto evenly discretized fault models with greater 

and fewer dislocations than the optimal model. The jRi values (Figure 3.8) demonstrate that our 

variable fault model produces the lowest jRi value and remains the best model of those tested. As 

Figure 3.9: Dislocation geometry for the three 
iterations necessary to discretize the Parkfield 
fault model. The final iteration is the fault 
parameterization used for the distributed slip 
inversion shown in Figure 3.10. Dots at the fault 
surface show the locations of the five GPS 
stations located closest to the surface trace of the 
fault model.
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we progressively increase or decrease the number of evenly discretized dislocations for the 

optimal number, the jRi values become higher.

3.5 Real Data Inversions

 In the previous section, we demonstrated how the complete mesh resampling technique is 

highly dependent on both data distributions and signal‐to‐noise ratios. The synthetic examples 

provided good evidence that our algorithm is able to automatically discretize a known fault 

geometry that optimally reflects the model resolution and prevents the mapping of spurious slip 

into inverted slip distributions. We also show that in each example, our discretizing method 

produces the lowest jRi value, reflecting an overall better inversion. Here, we apply our complete 

mesh resampling method from section 3.3.4 to two earthquakes that are very different in both 

tectonic character and data type used.

3.5.1 The 2004 Parkfield Strike-Slip Event

 The Mw 6.0 Parkfield Earthquake occurred on 28 September 2004, a delay of nearly 8 

years from the prediction of the Parkfield Earthquake Prediction Experiment [Bakun and Lindh, 

1985; Bakun et al., 2005; Langbein et al., 2005]. Numerous studies have inverted slip 

distributions based on various geodetic data sets for both co-seismic and postseismic slip 

[Johanson et al., 2006; Langbein et al., 2006; Murray and Langbein, 2006; Page et al., 2009]. 

Geodetic inversions of co-seismic slip generally agree that the majority of slip occurred to the 

northwest of the initial rupture centroid [Johanson et al., 2006; Murray and Langbein, 2006] 

between depths of 2 and 14 kilometers. The magnitude of peak slip in these inversions varies 

from ∼300 mm to 450 mm. The inversion by Johanson et al. [2006] using only GPS data suggest 

slip occurred in two asperities separated by a co-seismic gap. The first asperity, which slipped in 

45



the region of rupture initiation, is deeper and of lower‐magnitude slip than the second asperity 

located further north along strike. In a joint geodetic inversion, Johanson et al. [2006] show 

similar locations and magnitudes of slip concentrations, but with a saddle between asperaties and 

not a gap. Murray and Langbein do not suggest that such a separation of slip occurred; however, 

whereas Johanson et al. [2006] included more spatially dense interferograms in their inversion, 

Murray and Langbein used sparser laser ranging surveys in addition to GPS. The difference in 

data density may lead to the variability in the spatial resolution of slip.

3.5.1.1 Data and Model Parameters

 We use a 21‐station network composed of 16 campaign stations and five continuous 

stations (Figure 3.10b). For a complete description of the origin and time series modeling of this 

data set, see Johanson et al. [2006]. The continuous GPS stations represent a 2 year time series 

beginning January 2003 and ending January 2005, approximately three months after the 

earthquake. The campaign stations were surveyed at sparser time intervals, but in each case 

Johanson et al. [2006] remove the effects of postseismic deformation. Because they attempt to 

remove postseismic deformation related to both the 2004 Parkfield events and the 2003 San 

Simeon and Parkfield earthquakes, as well as the effects of interseismic loading, we do not 

attempt to model these processes in our inversion. We omit GPS station CARH because, as noted 

by Johanson et al. [2006], it lies between the two slipping strands of the San Andreas and 

experienced unknown postseismic deformation. Although geologic field evidence supports the 

existence of two parallel strands of the San Andreas Fault in the Parkfield area, we restrict our 

model to a single fault plane 50 × 15 km that strikes 140°, dips 87°, and ruptures the surface. We 

reduce by half the number of potential free parameters in the inversion by fixing the slip 
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direction to purely right lateral strike‐slip motion (rake=180°). The vertices of the fault are 

pinned to 35.75°N, 120.3°W and 36.1025°N, 120.6449°W. As Johanson et al. [2006] describe, 

modeling the Parkfield rupture on a single plane is reasonable because the potential slipping 

strands are close enough to each other that the effects of using one plane will only be evident in 

the top 1–2 km of the slip inversion.

3.5.1.2 Inversion Results

 Using the complete mesh resampling algorithm described in section 3.3.4, we converge to 

an appropriate fault discretization with triangular dislocations after three iterations. Figure 3.9 

shows the number of dislocations generated during each iteration. During the rediscretization of 

our initial model, the number of dislocations initially increases by a factor of six, with the highest  

density of dislocations located in a region where five GPS stations are positioned close to the 

trace of the fault (marked as hexagons at the surface of the fault). We observe a large increase in 

dislocation number during the first iteration because the initial coarse input discretization is 

unable to adequately characterize the model resolution. There are simply not enough dislocations 

to allow for a model resolution matrix that contains smooth gradients across neighboring patches 

that can be fit well by a Gaussian relationship. The algorithm then reduces the number of 

dislocations to 131 which would not be possible through downsampling. Our final discretization 

is again dominated by a large density of smaller patches near the five GPS locations located 

nearest the fault. This represents the region of greatest model resolution in our inversion. From 

this portion of the fault, the area of dislocations increases both downdip and along strike where 

GPS stations are located farther from the trace of the fault model. In general though, the final 

fault discretization demonstrates highly variable dislocation sizes with steep gradients in size that 
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are dominated by data located close to the surface trace of the fault model.

 The results of our distributed slip inversion are shown in Figure 3.10a. As do previously 

derived slip models, our model demonstrates that the majority of slip occurred north along strike 

of the initial rupture point (starred). We infer maximum slip values of ∼730 mm and a geodetic 

moment of 1.7 × 1018 Nm, or a moment magnitude (Mw) of 6.1 using a shear modulus of 34 

GPa. The deepest slip is well constrained to a depth of ∼10 km. We are also able to constrain 

some surface rupture well although the majority of slip is restricted to a minimum depth of ∼2.5 

km. Two principal slip asperities are apparent: a region in the southeast with relatively low slip 

magnitude and a region in the northwest with relatively high slip magnitude. The southeastern 

Figure 3.10: (a) Inferred slip 
distribution for the Parkfield 
earthquake. Star is location of the 
Harvard centroid moment tensor 
located hypocenter. Hexagons are 
the locations of the five GPS 
stations located closest to the 
surface trace of the fault model. 
(b) Observed (blue) and predicted 
(red) data using the slip 
distribution in (a). All velocities 
are relative to station ORES 
[Johanson et al., 2006]. Trace of 
the fault model marked by thick 
black line. Thin black lines are 
local mapped Holocene faults 
[Ludington et al., 2005].
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asperity is located in the region of initial rupture, much like that of the region modeled by 

Johanson et al. [2006]. Unlike Johanson et al.’s [2006] inversion of GPS only, the asperity we 

model is much shallower and located almost entirely updip and north along strike relative to the 

initial rupture point. Our model also does not demonstrate a well‐resolved gap between the 

southeastern and northwestern asperities. Instead, we model a saddle of decreased slip (∼50–200 

mm) that joins the two main asperities which is more similar to Johanson et al. [2006] joint 

geodetic inversion. It should be pointed out that dislocations in this region of the fault model are 

larger than the width of the gap found in the model by Johanson et al. [2006] that uses GPS data 

alone. Accordingly, there may be a physical slip gap in this region that this data set is unable to 

resolve. We may instead observe the effects of smoothing a small region of physical slip onto 

larger dislocations that can be resolved by the data. The slip inversion shown fits the observed 

data well (Figure 3.10b). To assess the quality of our GPS‐only inversions, we apply the jRi 

criterion to our GPS‐only slip model and one similar to that used by Johanson et al. [2006]. 

Using the fault geometry [I. A. Johanson, personal communication, 2010], regular fault 

discretization, and data distribution employed by Johanson et al. [2006], we invert for distributed 

slip using Laplacian smoothing. We fix the regularization factor 

€ 

λ so that we are able to obtain a 

close match to the GPS‐only derived model shown by Johanson et al. [2006] and compare the jRi 

value associated with this and our best fit inversion using a variably discretized fault (the slip 

distributions and jRi results are shown in the auxiliary material). Through this approach, we find 

that our resampling technique generates a lower jRi value, even though we use a smaller overall 

number of dislocations.

 Our GPS‐only inversion agrees well spatially with the slip distribution generated by Kim 
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and Dreger [2008] using a joint inversion of seismic, 

GPS, and InSAR data. Both inversions demonstrate 

two peaks of slip separated along strike with the 

majority of slip occurring at less than 10 km depth. 

Both inversions are able to resolve two zones of peak 

slip within the northernmost asperity. In general, 

seismic waveform inversions are better suited for 

resolving the extent of deep slip, and both inversions 

here demonstrate a similar depth for the termination 

of slip while other slip inversions from geodetic data 

generate deeper slip. This suggests that variable fault 

discretizing allows us to better resolve the lack of 

deep slip with geodetic observations alone than 

would otherwise be possible with an evenly 

discretized fault.

3.5.2 The 1995 Antofagasta Subduction Zone Event

 The 2004 Parkfield earthquake presented an example of an event well constrained by 

surface displacement observations over a relatively small region. Here, we use the 1995 Mw 8.1 

Antofagasta earthquake in South America as an example of how a broad and densely sampled 

deformation field affects our discretization algorithm (Figure 3.11). Furthermore, it presents an 

opportunity to apply our approach to a dip‐slip earthquake. On 30 August 1995, the earthquake 

ruptured 180 km of the Chilean subduction zone near the Mejillones Peninsula in Chile  [Klotz et 

Figure 3.11: Final fault parameterization for 
inversion of the Antofagasta earthquake 
interferograms containing 130 total dislocations. 
Dots are aftershocks for the 1995 event [Husen et 
al., 1999]. Arrow is Nuvel‐1A plate motion vector 
[DeMets et al., 1994]. Barbed lines are the along‐
strike extension of the subduction trench. NP, 
Nazca Plate; SAP, South American Plate.
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al., 1999]. Previous work [Delouis et al., 1997; Pritchard et al., 2002] demonstrates that the 

megathrust ruptured in a single direction to the south with broad regions of smooth slip of up to 5 

meters. For inverting co-seismic slip from GPS and InSAR observations, Pritchard et al. [2002] 

used a variably discretized fault plane with 41 rectangular dislocations. Sizes of the patches were 

chosen manually to optimize the diagonal of the model resolution matrix, R.

3.5.2.1 Data and Model Parameters

 The InSAR observations were made from ERS‐1and ERS‐2 radar images spanning 1992–

1997. Multiple highly coherent ascending and descending interferograms are available for this 

event thanks in part to the highly arid climate of northern Chile. The data set includes 8 co-

seismic interferograms, 7 from ascending tracks 96 and 325, and one from descending track 89. 

Images were processed using the Caltech/JPL developed ROIPAC software package. Please see 

Pritchard et al. [2002] for a full discussion of the processing of this data set. We resample the 

interferograms using the method of Lohman and Simons [2005] and allow for anisotropic model 

covariance. The noise in the data considered here appears to be only weakly anisotropic so that 

assumptions of stationary isotropic noise would most likely be appropriate [Lohman and 

Barnhart, 2010]. Resampling of the data allows us to reduce the total number of observation 

points from the order of 106 to a computationally manageable 2797.

 We fix the fault plane to a single plane geometry using both centroid solutions and 

aftershock locations (Figure 3.11)[Husen et al., 1999]. We assume a strike of 005°, dip of 20° to 

the east, and 500 × 300 km fault dimensions. We allow the fault to intersect the surface at the 

trench and fix the fault vertices to 25.6545°S, 71.793°W and 21.167°S, 71.2808°W. Due to 

spatial signal restrictions at the Chilean shoreline, the line‐ of‐sight (LOS) deformation signal 
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demonstrates principally subsidence with a small amount of uplift along the Mejillones 

Peninsula. Depending on inferred fault geometry and location, this signal can be fit by either 

thrust or normal motion. We know through inverted moment tensors and aftershock locations 

[Klotz et al., 1999] that this event ruptured the subduction interface; thus, we fix the approximate 

geometry of the subduction zone interface as our model geometry and do not allow rake to vary, 

fixing it to the plate motion vector of 87° from the strike direction [DeMets et al., 1994]. We 

impose positivity constraints that ensure all slip is entirely thrust motion, so the inverse problem 

is nonlinear. In order to account for the effects of interseismic and postseismic deformation as 

well as long amplitude variations in signal from coast‐parallel gradients in atmospheric water 

Figure 3.12: (a) Inverted slip distribution for the Antofagasta earthquake. Star is the Harvard centroid moment 
tensor located hypocenter. Figure 14a is to the scale of the downdip width and along‐strike length. Absolute depth 
is shown as a reference but is not to scale with the length. (b) Model misfit of the resampled track 96 
interferogram. Scale of model misfit is magnitude of surface displacements in the direction of the line of sight of 
the satellite, in cm. Image is draped over Shuttle Radar Topography Mission topography [Farr et al. 2007].
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content, we include a model for a quadratic ramp in our inversions. All resampled interferograms 

and ramps used in the slip inversion, as well as the data misfits of each interferogram, are shown 

in the auxiliary material.

3.5.2.2 Inversion Results

 As for the Parkfield GPS data, we apply the algorithm of complete mesh resampling with 

triangles described previously to our fault geometry, beginning with an initial discretization of 

100 dislocations and a percent difference tolerance of 0.10. We are able to derive a preferred 

fault discretization after four iterations (Figure 3.11, with aftershocks). Unlike the Parkfield fault 

discretization, the Antofagasta fault discretization does not demonstrate steep gradients in 

dislocation size. We expect such behavior because the InSAR observation points demonstrate 

much lower spatial variability between adjacent points than GPS stations. The data for this event 

are located only onshore, far from where the dipping subducting slab is shallow and near the 

surface offshore. Likewise, the slab dips shallowly, so there is not a large variation in depth to the 

fault plane perpendicular to the fault as there was for the Parkfield earthquake. The shallowly 

dipping slab and restriction of the observable deformation field leads to a smooth, broad 

deformation pattern of subsidence which in turn leads to a discretization with relatively 

homogenous dislocation sizes. The preferred fault discretization has smaller patches at the center 

of the fault and extending up-dip to the trench and offshore (Figure 3.11, 3.12). The smaller 

offshore dislocations are confined to the center portion of the fault along strike. This region of 

high resolution offshore reflects data coherence on the Mejillones Peninsula. Dislocation size 

increases both to the north and south along strike and down-dip. Increases in dislocation size 

along strike north and south of the main rupture region are due to fewer interferograms that 
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extend to the edge of the data distribution. down-dip increases in dislocation size are due in part 

to the distribution of the resampled data and increasing distance from the data with depth.

 Our preferred slip model is shown in Figure 3.12a. The model demonstrates deepest slip 

well constrained to a depth of ∼50 km, the approximate depth of rupture initiation (starred). Peak 

slip of 4.7 m is observed updip and to the south of the initial rupture point, supporting seismic 

observations that the rupture propagated unilaterally to the south. A single, broad region of slip 

extends from the initial rupture depth to the trench interface. We infer a geodetic moment of 1.9 

× 1021 N m, or Mw 8.15 using a shear modulus of 34 GPa. The geometry and magnitude of our 

slip model are in general agreement with that proposed by Pritchard et al. [2002] in which they 

model a peak slip of ∼5 m and a broad slip region extending from the rupture centroid to the 

trench interface. Figure 3.12b shows the model misfit for the track 96 interferogram. As we did 

with the Parkfield earthquake, we compare our inversion to one similar to that of Pritchard et al. 

[2002] via the  jRi criterion. We calculate jRi for a slip distribution inverted using the 

discretization of Pritchard et al. [2002] and find that our method produces a lower jRi value. The 

results of this test are shown in the auxiliary material.

3.6 Conclusions

 The examples presented here demonstrate that our proposed methods for fault discretizing 

yield dislocation distributions which robustly resolve slip features where uniformly discretized 

models cannot. By using discretized fault models that accurately reflect the resolving power of 

the data, we can place greater confidence on inferred slip models and verify the robustness of 

distinct slip features inverted on to uniformly discretized models. Our synthetic cases 

demonstrate that the method discussed in section 3.3.4 for complete mesh resampling works well 
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and agrees with models that are “optimally” discretized evenly into rectangular dislocations.

 The utility of the complete mesh resampling routine becomes evident when we consider 

slip inversions onto faults that are not uniformly discretized with an “optimal” number of 

dislocations. For example, in the synthetic tests, we invert slip onto faults evenly discretized with 

a number of dislocations similar to that derived through variable discretization. These inversions 

appear very similar to the inversions using a variably discretized grid, demonstrate negligible 

differences in data misfit, and produce similar jRi values. However, when we invert onto fault 

planes that are uniformly discretized with much greater or fewer dislocations (Figure 3.8), the 

resolutions of the models are greatly affected, as evidenced by poorer jRi values and worse 

recovery of input slip geometry and magnitude. The complete mesh resampling routine allows us 

to determine the “optimal” fault discretization without a priori knowledge of the model 

resolution. We are also able to avoid guess and check approaches while maximizing our 

computational efficiency with respect to deriving pertinent, real information about the slip 

geometry. The approach discussed here could be part of a data assimilation strategy where we 

would iterate between attempting to maximize the resampled data distribution [e.g., Lohman and 

Simons, 2005] and the parameterization of the fault plane.

 Furthermore, as proven through our inversion of the Parkfield Earthquake using only GPS 

data, we are able to accurately resolve regions of the fault where slip is absent. Resolution of 

these regions is increasingly important in understanding the significance of observed shallow slip 

deficits, termination of deep slip, and termination of slip along‐ strike. The manner in which slip 

decays to zero along‐strike plays an important role in stress transfer between fault segments or 

within sequences of earthquakes. This will prove especially important when considering slip 
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distributions of the 2010 Baja California event where aftershocks are concentrated at the 

northern end of the rupture where slip may have abruptly terminated. The Parkfield earthquake 

example also allows us to demonstrate that through variable fault discretization, we are able to 

accurately resolve slip features using a single set of geodetic observations that before were only 

imaged through seismic inversions or joint inversions of multiple geodetic observations. The 

ability to derive a model that can robustly resolve slip with minimal geodetic observations will 

prove to be a vital tool for studies in both remote and highly vegetated/developed regions.
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CHAPTER 4

INSAR AND OPTICAL CONSTRAINTS ON FAULT SLIP DURING THE 2010-2011 NEW 
ZEALAND EARTHQUAKE SEQUENCE1

4.1 Introduction

 Our study used space-based interferometric synthetic aperture radar (InSAR) and feature 

tracking on sub-meter-resolution optical imagery pairs to characterize surface deformation 

resulting from the 4 September 2010 Mw 7.1 Darfield, 22 February 2011 Mw 6.3 Christchurch, 

and 13 June 2011 Christchurch earthquakes (dates in local time) (Figure 4.1), each of which 

occurred in the Canterbury region of the South Island of New Zealand. A rapid, coordinated 

international emergency response is often required when strong-motion earthquakes hit urban 

areas. Unfortunately in these cases relief workers often have little information about the location 

or the extent of damage. Remote sensing can rapidly provide maps of certain key variables (i.e., 

building damage, potential loading of nearby faults, etc.) to relief workers on the ground. These 

maps can cover broad areas on time scales that are only limited by the revisit time of the satellite 

or aircraft. Critically, imagery types such as satellite-based synthetic aperture radar (SAR) have 

long repeat times of up to 46 days at present, although the existence of overlapping tracks and 

multiple satellite platforms effectively reduces the repeat time somewhat. Here we demonstrate 

the impact of commercial optical imagery that can be acquired within hours to days after an 

earthquake, with the goal of supporting relief efforts in future earthquakes on a more rapid 

timescale than can be achieved with SAR imagery alone. We demonstrate that these sub-meter-

1 Published as: Barnhart, W.D., M.J. Willis, R.B. Lohman, A.K. Melkonian (2011) InSAR and 
optical constraints on fault slip during the 2010-2011 New Zealand earthquake sequence. Seism. 
Res. Letts. 82 (6), 800-809.  Reprinted with permission from the Seismological Society of 
America.
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resolution scenes are feasible tools 

for deriving near-fault surface 

displacements for use in fault slip 

inversions, even in areas of heavy 

agricultural activity.

The Darfield and Christchurch 

earthquakes present an opportunity 

to observe postseismic deformation 

related to multiple moderate (< Mw 

7.5) earthquakes occurring in close 

spatial and temporal proximity with 

an unprecedented set of seismic and 

geodetic constraints spanning the two 

events. While there are many 

examples of earthquakes of this size occurring in close proximity, including the 1992 Landers 

and 1999 Hector Mine earthquakes, the shorter time interval between the Darfield and 

Christchurch events means that many instruments that were deployed after the first earthquake 

were still in place to observe the second and third events. We perform inversions of these data for 

the spatial distribution of fault slip that occurred during each of these earthquakes and assess the 

potential contribution of the static Coulomb stress change that occurred during the Darfield event  

to the eventual rupture of the Christchurch earthquake.

4.2 Tectonic Setting

Figure 4.1: Study region and spatial coverage of data. Focal 
mechanisms are Global Centroid Moment Tensor (GCMT; 
Dziewonski et al. 1981) solutions for the 4-Sep-2010, 22-Feb- 2011, 
and 13-June-2011 Canterbury earthquakes. Faults (thin lines) and 
seismicity (black dots) are from GNS Geonet (http:// geonet.org.nz) 
with earthquake spanning the period 3-Sep-2010 to 1-Aug-2011. 
Boxes indicate extent of InSAR data (black) and optical imagery 
(white). Image overlaid on SRTM digital elevation model (Farr et 
al. 2007). Inset shows map location with major tectonic features and 
Nuvel-1A plate motion of Australia relative to fixed Pacific 
(DeMets et al. 1994).
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 The 2010–2011 Canterbury earthquake sequence occurred east of the dominantly strike-

slip Pacific-Australian plate boundary, on previously unrecognized faults within the 

topographically smooth Canterbury Plains (Figure 4.1). The Darfield earthquake (Mw 7.0–7.1) 

ruptured nearly 40 km of the northern Canterbury Plains, partially on the now recognized 

Greendale fault, leaving extensive surface ruptures and ground warping [Quigley et al., 2012]. 

Though surface ruptures suggest dominantly right lateral strike-slip motion, aftershock locations 

and focal mechanisms, first motion focal mechanisms, and subsequent geodetic modeling show 

that the event consisted of a complex rupture sequence involving NE-SW striking reverse faults 

in addition to E-W striking right lateral strike-slip faults [Beavan et al., 2010; Gledhill et al., 

2011]. The 22 February 2011 (hereafter, 22-Feb) Christchurch earthquake (Mw 6.3, Figure 4.1) 

that followed five months later occurred as part of a sequence of aftershocks to the east that 

illuminated numerous zones characterized by both E-W striking strike slip and NE-SW striking 

reverse slip (Figure 4.1). The 22-Feb Christchurch event was dominantly reverse slip and 

occurred near the contact between the volcanic Banks Peninsula and poorly consolidated 

sediments underlying Christchurch. Unlike the Darfield earthquake, the 22-Feb Christchurch 

earthquake led to significant urban damage and casualties due both to its shallow source, its 

exceptionally strong ground motion [Bradley and Cubrinovski, 2011; Fry and Gerstenberger, 

2011; Iizuka et al., 2011], and proximity to the cities of Christchurch and Lyttelton (Figures 4.1 

and 4.2). Another significant event (Mw 6.0) occurred 13 June 2011 (hereafter 13-June) near the 

Christchurch earthquake epicenter, causing further damage in the city of Christchurch. The 

Darfield earthquake exhibited a large stress drop of ~160 bars while the Christchurch events 

exhibited more moderate stress drops of 50–60 bars [Fry and Gerstenberger, 2011].
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The city of Christchurch (Figure 4.1) is located on the eastern Canterbury Plains, an 

alluvial plain of Cretaceous through present sediments overlying the Late Paleozoic to Mid 

Cretaceous Torlesse terrain [Mackinnon, 1983]. The Banks Peninsula, an extinct Miocene 

volcanic structure, punctuates the eastern edge of the Canterbury Plains near Christchurch [Timm 

et al., 2009]. Several other Cenozoic volcanic structures exist throughout the South Island, 

including near the city of Dunedin. Paleoseismic and GPS studies suggest that up to 80% of the 

38 mm/yr relative Australian-Pacific plate motion occurring within the central South Island of 

Figure 4.2: Examples of surface ruptures from the Darfield earthquake visible in postseismic WorldView 1 optical 
imagery. A) Overview map with surface rupture (thick black line, Quigley et al. 2011) and Global CMT solution 
for the Darfield event (Dziewonski et al. 1981). Roads (gray lines) and railroads (dashed lines) from http://
www.diva-gis.org/. B) Example of surface rupture (arrows added by authors) and interpretive field text courtesy 
of local farmer (exists in field, not added by authors). C) En-echelon rupture jump of ~90 m (arrow), hedgerow 
offset by rupture (circle). D) Zoom view of hedge and canal offsets of ~5.8 m. Optical imagery copyright 2011 
Digital Globe, provided through the NGA Commercial Imagery Program.

Figure 4.4
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New Zealand [DeMets et al., 1994; Beavan et al., 1999; Wallace et al., 2007] is accommodated 

by the Alpine fault [Berryman et al., 1992; Norris and Cooper, 2001] while the Porter’s Pass/

Amberly fault system, north of our study area, accommodates ~10–15% (3–8 mm/yr) [Beavan et 

al. 1999; Wallace et al. 2007]. The rates and rate uncertainties in the central South Island allow 

for up to 10 mm/yr of unaccounted strike-slip motion, which has been attributed to model errors 

or uplift in the foothills of the Southern Alps and strike-slip motion in the Canterbury Plains 

[Beavan et al., 1999; Sutherland et al., 2006; Wallace et al., 2007]. Several large (>M 7.1) 

earthquakes are associated with the Porter’s Pass fault zone in the Southern Alps foothills 

[Howard et al., 2005] while other large Quaternary events are documented to the north in the 

Marlborough fault system [Cowan, 1991]. Documentation of active faults in the Marlborough 

fault system and Canterbury Plains reveals dominantly right lateral and reverse slip motion on 

shallow to steeply (>50 degrees) dipping planes. 

Prior to the 2010–2011 earthquake sequence, the strongest historical ground motion in 

Christchurch was attributed to an M 7–8 event [Stirling et al. 1999], and the Canterbury Plains in 

this focus area were characterized by low to moderate rates of seismicity [e.g., Pettinga et al. 

2001]. Seismic reflection surveys in the vicinity of the Darfield event revealed offsets and 

folding of Quaternary sediments older than 24 ka by thrust faults [Dorn et al., 2010], leading 

those authors to suggest that infrequent events >M 7 with long recurrence intervals could be 

possible.

4.3 Data: Availability and Processing Results

 Characteristics of the radar and optical data that we used in this work are summarized in 

Tables 4.1 and 4.2, respectively. Multiple pairs of SAR imagery with at least two different look 
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angles span each earthquake (spatial coverage shown in Figure 4.1, 4.3), as well as the period in 

between them, allowing some redundancy in the data and the assessment of whether individual 

features in the data are associated with the earthquake or with noise. Because of the limited 

number of acquisitions, we only use ascending tracks, which restricts our ability to constrain the 

three-dimensional deformation field for each event. For the Darfield earthquake, we successfully 

obtained SAR pixel offsets, which constrain displacements in the horizontal, alongtrack direction 

and provide an additional component of the three-dimensional deformation field [Fialko et al., 

2001]. We processed interferograms using the Caltech/JPL InSAR processing package ROI_PAC 

[Rosen et al., 2004], using a digital elevation model from the Satellite Radar Topography 

Mission [Farr et al., 2007]. PALSAR imagery from the ALOS satellite was provided by 

Table 4.1: Pairs of SAR imagery used in this study for both traditional InSAR and horizontal offsets obtained 
through pixel tracking (*). Bperp is the perpendicular baseline for each pair, in meters. Dates are in GMT.

Satellite Date1 Date2 Track Frame Bperp
Christchurch EQ: 22-Feb-2011Christchurch EQ: 22-Feb-2011Christchurch EQ: 22-Feb-2011Christchurch EQ: 22-Feb-2011Christchurch EQ: 22-Feb-2011Christchurch EQ: 22-Feb-2011

ALOS 2011.01.10 2011.02.25 335 6300 421
ALOS 2010.10.27 2011.03.14 336 6290/6300 1178

Darfield EQ: 04-Sep-2010Darfield EQ: 04-Sep-2010Darfield EQ: 04-Sep-2010Darfield EQ: 04-Sep-2010Darfield EQ: 04-Sep-2010Darfield EQ: 04-Sep-2010
ALOS 2010.03.11 2010.09.11 336 6300 1215*
ALOS 2010.01.24 2010.10.27 336 6300 1893
ENVI 2010.09.01 2010.10.06 323 6309 236
ENVI 2010.07.09 2010.09.17 51 6309 532*

Post Darfield EQPost Darfield EQPost Darfield EQPost Darfield EQPost Darfield EQPost Darfield EQ
ALOS 2010.09.11 2010.10.27 336 6300 231
ALOS 2010.09.11 2011.03.14 336 6300 1407
ALOS 2010.10.27 2011.03.14 336 6300 1173

Christchurch EQ: 13-June-2011Christchurch EQ: 13-June-2011Christchurch EQ: 13-June-2011Christchurch EQ: 13-June-2011Christchurch EQ: 13-June-2011Christchurch EQ: 13-June-2011
ENVI 2011.06.08 2011.07.08 195 6291 14
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Japanese Aerospace Exploration Agency (JAXA) through an agreement with NASA and the 

Alaska Satellite Facility (ASF). ENVISAT imagery was acquired through a Category-1 

agreement with the European Space Agency (ESA).

 The strong shaking, liquefaction, and high strain gradient resulted in interferograms that 

require some manual phase unwrapping to connect coherent zones separated by regions of 

decorrelation. In these cases, we ensured that the phase unwrapping was consistent across 

spatially overlapping interferograms by inspection and comparison to the predicted displacement 

field resulting from our inversion. The large number of pixels (several million) in the final 

InSAR data products would be prohibitively computationally expensive to ingest into any 

inversion scheme. Therefore, we subsample the data using the procedure outlined in [Lohman 

and Simons, 2005] so that we retain a set of spatial averages with 138 to 376 points for each 

interferogram. Because we were not able to unambiguously unwrap coherent phases across the 

Darfield rupture for Envisat Track 51, we treat the regions north and south of the Darfield 

Satellite Date Resolution (m) Band Pre/Post-seismic

Feb. 2011 Christchurch EQFeb. 2011 Christchurch EQFeb. 2011 Christchurch EQFeb. 2011 Christchurch EQFeb. 2011 Christchurch EQ

WorldView-1 2010.09.21 0.5 Panchromatic Pre

WorldView-1 2011.02.26 0.5 Panchromatic Post

Darfield EQDarfield EQDarfield EQDarfield EQDarfield EQ

GeoEye 2009.10.23 0.5 Panchromatic Pre

WorldView-2 2010.09.21 0.5 Panchromatic Post

ASTER 2006.02.11 15 - Pre

ASTER 2010.09.18 15 - Post

Table 4.2: Optical data used in this study.  Dates are in GMT. Optical imagery copyright 2010 Digital Globe, 
provided by the NGA Commercial Imagery Program.
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rupture as two separate data sets. Peak line of sight (LOS) offsets during the Darfield earthquake 

were around two meters, with horizontal pixel tracking results of up to five meters. There were at 

least three distinct strike-slip fault planes and two zones of thrust faulting activated during the 

Darfield earthquake [Beavan et al., 2010; Gledhill et al., 2011; Quigley et al., 2012]. This rupture 

complexity is apparent in the complicated, multi-lobed deformation field imaged with InSAR 

and aftershock locations (Figure 4.1, 4.3).

 The 22-Feb and 13-June Christchurch earthquakes exhibit a much simpler appearance in 

the InSAR observations (Figure 4.3), although there is a large region of decorrelation within the 

city of Christchurch, and some of the deformation occurred offshore where it cannot be imaged 

with InSAR. The steep gradients of deformation suggest a shallow, near-surface slip source, as 

supported by our inversion described below. Peak observed LOS deformation associated with the 

22-Feb Christchurch earthquake is 0.52 meters. We were unable to obtain subpixel, horizontal 

offsets from SAR imagery for the 22-Feb event, which suggests either there was no surface 

Figure 4.3: Example ascending wrapped interferograms from the a) Darfield Earthquake, b) Feb 2011 
Christchurch Earthquake, and c) June 2011 Christchurch Earthquake.  Black line indicates Darfield rupture trace.
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rupture (as confirmed by field observations) or any surface offsets were below the noise level of 

subpixel offset tracking (typically on the order of a meter).

 High-resolution (~0.5 m resolution) optical imagery (Figure 4.2, Table 4.2) from 

commercial satellites was made available to scientists via the U.S. National Geospatial Agency 

and the National Science Foundation. We also explored the use of data from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Table 4.2), which has 

lower spatial resolution but is available on a more consistent, global basis, particularly for 

preseismic imagery that may not be acquired as part of the background mission for commercial 

Figure 4.4: Pixel tracking results from Darfield coseismic 
optical imagery pairs. A) Calculated east-west pixel offsets 
overlaid on WorldView 1 postseismic scene (location in 
Figure 4.2A). Positive=east motion, negative=west motion. 
Pixels with a signal-to-noise ration less than 3.5 and standard 
deviation in the E-W component greater than 0.025 m have 
been masked. Black lines are mapped fault trace based on 
expression of surface rupture in the postseismic image. B) 
Profile X–X′ across the fault showing values of pixel offsets 
(black dots) and displacement predicted by the slip 
distribution shown in Figure 4.5A. Optical imagery copyright 
2011 Digital Globe, provided through the NGA Commercial 
Imagery Program.
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satellites. Previous work using cross-correlation of optical imagery has been primarily limited to 

ASTER and SPOT imagery [Jean-Philippe Avouac, n.d.; Crippen and Blom, 1991; Michel, 2002; 

Debella-Gilo and Kääb, 2011], with spatial resolutions of 15 and 2.5–10 m, respectively. For 

comparison, the GeoEye imagery used here has a pixel size of 0.5 m. We performed normalized 

cross-correlation of imagery [Melkonian et al., 2009] processed using the ampcor program 

contained within the ROI_PAC software package [Rosen et al., 2004]. Results for the higher 

resolution commercial data are described below, but we were unable to clearly resolve subpixel 

offsets for either of the earthquakes based on ASTER imagery due to striping within the data.

 The GeoEye-1 satellite acquired pre-event high-resolution imagery on 23 October 2009. 

The panchromatic 15 km × 15 km scene is down-sampled from 41-cm resolution to 50-cm 

resolution for civilian use. The satellite, launched in September 2008, has precise pointing 

capabilities providing scenes that are geolocated with a circular error of probability (CEP) of 

about six meters without the use of ground control points. We extract the radiometrically 

corrected JPEG2000 imagery from its National Imagery Transmission Format (NTF) wrapper 

using the Geographic Data Abstraction Library (version 1.8, http://www.gdal.org/). The resulting 

8.5 Gb 16-bit unsigned integer geotiff is geocoded, reprojected to Universal Transverse Mercator 

(UTM) coordinates and registered and orthorectified to a 90-m SRTM digital elevation model 

[Farr et al., 2007]. The post-event imagery comes from the Worldview-1 satellite. This satellite, 

launched in September 2007, has a revisit time of 1.9 days and began imaging the Canterbury 

region almost immediately after the earthquake. Unfortunately clouds hampered acquisition until 

21 September 2010, 17 days after the earthquake. We extracted the 17.9-km-swath-wide, half-

meter panchromatic imagery using identical procedures as with the GeoEye-1 imagery.
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 Difficulties arise using this high-resolution imagery due to agricultural changes in the 

intervening year and different sun elevations and azimuths that result in a variable degree of 

shadowing from houses and hedgerows. Much of the imagery decorrelates over this time 

interval, in part because there have been dramatic changes in land use that are visible in the form 

of radical differences in relative brightness between fields and different plowing patterns 

between the two images. However, the hedgerows themselves, which are visually distorted 

across the fault in the postseismic images (Figures 4.2B–D), act as coherent features that provide 

very strong offsets from image to image. Since the hedgerows are effectively linear and have a 

similar brightness along their length, the offsets are better-resolved in a direction perpendicular 

to each hedgerow than they are along their length. Therefore, we obtain good characterization of 

the E-W deflection of N-S trending hedgerows across the fault, but poor results for E-W motion 

of hedgerows and roads that trend in a near E-W direction. Since the horizontal displacements in 

the E-W direction are much larger than those in the N-S direction for this earthquake, the most 

useful features in the imagery pixel tracking have been the N-S trending roads and hedgerows.

Figure 4.4 summarizes the results of optical imagery pixel tracking for the Darfield 

earthquake. Colored dots (Figure 4.4A) indicate the magnitude of displacement in an E-W 

direction of a 10×10 pixel box that was allowed to move for 32 pixels in any direction, posted at 

5-pixel spacing. Peak displacements across the fault (Figure 4.4B) agree with what one would 

pick from the trend of the hedgerow using the postseismic imagery alone (Figure 4.2D). 

Although offsets in this example are only recoverable from anthropogenic features, processing 

images with shorter temporal baselines (days to months) produces coherent offsets in vegetated 

regions, validating that this technique can be used in remote regions if appropriate acquisitions 
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are available. Unfortunately, the only imagery available with these short temporal baselines is 

located away from the Darfield fault trace. 

4.4 Modeling Results

4.4.1 Darfield Earthquake

 For the Darfield and Christchurch earthquakes, we invert the geodetic observations for 

spatially distributed fault slip using planar fault geometries that we infer using a combination of 

nonlinear inversion and independent data such as surface ruptures, aftershocks, etc. For the 

Darfield earthquake, we use four steeply south-dipping planes to model the primarily right lateral 

strike-slip motion (Figures 4.5A and 4.5C) using a linear inversion for spatially distributed fault 

Figure 4.5: InSAR-based coseismic slip distributions. A) Darfield earthquake slip distribution. Arrows indicate 
motion of northern block relative to the southern block (right = right-lateral, up = reverse). Text describes strike 
and dip of each plane. Roman numerals correspond to fault model location in (C). B) 22-Feb Christchurch 
earthquake slip distribution. Text describes strike and dip of the plane. C) Model surface trace locations (I–IV: 
Darfield earthquake, V: 22-Feb Christchurch earthquake, VI: 13-June Christchurch earthquake). Dots are 
aftershocks from Geonet catalog for the period 3-Sept-2010 to 1-Aug-2011. Image overlaid on shaded SRTM 
DEM (Farr et al. 2007).
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slip on a set of 328 triangular dislocations (Meade 2007) with minimum moment regularization 

constraints. Beavan et al. [2010] demonstrated that shallow (~4 km) thrust slip in addition to 

right lateral slip is required to fully account for all features in the deformation field; however, our 

primary goal in interpreting the Darfield earthquake deformation field is to drive modeling of 

Coulomb stress change at the location of the Christchurch earthquake. At these distances, the 

effects of the shallow thrust faults are not likely to have a strong effect on Coulomb stress change 

[King, 2007]. Our Darfield fault model location is based on mapped surface ruptures [Quigley et 

al., 2012] while dips are constrained by focal mechanisms of right lateral aftershocks. We extend 

our faults to the east and west to account for significant deformation apparent in the 

interferograms beyond mapped surface ruptures. Our best-fit slip distribution and model residual 

is shown in Figure 4.5A, with a moment magnitude of Mw 7.0. Slip magnitudes and depth ranges 

agree well with previous inversions by Beavan et al. [2010] using InSAR and GPS observations. 

We are unable to fit some features in the data near the center and easternmost end of the rupture 

(Figure 4.3A). The misfit is influenced by a combination of errors in model geometry, exclusion 

of NE-SW-dipping reverse faults, spatially correlated atmospheric noise, ionospheric 

perturbations, and contributions from significant postseismic deformation evident in postseismic 

interferograms and, therefore, likely present in varying degrees in the coseismic interferograms 

used in our inversions.

Figure 4.4B illustrates the predicted E-W horizontal offsets from our best-fit model at the 

location of the optical image pixel-tracking results. The predicted displacements across the fault 

are significantly smaller (~2.5 m compared with 5 m), which is not surprising given that there 

was a data gap in the InSAR imagery approaching the fault and that the regularization placed on 
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our inversion tends to reduce slip in regions that have less coverage by the data. The discrepancy 

may also be due, in part, to variable amounts of postseismic slip between the interferograms and 

the optical imagery. Overall, the difference between the observed displacements and those 

predicted using inversions based on InSAR data and an elastic halfspace model highlights both 

the importance of using near-field data when it exists as well as the potential for issues in using 

elastic models in regions where the deformation is clearly anelastic. However, these issues are 

likely to primarily affect the inversion for slip in the shallow subsurface and will not contribute 

much to the predicted Coulomb stress study discussed below.

4.4.2 Christchurch Earthquakes

To obtain a fault model for the Christchurch earthquakes, we use the Neighborhood 

Algorithm [Sambridge, 1999] to invert ALOS-PALSAR and Envisat interferograms (Table 4.1) 

for single fault dislocations. We then fix this bestfit geometry and extend the fault along-strike 

and down-dip to avoid spurious edge effects before performing a linear inversion for distributed 

slip. Model trace locations are shown in Figure 4.5C. We use the automated fault discretization 

algorithm described in Chapter 3 [Barnhart and Lohman, 2010].  For the 22-Feb event, we 

obtain a distributed slip model with 182 triangular dislocations (Figure 4.5B), with Laplacian 

smoothing constraints to regularize the inversion. We fix the slip rake direction to 64 degrees, as 

reported by the Global Centroid Moment Tensor (GCMT) solution [Dziewonski et al., 1981]. 

Inversions in which we allow rake to vary reveal similar solutions. Our best-fit model strikes 

N57E and dips 70S beneath the Banks Peninsula. This fault geometry agrees well with the 

GCMT south-dipping focal solution (N59E, 64S) and distributions of aftershocks analyzed 

through the double-difference method [Bannister et al., 2011]. The slip model suggests peak slip 
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of 2.1 m with the main rupture area occurring between 2 and 11 km and has a moment magnitude 

Mw 6.4 (Figure 4.5B). Some very shallow slip is observed in the model, although this region 

corresponds to areas offshore where no geodetic data is available and is probably an artifact of 

the inversion. Our slip model supports the ground and pixel-offset observations of no surface 

rupture during the Christchurch earthquake; however, data gaps in the InSAR observations 

within the city of Christchurch may inhibit our inversions from inferring any slip at the surface. 

Because only one pair of images is available to constrain slip during the 13-June event (Table 

4.1, Figure 4.3C), we do not present a distributed slip model. We show the location of our best-fit 

single patch model in Figure 4.5C.

4.4.3 Coulomb Stress Change

In order to model the potential effects of static Coulomb stress change of the Darfield 

earthquake on the 22-Feb Christchurch earthquake, we use the Darfield earthquake slip 

distribution described above (Figure 4.5A), which predicts a static Coulomb stress change on a 

fault with the orientation and rake inferred for the Christchurch earthquake as shown in Figure 

4.6A. In our calculation, all slip inverted for the Christchurch earthquake occurs within the 

region of positive Coulomb stress change (Figure 4.6A, black curve). This suggests that static 

Coulomb stress change from the Darfield earthquake indeed encouraged the Christchurch 

earthquake. Peak calculated static Coulomb stress change is 3.1 bars while the minimum is -4.5 

bars.

 To obtain statistics describing the significance of these inferred static Coulomb stress 

changes, we apply a Monte Carlo error propagation technique similar to that described in 

Lohman and Barnhart [2010]. We begin by simulating 500 noisy data sets by adding spatially 
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correlated noise with a spatial scale of 100 km to 

the predicted LOS surface displacements from our 

best-fit slip distribution, using the same 

covariance as we infer from the original Darfield 

data. We then invert for slip on the same four-

fault geometry used above for each synthetic data 

set. Lastly, we calculate the static Coulomb stress 

change on the fault geometry and slip orientation 

inferred for the Christchurch earthquake for each 

realization of the synthetic data. This method 

allows us to quantify errors in predicted Coulomb 

stress change (Figure 4.6B) induced by data noise, 

such as correlated atmospheric water vapor. As 

can be seen in Figure 4.6B, the expected variation due to these sources is far less than the 

inferred increase in stress resolved on the target fault plane that ruptured during the Christchurch 

earthquake. Other errors due to variations in fault plane geometry, crustal elastic structure, or to 

the contribution from the rest of the aftershock sequence likely also contribute.

4.5 Discussion

Certain attributes of this earthquake sequence suggest reactivation of poorly developed faults. A 

particularly interesting attribute of seismicity during the 2010–2011 Canterbury earthquake 

sequence is the activity of steeply dipping (>50 degrees) reverse faults. First motion focal 

solutions for the Darfield earthquake reveal reverse motion rupture on a steep, east-dipping plane 

Figure 4.6: A) Static Coulomb stress change on the 
Christchurch earthquake fault plane predicted by the 
slip distribution inferred for the Darfield earthquake 
(Figure 4.5A). Positive Coulomb stress change 
encourages rupture, negative discourages rupture. 
Black outline shows extent of Christchurch 
earthquake slip with magnitude > 0.7 m(Figure 
4.5B). 1σ standard deviation of static Coulomb stress 
change, calculated using 500 realizations of the 
Darfield earthquake slip distribution.
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[Gledhill et al., 2011] before slip propagated to E-W striking strike-slip faults. In addition, 

aftershock locations and focal mechanisms located in NE-SW trending zones at the ends and 

center of the Darfield rupture reveal steeply dipping reverse-motion planes, and steep reverse 

faults are necessary to model geodetic observations of both the Darfield [Beavan et al. 2010] and 

Christchurch earthquakes. Traditional Andersonian-style faulting predicts that faults should form 

at angles of ~30 degrees to the principal shortening direction [Anderson, 1951], which results in 

reverse faults dipping 30 degrees with a horizontal shortening direction and normal faults 

dipping 60 degrees with a vertical shortening direction. While Anderson’s theory predicts the 

angles at which faults form relative to the local stress field, preexisting faults can reactivate and 

new faults will not be formed if it is energetically more favorable to slip on non-optimally 

oriented planes [Anderson 1951]. Reactivation of non-Andersonian faults is observed in 

numerous tectonic environments including Iran and the Aegean [Jackson, 1994; Berberian, 

1995]. The steep dip of reverse faults observed in aftershock and mainshock focal mechanisms 

along with geodetically derived fault geometries for the Darfield and Christchurch earthquakes 

strongly suggest Cretaceous-Oligocene faults, formed during formation of the Torlesse terrain 

and later breakup of the Rangitata Orogen, were seismically reactivated during the 2010–2011 

Canterbury earthquake sequence. Likewise, the high stress drops, particularly for the Darfield 

event, calculated for each event [Fry and Gerstenberger, 2011] suggest reactivation of high 

friction faults under low strain rates compared to faults in the Marlborough fault zone or 

Puysegur and Hikurangi subduction zones.

The lack of many aftershocks west of the Darfield earthquake in the Southern Alps 

(Figure 4.1), where thrust faults are oriented more N-S and dip at lower angles (<40 degrees) 
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[Mackinnon 1983; e.g., Dorn et al. 2010] compared to the east implies that despite non-

Andersonian dips, faults active during the 2010–2011 earthquake sequence are favorably 

oriented for rupture within the current stress field in the Canterbury Plains. Our calculation of 

positive Coulomb stress change in the location of Christchurch earthquake (Figure 4.6A) implies 

the Darfield earthquake likely expedited the timing of the Christchurch earthquake.

4.6 Conclusions

 This earthquake sequence demonstrates the need for reassessment of seismic hazards in the 

eastern South Island, New Zealand, through continued GPS and seismic reflection studies (such 

as that by Dorn et al. [2010]) to identify faults active in the Quaternary beneath the smooth 

Canterbury Plains. As noted before, the Banks Peninsula stands out conspicuously on the eastern 

edge of the Canterbury Plains. The location of this earthquake sequence relative to the Miocene 

volcanic structure suggests the structure’s location may have a strong influence on stress release 

in this region, as also suggested by Sibson et al., [2011]. Unmapped, potentially seismogenic 

faults may exist in association with other volcanic structures throughout the eastern South Island 

such as near Dunedin.

 The steadily increasing availability and shortening latency time associated with optical 

imagery is opening up a wide range of opportunities for its use in earthquake analysis and 

response. Comparing sequential optical images may allow rapid mapping of landslide locations, 

which will be useful for future studies of strong-motion shaking and will allow hazards 

assessment teams to move directly to affected regions and assess local hillslope stability. 

Subpixel offsets from optical imagery have the potential of allowing identification of 

destabilized slumps that did not fully fail but may pose a significant risk of motion during 
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subsequent aftershocks or rainfalls. In extreme cases, these may induce further damage or local 

tsunamis.

The fine resolution of the optical imagery will also enable the mapping of liquefaction 

within the region that experienced strong shaking. Traditional mapping of the regions of 

liquefaction can be based on their appearance in the imagery and on regions of decorrelation in 

pixel offset tracking.

4.7 References

Anderson, E. M. (1951), The dynamics of faulting and dyke formation with applications to 
Britain, Oliver and Boyd.

Bannister, S., B. Fry, M. Reyners, J. Ristau, and H. Zhang (2011), Fine-scale Relocation of 
Aftershocks of the 22 February Mw 6.2 Christchurch Earthquake using Double-
difference Tomography, Seismological Research Letters, 82(6), 839–845, doi:10.1785/
gssrl.82.6.839.

Barnhart, W. D., and R. B. Lohman (2010), Automated fault model discretization for inversions 
for coseismic slip distributions, J. Geophys. Res., 115(B10), B10419, doi:
10.1029/2010JB007545.

Beavan, J. et al. (1999), Crustal deformation during 1994–1998 due to oblique continental 
collision in the central Southern Alps, New Zealand, and implications for seismic 
potential of the Alpine fault, Journal of Geophysical Research, 104(B11), 25233, doi:
10.1029/1999JB900198.

Beavan, J. L., L. Sasonov,, S. Wallace, S. Ellis, and N. Palmer (2010), The Darfield (Canterbury) 
earthquake: Geodetic observations and preliminary source model, Bulletin of the New 
Zealand Society for Earthquake Engineering, 43(4), 228–235.

Berberian, M. (1995), Master “blind” thrust faults hidden under the Zagros folds: active 
basement tectonics and surface morphotectonics, Tectonophysics, 241(3–4), 193–224, 
doi:10.1016/0040-1951(94)00185-C.

Berryman, K. R., S. Beanland, A. F. Cooper, H. N. Cutten, R. J. Norris, and P. R. Wood (1992), 
The Alpine Fault, New Zealand: variation in Quaternary structural style and geomorphic 
expression, Annales Tectonicae, 6, 126–163.

78



Bradley, B. A., and M. Cubrinovski (2011), Near-source Strong Ground Motions Observed in the 
22 February 2011 Christchurch Earthquake, Seismological Research Letters, 82(6), 853–
865, doi:10.1785/gssrl.82.6.853.

Cowan, H. A. (1991), The North Canterbury earthquake of September 1, 1888, Journal of the 
Royal Society of New Zealand, 21(1), 1–12, doi:10.1080/03036758.1991.10416105.

Crippen, R. E., and R. G. Blom (1991), Measurement of Subresolution Terrain Displacements 
Using Spot Panchromatic Imagery, in Geoscience and Remote Sensing Symposium, 1991. 
IGARSS  ’91. Remote Sensing: Global Monitoring for Earth Management., International, 
vol. 3, pp. 1667 –1670.

Debella-Gilo, M., and A. Kääb (2011), Sub-pixel precision image matching for measuring 
surface displacements on mass movements using normalized cross-correlation, Remote 
Sensing of Environment, 115(1), 130–142, doi:10.1016/j.rse.2010.08.012.

DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1994), Effect of recent revisions to the 
geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. 
Lett., 21(20), 2191–2194, doi:10.1029/94GL02118.

Dorn, C., A. G. Green, R. Jongens, S. Carpentier, A. E. Kaiser, F. Campbell, H. Horstmeyer, J. 
Campbell, M. Finnemore, and J. Pettinga (2010), High-resolution seismic images of 
potentially seismogenic structures beneath the northwest Canterbury Plains, New 
Zealand, J. Geophys. Res., 115(B11), B11303, doi:10.1029/2010JB007459.

Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse (1981), Determination of earthquake 
source parameters from waveform data for studies of global and regional seismicity, J. 
Geophys. Res., 86(B4), 2825–2852, doi:10.1029/JB086iB04p02825.

Farr, T. G. et al. (2007), The shuttle radar topography mission, Rev. Geophys., 45(2), doi:
10.1029/2005RG000183.

Fialko, Y., M. Simons, and D. Agnew (2001), The complete (3‐D) surface displacement field in 
the epicentral area of the 1999 MW 7.1 Hector Mine Earthquake, California, from space 
geodetic observations, Geophys. Res. Lett., 28(16), 3063–3066, doi:
10.1029/2001GL013174.

Fry, B., and M. C. Gerstenberger (2011), Large Apparent Stresses from the Canterbury 
Earthquakes of 2010 and 2011, Seismological Research Letters, 82(6), 833–838, doi:
10.1785/gssrl.82.6.833.

Gledhill, K., J. Ristau, M. Reyners, B. Fry, and C. Holden (2011), The Darfield (Canterbury, 
New Zealand) Mw 7.1 Earthquake of September 2010: A Preliminary Seismological 
Report, Seismological Research Letters, 82(3), 378–386, doi:10.1785/gssrl.82.3.378.

79



Howard, M., A. Nicol, J. Campbell, and J. R. Pettinga (2005), Holocene paleoearthquakes on the 
strike‐slip Porters Pass Fault, Canterbury, New Zealand, New Zealand Journal of 
Geology and Geophysics, 48(1), 59–74, doi:10.1080/00288306.2005.9515098.

Iizuka, H., Y. Sakai, and K. Koketsu (2011), Strong Ground Motions and Damage Conditions 
Associated with Seismic Stations in the February 2011 Christchurch, New Zealand, 
Earthquake, Seismological Research Letters, 82(6), 875–881, doi:10.1785/gssrl.82.6.875.

Jackson, J. (1994), Active Tectonics of the Aegean Region, Annual Review of Earth and 
Planetary Sciences, 22(1), 239–271, doi:10.1146/annurev.ea.22.050194.001323.

Jean-Philippe Avouac, F. A. (n.d.), The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation 
of ASTER images and seismic waveforms analysis, Earth and Planetary Science Letters, 
514–528, doi:10.1016/j.epsl.2006.06.025.

King, G. C. P. (2007), 4.08 - Fault Interaction, Earthquake Stress Changes, and the Evolution of 
Seismicity, in Treatise on Geophysics, edited by Editor-in-Chief:  Gerald Schubert, pp. 
225–255, Elsevier, Amsterdam. [online] Available from: http://www.sciencedirect.com/
science/article/pii/B9780444527486000699 (Accessed 23 October 2012)

Lohman, R. B., and W. D. Barnhart (2010), Evaluation of earthquake triggering during the 2005–
2008 earthquake sequence on Qeshm Island, Iran, J. Geophys. Res., 115(B12), B12413, 
doi:10.1029/2010JB007710.

Lohman, R. B., and M. Simons (2005), Some thoughts on the use of InSAR data to constrain 
models of surface deformation: Noise structure and data downsampling, Geochem. 
Geophys. Geosyst., 6(1), Q01007, doi:10.1029/2004GC000841.

Mackinnon, T. C. (1983), Origin of the Torlesse terrane and coeval rocks, South Island, New 
Zealand, Geological Society of America Bulletin, 94(8), 967–985, doi:10.1130/0016-7606
(1983)94<967:OOTTTA>2.0.CO;2.

Melkonian, A. K., M. J. Willis, M. E. Pritchard, and S. Bernstein (2009), Glacier Velocities and 
Elevation Change of the Juneau Icefield, Alaska, AGU Fall Meeting Abstracts, -1, 0490.

Michel, R. (2002), Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured 
from SPOT images, Journal of Geophysical Research, 107(B4), doi:
10.1029/2000JB000102. [online] Available from: http://adsabs.harvard.edu/abs/
2002JGRB..107.2062M (Accessed 23 October 2012)

Norris, R. J., and A. F. Cooper (2001), Late Quaternary slip rates and slip partitioning on the 
Alpine Fault, New Zealand, Journal of Structural Geology, 23(2–3), 507–520, doi:
10.1016/S0191-8141(00)00122-X.

80

http://www.sciencedirect.com/science/article/pii/B9780444527486000699
http://www.sciencedirect.com/science/article/pii/B9780444527486000699
http://www.sciencedirect.com/science/article/pii/B9780444527486000699
http://www.sciencedirect.com/science/article/pii/B9780444527486000699
http://adsabs.harvard.edu/abs/2002JGRB..107.2062M
http://adsabs.harvard.edu/abs/2002JGRB..107.2062M
http://adsabs.harvard.edu/abs/2002JGRB..107.2062M
http://adsabs.harvard.edu/abs/2002JGRB..107.2062M


Quigley, M., R. V. Dissen, N. Litchfield, P. Villamor, B. Duffy, D. Barrell, K. Furlong, T. Stahl, 
E. Bilderback, and D. Noble (2012), Surface rupture during the 2010 Mw 7.1 Darfield 
(Canterbury) earthquake: Implications for fault rupture dynamics and seismic-hazard 
analysis, Geology, 40(1), 55–58, doi:10.1130/G32528.1.

Rosen, P. A., S. Hensley, G. Peltzer, and M. Simons (2004), Updated repeat orbit interferometry 
package released, Eos Trans. AGU, 85(5), 47, doi:10.1029/2004EO050004.

Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm—I. Searching a 
parameter space, Geophysical Journal International, 138(2), 479–494, doi:10.1046/j.
1365-246X.1999.00876.x.

Sibson, R., F. Ghisetti, and J. Ristau (2011), Stress Control of an Evolving Strike-Slip Fault 
System during the 2010-2011 Canterbury, New Zealand, Earthquake Sequence, 
Seismological Research Letters, 82(6), 824–832, doi:10.1785/gssrl.82.6.824.

Sutherland, R., K. Berryman, and R. Norris (2006), Quaternary slip rate and geomorphology of 
the Alpine fault: Implications for kinematics and seismic hazard in southwest New 
Zealand, Geological Society of America Bulletin, 118(3-4), 464–474, doi:10.1130/
B25627.1.

Timm, C., K. Hoernle, P. V. D. Bogaard, I. Bindeman, and S. Weaver (2009), Geochemical 
Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between 
Asthenospheric and Lithospheric Melts, J. Petrology, 50(6), 989–1023, doi:10.1093/
petrology/egp029.

Wallace, L. M., J. Beavan, R. McCaffrey, K. Berryman, and P. Denys (2007), Balancing the plate 
motion budget in the South Island, New Zealand using GPS, geological and 
seismological data, Geophysical Journal International, 168(1), 332–352, doi:10.1111/j.
1365-246X.2006.03183.x.

81



CHAPTER 5

ZAGROS TIME SERIES AND REGIONAL TRENDS IN ACTIVE DIAPIRISM1

5.1 Abstract

 We construct an orogen-wide InSAR time series over the Zagros Mountains and western 

Markan Subduction Zone in southern Iran from 19 Envisat tracks spanning 2003–2010. We 

observe active salt diapirism of the infra-Cambrian Hormuz Salt at 20 locations and identify 

several diapirs that are not moving. All active diapirs reach the surface within the Asmari 

Limestone or older rock units while we do not observe any active diapirism occurring within 

younger exposures, reflecting a complex vertical accumulation of the basal salt and reactivation 

of diapirs by erosion. Diapir reactivation of this sort may be a critical factor affecting the 

feasibility of sequestering nuclear waste and CO2 in evaporite sequences over geologic time 

scales. The distribution of active diapirism is indifferent to increases in mean elevation, 

suggesting a relatively uniform thickness of the Zagros Fold Belt above the basal salt with steps 

in topography driven by basement thickening. We do not observe aseismic uplift of anticlines 

because rates are likely below the detection threshold of our time series. This suggests that uplift 

is accommodated at small rates (<2–3 mm/yr) over numerous structures instead of focused at the 

deformation front.

5.2 Introduction

Interferometric Synthetic Aperture Radar (InSAR) time series techniques allow imaging 

of time-variable surface displacements at mm/yr resolution on a dense spatial scale [Ferretti et 

1 An edited version of this paper was published by AGU.  Copyright 2012 American Geophysical 
Union. Barnhart, W. D., and R. B. Lohman (2012), Regional trends in active diapirism revealed 
by mountain range scale InSAR time series, Geophys. Res. Lett., 39, L08309.
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al., 2001; Berardino et al., 2002; Hooper et al., 2004]. In this work we build an orogen-wide 

InSAR time series over the Zagros Mountains of southern Iran (Figure 5.1) from seven years of 

Envisat C-band radar acquisitions. We map the distribution of active salt diapirism, which varies 

in a spatially coherent manner across the mountain belt with respect to stratigraphic units, 

revealing a potential control on active diapirism by the level of stratigraphic exposure. Activation 

of diapirism by exhumation is a key consideration for the potential of evaporite units as injection 

Figure 5.1: Tectonic provinces of the Zagros Mountains and mean interferogram correlation map of all descending 
scenes from this study over the Zagros Mountains and eastern Makran Subduction Zone, southern Iran. White 
outlines of provinces (modified from Alavi [1994]), A: Urumieh-Dokhtar Volcanic Belt, B: Sanandaj-Sirjan Zone, 
C: High Zagros, D: Active Zagros Fold and Thrust Belt (ZFTB). Black polygons are extents of surface salt 
exposures mapped with optical imagery. Black lines are mapped exposed faults [Huber, 1975].
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reservoirs for nuclear waste and carbon dioxide [McEwen, 1995; Dusseault et al., 2004]. In 

addition to diapirism, we observe surface deformation from groundwater and hydrocarbon 

withdrawal and coseismic and postseismic deformation associated with earthquakes occurring 

during our time series, but we do not find evidence of interseismic displacements along folds or 

faults bounding and/or within the Zagros.

5.3 Zagros Mountains and Hormuz Diapirsm

 The Zagros Mountains of southern Iran currently accommodate ~30% of the convergence 

between the Arabian and Eurasian plates [Jackson and McKenzie, 1988; Sella et al., 2002; 

Vernant et al., 2004]. Campaign GPS and seismic catalogs reveal active shortening within the 

Zagros Fold and Thrust Belt (ZFTB) [Talebian and Jackson, 2004; Vernant et al., 2004] (Figure 

5.1), which is a classic salt-detached fold belt overlying Precambrian crystalline basement of the 

Arabian shield [Falcon, 1974; Stocklin, 1974; Davis and Engelder, 1985]. The ZFTB is 

characterized by a thick (8–10 km) package of Cambrian through Recent platform and syn-

orogenic sedimentary rocks that are detached from the underlying crystalline basement by the 1–

2 km thick infra-Cambrian Hormuz Salt [Falcon, 1974; Stocklin, 1974; Colman-Sadd, 1978]. A 

number of controversies persist regarding the active tectonics of the Zagros, particularly with 

respect to the depth and lateral distribution of strain accommodation. Rare surface-rupturing 

earthquakes, few exposed faults, sparse GPS observations, and difficulty in seismic imaging in 

regions with thick evaporite layers lead to varying interpretations of deformation modes at depth, 

from aseismic folding of the ZFTB above Arabian basement that shortens along reactivated 

reverse faults [Jackson, 1980; Ni and Barazangi, 1986; Berberian, 1995; Blanc et al., 2003; 

Mouthereau et al., 2006] to seismically-driven shortening of the ZFTB above Arabian basement 
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[Nissen et al., 2007, 2011; 

Lohman and Barnhart, 2010; 

Roustaei et al., 2010]. 

Additionally, competing 

hypotheses propose strain 

accommodation in the ZFTB is 

either concentrated near the 

deformation front [e.g., Oveisi 

et al., 2009] or distributed 

across the interior of the belt 

[e.g., Costa and Vendeville, 2002].

 A key reason for the non-uniqueness of interpretations of shortening in the Zagros is 

uncertainty about the degree to which the thick Hormuz Salt and shallower salt units decouple 

surface and basement deformation. Weak evaporites play an important structural control in many 

fold and thrust belts of both tectonic and gravitational origin [Davis and Engelder, 1985]. 

Evaporites, such as halite and anhydrite, deform plastically at lower temperatures and strain rates 

compared to other rocks [e.g., Hudec and Jackson, 2007]. In diapirs, evaporites flow vertically 

when denser brittle overburden is reduced beyond a critical thickness and adequate evaporite 

material is available to source the diapir head [Jackson, 1995]. Conduits such as faults or 

accommodation spaces in fold cores, which are ubiquitous in seismically-active regions such as 

the Zagros, provide important pathways for vertical salt migration. Diapirs of Hormuz Salt occur 

at more than 100 exposures [Kent, 1979; Talbot, 1998] and are apparent in optical imagery as 

Figure 5.2: Distribution of surface diapirs categorized by style.  Anticlinal 
diapirs are spatially related to anticlines, passive diapirs are not.
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surface flows and plugs (5.5c). In addition to supporting diapirism, experimental work shows the 

low frictional character of salt results in broad, arcuate fold belt with gentle topography [Davis 

and Engelder, 1985; Costa and Vendeville, 2002] in which strain accommodation is distributed 

throughout the belt instead of at the toe. The impermeability of salt also allows it to act as an 

excellent hydrocarbon trap and a potential reservoir for sequestering materials such as CO2 and 

nuclear waste.

 A number of studies in the Zagros highlight the history of surface motions of exposed salt 

flows. Talbot et al. [2000] used in-situ measurements to detail the flow of a salt diapir in the 

Kazerun strike-slip zone while Aftabi et al. [2010] generated a high-resolution InSAR time series 

of a single diapir in the eastern Zagros (Figure 5.3, ^). In both cases, the researchers found that 

the diapirs moved continuously with periods of enhanced surface flow caused by weakening of 

the surface salt by meteoric groundwater. Jahani et al. [2007] provide a detailed review of the 

Quaternary motions of most observed surface salt flows; however, many of the diapirs they 

classify as currently active only move after storm events and do not always show evidence for 

continuous motion. Our study involves two principal modes of diapirism (Figure 5.2): passive 

diapirs, which grow at or near the local sedimentation rate and are principally located along the 

coast and on offshore islands, and anticlinal diapirs, which emerge from the crests and tips of 

anticlines and may be controlled by different surface piercing mechanisms as described by 

Hudec and Jackson [2007].

5.4 Methods: InSAR Time Series

We construct an orogen-wide InSAR time series to constrain the spatial distribution of 

active salt diapirism in the Zagros Mountains (Figure 5.1). InSAR is a radar remote sensing tool 
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that provides spatially dense measurements of surface displacements at millimeter to centimeter 

accuracy in the radar line of sight (LOS) [e.g., Zebker et al., 1994]. In regions where multiple 

repeat SAR acquisitions are made, time-variable displacement can be inferred from sets of 

interferograms spanning a range of timespans [e.g., Ferretti et al., 2001; Berardino et al., 2002; 

Hooper et al., 2004; Fialko, 2006]. InSAR time series techniques reduce the impact of a number 

of error sources including phase unwrapping errors, decorrelation, orbital baseline errors, and the 

Figure 5.3 Descending LOS surface velocities annotated for different signals (color scale saturated at -10 to 10 
mm/yr). Black lines are mapped surface faults (Huber 1975). Positive velocities are motion toward the satellite; 
negative velocities are motion away from the satellite.
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effects of signal delay through stratified atmospheric water vapor. With a large number of 

acquisitions (>15) in areas where the interferograms maintain coherence over the time span of 

available imagery, InSAR time series can constrain average surface displacement rates with 

accuracy better than 2–3 mm/yr over short spatial wavelengths (<25 km) [Finnegan et al., 2008]. 

In the Zagros, gentle relief, arid climate, and slow erosion of the landscape provide excellent 

interferogram coherence over long spatial and temporal baselines (Figure 5.1), making the 

mountain belt an excellent natural laboratory for broad InSAR time series studies. We use ESA 

Envisat ASAR C-band radar images from the period 2003–2010 covering 19 tracks with between 

14 and 47 acquisitions per track. We construct trees of interferograms with spatial baselines <500 

meters and temporal baselines <5 years using the Caltech/JPL ROI_PAC software [Rosen et al., 

2004]. We generate individual interferograms at a resolution of 162x162 m in descending tracks 

(beam I2) and 157x162 m in ascending tracks (beam I6), corresponding to taking 8 looks in the 

range direction and 40 looks in the azimuth direction. We unwrap filtered images after masking 

decorrelated regions using the statistical-cost, network-flow algorithm for phase unwrapping 

(SNAPHU) [Chen and Zebker, 2001]. When we cannot unambiguously correct unwrapping 

errors manually, we delete that portion of the interferogram. After coregistering all 

interferograms to a single master, we remove a quadratic function (a ramp) from each to account 

for satellite orbital errors. We do not interpret any features that have a large (>50 km) spatial 

scale, so this step should not bias our results.

We derive time-variable displacement histories from each tree of interferograms using a 

methodology similar to Berardino et al. [2002] (Figures 5.3-5.5). When multiple interferogram 

subsets exist within a single tree, a situation that can occur when there are temporal and spatial 
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gaps in data coverage, the inversion is poorly-posed and requires regularization. For pixels with 

multiple subsets, we use a damped least squares approach that drives the inversion to infer rates 

in the unconstrained interval that are equal to the average rate in the rest of the time series. We 

restrict our study to pixels where the column rank of the matrix relating displacements observed 

in interferograms to displacements at each acquisition is at least 80% of the full column rank. 

The time variable history of displacement over diapirs allows us to discern between diapirs that 

deform continuously throughout the observation period and those that experience episodic 

Figure 5.4: Distribution of active salt diapirs in the Zagros Mountains. Figure insets are linear rate maps from 
InSAR time series, saturated to the color scale -10 to 10 mm/yr. Positive is motion toward the satellite, negative is 
motion away from the satellite. Red polygons: Diapirs continuously active in time series. Orange polygons: 
Diapirs identified as active in individual interferograms but decorrelated in the full time series. Black polygons: 
Diapirs with well-constrained lack of surface displacements. Clear polygons: Diapirs unresolved in times series or 
individual interferograms. All salt diapir extents mapped with optical imagery. Diapirs studied by Talbot et al. 
[2000] (caret) and Aftabi et al. [2010] (asterisk) are marked.
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deformation that may be induced by rainfall or seismic shaking. Where decorrelation or 

earthquakes obscure diapir signals, we also generate and inspect single interferograms from the 

JAXA ALOS L-band radar. The ALOS instrument provides better signal coherence in steep 

terrain, but acquisitions cover a much shorter time period (2006–2010) than Envisat. If the peak 

LOS velocities of a diapir are near the detection threshold of our time series (~3 mm/yr), we 

inspect a range of interferograms from the time series to verify that coherent motions are present 

over multiple time scales.

5.5 Results and Discussion

All diapirs we investigate can be identified in optical imagery by their morphology and 

generally dark color relative to their surroundings (Figures 5.5c) as well as in geologic maps 

[Huber, 1975; Jahani et al., 2007]. We observe motion at 20 diapirs, all of which are anticlinal 

diapirs (Figure 5.4). LOS surface displacement patterns are consistent with radial spreading due 

to gravitationally driven flow, as observed by others (Figure 5.5) [Talbot et al., 2000; Aftabi et 

al., 2010]. Of the 20 moving diapirs, 17 deform continuously in the time series (Figures 5.5d, 

and 5.5e). The remaining three moving diapirs are decorrelated in the Envisat time series but 

show coherent motion in individual ALOS and Envisat interferograms. We attribute the 

decorrelation of these three diapirs to high surface velocities or steep local topography. We 

classify 30 diapirs, including anticlinal and passive diapirs, as “inactive” where surface 

displacement rates are below the detection level of our observations. The absence of resolvable 

surface displacements at all passive diapirs supports the observation that their deformation rates 

are close to local sedimentation rates, which are below our time series resolution. Jahani et al. 

[2007] classify a number of our inactive diapirs as active, but these diapirs may move only in 
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response to rain events, and may have much lower average rates. All other exposed diapirs in the 

Zagros are below the spatial resolution of our observations (<200 m pixels).

We observe two key trends in the distribution of active and inactive anticlinal diapirs 

across the Zagros with respect to exposed stratigraphy and variations in mean topography 

(Figure 5.6). First, all active diapirs reach the surface within the Eocene Asmari Limestone or 

stratigraphically lower rocks [Huber, 1975], while all anticlinal diapirs emerging from younger 

units do not demonstrate motions that are detectable in our time series. We observe the diapirs 

studied in detail by Talbot et al. [2000] and Aftabi et al. [2010] to deform continuously. Control 

of active anticlinal diapirism by the level of erosion, or erosional piercement [Hudec and 

Jackson, 2007], juxtaposed against the relative inactivity of diapirs emerging from younger rocks 

suggests that multiple levels of salt accumulation exist in the Zagros. This finding is also 

Figure 5.5: Details of a single diapir, see inset in Figure 5.4 for location. (a) Ascending track 99 linear rate map. 
(b) Descend- ing track 206 linear rate map. Positive is motion toward the satellite; negative is motion away from 
the satellite. Arrows show satellite azimuth and look direction. Positive-to-negative change across diapir reflects 
radial spreading from center of surface flow. (c) Landsat image of diapir (inside outline). Diapir outline mapped 
with optical imagery. (d, e) Time series from points within deforming region (black dot, panels a and b) and zero-
velocity region (gray dots, panels a and b).
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supported by seismic profiles within the region [Jahani et al., 2009]. As folding and thrust 

faulting within the Zagros fold belt continues to evolve, the pathways sourcing now inactive 

diapirs from salt accumulations may have become less favorable means of releasing gravitational 

potential energy. Additionally activation of diapiric flow by erosion suggests salt reservoirs both 

in active and passive tectonic settings are not a feasible medium in which to sequester waste 

material over geologic time scales.

Our second observation is that active anticlinal diapirs are distributed across steps in 

mean topography (Figure 5.6). Previous researchers [Berberian, 1995; Mouthereau et al., 2006] 

observed that topography in the Zagros occurs in two modes: short spatial wavelengths features 

(20–25 km across-trend) that are surface folds and long spatial wavelength features (>25 km) 

which, they argue, must be sustained by reverse faulting and thickening in the Arabian basement. 

This argument is further justified by balanced cross-sections [Blanc et al., 2003; Sherkati and 

Letouzey, 2004; Molinaro et al., 2005]. If the long wavelength steps corresponded to thickening 

Figure 5.6: Conceptual model showing relation of basement thrusting, cover strata thickness (Zone of Folding), 
active diapirism, and topography. Gray profile is elevation profile perpendicular to trend of surface folds ( N26.47 
deg,E54.43 deg to N28.69 deg, E 55.03 deg) from SRTM DEM. Black profile is elevation profile with short 
wavelength (~25km) topography removed. Tadpoles are locations of active diapirs projected onto profile. Zone of 
folding is stratigraphic sequences above the Hormuz Salt (Black Layer). Faults are located in Arabian basement. 
Vertically exaggerated 10:1.
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of the overburden above the basal source salt, then vertical forces induced by the additional 

topography would tend to preferentially drive viscous salt flow to lower elevations near the 

coast. Instead, our observation of active diapirism across topographic features of both short and 

long wavelengths is consistent with basement thickening being the primary driver for the 

observed steps in long wavelength topography (Figure 5.6).

In addition to salt deformation, we observe surface displacements induced by withdrawal 

of groundwater and hydrocarbons, as well as earthquake-related deformation (Figures 5.3). We 

do not observe convincing evidence of motion along the inferred range-bounding fault zones or 

deformation of folds other than that associated with earthquakes. The absence of detectable uplift  

signals on individual structures is consistent with distributed low magnitude strain 

accommodation across the width of the belt [e.g., Costa and Vendeville, 2002] in lieu of 

enhanced strain accommodation and uplift at the deformation front [e.g., Oveisi et al., 2009]. 

Future missions (such as the Sentinel constellation to be launched by ESA in 2013) may provide 

the larger volume of data and better orbital control necessary to constrain small magnitude, 

regional-scale deformation signals that fall between these competing hypotheses.
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CHAPTER 6

PHANTOM EARTHQUAKES AND TRIGGERED ASEISMIC SLIP:
VERTICAL STRAIN PARTITIONING DURING EARTHQUAKE SEQUENCES IN IRAN1

6.1 Abstract 

We present evidence for significant aseismic fault slip at shallow depth above a pair of 

mainshock-aftershock sequences in the Zagros Mountains of Iran. The two Mw 5.9 earthquakes 

are each spanned by high-quality geodetic imagery and have well-recorded sequences of 

aftershocks that occurred beneath a salt decollement. Earlier studies of the geodetic data inferred 

that the mainshocks were located above the decollement, requiring a ~10km spatial separation 

between aftershock cluster and earthquake centroid. We find that the geodetic data 

simultaneously allow two slip sources of similar magnitude – one within the basement, 

collocated with aftershocks, and one shallow source (also equivalent to Mw 6) responsible for the 

primary signal apparent in the geodetic imagery. Should this phenomenon be widespread in the 

Zagros, it would partially explain a previously noted discrepancy between observed seismic 

moment release in the Zagros and current convergence rates between the Arabian and Eurasian 

plates.  

6.2 Introduction

A key question in active tectonics is how currently observed deformation, aseismic or seismic, is 

accommodated across plate boundaries and contributes to seismic hazards and long-term 

formation of geologic structures (Jackson and McKenzie, 1988; King et al., 1988; Masson et al., 

2005). Geodetic observations have illuminated a spectrum of episodic aseismic fault slip 

behavior at tectonically active boundaries (Dragert et al., 2001; Fielding et al., 2004; Linde et 

1 Accepted for publication in Geophysical Research Letters. Barnhart, W.D., R.B. Lohman, Phantom earthquakes 
and triggered aseismic creep: Vertical partitioning of strain during earthquake sequences in Iran.
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al., 1996; Lohman and McGuire, 

2007) that may contribute 

significantly to the strain budget in 

zones of continental deformation. In 

the Zagros Mountains of Iran, 

satellite-based Interferometric 

Synthetic Aperture Radar (InSAR) 

observations spanning three moderate-

sized earthquakes (Figure 6.1), 

combined with detailed aftershock 

locations, provide new insight into 

how strain accommodation varies 

vertically within an actively 

deforming mountain belt.  Here, we 

examine three thrust earthquakes – the 

2005.11.27 Qeshm Island (Mw5.9) and 

2006.03.25 Fin (Mw5.9) events in the 

Simply Folded Belt (SFB) and the 

2006.02.28 Tiab (Mw6.0) event in the 

adjoining High Zagros (Figure 6.1) - 

where surface displacements are 

constrained by InSAR observations and aftershocks were recorded by temporary, densely spaced 

Figure 6.1: a) Location of the 2005/11/27 Qeshm, 2006/02/28 Tiab 
and 2006/03/25 Fin earthquakes and selected interferograms used 
in this study, overlain on shaded relief. Black boxes indicate SAR 
tracks covering each earthquake. Color cycle is wrapped line-of-
sight in cm.  Cross sections X-X’ and Y-Y’ show relationship 
between InSAR-modeled slip (black plane) to locally-recorded 
aftershocks [Nissen et al. 2010, Roustaei et al. 2010] for the a) 
Qeshm and b) Fin events. Data profile (z) is LOS displacement in 
cm.   Vertical exaggeration is 1:1 for depth and horizontal scales. 
Details for each interferogram found in Table 6.1, Appendix A2.
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Event/Date Track Frame Date 1 Date 2 Bperp (m)

Qeshm 242 531 2004.07.08 2005.12.15 270

2005.11.27 328 513 2005.01.05 2005.12.21 37
435* 3069 2005.11.24 2005.12.29 185

Tiab 163 3033/3051 2005.05.14 2006.04.29 258

2006.02.28 285* 549 2005.04.17 2006.05.07 256

Fin 206* 3051 2005.05.17 2006.05.02 1

2006.03.25 328 531 2005.05.25 2006.06.14 166

435 3051 2005.12.29 2009.05.07 103

local seismic networks (Figure 6.2) (Gholamzadeh et al., 2009; Nissen et al., 2010; Roustaei et 

al., 2010).  The geodetic data for the SFB earthquakes indicate fault slip at a depth range that is 

significantly shallower than the depth range spanned by the aftershock cloud, although the 

equivalent seismic moment is similar to that detected teleseismically. We hypothesize that there 

are two separate deformation sources of similar magnitude for each event – one that was shallow, 

aseismic and that dominated the observed deformation signal, and one seismic source associated 

with the aftershock sequence that was deep enough to not be readily apparent in the InSAR data.  

We show that these results are consistent with predicted static Coulomb stress changes and 

regional geology.

6.3 The Zagros Mountains and Disagreement Between Data Types

The Zagros SFB is an active fold-and-thrust belt characterized by an 8-10 km thick sedimentary 

section that is detached from Precambrian Arabian basement by the 1-2 km thick Hormuz Salt 

(Alavi, 1980; Falcon, 1975). Teleseismic data and micro-earthquakes suggest that most 

seismicity occurs at depths of 10-25 km (Maggi et al., 2000; Tatar et al., 2004; Engdahl et al., 

Table 6.1: SAR acquisitions details for all interferograms used in this study.  All images are acquired by the ESA 
Envisat C-band SAR.  Date 1 and Date 2 are pre- and post-seismic acquisitions dates.  Bperp is perpendicular 
baseline separating satellite acquisitions.  *-interferograms shown in Figure 6.1, 6.2.  Track and frame spatial 
extents for all scenes are shown in Figure 6.1.
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2006) within the uppermost portion of Arabian plate basement and deeper than the folded 

sedimentary section. Seismic moment tensors summed over the past century cannot account for 

the full convergence measured geodetically (Jackson and McKenzie, 1988; Masson et al., 2005), 

implying that significant shortening in the SFB may be accommodated aseismically.  The high-

quality InSAR data coverage for earthquakes in the Zagros (Figure 6.1) allows reexamination of 

the plate motion budget and an assessment of how strain accommodation varies between the 

stratigraphic section and basement.

Figure 6.2: Profiles of inferred fault slip and aftershock locations [Nissen et al. 2010, Roustaei et al. 2010, 
Gholamzadeh et al. 2009] vs. depth for the Qeshm (a), Fin (b) and Tiab (c) earthquakes. Black and gray curves 
indicate slip on the fault plane with our preferred orientation and the conjugate plane, respectively. For the Tiab 
earthquake (c), range of slip indicates the top and bottom of fault patch with uniform slip. Gray bars indicate 
aftershock density. Unwrapped interferograms with aftershock (black dots) and seismometer (purple triangles) 
locations.
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 Previous studies of InSAR data spanning the 2005 Qeshm and 2006 Fin earthquakes 

(Lohman and Barnhart, 2010; Nissen et al., 2007; Roustaei et al., 2010) (Figure 6.1) inferred that  

coseismic slip was restricted to the sedimentary section between 3-10 km (Figure 6.2).  The 

available SAR imagery (Table 6.1) brackets a short (weeks) time interval for the Qeshm 

earthquake, and a longer (months) range for the Fin event. In these two examples, inferred fault 

slip does not overlap with the depth range of aftershocks  (10-30 km) recorded by local arrays 

deployed days after each event (Nissen et al., 2007; Roustaei et al., 2010) or micro-earthquakes 

recorded in the region (Tatar et al., 2004). Detailed teleseismic body wave modeling of each 

mainshock is consistent with centroid depths within either the basement or sedimentary section 

(Nissen et al., 2007; Roustaei et al., 2010, Engdahl et al. 2006), as has been found elsewhere for 

earthquakes of similar size (Devlin et al., 2012). Although aftershocks generally fill a region 

several times larger than the area that ruptured coseismically, the highest density of aftershocks is 

usually closely associated with the ruptured region itself – a relationship that is violated if the 

Qeshm and Fin coseismic ruptures are located in the sedimentary section.  For this reason, we 

examine the possibility that the mainshock did occur in the basement for which the resulting 

deformation signals are too broad and low-magnitude to be apparent in the InSAR data

6.4 Fault Slip Resolution

We explore the significance of the apparent separation of mainshock and aftershocks for the Fin 

and Qeshm earthquakes by reproducing the inversions of the available InSAR data while also 

examining the sensitivity of the InSAR to fault slip at the depths spanned by the aftershocks. For 

each event, we generate interferograms using Envisat ASAR images acquired by ESA (Figure 

6.1, Table 6.1). We use the JPL/Caltech ROI_PAC software package  (Rosen et al., 2004) and the 
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Model Lon Lat Depth Strike Dip Rake Mw

(deg) (deg) (km) (deg) (deg) (deg)

2005.11.27 Qeshm2005.11.27 Qeshm2005.11.27 Qeshm2005.11.27 Qeshm2005.11.27 Qeshm2005.11.27 Qeshm2005.11.27 Qeshm2005.11.27 Qeshm

BL-North 55.91 26.88 3.5-9.5 264 47 68 6.1

BL-South 55.95 26.8 4.6-8.6 74 35 66 6.1

GCMT 55.8 26.66 12 257/86 39/51 83/96 5.9

ISC 55.83 26.75 10* NA NA NA NA

2006.02.28 Tiab2006.02.28 Tiab2006.02.28 Tiab2006.02.28 Tiab2006.02.28 Tiab2006.02.28 Tiab2006.02.28 Tiab2006.02.28 Tiab

BL-North 56.9 28.09 14.9-17.3 302 20 51 6.0

BL-South 57.01 28.08 12.2-18.2 93 71 143 6.0

GCMT 56.87 27.86 25.4 302/93 19/73 81/118 6.0

ISC 56.83 28.12 31.1 NA NA NA NA

2006.03.25 Fin2006.03.25 Fin2006.03.25 Fin2006.03.25 Fin2006.03.25 Fin2006.03.25 Fin2006.03.25 Fin2006.03.25 Fin

BL-North 55.7 27.58 5-10.5 252 34 105 6.0

BL-South 55.7 27.56 4.7-12 72 50 95 6.0

GCMT 55.6 27.43 14 269/97 28/63 83/93 5.9

ISC 55.7 27.55 10* NA NA NA NA

90m resolution Shuttle Radar Topography Mission digital elevation model (Farr et al., 2007). We 

use a spatial resolution of ~31x55m then estimate interferogram noise structure and downsample 

the resulting interferograms from ~106 pixels to a computationally manageable ~102 pixels using 

a model resolution-based quadtree method (Lohman and Simons, 2005) (Figures S1-S3, Tables 

S3-S5).  

 To determine a best-fit fault geometry for each observed deformation signal (Table 6.2), we 

first invert the interferograms spanning each event for the geometry of a single rectangular fault 

plane with uniform slip (Okada, 1992) varying strike, dip, slip direction, hypocentral location, 

Table 6.2: Model results and locations of seismic and geodetic models. BL-North and BL-South indicate best-fit 
north and south dipping focal planes from InSAR inversions, GCMT is Global CMT, ISC is International 
Seismological Centre.  Depth values of slip inversions indicated depth range of primary slip.  Lon/Lat of geodetic 
inversions indicates epicentral (center of slip patch with largest slip magnitude) projection of slipping area.  *-Fixed 
value
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fault length, and fault width using the Neighborhood algorithm (Sambridge, 1999). We cannot 

discriminate within error between the two potential nodal planes, so we consider two planes for 

each event in our conclusions. For the Fin and Qeshm events, which have relatively complicated 

surface deformation signatures, we fix the fault geometry to that of the best-fit fault patch with 

uniform slip and extend the fault both along-strike and down-dip so that a distributed slip 

inversion does not produce artifacts from interactions with the edges of the model. We then 

discretize the fault model with triangular dislocations (Meade, 2007) whose size varies with 

model resolution (Barnhart and Lohman, 2010), and invert for the best-fit slip distribution. We 

impose non-negative slip constraints and fix the rake to that from the uniform slip inversion. We 

Figure 6.3: Best-fit slip distribution (black), models resulting from our Monte Carlo tests (thin gray lines), and 
associated error bounds (heavy gray lines) for the Qeshm (a) and Fin (d) events (Figure 2a,b). Error bounds are non-
Gaussian and contain the 16th to 84th percentile of slip models for each depth. Histograms of moment magnitude for 
slip above (b, e) and below (c, f) 10 km indicate that error bounds on moment (black lines) bracket the Global CMT 
moment of 5.9 (dashed line) for the lower section of the fault.
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find that fixing the rake does not produce a noticeably different slip solution than when we allow 

rake to vary freely. 

 In general, the resolution of geodetic inversions decreases with distance from the data (in 

this case, depth below the surface). We perform Monte Carlo sensitivity tests that constrain the 

appropriate error bounds on our inferred slip models due to noise in the data (Figure 6.3). During 

the inversion, we pre-weight the Green's functions and displacement vectors by the inverse of the 

Cholesky factorization of the data covariance [Harris and Segal, 1987, Barnhart and Lohman, 

2010], resulting in data that should contain noise with uniform unit variance. We generate 1000 

noisy data sets by adding random noise to the displacement field predicted by our best-fit slip 

distribution. We then invert each noisy dataset for the best-fit slip distribution using the same 

fault plane parameterization and regularization as we used to invert the real data. From this 

population, we assess the 1-sigma error bounds on the magnitude of slip that occurs above and 

below different depth cutoffs (Figure 6.3), allowing us to estimate the magnitude of slip that 

could occur below a cutoff depth of 10km. For both the Qeshm and Fin earthquakes, we find that 

earthquakes with the observed Global CMT magnitudes of Mw 5.9 at 10-22 km – the depths of 

aftershocks – are permissible given the level of noise in the InSAR data [Lohman and Simons, 

2005]. Our tests do not account for the contribution from errors in crustal elastic parameters, 

non-planar fault geometries, etc.  Accounting for these errors would tend to increase the range of 

possible slip values - making it even more likely that the earthquakes could “hide” at depth.

 The 2006 Tiab earthquake (Figure 6.1), located outside the salt-dominated SFB, provides 

a counter example and does not share the apparent separation of aftershocks and mainshock 

when we compare geodetic and seismic data.  Inversions of the InSAR observations produce 
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fault slip within the depth 

ranges of locally recorded 

aftershocks (Figure 6.2c) 

(Gholamzadeh et al., 

2009), consistent with the 

behavior of typical 

mainshock-aftershock 

sequences. The collocation 

of InSAR-derived slip 

models and aftershock locations for the Tiab earthquake suggests that the separation observed in 

the SFB is not simply an artifact of our approach and is likely due to differences in behavior 

between the two regions.

6.5 Discussion

From these observations, we find that the InSAR and aftershock data for the Fin and Qeshm 

events are each consistent with two slip sources: One shallow source within the sedimentary 

section, and one deeper source within the basement.  Because the deep sources are collocated 

with aftershocks in the basement, we infer that the deep sources are the coseismic ruptures 

recorded teleseismically. This removes the necessity to explain an extraordinary lack of 

aftershocks near the coseismic rupture. Furthermore, coseismic rupture in the basement is more 

consistent with perceived ground motions, which were initially over predicted by a seismic 

source within the sedimentary section, during the Qeshm Island earthquakes (Jaiswal et al., 

2009).
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aseismic slip based on 1000 potential mainshock ruptures within the basement. 
Values are the mean Coulomb stress change from the principal slip region in of 
the 2005/11/27 Qeshm earthquake. Vertical bars are 1-sigma bounds on 
Coulomb stress change.
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We infer that the coseismic rupture 

in the basement induced aseismic fault 

slip within the sedimentary section, 

resulting in the primary signal apparent in 

the InSAR observations. Laboratory 

experiments on halite layers within 

sandstone produce both stick-slip 

behavior and ductile flow when an abrupt 

stress change is imposed (Shimamoto and 

Logan, 1986; Shimamoto, 1986).  These 

experiments indicate that salt present along 

fault zones throughout the SFB (Jahani et 

al., 2009) may permit triggered aseismic 

slip when exposed to stress changes of the 

sort considered here. Furthermore, 

predicted static Coulomb stress changes (King, 2009; Lin and Stein, 2004) for an earthquake 

occurring within the cloud of basement aftershocks and with the mechanism reported by the 

Global CMT would encourage slip at the location where we infer shallow aseismic creep (Figure 

6.4). 

Additionally, the observed surface deformation during the Fin aseismic slip event is 

consistent with the long-term evolution of the individual folds (Figure 6.5).  The line-of-sight 

uplift observed during the Fin sequence occurs primarily on the dipping limb of a fold identified 

Figure 6.5: (a) Contours (2 cm intervals) of line-of-sight 
deformation (primarily vertical, uplift) spanning the Fin 
earthquake.  Map symbols indicate anticlinal and synclinal 
crests interpreted from optical imagery and DEM by the 
authors.  (b) Conceptual model of a fault-bend-fold with 
fault displacement in the inferred depth range of the Fin 
event. Arrows indicate predicted directions of particle 
motion. Heavy line indicates region of aseismic slip.  Uplift 
is observed in InSAR, horizontal motions are inferred by the 
model but cannot be constrained by the data.
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in optical imagery and digital elevation models (Figure 6.5a) and is consistent with fault-bend 

folding inferred elsewhere in the SFB (Burberry et al. 2008).  Kinematic fault-bend fold models 

predict that, in a mature fold where total accumulated slip exceeds the width of the ramp, slip on 

the dipping ramp produces uplift of the limb above the ramp alone (Figure 6.5b), whereas fault-

propagation and detachment fold models would predict uplift at the crest (Suppe, 1983). The 

Hormuz Salt (~11-12km) and shallower (3-4 km and ~6 km) evaporite and shale horizons 

(Jahani et al., 2009; Sherkati et al., 2005) bracket the inferred depths of the Fin aseismic slip 

event, which is consistent with shallow active detachments (Figure 6.5b). Earthquake-related 

fold shortening has been inferred for the 2005 Qeshm event (Nissen et al., 2007)  and elsewhere 

for other events, including the 1980 Algerian earthquake (King and Vita-Finzi, 1981) and the 

1983 Coalinga earthquake (e.g. Hill, 1984; Stein and Ekström, 1992).

The data used in this study place no constraint on the geometric relationship between 

faults in the basement and sedimentary section or the processes by which slip is transferred 

through the intervening Hormuz Salt.  While salt at 10-12km depth is likely to behave ductilely 

at longer timescales, it behaves elastically at short timescales (seconds) and perhaps can sustain 

the static coseismic Coulomb stress change long enough to initiate aseismic deformation in the 

sedimentary layers above it. Alternatively, the convergence history between Arabia and Eurasia 

may have resulted in basement relief that allows direct coupling between a single fault in the 

basement and the upper cover rocks.  These questions may be resolved when we have further 

knowledge of the exact geometry of the two slip sources or the character of interseismic 

deformation associated with the fold belt. Where sufficient data exists, InSAR time series 

analysis can have sub-mm/yr detection thresholds (e.g., Finnegan et al., 2008), suggesting that 
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future InSAR missions with frequent “background” acquisitions may allow us to resolve the 

timing between coseismic rupture and triggered aseismic slip. 

 This work shows that aseismic shortening in mountain belts such as the Zagros occurs, at 

least in part, episodically as seismically triggered, aseismic events. The inferred aseismic 

deformation accompanying the Fin and Qeshm earthquakes is equivalent to, if not greater than, 

the magnitude of the coseismic deformation (Figure 6.3, Table 6.2).  Accordingly, the aseismic 

deformation may effectively double the moment release during each earthquake sequence.  This 

indicates that a significant portion of the inferred seismic deficit (Jackson and McKenzie, 1988; 

Masson et al., 2005) is accommodated over short periods (days to weeks) following earthquakes 

rather than through steady interseismic motion. 
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CHAPTER 7

ACCOMMODATION OF ARABIAN-EURASIAN CONVERGENCE IN SOUTHERN IRAN 
FROM INSAR, GPS, AND SEISMOLOGY

7.1 Introduction

Observations of fault zone behaviors, including constraints on the location and magnitude of 

earthquakes as well as aseismic processes, play a critical role in efforts to characterize how strain 

is actively accommodated along plate boundaries. While hypocentral locations from seismic 

observations are often the primary data source used to identify regions of elevated seismogenic 

hazard, to quantify the seismogenic thickness of the crust, and to define geometries and locations 

of major faults, geodetic observations such as interferometric synthetic aperture radar (InSAR) 

can provide independent, spatially dense observations of earthquake ground displacements over 

broad areas (>100km) [e.g., Bürgmann et al., 2000; Pritchard et al., 2002; Barnhart et al., 2011; 

Devlin et al., 2012]. Catalogs of events observed with InSAR can allow identification of biases 

in global seismic catalogs due to suboptimal station distribution and unmodeled velocity 

structures [e.g., Ferreira et al., 2011; Devlin et al., 2012], providing constraints on the precision 

of seismically-derived source locations.  In regions where substantial aseismic slip accompanies 

earthquake ruptures [e.g., Barnhart and Lohman, accepted; Langbein et al., 2006; Lohman and 

McGuire, 2007], InSAR observations can illuminate how overall strain accommodation varies 

across the plate boundary and throughout the seismic cycle.

 In this work, we examine observation of surface displacements spanning earthquakes in 

the Zagros Mountains and surrounding regions of southern Iran (Figure 7.1). We provide an 

updated catalog with slip models of deformation observed with InSAR (Mw4.8-6.5) for the 

period 2003-2011. We demonstrate that teleseismic earthquake locations are biased towards the 
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southwest in this region, likely resulting from one-dimensional approximations to the seismic 

velocity structure and the heterogeneous distribution of seismometers worldwide. We find that all 

coseismic ground displacement signals observed with InSAR within the Zagros Simply Folded 

Belt are consistent with fault slip within the active fold-and-thrust belt (<10 km) rather than in 

the underlying basement. Previous work on well-studied earthquakes within the Zagros Simply 

Folded Belt suggests that the observed deformation signals may be due to shallow aseismic slip 

Figure 7.1: Tectonic Provinces of Iran overlain on shaded SRTM topography [Farr et al. 2007]..  Dots are seismicity 
[Engdahl et al., 2004], arrows indicate plate motion of Arabia relative to Eurasia in mm/yr [DeMets et al., 2010].  
SFB- Simply Folded Belt, SSZ- Sanandaj Sirjan Zone, MRF- Main Recent Fault, MZT - Main Zagros Thrust, KFZ - 
Kazerun Fault Zone.  Bolded fault indicates suture between Arabia and Eurasia.
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triggered by an earthquake at greater depth, with a magnitude of slip equal or greater than the 

coseismic slip itself [Barnhart and Lohman, accepted]. We argue that the primary observed 

coseismic geodetic signals for all events in the Simply Folded Belt may also reflect triggered 

aseismic fault slip above deeper earthquakes that are not well-resolved by the InSAR data. 

Lastly, we reassess the contributions of aseismic and seismic strain rates in the Zagros [Jackson 

and McKenzie, 1988; Masson et al., 2005] to explore how these coupled earthquake-aseismic 

slip events would affect how long-term convergence is accommodated along this plate boundary.

7.2 Active Tectonics of Southern Iran

Convergence between the Arabian and Eurasian plates dominates the active tectonic setting of 

southern Iran and is accommodated in part by continental collision in the Zagros Mountains and 

subduction beneath the Makran accretionary Prism (Figure 7.1). North of the Makran, clockwise 

rotation of relatively stable blocks bounded by large strike-slip faults transfers plate motion 

northward (Figure 7.1). The Zagros have been described as an analog for the early stages of the 

more evolved Himalayan orogeny [e.g., Ni and Barazangi, 1986; Hatzfeld and Molnar, 2010].  

One of the more intriguing observations about the mountain belt is that observed seismicity over 

the past century is far lower than what would be needed to accommodate the observed plate 

convergence [Jackson and McKenzie, 1988; Masson et al., 2005].

 Seismicity in the Zagros primarily occurs in the Zagros Simply Folded Belt (SFB) and 

the adjoining High Zagros (Figure 7.1). The SFB is a salt-detached fold-and-thrust belt wherein a 

thick (8-10km) package of sedimentary rocks lies above crystalline, Proterozoic Arabian shield, 

with an intervening 1-2km thick infra-Cambrian Hormuz Salt unit [Falcon, 1974; Stocklin, 1974; 

Colman-Sadd, 1978]. Uncertainties in teleseismic earthquake locations in this region are 
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generally unable to resolve whether the events occurred in the sedimentary section or underlying 

crystalline basement [Maggi et al., 2000; Engdahl et al., 2006]. Recent geodetic work on two 

earthquakes (Mw5.9) combined with observations of aftershocks from dense, local seismic 

networks [Nissen et al., 2010; Roustaei et al., 2010 ] suggests that these events likely occurred in 

the crystalline basement and triggered a similar magnitude of aseismic slip in the overlying 

sedimentary section [Barnhart and Lohman, accepted]. The hypothesis that the basement 

deforms seismically and the cover strata deforms aseismically is further consistent with regional 

micro-earthquake surveys [e.g., Tatar et al., 2004] and the general lack of surface rupturing 

earthquakes in historical records within the SFB. The triggered aseismic slip during these two 

events had a magnitude greater than or equal to the slip that occurred coseismically, opening up 

Figure 7.2: Global CMT focal mechanisms of all events >Mw5.5 in southern Iran from 1991-2011.  Red events are 
observed with InSAR, Black event are not observed despite adequate data, gray events are unresolved due to 
insufficient data, blue events are observed and <Mw5.5.  Numbered events occurred after 2003 and are analyzed in 
this paper; numbers are events IDs in Figure 7.3, Tables 7.1-7.2. Unnumbered events occurred prior to 2003 
[Fielding et al., 2004, Lohman and Simons, 2005a].  Diamonds are observed events but do not have a known focal 
mechanism in the GCMT catalog.

116



the question of whether triggered aseismic slip events can account for the large observed seismic 

strain rate deficit.  If not, other mechanisms for reconciling the observed geodetic and seismic 

data, such as additional sources of aseismic deformation that act over longer time intervals 

within the interseismic period or large earthquakes that have not been sampled by the historical 

record, must be invoked.

Figure 7.3: Wrapped interferograms of all observed events from 2003-2011. Numbers are event IDs (Figure 7.2, 
Tables 7.1-7.3).  Interferograms shown are denoted in Appendix A2.  Scale bars are 10km.  Red-bound scenes occur 
in the SFB.
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7.3 Surface Deformation Sources

In order to further assess the locations of earthquakes and the relative contributions of earthquake 

and aseismic deformation in the Zagros and surrounding regions, we explore two end member 

models of strain accommodation across the Zagros and show that even if earthquake-triggered 

aseismic slip events are common, significant aseismic shortening must still occur through other 

mechanisms.

7.3.1 InSAR Data and Analysis

Table 7.1: Deformaiton 
events and event IDs (Figure 
7.2, 7.3) observed with 
InSAR.  Lon/Lat are center of 
fault patch with greatest slip 
(all determined from this 
study).  Modeling indicates 
type of fault modeling: sp - 
single patch, dist- distributed 
slip.

References:
a)this study
b)Nissen et al. 2007
c)Lohman and Barnhart 2010
d)Nissen et al. 2010
e)Roustaei et al. 2010
f)Talebian et al. 2004
g)Fialko et al. 2005
h)Funning et al. 2005
i)Talebian et al. 2006
j)Peyret et al. 2008
k)Barnhart and Lohman 
accepted

Event ID Lon Lat Modeling Reference

SFB

2003.07.10 1 54.175 28.3967 sp a

2003.11.28 2 54.138 28.435 sp a

2005.11.27 3 55.910 26.880 dist a,b,c,k

2006.03.25 4 55.725 27.58 dist a,e,k

2006.06.28 5 55.942 26.913 dist a,d

2007.03.23 6 55.303 27.597 dist a

Unknown 7 55.454 27.624 sp a

2008.09.10 8 55.939 26.885 dist a,c,d

2010.07.20 9 53.848 27.104 dist a

High Zagros

2005.05.03 10 - - N/A j

2006.02.28 11 56.923 28.086 sp a,k

2006.03.31 12 49.90 33.62 dist j

2007.08.25 13 56.723 28.247 sp a

Other

2003.12.26 14 58.35 29.08 dist f,g,h

2005.02.22 15 56.75 30.809 dist a,i

2010.12.20 16 59.125 28.257 dist a

2011.01.27 17 59.281 28.025 dist a
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To construct our catalog of 

earthquake-related 

deformation observed with 

InSAR (Figure 7.2-3, Table 

7.1), we use an orogen-wide 

InSAR time series based on 

data from the ENVISAT and 

ALSO satellites spanning 

2003-2010 [Barnhart and 

Lohman, 2012]. For this 

paper, we define earthquake-

related deformation as surface 

displacements observed with 

InSAR spanning coseismic 

intervals that are well fit by a fault slip model.  We do not necessarily infer that the observed 

deformation is due to the earthquake but explore the alternative possibility that it may be 

triggered by a deeper earthquake, as we suggest occurred during the two earthquakes in Barnhart 

and Lohman [accepted]. The time series approach reduces the impact of noise present in 

individual SAR acquisitions and allows us to identify events that are near or below the detection 

threshold of single interferograms.  When sufficient data coverage exists, InSAR time series 

analysis can allos detection of rates as low as  ~1mm/yr over small spatial scales [e.g., Finnegan 

et al., 2008; Barnhart and Lohman, 2012]. Following 2010, when extension of ENVISAT time 

Figure 7.4: Example slip inversion for the 2005 Qeshm aseismic slip 
event (Event ID 3). A wrapped interogram is wrapped (a) then 
downsampled (b). The fixed fault plane is resampled and (c,d) and slip is 
inverted (c). c) shows a model residual. Slip distribution is viewed 
perpendicular to the fault plane. See Appendix A2 for InSAR acquisition 
details.
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series was no longer possible due to change in the satellite orbit, we construct single ENVISAT 

and ALOS interferograms when available that span single teleseismically-recorded events. We 

also generate ERS interferograms for events >Mw5.5 between 1992 and 2002 that were not 

explored by Lohman & Simons [2005] but we do not find additional earthquake-related 

deformation. We ascribe earthquake-related events to single earthquakes by identifying the 

shortest time period in which the event occurred and correlate the event to earthquakes in the 

Global CMT catalog (GCMT) [Ekström et al., 2012]. In all but one case, only one cataloged 

earthquake in the GCMT corresponds to each earthquake-related event (Figure 7.2-3, Table 7.1, 

ID7).  

For each observed event, we generate interferograms at a resolution of 31x55 m using the 

JPL/Caltech Repeat Orbit Interferometry Package (ROI_PAC) [Rosen et al., 2004] and remove 

the effect of topography with the Shuttle Radar Topography Mission (SRTM) DEM [Farr et al., 

2007] (Figure 7.3, 7.4a).  When possible, we include multiple interferograms from different 

viewing geometries while avoiding repeated acquisitions dates, low signal coherence, and long 

post-seismic acquisition periods (Appendix A2).  We downsample individual interferograms 

from ~106 to a computationally manageable ~102 pixels [Lohman and Simons, 2005b] (Figure 

7.4b,c). For specific events (Appendix A2), we generate range and azimuth offsets through 

normalized cross correlation of the amplitude from full resolution SAR images using utilities 

available as part of ROI_PAC [Rosen et al., 2004; Barnhart et al., 2011].

To determine a best-fit fault geometry for each event, we first invert the downsampled 

interferograms for the geometry, location, orientation, and slip direction (rake) of a single 

rectangular fault with uniform slip [Okada, 1992] using the Neighborhood Algorithm 
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[Sambridge, 1999]. We consider both focal planes for blind thrust events where we cannot 

discriminate between either option. For several events, we invert for distributed slip by fixing the 

fault best-fit solution found by the Neighborhood Algorithm and extending the fault both along-

strike and down-dip.  We then discretize the fault plane with triangular dislocations [Meade, 

2007] that vary in size according to the model resolution and invert for the best-fit slip 

distribution [Barnhart and Lohman, 2010] (Figure 7.4b). We impose non-negative slip 

constraints and fix the slip direction to the best-fit rake from the Neighborhood Algorithm 

inversion. We find that fixing rake does not produce noticeably different slip solutions than when 

we allow rake to vary. Slip distributions are smoothed with minimum moment constraints while 

the regularization coefficient is chosen using the jRi criterion (Appendix A.1) [Barnhart and 

Lohman, 2010].

7.3.2 InSAR Results

7.3.2.1 Zagros SFB Events

We identify nine events (Mw4.5-6.3) in the SFB from 2003-2010 (Figure 7.2-3, Table 7.1-2). All 

but one event can be linked to a single earthquake in the GCMT. The unknown event is the 

smallest (Mw4.5) and occurs in the vicinity of several earthquakes that exist in the ISC catalog 

[International Seismological Centre, 2010] between the dates spanned by the interferograms 

(2007.11.05 to 2008.05.06), so that we cannot definitively ascribe it to a single event.  We find 

no other evidence of earthquake-like deformation in interferograms that do not span known 

earthquakes. 

 Inferred slip depths from distributed and single-patch slip inversions are consistently 

within the sedimentary section, shallower than 10-12km (Figure 7.5, Table 7.2). These depths, 
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ID Date Mw Depth Depth Strike Dip Rake

SFB Events
CMT/InSAR CMT/ISC InSAR CMT/InSAR CMT/InSAR CMT/InSAR

1 2003.07.10^ 5.7/5.9 15/19.7 6.3-10.3 277/274 33/36 93/97

2 2003.11.28 5.0/5.3 33/12.6 3.2-4.0 255/271 74/34 100/90

5.0/5.3 2.5-5.1 43/94 19/48 60/105

3 2005.11.27 5.9/6.1 12/10* 3.5-9.5 257/264 39/47 83/68

5.9/6.1 4.6-8.6 86/74 51/35 96/66

4 2006.03.25 5.9/6.0 14/10* 5-10.5 269/252 28/34 83/105

5.9/6.0 4.7-12 97/72 63/50 93/95

5 2006.06.28 5.8/6.1 12/16 5.4-9.5 247/205 33/31 96/68

5.8/6.1 3.6-12 59/45 57/64 86/112

6 2007.03.23 5.0/5.3 12/29.2 2.4-4.5 265/285 42/31 69/79

7 Unknown -/4.5 -/- 0.7-2.5 -/241 -/55 -/110

-/4.5 1.05-1.15 -/75 -/34 -/101

8 2008.09.10 6.1/6.3 12/12* 4.2-6.3 234/206 33/14 76/81

6.1/6.2 2.5-11.6 71/35 58/56 99/99

9 2010.07.20 5.8/5.8 12/10 2.4-4.3 269/237 33/28 59/57

5.8/5.8 1.4-6.9 124/69 62/42 109/73

High Zagros

11 2006.02.28 6.0 25.4/31.1 14.9-17.3 302/302 19/20 118/109

12.2-18.2 93/93 73/71 81/53

12 2006.03.21 6.1/6.2 17/15.4 1.9-10.8 313/323 78/68 174/111

13 2007.08.25 5.0/5.0 23.5/10* 0.9-2.9 224/230 88/80 5/19

Other

14 2003.12.26 6.6/6.6 15/15 1.5-10 172/175 59/82 167/178

15 2005.02.22 6.4/6.4 12/13 0-8.5 266/79 47/64 100/101

16 2010.12.20 6.5/6.5 18.8/- 1.5-10 36/30 87/89 180/178

17 2011.01.27 6.2/6.3 14.3/- 2.3-11.8 129/123 77/90 5/2
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within error, are significantly shallower than both micro-earthquakes and aftershocks recorded 

throughout the SFB  and are consistent with the depths of earthquake-triggered aseismic slip 

events postulated by Barnhart and Lohman [accepted]. Because no local observations of 

mainshock or aftershock depth are available for these other events, we cannot determine if the 

slip inferred from InSAR is aseismic or seismic. However, based on the similarities in depth, the 

presence of outcropping Hormuz Salt near these events, and the shallow depth of these events 

compared to locally-recorded micro-earthquakes [Tatar et al., 2004] (Figure 7.5), we argue that 

Figure 7.5: Slip profiles (lines) of 
SFB events (Figure 7.2, red focal 
mechanisms. A: 2008 Qeshm 
(ID8), B: 2006 Qeshm (ID5), C: 
2005 Qeshm (ID3), D: 2006 Fin 
(ID4), E: 2010 Eshkanan (ID9), 
F: 2007 Fin (ID6), G: Unknown 
event (ID7). Dashed profiles 
indicate events discussed in 
Barnhart and Lohman [accepted]. 
Histograms indicate numbers of 
micro-earthquakes (Grey, Tatar et 
al. 2004) and 2005 Qeshm/2006 
Fin aftershocks (White, Nissen et 
al. 2010, Roustaei et al. 2010) 
recorded from dense, local 
seismic networks.  10km is 
approximate depth of basement/
cover contact.

Table 7.2: Model parameters inverted from InSAR for all events and comparison to Global CMT and ISC catalog 
solutions.  *-fixed value. Event IDs correspond to IDs in Figure 7.2-7.3 and Table 7.1.  ^-event with poor data 
coverage, inversion is not well-resolved.
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the relationship between basement earthquake rupture followed by aseismic slip in the 

sedimentary section could potentially hold for each of these events.

The magnitudes of slip that are inferred from the InSAR data are equal to or slightly 

larger than magnitudes determined from teleseismic observations (for μ=34GPa) for each event 

(Table 7.2). We observe no detectable post-seismic surface displacements in interferograms 

spanning timeperiods after the earthquakes [Barnhart and Lohman, 2012], although the InSAR 

constraints separating coseismic from postseismic intervals are not ideal. The shortest amount of 

post-seismic time included in coseismic interferograms available for the 2005 Qeshm and 2006 

Fin events are 18 and 38 days [Barnhart and Lohman, accepted], while the shortest interval for 

any of the other SFB events is 6 days for the 2010.07.20 Eshkanan event.  These observations 

imply that the total amount of convergence associated with earthquakes as much as doubles if 

one expands the time frame for each event to include a postseismic period of days to weeks 

where aseismic slip occurs in the sedimentary section.

7.3.2.2 Missing SFB Events

Five moderate earthquakes (Mw6.1 1994.03.01, Mw5.9 1994.06.20, Mw6.2 1999.05.06, Mw5.9 

2010.09.27) exhibit no detectable surface displacement signal in the SFB (Figure 7.2, black focal 

mechanisms) [Lohman and Simons, 2005a, this study] [Barnhart and Lohman, 2012].  In each 

case, there are coherent InSAR observations spanning the coseismic period within 50km of the 

GCMT epicenter and no possible masking from nearby earthquakes. The absence of surface 

displacements despite high quality geodetic imagery strongly implies that each event occurred 

deep enough (e.g., in the basement) to not produce a detectable surface signal.  These five 

earthquakes also did not apparently trigger detectable aseismic slip in the stratigraphic section. A 
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sixth event, located near the Zagros-Makran syntax (Mw6.6 1999.03.04) also does not produce a 

detectable surface signal, although errors in epicentral location may reasonably place this 

earthquake within or outside of the SFB. In addition to these six events, the absence of detectable 

deformation for three events (2003.07.10, 2006.03.25, and 2005.11.27), all of which are 

aftershocks following larger events, can be attributed to masking by the surface signal from the 

larger event (Figure 7.2, gray focal mechanisms). Likewise, an event on 2010.11.26 is located 

close to the Persian Gulf.  This event could either have occurred in the basement and not 

triggered shallow aseismic slip, or it could have occurred offshore where it would be 

undetectable by InSAR.   

7.3.2.3 2010-2011 Lut Block Strike Slip Earthquakes

We observe two strike slip events along the southern boundary of the Lut Block in 

addition to the 2003 Bam earthquake - the 2010.12.20 Mw6.5 and 2011.01.27 Mw6.2 events 

(Figure 7.3,6). Both events were shallow enough that the difference between candidate nodal 

plains could be distinguished using the InSAR observations, and we determine that the 

2010.12.20 and 2011.01.27 event exhibited right- and left-lateral slip, respectively.  These two 

events present an excellent example of conjugate fault planes accommodating horizontal, 

clockwise rotation of the Lut Block. They also help to define the southern boundary of the Lut 

Block, which is coincident with the volcanic arc of the Makran, where few strike slip faults are 

identified in geologic maps. The 2010.12.20 likely occurred on an unmapped extension of the 

Kahurak fault [Kobayashi et al., 2012].

In the slip inversion for the 2010.12.20 event (Figure 7.6c), we incorporate high-quality 

ALOS interferograms and horizontal SAR azimuth offsets.  Because both of these measurements 
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yield measurements near the fault, we are able to resolve near surface fault slip.  The earthquake 

likely does not rupture the surface, with a minimum slip depth of ~1.5km (Figure 7.6c). This 

observation of a shallow slip deficit is consistent with that found for the Bam earthquake and 

other strike slip faults globally [Fialko et al., 2005].  We observe a similar shallow slip deficit in 

the 2011.01.27 event (Figure 7.6d); however, only a single viewing geometry is available and no 

horizontal offsets, so the presence of shallow slip is less constrained.

7.3.3 InSAR-Seismic Misfit

Here, we compare our catalog of earthquake locations inferred from InSAR to global catalogs 

(GCMT, NEIC, ISC) to explore if systematic epicentral mislocations exist. For many regions, 

Figure 7.6: Wrapped interferograms (a,b) and slip distributions (c,d) of the 2010 (ID16) and 2011 (ID17) Lut Block 
strike-slip events.  Map area for each interferogram is the same.  Slip distributions are viewed perpendicular to the 
planes. See Appendix A2 for InSAR acquisition details.
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offsets between InSAR and teleseismic 

epicenter locations appear random [e.g., 

Elliott et al., 2010; Weston et al., 2011], 

and mislocations can be attributed to 

trade offs between epicenter, depth, and 

source function or random velocity 

structure errors [Ferreira et al., 2011; 

Devlin et al., 2012].  Regions where 

systematic mislocations exist help to 

identify major structures, such as 

subducting slabs, that must be 

accounted for with more accurate 

velocity models to correctly locate earthquakes [e.g., Syracuse and Abers, 2009]. In Iran, we 

define the epicentral location from InSAR to be the surface projection of the center of the fault 

patch with the greatest slip (analogous to the centroid from body-wave modeling, Figures 4d, 6c-

d). In the SFB, where the observed deformation may likely result from triggered aseismic slip 

rather than from the main earthquake, we still use the slip distribution centroid as a proxy for the 

location of the underlying earthquake. This assumption is motivated by the observation that 

aftershocks of the 2005 Qeshm and 2006 Fin events occurred directly beneath the inferred 

aseismic slip and displacement signal [Nissen et al., 2010; Roustaei et al., 2010; Barnhart and 

Lohman, 2012]. The magnitude of misfits between the InSAR and teleseismic centroids are 

much greater than the spatial dimensions of the aftershock clouds, so our observation of a 

Figure 7.7: Polar plot showing misfit between teleseismic 
locations for all events in Table 7.2 and InSAR displacement 
location (center of plot).  Colors indicate different events, shapes 
indicate seismic catalog.  Contours are distance between InSAR 
(defined as center of InSAR signal) and catalog location; 
azimuth is direction of misfit.
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distinct azimuthal bias to the mislocations is probably 

robust to this assumption.

 We find that teleseismic source locations are 

consistently mislocated to the southwest in the direction 

of Arabia and Africa (Figure 7.7). The only notable 

exception is the 2011.01.27 Lut event which is mislocated 

along the same azimuth but to the northeast. To explain 

the azimuthal misfit, we explore the sensitivity of 

earthquake locations to the coverage of global 

seismometers (Figure 7.8a), focusing on the largest event 

outside of the SFB – the Mw6.5 2010.12.20 Lut event 

(Figure 7.3, ID 16). We use seismometer locations and 

body wave picks reported by the ISC [International 

Seismological Centre, 2010] (Figure 7.8a,b) and relocate 

the events using the program HYPOSAT [Schweitzer, 

2001]. We hypothesize that if earthquake locations are 

mislocated along a particular azimuth because of poor 

seismometer coverage, then adjusting reasonable tradeoffs between location, depth, and origin 

time will yield seismic locations collocated with the InSAR locations.  

We fix event origin time to the ISC-reported value [International Seismological Centre, 

2010], vary depth between 0 and 70km and invert for location. We also test different global one-

dimensional velocity models (PREM, AK135, Jeffreys-Bullen Model, IASP91) [Jeffreys et al., 

Figure 7.8: a) Maps of seismometers 
locations (red dots) relative to the 
2010.12.20 (ID16) Lut earthquake (center 
of map). Little station coverage exists in 
Africa or eastern Asia.  b) Polar plot of the 
2010.12.20 event showing how location 
misfit changes with inferred depth 
(colored).  Misfits move along SW-NE 
azimuth, but do not reach the InSAR 
location (center).  Distance contours are in 
km. PREM velocity model used to generate 
shown misfits.
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1958; Dziewonski and Anderson, 1981; Kennett and Engdahl, 1991; Kennett et al., 1995]. We 

find that as we vary depth, the preferred epicentral location varies, but never moves to within 35 

km of the InSAR location (Figure 7.8c),. Locations migrate approximately along the NE-SW 

azimuth, which indicates that the distribution of seismometers may contribute, in part, to the 

observed bias (Figure 7.8). We infer that the remaining misfit is likely due to the neglect of three-

dimensional variations in seismic velocity in our modeling, as postulated by Ferreira et al. 

[2011]. Specifically, the higher average body-wave velocity of African and Arabian lithosphere 

likely biases earthquake locations to the southwest.

7.4 Geodetic and Seismic Strain Rates

 Strain rate tensors derived from ground-based geodetic observations (GPS) and earthquake focal 

mechanisms [Kostrov, 1974; Molnar, 1983] provide estimates of the relative contributions of 

seismic and aseismic strain accommodation. Across the Zagros, the small contribution of 

earthquake strain (15-22%) of the total shortening [Jackson and McKenzie, 1988; Masson et al., 

2005] suggests that significant shortening occurs aseismically of that seismic catalogs are too 

short to accurately characterize the distribution and magnitude of seismicity. In light of the 

inference that some earthquakes in the Zagros SFB generate significant aseismic slip in the 

sedimentary section [Barnhart and Lohman, accepted], we explore to end member models of 

strain accommodation. First, we consider strain rates imposed by earthquakes >Mw5.5 for the 

period 1911-2010 [Jackson et al., 1995; Ekström et al., 2012] (Figure 7.9, black dots), updating 

previous estimates to include the 2005-2008 Fin and Qeshm earthquake sequences and other 

recent events. Then, we consider a scenario in which every earthquake in the SFB triggers short-

term aseismic slip equivalent in magnitude to the earthquake itself. This second scenario allows 
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us to assess the contribution of coupled seismic-aseismic events to overall shortening across the 

Zagros. 

7.4.1 Calculating Strain Rates

To calculated geodetic strain rates (εij), we use campaign GPS measurements from four 

individual studies that span regions ranging from the southern SFB and the western-most Makran 

(Figure 7.9) [Nilforoushan et al., 2003; Bayer et al., 2006; Hessami et al., 2006; Walpersdorf et 

Figure 7.9: Outlines of campaign GPS networks used to determine mean horizontal strain rates.  Dots are locations 
of earthquakes used to determine seismic strain rates.  a: Vernant et al. 2004, b: Nilforoushan et al. 2003, c: Hessami 
et al. 2006, d: Bayer et al. 2006.
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al., 2006]. To estimate the average strain within each region, we first use the GPS locations (Xi) 

and velocities (vi) to invert for the four components of the velocity gradient tensor (Lij) and two 

components of rigid body translation (di) [Allmendinger et al., 2007; Cardozo and Allmendinger, 

2009]:

 vi = di + LijXj     (eq. 7.1)

Lij is an asymmetric tensor that we then decompose into the symmetric strain rate (eij) and 

antisymmetric rotation rate (Ωij) tensors:
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An eigenvalue decomposition of εij generates the principal strain orientations and magnitudes. 

To determine the seismic strain rate, we use two catalogs (1900-1972 [Jackson et al., 

1995] and 1972-2011 [Ekström et al., 2012]) that include moderate earthquake (>M 5.5) focal 

mechanisms located within the spatial bounds of the GPS networks (Figure 7.9).  Events with 

reported MS and mb are converted to Mw using the relationships of [Ekstrom and Dziewonski 

[1988]. Because we do not know the appropriate focal planes for each earthquake, we use the 

methodology of Kostrov [1974]:

€ 

eij =
1
t
1
V

M0(ui
# faults
∑ n j )    (eq. 7.3)

where t is the observation interval, V is the volume of the seismically deformed body 

(seismogenic thickness times surface area, defined by the area of the bounding networks), M0 is 

the scalar moment, u is the unit vector parallel to slip, and n is the unit vector orthogonal to the 
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fault plane [Marrett and 

Allmendinger, 1990]. Again, 

an eigenvalue decomposition 

of eij produces the principal 

strain orientations and 

magnitudes. We use the 

principal shortening axis, 

which for the Zagros is near 

horizontal (<1o from 

horizontal) and comparable to 

the horizontal shortening axis 

inferred from GPS in equation 

2.

εij and eij are sensitive to several factors that we must account for in order to confidently 

compare the two values. First, eij is sensitive to both the surface area of the GPS network and to 

the homogeneity of strain with the network.  If a network includes a large area outside of the 

deforming region, the inferred strain rate will be lower. To address this, we examine four 

independent GPS networks than span different proportions of the Zagros mountains and 

surrounding areas (Figure 7.9) [Nilforoushan et al., 2003; Bayer et al., 2006; Hessami et al., 

2006; Walpersdorf et al., 2006]. Each network also has a different station density, with differing 

sensitivity to strain on individual structures within the Zagros. As shown in figure 7.10, the 

inferred strain rates within the networks agree despite inclusion of different spatial areas. The 

Figure 7.10: Percent of  total convergence accommodated by seismic 
(dotted lines) and coupled seismic/aseismic (cross-hatched lines) for a 
range of inferred seismogenic thicknesses.  Gray area indicates expected 
range of seismic thicknesses in the Zagros from micro-earthquake depths 
(Figure 7.5). Line colors correspond to network colors in Figure 7.9.  The 
pink profile (Figure 7.9d) is consistently higher because of inclusion of 
the western Makran.  Aseismic slip magnitudes assume a shear modulus 
of 34GPa, so these values are upper bounds of coupled seismic/aseismic 
strain.
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only notable exception is the easternmost network (Figure 7.9d) [Bayer et al., 2006] which 

includes portions of the Makran subduction zone. Secondly, εij is highly sensitive to the 

deforming volume (V) and the assumed shear modulus (µ) used for calculating M0. For V, there 

is a similar sensitivity to the area of the region used, and we account for the effect of assumed 

seismogenic thickness by varying depths used in our calculations from 5-30km. A 10km seismic 

thickness would span depth ranges of either the uppermost basement or sedimentary section, 

while a thickness of 20-25km would include deformation in both the basement and sedimentary 

section. We fix µ to 34GPa, which is a common value for continental crust and is an upper bound 

for sandstone and limestone [Lee, 2005]; thus, our seismic strain rate values should be 

considered a conservative estimate.

7.4.2 Strain Rate Results: A Persistent Discrepancy

Our comparison of geodetic (eij) and seismic catalog-based seismic (εij) strains rates reveals low 

contributions of seismic strain of 10-20% for thicknesses of 10-15km (Figure 7.10). This is in 

agreement with previous work [Jackson and McKenzie, 1988; Masson et al., 2005]. When we 

consider the scenario where all earthquakes in the SFB produce an equivalent magnitude of 

aseismic moment, the total strain accommodated during the days-weeks spanning earthquakes 

doubles, remaining well below the average geodetically-constrained rate. This discrepancy 

implies that an additional source of shortening is active in the Zagros (Figure 7.10).

 One possible way to reconcile the missing strain budget would be if the historical seismic 

catalog has not adequately sampled larger magnitude earthquakes (Figure 7.11). The short time 

period spanned by historical seismic catalogs results in fairly low magnitude of completeness, so 

it is possible that the number of >Mw7 earthquakes has been lower during this past century than 

133



the average. Using the standard Gutenburg-Richter relationship, we fit the annual moment 

release rates vs. magnitude for seismic catalogs [Engdahl et al., 2006; International 

Seismological Centre, 2010; Ekström et al., 2012] to predict the expected recurrence intervals of 

>Mw7 events. This results in abnormally high concentrations of smaller earthquakes relative to 

larger ones (B-values of 1.5-1.7), indicating that either earthquakes in the Zagros exhibit swarm-

like behavior or that existing seismic catalogs do not capture the long-term magnitude frequency 

relationship of earthquakes in this region (Figure 7.11a). We determine the annual seismic 

moment deficit using the discrepancy between εij and eij using the mean focal earthquake focal 

mechanism generated from equation 3 and a range of seismic thicknesses (Figure 7.11b). For a 

seismogenic thickness of 20km, we find the budget deficit is ~Mw7.0 per year for the earthquake-

only scenario. For the coupled seismic/aseismic slip scenario the deficit is ~Mw6.7 per year, 

which is equivalent to the largest known SFB event [Dewey and Grantz, 1973].  While it may be 

possible that the catalogs have not adequately sampled the true occurrence of Mw 7 events, it is 

not likely that they occur, on average, at such elevated rates.

7.5 Discussion

The work presented here addresses several characteristics of active deformation in southern Iran. 

There are two end member hypotheses of the vertical partitioning of seismic and aseismic strain 

in the Zagros SFB: 1) Earthquakes shorten rigid, crystalline basement beneath the dominantly 

aseismic cover strata [e.g., Berberian, 1976, 1995; Ni and Barazangi, 1986; Tatar et al., 2004; 

Engdahl et al., 2006], and 2) the cover strata shortens through earthquake slip while the 

crystalline basement deforms aseismically [Nissen et al., 2011]. Our work favors the seismically 

active Arabian basement model with the added caveat that aseismic shortening in the cover strata 

134



occurs, in part, as earthquake-triggered 

aseismic fault slip during short time periods 

(days-weeks) following each earthquake. The 

similarity between the depth of slip during 

the 2005 Qeshm and 2006 aseismic events to 

the depths inferred in this study suggest that 

coupled seismic-aseismic slip events in the 

SFB may be common (Figure 7.5). These 

events are not ubiquitous, though, as several 

strike slip and reverse-type earthquakes 

>Mw6 exhibit no detectable surface 

displacements and likely occurred in the 

basement without triggering any aseismic 

deformation at shallower depths (Figure 7.2, 

black focal mechanisms). 

We have further shown that neither 

observed seismicity nor coupled seismic/

aseismic events can account for the full 

convergence rate between Arabia and Eurasia.  One earthquake of ~Mw7.0 (seismic only) and 

~Mw6.7 (coupled seismic/aseismic) per year (Figure 7.11b) can explain the strain deficit; 

however, because a yearly recurrence interval of Mw6.7 events is not observed and there is no 

record of events as large as Mw7.0 in the Zagros [Ambraseys and Melville, 2005], it is unlikely 

Figure 7.11: a: Gutenburg-Richter magnitude frequency 
plot for Zagros SFB events from the ISC catalog. B-value 
of 1.526 is slope of log fit (gray line) for events of Mw 5.1 
or greater (black dots). Gray dots indicate earthquake 
magnitudes below the cutoff magnitude. b: Missing 
annual moment magnitude in the Zagros as a function of 
inferred elastic width.  Profiles generated based on 
geodetic and seismic strain rates within the Zagros-
bounding GPS network[Vernant et al. 2004] (Figure 7.9a).  
Gray region indicates expected range of seismogenic 
thicknesses from micro-earthquake depths (Figure 7.5). 
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that the observed seismic strain deficit is due to random sampling of the expected probability 

distribution for earthquakes over the past century. We acknowledge, though, that it is difficult to 

estimate the maximum expected magnitude earthquake even in regions with longer seismic 

catalogs [Kijko, 2004]. Excluding the possibility of a large (>Mw7) earthquake, the remaining 

strain rate deficit is probably accommodated by a combination of long-term aseismic 

deformation and short-term transient aseismic deformation events that have not yet been 

observed with geodesy. Active detachment folding [e.g., Burberry et al., 2008] and the lack of 

detectable interseismic deformation across single structures in the SFB [Barnhart and Lohman, 

2012] provide evidence for long-term (decades to millennia) shortening within the SFB. 

7.6 Conclusions

The accommodation of shortening in southern Iran results from complicated partitioning of strain 

vertically, along-strike, and across the width of the Zagros, Makran, and Central Iran. InSAR and 

micro-seismicity recorded from dense local networks suggest that the rigid, crystalline Arabian 

crust deforms seismically while driving aseismic fault slip and fold growth in the overriding 

Zagros Simply Folded Belt in the period of time immediately following earthquakes.  Despite 

high seismicity rates and the possibility that each earthquake may be accompanied by an equal 

amount of moment release within the sedimentary section in the weeks following its occurrence, 

>50% of shortening across the Zagros must be accommodated by deformation processes not 

related to observed earthquakes. Candidate processes include the possibility that the region has 

experienced a deficit of earthquakes over the past century of a M7.0 earthquake per year, 

significant transient aseismic deformation episodes unrelated to earthquakes that have happened 

to not be observed with InSAR, and long-term, perhaps continuous, aseismic deformation that is 
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below the detection threshold of InSAR. Forthcoming InSAR missions will help to provide 

increased temporal resolution of deformation processes to further resolve discrepancies in 

earthquake catalogs and address the nature of earthquake cycle deformation across the Zagros 

and adjoining regions.

7.7 References

Allmendinger, R. W., R. Reilinger, and J. Loveless (2007), Strain and rotation rate from GPS in 
Tibet, Anatolia, and the Altiplano, Tectonics, 26(3), TC3013, doi:
10.1029/2006TC002030.

Ambraseys, N. N., and C. P. Melville (2005), A History of Persian Earthquakes, Cambridge 
University Press.

Barnhart, W. D., and R. B. Lohman (accepted), Phantom earthquakes and triggered aseismic 
creep: Vertical partitioning of strain during earthquake sequence in Iran, Geophys. Res. 
Lett.

Barnhart, W. D., and R. B. Lohman (2010), Automated fault model discretization for inversions 
for coseismic slip distributions, J. Geophys. Res., 115(B10), B10419, doi:
10.1029/2010JB007545.

Barnhart, W. D., and R. B. Lohman (2012), Regional trends in active diapirism revealed by 
mountain range-scale InSAR time series, Geophys. Res. Lett., 39(8), L08309, doi:
10.1029/2012GL051255.

Barnhart, W. D., M. J. Willis, R. B. Lohman, and A. K. Melkonian (2011), InSAR and Optical 
Constraints on Fault Slip during the 2010–2011 New Zealand Earthquake Sequence, 
Seismological Research Letters, 82(6), 815–823, doi:10.1785/gssrl.82.6.815.

Bayer, R., J. Chery, M. Tatar, P. Vernant, M. Abbassi, F. Masson, F. Nilforoushan, E. Doerflinger, 
V. Regard, and O. Bellier (2006), Active deformation in Zagros–Makran transition zone 
inferred from GPS measurements, Geophysical Journal International, 165(1), 373–381, 
doi:10.1111/j.1365-246X.2006.02879.x.

Berberian, M. (1976), Contribution to the seismotectonics of Iran (part II-III): in 
commemoration of the 50th anniversary of the Pahlavi dynasty, Ministry of Industry and 
Mines, Geological Survey of Iran, Tectonic and Seismotectonic Section.

Berberian, M. (1995), Master “blind” thrust faults hidden under the Zagros folds: active 
basement tectonics and surface morphotectonics, Tectonophysics, 241(3–4), 193–224, 
doi:10.1016/0040-1951(94)00185-C.

137



Burberry, C. M., J. W. Cosgrove, and J. G. Liu (2008), Spatial arrangement of fold types in the 
Zagros Simply Folded Belt, Iran, indicated by landform morphology and drainage pattern 
characteristics, Journal of Maps, 4(1), 417–430, doi:10.4113/jom.2008.97.

Bürgmann, R., P. A. Rosen, and E. J. Fielding (2000), Synthetic Aperture Radar Interferometry to 
Measure Earth’s Surface Topography and Its Deformation, Annual Review of Earth and 
Planetary Sciences, 28(1), 169–209, doi:10.1146/annurev.earth.28.1.169.

Cardozo, N., and R. W. Allmendinger (2009), SSPX: A program to compute strain from 
displacement/velocity data, Computers & Geosciences, 35(6), 1343–1357, doi:10.1016/
j.cageo.2008.05.008.

Colman-Sadd, S. P. (1978), Fold development in Zagros simply folded belt, Southwest Iran, 
AAPG Bulletin, 62(6), 984–1003.

Devlin, S., B. L. Isacks, M. E. Pritchard, W. D. Barnhart, and R. B. Lohman (2012), Depths and 
focal mechanisms of crustal earthquakes in the central Andes determined from 
teleseismic waveform analysis and InSAR, Tectonics, 31(2), TC2002, doi:
10.1029/2011TC002914.

Dewey, J. W., and A. Grantz (1973), The Ghir earthquake of April 10, 1972 in the Zagros 
Mountains of southern Iran: seismotectonic aspects and some results of a field 
reconnaissance, Bulletin of the Seismological Society of America, 63(6-1), 2071–2090.

Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Physics of 
the Earth and Planetary Interiors, 25(4), 297–356, doi:10.1016/0031-9201(81)90046-7.

Ekstrom, G., and A. Dziewonski (1988), Evidence of Bias in Estimations of Earthquake Size, 
Nature, 332(6162), 319–323, doi:10.1038/332319a0.

Ekström, G., M. Nettles, and A. M. Dziewoński (2012), The global CMT project 2004–2010: 
Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary 
Interiors, 200–201(0), 1–9, doi:10.1016/j.pepi.2012.04.002.

Elliott, J. R., R. J. Walters, P. C. England, J. A. Jackson, Z. Li, and B. Parsons (2010), Extension 
on the Tibetan plateau: recent normal faulting measured by InSAR and body wave 
seismology, Geophysical Journal International, 183(2), 503–535, doi:10.1111/j.
1365-246X.2010.04754.x.

Engdahl, E. R., J. A. Jackson, S. C. Myers, E. A. Bergman, and K. Priestley (2006), Relocation 
and assessment of seismicity in the Iran region, Geophys. J. Int., 167(2), 761–778, doi:
10.1111/j.1365-246X.2006.03127.x.

Falcon, N. (1974), Zagros Mountain, Mesozoic-Cenozoic Orogenic Belts, Geological Society, 
London, Spec. Pub. 4, 199–211.

138



Farr, T. G. et al. (2007), The shuttle radar topography mission, Rev. Geophys., 45(2), doi:
10.1029/2005RG000183.

Ferreira, A. M. G., J. Weston, and G. J. Funning (2011), Global compilation of interferometric 
synthetic aperture radar earthquake source models: 2. Effects of 3-D Earth structure, J. 
Geophys. Res., 116(B8), B08409, doi:10.1029/2010JB008132.

Fialko, Y., D. Sandwell, M. Simons, and P. Rosen (2005), Three-dimensional deformation caused 
by the Bam, Iran, earthquake and the origin of shallow slip deficit, Nature, 435(7040), 
295–299, doi:10.1038/nature03425.

Finnegan, N. J., M. E. Pritchard, R. B. Lohman, and P. R. Lundgren (2008), Constraints on 
surface deformation in the Seattle, WA, urban corridor from satellite radar interferometry 
time-series analysis, Geophysical Journal International, 174(1), 29–41, doi:10.1111/j.
1365-246X.2008.03822.x.

Hatzfeld, D., and P. Molnar (2010), Comparisons of the kinematics and deep structures of the 
Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic 
implications, Rev. Geophys., 48(2), RG2005, doi:10.1029/2009RG000304.

Hessami, K., F. Nilforoushan, and C. J. Talbot (2006), Active deformation within the Zagros 
Mountains deduced from GPS measurements, Journal of the Geological Society, 163(1), 
143–148, doi:10.1144/0016-764905-031.

International Seismological Centre (2010), On-line Bulletin, Int. Seis. Cent., Thatcham, United 
Kingdom. [online] Available from: http://www.isc.ac.uk

Jackson, J., and D. McKenzie (1988), The relationship between plate motions and seismic 
moment tensors, and the rates of active deformation in the Mediterranean and Middle 
East, Geophysical Journal, 93(1), 45–73, doi:10.1111/j.1365-246X.1988.tb01387.x.

Jackson, J., J. Haines, and W. Holt (1995), The accommodation of Arabia-Eurasia Plate 
convergence in Iran, J. Geophys. Res., 100(B8), 15205–15,219, doi:10.1029/95JB01294.

Jeffreys, S. H., K. E. Bullen, and B. A. for the A. of Science (1958), Seismological tables, Office 
of the British Association.

Kennett, B. L. N., and E. R. Engdahl (1991), Traveltimes for global earthquake location and 
phase identification, Geophysical Journal International, 105(2), 429–465, doi:10.1111/j.
1365-246X.1991.tb06724.x.

Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995), Constraints on seismic velocities in the 
Earth from traveltimes, Geophysical Journal International, 122(1), 108–124, doi:
10.1111/j.1365-246X.1995.tb03540.x.

139

http://www.isc.ac.uk
http://www.isc.ac.uk


Kijko, A. (2004), Estimation of the Maximum Earthquake Magnitude, m max, Pure appl. 
geophys., 161(8), 1655–1681, doi:10.1007/s00024-004-2531-4.

Kobayashi, T., M. Tobita, A. Suzuki, and Y. Noguchi (2012), InSAR-derived Coseismic 
Deformation of the 2010 Southeastern Iran Earthquake (M6.5)  and its Relationship with 
the Tectonic Background in the South of Lut Block, Bull. Geospat. Info. Auth. Japan, 60, 
7–17.

Kostrov, V. (1974), Seismic moment and energy of earthquakes, and seismic flow of rock, 
Physics of the Solid Earth, 1, 13–21.

Langbein, J., J. R. Murray, and H. A. Snyder (2006), Coseismic and Initial Postseismic 
Deformation from the 2004 Parkfield, California, Earthquake, Observed by Global 
Positioning System, Electronic Distance Meter, Creepmeters, and Borehole Strainmeters, 
Bulletin of the Seismological Society of America, 96(4B), S304–S320, doi:
10.1785/0120050823.

Lee, M. W. (2005), Proposed moduli of dry rock and their application to predicting elastic 
velocities of sandstones, USGS Scientific Investigations Report 2005-5119, 1–14.

Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the 
Salton Trough, California, J. Geophys. Res., 112(B4), B04405, doi:
10.1029/2006JB004596.

Lohman, R. B., and M. Simons (2005a), Locations of selected small earthquakes in the Zagros 
mountains, Geochem. Geophys. Geosyst., 6(3), Q03001, doi:10.1029/2004GC000849.

Lohman, R. B., and M. Simons (2005b), Some thoughts on the use of InSAR data to constrain 
models of surface deformation: Noise structure and data downsampling, Geochem. 
Geophys. Geosyst., 6(1), Q01007, doi:10.1029/2004GC000841.

Maggi, A., J. A. Jackson, K. Priestley, and C. Baker (2000), A re-assessment of focal depth 
distributions in southern Iran, the Tien   Shan and northern India: do earthquakes really 
occur in the continental   mantle?, Geophys. J. Int., 143(3), 629–661, doi:10.1046/j.
1365-246X.2000.00254.x.

Masson, F., J. Chéry, D. Hatzfeld, J. Martinod, P. Vernant, F. Tavakoli, and M. Ghafory-Ashtiani 
(2005), Seismic versus aseismic deformation in Iran inferred from earthquakes and 
geodetic data, Geophysical Journal International, 160(1), 217–226, doi:10.1111/j.
1365-246X.2004.02465.x.

Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses 
for triangular dislocation elements in a uniform elastic half space, Computers & 
Geosciences, 33(8), 1064–1075, doi:10.1016/j.cageo.2006.12.003.

140



Molnar, P. (1983), Average Regional Strain Due to Slip on Numerous Faults of Different 
Orientations, Journal of Geophysical Research, 88(NB8), 6430–6432, doi:10.1029/
JB088iB08p06430.

Ni, J., and M. Barazangi (1986), Seismotectonics of the Zagros continental collision zone and a 
comparison with the Himalayas, J. Geophys. Res., 91(B8), 8205–8218, doi:10.1029/
JB091iB08p08205.

Nilforoushan, F. et al. (2003), GPS network monitors the Arabia-Eurasia collision deformation in 
Iran, Journal of Geodesy, 77(7-8), 411–422, doi:10.1007/s00190-003-0326-5.

Nissen, E., F. Yamini-Fard, M. Tatar, A. Gholamzadeh, E. Bergman, J. R. Elliott, J. A. Jackson, 
and B. Parsons (2010), The vertical separation of mainshock rupture and microseismicity 
at Qeshm island in the Zagros fold-and-thrust belt, Iran, Earth and Planetary Science 
Letters, 296(3–4), 181–194, doi:10.1016/j.epsl.2010.04.049.

Nissen, E., M. Tatar, J. A. Jackson, and M. B. Allen (2011), New views on earthquake faulting in 
the Zagros fold-and-thrust belt of Iran, Geophysical Journal International, 186(3), 928–
944, doi:10.1111/j.1365-246X.2011.05119.x.

Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bull. 
Seismol. Soc. Amer., 82(2), 1018–1040.

Pritchard, M. E., M. Simons, P. A. Rosen, S. Hensley, and F. H. Webb (2002), Co-seismic slip 
from the 1995 July 30 Mw= 8.1 Antofagasta, Chile, earthquake as constrained by InSAR 
and GPS observations, Geophysical Journal International, 150(2), 362–376, doi:10.1046/
j.1365-246X.2002.01661.x.

Rosen, P. A., S. Hensley, G. Peltzer, and M. Simons (2004), Updated repeat orbit interferometry 
package released, Eos Trans. AGU, 85(5), 47, doi:10.1029/2004EO050004.

Roustaei, M., E. Nissen, M. Abbassi, A. Gholamzadeh, M. Ghorashi, M. Tatar, F. Yamini-Fard, 
E. Bergman, J. Jackson, and B. Parsons (2010), The 2006 March 25 Fin earthquakes 
(Iran)—insights into the vertical extents of faulting in the Zagros Simply Folded Belt, 
Geophysical Journal International, 181(3), 1275–1291, doi:10.1111/j.1365-246X.
2010.04601.x.

Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm—I. Searching a 
parameter space, Geophysical Journal International, 138(2), 479–494, doi:10.1046/j.
1365-246X.1999.00876.x.

Schweitzer, J. (2001), HYPOSAT – An Enhanced Routine to Locate Seismic Events, Pure and 
Applied Geophysics, 158(1), 277–289, doi:10.1007/PL00001160.

141



Stocklin, J. (1974), Possible ancient continental margins in Iran, in Geology of Continental 
Margins, pp. 873–877, Springer, New York.

Syracuse, E. M., and G. A. Abers (2009), Systematic biases in subduction zone hypocenters, 
Geophys. Res. Lett., 36(10), L10303, doi:10.1029/2009GL037487.

Tatar, M., D. Hatzfeld, and M. Ghafory-Ashtiany (2004), Tectonics of the Central Zagros (Iran) 
deduced from microearthquake seismicity, Geophysical Journal International, 156(2), 
255–266, doi:10.1111/j.1365-246X.2003.02145.x.

Walpersdorf, A., D. Hatzfeld, H. Nankali, F. Tavakoli, F. Nilforoushan, M. Tatar, P. Vernant, J. 
Chéry, and F. Masson (2006), Difference in the GPS deformation pattern of North and 
Central Zagros (Iran), Geophysical Journal International, 167(3), 1077–1088, doi:
10.1111/j.1365-246X.2006.03147.x.

Weston, J., A. M. G. Ferreira, and G. J. Funning (2011), Global compilation of interferometric 
synthetic aperture radar earthquake source models: 1. Comparisons with seismic catalogs, 
J. Geophys. Res., 116(B8), B08408, doi:10.1029/2010JB008131.

142



APPENDIX A1 

REGULARIZATION: jℜ i
1 

 

A1.1 Regularization 

We define a “good” choice of regularization strength, λ, as one that would fit the 

underlying, noise-free signal (d0) as well as possible without introducing model 

characteristics that are merely fitting the noise. Increasing λ decreases our ability to fit 

the underlying signal, as the inferred model is forced to be increasingly smooth. As we 

decrease λ, the inferred model fits more and more of the noise with an increasingly 

complex model that does not necessarily produce a good fit to d0. Our goal is to find the 

value of λ that balances these two sources of error, for the real-world scenario where we 

do not know the actual properties of d0. Below, we break down the two sources of error 

in the case where we do have access to the real value of d0 and the exact statistical 

properties of the data noise, and then describe how we apply our method to real data. 

To better understand the behavior of regularized slip inversions, we will consider 

the effects of the inversion on our fit to d0 and to the noise, respectively. This focus on 

the directly observable data values differs from approaches that depend on measures of 

model length or roughness, such as the “L curve” parameter choice methods. We rely on 

the fact that we can treat our observed data, di, as a sum of two parts: 

! 

di " do + ni      (eq. A1.1) 

                                                
1 Published as an appendix in: Barnhart,W.D., R.B. Lohman (2010), Automated fault 
model discretization for inversions for co-seismic slip distributions, J. Geophys. Res., 115, 
B10419, doi:10.1029/2010JB007545. Reprinted with permission of AGU 
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where d0 = Gm0 is the physical response of the earth to an input slip distribution (m0) in 

the absence of noise, and ni are realizations of independent, identically distributed 

Gaussian noise with variance 2σ and zero mean. If the forward and inverse problems are 

linear, we can separate the inversion into the parts controlled by the exact data, d0, and by 

the noise. Below, we will discuss the more general, nonlinear case which holds when 

positivity constraints are incorporated into the inversion. 

The regularization error [e.g., Hansen, 1998] quantifies the degree to which the 

inferred slip models can fit the exact data in the absence of noise: 

! 

m0
* =G"g*d0

d0
* =Gm0

*
     (eq. A1.2, A1.3) 

where G−g* is the generalized inverse for a regularized inversion with a given λ [e.g., 

Menke, 1989], m0
* is the smoothed version of m0 that we would infer with a particular 

regularization, and d0
* is the smoothed surface deformation predicted by m0

*. In general 

we use the asterisk to signify inversion quantities where we have applied smoothing. We 

define the regularization error, 0r0, as the difference between the exact data (d0) and the 

deformation predicted by the smoothed model (d0
*): 

! 

0r0 " d0 # d0
*      (eq. A1.4) 

The perturbation error [e.g., Hansen, 1998] is the degree to which a given realization of 

the noise in the data, ni, is mapped by the inversion into the inferred slip, mi
*, and back 

into our predicted synthetic data, di
*. We separate the operation of G−g* on the noisy data 

into a sum of its parts: 

! 

mi
* =G"g*d0 +G"g*ni

di
* = d0

* + ni
*

    (eq. A1.5, A1.6) 
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where ni
* is the noise filtered by our regularization. To help us separate out that part of 

the inversion that is only fitting the noise in the data, we define: 

! 

j ri
n " n j # ni

*     (eq. A1.7) 

jri
n compares a smoothed set of noise (ni

*) with a completely independent realization of 

the noise (nj). This quantity, which we define as the perturbation error, increases as λ 

decreases, because an inversion that fits one set of noise very well will not necessarily fit 

an independent set of noise. The total error when we compute a residual between one data 

set and a smoothed, independent data set is: 

! 

j ri " d j # di
*     (eq. A1.8) 

Combining equations (A1.4) and (A1.8)), we get: 

! 

j ri =0r0+ j ri
n      (eq. A1.9) 

indicating that the total error is equivalent to the sum of the perturbation and 

regularization errors. The total error is the quantity that we wish to minimize in our 

choice of λ. We define measures of the size of these residuals as: 

! 

j"i #
1
k j ri

2$
0"0 #

1
k 0 r0

2$
     (eq. A1.10, A1.11) 

where k is the number of observation points used in the inversion. The value of λ that 

minimizes jℜ i is the optimum regularization that we use in our inversions. As λ 

approaches 0, the perturbation error approaches 2σ and the regularization error 

approaches 0. We use a script ℜ to avoid confusion with R, the model resolution matrix. 

As λ becomes large and smoothing increases, the perturbation error decreases and the 

regularization error increases. 

A1.2 Calculating jℜ i for Exact Data 
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One way to calculate the value of p or λ that optimizes jℜ i for a synthetic system where 

the input model and data noise characteristics are known would be to create a large 

number of synthetic data sets with different realizations of the noise, and to calculate jℜ i 

numerically by computing all the permutations of dj − di
*. However, we can be more 

efficient in these synthetic cases and capitalize on the fact that we know the input model, 

m0, and the covariance structure, Cd, of the noise. We can use these two quantities to find 

the value of jℜ i analytically for any (p, λ). 

We can also write equations (A1.2)–(A1.4) as: 

! 

m0
* = Rm0

d0
* = Nd0

0r0 = [I " N] d0
d0

# 

$ 
% 

& 

' 
( 

    (eq. A1.12- A1.14) 

where R = G−g*G and N = G−g* are the model and data resolution matrices, respectively 

[e.g., Menke, 1989] and I is an identity matrix. If we define a matrix M as [I −N], then 

we can express the residual quantities as: 

! 

0r0 = M d0
d0

" 

# 
$ 

% 

& 
' 

j ri = M
d j

di

" 

# 
$ 

% 

& 
' 

j ri
n = M

n j

ni

" 

# 
$ 

% 

& 
' 

     (eq. A1.15-A1.17) 

We can expand equation (A1.10) using equation (A1.9): 

! 

j"i = 1
k (0r0)

2 + 2(0r0)( j ri
n ) +( j ri

n )2[ ]#  (eq. A1.18) 

Since jri
n is a random variable with mean 0, the middle term disappears and we are left 

with: 
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! 

j"i = 1
k (0r0)

2 + 1
k ( j ri

n )2##    (eq. A1.19) 

The first term is equivalent to the definition of 0ℜ0. Since the mean of jri
n is 0, the 

expectation of the second term in equation (A1.19) is a sum over the variances of jri
n at 

each data point. If Cd is the data covariance matrix, then by the law of covariance 

propagation: 

! 

Cr = MCdM
T      (eq. A1.20) 

where Cr is the covariance matrix of jri
n. Therefore, we have: 

! 

j"i=0"0 + 1
k diag(Cr)#    (eq. A1.21) 

This formulation of jℜ i depends only on the input model, m0, and on the noise 

covariance, which are both quantities that we would know for a synthetic system. 

A.1.3 Approximating jℜ i for Real Data: jℜ i
a  

In order to form an approximation of jℜ i in the case where we only have one data 

set and impose nonlinear constraints such as bounds on the inferred model, we attempt to 

infer the quantities described in section A2 from our inversion of the single data set and 

our knowledge of characteristics of the noise in the data. 

Given the data covariance matrix Cd, we can compute the second term in equation 

(A9) and are left with a need to approximate 0ℜ0. We can compute one realization of iri = 

di − di
* and iℜ i  ≡(1/k) Σiri

2 using our existing data set, and can then use the same process 

as described in equations (A1.19)–(A1.21) to find: 

! 

i"i=0"0 + 1
k diag(C2)#    (eq. A1.22) 

where 

! 

C2 = MI2M
T      (eq. A1.23) 
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where I2 is a matrix constructed of 2 × 2 I matrices. At this point all values needed to 

solve for 0ℜ0 are at least approximated. We are left with our approximation of the jℜ i 

value: 

! 

j"i
a =i"i #

1
k diag(C2)$ + 1

k diag(Cr)$  (eq. A1.24) 

We find that for many fault slip inversions, the use of bound constraints during the initial 

calculation of jℜ i, although it violates many of the assumptions made in constructing R, 

N, etc., results in a slightly lower choice of λ, as would be expected. Synthetic tests using 

many realizations of noisy data sets and a known input model m0 with bound constraints 

on mi
* result in values of λ that are consistent with the ones inferred using the jℜ i

a 

approach discussed here. 
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APPENDIX A2

INSAR ACQUISITIONS

Note: All SAR acquisitions used in Chapters 6 and 7.  `- interferograms shown in Figures 6.1, 

6.2, 7.3, and 7.6  * - ALOS interferogram (All others are Envisat). ^ - Azimuth offsets generated 

from SAR SLCs. $ - Range offsets generated from SAR SLCs. Bperp is perpendicular baseline 

between acquisitions in meters.  Date 1 is pre-seismic scene, Date 2 is post-seismic scene.  Event 

IDs correspond to those in Table 7.1,7.2 and Figure 7.2, 7.3.

Event ID Track Frame Date 1 Date 2 Bperp

SFB Events

2003.07.10 1 478` 3033 2003.03.23 2004.03.07 13

478 3033 2003.03.23 2004.06.20 146

478 3033 2003.03.23 2004.07.25 209

2003.11.28 2 249` 3033 2003.10.03 2004.01.16 97

249 3033 2003.11.07 2004.04.30 530

2005.11.27 3 242 531 2004.07.08 2005.12.15 270

328 513 2005.01.05 2005.12.21 37

435` 3069 2005.11.24 2005.12.29 185

2006.03.25 4 206` 3051 2005.05.17 2006.05.02 1

328 531 2005.05.25 2006.06.14 166

435 3051 2005.12.29 2009.05.07 104

2006.06.28 5 328` 513 2006.06.14 2006.07.19 790

435 3069 2006.05.18 2008.04.17 239

2007.03.23 6 99 531 2007.01.29 2009.12.14 32

99 531 2007.03.05 2009.02.02 79

206` 3051 2004.12.28 2008.10.28 45

Unknown 7 99` 531 2007.11.05 2009.02.02 79

206 3051 2006.05.02 2008.05.06 289
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2008.09.10 8 328 513 2006.06.14 2008.10.01 360

435` 3069 2008.04.17 2008.10.09 200

565* 520 2008.08.19 2008.10.04 405

566* 520 2008.09.05 2008.10.21 369

2010.07.20 9 142` 513/531 2009.12.17 2010.08.19 305

249 3051/3069 2010.04.09 2010.10.01 15

249 3051/3069 2010.06.18 2010.10.01 152

Non-SFB Events

2003.12.26 14 120`^ 3015/3033 2003.12.03 2004.02.11 7

385 567/585 2003.11.16 2004.02.29 7

392 3015 2003.10.13 2004.01.26 211

2005.02.22 15 285 2004.09.19 2005.03.13 40

428 603 2004.07.21 2005.03.23 109

435$` 2997 2005.02.17 2005.03.24 79

2006.02.28 11 163 3033/3051 2005.05.14 2006.04.29 258

285` 549 2005.04.17 2006.05.07 256

2006.03.31 12 192` 2925 2006.02.20 2006.05.02 519

2007.08.25 13 56` 549 2007.03.02 2009.03.06 19

163 3033 2006.04.29 2008.07.12 85

285 549 2007.02.11 2007.12.23 27

435 3033 2005.12.29 2009.05.07 86

2010.12.20 16 559*^` 550 2010.06.30 2010.12.31 637

559* 550 2010.09.30 2010.12.31 217

2011.01.27 17 422` 3033 2011.01.25 2011.02.24 107

422 3033 2011.01.25 2011.05.25 313
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APPENDIX A3

IRAN SLIP DISTRIBUTIONS

Note:  All slip distributions from Chapter 6 and 7 with IDs corresponding to Table 7.1.  Both 

north and south dipping fault planes are shown where data cannot discriminate between planes. 

Maps show surface projection of the fault planes, with red outlines indicating the north dipping 

plane, purple outlines indicate the south dipping plane.  Black lines indicate the top of the fault 

plane. All slip distributions are viewed orthogonal to the fault plane. Slip distributions and fault 

locations of the 2010 and 2011 Lut Block events are shown in Figure 7.6.
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