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Suburban and exurban growth into formerly undeveloped areas frequently harm water 

quality. However, as planned landscapes, there is the possibility to implement 

measures within these suburban and exurban areas to mitigate deleterious changes to 

water bodies. To date, structural stormwater Best Management Practices (BMPs) such 

as detention ponds have demonstrated mixed potential to mitigate pollutant inputs over 

the long term, particularly in regards to dissolved nutrients. Additionally, such BMPs 

can be difficult to implement retroactively in mature, developed areas. Thus, a more 

fundamental understanding of sites of pollutant generation and transport pathways 

could lead to more refined and directed means of modifying landscapes to reduce 

pollutant loads to nearby surface waters. In particular, much as biogeochemical “hot 

spots” – areas of disproportionately high chemical and biological activity - have been 

surmised for natural systems, I propose analogous zones may be identified in more 

urban landscapes, defined by areas of small-scale landscape features that enhance 

pollutant generation and transport.  

This dissertation will investigate spatially explicit processes that can be linked to 

small-scale spatial features in urban landscapes. The first chapter provides background 

on the current understanding of the relationship between small-scale spatial features 

and water quality.  The second and third two chapters use a combination of theory and 



 

experiments to develop a mechanistic particulate wash-off model, investigating the 

role of impervious surface roughness on rates of particulate loss. The fourth chapter 

examines catchments from a larger scale using weather radar. This chapter relates 

particulate wash-off to rainfall kinetic energy (a metric traditionally ignored in urban 

pollutant models) while questioning the use of antecedent dry days to explain the 

magnitude of wash-off (the routine explanation for variations in particulate loss). 

Overall, this body of work reassesses standard but frequently unvalidated assumptions 

used in estimating non-point pollutant loads.  
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PREFACE 

 

The work contained in this dissertation includes papers originally written for journal 

publication. As of October 2008, Chapter 2 had been published in Journal of 

Hydrology [Shaw, S.B., R. Mahklouf, M.T. Walter, J.-Y. Parlange. 2007. 

Experimental testing of a stochastic sediment transport model. Journal of Hydrology, 

348(3-4): 425-430.  (doi:10.1016/j.jhydrol.2007.10.014) ]. Chapter 3 had been 

submitted for publication in Journal of Hydrology.  
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CHAPTER 1 

 

INTRODUCTION -  IMPROVING URBAN NON-POINT SOURCE MODELS 

BY DEVELOPING A BETTER UNDERSTANDING OF SMALL SCALE 

PROCESSES 

 

Runoff from urban areas can transport pollutants such as nutrients, heavy metals, and 

pathogens to nearby water bodies (USEPA 1983). The urbanized landscape generating 

this pollutant laden runoff is typically described as a “non-point” pollutant source. In 

contrast to pollutants originating from a constant and obvious “point” source such as a 

factory, pollutants from non-point sources arrive intermittently in time and originate 

from diffuse locations across the landscape. Categorizing a pollutant source as being 

non-point inherently implies a lack of knowledge on where and when pollutant loads 

will occur. A central goal of water quality managers is to eliminate the need to 

describe a pollutant source as being non-point. This would then suggest they know 

where and when a pollutant originates and could mitigate its harmful impacts.   

 

While this dissertation does not achieve the goal of transforming non-point sources to 

explainable point sources, it does provide new insights to improve models of non-

point pollutant sources. A non-point source model is a quantitative tool to make the 

best prediction of where and when a given-sized pollutant load will occur. Most 

models of non-point source pollutants traditionally have been applied at a large spatial 

scale where watersheds thousands of hectares in size may be described by a single 

equation. In this introduction, I make the case that models of non-point source 
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pollutant loading can be improved by incorporating processes at the scale of meters to 

hundreds of meters, so-called small-scale processes. 

 

In this chapter, I first describe the specific type of landscapes to which the work in this 

dissertation applies. Next, I provide an overview of the traditional, watershed- scale 

view of non-point source models. Then, I summarize recent work by other researchers 

considering small-scale descriptions of non-point source processes. Narrowing the 

focus further to the realm of the specific topics addressed in this dissertation, I review 

work on particulate wash-off from impervious surfaces. Finally, I outline the 

remaining chapters in the dissertation.   

 

Mixed Land Surface Landscapes 

This dissertation focuses on a specific type of urban land-use, landscapes with a 

mixture of land surface types. A typical example of such a landscape would be a 

suburban community where paved roadways adjoin managed turf grass interspersed 

with parcels of still undeveloped land. Kaye et al. (2006) note that such mixed land-

use landscapes share characteristics of both highly urbanized and forested zones, 

making for potentially process-rich areas of study.  A highly urbanized region may 

have large nutrient inputs but little biological activity and a highly engineered 

drainage system. However, more mixed land-use landscapes may still have large 

nutrient inputs, but they may also maintain a connection between engineered and 

natural processes, leading to complex pollutant transport and transformation dynamics. 

As a specific example, Wollheim et al. (2005) found that while mixed land-use 

landscapes may only have small remnants of previously natural zones, the fraction of 

retained nitrate inputs was nearly the same as in forested watersheds. This indicates a 

small region of intense biological activity overlapping with dominant transport 
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pathways in the mixed land-use watersheds. Recent research in urban National 

Science Foundation funded Long-Term Ecological Research (LTER) sites (Pickett et 

al. 2008) have corroborated this notion that mixed land-use landscapes may be as 

complex and deserving of research as more traditionally studied natural ecological 

systems.  

 

Lumped Models 

With the exception of recent work at LTER sites, water quality managers have treated 

pollutant transport in mixed-use landscapes as a relatively simple, applied engineering 

problem. From this applied-engineering perspective, these mixed land-use landscapes 

are primarily modeled as lumped systems in which a single representative set of 

parameters applies across the catchment. For example, in planning level models, 

annual pollutant loads are often estimated using land-use specific export coefficients 

(mass/unit area) multiplied by area (Schueler 1987). In some cases, loads are 

estimated by establishing a watershed event mean concentration (EMC) that can be 

multiplied by an estimated or measured runoff volume (Charbeneau and Barrett 1998, 

Lee and bang 2000, Chen and Adams 2007). Finally, in daily time step models such as 

the Storm Water Management Model (SWMM) (Tsihrintzis & Hamid 1998) pollutant 

loads are modeled using exponential build-up/wash-off functions calibrated with 

watershed-wide “effective” parameters.  

 

In some cases, lumped models are calibrated against data collected in the watershed of 

interest. However, when an engineer is interested in making predictions in an 

unmonitored basin, the lumped approach has assumed that unmonitored watersheds 

can be related to monitored watersheds using readily observed characteristics, most 

typically land use. Numerous researchers have organized pollutant export factors or 
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EMCs by land use for use in models in unmonitored basins (see Reckhow et al. 1980, 

Clesceri et al. 1986, Line et al. 2002, Lin 2004).  In most cases, the categories 

developed by land use planners (e.g. low-density residential, medium density 

residential) have been adopted as a proxy to describe differences in pollutant transport 

and generation processes among watersheds. Land-use has been used since the 

information is readily available and gross differences in land-use (such as between 

forested and agricultural) have proven effective at predicting differences in pollutant 

load (Jones et al. 2001).  However, there remains a large amount of variability in 

estimated loads from within land-use categories.  As an example in Table 1.1, 

measured annual phosphorus loads from seemingly similar “residential” areas range in 

value from 0.4 to 2.2 kg ha
-1

 yr
-1

, discrediting the idea that a hydrologist can classify a 

landscape the same way a land use planner might.   

 

Failing to discern differences in average load, lumped models have also guided 

conceptualization of the temporal dynamics of pollutant loss within storm events.  

Specifically, engineers have assumed the rate of mass loss is directly proportional to 

the amount of mass on the surface during a storm event, leading to the mathematically 

convenient assumption of exponential decay of pollutant mass with runoff quantity. 

However, actual examination of curves of cumulative mass loss during storm events 

rarely indicate that available mass becomes depleted and that mass loss slows later in a 

storm event (Lee and Bang 2000, Sansalone and Cristina 2004). Instead, cumulative 

mass loss frequently changes only in proportion to cumulative runoff.  
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Table 1.1 Selection of annual phosphorus export values associated with residential 

land use reported in the literature.  

Source Description 
Phosphorus 

Load (kg/ha-yr) 
Line et al. 2002  (Dodd et al. 1992) Developed 1.06 

Line et al. 2002 (Bales et al. 1999) Residential 0.4 

Line et al. 2002 Residential 2.3 

Athayde et al.  1983 Residential 1.2 

Reckhow et al. 1980 (Landon 1977) High density with open 

grassed areas 
0.56 

Reckhow et al. 1980 (Kluesner & Lee 

1974) 

27% Impervious,  

Residential  
1.1 

Reckhow et al. 1980 (Much and Kemp 

1978) 

Residential 
0.35 

Reckhow et al. 1980 (Mattraw and 

Sherwood 1977) 

Single Family Residential  
0.21 

Reckhow et al. 1980 (Betson  1978) Suburban 0.43 

 

Previous Work Examining Small-Scale Processes 

To overcome discrepancies between theories of pollutant loss and actual observations 

of processes, there have been efforts to take a more sophisticated view of pollutant 

transport and generation in these mixed land-use landscapes. Chester and Gibbons 

(1996) observed that the fraction of impervious surface in a watershed could explain 

the degree of stream degradation, at least at a coarse level (say >20% impervious 

results in stream impairment). Hatt et al. (2004) found that connectivity of impervious 

surfaces to receiving waters had a stronger correlation to pollutant concentrations than 

imperviousness alone. Wishing to further acknowledge the role of position of the 

pollutant source, Sorrano et al. (1996) applied a transmission coefficient (to represent 

the proportion of phosphorus that travels between model cells without attenuation) in a 

raster model as well as accounted for runoff generation from each cell. Building on 

this work, Easton et al. (2007) constructed a nutrient export model on top of a spatially 

distributed hydrologic model operating at a 10 m spatial resolution for a watershed in 

upstate New York. As corroborated by runoff monitoring from specific subcatchment 

spatial features such as regions of managed lawn, unmanaged lawn, and scrub, Easton 
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et al. (2007) found that the load from spatial features was more dependent on runoff 

generating capacity and connection to outlet than the inherent surface type.  Finally, 

Cadenasso et al. (2007) proposed a new means of land use classification using 

descriptors encompassing type of vegetation, type of surface in nonvegetated areas, 

and type of buildings. Their new classification system was better able to correlate 

annual nitrogen loads to watershed characteristics in comparison to traditional land 

classification methods.  

 

These above mentioned studies clearly suggest that small-scale landscape features 

such as the type of surface, spatial position of the surface, and connectivity of the 

surface to receiving waters are critical to describing the degree and dynamics of 

pollutant loading in a given watershed.  

 

Particulate Wash-off  

The three remaining chapters of this dissertation address a specific niche in 

understanding small-scale processes: particulate wash-off from the impervious 

component of mixed-use landscapes. I focus on particulate matter since fine 

particulates can themselves be deleterious to water quality, but particulates also harbor 

nutrients, pathogens, and toxic chemicals (Sansalone and Buchberger 1997, Vaze and 

Chiew 2004).  

 

Until recently, the understanding of particulate movement at a small-scale on 

impervious surfaces remained relatively rudimentary. For instance, Vaze and Chiew 

(2003) ran field experiments using two meter long concrete plots either covered with 

window screening or left uncovered. Rainfall was applied by an overhead sprinkler. 

The screened condition was intended to diminish the rainfall drop energy and 
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represent a treatment in which particle movement occurred only due to overland shear 

forces. After observing that the screened condition resulted in half as much mass loss 

as the unscreened condition, Vaze and Chiew (2002) concluded that rainfall and 

overland shear played approximately equal roles in particle initiation. But, 

experiments by Shaw et al. (2006) and Nino et al. (2003) clearly indicated that the 

roughness of the impervious surfaces inhibit the role of lateral shear force (a role in 

part overestimated by assuming shallow runoff behaves like the more well studied 

deep flow in stream channels), calling into question Vaze and Chiew’s (2003) 

qualitative description of wash-off.  Adopting soil erosion theory, Shaw et al. (2006) 

instead suggest that most particulate wash-off occurs as a saltation-like process in 

which rainfall ejects particles into the overland flow, and the particles laterally move a 

short distance in the overland flow before being captured on the surface to await 

ejection by another rain drop.  

 

Dissertation Outline 

The second and third chapters of this dissertation further develop the mechanistic 

wash-off model proposed by Shaw et al. (2006) by evaluating the physical basis of the 

model parameters and assessing the degree of particulate storage in elements of 

surface roughness. The fourth chapter considers particle storage on impervious 

surfaces at a larger spatial scale, using a time series of discharge and suspended solids 

concentration for an urban watershed to evaluate the build-up/wash-off models 

typically applied in urban areas. Additionally, the fourth chapter considers raindrop 

kinetic energy as a predictor of particulate load, an analysis that requires quantification 

of rainfall at a fine spatial and temporal scale. Overall, this work provides new insights 

into how small-scale processes may influence particulate pollutant generation and 

transport in mixed-use landscapes.  
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CHAPTER 2 

 

EXPERIMENTAL TESTING OF A STOCHASTIC SEDIMENT  

TRANSPORT MODEL 

 

2.1 Abstract 

A stochastic model of sediment transport by rainfall-runoff was tested with a simple 

laboratory experiment. Although the conceptual basis of the model has been 

previously published (Lisle et al. 1998. Journal of Hydrology, 204: 217-230) and its 

mechanistic underpinnings were convincingly theorized, it had not been corroborated 

with measurements. Small-scale flume experiments, ~0.8 m long, with simulated 

rainfall were used to imitate "wash-off" of sediment (0.225 mm silica sand) from an 

impervious surface. Fitting two parameters (ejection and deposition rates) to minimize 

least squares error resulted in good agreement between stochastic model and 

measurements, R²~0.9. However, the fitted parameter values differed from values that 

would be expected following Lisle et al’s (1998) physical explanation of the ejection 

and deposition rates.  While some of the discrepancy may be attributable to particle 

interactions, the conceptualization of deposition as a quiescent settling process in 

mechanistic erosion models may need to be reevaluated.   

 

2.2 Introduction 

We tested a stochastic sediment transport model (Lisle et al. 1998) against small-scale, 

laboratory observations of time dependent particle loss on a rough, impervious surface 

where particle ejection is primarily driven by rainfall, not overland shear. Most 

previous experiments of rainfall-driven, interrill erosion either only quantify steady-
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state loss (Chaplot & Le Bissonnais 2000, Jayawardena & Bhuiyan 1999, Zartl et al. 

2001) or involve many simultaneously occurring dynamic processes that make it 

difficult to isolate fundamental physical mechanisms (Profitt et al. 1991).   

 

While capable of elucidating fundamental processes, the model is not without 

limitations; Lisle et al. (1998) note that their stochastic model is most useful to predict 

movement of particles present in a finite quantity with limited interactions with other 

particles or surrounding media.  Experiments strictly on soils do not generally fulfill 

these conditions.  However, an ideal scenario for testing the Lisle et al (1998) model is 

“wash-off” from an impervious surface with a finite supply of sediment.  For this 

experimental condition, the critical assumption within the Lisle et al. (1998) model - 

that the probabilistic position of a single particle can represent the aggregate 

movement of multiple particles - is most likely attained.   

 

Additionally, while an idealization of soil erosion, the Lisle et al. (1998) model may 

be directly applicable to modeling particulate transport processes in urban catchments. 

With the exception of Shaw et al.’s (2006) model that followed the deterministic 

approach of the Hairsine and Rose (1991) soil erosion model, previous wash-off 

models have primarily been empirical, were fitted only by calibration, and gave little 

insight into underlying physical wash-off processes (Akan 1988, Deletic 1997).  This 

paper has two objectives: 1.) to test the model proposed by Lisle et al. (1998) against 

experimental wash-off data and 2.) to consider the physical basis of the model 

parameters.  
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2.3 Theory 

Following Lisle et al. (1998), particle movement is assumed to be a Markov process 

with particles alternating between a state of rest or a state of motion, with the 

probability of being in one state or the other signified by q (at rest) and p (in motion). 

The spatial distribution of particles in motion or at rest across a one-dimensional 

surface is described by the “Kolmogorov-Feller” equations: 

 

                 hqkp
x

p
u

t

p
+−=

∂

∂
+

∂

∂
 (1a) 

                      hqkp
t

q
−=

∂

∂
 (1b) 

where u is the bulk flow velocity of the overland flow, k is a settling rate constant, and 

h is an ejection rate constant (Fig 2.1).  For the initial conditions p(x,0)=δ(x) and 

q(x,0)=0, the system of equations 1a and 1b is solved as: 
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u

kx
=ξ , )(

u

x
th −=τ , H() is the Heaviside step function,  δ() is the Dirac delta 

function, and I1 is a Modified Bessel function of the 1
st
 order (Lisle et all 1998). 
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Figure 2.1. Schematic of rainfall driven particle movement in shallow flow  

described by Eqn.’s 1a and 1b.  p is the probability of a particle being in motion while 

q is the probability a particle is at rest on the rough surface. k scales the rate of ejection 

of particles at rest while h scales the rate of deposition of particles in motion. Particles 

in motion move laterally with a velocity u.  

 

For an initial condition of p(L> x̂ >0,0) = C0, analogous to complete particle coverage 

of a surface length L, a convolution integral may be used: 

 

∫
∞

∞−
−= xdtxxpxptxp ˆ),ˆ()0,ˆ(),( δ  (3) 

As implied by the use of the convolution, we assume our experimental system will 

respond linearly due to the relatively low spatial density of particles on the flume 

surface (e.g. even with particle coverage of the entire flume surface, we  assume there 

is not significantly greater interaction between particles than when we assume a pulse 

is applied).   

 

The arrival time density (r) is given as  

  ),(),( txuptxr =  (4) 

where this represents a rate of mass loss appropriate for plotting as a breakthrough 

curve at a fixed position of x. 
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Stochastically, the function r(x=L,t) establishes the probability of a single particle 

being located at a position L at a time t. When considered in terms of the movement of 

many particles, r(x=L,t) is the normalized particle loss at a position L at time t.  

 

2.4 Methods 

The experimental set-up and collection methods are only briefly summarized here and 

a fuller description is presented in Shaw et al. (2006).  Rainfall and upslope flow were 

independently applied to an 80 cm long, 10.5 cm wide (width = W) stainless steel 

flume with a 4% slope (Fig. 2.2). A rough, flume bed was cut from a sheet of 

prismatic, polycarbonate diffuser used for recessed fluorescent light fixtures. A small 

Plexiglas stilling chamber with an overflow weir was used to control upslope flow. 

Three meters above the flume, rainfall was generated by four hypodermic needles that 

oscillated along two orthogonal tracks attached to the ceiling of the Soil and Water 

Lab at the Cornell University Department of Biological and Environmental 

Engineering. Using the flour pellet method (Laws and Parsons 1943), the average 

raindrop radius was 0.082 cm at a rainfall rate of 0.13 cm min
-1

. An empirical 

relationship between flow and velocity was developed from five velocity 

measurements made over a range of overland flow rates applied only as upslope 

inflow. Flow velocity was determined by measuring the average time for a pulse of 

dye (FD&C red dye No. 40), injected into the flow stream with a pipette, to travel 40 

cm; the measurement was made over the middle section of the flume to avoid end-

effects. Velocities measurements were made in triplicate and the coefficient of 

variation was <~5%.  
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Figure 2.2. Schematic of experimental set-up and apparatus. Overland flow can be 

generated independently of rainfall by spilling water from the stilling basin. Inset is a 

scale image of the prismatic, polycarbonate diffuser plate used as the roughness 

surface in the experiments. Indentations are approximately 1 mm deep.  

 

We applied 225 µm silica sand particles to the flume surface using two different initial 

conditions: a 2 cm band intended to represent a delta pulse (Runs 1 and 2) and 

complete coverage of 40 cm of the flume bed (Run 3). Particle spatial densities below 

0.03 g cm
-2

 were used in order to minimize interactions between particles (Shaw et al. 

2006). All runs were completed in duplicate. Flow off the end of the flume was 

funneled through a medium paper filter (Fisher Scientific). Each run was typically 10 

minutes long and filters were changed every 45 seconds.  
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2.5 Results  

The model (Eq. 4 and Eq. 2) was fit to the experimentally observed mass loss for a 

sediment pulse applied at the top of the flume (Runs 1 and 2 as shown in Figs. 2.3a, 

2.3b). This scenario duplicates the conditions discussed in Lisle et al. (1998).  In the 

model, the x-origin was taken at the center of the 2 cm pulse. “Fitting” entailed 

adjusting h and k in Eq. 2 to minimize the least squares error between simulated and 

observed (recall u was known from direct measurement). The model was also tested 

on conditions more closely approaching a real-world scenario in which particles 

completely cover a surface.  The model (Eqs. 2-4) was fit to the wash-off from this 

initial condition (i.e. Run 3 as shown in Fig. 2.4), again minimizing least squares error 

between observed and simulated.  The convolution  (Eq. 3) was solved numerically 

with a spatial increment of 2 cm.  We find  that the Lisle et al. (1998) model can be 

used to suitably replicate the observed data in all cases (R
2
>0.85). Of particular note, 

despite not including an explicit dispersion term, the stochastic model inherently 

results in a dispersed pulse. Table 2.1 summarizes the fitted h and k values as well as 

the R
2
 values for each run.  As would be expected, h, the “ejection rate,” increases 

with increasing P while k, the “deposition rate,” remains constant. Surprisingly 

though, for Run 3, h is not the same value as for Run 2 where the same P is used, 

possibly indicating that more interaction between particles occurs than we assumed or 

the model accounts for. We will address this point further in the Discussion.  
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Figure 2.3.  Lisle et al. (1998) model fit to experimental Run 1 (a) and Run 2 (b). 

Differing symbols indicate replicate trials. The dashed line indicates the model. The 

experimental runs used an initial 2 cm wide pulse of sand to replicate the delta 

function initial condition. 

 

 

 

 

Q = 300 mL min-1 ; P=0.10 cm min-1
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Figure 2.4. Model fit to experimental Run 3. Filled and open symbols indicate two 

duplicate trials. The solid line indicates the model. For this run, the surface initially 

was covered with sand grains from 0 to 0.4 m.  

 

Table 2.1. Summary of model parameters for each run. Note, in Runs 1 and 2, 

particulate was applied in a 2 cm wide strip. In Run 3, particulate was applied over 40 

cm of the flume surface. 

Run
Q           

(mL/min)

P          

(cm/min)

initial M 0  

( g cm
-2

)

u         

(cm sec
-1

)

h         

(sec
-1

)

k           

(sec
-1

)
R

2

1 300 0.10 0.03 8.3 0.050 3.2 0.90

2 300 0.15 0.03 8.6 0.070 3.2 0.90

3 305 0.15 0.02 8.6 0.050 3.2 0.85  
 

As an illustration of model sensitivity to parameters, Figure 2.5 shows that when h is 

shifted above and below the best-fit value by 10%, the timing and magnitude of the 

peak also change by approximately 10%. Thus, any a priori estimate of h will require 

accurate estimation of underlying physical parameters, an issue to be discussed next.  

Q = 305 mL min-1 ; P=0.15 cm min-1

R2=0.85

Q = 305 mL min-1 ; P=0.15 cm min-1

R2=0.85
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Figure 2.5. Sensitivity of Run 1 to a 10% change in h.  

 

2.6 Discussion 

Ideally, one would like to be able to select appropriate h and k values without model 

fitting. While stochastically, h and k parameterize the distribution of durations of rest 

and motion, respectively, Lisle et al. (1998) also attributed a physical meaning to h 

and k: 

 

P
V

A
h 0=  (5) 

l

v
k =  (6) 

 

where A0 is the impact area of a rain drop (cm
2
), V is the rain drop volume (cm

3
) 

estimated from the measured drop radius assuming the drops are roughly spherical, P 
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is the rainfall rate (cm min
-1

), v is the settling velocity (cm min
-1

) and l is the flow 

depth (cm). Based on the formulation of Eq. 5 and Eq. 6, the magnitude of h reflects 

the fraction of surface area disturbed by rain drops per unit time, and the magnitude of 

k reflects the rate of time for a particle to settle over the flow depth, inherently 

implying a vertical settling process.  

 

The accuracy of estimates of h and k from Eq. 5 and Eq. 6 is partially dependent on 

the estimates of the underlying physical quantities.  Water depth (l) can be estimated 

using continuity ( Q / [u*W] = l where with Q = 5.36 mL/s (the average total flow for 

Run 1, 322 mL/min), u=8.3 cm/sec, and W=10.5 cm, l is 0.062 cm) . While this is the 

hydraulic flow depth (i.e. the depth of the flow profile that does not include the 

quiescent region within the roughness elements), a proper settling depth (l) would 

require subtraction of the particle diameter from the total depth. However, given the 

similar lengths of the roughness elements and the particles, the hydraulic flow depth 

was considered a reasonable proxy for the actual distance across which the particle 

would settle, i.e., l ≈ 0.062 cm. An average settling velocity was determined 

experimentally (grains were hand-timed falling 40.0 cm in a 1 L graduated cylinder); 

based on the average of three replicates,  v ≈ 170 cm sec
-1

.   

 

But, unlike l and v,  A0 cannot be determined easily from either direct or indirect 

measurements,  and a best estimates can only be drawn from highly controlled 

experiments on drop impact (Macklin and Metaxis 1975, Prosperetti and Oguz 1993) 

as well as inferences from experiments on aggregate mass loss from a flume (Shaw et 

al 2006). A simple way to generalize A0 to experiments using various drop sizes is to 

consider the related quantity of the ratio between drop impact area radius and the drop 

radius. Previous investigators have suggested drop impact- to-drop radius values 
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ranging from approximately three (Macklin and Metaxas 1975) to seven (Prosperetti 

and Oguz 1993, Shaw et al. 2006).  

 

Using the above estimates of the underlying physical quatities, h and k can be 

calculated as follows from Eq. 5 and Eq. 6. Assuming the drop impact -to- drop radius 

ratio needed to determine A0 is approximately five (taking the mean of the available 

estimates) and using the 0.082 cm drop radius to calculate V, h should be ~0.39 sec 
–1

 

and ~0.59 sec 
–1

 for P of 0.10 and 0.15 cm min
-1

, respectively. Using Eq. 6 with l = 

0.062 cm and v = 170 cm min
-1

, k should be 46 sec
-1

. Thus, we find that the model 

fitted parameters h and k (Table 1) are much smaller than the values that would be 

most expected given the physical interpretation of the parameters in Eq. 5 and 6.  

 

To add some additional insight into the relationship between h and k, we note that 

Lisle et al. (1998) also related h and k to effective particle velocity, ueff, and particle 

dispersion, D, for a long –time solution to Eqns. 1a and 1b:  

 

u
kh

h
u

eff
+

=    (7) 

2

3)(
~ u

kh

hk
D

+
   (8) 

The long-time solution resembles the familiar advective-dispersion equation, thereby 

translating somewhat abstract h and k values into the more familiar quantities of 

dispersion and particle velocity. Any properly proportioned ratio of h and k can result 

in a reasonable ueff, but including D constrains h and k for a given set of experimental 

conditions to one unique pair, a fact relevant to the following discussion.  
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The failure of Eq. 5 and Eq. 6 to suitably predict h and k values suggests at least two 

explanations, either A0 and v are poorly estimated or the stochastic behavior of a single 

particle does not accurately represent the aggregate movement of many particles.. 

First, given that our estimate of A0 is admittedly based on limited information, A0 

could reasonably be lower. But –in following the ratios established by Eq 7 and 8 – we 

would need to also decrease v, thus implying that deposition was not well modeled by 

a quiescent settling process. Given that particle movement during erosion is 

infrequently conceptualized as a series of step-like movements (Sander et al. 2007), 

there has been little motivation to make direct observations of the deposition process 

in very thin flows. In the few cases when deposition is included as a separate process 

in a model, settling rates are typically assumed to be known and ejection rates are used 

to fit the model (Shaw et al. 2006, Sander et al. 1996). Therefore, there is some 

possibility that deposition in thin flows has been consistently incorrectly modeled as a 

quiescent settling process when, in reality, it may be more of a capture process 

dependent on factors other than quiescent settling velocity. Supporting this notion, 

Parsons and Stromberg (1998) found experimentally a different power  law 

relationship between particle diameter and travel distance different than would be 

expected assuming Eq. 6. Additionally, Nino et al. (2003), by direct visualization of 

particle movement in ~ 5 cm deep flow, did not even assume particle movement had 

occurred unless a particle traveled at least 100 particle diameters after ejection, a 

distance at least twice as long as would be expected given quiescent settling in their 

experiments. Thus, while evidence is limited, the deposition process may be much 

different than a simple settling process. 

 

Alternatively, as a second possible reason Eq. 5 and Eq. 6 fail to predict suitable h and 

k values, , the model may be limited by the key assumption that the probabilistic 
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position of a single particle can represent the aggregate movement of multiple 

particles. Particle collisions could effectively decrease the settling rate by keeping a 

particle aloft longer (thus decreasing the k term) as well as decrease the effective drop 

impact area by damping impact energies and reducing particle ejection into the bulk 

flow (thus decreasing the h term). The settling rate and impact area could be adjusted 

to act as effective parameters -differing from the direct physical measurement of 

isolated phenomenon - or an explicit dispersion term could be added to Eq. 1a.  

 

2.7 Conclusion 

The stochastic erosion model by Lisle et al. (1998) was able to replicate experimental 

data when model parameter values were fitted.  However, the model-fitted parameters 

did not agree with the physical interpretation of the parameters (Eq. 5 and Eq. 6), 

suggesting a need to account for particle interactions and, perhaps more importantly, 

to reassess the way in which deposition in thin flows is modeled.  
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CHAPTER 3 

 

ACCOUNTING FOR SURFACE ROUGHNESS IN A PHYSICALLY-BASED 

 URBAN WASH-OFF MODEL 

 

3.1 Abstract 

To date, urban wash-off models have largely ignored the role of surface roughness in 

controlling particulate mass loss. We propose a mechanistic model in which particles 

are ejected by raindrops from surface cavities and travel laterally at the velocity of the 

overland flow until they are recaptured. In the model, cavities of differing depth and 

diameter have different ejection rates. An analytical solution for a model consisting of 

two possible cavity geometries is fit to breakthrough curves from sediment wash-off 

experiments. The experiments are conducted on a 0.8-m flume under artificial rainfall 

with a surface constructed of casts of asphalt. The experiments use fine sand (~250 

µm) and rainfall rates equivalent to that from a 2 year, 5-min. storm in non-coastal 

regions of the Northeastern United States. Model parameters can be attributed to 

specific physical features of the surface cavities, particles, or rainfall rate and can be 

determined with limited calibration. At the plot scale, with complete initial particulate 

coverage of the surface, the model replicates an initial first-flush and then settles to a 

more gradual loss rate which is noticeably different from the more rapid mass 

exhaustion implied by use of the common exponential wash-off model. Insights from 

this model could lead to improved design and placement of water quality management 

structures in urban landscapes.     
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3.2 Introduction 

With a new focus on using localized management measures to control non-point 

source pollution in urban areas, further advances in our fundamental knowledge of 

spatially explicit pollutant generation and transport processes are needed (Potter 

2006).  In particular, estimating wash-off of particulate matter still frequently relies on 

a lumped, catchment scale exponential model or variants (Alley 1981, Tsihrintzis and 

Hamid 1998, Chen and Adams 2007).  While a few spatially distributed models have 

been developed (Akan 1988, Deletic et al. 1997), they have a limited physical basis 

and make no observation of the small-scale, internal catchment processes. Conversely, 

of the few published plot scale experiments (Sansalone 1998, Vaze and Chiew 2003), 

most have little quantitative analysis. As an exception, Shaw et al. (2006) used 

experiments to evaluate a simple rainfall driven transport model for cases in which 

shear flow has a negligible role in particle entrainment. However, the experiments 

were conducted on a uniformly rough surface unlikely to represent the trapping 

processes associated with the irregular cavity geometries on actual urban surfaces such 

as asphalt (Deng et al. 2005, Nino et al 2005).  

  

In this paper, we 1.) propose a mechanistic wash-off model that accounts for trapping 

within surface roughness elements, 2.) compare the model to experimental results 

(indoor, 80 cm flume)  3.) evaluate means to parameterize the model a priori based on 

physical features of the surface, and 4.) explore the suitability of the model when 

applied to a larger 20 m reach scale.  

 

3.3 Theory  

Similar to Shaw et al. (2006), we assume that particle movement occurs by a sequence 

of jumps in which particles are either at rest on the rough surface or in motion 
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suspended in shallow overland flow (Figure 3.1). Movement is initiated only by 

raindrops, not by overland shear flow, due to surface cavities. Our own observations 

agree with experiments by Nino et al. (2003) which found that rough surfaces shift the 

threshold for incipient motion upwards, increasing the range of flow conditions in 

which raindrop initiated movement dominates.  We assume particles on the bed 

surface can fall into multiple cavity geometries or “bins”, each with a different rate of 

ejection. Thus, the formulation is akin to a simple multiple rate mass transfer (MRMT)  

model (e.g. Pedit & Miller 1994, Haggerty and Gorelick 1995, Wang et al. 2005) or a 

two site transport model in which both sites proceed kinetically (Van Genuchten & 

Wagenet 1989), approaches more traditionally applied to solute transport in 

groundwater.  Each bin is considered to occupy a fraction of the surface (f) 

characterized by cavities of similar diameter and depth that control ejection at a given 

rate.  Particles enter the shallow flow by raindrop-induced ejection at multiple rates, 

corresponding to i different bins, and settle-out of the shallow flow at a single rate. 

While settling-out, suspended particles are advected in the overland flow at the same 

velocity as the flow.  

 

Following Hairsine and Rose (1991) for the case in which overland flow does not 

exceed the threshold for particle entrainment, mass conservation of suspended 

particles in the water layer is given by: 

 

s

i

ii

ss kMMh
x

vM

t

M
−=

∂

∂
+

∂

∂
∑

=1

                            (1) 

where Ms is the suspended particle mass (g), x is the downslope distance, and v is the 

overland flow velocity (cm s
-1

), hi is the ejection rate constant (s
-1

), Mi is the immobile 

material in bin i (g), and k is the capture rate constant (s
-1

). 
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Figure 3.1. Schematic of mass exchange in a multi-trap system. In this case there are 

three bins - Mi , each covering a different fraction, fi, of the total surface and with a 

different ejection rate, hi.  k is the settling rate from the suspended mass pool, Ms. Only 

particles in Ms can move laterally. 

 

Particle mass on the surface in different bins at a distinct spatial position is given by: 

 
iisi

i MhkMf
t

M
−=

∂

∂
 (2) 

where fi is the fraction of particles captured by bin i, which we assume to be related to 

the i
th

 distinct cavity size on the surface. Note,  1
1

=∑
=i

if . Herein, we will refer to 

Eqn.’s 1 and 2 as the multirate mass transfer model (MRMT).  

 

Following Lisle et al.’s (1998) development of a stochastic particulate transport 

model, the ejection rate constant is assumed to be given by: 

 P
V

A
h i

i =  (3) 

where Ai is the area influenced by the drop impact, V is the drop volume, and P is the 

precipitation rate (cm min
-1

). On a flat surface with a shallow water depth, Ai is 

dictated by the drop energy and particle size (Mihara 1952, Macklin & Metaxis 1976). 

However, we hypothesize that a rough surface will compartmentalize drop impacts 
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and constrain Ai. Therefore, the fraction of the surface with smaller diameter and 

deeper cavities will have a lower h.   

 

Finally, the capture rate constant (k) proposed by Lisle et al. (1998) assumed a 

quiescent settling process ( k= vset / d) where vset is the particle settling velocity and d 

is the average depth of the advecting flow layer (cm). However, more recent work 

suggests capture may not be due to settling alone and k may represent an effective 

settling rate (Shaw et al. 2007).  

 

3.4 Methods 

Using a small flume situated under an artificial rain machine, we observed the rate of 

wash-off of particulate “pulses” from two different surfaces under the same upslope 

flow and rainfall rates.  

 

Characterization of Roughness Surface 

Molds of parking lot pavement were made from two sites near Riley-Robb Hall, 

Cornell University, Ithaca, NY using silicone mold making rubber (Dow Corning HS 

II). The sites were selected to have different surface roughness characteristics, one lot 

being newly installed. From both sites, five 10 cm long, 1 mm wide strips were 

trimmed from each mold and the cross-sectional profile digitally imaged using a high-

resolution scanner (Umax Astra 4000U) (example shown in Figure 3.2). For each 

strip, the width of all crevices was measured at successively deeper 0.5 mm 

increments.    
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Experimental Runs 

Laboratory methods closely followed the set-up and approach used in Shaw et al. 

(2006, 2007). An 80 cm long, 10.5 cm wide stainless steel flume with a 4% slope was 

located beneath a computer-controlled rainmaker generating ~0.08 cm radius drops.  

Overland flow was directly applied through a small Plexiglas stilling chamber at the 

upslope end of the flume. A primary difference from Shaw et al. (2006) was the use of 

smaller particles (225 µm) closer in size to the median observed in wash-off (100 µm, 

Sansalone et al. 1998) as well as higher upslope overland flow rates (~10 l min
-1

 m
-1

) 

equivalent to 0.24 cm min
-1 

rainfall accumulated at the end of an impervious 40 m 

reach. The rainfall rate was 0.24 cm min
-1

, equivalent to the intensity of a 2 year, 5 

minute storm in the non-coastal regions of the Northeastern United States (NOAA 

1977).  

 

The flume surface consisted of a plaster-of-paris cast of a 20 cm by 10 cm silicone 

rubber mold made during the roughness characterization. Runs were carried out on the 

two different surfaces (herein referred to as Lot 1 and Lot 2) described in the 

roughness characterization (Figures 3.2a and 3.2b). For each surface, three identical 

casts of ~20 cm  were adjoined to cover a 60 cm length of the flume. The plaster-of-

paris was spray coated with a latex paint in order to minimize water seepage into the 

cast.  

 

We applied 10 g of 225 µm quartz sand particles in a 10 cm long strip within the 

interval 30 to 40 cm from the bottom of the flume. Flow off the end of the flume 

spilled into a stainless steel trough that diverted the sediment-laden water into a funnel 

fitted with a 100 µm metal screen. Collection funnels were changed approximately 
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every 45 seconds. Recovery averaged 90% with any losses assumed to occur 

uniformly throughout the run. Parameters for each run are summarized in Table 3.1.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2a and 3.2b. Profiles of asphalt surfaces from two different parking lots. The 

mold is shown inverted, as applied to the pavement. The negative space – gray color – 

would be the pavement with it’s surface traced by the bold line. The image is enlarged 

2x.  

 

 

Table 3.1. Summary of roughness surface experiments. Values in brackets indicate 

standard errors.  

Run
q  (mL min

-

1
 m

-1
)

P  (cm 

min
-1

)

Length 

(cm)
h 1  (sec

-1
) h 2  (sec

-1
) h 3  (sec

-1
) f 1 f 2 f 3 k  (sec

-1
)

Lot 1 10200 0.24 35 0.063 (0.017) 0.005 (0.007) --- 0.98 (0.025) 0.02 --- 10 (2.01)

Lot 2 10400 0.24 35 0.045 (0.0015) 0.003 (0.0006) --- 0.96 (0.011) 0.04 --- 10 (1.75)

Plot Scale 100 0.03 2000 0.075 0.01 0.001 0.70 0.15 0.10 0.056  

 

Model Implementation 

An analytical solution for the Ms loss rate for a two bin MRMT (i=2) with initial 

conditions )()0,( xxM s δ=  and 0)0,()0,( 21 == xMxM , was found via Laplace 

Transforms of Eqn.’s 1 and 2.  The solution consists of three terms (as ordered below 

in Eqn. 4): a convolution in which movement through the bin 2 cavities acts as the 

response function for movement through the bin 1 cavities, movement through bin 1 

cavities alone, and movement through bin 2 cavities alone: 
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where 
u

x
t −= '1τ , 

u

x
tt −−= '2τ , 

u

kx
=ξ , ()H is the Heaviside Step function, I1 is the  

Bessel Function of the first order, and ()δ is the Delta Dirac function. The convolution 

within Eqn. 4 is evaluated discretely using a time step of 10 sec. 

 

For the model, overland flow velocity was estimated using Manning’s Equation with a 

Manning’s roughness of n=0.03 (Anderson et al. 1998), also similar to the 0.025 value 

used by Christina and Sansalone (2002) for pavement.  Direct measurement of 

velocities on the laboratory flume indicated that Manning’s Equation was within 10% 

of the observed v. Experimental flow velocity was determined by measuring the time 

for dye (FD&C red dye No. 40), injected into the flow stream with a pipette, to travel 

a set distance.  

 

Settling depth, d, was determined by continuity. d’s were large enough that terminal 

velocity was reached. Settling velocity was determined experimentally (grains were 

hand-timed falling 40 cm in a 1 L graduated cylinder): we found vset = 170 cm min
-1

.   

 

3.5 Results & Discussion 

Modeling the Breakthrough Curves 

Assessing the experimentally observed breakthrough curves (Figure 3.3a & 3.3b), 

peak loss on Lot 2 is slightly delayed in comparison to Lot 1. Additionally and more 
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significantly, the Lot 2 surface exhibits a greater amount of tailing than Lot 1 with 

traces of particulate detected after 2000 s. while none is detected after 1000 s. on Lot 

1.  In terms of the breakthrough time of the center of mass of the pulse, 50% of the 

applied mass is lost after ~335 s on the Lot 1 surface and 50% is lost after 550 s on the 

Lot 2 surface. These differences in wash-off behavior correspond to obvious visual 

differences in the roughness of the two surfaces; the Lot 1 surface has fewer narrow,  

Figure 3.3a. deep crevices and many more shallow broad crevices in comparison to 

Lot 2 (Figure 3.2).  

 

The breakthrough curves from both surfaces were reasonably fit (R
2
~0.96 for Lot 1 

and R
2
~0.98 for Lot 2) using the solution to the 2 -bin MRMT model, Eqn. 4 (Figure 

3.3). Parameters were manually adjusted to maximize the R
2
 value.  However, a two 

bin model requires four parameters ( f1, h1, h2, and k), and multiple parameter 

combinations can produce a similar fit. As in many cases where a model displays 

equifinality, certain parameter choices are more physically suitable. While not merely 

calibration parameters, we will demonstrate an underlying physical basis for each of 

the four parameters and suggest means to identify model parameters a priori in future 

cases.   
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Figure 3.3a 

 
Figure 3.3b. 

 
Figures 3.3a and 3.3b. Model simulations fit to breakthrough curves for 225 µm 

particulate movement on 60 cm asphalt casts from Lot 1 (3a) and Lot 2 (3b).  Symbols 

indicate observed values (filled and unfilled are replicates); solid line is the model. For 

both runs, upslope flow (q) and rainfall (P) were nearly the same, ~10,300 ml min
-1

 m
-

1
 and 0.24 cm min

-1
 respectively. Model parameters are summarized in Table 3.1. The 

R
2
’s for the model runs in 3.3a and 3.3b are 0.96 and 0.98, respectively. The dashed 

lines illustrate the contribution to mass loss from different model components.   
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Comparison to the Fokker-Planck Equation 

As a starting point for evaluating the model parameters, we apply the Fokker-Planck 

equation with )()0,( 0 tMxM δ=  ( Fischer et al. 1979, Eqn 2.28 ). Note, since we are 

fitting a breakthrough curve, the standard Fokker-Planck solution is multiplied by ueff 

so as to calculate mass flux and not concentration (see Lisle et al. 1998, Eqn 12). As a 

traditional approach to fitting breakthrough curves, the Fokker-Planck equation 

provides a point of comparison to the two-bin model as well as a means to estimate 

parameters of aggregate movement, effective velocity (ueff) and dispersion (D). 

 

To fit the Fokker-Planck equation, an experimental ueff can obviously be determined 

from the observed breakthrough curve by taking the quotient of the travel distance, L, 

and the time to peak. An experimental D can be determined from the observed 

breakthrough curves by manipulating the solution to the Fokker-Planck equation with 

a delta pulse boundary condition so when t=L/ueff:  

tM

u
D

eff

2

max

2

4π
=     (5) 

By this approach, the Lot 2 breakthrough is fit with ueff =0.0778 cm s
-1

 and D =0.33 

cm
2
 s

-1
.While capturing the timing and magnitude of the peak, the width of the peak is 

slightly exaggerated and, the degree of tailing is underestimated (Figure 2.4). We will 

see below how a fundamentally different model structure is needed to fit these 

seemingly minor discrepancies.    

 

The h and k parameters in a MRMT can be related to D and ueff in the Fokker Planck 

equation. But, only at long times is the Fokker-Planck equation identical to the 

MRMT model. With the Fokker Planck equation and the 2-bin model in Laplace space 

(see Appendix), we performed a Taylor Series expansion on terms within the 
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exponential functions. Excising all terms above 2
nd

 order, we found the Fokker Planck 

and MRMT formulations were identical. However, since our experiment does not take 

place at a scale appropriate for a long-time approximation, we can use the Fokker-

Planck equation to inform our choice of h and k, but we would not expect an identical 

fit to the observed breakthrough.   But, by relating to D and ueff, we gain some insight 

into how h and k interact to result in aggregate particle behavior.  

 

For a two bin model, we find (see appendix for derivation): 
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Eqn.’s 6 and 7 will be of some use in constraining h and k as discussed below.  

 

Selecting f1 

Since f2=1-f1, we can modify Eqn. 6 and 7 to show that ueff and D are relatively 

insensitive to f1 as long as we know f1 is near 1. f1 mainly controls the magnitude of the 

peak and the magnitude in the transition to the tail, features not captured by ueff and D. 

The reason for this behavior can be seen in Figure 3.3 (dashed lines) where the 

contribution of the individual terms in the model solution (Eqn. 4) are shown.  

Adjusting f1 shifts the emphasis on each of these two peaks. 
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Figure 3.4. Fokker-Planck equation fit (solid line) to Run 2 observed (symbols). D 

(0.33) and ueff  (0.0778) in the Fokker-Planck equation were determined from 

inspection of the breakthrough data (see Eqn.5). 

 

If there is little tailing, f1 is large (~1), the first peak dominates, and the overall 

breakthrough resembles the first component. If f1 is smaller (i.e. f1=0.90, not shown), 

most particles fall into deep crevices, the second peak dominates such that the overall 

breakthrough resembles the second component. Distinct features of our observed 

breakthrough curves arise from overlap between the two components; namely, the 

asymmetrical, high “shoulder” of the receding breakthrough curve can only be 

duplicated with the overlap of the rising second component with the falling first 

component.  

 

To some degree, f1 can be estimated from the physical characteristics of the rough 

surfaces. We hypothesize that the distinction between a deep and shallow crevice 

depends on an interaction between average cavity depth and width. From the surface 

characterization, we can determine the fraction of each surface covered by cavities of 
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a certain depth to width ratio. Evaluating several possible ratios involving the deeper 

crevices (the deepest was ~2.5 mm), we found Lot 1 and Lot 2 consisted of 3.5% and 

5.5%, respectively, of crevices greater than 2 mm deep and less than 8 mm wide.  And 

considering another depth-to-width ratio, we found Lot 1 and Lot 2 consist of 1.4% 

and 2.7%, respectively, of crevices greater than 2mm deep and less than 4 mm wide. 

This range of depth to width ratios seems to envelope our calibrated f1 values of 2% 

and 4% for Lot 1 and Lot 2, respectively.    

 

Finally, since f1 is relatively independent of ueff and D, f1 is also relatively independent 

of hi and k. With k constant, one would not be able to compensate for changes in f1 

with changes in h. But, with f1 constant, h and k can be used to compensate for one 

another.   

 

Balancing k and hi’s 

With an f1 selected as discussed above, one must then narrow the range of h and k. h 

and k will be linked by Eqn.’s 6 and 7 – a large h must be accompanied by a large k. If 

we can establish the range of either h or k, we constrain the other. k relates to the 

particle capture rate and should be partially dependent on the particle size (in terms of 

settling velocity) but also potentially on surface characteristics. Recent work suggests 

that particle capture is not necessarily well modeled as a quiescent settling process 

(Parsons & Stromberg 1998, Nino et al. 2003, Shaw et al. 2007), a simplification 

traditionally assumed in mechanistic erosion models.   If the particle capture were 

solely due to quiescent settling, with a vset of 2.83 cm s
-1

 (determined experimentally 

by hand timing the fall of the particles over 40 cm) and an average d=0.1 cm, k=28.3 s
-

1
. On a uniformly rough surface consisting of shallow, oblong depressions (not 

necessarily efficient at trapping), using the same sized particles, Shaw et al. (2007) 
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found k=3.8 s
-1

 from modeling. We consider these values to be reasonable bounds for 

our k value (e.g. 3.8 s
-1

<k<28.3 s
-1

 ).   

 

With k and f1 selected, the general range of h1 and h2 can be constrained with Eqn. 6 

and Eqn.7. In simultaneously trying to minimize the error of estimated values of ueff  

and D (in comparison to values determined from fitting to observations), we overlay 

two-dimensional surfaces (axis of h1 and h2)of residual error estimates for ueff  and D 

to determine the region of minimal error for both  ueff  and D from which to select 

possible hi values.  Since we can only establish a range of possible k values, we repeat 

this determination of hi values several times for different k. Several fits for different k 

and the corresponding hi values are shown in Figure 3.5. The lowest k value (k=5 sec
-

1
) results in too much dispersion from the leading edge but both k=10 and k=15 result 

in physically reasonable fits.  
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Figure 3.5.  Comparison of 2-bin model fit to Surface 2 observations (filled and open 

symbols) with f1=0.96. hi’s have been adjusted to counteract change in k. All three 

variations fit reasonably well with just k=5 resulting in slightly too much movement 

off the front edge.  
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Relating h to Drop Impact Area 

While selected largely by calibration thus far, the ejection rate value, h, can also be 

attributed a physical meaning. As per Eqn. 3, h is the ratio of the impact area (Ai) of a 

single rain drop to the drop volume (V) scaled by the precipitation rate. Experiments 

by Mihara (1952) on sand indicated that the impact area was slightly larger than the 

drop diameter. So, outside of the deep cavities, we would expect Ai to be 

approximately 0.16 cm, the drop diameter. With h1=0.045 s
-1

 for P=0.23 cm min
-1

 and 

a V of 2.1x10
-3

 cm
3 
(assuming a spherical drop), we find Ai  to be 0.18 cm, nearly the 

drop diameter. This suggests that shallow cavities do little to constrain the drop impact 

and that drop effectiveness is largely a function of the drop itself. Conversely, for the 

deep cavities with high retention (h2=0.003 s
-1

) classified by a diameter of <0.40 cm 

and a depth of >0.20 cm, the cavity depth appears to combine with the cavity diameter 

to constrain Ai to ~0.045 cm. Although the cavity diameter (~2 mm) is still larger than 

the drop diameter, the small Ai for these deep cavities suggests additional energy must 

depleted in overcoming the 2+ mm depth. Using this approach, h values could 

potentially be estimated a priori in future applications of the model. 

 

Model Predictions for Full Surface Coverage  

A more realistic test of the model would be a larger, plot scale, reach with complete 

initial particle coverage, not just a pulse. Experiments by Sansalone et al. (1998) 

reported particle counts /ml for 5 µm particles collected 9, 14, 24, 28, and 47 minutes 

after the start of a storm event on a 20 meter reach of roadway, thus providing a 

suitable data set for validating the model at larger scales. A three bin MRMT model 

with P =0.03 cm min
-1

, minimal upslope inflow, a length of 20 m, Vset = 0.5 cm min
-1

, 

and initial mass of 0.001 g cm
-2

 was compared to the observations (Figure 2.6). k was 

calculated assuming quiescent settling using the Stokes velocity for a 5 µm particle. h 
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and fi parameters are summarized in Table 3.1. The three-bin model was implemented 

using a finite difference scheme in Matlab (∆t=0.25 min). The collection time of the 

Sansalone data points was shifted forward by 8 minutes to reflect the start of high 

intensity rainfall. Also note, since the Sansalone et al. (1998) data were only in terms 

of particle counts and the three bin MRMT model predicts mass loss, loss rates are 

reported as the ratio of loss at a given time to the maximum observed loss.  
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Figure 3.6. A three bin MRMT model (bold line) is applied to a 20 m reach with 

P=0.03 cm min
-1

 , minimal upslope inflow, 5 µm particles, and complete initial 

coverage of 0.001 g cm
-2 

. Model parameters are summarized in Table 1.  The MRMT 

simulation is compared to wash-off observations for similar conditions published by 

Sansalone et al. (Fig.8 1998) as well as a. lumped exponential model (loss rate of 0.06 

cm
-1

 and initial mass of 20 g).  

 

Thus, while not assessing absolute mass loss rates, Figure 3.6 shows that the MRMT 

model is able to replicate the rapid peaking and then gradual tailing of the observed 
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mass loss. We presume that this initial peak results from particles near the bottom of 

the reach that do not fall into any deep surface cavities before exiting the system. Also 

shown in Figure 2.6, as a point of comparison, a lumped exponential model - 

traditionally used to predict wash-off – fails to predict the observed pattern of mass 

loss, greatly overpredicting the time at which the initial surface mass is exhausted.  

The rapid decline to a near zero loss rate by the exponential model is dramatically 

different considering we are looking at ratios of loss; the observed rate declines by 

~80%, but the exponential declines by nearly 99%, significantly different in terms of 

actual mass loss.  

 

3.6 Conclusions 

To date, no urban pollutant transport models have addressed the role of surface 

roughness in retaining and attenuating particulate matter. We used a 2-bin MRMT to 

incorporate the effects of roughness into a physically-based wash-off model and found 

that model parameters could be related to characteristics of the impervious surface. 

The concept is demonstrated at the laboratory scale as well as compared to previously 

published data from a 20 meter asphalt reach. With a small fraction of surface area 

having a long particle retention time, we can explain the dual behavior of a first flush 

followed by more steady, non-mass limited loss later in the storm, contrary to the 

behavior of an exponential wash-off model. At larger scales, where shear induced 

wash-off is more likely to dominate, the exponential model may still be reasonable.  

These insights could lead to improved design and placement of water quality 

management structures in urban landscapes.     

 

Additionally, this investigation provides an interesting case study of a situation in 

which a standard, textbook model appears reasonable (the Fokker-Planck equation), 
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but a more physically accurate conceptual model can be slightly better fit and, more 

importantly,  provide greater physical insight into the underlying processes. A similar 

revelation was made in regards to river systems in considering the use of dead-zone 

mixing models (Green et al. 1994) in place of a Fokker-Planck formulation. In this 

case, with just the two-bin MRMT model, we see most “dispersion” is actually due to 

variation in effective particle velocities as we do not include an explicit dispersion 

term. Additionally, we find that the asymmetrical “high-shoulder” of the receding limb 

of the breakthrough curve is likely due to the combination of two distinct particle 

velocity distributions and not just an experimental anomaly.  
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 Chapter 4 

 

Evaluating Urban Pollutant Build-up/Wash-off Models Using a Madison, 

Wisconsin Catchment 

 

4.1 Abstract 

Build-up/wash-off (BUWO) models are widely used to estimate particulate mass loss 

from urban watersheds. However, our analysis suggests that particulate wash-off 

during a storm event is little influenced by the number of dry days preceding the event 

(Tdry), casting doubt on the fundamental assumption motivating the use of BUWO 

models. Our analysis employed total suspended solids and discharge data for storm 

events collected by the USGS from 21 storm events during non-snow periods for a 9 

km
2
 suburban catchment in Madison, Wisconsin, in conjunction with National 

Weather Service NEXRAD radar reflectivity that described spatially and temporally 

variable kinetic energy inputs during storm events. We found that storm event runoff 

volume and rainfall kinetic energy explained 81% of the variability in particulate 

event particulate load; volume alone explained 69% of the variability in event loads. 

Time between storm events was not significant and added little to R
2
. Additionally, we 

simulated storm event particulate loads using both a BUWO model (dependent on Tdry 

and event volume) and a model assuming a constant mass available for wash-off 

(dependent only on event volume). We identified the region within which a three 

parameter BUWO model behaves like a one-parameter constant mass model. The 

parameter sets for three BUWO models calibrated for different watersheds and 

reported in the literature all fell in this region. It appears that BUWO models have 

been calibrated to behave like a simple model with constant mass availability. As long 

as event volume explains a large portion of the variation in particulate load and other 
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factors such as rainfall kinetic energy are minor, we suggest that in many cases a 

constant mass model would provide a suitable and relatively accurate estimate of 

particulate wash-off. 

 

4.2 Introduction 

Runoff from urban and suburban areas often transports pollutants including nutrients, 

heavy metals, and pathogens to nearby water bodies (USEPA 1983). A large fraction 

of these pollutants are associated with particulate matter (Sansalone and Buchberger 

1997, Vaze and Chiew 2004). A clear understanding of sources and processes 

affecting particulate transport can aid in developing practices to reduce particulate 

export to surface waters (Vaze and Chiew 2004).  

 

Particulate pollutant loss in urban and suburban catchments has been calculated using 

simple Event Mean Concentration (EMC) models and by using more sophisticated 

build-up/wash-off (BUWO) models. An EMC model assumes a single flow weighted 

concentration can be used across an entire storm event (Charboneau and Barrett 1998).  

However, because the EMC may change between storms (Driscoll 1986, US EPA 

1983), load predictions for unmonitored events can be inaccurate. To try to account for 

EMC variations between storms, urban BUWO models have been formulated to 

predict particulate loads as functions of the particle mass that has built-up on the 

surface between storm events (for example, Chen and Adams 2007). BUWO models 

are a standard feature of widely used water quality models such as the Storm Water 

Management Model (SWMM) (Huber and Dickinson 1988). However, SWMM can 

include many other processes (for example, Tsihrintzis & Hamid 1998), and the 

presumed BUWO processes are seldom assessed against internal, subcatchment scale 

observations.  
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Other work has questioned whether accounting for build-up can actually explain 

variations in washed-off particulate load. Sutherland and Jelen (2003) note that Sartor 

and Boyd (1972) – the work on which the build-up assumption is based – forced mass 

accumulation to pass through the origin at zero days antecedent build-up, exaggerating 

the degree to which accumulated mass increased over time during interstorm periods. 

They conclude that residual particulates are most likely always present on urban 

surfaces. Charboneau and Barrett (1998) related antecedent dry days (a typical proxy 

for the amount of build-up) to particulate load for eight sites in Austin, Texas, and 

found no trend. In evaluating wash-off models against a data set from Australia, Vaze 

and Chiew (2003) assumed all wash-off events started with the same available surface 

mass, effectively assuming surfaces have a relatively constant available mass.  From 

other work in Australia, Egodawatta et al. (2007) measured total particulate mass 

available on urban surfaces before storm events and found similar wash-off quantities 

even with different amounts of particulate initially available . Finally, in adding a 

factor to account for antecedent dry days to a linear, multi-factor wash-off model, 

Soonthornnonda and Christensen (2008) increased the R
2
 between observed and 

estimated TSS loads from 0.23 to 0.38, based on 411 storm events in urban watersheds 

near Milwaukee, Wisconsin. While this is a moderate increase in R
2
, the overall 

explanatory power of the model remained small.  

 

We have two primary objectives for this paper. First, given that build-up has 

frequently been employed to explain interstorm variability in particulate load, we offer 

alternate factors to describe this variability, including kinetic energy. Kinetic energy 

has long been included in soil erosion models (see Wischmeier & Smith 1958). Only 

recently have researchers recognized that kinetic energy may be useful in predicting 
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particle wash-off in urban areas (Vaze and Chiew 2003, Egodawatta et al. 2007, 

Brodie and Rosewell 2007). Because rainfall kinetic energy is a nonlinear function of 

spatially and temporally variable rainfall intensity, standard aggregate measures such 

as discharge, total runoff volume, and average intensity may not reveal differences in 

kinetic energy. We make use of National Weather Service NEXRAD radar to assess 

high resolution rainfall patterns (approximately 1 km
2
 grid size, 5 min. time interval). 

Investigators have used spatially variable rainfall in hydrologic models (Ogden et al., 

2000, Smith et al 2005, Kalin and Hantush 2006) and spatially variable erosion models 

with uniform rainfall (Jain et al 2005), but the two have not generally been combined. 

Cruse et al. (2006) combined NEXRAD radar with the WEPP erosion model to predict 

daily erosion across Iowa, but the model was not compared to actual measurements of 

soil loss in streams.  

 

Our second objective is to evaluate if the complexity of the build-up/ wash-off model 

is even necessary. We suggest that in many cases where available particulate for wash-

off does not become depleted (i.e. a relatively constant supply of particulate is 

available), the particulate load estimated by a build-up model is predominantly 

determined by the event runoff volume. As long as the model can reproduce runoff 

volume, the event load will also be reasonable. A simulation study demonstrates that 

for common parameter values the BUWO model behaves like a model assuming 

constant particulate mass.  

 

This paper is organized as follows. The next section introduces background on BUWO 

models. The third section discusses the methods of data collection and compilation.  A 

fourth section evaluates kinetic energy and other variables in regression models for 

explaining interstorm variability in particulate load. A fifth section considers when 
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BUWO models behave like a model with constant mass. The two final sections 

provide discussion and conclusions.  

 

4.3 Model Background 

There is no standard way to formulate BUWO models. However, variations among 

formulations are relatively minor and the conceptual basis remains the same. The basic 

model can be written:  

ttt

t

tt qM
m

M
kMM τατ ∆









⋅⋅−







−⋅+=∆+

0

1  (1) 

 

where Mt (kg) is the available mass at time t, k is a build-up coefficient (kg time
-1

), m0 

is the threshold at which additional mass does not accumulate on the surface (kg), qt is 

runoff rate ( m
3
 time

-1
), α is a wash-off rate constant (m

-3
), and ∆τt is the time 

increment. The subscript t indicates the quantities are unique to specific time periods.  

In Eqn. 1, particulate build-up (the second term on the right hand side) is assumed to 

accumulate asymptotically toward a maximum, m0, (or decline to this equilibrium 

value if the initial conditions are above m0) in the absence of wash-off. Wash-off (the 

third term on the right hand side) is assumed to occur linearly with qt and Mt.  To 

maintain the mass balance if the time step is large, an additional constraint is added so 

that mass loss cannot be greater than the amount on the surface at the beginning of a 

wash-off event.  

 

A simplification of this build-up/ wash-off model would be a model assuming a 

constant mass (Eqn. 1 would reduce to Mt+∆τ = Mavg). With constant mass, loss in each 

time step (Losst, equivalent to the third term on the right hand side in Eqn. 1) can be 

written: 
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ttavgt qMLoss τα ∆⋅⋅⋅=    (2) 

where Mavg is the modeled available mass which can be considered as the average Mt 

obtained with the BUWO model (Eqn. 1).  

 

When ∆τ becomes very small, Eqn. 1 can be configured as a pair of differential 

equations. For a period with no rainfall, Eqn. 1 becomes: 









−=

0

1
m

M
k

dt

dM tt     (3a) 

Assuming build-up is negligible during storm events, the change in mass during a 

wash-off event becomes: 

    tt

t qM
dt

dM
α−=     (3b) 

The solution of these differential equations is frequently used exponential build-up and 

wash-off equations (e.g. Easton et al 2007, Chen & Adams 2007). 

 

 Build-up: 

( ) 







−−⋅−+=+ )exp( dryttTt T

m

k
MmMM

dry

0

0 1    (4a) 

 Wash-off: 

( ))exp( VMLoss
drydry TtTt α−−= ++ 1    (4b) 

where Tdry is the number of days since a significant discharge event, and V (the storm 

volume) is the integration of qt over the storm event duration. The Loss is subtracted 

from Mt before calculating the build-up during the next time interval of Tdry. The 

quantity k/m0 in Eqn. 4a is often written as a single parameter which we denote as k
*
. 

As long as Eqn. 1 is evaluated at short time steps, ∆τ, Eqn. 1 and 3 are fundamentally 

the same.  
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4.4 Methods  

 

Site Description 

In our analyses, we make use of total suspended solids (TSS) concentration data 

collected by the USGS at a storm drain outlet in Madison, Wisconsin (Spring Harbor 

Drain – USGS #5427965). The Spring Harbor catchment covers approximately 9 km
2 

and consists primarily of suburban, residential land use. Watershed boundaries were 

approximated from USGS topographic maps. The soils consist of sandy and silt loams 

with saturated conductivities greater than 0.75 m day
-1 

and depths of at least 2 m 

(USDA NRCS web soil survey: 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx). A network of drainage 

pipes conveys storm water in areas close to the outlet. Open ditches in the more distant 

regions of the catchment appear to connect into this pipe network.   

 

Data 

To assess the validity of BUWO models, we use a sequence of 19 storm events from 

May to November 2002. This includes all storm events during that period with a peak 

discharge exceeding 0.28 m
3
 sec

-1
 (most events exceed at least 1 m

3
 sec

-1
) except for 

an event on 8/11/2002 for which limited suspended solids data was available. We use 

consecutive storm events to assure a complete history of particulate loss because 

wash-off from a storm event can be dependent on what remains after the previous 

events.  

 

Seven of the 19 events lacked the National Weather Service radar data needed to 

calculate kinetic energy. Therefore, we only use 12 of those 19 storm events to assess 

the role of kinetic energy in explaining interstorm variability in loads. To these 12 
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storms, we added two 2001 storms to supplement the 2002 record, for a total of 14. 

Table 4.1 summarizes data from the 21 unique storm event used within this paper. 

 

To calculate event loads from our observed data for each storm event, we first 

establish concentration-discharge (C-q) relationships with the form of a power law: 

    ηω
tt

qC =      (5) 

where Ct is the total suspended solids concentration at a given time interval and ω and 

η are parameters. The C-q relationships for each storm event are calibrated by finding 

the intercept and slope of a least-squares regression line fitted to the log adjusted C 

and q values. As examples, C-q relationships from the first five storm events of 2002 

are shown in Figure 4.1. Across all 21 events used in the analyses, ω varies between 

0.4 and 15.1 with an average of 7.8, and η varies between 0.46 and 2.22 with an 

average of 1.1.  

 

An event volume (Vi) is calculated as: 

∑
=

∆=
endT

t

ttqV
0

τ      (6) 

where ∆τt is the time interval between discharge measurements, typically five minutes 

during rainfall and 15 minutes in the receding leg of the storm hydrograph. Because 

discharge is predominantly ephemeral in the Spring Harbor watershed, the start of 

most events is easily discerned. The event is considered to begin (t=0) at the rapid rise 

in the hydrograph after the initiation of rain and continues until the discharge drops to 

0.04 m
3
 sec

-1
 at some time Tend. If another storm event starts before the hydrograph 

drops to 0.04 m
3
 sec

-1
, Tend is set at the time of minimum discharge before the next 

event peaks.  
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Table 4.1. Data summary of the 21 storm events used in the two analyses. Radar data 

was not available for events without KE30 or I, as indicated by the dashes.  

 

Date L  (mt) V  (m
3
) KE 30  (kJ) q p  (m

3
 sec

-1
) T dry  (days) I (cm hr

-1
)

5/1/2002 1.31 1.61E+04 -- 0.91 3 --

5/9/2002 1.70 1.03E+04 291 0.40 8 3.34

5/11/2002 1.50 1.05E+04 1050 0.68 2 10.77

5/25/2002 1.64 2.38E+04 345 0.93 14 4.08

5/28/2002 15.70 1.73E+04 -- 2.66 3 --

6/3/2002 12.00 5.33E+04 4570 4.31 5 35.36

6/4/2002 7.01 8.73E+04 -- 2.04 1 --

6/10/2002 8.15 4.02E+04 9750 5.16 6 63.6

6/13/2002 0.80 4.28E+03 1520 1.70 3 14.18

6/26/2002 2.57 8.41E+03 2680 1.78 13 21.00

7/20/2002 1.50 8.10E+03 3350 2.72 24 32.07

7/22/2002 3.40 2.81E+04 179 2.83 2 2.28

8/13/2002 1.20 1.89E+04 -- 1.13 2 --

8/17/2002 4.60 1.41E+04 4810 2.44 4 34.88

8/21/2002 12.60 2.42E+04 -- 3.77 4 --

9/2/2002 3.30 3.82E+04 916 3.20 11 9.32

9/19/2002 0.29 7.88E+03 -- 0.59 17 --

9/29/2002 0.57 1.31E+04 -- 0.65 9 --

10/4/2002 6.28 6.91E+04 2810 5.16 5 24.13

7/17/2001 1.70 6.03E+03 1350 1.95 29 24.18

8/1/2001 6.12 2.61E+04 818 3.80 6 7.62  
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Figure 4.1. Relationships between discharge and TSS concentration for select storm 

events.  
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An event load (L) is calculated as: 

∑
=

∆=
endT

t

tttCqL
0

τ     (7) 

where the function for Ct (Eqn. 5) is uniquely calibrated for each storm event.  

 

For the 14 storm events with available radar data, we compiled time between storms 

(Tdry), total storm volume (V), kinetic energy (KE30), and rainfall intensity (I30). Table 

4.2 provides a more extensive explanation of each variate. Here, I30 makes use of the 

high resolution radar data and is fundamentally different than an average rainfall 

intensity over a complete storm event.  

 

Table 4.2. Summary of variables. 

Variable 

I 30

k

KE 30

L

M t

m 0

q p

T dry

V

α build-up rate in build-up model

time period without runoff prior to storm event (days)

storm event runoff volume (m
3
)

rainfall intensity for 30 minute span before storm peak (cm hr
-1

)

mass on surface in wash-off model (kg)

threshold at which additional mass will not accumulate in wash-off model (kg)

loss rate in wash-off model 

Description

sum of kinetic energy for 30 minute span before storm peak discharge (kJ)

storm event load (metric tons)

storm event instantaneous peak discharge (m
3
 sec)

 
 

Converting from Radar Data to Kinetic Energy 

No rain gauge data was available directly over the catchment so rainfall was instead 

estimated from radar reflectivity data. The radar data had the added benefit of 

providing greater resolution of spatial variations (~1 km
2
) in rainfall intensity over the 

catchment than would be available from a limited rain gauge network, an important 

feature given the convective storm events of concern here.  Radar reflectivity (mm
6
 m

-

3
) is measured on a logarithmic scale in dBZ (decibels). When the radar is operating in 
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precipitation mode (in contrast to clear air mode), light rain corresponds to 

approximately 20 dBz (Rinehart 1991 p119). Of the 14 storm peaks we analyzed, our 

maximum observed reflectivity was 60 dBz.   

 

Radar reflectivity data over the catchment was obtained from the National Weather 

Service Archive of WSR-88D NEXRAD Radar Data stored on the NCDC Robotic 

Mass Storage System (accessible at 

http://www.ncdc.noaa.gov/oa/radar/radardata.html).  The closest station to our 

catchment was Milwaukee, Wisconsin (KMKX). Typically, we obtained Level 2 

reflectivity data at 10 minute intervals from 40 minutes before to 10 minutes after each 

storm peak for a total of six images for each event analyzed. The raw Level 2 data 

were converted to a shapefile using the NCDC Java NEXRAD Data Exporter V. 1.3.5; 

only reflectivity at the lowest cut angle elevation was selected. Within ArcGIS, this 

base reflectivity was clipped to the approximate 9.4 km
2
 catchment boundary and 

converted to a raster grid with 100 m square cells. From this grid, the distribution of 

reflectivity values at a given time interval was determined. Table 4.3 provides an 

example of the observed reflectivity and calculated kinetic energy and volume at each 

time interval for a storm event.   

 

Reflectivity was converted to rainfall intensity (R, mm hr
-1

) using a power law 

reflectivity-rainfall (Z-R) relationship (R=aZ
b
 where Z is the reflectivity in mm

6
/m

3
). 

The Z-R relationship can vary among geographic regions and different storm event 

types, although Rinehart (1991 p 119) notes the variations are usually minor. Due to 

the limited rain gauge data within our catchment on which to optimize our choice of 

parameters, we use previously published Z-R relationships for convective storms 

(Smith et al. 2005). where a=0.0174 and b=0.71.  



 

 60 

Table 4.3.   Event data from a storm on 7/20/2002 (shown in Figure 4.2b.) Lines 2 

through 13 in each column indicate the distribution of radar reflectivity values (Z) 

across the catchment at each give Central Standard Time (1510, 1520, etc.). The two 

bottom lines indicate total discharge volume and total kinetic energy for the time 

interval. Note, in the analysis, we only looked at radar on 10 minute intervals but here 

we look at 5 minute intervals around the peak (~1535)  in order to better infer the 

delay between storm peak and discharge peak (1555).    

 
Z 1510 1520 1530 1535 1540 1545 1550 1600

0 774 0 0 0 0 0 0 0

5 165 62 0 0 0 0 0 0

10 6 202 0 0 0 0 0 0

15 0 316 0 0 0 0 0 0

20 0 223 0 0 0 0 0 0

25 0 30 0 0 0 0 0 0

30 0 99 327 0 0 0 0 0

35 0 0 22 0 0 0 100 0

40 0 0 157 0 0 257 580 945

45 0 0 439 153 0 522 175 0

50 0 0 0 412 945 166 90 0

55 0 0 0 380 0 0 0 0

Volume (m
3
) 12 750 24,570 137,893 97,237 45,954 29,734 0

KE (kJ) 8.3E+01 9.8E+03 5.8E+05 4.3E+06 2.8E+06 1.2E+06 7.2E+05 4.0E+05

# 100 m sq. 

cells at each 

Z (dBZ)

 

 

To evaluate the reasonability of this Z-R relationship in our catchment, we compared 

observed Spring Harbor gauge discharge summed up to 48 hours after a storm ended 

to the event rainfall as estimated from the radar. We used three brief, distinct (less than 

an hour) storms. For these three, two storms (8/17/2002 and 6/26/2002) had an 

estimated rainfall to observed discharge ratio of 0.090 and 0.094 (a ratio of 1 would 

indicate all rainfall was converted to observed runoff). For summer storms in a 

suburban catchment in Western New York, Easton et al. (2007) also observed that 

approximately 10% of rainfall was converted to runoff, suggesting that the power law 

relation is generally reasonable. A storm on 7/17/2001 had a ratio of 0.054, but that 

storm was proceeded by 29 days without significant rainfall (where 8/17/2002 and 

6/26/2002 had 6 and 12 day dry antecedent periods, respectively).  There are many 

sources of inaccuracy in rainfall estimates derived solely from radar reflectivity 

(Krajewski and Smith 2002 review the possibilities). Still, the estimates suit the 
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purposes of this paper: to evaluate a possible statistical relation between estimated 

kinetic energy and the actual observed wash-off in urban areas.   

 

Rainfall intensity (I) (mm hr
-1

) was converted to kinetic energy (KE) (kJ) using a 

power law relationship fitted to the data of Laws and Parsons (1943) by van Dijk. et 

al. (2002): 

 10010 +⋅⋅⋅= nIAreaKE κ.     (8) 

where κ=13, n=0.191, and Area is the surface area (m
2
) of each respective rainfall 

intensity grid cell.  While many different functions relating intensity to kinetic energy 

have been proposed, recent work suggests that a power law is the most appropriate 

(Salles et al. 2002).  

4.5 Explaining Interstorm Variability in Particulate Loads 

 

Model Development 

Potential predictor variables of L were evaluated in various regression models to 

predict L across the 14 storms with radar data in the Spring Harbor watershed. Vaze 

and Chiew (2003) observed that quantities ranging from total precipitation volume, 

total runoff volume, or average rainfall intensity have been used as the independent 

variable in wash-off models for predicting L. However, Vaze and Chiew (2003) noted 

the effects of any one quantity may be difficult to resolve because many variables are 

cross-correlated. Many quantities are inherently correlated to L due to the way in 

which L is calculated. As seen in Eqn. 6, L is dependent on the sum of a function of q 

over a storm event.  Since precipitation drives runoff, the precipitation volume, total 

kinetic runoff volume, and average rainfall intensity will frequently be correlated with 

q and, consequently, L. A strong correlation resulting from the pairing of a variable 
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and a function of that same variable is referred to as a spurious self-correlation (see 

Kenney 1982, Vogel et al. 2005).  

 

In Table 4.4, we consider the correlation between L and several independent variables 

in the 14 storm events. The correlation in the fifth column in Table 4.4 describes the 

explanatory value of the univariate regressions between L and either V, KE30, qp, or I30. 

Because V is calculated as ∑qt ∆τt (see Eqn. 4.5) and L is also a function of qt (Eqn. 6), 

the correlation between V ands L is relatively strong due to self-correlation, as 

elaborated on above. Additionally, the instantaneous peak discharge, qp, is highly 

correlated to L. This is somewhat surprising considering that qp is indicative of just a 

snapshot of the storm event.  However, given the moderate correlation between qp and 

V (r=0.80), it is likely that the most intense period of a storm event contributes a 

sizable amount to the total event V. 

 

Table 4.4. Correlation coefficients (r) between L, KE30, qp, I30 and V.   

KE 30 q p I 30 L

V 0.32 0.80 0.26 0.76

KE 30 -- 0.61 0.97 0.60

q p -- -- 0.6 0.79

I 30 -- -- -- 0.56  

KE30 and I30 provide some slight explanation of variability in L. KE30 is highly 

correlated with I30 because KE30 is calculated from rainfall intensity at 10 minute 

intervals raised to the 1.2 power. We will use KE30 rather than I30 in the remainder of 

the paper because it provides marginally more explanatory power than I30.  

 

Consideration of Kinetic Energy 

Rainfall kinetic energy’s possibly explanatory value can be seen qualitatively by 

considering two events similar hydraulically (they have the same peak flow) but 
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differing in instantaneous concentration at the peak discharge. The event in Figure 

4.2a has an instantaneous TSS concentration of 235 mg L
-1

 while that in Figure 4.2b 

has a concentration of 430 mg L
-1

. Radar reflectivity maps for each event indicate 

different rainfall patterns; in this case, a narrow, high-intensity front in Figure 4.2b 

and a more expansive, slower moving storm in Figure 4.2a. KE30 is larger for the high-

intensity front shown in Figure 4.2b (4.08x10
3
 kJ) compared to the more diffuse storm 

event in Figure 4.2a (9.18x10
2
 kJ), thus potentially explaining the difference in TSS 

concentrations.    

 

More quantitatively, to identify the primary factors influencing particulate wash-off, 

we evaluate several model formulations for predicting L. Linear models relating ln(L) 

to ln(KE30) and ln(L) to ln(V) resulted in R
2
 values of 0.19 and 0.69, respectively. 

However, a multivariate model: 

ε+⋅+⋅+= )ln()ln()ln( 30KEcVbaL   (9) 

resulted in an even better R
2
 of 0.81.  We have taken logarithms to achieve 

homoscedasticity among the errors, ε. Despite the fact that ln(V) explains much of the 

variation in the model given by Eqn. 9, the addition of ln(KE30) significantly adds to 

the prediction of ln(L) at the 2.4% level. Table 4.5 summarizes R
2
 values, parameters, 

and p-values (calculated for a two-sided t-statistic) of the significance of each 

parameter within each model. Actually, a one-sided t-test can be justified because L 

should increase with both V and KE30, allowing the p-values to be halved. Figure 4.3 

shows the residuals associated with the three models; as would be expected, the model 

in Eqn. 9 consistently results in smaller residuals than ln(V) or ln(KE30) alone.  

 

A model similar to Eqn. 9 in which KE30 is replaced by Tdry resulted in an R
2
 value of 

0.69 (model 5 in Table 4.5), the same result as using V alone (model 4 in Table 4.5). 
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For the Spring Harbor watershed, this result suggests that antecedent dry days play 

little role in explaining variability in L.  

 

A model similar to Eqn. 9 in which KE30 is replaced by qp (model 7 in Table 4.5) 

resulted in R
2
 = 0.77; a statistical test on the c coefficient indicated that the addition of 

ln(qp) barely adds to the prediction of ln(L) (p-value of 0.08 for a two-sided test). 

While the significance would frequently be rejected at the 5% level or less, the 

relatively small data set made us hesitant to dismiss the outcome outright.   

 

Table 4.5. Summary of R
2
, parameter values, and p-values of the significance of 

parameter coefficients for various linear regression models estimating ln(L). Dashes 

indicate the variable was not used in a given model. Within the row for each model, 

the top line contains the best-fit parameter values (standard error in parenthesis). The 

bottom line contains the p-value for the parameter.  

 

Model R2
ln(T dry ) ln(KE 30 ) ln(q p ) ln(V ) Intercept (a )

-0.18 (0.26) -- -- -- 1.49 (0.55)

0.51 -- -- --

-- 0.29 (0.17) -- -- -1.02 (1.28)

-- 0.12 -- --

-- -- 0.72 (0.21) -- -2.03 (0.91)

-- -- 0.004 --

-- -- -- 0.75 (0.14) -8.91 (1.93)

-- -- -- 0.0002

-0.004 (0.16) -- -- 0.75 (0.15) -8.88 (2.16)

0.98 -- -- 0.0005

-- 0.23 (0.09) -- 0.72 (0.12) -10.14 (1.66)

-- 0.024 -- 0.00009

-- -- 0.35 (0.18) 0.57 (0.16) -8.03 (1.80)

-- -- 0.078 0.004

1

2

3

0.04

0.19

0.50

4

5

6

7

0.69

0.69

0.81

0.77

  

 

 



 

 65 

 
Figure 4.2a. NEXRAD reflectivity on 9/02/2002 at 0610 CST (central standard time). 

A TSS concentration of 230 mg L
-1

was measured at 0620 CST at a peak discharge of 

2.70 m
3
 sec

-1
.  

 

 
Figure 4.2b. NEXRAD reflectivity on 7/20/2002 at 1540 CST. A TSS concentration 

of 435 mg L
-1

 was measured at 155 CST at a peak discharge of 2.68 m
3
 sec

-1
. 
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Figure 4.3. Residuals from three different regression models: a model including KE30 

and V as variates (filled circles, R
2
=0.81), a model only including KE30 (open 

triangles, R
2
=0.19), and a model only including V (cross symbols, R

2
=0.69).   

 

 

However, given that qp is moderately correlated to V (r=0.80, see Table 4.4), it is 

somewhat surprising qp adds explanatory power beyond V. Additionally, as seen 

earlier in Table 4.4, qp and KE30 are not highly correlated, suggesting that qp results in 

improvements in models predicting L for different reasons than KE30.  A large qp could 

possibly result from either intense rainfall (and sizable kinetic energy input) or wet 

antecedent soil moisture conditions. Obviously, higher intensity would enhance 

particulate loss but the role of wetter antecedent conditions on particulate loss is 

unclear. Therefore, certain changes in the magnitude of qp may be unrelated to 

changes to L, resulting in its diminished predictive value in comparison to KE30 and 

the weak significance of qp. This is seen in our qualitative example in Figure 4.2 

where the same qp is associated with different TSS concentrations. 
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4.6 Evaluation of BUWO Models 

The regression models in the previous section suggested that the magnitude of 

particulate load in storm water is not explained by antecedent dry days (Tdry). 

However, BUWO models are specifically formulated to use Tdry to predict loads. Thus, 

we ask why BUWO models have proved suitable in application despite the failure of 

Tdry to predict loads (Charboneau and Barrett 1998, Sutherland and Jelen 2003, Vaze 

and Chiew 2003).  

 

From the regression models we saw that L is closely correlated to V. A process model 

assuming constant available mass (e.g. Eqn. 2) functionally assumes all variation in L 

is dependent on V and none on Tdry. In this section we evaluate under what 

circumstances BUWO models could be simplified to a wash-off model with constant 

available mass (herein called the “constant mass model”). 

 

Applying a BUWO Model to the Spring Harbor Catchment 

Here, we compare the particulate loads estimated directly from a BUWO model (Eqn. 

1) and constant mass model (Eqn. 2) to observed loads from the 19 near-consecutive 

storms in the Spring Harbor watershed. Compared to the regression models, this is a 

more rigorous assessment of the role of antecedent dry days because the BUWO 

model accounts for the full history of the BUWO sequence. Tdry in the regression 

models only reflects the time since the last storm event occurred and does not account 

for the magnitude of the previous rain even. Large storms may have been preceded by 

very small storms that reset Tdry, but which did not remove a large amount of 

particulate.  
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Using a nonlinear fitting routine in Matlab (Mathworks Inc.), we found that neither the 

BUWO model nor the constant mass model could explain variability in L any better 

than assuming a constant loss from each storm event. The largest observed event loads 

(the events on 5/28/02 and 8/21/02 in Table 4.1) correspond to neither the largest 

discharge volumes nor the longest duration as represented by Tdry, the only drivers on 

which the models are dependent. This outcome is somewhat surprising considering the 

relatively strong link between V and L found in Section 4. However, radar data was 

not available for the two anomalous events (5/28/02 and 8/21/02). These storms may 

be instances where KE30 or some other unidentified factor is critically important to 

estimating L.  

 

In the remainder of this section, we assess when the BUWO models reported in the 

literature (Chen and Adams 2007, Easton et al. 2007, Butler and Adams 2000) are 

indistinguishable from constant mass models.  

 

Relating Constant Mass and BUWO Models 

To obtain more general insight into similarities in output from BUWO and constant 

mass models, we compare various model parameterizations to determine when the 

BUWO and constant mass models may generate similar load predictions. Specifically, 

we calculate the correlation (r) between output from BUWO and constant mass 

models for a range of k
*
 and ][

A
QE⋅α  values selected from the literature (Chen and 

Adams 2007, Easton et al. 2007, Butler and Adams 2000), where E[QA] is the average 

daily runoff amount over a year ( ∑ ∑∆∆= tttA qQE ττ /][ ). We use k
*
 (instead of 

just k) to make the comparison independent of m0. In essence, m0 scales the absolute 

magnitude of the wash-off and build-up processes, but m0 is not important in assessing 

the correlation between BUWO and constant mass models. We use ][
A

QE⋅α  (instead 
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of just α) because it is a more general parameter accounting for possible compensating 

effects between α and E[QA] across different watersheds (e.g. a wet region with a 

small α may be equivalent to a dryer region with a higher α). . 

 

We evaluated 300 unique sets of k
*
 and ][

A
QE⋅α  for both the BUWO (Eqn. 1) and 

constant mass (Eqn. 2) models using the historical discharge time series from the 

Spring Harbor catchment as the driver. For each of the 300 paired simulations, the 

constant mass model (Eqn. 2) uses the same α as the BUWO model; the constant mass 

model is independent of k
*
. (Note, because we are only evaluating the correlation 

between models, the constant mass model does not even actually need α specified). 

The correlation r was calculated on the loads estimated by the BUWO and constant 

mass models for the 19 summer storm events during 2002 in the Spring Harbor 

catchment. For the Spring Harbor catchment, ][
A

QE = 1.12 mm day
-1

. 

 

Figure 4.4 shows contour lines of r for a plot of ][
A

QE⋅α  (day
-1

) versus k
*
 (day

-1
).The 

quantity k
*
 is the rate constant for particulate build-up. Given that storms in the 

Midwest occur about once per week, k
*
 of greater than one implies that particulate 

should nearly always build-up to the surface maximum, m0, before the next storm. In 

such a case there would be little difference between a BUWO model and a constant 

mass model. As shown in Figure 4.4, when k
*
>1 day

-1
, r approaches 1.  
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Figure 4.4.  Correlation (indicated by the isolines) between storm event particulate 

loads estimated from constant mass (Eqn. 2) and BUWO models (Eqn. 1) for a range 

of  k
*
 and ][

A
QE⋅α  values. The model simulations are driven by 2002 discharge data 

from the Spring Harbor catchment, Madison, Wisconsin. 

 

The quantity ][
A

QE⋅α  is the rate constant of average daily particulate loss. ][
A

QE⋅α  

can be large when either α  or ][
A

QE is large. Large ][
A

QE  results from sizable 

annual runoff due to either frequent rainfall or a high density of impervious surface in 

the catchment. Alternatively, large α  implies the surface readily loses particulate. If 

][
A

QE⋅α is less than 0.1 day
-1

, there is little loss with each storm event and available 

particulate remains near an equilibrium value. In this case, again, there would be little 
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difference between a BUWO model and a constant mass model. As shown in Figure 

4.4, when ][
A

QE⋅α <0.1 day
-1

, r approaches 1.  

 

When ][
A

QE⋅α > 0.1 day
-1

, event loss becomes sizable and the available particulate 

mass can vary greatly between storm events. Only if k
*
 is commensurately increased 

will mass recover enough between storms so that the available mass at the beginning 

of each storm event remains relatively constant.  Thus, to keep the same r with an 

increasing ][
A

QE⋅α , one must also increase k
*
, as seen in Figure 4.4. We provide an 

illustration of this interplay between k
*
 and ][

A
QE⋅α  in Figure 4.5. 

 

Figure 4.5 presents the magnitude of Mt over time for three different parameterizations 

of the BUWO model. The key feature to look at in each time series is the magnitude of 

Mt just before a downward drop marking a wash-off event. For the simulation 

resulting in r =0.85 (k
*
= 0.03 day

-1
; ][

A
QE⋅α = 0.12 day

-1
), the pre-event Mt remains 

relatively close to 5 kg. Keeping k
*
 constant and increasing ][

A
QE⋅α  results in a 

simulation of r=0.23 (k
*
= 0.03 day

-1
; ][

A
QE⋅α = 0.40 day

-1
) where the pre-event Mt 

fluctuates more widely. However, by increasing k
*
 to 0.58 day

-1
 while maintaining 

][
A

QE⋅α = 0.40 day
-1

, Mt fluctuations decrease and r=0.80. More quantitatively, the 

coefficient of variation of pre-event Mt values for the r=0.85 and r=0.80 simulations 

are 0.30 and 0.19 respectively while the coefficient of variation for the r=0.35 

simulation is 0.57. This comparison of the coefficient of variation values clearly 

indicates greater relative variability in the pre-event Mt of the r=0.23 simulation.  
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Figure 4.5. .Time series of Mt simulated using a BUWO model (Eqn. 1). The Mt 

represented by solid bold line (r=0.85) and the thin line (r=0.23) resulted from 

simulations with k
*
=0.03 day

-1
 and αE[QA] = 0.12 and αE[QA] = 0.40 day

-1
, 

respectively. The Mt represented by the bold dashed line (r=0.80) resulted from a 

simulation with k
*
=0.58 day

-1
 and αE[QA] = 0.40 day

-1
. Time zero corresponds to 

3/2/2003. 

 

Assessing BUWO Parameterizations in the Literature 

We can use the relationships established in our Figure 4.4 contour plot to assess 

whether the use of BUWO models reported in the literature could have been replaced 

by simpler constant mass models. These models were of the continuous, exponential 

form (Eqn. 4). However, since Eqn. 1 and 3 are nearly equivalent when ∆τ is small, 

we assume we can use the relationships in Figure 4.4 developed using simulations 

based on Eqn. 1 with ∆τ between 5 and 15 minutes. Additionally, we assume the 
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arrival time of storms in these other watersheds is reasonably similar to that of the 

storm events in the Spring Harbor watershed.  

 

Chen and Adams (Table 3, 2007) used k
*
= 0.0245 day

-1
 and α = 0.0112 mm

-1
 for 

modeling TSS wash-off in Ontario, Canada (these parameters are referred to 

asQFACT2 and RCOEF, respectively, in Chen and Adams 2007). The mean daily 

discharge was estimated as 0.40 mm day
-1

 (Chen and Adams 2007, Table 1 - mean 

rainfall and Table 2 - median runoff coefficient); resulting in ][
A

QE⋅α  = 0.044 day
-1

. 

Evaluating against Figure 4.4, we find the combination of parameters is near the 

bottom of the chart, clearly in a range where r approaches one.   

 

Butler and Davies (2000, p. 101) suggest ranges of k
*
 =0.2 to 0.4 day

-1
 and α = 0.1 to 

0.2 mm
-1

 for use in Britain.  Assuming 50% of the annual rainfall of 600 mm is 

converted to direct runoff in urban areas, ][
A

QE is approximately 0.80 mm day
-1

. The 

values of ][
A

QE⋅α  would range from 0.080 to 0.160 day
-1

. Evaluating against Figure 

4.4, the range of parameters used by Butler and Davies result in r values of 0.75 and 

greater.  

 

Easton et al. (2007) used k
*
= 6 day

-1
 and α=0.02 m

-1
 for modeling total dissolved 

phosphorus wash-off in central New York. While Easton et al. (2007) do not 

specifically model TSS, it is one of the few cases in the literature where the 

parameters associated with a BUWO model are fully reported, and we assume it is 

reasonably representative of how BUWO models are applied by others in practice. 

Based on pictorial information presented in Easton et al. (Figure 3, 2007), we assume 

a mean discharge of 0.010 m day
-1

, thus ][
A

QE⋅α =0.0002 day
-1

. Evaluating against 
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Figure 4.4, we find the combination of parameters is off the bottom of the chart in a 

range where r approaches one.   

 

Thus, all three examples have parameters in a range where BUWO models generate 

similar output as constant mass models. 

 

4.7 Discussion 

A moderate amount of variability remains unexplained in the wash-off model given by 

Eqn. 9 (R
2
 is 0.81). Additionally, unidentified processes limited our ability to model 

the sequence of 2002 storm events. These confounding factors may originate from a 

number of sources: sample mishandling, the finite number of samples used to 

construct rating curves for load estimates, failure of radar to represent actual rainfall 

kinetic energy at ground level, finer scale spatial and temporal variability than 

detected by the radar, or stochastic inputs of particulate matter.  

 

We wish to elaborate more on this final error source – stochastic inputs of particulate - 

since it returns to the question of how and where materials build-up in urban 

landscapes. In particular, we do not necessarily believe that the available mass is truly 

constant on urban landscapes, despite the similarity between BUWO and constant 

mass models under certain parameterizations. Instead, we would suggest that build-up 

is not deterministically related to antecedent dry days. For instance, build-up is surely 

dependent on such unpredictable occurrences as construction work or the input of 

vegetative debris from strong storms. Build-up is unlikely to occur at a steady rate 

each day. Additionally, in a watershed with a storm drainage network, in addition to 

particulate build-up on surfaces such as pavement, there is likely to be temporary 

storage within pipes, catch basins, junction boxes, and other infrastructure (see Ashley 
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et al. 1992, Reeves et al. 2004). Flushing of this accumulated material is likely to 

depend on a complex interaction between the amount and composition of the stored 

material and hydraulic processes in the pipe network. Either unpredictable inputs or 

sporadic flushing of the pipe network could account for the large, unexplained loads, 

such as those seen in the sequence of 2002 storm events.  

 

There is some question whether unpredictable inputs or sporadic flushing of pipes can 

ever be quantified sufficiently to be successfully included in a deterministic, process 

model. An evaluation of the uncertainty in a sewer water quality model applied in a 

watershed in Brussels found the model had no greater predictive capacity than the 

random drawing of pollutant concentrations from a probability distribution (Willems 

2006). This suggests that if any kind of stochastic process is involved, one can only 

make reliable estimates over a time frame long enough to allow the stochastic inputs 

to converge to a relatively stable mean in the running average. Thus, an approach such 

as using event EMCs drawn from a specific probability distribution - many times 

labeled as a “planning methods” - may actually provide more reliable estimates than 

the supposedly more physically accurate, BUWO models.  

 

If a modeler is confident that stochastic inputs are minor and wishes to construct a 

deterministic model to estimate event loads, new predictor variables will likely be 

needed because Tdry fails to capture the critical processes. Our analysis suggests that 

rainfall kinetic energy may be useful. Alternatively, as suggested by the correlation 

between KE30 and I (Table 4.4), high temporal resolution rainfall intensity data (at less 

than a one-hour time interval) could also be a suitable predictor variable. However, 

unlike Tdry which is readily calculated from the spacing between days with rainfall,  
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rainfall kinetic energy or intensity will require new data sets drawn from either 

NEXRAD radar or relatively rare, high resolution rainfall measurements.  

 

4.8 Conclusions 

We carried out two different analyses on a data set of TSS concentrations in storm 

water from a watershed in Madison, Wisconsin. First, by comparing several regression 

models, we found that the particulate load from storm events is best explained by the 

combination of event runoff volume and rainfall kinetic energy (R
2
=0.81). Event 

runoff volume alone explained the majority of the variation in particulate load 

between events (R
2
=0.69). Antecedent dry days, a traditional factor employed to 

explain variability in particulate load, had little explanatory value. The peak discharge 

in conjunction with runoff volume explained 77% of the variability in loads, but was 

only marginally significant (two-sided p-value=8%). It appears KE30 can potentially 

capture important differences in storm events not apparent from aggregate measures of 

storm events such as total volume, total rainfall, or average rainfall intensity.  

 

As a second analysis, an extensive simulation study examined when a build-up/wash-

off (BUWO) model yielded results similar to a constant mass model. We developed a 

contour plot relating k
*
 and ][

A
QE⋅α  to the correlation between BUWO and constant 

mass model losses to allow a simple assessment of whether build-up actually needs to 

be included in a BUWO model. We evaluated parameter sets from calibrated BUWO 

models for watersheds in Ontario, Canada; central New York; and Britain against our 

contour plot. For all three cases, the calibrated parameter values were in a range 

indicating that the BUWO models effectively functioned as constant mass models.  
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Despite various lines of evidence indicating Tdry has little value in explaining variation 

in particulate storm loads, build-up/ wash-off models are still widely used. Our limited 

assessment of build-up/ wash-off models suggests they have not been questioned by 

the engineers using them because they do not necessarily lead to unrealistic results. 

BUWO models have just been parameterized to behave similarly to a model with 

constant mass availability.  As long as event loads are predominantly determined by 

event volume (a reasonable assumption as demonstrated with our regression models), 

particulate loss could be simulated with a one parameter constant mass model 

( avgMk ⋅ ) instead of a three parameter model (k, α, and m0). Such simplification is 

consistent with recent efforts to identify dominant processes (Sivakumar 2004) to 

avoid problems of equifinality and undue uncertainty in model predictions (Sivapalan 

et al. 2003). However, if one is interested in trying to better capture variability in event 

loads, our findings suggest that use of rainfall kinetic energy may be warranted, which 

is consistent with agricultural soil erosion models.   
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APPENDIX 

 

 

A. Chapter 2 – Experimental Observations 

 
Run 1   ( 7/13/05 ) Run 2   ( 7/13-14/05 )

P =0.10 cm min
-1

P =0.15 cm min
-1

q = 300 mL min
-1

q = 300 mL min
-1

0.6 g initially appplied 0.6 g initially appplied

Time (sec) Rep. 1 Rep. 2 Time (sec) Rep. 1 Rep. 2 Rep. 3

45 0.026 0.02 45 0.036 0.004 0.011

90 0.018 0.04 90 0.031 0.023 0.035

135 0.051 0.05 135 0.070 0.073 0.128

180 0.075 0.074 180 0.092 0.108 0.116

225 0.095 0.08 225 0.070 0.106 0.089

270 0.089 0.096 270 0.045 0.09 0.041

315 0.063 0.08 315 0.018 0.043 0.017

360 0.044 0.064 360 0.014 0.021 0.013

405 0.029 0.032 initial 0.010 0.013 0.009

450 0.011 0.021 rinse 0.015 0.017 0.022

initial 0.013 0.03 Total 0.401 0.498 0.481

rinse 0.015 0.028

Total 0.529 0.615

Run 3  ( 6/30/05 )

P =0.15 cm min
-1

q = 305 mL min
-1

8 g initially appplied

Time (sec) Rep. 1 Rep. 2

45 0.989 0.991

90 1.400 0.857

135 1.310 1.092

180 0.769 1.154

225 0.645 1.102

270 0.601 0.797

315 0.625 0.503

360 0.340 0.412

405 0.269 0.219

450 0.111 0.117

initial 0.211 0.138

rinse 0.199 0.165

Total 7.469 7.547

Mass Loss (g)Mass Loss (g)

Mass Loss (g)
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B.1  Chapter 3 – Experimental Observations 

 
Lot 2 (K Lot) Lot 1 ( RR Lot)

Time (min) Run 1 Run 2 Time (min) Run 1 Run 2

2.5 0.063 0.129 1 0 0

4.5 0.113 0.323 2 0.134 0.077

5.33 0.215 0.275 3.25 0.279 0.478

6.17 0.351 0.335 4 0.401 0.55

7 0.417 0.331 4.5 0.512 0.486

8.08 0.486 0.426 5.08 0.496 0.417

9.16 0.362 0.352 5.58 0.41 0.349

10.41 0.336 0.259 6.16 0.351 0.302

11.84 0.301 0.262 7 0.455 0.48

13.16 0.223 0.258 8.16 0.513 0.441

15.41 0.262 0.249 9.16 0.362 0.279

17.33 0.194 0.180 10.43 0.241 0.224

19.84 0.195 0.149 11.58 0.116 0.125

21.5 0.106 0.089 13.16 0.101 0.094

24 0.100 0.071 14.92 0.056 0.065

26.92 0.085 0.096 17.42 0.053 0.044

30 0.074 0.055 initial 0.176 0.06

35.84 0.101 0.100 rinse 0.033 0.049

39.16 0.047 0.044 Total 4.689 4.52

initial 0.295 0.210

rinse 0.146 0.150

Total 4.472 4.343

Mass Loss (g) Mass Loss (g)
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B.2  Chapter 2 – Matlab Code  
 

%Analyt_R31 - A program to plot solutions to the Kolmogorv-Feller 

Equations  
%describing stochastic movement of a particle. The program makes use 

of a  
%solution determined by Lisle et al, 1998.  
%Here we use a sum of convolutions to solve a double rate process. 

  

  
x=.35; %m   
T=2200;  %sec 
dt=1; 
dt2=5;     
DT=50; 

  
u=.1888;  %m/s    
k=9.25;  %settling rate (1/sec) 17.2  20 
h2=.038; %ejection rate (1/sec) with Kimpact=5   1.5 
h3=.0021; %.15 
f2=0.98; 
f3=.02; 

  

  
OutputTime=round(KTimeShift*60); 
OutNum=length(OutputTime); 

  
%Rate 1 Term---------------------------------------------------------

-- 
for i=1:OutNum 

  
    t=OutputTime(i); 

     
    time(t)=t; 

     
    if t<=(x/u)   % assures no uplsope flow 
       t % counter 
       p3(t)=0; 
       r3(t)=p1(t)*u; 
    else 
        tau=h3*(t-(x/u)); 
        Epsi=k*x/u; 

  
        Product=tau*Epsi*f1; 
        BesselInput=2*realsqrt(Product); 
        Bessel=mfun('BesselI',1,BesselInput); 

  
       p3(t)=h3/u*exp(-Epsi-tau)*sqrt(Epsi*f3/tau)*Bessel; 

  
       r3(t)=p3(t)*u; 
    end  %if 

     
end % for Rate 1 
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%Rate 2 Term---------------------------------------------------------

--- 

  
for i=1:OutNum 

  
    t=OutputTime(i); 

     
    time(t)=t; 
    if t<=(x/u) 

         
       t 
       p2(t)=0; 
       r2(t)=p2(t)*u; 
    else 

  
        tau=h2*(t-(x/u)); % 
        Epsi=k*x/u; 

  
        Product=tau*Epsi*f2; 
        BesselInput=2*realsqrt(Product); 
        Bessel=mfun('BesselI',1,BesselInput); 

  
       p2(t)=h2/u*exp(-Epsi-tau)*sqrt(Epsi*f2/tau)*Bessel;  %when tau 

large, goes to zero as long as Bessel not infinite 

  
       r2(t)=p2(t)*u; 
    end  %if 

     
end % for Rate 2 

     
%Convolution 2/3-----------------------------------------------------

---- 
for i=1:OutNum 
t=OutputTime(i); 

     
      i=1; 
      Convo_sum=0; 
      for tau=1:dt:t+1 

     
        if tau<=(x/u)+1 
            Convo_sum=0+Convo_sum; 

             
        elseif tau>=t-(x/u)+1     % removed -(x/u) 

         
         Convo_sum=0+Convo_sum;    

             
        else     

             
        tau2=h2*((tau-1)-(x/u)); 
        tau3=h3*(t-(x/u)-(tau-1));   % removed -(x/u) 
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        Epsi=k*x/u; 

  
        Product1=tau2*f2*Epsi; 
        BesselInput1=2*realsqrt(Product1); 
        Bessel1=mfun('BesselI',1,BesselInput1); 

         
        Product2=tau3*f3*Epsi; 
        BesselInput2=2*realsqrt(Product2); 
        Bessel2=mfun('BesselI',1,BesselInput2); 

  
        Convo_sum=h2*h3/u*exp(-Epsi)*exp(-tau2)*exp(-tau3)... 
            *sqrt(Epsi*f2/tau2)*sqrt(Epsi*f3/tau3)... 
            *Bessel1*Bessel2*dt+Convo_sum; 

  
        end % elseif 

        
      end  %for tau 

     
      p23(t)=Convo_sum; 
      r23(t)=p23(t)*u;    

     
   end %for t Convolution 23 

  

  
% Output-------------------------------------------------------------

--- 

  
% Observed 
plot(KTimeShift*60,LossRateK1/60/3.7, 's'); 
hold on 
plot(KTimeShift*60,LossRateK2/60/3.7, 's','MarkerFaceColor','k'); 
axis([0 T 0 .4e-2]) 
xlabel('Time (sec)'); 
ylabel('Nondimensional Mass Loss at L=35 cm (1/sec)'); 
%title('Breakthrough Curve for Lot 2 Surface'); 

  
% Model 
for l=1:OutNum 
    Output(l)=r2(OutputTime(l))+r3(OutputTime(l))+r23(OutputTime(l)); 
   Outputr2(l)=r2(OutputTime(l)); 
   Outputr3(l)=r3(OutputTime(l)); 
   Outputr23(l)=r23(OutputTime(l)); 
end 

  
plot(OutputTime, Output,'k','linewidth',2); 
plot(OutputTime, Outputr2,'g--'); 
% plot(OutputTime, Outputr3,'g--'); 
plot(OutputTime, Outputr23,'r--'); 
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%MT_1_13_062 
%Description:   Quantifies particulate wash-off from a rough, 

impervious 
%surface. Applied for scenario with >2 bins when analytical solution 
%cannot be run efficiently.  

  

  
% ---------------Constants---------------------------------- 

  
L=2000; % plane length (cm) 
W=10; %plane width (cm) 
Q=10; %inflow rate (mL/min)  
Pq=15; % precip (mL/min) 
P=Pq/10.5/60; %precip rate (cm/min) 
P=.03; 
RoM=.01; %initial particle spatial density in application area (g/cm) 

.45 

  
frac1=.70; %fraction of surface with shallow crevice .47 
frac2=0.2; %.42 
frac3=.1; %.11 
a1=150; %drop effectiveness for crevice type 1 400 
a2=20; %drop effectiveness for crevice type 2  25 
a3=2; %drop effectiveness for crevice type 3  7 

  
ddthresh=100*W*frac3*1.37;  %depth*width*ro*frac3  .05  why 1.37 - 

bulk density 
dthresh=100*W*frac2*1.37;  %.05 

  
vset=.5; % settling veloc. (cm/min) 170 % 225 micron sand 
f_thresh=100*W; %.03    

  
dt=.0005; %.0002 time step (min) for .5 mm flow, .0004 sec settling 

time (.00025) 
T=40; % end time (min) 
DT=.25; % reporting interval (min) 

  
Time(1)=DT; 
QMinP(1)=0; 

  
%-------------Water Balance (dx determination)-------------- 

  
q(1)=Q; 
i=1; 
l=0; 

  
while l<L 
    [V(i),D(i)]=Mannings(q(i)); 
    dx(i)=V(i)*dt; 
    l=l+dx(i); 
    q(i+1)=dx(i).*P.*W+q(i); 
    %q(i+1)=q(i); 
    i=i+1;     
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end %while 

  
TotalCells=i-1; %sets total number of cells in system 

  
%---------Create Arrays------------------------------------------- 

  

  
h=zeros(TotalCells,(DT/dt)); 
e1=zeros(TotalCells,(DT/dt)); 
e2=zeros(TotalCells,(DT/dt)); 
e3=zeros(TotalCells,(DT/dt)); 
Mg=zeros(TotalCells,(DT/dt+1)); 
Md=zeros(TotalCells,(DT/dt+1)); 
Mdd=zeros(TotalCells,(DT/dt+1)); 
Ms=zeros(TotalCells,(DT/dt+1)); 

  

  
%----------Initial Mass Distribution---------------------------------

---- 

  
i=1; 
appL=0; %application zone length counter 
MTot=0; 

  
while appL<2000 % where 20 is application zone length 
    Mg(i,1)=dx(i)*frac1*RoM; 
    Md(i,1)=dx(i)*frac2*RoM; 
    Mdd(i,1)=dx(i)*frac3*RoM; 
    appL=dx(i)+appL; 
    MTot=MTot+Mg(i,1)+Md(i,1)+Mdd(i,1); % a check on mass amount 

applied - should be approx. 10 g 
    i=i+1; 
end %while 

  
AppCells=i; % sets point at which cells have no initial application 

  
j=0; 
for j=AppCells:TotalCells 
    Mg(j,1)=0; 
    Md(j,1)=0; 
    Mdd(j,1)=0; 
end % for 

  

  
%-----------Initial Suspended Mass Distribution (t=1)-------------- 

  
x=0; 
for x=1:TotalCells 
    Ms(x,1)=0; 
end % for 
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%----Establish first set of initial values-------------------------- 

  
InitMs=Ms(:,1);   % changed 1 to 2 
InitMg=Mg(:,1); 
InitMd=Md(:,1); 
InitMdd=Mdd(:,1); 

  
%-----start interval calculations 

  
i=1; 
for i=1:T/DT 

  
    i 

  
    %------at x=1 for all t>1----------------------------------------

--- 

  
    Ms(:,1)=InitMs; 
    Mg(:,1)=InitMg; 
    Md(:,1)=InitMd; 
    Mdd(:,1)=InitMdd; 

     

     
    for t=2:(DT/dt+1) 

   
    h(1,t)=vset*Ms(1,t-1)/D(1); 
    if (h(1,t)*dt)>Ms(1,t-1)  
        h(1,t)=Ms(1,t-1)/dt;     
    end % if/else 

        

     
    if Mg(1,t-1)>(f_thresh*dx(1)*frac1) 
    e1(1,t)=a1*P*f_thresh*dx(1)*frac1; 
    else 
    e1(1,t)=a1*P*Mg(1,t-1); 
    end 

         
    if Md(1,t-1)>(dthresh*dx(1)*frac2) 
        e2(1,t)=a1*P*f_thresh*dx(1)*frac2; 
    elseif Md(1,t-1)>(f_thresh*dx(1)*frac2) 
        e2(1,t)=a2*P*f_thresh*dx(1)*frac2; 
    else 
        e2(1,t)=a2*P*Md(1,t-1); 
    end 

        

     
    if (Mdd(1,t-1)/dx(1))>ddthresh 
    e3(1,t)=a2*P*f_thresh*frac3*dx(1); 
    elseif (Mdd(1,t-1)/dx(1))>(f_thresh*frac3) 
    e3(1,t)=a3*P*f_thresh*frac3*dx(1); 
    else 
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    e3(1,t)=a3*P*Mdd(1,t-1); 
    end %if/else 

     

     
    if (e1(1,t)*dt)>Mg(1,t-1) 
        e1(1,t)=Mg(1,t-1)/dt; 
    end % if/else 

     
    if e1(1,t)<=0 
        e1(1,t)=0; 
    end 

     
    if (e2(1,t)*dt)>Md(1,t-1) 
        e2(1,t)=Md(1,t-1)/dt; 
    end % if/else 

     
    if e2(1,t)<=0 
        e2(1,t)=0; 
    end 

  
    if (e3(1,t)*dt)>Mdd(1,t-1) 
        e3(1,t)=Mdd(1,t-1)/dt; 
    end % if/else 

     
    if e3(1,t)<=0 
        e3(1,t)=0; 
    end 

     
    Ms(1,t)=(.5*e1(1,t)+.5*e2(1,t)+.5*e3(1,t))*dt;% no Ms(1,t-1) 

since clean water; -h(1,t) 
    Mg(1,t)=-.5*e1(1,t)*dt+Mg(1,t-1);  %frac1*.5*h(1,t)*dt 
    Md(1,t)=-.5*e2(1,t)*dt+Md(1,t-1);  %frac2*.5*h(1,t)*dt 
    Mdd(1,t)=-.5*e3(1,t)*dt+Mdd(1,t-1); %frac3*.5*h(1,t)*dt 

         
    end %for 

  
    %------for x>1 for all t>1---------------------------------------

- 

     
    for t=2:(DT/dt+1) 

             
        e1old=e1(1,t); 
        e2old=e2(1,t); 
        e3old=e3(1,t); 

         
        for x=2:TotalCells 

         
            h(x,t)=vset*Ms(x,t-1)/D(x); 
            if (h(x,t)*dt)>Ms(x,t-1)  
                h(x,t)=Ms(x,t-1)/dt; 
            end % if/else 
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            Mg1=Mg(x,t-1); 
            Md1=Md(x,t-1); 
            Mdd1=Mdd(x,t-1); 

             
           if Mg1>(f_thresh*dx(x)*frac1) 
            e1loc=a1*P*f_thresh*dx(x)*frac1; 
           else 
            e1loc=a1*P*Mg1; 
           end 

            
           if Md1>(dthresh*dx(x)*frac2) 
            e2loc=a1*P*f_thresh*dx(x)*frac2; %should fthresh be here? 
           elseif Md1>(f_thresh*dx(x)*frac2) 
            e2loc=a2*P*f_thresh*dx(x)*frac2; % a1 or a2? 
           else 
            e2loc=a2*P*Md1; 
           end     

            

             
           if (Mdd1/dx(x))>(ddthresh*frac3) 
            e3loc=a2*P*f_thresh*frac3*dx(x); 
           elseif (Mdd1/dx(x))>(f_thresh*frac3) 
            e3loc=a3*P*f_thresh*frac3*dx(x); % a2 or a3 
           else 
            e3loc=a3*P*Mdd1; 
           end %if/else 

             

                  
            if (e1loc*dt)>Mg1 
                e1loc=Mg1/dt; 
            end % if/else 

             
            if (e2loc*dt)>Md1 
                e2loc=Md1/dt; 
            end % if/else 

            
            if (e3loc*dt)>Mdd1 
                e3loc=Mdd1/dt; 
            end % if/else 

         
            Ms(x,t)=(.5*e1loc+.5*e1old)*dt+(.5*e2loc+.5*e2old)*dt+... 
                (.5*e3loc+.5*e3old)*dt-(.5*h(x,t)+.5*h(x-

1,t))*dt+Ms(x-1,t-1); 
            Mg(x,t)=-(.5*e1loc+.5*e1old)*dt+frac1*(.5*h(x,t)+.5*h(x-

1,t))... 
                *dt+Mg(x,t-1); % should this be Mg(x-1,t-1)? 
            Md(x,t)=-(.5*e2loc+.5*e2old)*dt+frac2*(.5*h(x,t)+.5*h(x-

1,t))... 
                *dt+Md(x,t-1);  
            Mdd(x,t)=-(.5*e3loc+.5*e3old)*dt+frac3*(.5*h(x,t)... 
                +.5*h(x-1,t))*dt+Mdd(x,t-1);  

             
            e1old=e1loc; 
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            e2old=e2loc; 
            e3old=e3loc; 

                       
        end % x for 

             

         
        MLoss(1)=0; 
        MLoss(t)=Ms(TotalCells,t-1)+MLoss(t-1); 
                  %MLoss - think of as if calculating 

Ms(TotalCells+1,t) 

        
    end % t for 

  
    QMinP(i)=MLoss((DT/dt)+1)*(1/15); % calcs. cumul loss during int 

per sec 
    Time(i)=i*DT*60;  % in min. 

  
% Total Mass 
%Sum=sum(Ms(:,DT/dt+1)) 
Total=sum(QMinP)*15+sum(Ms(:,DT/dt+1))+sum(Mg(:,DT/dt+1))+... 
    sum(Md(:,DT/dt+1))+sum(Mdd(:,DT/dt+1)) 
    Total=1; 
%------End Interval  
InitMs=1/Total*Ms(:,DT/dt+1); 
InitMg=1/Total*Mg(:,DT/dt+1); 
InitMd=1/Total*Md(:,DT/dt+1); 
InitMdd=1/Total*Mdd(:,DT/dt+1); 
%InitMgCum=MgCum(DT/dt); 

  
end %for 

  
%----Code to plot profiles instead of breakthrough ------------------ 
%length(1)=dx(1); 
%for i=2:TotalCells 
%    length(i)=dx(i)+length(i-1); 
%end 
%profile=Mg(:,1000)'./dx; 
%plot(length,profile); 

  
%xlabel('Position (cm.)'); 
%ylabel('Mass (g/cm)'); 
%axis([0 60 0 .6]); 
%--------------------------------------------------------------------

------ 

  
plot(Time,QMinP/3.7,'r-','LineWidth',2);  % divide QminP/.206? 
%axis([0 T*60 0 .05]); 
hold on 
 %plot(UniformTime*60,UniLossRate/60,'s'); 
 plot(KTime*60,LossRateK2/60/3.7,'s','MarkerFaceColor','k'); 
  plot(KTime*60,LossRateK1/60/3.7,'s'); 
%plot(LongTime*60,(Long1adj),'s'); 
%plot(LongTime*60,(Long2adj),'s','MarkerFaceColor','k'); 
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xlabel('Time (sec)'); 
ylabel('Mass Loss (g/sec)'); 
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B.3- Chapter 2 Derivation of Selected Items 

 

I. Analytical Solution to Two Bin MRMT Model 

 

For a two bin MRMT model, Eqn’s 1 and 2 in Chapter 2can be rewritten as:  
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where hi is an ejection rate parameter and k is a capture rate parameter. 
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Using the convolution property in combination with the inverse transform (Oberhettinger 

& Badii, 1973, 5.66) 
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Eqn. B3 can be inverted to Eqn. 4 in Chapter 2.  

 

 

II. Derivation of ueff and D in terms of hi and k 

 

Taking Eqn.’s 1 and 2 in Chapter 2 and putting Eqn. 1 in terms of p only,  
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Substituting into Eqn. 1 and cutting off terms greater than 2nd order: 
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One can transform the t derivative into an x derivative using the relation: 
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Resulting, in the equation: 
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with the scalar of the first order x derivative analogous to effective velocity, ueff, and 

the scalar of the second order x derivative analogous to a dispersion constant, D, 

similar to Lisle et al. (1998). 

 

 


