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Vitamin D, a pleiotropic hormone essential for calcium homeostasis, has 

generated widespread interest due to associations with numerous health outcomes. 

Cross-sectional studies of vitamin D and lung function reported strong, positive 

associations, but representative, longitudinal population-based studies are lacking, 

and biological mechanisms are unclear. Lung function decline is the primary 

characteristic of chronic obstructive pulmonary disease (COPD), the 3rd leading 

cause of mortality in the United States; given limited treatments to delay 

progression, identifying preventative approaches is critical. This work aims to 

elucidate determinants of vitamin D status, and investigate the role of vitamin D 

as a determinant of lung function. 

First, we explored genetic and non-genetic determinants of serum vitamin 

D [25(OH)D] in African Americans. Approximately 25% of 25(OH)D variability 

was explained by non-genetic factors, and multivitamin supplement use was the 

strongest predictor. A single nucleotide polymorphism (SNP) in the vitamin D 

binding protein modified the effect of multivitamin supplement use on 25(OH)D. 

About 23% of 25(OH)D variability was estimated to be attributable to genetic 



 

 

variation, with replication in a separate cohort. However, the influence of genetic 

ancestry made an exact estimate impossible; further exploration of genetic 

determinants of 25(OH)D in African Americans is needed.  

Second, potential mechanisms for vitamin D—lung health associations 

were explored through a cross-sectional study of SNPs in 13 candidate vitamin D-

responsive genes. SNPs in SGPP2, a phosphatase in the sphingosine-1-phosphate 

signaling pathway, were associated with lung function and COPD risk. Further, 

we identified an association between SNPs in SGPP2 and lung-tissue specific 

expression of SGPP2. While specific mechanisms remain to be investigated, 

SGPP2 is a promising vitamin D-responsive candidate gene. 

Finally, associations between variants in vitamin D metabolic genes, 

serum 25(OH)D and lung function were explored in the Framingham Heart Study. 

SNPs in four vitamin D metabolic genes were associated with rate of change in 

FEV1, but there was no association between 25(OH)D and rate of change in FEV1 

in the Third Generation cohort, a group of largely vitamin D sufficient middle-

aged adults. Future studies should consider the influence of baseline nutritional 

status and underlying genetic variation on vitamin D—disease associations. 
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CHAPTER 1 

 

INTRODUCTION 

 

Vitamin D: Background & Metabolism 

Vitamin D is a pleiotropic hormone classically associated with calcium homeostasis and 

bone health (1, 2). Observational studies demonstrating associations between vitamin D status 

and extra-skeletal health outcomes were the motivation for an ongoing, large-scale randomized 

controlled trial of vitamin D supplementation in relation to cancer and cardiovascular endpoints 

(3). It is biologically plausible that vitamin D plays a role in multiple health outcomes, as 

approximately 3% of the genome is directly or indirectly responsive to the effects of this 

metabolite (4). Vitamin D status, assessed via the circulating biomarker 25-hydroxyvitamin D 

[25(OH)D], is of clinical interest both as a biomarker of status, which reflects total endogenous 

and exogenous sources of vitamin D, and as a biomarker of exposure, which can be studied in 

relation to health outcomes (1) in the search for causal associations to guide preventative action.  

The primary sources of vitamin D are diet, particularly intake of vitamin D-fortified 

foods and supplements, and skin synthesis in response to sun exposure. Endogenous skin 

production of vitamin D is influenced by a number of factors including skin pigmentation, 

season, and latitude of residence (2, 5). Vitamin D is hydroxylated to 25(OH)D in the liver, and 

hydroxylated a second time to the active vitamin D metabolite, 1,25-dihydroxyvitamin D 

[1,25(OH)2D], in the kidney. 1,25(OH)2D is also synthesized locally in tissues throughout the 

body, including lung tissue (2, 6). In the nucleus, 1,25(OH)2D forms a complex with the vitamin 

D receptor (VDR) and the retinoid X receptor (RXR), subsequently binding to the genome to 



	
   2	
  

regulate gene transcription. Hepatic production of 25(OH)D is largely unregulated and this 

molecule has a long half-life, making 25(OH)D the best circulating biomarker of vitamin D 

status (7). Genetic variation in vitamin D metabolic genes has been associated with serum 

25(OH)D in large, genome-wide association studies (GWAS) in Caucasian populations (8, 9) 

and family-based studies estimate that vitamin D heritability is between 29-80% (10, 11), 

suggesting a strong genetic influence on serum 25(OH)D levels.  

 

Dietary Reference Intakes for Vitamin D 

In response to enormous public interest and emerging research on the health benefits of 

vitamin D, the Institute of Medicine (IOM) conducted a comprehensive review of the evidence 

for benefits of vitamin D on health outcomes. The IOM review, completed in 2010, determined 

that a causal role for serum 25(OH)D can only be definitively established for bone health 

outcomes at present. Based on bone health outcome data, the IOM concluded that individuals 

with serum 25(OH)D concentrations <12 ng/mL are at risk of vitamin D deficiency, and 

individuals with serum 25(OH)D concentrations <20 ng/mL are at risk of vitamin D inadequacy. 

According to the IOM, “practically all persons” are sufficient at serum 25(OH)D concentrations 

of ≥ 20 ng/mL and above (5). However, significant controversy persists regarding optimal 

vitamin D status (12). Dietary Reference Intakes (DRI) of vitamin D to achieve 25(OH)D 

sufficiency are 600 IU/day for ages 1-70, and 800 IU day for ages 70+ (5); the upper limit is 

4,000 IU for individuals greater than 9 years. Up to 1/3 of the United States population has a 

serum 25(OH)D concentration <20 ng/mL according to national survey data, and non-Hispanic 

black and Mexican-American persons were more likely to be at risk of vitamin D deficiency or 

risk of inadequacy compared to non-Hispanic white persons (13).  
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Vitamin D and Lung Function 

A 2005 study demonstrated a strong, positive association between serum 25(OH)D and 

cross-sectional lung function in 14,000 participants of the National Health and Nutrition 

Examination Survey (NHANES) III. These intriguing results sparked interest in further 

exploration of vitamin D and lung function (14). Decreased lung function is the primary 

characteristic of chronic obstructive pulmonary disease (COPD), which is currently the 3rd 

leading cause of mortality in the United States and affects over 14 million Americans (15, 16). 

COPD is characterized by irreversible airflow limitation and chronic inflammation in the lung, 

and it is reliably diagnosed by a test of lung function, specifically the forced expiratory volume 

in the first second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) (17, 18). 

Although cigarette smoking is the strongest risk factor for COPD, about 15% of COPD arises in 

persons without obvious smoke exposure, and not all smokers develop COPD, confirming the 

importance of other mechanisms including genetic variation and nutritional status (19). There are 

few effective treatments for COPD beyond smoking cessation; thus, identifying nutritional 

therapies that could slow the progression or even prevent COPD is a critical public health need. 

Following the NHANES study, several other cross-sectional studies demonstrated similar 

associations of 25(OH)D and lung function (14, 20, 21), although one study in the Hertfordshire 

cohort did not replicate cross-sectional associations (22). Additionally, COPD patients have a 

higher prevalence of vitamin D deficiency compared to healthy controls (23) and lower vitamin 

D status was associated with a higher risk of respiratory infections in two cohort studies (21, 24). 

Longitudinal evidence for vitamin D—lung function associations has been inconclusive; studies 

in COPD populations showed no association between baseline 25(OH)D and subsequent rate of 
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lung function decline (25), or baseline 25(OH)D and risk of COPD exacerbation (acute 

worsening of symptoms) over a 1-year follow-up (25). However, a recent study in an elderly 

male cohort reported steeper lung function decline in current smokers with 25(OH)D ≤ 20 ng/mL 

compared to smokers with higher 25(OH)D (26), and high-dose vitamin D supplementation 

reduced exacerbations in COPD patients with severe vitamin D deficiency (27), suggesting there 

are population subgroups with a greater potential to benefit from improved vitamin D status. 

However, all published longitudinal studies are limited because they specifically studied only 

smokers, COPD patients, restricted age groups, or males, and associations between vitamin D 

and the rate of change in lung function in representative population-based cohorts remain 

unclear. 

 

Biological Mechanisms for Vitamin D—Lung Function Associations 

There is strong biological plausibility for a role of vitamin D in the lung compartment 

(28, 29). The active vitamin D metabolite, 1,25OH2D, is constitutively synthesized from 

25(OH)D in lung epithelial cells in vitro (6) and is involved in biological processes critical to 

lung health including inflammation and airway remodeling (28, 30, 31). Cigarette smoke and 

other irritants trigger the innate immune system, which is enhanced by 1,25OH2D-mediated 

expression of vitamin D-responsive genes, including the Toll-like co-receptor CD14 and the 

antimicrobial peptide cathelicidin (6, 32). Additionally, 1,25OH2D modulates the adaptive 

immune response through regulation of dendritic and T cell activation and differentiation (31). 

Expression of several metalloproteinases, important for lung tissue remodeling, is regulated by 

1,25OH2D in vitro (33). Treatment of bronchial smooth muscle cells with 1,25(OH)2D reduced 

the expression of metalloproteinases MMP-9 and ADAM-33 (34), which is of interest because 
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COPD patients have higher levels of MMP-9 compared to healthy controls (35, 36). Finally, 

genetic variants in the vitamin D binding protein, encoded by the GC gene, are associated with 

COPD risk (23, 37-40), and GC plays a role in alveolar macrophage activation (39).  

 

Overview of Dissertation Aims  

This dissertation explores 25(OH)D as a biomarker of status by investigating predictors 

of 25(OH)D in populations at high risk of inadequacy, and as a biomarker of exposure by 

studying the association of 25(OH)D with lung function outcomes. A research priority identified 

by the IOM is to explore the “causal role for vitamin D in non-skeletal health outcomes,” (5), 

and the three projects presented in this dissertation contribute to filling this evidence gap. Figure 

1 presents an epidemiologic framework for the dissertation research reported herein.  

Study 1 investigates the determinants of circulating 25(OH)D in the Health, Aging, and 

Body Composition (Health ABC) cohort, an elderly African American population at high risk for 

vitamin D inadequacy. Environmental predictors, including diet, demographic, and physical 

activity variables, are assessed for associations with 25(OH)D, GWAS-associated variants from 

studies in Caucasian populations are evaluated for associations with 25(OH)D in African 

Americans, and gene by nutrient interactions are explored. A genome-wide complex trait 

analysis investigates the association of all genotyped SNPs jointly with 25(OH)D. Results are 

described in Chapter 2.  

Study 2 explores potential mechanisms for the cross-sectional vitamin D—lung function 

associations through a hypothesis-oriented candidate gene study. This study builds on previously 

completed in vivo gene expression work, which identified genes differentially expressed in 

human lung epithelial cells by serum 25(OH)D status. Using a cross-sectional study design, 
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genetic variants in identified vitamin D-responsive genes are examined for association with lung 

function in the Health ABC cohort. Additionally, an expression quantitative trait loci (eQTL) 

analysis explores genetic variation across the candidate vitamin D-responsive genes in 

association with gene expression in a separate study population. Results of this project are 

described in Chapter 3.  

Lastly, study 3 extends the existing literature on vitamin D—lung function associations by 

investigating associations between vitamin D status and both cross-sectional and rate of change 

in lung function in the Framingham Heart Study. Both genetic variants in vitamin D metabolism 

genes, hypothesized to influence usual serum 25(OH)D status, and serum 25(OH)D are 

considered in association with lung outcomes. Given the limitations described earlier of 

published longitudinal vitamin D—lung function studies, this study contributes to an existing 

research gap by investigating this question in a large population-based family study 

encompassing both genders, a wide age range, and a mix of smokers and non-smokers. Results 

of this study are described in Chapter 4. 

Overall, this dissertation research contributes to a more complete understanding of predictors 

of serum 25(OH)D in African American populations, and further elucidates the association of 

vitamin D with cross-sectional and longitudinal lung function with an exploration of potential 

mechanisms. While these studies were not designed to assess directly the causality of vitamin 

D—lung function associations, taken together they present important data that can inform the 

design and interpretation of future randomized clinical trials, and ultimately contribute to 

inferences on causality needed to make public health program and policy decisions.  
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Figure 1.1 Epidemiologic framework for dissertation projects 
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ABSTRACT  

Background Low circulating 25-hydroxyvitamin D [25(OH)D] is prevalent in African 

Americans, but predictors of vitamin D status are understudied compared to Caucasian 

populations.   

Objective We investigated environmental and genetic predictors of circulating 25(OH)D in a 

population of approximately 1,000 elderly African Americans participating in the Health, Aging, 

and Body Composition (Health ABC) study.   

Design Regression analysis estimated the cross-sectional association of non-genetic 

(environmental) predictors with 25(OH)D. Single nucleotide polymorphisms (SNPs) associated 

with 25(OH)D in Caucasian genome-wide association studies (GWAS) were analyzed for 

association with serum 25(OH)D. Genome-Wide Complex Trait Analysis (GCTA) evaluated the 

association of all genotyped SNPs with serum 25(OH)D in Health ABC with replication in a 

separate cohort. 

Results Gender, study site, season of blood draw, body mass index, dietary supplement use, 

dairy and cereal consumption, Healthy Eating Index score, and walking > 180 minutes/week 

were associated with 25(OH)D at P<0.05, jointly explaining 25% of the variation in circulating 

25(OH)D. Up to 23% (95% CI: 0-52%) of phenotypic variation was estimated to be explained by 

total additive genetic variation, and this finding was replicated in a separate cohort. Although 

GWAS-identified SNPs from studies of Caucasians were not replicated in Health ABC African 

Americans, a gene x nutrient interaction was identified: the TT genotype of rs7041, a non-

synonymous SNP in GC, increased the odds of vitamin D insufficiency in multivitamin 

supplement users.  
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Conclusion Modifiable dietary and lifestyle predictors of serum 25(OH)D were identified in 

African Americans, and a gene x environment interaction was identified between the most 

significant predictor, multivitamin use, and the rs7041 genotype.  
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INTRODUCTION  

In addition to well-known roles in calcium absorption and skeletal outcomes, vitamin D 

regulates over 900 genes involved in physiological functions throughout the body (1, 2). Serum 

25(OH)D, the major circulating biomarker of vitamin D status (1), is converted to active vitamin 

D, 1,25OH2D, primarily in the kidney, but also in extra-renal tissues throughout the body (3). 

Serum 25(OH)D is derived from dietary intake (food or supplements) and skin exposure to 

ultraviolet radiation (1, 4). 

Approximately 30% of Americans are at risk of inadequate or deficient serum 25(OH)D, 

according to a recent NHANES report (5). Both African American and elderly populations are at 

high risk for vitamin D deficiency, due in part to a lower capacity for endogenous synthesis of 

vitamin D from sunlight (4, 6). In NHANES, 32% of non-Hispanic black adults were at risk of 

vitamin D deficiency [serum 25(OH)D <12 ng/mL] in comparison to only 3% of non-Hispanic 

white adults (5).  

While genetic and non-genetic predictors of 25(OH)D have been well-described in Caucasian 

populations (7-13), fewer studies have focused specifically on determinants of 25(OH)D in 

African Americans. Several modifiable predictors of serum 25(OH)D have been identified in 

African Americans, including intake of vitamin D-containing foods and supplements, sun 

exposure, and body mass index (BMI) (10, 14-20). Vitamin D status is heritable, and heritability 

estimates from twin and family-based studies range from 28-80%; while most estimates derive 

from Caucasian populations (21-24), a study in 42 African American families reported a 

heritability coefficient of 28% (16). Genome-wide association studies (GWAS) in Caucasians 

have identified genetic predictors of vitamin D status that explain between 1 and 4% of 

phenotypic variability (7, 8). In African Americans, only one published population-based 
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candidate gene study, limited by small sample size, investigated genetic predictors of vitamin D 

status (25).  

To date, no studies have investigated the respective contribution of both genetic and non-

genetic predictors to variability in serum 25(OH)D in elderly African Americans. Given that this 

population is at significant risk of vitamin D inadequacy, it is important to understand the 

relative contributions of modifiable and non-modifiable predictors of serum 25(OH)D.  For this 

study, we hypothesized that both environmental and genetic factors contribute to circulating 

serum 25(OH)D status in an elderly African American population, and our objective was to 

estimate the variability explained by genes and environment, respectively.  

 

SUBJECTS AND METHODS 

Study Population 

The primary analyses were in the Health, Aging, and Body Composition (Health ABC) 

cohort, which comprises 3,075 participants recruited between April 1997 and June 1998, aged 

70-79 at baseline and selected as a random sample of Whites and all Black Medicare-eligible 

residents of ZIP codes in and around Memphis, TN and Pittsburgh, PA. Eligibility criteria 

included the ability to walk one-quarter of a mile, climb 10 stairs, and perform activities of daily 

living without difficulty. Additionally, eligible participants were required to be free of life-

threatening disease with the intent to stay in the area for 3 or more years(19). The Institutional 

Review Boards (IRB) at the University of Memphis, Tennessee, and the University of Pittsburgh 

granted approval to conduct the Health ABC Study, and all participants provided written 

informed consent. The Cornell University Committee on Human Subjects approved the study 

reported herein. 



	
   19 

Health ABC comprised 1,281 African American participants. For the current study, those 

who did not return for the 12-month follow-up exam (N=46) were excluded due to missing data 

on both serum 25(OH)D and dietary intake. Additional exclusion criteria include missing a 

serum 25(OH)D measurement (N=126), abnormally high serum 25(OH)D (defined as 25(OH)D 

> 150 ng/mL; N=1), and end-stage kidney failure (defined as glomerular filtration rate <15; 

N=3). Participants missing key dietary data (N=116) were excluded from non-genetic analyses, 

leaving a total of 989 participants. 980 participants had genotype and serum 25(OH)D data, 

comprising the sample for genetic analyses.  

Data Collection 

Participant data on gender, education, smoking status, and other covariates were collected 

from a baseline survey administered by trained interviewers. Body Mass Index (BMI) and 

physical activity, assessed via self-report of minutes spent walking each week, were obtained 

from data collected at the 12-month follow-up visit.  

Trained interviewers assessed dietary intake at the 12-month follow-up visit, using a 

Block food-frequency questionnaire (FFQ) modified for the Health ABC Study by Block Dietary 

Data Systems (Berkeley, CA). Nutrient intakes and daily servings of food groups were estimated, 

and food group information was used to calculate a Healthy Eating Index (HEI) score ranging 

from 0-100 for each individual (26). The HEI estimates how well each participant’s diet matches 

U.S. Dietary Guidelines recommendations; Health ABC HEI scores were calculated based on 

compliance with the 1992 USDA Food Guide Pyramid (26, 27) and were grouped into “good” 

(HEI score >81), “needs improvement” (51-80), and “poor” (<51) (26). Dietary supplement use 

was also assessed at the 12-month follow-up visit. Further details are provided elsewhere (19, 

26). 
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In Health ABC, serum 25(OH)D was measured in fasting blood samples collected at the 

12 month follow-up visit. A two-step radioimmunoassay kit was used to measure 25(OH)D 

concentrations (25-HydroxyvitaminD 125I RIA Kit, DiaSorin, Stillwater, MN), with an 

interassay coefficient of variation of 6.78% (19). Season of blood draw was defined as winter 

(December-February), spring (March-May), summer (June-August), and fall (September-

November). 

 The Illumina Human 1M-Duo custom chip was used for genotyping in Health ABC; 

race-specific genotype imputation was performed with MACH version 1.0.16, using reference 

panel data from HapMap release 22 Build 36 (28). Studied SNPs were required to have minor 

allele frequency (MAF) >1%, Hardy-Weinberg p-values > 1x10-6, imputation quality scores 

greater than 0.3, and call rates > 95%.  

Statistical Analysis 

Bivariate regression analysis explored associations of demographic, dietary, and 

environmental predictors hypothesized to contribute to variation in serum 25(OH)D. Predictors 

associated with log-transformed 25(OH)D at P<0.05 were further evaluated in multivariate 

models to determine a final set of variables jointly associated with log-transformed 25(OH)D.  

All multivariate models were adjusted for age, gender, study site, and season of blood draw. 

Normality plots revealed a slightly right-skewed distribution of serum 25(OH)D. 

However, multivariate model results were equivalent for natural log-transformed and 

untransformed serum 25(OH)D phenotypes; significant predictor variables were the same, 

residuals from final models were approximately normally distributed, and model R2 differed by 

<1% between the two models. Thus, regression results from modeling the untransformed serum 

25(OH)D outcome are presented for ease of interpretation. 



	
   21 

 Single SNPs previously associated with 25(OH)D in GWAS of Caucasians (7, 8) (Online 

Supplement for details of candidate SNP selection) were tested for associations with serum 

25(OH)D in ordinary least squares linear regression models adjusted for age, gender, study site, 

season of blood draw, and ancestry principal components. Given results for log-transformed 

versus untransformed serum 25(OH)D phenotypes did not differ significantly, genetic analysis 

results are presented for the untransformed serum 25(OH)D phenotype for ease of interpretation. 

Models estimating genetic—serum 25(OH)D associations were adjusted for age, gender, season, 

site, and principal components only for two reasons: to maximize sample size, and to avoid 

adjusting for potential intermediate variables on the causal pathway between exposure (genetics) 

and outcome [serum 25(OH)D].  

 SAS version 9.3 (SAS Institute, Inc., Cary, North Carolina) was used for all genetic and 

non-genetic regression analyses, and all statistical tests were two-sided.  

 In analyses estimating the overall genetic contribution to serum 25(OH)D variability, all 

genotyped SNPs with a MAF >1% were tested jointly for association with serum 25(OH)D. The 

analysis used genome-wide complex trait analysis (GCTA) software, which is based on a linear 

mixed model approach (v. 1.04; for details of the method see (29)). GCTA uses the restricted 

maximum likelihood (REML) method to fit a linear mixed model estimating the variance in 

serum 25(OH)D explained by additive genetic variation. 91 distantly related Health ABC 

participants (genetic relatedness score >0.05) were removed from the data set prior to analysis, 

leaving a total of 889 participants for the GCTA analysis. The GCTA analysis was replicated in 

1,198 African Americans in MESA, after excluding 136 distantly related participants.  Models in 

both cohorts were adjusted for age, gender, study site, season of blood draw, and were run with 

and without further control for ancestry principal components; the log-transformed serum 
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25(OH)D phenotype was used for comparability across cohorts.  GCTA estimates from the two 

cohorts were meta-analyzed with METAL (30), using an inverse-variance weighted meta-

analysis model. 

 

RESULTS 

The mean serum 25(OH)D concentration in Health ABC was 20.7 ng/mL (Table 2.1), and 

the prevalence of Health ABC participants potentially at risk for 25(OH)D inadequacy (defined 

as serum 25(OH)D < 20 ng/mL) was 55%.  Serum vitamin D characteristics in the MESA 

replication cohort were nearly identical (mean 19.0 ng/mL and prevalence of participants 

potentially at risk for vitamin D inadequacy was 60%; assayed by HPLC-tandem mass 

spectrometry, Waters Xevo TQ mass spectrometer, Milford, MA; further details provided 

elsewhere (31)). Health ABC participant characteristics are further described in Table 2.1. 

Environmental Predictors of Circulating 25(OH)D 

Twenty-five percent of the variation in serum 25(OH)D in Health ABC African Americans 

was explained by a single multivariate model (Table 2.2), including predictor variables 

significantly associated with 25(OH)D at P<0.05 in single variable models. Although age had 

little or no association with serum 25(OH)D, male gender, residence in Memphis, and summer 

season of blood draw were all positively associated with vitamin D status. BMI had a non-linear 

association with serum 25(OH)D such that the strongest inverse association of BMI with 

25(OH)D status was observed in obese individuals. 

The strongest predictor of serum 25(OH)D status in the Health ABC population was 

multivitamin supplement use, which accounted for about 8% of the variability; the use of either 

vitamin D or calcium supplements also made significant contributions to the model. Both cereal 
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consumption and dairy consumption were significantly associated with serum vitamin D; 

furthermore, participants categorized as good on the HEI had about 3 ng/mL higher serum 

25(OH)D concentration compared to participants categorized as poor. Overall physical activity 

had little or no association with serum 25(OH)D, but walking briskly more than 180 

minutes/week was positively associated with serum status. Vitamin D intake (micronutrient data 

estimated from FFQ) was associated with serum 25(OH)D in bivariate models, but the 

association of this variable was captured by other dietary variables (e.g. dairy intake); thus, 

vitamin D intake did not remain significantly associated with serum 25(OH)D in multivariate 

models. We did not observe a significant association of smoking status with continuous serum 

25(OH)D.  

In a sensitivity analysis, 145 individuals at risk of vitamin D deficiency (defined as serum 

25(OH)D < 12 ng/mL) were removed from the analysis to explore the extent to which results 

were driven by individuals. Season of blood draw, cereal consumption, HEI category, and 

walking more than 180 minutes/week were no longer statistically significantly associated with 

serum 25(OH)D in multivariate models. Other model coefficients were somewhat attenuated 

although all were in the same direction and remained statistically significant (data not shown), 

and the model explained 21% of the variation in serum 25(OH)D.  

Genetic Predictors of Serum 25(OH)D 

Two recent GWAS of serum 25(OH)D in Caucasians identified genome-wide significant 

single nucleotide polymorphisms (SNPs) in or near CYP2R1, GC, and DHCR7/NADSYN1; we 

investigated the most significant SNPs from each study (total of 10 SNPs, only 8 of which were 

available in Health ABC data) in relation to serum 25(OH)D in Health ABC African Americans. 

None of the SNPs identified in past GWAS of Caucasians were associated with serum 25(OH)D 
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in this population at a statistical significance level of P<0.05 (Table 2.3), but the rs7041 SNP in 

GC was near the significance threshold (P=0.08). 

Given the borderline statistically significant association of rs7041, a functional, 

nonsynonymous SNP in GC, with serum 25(OH)D, we explored gene x nutrient interactions 

between rs7041 and multivitamin supplement use, the strongest non-genetic predictor of serum 

25(OH)D status in Health ABC African-Americans. Other GWAS-associated SNPs, including 

the two additional SNPs in GC, have no known functional role and showed little to no 

association with the 25(OH)D phenotype in Health ABC African-Americans; thus, these SNPs 

were not considered in gene x nutrient analyses. Due to the low prevalence of the rs7041 G 

minor allele, the SNP was modeled as homozygous dominant (TT genotype versus GT/GG 

genotype). The mean serum 25(OH)D was 3.7 ng/mL higher in multivitamin supplement users 

with the rs7041 GG/GT genotype compared to supplement users with the TT genotype, while 

there was little difference in mean 25(OH)D by genotype among non-supplement users (Figure 

2.1).  We further explored whether the odds of vitamin D insufficiency (defined as serum 

25(OH)D <20 ng/mL) associated with the rs7041 genotype varied by multivitamin supplement 

use, and the SNP by multivitamin use regression coefficient was statistically significant 

(PInteraction=0.0073).  Among multivitamin supplement users (N=237), the odds of vitamin D 

insufficiency was nearly 4 times higher in the TT genotype group, compared to participants with 

a GG or GT genotype (OR=3.8, 95% CI: 1.7, 8.5; model adjusted for age, gender, study site, 

season of blood draw, and ancestry principal components). In non-multivitamin supplement 

users (N=743) there was little or no association of genotype with the odds of vitamin D 

insufficiency, but the mean serum 25(OH)D in this group was in the insufficient category (19.0 ± 

8.3 ng/mL). 
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Taking a broader approach, novel methods that estimate the genome-wide additive genetic 

variation in a phenotype were applied to this study of the serum 25(OH)D phenotype in African 

Americans.  Initial models estimated that about 25% (95% CI: 0%, 74%) of the serum 25(OH)D 

variance is attributed to additive genetic variation in Health ABC (Table 2.4); these models do 

not include adjustments for principal components due to concerns about over-adjusting for 

population of origin effects that could be proxies for skin color and hence UV absorption. In 

models adjusting for population substructure using the first two principal components, the 

estimate was reduced to a near-null value of about 0.6% (95% CI 0%, 65%). 

We replicated the GCTA findings in a second cohort of African Americans from the 

Multiethnic Study of Atherosclerosis (MESA).  In MESA, about 21% of serum 25(OH)D 

variance is attributed to genetic variation (95% CI: 0%, 59%). Similar to Health ABC findings, 

in models adjusting for population substructure using the first ten principal components the 

GCTA estimate was reduced to 0%.   

Meta-analysis of the findings from the two cohorts led to an estimate of 23% for the variance 

in serum 25(OH)D explained by additive genetic variation (95% CI: 0%, 52%), after adjustment 

for age, gender, study site, and season of blood draw (Table 2.4). 

 

DISCUSSION 

To our knowledge, this is the first study to examine comprehensively both environmental 

and genetic predictors of 25(OH)D in elderly African Americans. About 25% of the total 

variability in serum 25(OH)D was explained by environmental determinants. Using a novel 

analytic approach, we estimated that up to 25% of serum 25(OH)D variability is explained by 

additive genetic variation in Health ABC African Americans, and replication in the MESA 
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African American cohort confirmed this estimate, although we were unable to disentangle the 

influence of population substructure from direct genetic influences on vitamin D nor directly 

consider the joint effects of genes and environment.  

Multivitamin supplement use was the most significant non-genetic predictor of serum 

25(OH)D, and supplement users had 6.3 ng/mL higher serum 25(OH)D concentration compared 

to non-users. GWAS-identified SNPs predictive of serum 25(OH)D in Caucasians were not 

replicated in Health ABC African American participants. However, rs7041, a GWAS-identified 

non-synonymous SNP in GC, was borderline associated with 25(OH)D and modified the serum 

response to multivitamin supplementation such that the odds of vitamin D insufficiency were 

significantly higher in supplement users with the TT genotype.  

Consideration of non-genetic predictors in the current study builds on a prior study that 

considered predictors of vitamin D insufficiency in African Americans (19); we found that 

predictors previously shown to be associated with insufficiency had associations over the full 

serum range of vitamin D concentrations. We identified additional dietary predictors of 

circulating 25(OH)D, including frequency of cereal and dairy consumption, suggesting that 

vitamin D-fortified dairy foods and breakfast cereals may be an important contributor to serum 

25(OH)D status when consumed regularly. Beyond multivitamin and vitamin D supplement use, 

we found that use of calcium supplements was associated with serum 25(OH)D. This is 

consistent with the hypothesis that calcium supplementation contributes to the maintenance of 

adequate serum calcium, thereby preventing an increase in PTH and the subsequent renal 

conversion of 25(OH)D to 1,25(OH)2D and increased activation of the vitamin D-degrading 

enzyme CYP24A1 (32, 33). Higher BMI was associated with lower serum 25(OH)D, with 

evidence for non-linearity (steeper inverse associations at higher BMI); this association is 
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hypothesized to be due to an increased storage of vitamin D in adipose tissue (34, 35). Although 

in Caucasians aging skin is associated with a decreased ability to synthesize vitamin D (36), age 

was not significantly associated with 25(OH)D in our population, likely reflecting the limited 9-

year age range of Health ABC participants. We did not identify an association between 

continuous serum 25(OH)D and smoking status, but a prior Health ABC study found that current 

smokers had higher odds of 25(OH)D < 20 ng/mL (19), suggesting smoking may be associated 

primarily with risk of vitamin D inadequacy.  The association of season of blood draw with 

serum vitamin D primarily reflected associations with risk of vitamin D deficiency, and as 

expected, serum 25(OH)D levels were lowest during the winter months (Dec.-Feb.). Finally, 

physical activity showed a limited association with 25(OH)D compared to study site and season 

of blood draw, suggesting that the latter two variables may be better proxies for sun exposure in 

this elderly population.  

Although past genotype—serum 25(OH)D associations demonstrated in European-

Americans did not reach significance thresholds in this study of Health ABC African Americans, 

we demonstrated that rs7041 genotype significantly increases the odds of vitamin D 

insufficiency among multivitamin supplement users. This suggests that rs7041 genotype 

modifies the serum response to supplementation, and that individuals with the rs7041 TT 

genotype may need higher supplement doses to achieve vitamin D sufficiency, although the lack 

of dosage data in Health ABC precludes definitive conclusions. The lack of association of rs7041 

genotype and serum 25(OH)D in non-supplement users likely reflects the fact that 63% of these 

participants were already vitamin D insufficient, thus there was a limited range of vitamin D 

status. Rs7041 is a non-synonymous SNP in GC that causes an amino acid change from aspartic 

acid to glutamic acid, and was previously associated with lower serum 25(OH)D (T allele) in 
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both African Americans (16) and Caucasians (37-40). The rs7041 T allele is more common in 

ancestral African populations (41); the frequency of the T allele was 42% and 90% in HapMap 

CEU and YRI populations, respectively (42), and 82% in Health ABC African Americans. The 

higher prevalence of the rs7041 T allele in African ancestry populations may contribute to the 

overall lower serum 25(OH)D status in these populations.  

We demonstrated that in this Health ABC population, approximately 25% of the variation 

in serum 25(OH)D is estimated to be due to additive genetic variation, with replication in the 

MESA population producing a similar estimate of 21%.  We meta-analyzed the results from both 

cohorts to obtain a final estimate of 23% of 25(OH)D variation due to additive genetic factors.  

The GCTA analysis was performed both with and without adjustment for ancestry 

principal components; when adjusting for ancestry, the GCTA estimate was essentially null.  

Skin pigmentation affects endogenous skin synthesis of 25(OH)D (43), and ancestry has been 

shown to correlate strongly with skin pigmentation in African Americans (44). Furthermore, a 

recent study showed an association between African ancestry, calculated from 276 ancestry 

informative markers, and serum 25(OH)D (45); thus, including principal components as model 

covariates may be an over-adjustment for traits that co-vary with population ancestry, such as 

skin pigmentation. Following this reasoning, the true estimate of direct genetic influences on 

serum 25(OH)D is likely to be less than 23%, but we were unable to arrive at a more valid 

estimate.  These results are consistent with a recent GCTA meta-analysis in Caucasians, which 

estimated that 9% (95% CI: 0-22%) of 25(OH)D variation was attributable to additive genetic 

variation (11). Interestingly, this estimate was adjusted for principal components, possibly 

reflecting a weaker influence of population substructure on GCTA estimates in non-African 

populations (11).  
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Although we demonstrated a consistent estimate of the effect of genetic variation on 

serum 25(OH)D in two independent African American cohorts, we did not observe significant 

associations between GWAS-associated SNPs and 25(OH)D.   SNP frequencies vary by ancestry 

(Supplemental Table 2.5), limiting the possibility that specific genetic associations will be 

replicable across races. Furthermore, candidate genes associated with 25(OH)D in African 

Americans may differ from those in Caucasians, reflecting divergent genetic adaptations to 

ancestral environments.  For instance, genes related to skin pigmentation may be more strongly 

linked to serum 25(OH)D levels in African Americans than genes related to vitamin D 

metabolism.  Considering patterns of genetic variation more broadly, Africans are typically more 

genetically diverse than Caucasians; thus, African ancestry populations have more rare SNPs, 

lower levels of linkage disequilibrium (LD), and shorter haplotype blocks compared to non-

Africans (46), and larger sample sizes may be needed to demonstrate associations. In Health 

ABC, the GC gene had lower levels of LD compared to European-Americans (Supplemental 

Figure 1), which may explain the lack of association of GWAS-associated SNPs in this gene (7, 

8).  In summary, our estimate of the amount of variability in 25(OH)D attributed to genetic 

variation is not inconsistent with a true effect, and highlights the need to further study the genetic 

architecture of 25(OH)D in African Americans in larger cohorts.   

 There are a number of significant strengths in this study, which included a large sample 

size of elderly African Americans to investigate genetic and non-genetic predictors of 25(OH)D.  

Extensive data on diet and supplement use, in addition to genotype data, allowed for hypothesis-

driven investigations of genetic and environmental predictors of vitamin D. Although 

supplement use data were available, dosage data were limited, which precluded consideration of 

dose-response associations. Neither were there direct data on sun exposure, sunscreen use, or 
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outdoor physical activity, although study site, season of blood draw, and time spent walking 

were proxies for UV exposure. Given that Health ABC dietary assessment was performed in 

1998-99, the older version of the Healthy Eating Index was used for analysis, and re-analysis of 

the data with a newer HEI version was not technically feasible. Although we explained a 

significant amount of variation in serum 25(OH)D, there was unexplained variability in 

25(OH)D that could be attributable to differences in sun exposure or other unmeasured variables, 

or to gene x environment interactions that were not considered.  

In conclusion, we identified several modifiable factors including diet and supplement use 

that explain variability in serum 25(OH)D in an elderly African American population.  

Additionally, the identification of a common genotype that affects serum 25(OH)D response to 

multivitamin supplements and risk of vitamin D insufficiency in multivitamin supplement users 

can inform ongoing and future clinical trials of vitamin D supplementation. Finally, we utilized a 

novel genetic analysis to estimate that up to 23% of the variability in 25(OH)D can be attributed 

to additive genetic variation, supporting further studies in African Americans to elucidate the 

causal genetic variants associated with serum 25(OH)D.   
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Table 2.1  Population Characteristics of African American (N=989) participants of the Health 

ABC Cohort*  

Variable Mean (SD) or % 

Serum 25(OH)D (ng/mL) 20.7 (9.0) 
Age, years 74.5 (2.9) 
Gender (% female) 57.3 
Site (% Pittsburgh) 55.2 
Season of blood draw (%) – 
 Winter  

Spring  
Summer  
Fall 

23.6 
31.9 
17.4 
27.2 

Current smokers (%) 14.6 
BMI 28.6 (5.5) 
BMI Category (%) – 
  <25 

 25-30  
>30 

26.1 
38.7 
35.2 

Dietary vitamin D intake, IU/d  197.3 (143.2) 
Dietary calcium intake, mg/d 768.9 (413.2) 
Vitamin D supplement  (%) 5.8 
Multivitamin (%) 23.9 
Calcium supplement (%) 10.9 
Dairy Consumption (%) – 
 No dairy 

 1-3 servings/day >3 
servings per day 

32.3 
63.6 
4.2 

Cereal Consumption (%)  – 
 No cereal 

 1-4 times/month 
>1/week 

12.6 
32.9 
54.5 

Healthy Eating Score (%) – 
 Poor 

Needs Improvement  
Good 

10.7 
76.2 
13.0 

Minutes walking/week 106.9 (222.4) 
Walks >180 min/week (%) 3.3 
*Population characteristics for the 980 participants in the genetic analyses are nearly identical, 
and thus are not presented here. 
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Table 2.2  Regression coefficients for predictors of serum 25(OH)D in Health ABC African 

Americans (N=989) 

Variable: β * 
95% 

Confidence 
Interval 

Ρ ** R2† 

Age 0.03 -0.1, 0.2 0.70 0.01% 
Gender (Male) 2.2 1.2, 3.3 <0.0001 1.3% 
Site (Memphis) 1.7 0.7, 2.7 0.0010 0.8% 
Season  – – 0.0229 0.7% 
 Summer Referent    
 Winter -2.0 -3.6, -0.5 – – 
 Spring -0.7 -2.2, 0.7 – – 
 Fall -0.1 -1.6, 1.5 – – 
BMI†† -0.07 -0.2, 0.03 0.1642 0.1% 
BMI2†† -0.01 -0.03, 0.0 0.0071 0.6% 
Multivitamin use 6.3 5.1, 7.5 <0.0001 8.3% 
Vitamin D supplement use 5.2 2.5, 7.9 0.0002 1.1% 
Calcium supplement use 3.9 1.9, 6.0 0.0002 1.1% 
Healthy Eating Index – – 0.0278 0.6% 
 Poor, <51 Referent    

 Needs Improvement, 
51-80 2.0 0.3, 3.6 – – 

 Good, >81 2.8 0.7, 4.9 – – 
Dairy Consumption – – 0.0008 1.1% 
 No Dairy Referent    
 1-3 servings per day 2.0 0.9, 3.1 – – 
 >3 servings per day 3.3 0.7, 5.9 – – 
Cereal Consumption  – – 0.0037 0.9% 
 No Cereal  Referent    
 Up to 1x/week  1.1 -0.6, 2.7 – – 
 >1x/week 2.5 0.9, 4.1 – – 
Brisk walking 180 min/week 
(>25 min/day) 3.1 0.4, 5.9 0.0268 0.9% 

    Total model 
R2: 25.4% 

* Estimated change in 25(OH)D per unit increase in predictor variable, adjusted for all other 
covariates in model 
** P for trend, adjusted for all other covariates in model 
† R2 for individual variables, adjusted for all other covariates in model; due to correlation 
between some variables, the sum of the individual variable R2 values does not add up to the total 
R2. 
†† Coefficients for mean-centered BMI variables presented for ease of interpretation 
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Table 2.3  SNP Association in African American Participants of the Health ABC Cohort for 

SNPs Reported in Published GWAS of Serum 25(OH)D Phenotype in Caucasians  

 

SNP Gene Chr Position Coded 
allele Freq. β* ± SE P 

rs7041**† GC 4 72837198   T †† 0.82 -0.93 ± 0.53 0.08 
rs2282679**† GC 4 72827247 G 0.10 0.07 ± 0.71 0.92 
rs1155563**† GC 4 72862352 C 0.11 0.12 ± 0.66  0.85 
rs2060793† CYP2R1 11 14871886 A 0.37 -0.10 ± 0.42 0.81 

rs10741657** CYP2R1 11 14871454 A 0.28 -0.04 ± 0.46 0.92 
rs1993116**† CYP2R1 11 14866810 A 0.28 -0.06 ± 0.46 0.90 

rs12785878** DHCR7/ 
NADSYN1 11 70845097 G 0.73 -0.28 ± 0.46 0.55 

rs3829251† DHCR7/ 
NADSYN1 11 70872207 A 0.23 -0.23 ± 0.48 0.63 

 
* Estimated change in serum 25(OH)D per copy of coded allele 
**Associated with serum 25(OH)D in Wang et al 
†Associated with serum 25(OH)D in Ahn et al 
*** rs11234027 in DHCR7/NADSYN1, associated with 25(OH)D in Ahn et al, and rs6013897 in 
CYP24A1, associated with 25(OH)D in Wang et al, were not genotyped or imputed in the Health 
ABC African American population 
†† Rs7041 was coded in Health ABC as an A/C SNP, but in this manuscript it is referred to as the 
equivalent T/G SNP to maintain consistency with the literature 
  



	
   34 

Table 2.4  Estimate of variance in log-transformed 25(OH)D explained by all genome-wide 

autosomal SNPs * 

 

Cohort 
Cohort-specific estimates Meta-analysis estimates (N=2,087) 

N 𝒉𝒈𝟐  ** S.E. 𝒉𝒈𝟐  S.E. P *** 95% CI † 

Health ABC 889 0.25 0.25 
0.23 0.15 0.14 0, 52 

MESA 1,198 0.21 0.19 
 
*Total number of genotyped SNPs in Health ABC (prior to exclusion for MAF <0.01%): 
1,024,986; GCTA model covariates: age, gender, study site, and season of blood draw 
** Estimated proportion of phenotypic variance explained by additive genetic variation 
*** Meta-analyzed P value for ℎ!! estimate 
† Lower CI bound set at 0 because the genetic association with 25(OH)D serum concentrations 
cannot be <0 
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Figure 2.1  Serum 25(OH)D concentrations by multivitamin supplement use and rs7041 

genotype (graph shows raw data, unadjusted).  
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SUPPLEMENTAL MATERIALS 

Candidate GWAS-associated SNP selection 

 Two genome-wide associations studies in Caucasians were reviewed to develop a list of 

candidate 25(OH)D-associated SNPs (7, 8).  From the study by Ahn et al, we included the 

following SNPs associated with 25(OH)D at a GWAS significance level: rs2282679 in GC, 

rs3829251 in DHCR7/NADSYN1, and rs2060793 in CYP2R1.  The association of rs6599638 in 

c10orf88 with 25(OH)D was not confirmed in a replication sample, and consequently not 

included in the current study.  In the second GWAS study by Wang et al, the most significant 

SNPs from each associated gene were included in our preliminary list: rs2282679 in GC, 

rs12785878 in DHCR7/NADSYN1, rs10741657 in CYP2R1, and rs6013897 in CYP24A1.   

Finally, SNPs strongly associated with 25(OH)D at GWAS or near-GWAS level significance 

and in strong LD with the most significant SNPs in Ahn et al and Wang et al were included: 

rs7041 and rs1155563 in GC, rs1993116 in CYP2R1, and rs11234027 in NADSYN1. 

Two SNPs (rs6013897 and rs11234027) were not in the Health ABC African-American 

database, leaving a final set of 8 candidate SNPs in three genomic loci: rs7041, rs2282679, and 

rs1155563 in GC; rs2060793, rs10741657, rs1993116 in CYP2R1; and rs12785878 and 

rs3829251 in DHCR7/NADSYN1. 
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Supplemental Figure 2.2  

a) Linkage disequilibrium (LD) plot of GC in Health ABC African-Americans. Shading 

represents linkage (R2), where black shading represents complete linkage between SNPs 

and white shading represents no linkage. Inset triangles represent LD blocks. 

 
 
 

b) LD plot of GC in Health ABC European Americans. 
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Supplemental Table 2.5  Comparison of frequencies for GWAS-associated SNPs between 

Caucasians and Africans (gene frequencies from HapMap populations, CEU and YRI, as 

reported in dbSNP) 

 
SNP Allele* Gene CEU 

Frequency 
YRI 

Frequency 
Health ABC 
Frequency 

rs7041 A/T GC 0.43 0.90 0.82 
rs2282679 G/C GC 0.26 0.04 0.10 
rs1155563 C GC 0.29 0.05 0.11 
rs2060693 A CYP2R1 0.39 0.35 0.37 
rs10741657 A CYP2R1 0.37 0.22 0.28 
rs1993116 A/T CYP2R1 0.40 0.26 0.28 
rs12785878 G DHCR7/NADSYN1 0.27 0.84 0.73 
rs3829251 A DHCR7/NADSYN1 0.17 0.27 0.23 
 
*For three SNPs, the coded allele in Health ABC differed from the allele reported in dbSNP; in 
these instances, allele frequencies for the complementary allele are reported. 
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CHAPTER 3 

 

VITAMIN D-RESPONSIVE SGPP2 VARIANTS ASSOCIATED WITH LUNG CELL 

EXPRESSION AND LUNG FUNCTION 

 

B Reardon*1, JG Hansen*1, RG Crystal2, DK Houston3, SB Kritchevsky3, T Harris4, K Lohman5, Y 

Liu6, GT O’Connor7,8, JB Wilk8,9, J Mezey2,10, C Gao10 and PA Cassano1,11 
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ABSTRACT  

Background: Vitamin D is associated with lung health in epidemiologic studies, but mechanisms 

mediating observed associations are poorly understood. This study explores mechanisms for an 

effect of vitamin D in lung through an in vivo gene expression study, an expression quantitative 

trait loci (eQTL) analysis in lung tissue, and a population-based cohort study of sequence variants.  

Methods: Microarray analysis investigated the association of gene expression in small airway 

epithelial cells with serum 25(OH)D in adult non-smokers. Sequence variants in candidate genes 

identified by the microarray were investigated in a lung tissue eQTL database, and also in relation 

to cross-sectional pulmonary function in the Health, Aging, and Body Composition (Health ABC) 

study, stratified by race, with replication in the Framingham Heart Study (FHS). 

Results: Thirteen candidate genes had significant differences in expression by serum 25(OH)D 

(nominal p<0.05), and a genome-wide significant eQTL association was detected for SGPP2. In 

Health ABC, SGPP2 SNPs were associated with FEV1 in both European- and African Americans, 

and the gene-level association was replicated in European-American FHS participants. SNPs in 5 

additional candidate genes (DAPK1, FSTL1, KAL1, KCNS3, and RSAD2) were associated with 

FEV1 in Health ABC participants.  

Conclusions: SGPP2, a sphingosine-1-phosphate phosphatase, is a novel vitamin D-responsive 

gene associated with lung function. Pending confirmation by follow-up studies, this study 

implicates lipid-signaling molecules as a key factor in inter-individual variation in cross-sectional 

lung function and points to a new direction for future research 
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INTRODUCTION 

Vitamin D is of interest in relation to a number of health outcomes, with putative function 

beyond its classical role in maintaining bone health. The active form of vitamin D, 1,25-

dihydroxyvitamin D [1,25(OH)2D], when bound to the vitamin D receptor (VDR), regulates the 

expression of genes in many molecular pathways, including inflammation, cell proliferation, cell 

death, and tissue-remodeling pathways (1). Serum 25-hydroxyvitamin D [25(OH)D] is the primary 

circulating biomarker of vitamin D status, and recent national survey data in the U.S. indicate 32% 

of Americans are at risk of vitamin D inadequacy or deficiency, defined as <50 nmol/L and <30 

nmol/L serum 25(OH)D, respectively (2, 3).  

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the 

United States, and is a large and growing burden on health care (4). While smoking is the primary 

risk factor for rapid lung function decline and development of COPD, about 15% of individuals 

who have never smoked develop COPD and not all smokers succumb, implicating other factors, 

such as genetic, dietary, and lifestyle factors, in lifetime lung function patterns and disease risk (5).  

Recent evidence indicates that vitamin D, as a steroid hormone capable of influencing gene 

expression, may be a determinant of lung function (6). A cross-sectional study in the National 

Health and Examination Survey (NHANES) III reported a strong positive association between 

serum 25(OH)D and lung function, with clinically relevant effect sizes for forced expiratory 

volume in the first second (FEV1) and forced vital capacity (FVC) (7). However, a subsequent 

cross-sectional study in the U.K. reported no association between serum 25(OH)D and FEV1 (8). 

Causal inferences are limited in the cross-sectional design, effect estimates may be biased by 

uncontrolled confounders such as physical activity, and, furthermore, comparisons are limited by 

differences in the range in serum 25(OH)D between studies. Investigations of serum 25(OH)D or 
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high-dose vitamin D supplementation in relation to the risk of exacerbations in COPD patients 

reported overall null findings (9, 10). However, vitamin D supplementation led to a statistically 

significant reduction in COPD exacerbations in the subgroup with severe vitamin D deficiency at 

the study baseline (serum 25(OH)D < 10 ng/mL) (9), underscoring the importance of considering 

the potential to benefit in studies of nutritional supplementation.  

In vitro animal and cell culture studies demonstrate that vitamin D-responsive genes play a 

role in airway remodeling and inflammation, which are key processes in the pathogenesis of COPD 

(11, 12). However, few studies directly investigate mechanisms for vitamin D’s effect in vivo, 

which would strengthen the causal inference of population-level association studies. Furthermore, 

most experimental work to date has focused on effects of the active metabolite of vitamin D, 1,25-

dihydroxyvitamin D. This metabolite is generated in the kidney for systemic circulation, and in 

many tissues, including lung (13). It is not yet established whether the population-level range in 

serum 25-hydroxyvitamin D, the primary biomarker for vitamin D status in humans, is associated 

with effects similar to those seen in vitro for 1,25-hydroxyvitamin D.  

We used an interdisciplinary approach to investigate the mechanisms through which vitamin 

D affects lung function. Genes with in vitro evidence of vitamin D regulation were studied to assess 

whether serum 25(OH)D concentration was associated with gene expression in lung epithelial 

tissues sampled from free-living humans. Identified genes were investigated in a study of 

expression quantitative trait loci (eQTL) in human lung epithelial cells to assess if genetic variation 

affects gene expression. Also, identified genes were investigated in an epidemiologic cohort study 

in relation to pulmonary function phenotypes.  We hypothesized that serum 25(OH)D affects 

expression of vitamin D-responsive genes by modulating levels of active 1,25(OH)2D in lung 
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tissue, and that variants in candidate genes directly regulated by 1,25(OH)2D in lung tissue are 

associated with FEV1 and FEV1/FVC, the key parameters used for COPD diagnosis and staging.  

 

SUBJECTS AND METHODS  

Gene Expression Study 

Twenty-six healthy nonsmoker adult volunteers (Supplemental Table 3.6) were recruited 

and evaluated at the Weill Cornell Medical College (WCMC) General Clinical Research Center 

under protocols approved by the WCMC Institutional Review Board, as described elsewhere (14). 

Frozen sera samples were assayed for 25(OH)D by liquid chromatography-tandem mass 

spectrometry at the Division of Laboratory Sciences, Centers for Disease Control and Prevention 

(Atlanta, GA). Airway epithelial cells were collected by brushing during bronchoscopy (14), and 

first and second strand cDNA were synthesized from 6 µg of RNA, in vitro transcribed, and 

fragmented according to Affymetrix protocols; samples were hybridized to the Affymetrix HG-

U133 Plus 2.0 array (14). (Supplemental Methods for further details) 

 The microarray analysis considered 156 genes, which were identified a priori based on 

evidence of regulation by 1,25-dihydroxyvitamin D in squamous epithelial cells (1) and evidence 

for at least one predicted binding site for VDR (a DR3 or ER6 response element with up to 1 base 

mismatch from the consensus sequence) (1). 

 The statistical significance of fold-changes in expression between the first and third tertile 

of serum 25(OH)D was calculated using a t-test with Bayesian correction (Limma). Given that the 

purpose of the microarray study was to identify candidate genes to take forward to both the eQTL 

and the population-based cohort analysis, a statistical significance threshold of nominal P < 0.05 
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was used. Linear regression coefficients and the variance (R2) in gene expression explained by 

serum 25(OH)D were calculated, and included the full range of 25(OH)D concentrations.  

eQTL Study  

The Expression Quantitative Trait Loci (eQTL) study was conducted using lung small 

airway epithelium tissue samples from 116 individuals (Supplemental Methods for details). Tissue 

samples were collected under protocols approved by the WCMC Institutional Review Board. 

Population-based Cohort Study  

The Health, Aging and Body Composition (Health ABC) cohort study enrolled a random 

sample of European-Americans and all African American Medicare-eligible residents, aged 70-79 

at baseline (1997) and residing in the ZIP codes in and around Memphis, TN and Pittsburgh, PA 

(n=3,075). The Institutional Review Boards at the University of Memphis, Tennessee, and the 

University of Pittsburgh granted approval to conduct the Health ABC Study. The Institutional 

Review Board at Cornell University and the Health ABC Publications Committee approved the use 

of Health ABC data for this study.  The Framingham Heart Study (FHS) cohort (n=7,694; includes 

individuals from the original, offspring, and third generation cohorts) (15) served as a replication 

cohort for cross-sectional SNP—lung function associations discovered in Health ABC European-

Americans (Supplemental Methods for further details on both cohort studies). The Institutional 

Review Board at the Boston University Medical Campus granted approval for the FHS. 

Spirometry met American Thoracic Society criteria for acceptability (16) (17). Participants 

with missing covariate data were excluded from further consideration (~ 300 in each ancestry 

group). Participants with an FEV1 measurement and an FEV1/FVC ratio below the Lower Limit of 

Normal were considered to have prevalent airflow obstruction (17, 18). The Illumina Human 1M-

Duo custom chip was used for genotyping in Health ABC (19). All assayed SNPs in the 13 
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candidate genes (identified by the expression study) with a minor allele frequency > 5% and in 

Hardy Weinberg equilibrium were analyzed, comprising 313 SNPs in European-Americans and 355 

SNPs in African Americans (Supplemental Table 3.7).  

Ordinary least squares linear regression models examined the relation between SNPs and 

FEV1 and FEV1/FVC in sequential regressions (using SAS 9.2). An additive genetic model was 

used to estimate the main effect of each SNP; SNPs with a nominal P ≤ 0.02 were further tested in 

dominant and recessive genetic models to refine effect estimates (Supplemental Methods for 

details). In genetic studies, the risk of false positives must be minimized without ruling out true 

associations (20). GWAS-scale multiple testing adjustments are not appropriate for the hypothesis-

based investigation of the 13 genomic regions nominated by the gene expression study. Thus, SNPs 

with nominally significant p-values are presented, and False Discovery Rate (FDR) multiple testing 

correction was applied (21). Models were adjusted for age, height, cigarette smoking (smoking 

status and pack-years), gender, study site, and ancestry principal components. 

Sensitivity analyses were performed on the top findings for the FEV1 phenotype by 

repeating analyses after excluding individuals with prevalent airflow obstruction or individuals with 

lower quality spirometry (lower reproducibility scores). Exploratory SNP x serum 25(OH)D 

interaction analyses are presented in Appendix A. 

 

RESULTS  

Gene Expression by Serum 25-Hydroxyvitamin D  

Healthy, non-smoking adults (n=26) were divided into tertiles of serum 25(OH)D (range of 

serum 25(OH)D: 2.3-39.7 ng/mL); the lowest tertile boundary corresponded to the cutpoint for 

deficiency (< 12 ng/mL), and the upper tertile included only vitamin D sufficient individuals (all > 
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20 ng/mL), thus further analysis compared these two groups. Expected associations were 

confirmed; serum vitamin D concentrations were lower in African American participants, and 

slightly higher in males (Supplemental Table 3.6). 

 Among the 156 genes studied, thirteen genes (8.3%) had statistically significant (nominal p 

< 0.05) differences in expression between the first and third tertiles of serum 25-hydroxyvitamin D 

(Table 3.1). To characterize further the relation of serum 25-hydroxyvitamin D with the 13 

nominally significant genes, the linear association of gene expression with continuous serum 25-

hydroxyvitamin D was estimated (Table 3.1); the percent of variance (R2, from linear regression) 

explained by serum 25-hydroxyvitamin D ranged from 8 to 40%, and FSTL1 had the highest R2.   

eQTL Analysis  

 All 13 vitamin D-responsive genes were queried in the eQTL data, but only 12 genes had 

available data (no data for RSAD2). A highly statistically significant cis eQTL reaching genome-

wide significance thresholds was identified for SGPP2; a cluster of SNPs in the 3’ region of SGPP2 

was associated with SGPP2 gene expression in lung tissue (the lead SNP, rs13009608 had a 

nominal p-value of 2.99 x 10-09). Figure 2 shows gene-level results and Supplemental Figures 1  

and 2 show genome-wide Q-Q and Manhattan plots, respectively. The association of rs13009608 

with SGPP2 gene expression was replicated (p-value: 7.0 x 10-18) in a publically available eQTL 

database of lymphoblastoid cell lines (22). 

Population-level SNP—Lung Function Associations 

 All 13 vitamin D-responsive genes identified by the microarray screen were further studied 

in a population-based candidate gene association study. After excluding participants with missing 

covariate data, 1,502 European-Americans and 996 African Americans (81% of full cohort) had an 

acceptable FEV1 and were included in the FEV1 analysis. 1,472 European-Americans and 943 
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African Americans (79% of cohort) had an acceptable FEV1/FVC, and were included in the ratio 

analysis (Table 3.2). 

 Five SNPs in two genes (DAPK1 and SGPP2) were associated with FEV1 at a nominal 

P<0.02 in European-American participants (P-value range: 2.88x10-03 to 1.92x10-02; Table 3.3). A 

SNP in DAPK1 (rs11141878) had the largest effect; participants with two copies of the minor allele 

(recessive genotype) were 104 mL lower on FEV1. In African Americans, 18 SNPs in 6 genes 

(DAPK1, FSTL1, KAL1, KCNS3, RSAD2, and SGPP2) were associated with FEV1 at nominal 

P<0.02 (range: 1.11x10-04 to 1.65x10-02; Table 3.4).  A group of 3 linked SNPs in a linked 5’ block 

of SGPP2 were associated with a decreased FEV1 and a reduced FEV1/FVC ratio in African 

Americans with nominal P-values <0.02 and FDR q-values <0.05 (Figure 1; Table 3.5). A fourth 

SNP in SGPP2, rs4597517, was borderline significantly associated with FEV1 in African 

Americans in the additive model (p = 2.16x10-2), and statistically significantly associated with 

FEV1 (p = 4.28x10-4) in the recessive genetic model. A SNP in KCNS3 (rs3747515) had the largest 

effect on FEV1 in African Americans; participants with the recessive genotype were 244 mL higher 

on FEV1. Due to linkage, some SNP associations were redundant; thus, SNPs in the same gene with 

an R2 ≥ 0.9 (indicating strong linkage) are assumed to represent the same effect and redundant 

SNPs are presented in the supplement only (Supplemental Table 3.10).  

In European-Americans, 1 SNP in KLF4 was associated with the FEV1/FVC ratio (P-value 

1.15x10-2; Supplemental Table 3.11). In African Americans, 14 SNPs in 3 genes (FSTL1, KAL1, 

and SGPP2) were associated with the ratio at a nominal P<0.02 (range: 1.32x10-03 to 1.27x10-02; 

Supplemental Table 3.11).  

A sensitivity analysis explored whether the SNP—FEV1 associations primarily reflected 

effects of genetic variation on risk of COPD; analyses were repeated after excluding 110 European 
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Americans and 66 African Americans with prevalent airflow obstruction (as an indicator of COPD). 

For European-Americans there was little or no difference in analyses with and without prevalent 

cases. A Bland-Altman analysis showed that for SNPs in SGPP2, the effect estimates for African 

Americans were attenuated after excluding cases of prevalent airflow obstruction (data not shown). 

Thus, the SGPP2 SNPs that had statistically significant associations with FEV1 were further tested 

in logistic regression models to assess the SGPP2—outcome association in African Americans. 

Individuals with two copies of the SNP most statistically significantly associated with FEV1, 

rs4528748, had a 2.6-fold increased risk of airflow obstruction. All 3 SGPP2 SNPs had odds ratios 

above 2 for the SNP—COPD association, and all confidence intervals excluded 1 (Table 3.5), 

supporting a role for SGPP2 in mediating COPD risk. 

There was consistency of findings across both phenotypes and both ancestry groups for 2 genes, 

namely SGPP2 and DAPK1. SNPs in SGPP2 and DAPK1 were associated with FEV1 in both 

European-Americans and African Americans, and SNPs in SGPP2 were also associated with 

FEV1/FVC and with risk of prevalent airflow obstruction in African Americans.  

 Genes containing SNPs significantly associated with FEV1 or FEV1/FVC in Health ABC 

European-Americans, namely DAPK1, KLF4, and SGPP2, were further evaluated in the FHS 

cohort. Gene-level replication was observed for DAPK1 and SGPP2; 23 out of 340 SNPs in 

DAPK1 (6.8%) and 23 out of 145 SNPs (15.8%) in SGPP2 were associated with cross-sectional 

FEV1 at a nominal P-value <0.05 in the FHS cohort, although these comprised different SNPs than 

the ones associated with lung function in Health ABC (Supplemental Table 3.9).  

 

DISCUSSION  
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Using an interdisciplinary genomics approach we investigated vitamin D and lung 

outcomes.  SGPP2, a phosphatase involved in the sphingosine-1-phosphate signaling pathway, was 

identified in all stages of the study as a promising candidate gene contributing to vitamin D-

mediated associations with lung function. SGPP2 is differentially expressed in vivo in lung 

epithelial cells by serum 25(OH)D. eQTL analysis demonstrates that sequence variants in SGPP2 

are associated with lung cell gene expression.  Although the eQTL finding does not prove that 

vitamin D regulation affects gene expression, the location of associated variants in regulatory 

regions supports the hypothesis of vitamin D regulation. Furthermore, a group of 3 linked SNPs in 

the SGPP2 promoter region are associated with lower FEV1, a reduced FEV1/FVC ratio, and a 2-3 

fold increased risk of airflow obstruction in African Americans, suggesting that a causal variant in 

this region may affect SGPP2 function and, consequently, lung outcomes. Additionally, a SNP in 

SGPP2 is associated with FEV1 in Health ABC European-Americans and SGPP2 variants were 

also associated with FEV1 in the Framingham Heart Study, confirming effects across racial groups 

and in two cohort studies.  This multi-faceted approach identifies putative mechanistic pathways for 

observed vitamin D—lung function associations while reducing the chance of false positive results. 

SGPP2 plays a key role in the sphingolipid signaling pathway through dephosphorylation of 

sphingosine-1-phosphate (S1P) to sphingosine, which is then converted to ceramide or back to 

sphingosine-1-phosphate by other enzymes (23). Sphingosine-1-phosphate acts as both an 

intracellular and extracellular signaling molecule, and regulates critical cell processes including 

apoptosis, cell growth, and immune function (23, 24). Altered sphingolipid concentrations have 

important ramifications for lung function; ceramide concentrations are elevated in COPD, 

contributing to lung alveolar destruction (23). Little research exists on SGPP2, although a 2006 

paper showed that SGPP2 is up-regulated in response to inflammatory stimuli in endothelial cells, 
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suggesting a possible role in mediating inflammation in lung tissue (25). However, SGPP2’s 

biological function to alter sphingosine-1-phosphate concentrations suggests that this gene 

contributes to the regulation of sphingolipid signaling pathways in lung tissue.  

We identified several additional genes, namely DAPK1, KCNS3, and FSTL1, and all three had 

mechanistic links to lung function identified through gene ontology analysis and literature reviews 

(Supplemental Table 3.8). Expression of all three genes was strongly associated with serum 

25(OH)D, and variants in these genes were associated with pulmonary function in the Health ABC 

cohort study. However, variants were not replicated in the Framingham Heart Study, nor were there 

observed eQTL associations. DAPK1, which is down-regulated by 1,25(OH)2D both in vivo and in 

vitro, is a pro-apoptotic kinase linked to cytoskeletal remodeling and regulation of inflammatory 

gene expression in macrophages (26, 27). SNPs in KCNS3, which encodes a voltage-gated 

potassium channel protein, were associated with airway hyperresponsiveness in past studies (28), 

which is of interest given postulated associations of airways hyperresponsiveness with an 

accelerated rate of FEV1 decline and risk of COPD (29). FSTL1 up-regulates pro-inflammatory 

cytokines; in mice, the highest expression level is in lung (30). Dexamethasone, which is a 

glucocorticoid used to treat both asthma and COPD, is associated with expression of both KCNS3 

and FSTL1(31, 32); interestingly, there are striking similarities in the effects of dexamethasone and 

1,25-dihydroxyvitamin on the expression of these genes. The combination of 1,25-

dihydroxyvitamin D with dexamethasone was investigated in vitro as an anti-inflammatory 

treatment (33); our results suggest the strong possibility of synergistic effects for this treatment 

combination.  

 A major strength of this study is that it translates in vitro animal and cell culture studies to 

an in vivo study, and then extends to study population-level SNP associations with lung 
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phenotypes, which are partially replicated in an independent cohort. The multi-stage approach 

identified SGPP2 as a promising vitamin D-responsive gene for further study. The demonstration of 

differential gene expression in lung tissue associated with the physiologic range of 25-

hydroxyvitamin D in a diverse sample of free-living humans confirms in vitro studies, and, while 

our study does not manipulate vitamin D, the in vivo evidence of association is novel. The Health 

ABC population-based cohort study included high-quality spirometry, detailed information on 

confounding factors such as smoking and population stratification, and comprised 40% African 

American participants, thus allowing consideration of this understudied population in genomic 

research. FEV1 is a predictor of all-cause mortality (34), and thus SNP—FEV1 associations are 

clinically relevant. Although associations between SNPs and the FEV1/FVC ratio were also 

investigated, the associations were not as strong as for FEV1. Thus, vitamin D may have a stronger 

association with overall lung health versus the risk of COPD. This study identifies plausible 

biological mechanisms that support a true effect of vitamin D on lung function, and will help to 

guide the design and analysis of randomized controlled intervention trials of the role of vitamin D 

in lung disease.  

 Given that the microarray analysis was used exclusively as a candidate screen, limitations 

including the lack of qPCR confirmation (not possible due to sample volume limitations), use of 

nominal P values, and the lack of race-stratified analysis (not possible due to sample size 

limitations) are less of a concern. As expected, the proportion of participants in the race/ethnicity 

groups varied by tertile of serum 25(OH)D given the role of skin pigmentation in vitamin D 

synthesis in response to sunlight (2). Race may either confound the serum 25(OH)D—gene 

expression association, or, race may be a causal antecedent variable that, in part, causes serum 

25(OH)D concentration and, in turn, differences in gene expression; adjusting for race may be an 
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over-adjustment. Of note, in regressions adjusted for race the regression coefficients for the serum 

25(OH)D—gene expression association were similar to unadjusted analyses.  

While the studies were all cross-sectional, which limits causal inference, the harmony of 

findings across different designs partly mitigates this concern. Although it would have been ideal to 

use the same samples in all studies (that is, expression, eQTL and SNP—lung function studies), 

practical limitations led to the use of different samples in each phase. Finally, although gene-level 

replication was observed for SGPP2 and DAPK1, the specific SNPs associated with FEV1 in Health 

ABC did not reach statistical significance in FHS. We hypothesize that the SGPP2 SNPs identified 

in the two cohort studies may be tagging the same unknown causal variant(s) or there may be 

multiple SGPP2 regulatory regions associated with lung function. Additionally, the strongest 

SNP—lung function associations in Health ABC were in African Americans, and, because FHS 

includes only European Americans, the replication was partial. In summary, SNPs in SGPP2 were 

statistically significantly associated with lung outcomes after FDR multiple testing adjustment and 

a highly statistically significant lung eQTL was identified for SGPP2; SGPP2 emerged as a clear 

candidate in all stages of this work.  

CONCLUSIONS  

This study establishes for the first time that physiological concentrations of serum 25(OH)D are 

associated with differences in gene expression in human lung tissue, and that candidate vitamin D 

responsive genes are associated with pulmonary function outcomes. We hypothesize that genetic 

variants associated with pulmonary function in our study affect binding of the VDR/RXR 

heterodimer to the genome; however, further studies are needed to map lung tissue-specific 

regulatory regions. Recent evidence shows that vitamin D regulatory elements (VDREs) are located 

both proximal and distal to vitamin D-responsive genes at promoter regions and enhancer regions, 
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respectively, and that VDR/RXR binding is cell-type specific (35). This emphasizes the importance 

of genome-wide VDR/RXR mapping in lung cells to identify regulatory regions (35). Additionally, 

in vitro studies of bronchial epithelial cells to directly assess gene expression changes due to 

vitamin D would contribute to the current understanding. Overall, the results of our study identify 

putative mechanisms through which vitamin D may affect lung function and, suggest a 

physiological range for 25-hydroxyvitamin D at which differential responses occur at the molecular 

level. Demonstrated associations strengthen the evidence for monitoring serum 25(OH)D 

concentrations in individuals at risk of rapid decline in lung function. 
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Table 3.1 Fold Change in Expression and P-value of 13 Genes Reaching Nominal P-value  

Threshold (p<0.05) in Expression Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Fold change in high versus low tertile serum 25-hydroxyvitamin D 
§R-squared calculated in linear regression, considering the full range of serum 25-hydroxyvitamin 
D, thus equals the proportion of variance in expression accounted for serum 25(OH)D 
  

 

Gene 

 

Chromosome 
Fold 

Change* 
P-value R2§ 

KCNS3 2 -1.62 0.00084 28% 

FSTL1 3 -1.55 0.00163 40% 

DAPK1 9 -2.06 0.00381 17% 

RSAD2 2 1.41 0.01103 16% 

CST6 11 1.79 0.01516 20% 

KAL1 X -1.38 0.01840 28% 

SLITRK6 13 -1.52 0.02482 25% 

TMEM40 3 1.55 0.02518 23% 

EMB 5 1.52 0.03099 23% 

PTGER2 14 1.36 0.03574 9% 

DTX4 11 -1.34 0.03812 15% 

KLF4 9 1.66 0.03901 9% 

SGPP2 2 1.69 0.04491 24% 
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Table 3.2 Characteristics of Health, Aging and Body Composition Study Participants Included in 

the FEV1 Phenotype* Analysis, Stratified by Race 

Covariate African Americans 
(N=996) 

European-Americans 
(N=1,502) 

Age, years** 73.4 (2.9) 73.7 (2.8) 
Women (%) 553 (55.5) 708 (47.1) 

Memphis, TN site (%) 464 (46.6) 759 (50.5) 

Former Smokers (%) 398 (40) 746 (49.7) 

Current Smokers (%) 167 (16.8) 99 (6.6) 

Pack-years 29.5 (24.1)  36.5 (31.9)  

FEV1, mL 1948.7 (569.4) 2305.4 (654.3) 

FEV1/FVC 75.5 (9.3) 74.4 (7.9) 

Height, cm 165.7 (9.4) 167 (9.3) 

Mean 25(OH)D (ng/mL)*** 20.9 (10.6) 29 (11) 

COPD, defined by LLN (%) 66 (7.0) 110 (7.5) 
* All participants in table have FEV1 data; approximately 50 fewer individuals have FEV1/FVC 

ratio data, but participant characteristics are the same for both phenotypes. 

**Data shown are mean (SD) or number (%) 

***Serum 25(OH)D measured for 1,412 (94%) European-Americans and 864 (87%) African 

Americans with the FEV1 phenotype, and for 1,383 European-Americans and 864 African 

Americans with the FEV1/FVC phenotype. 
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Table 3.3 The Association of SNPs in Vitamin D-Responsive Genes (nominal P<2.0x10-02) with 

FEV1 (mL) for European-Americans in the Health, Aging and Body Composition Study (sorted by 

gene)* 

Gene RS# Chr Coded 
Allele 

MAF 
(%) β** SE Nominal P Model 

 
DAPK1 

rs11141878 9 A 36 -103.98 36.3 4.26x10-03 R 
rs4877361† 9 G 14 72.47 27.4 8.17x10-03 D 
rs4878089 9 A 46 39.68 16.9 1.92x10-02 A 

SGPP2 rs4674656 2 A 25 -58.70 19.7 2.88x10-03 A 
 

†one redundant SNP not shown 

*Abbreviations: Chr, chromosome; MAF, minor allele frequency; β, regression coefficient; SE, 

standard error; A=additive genetic model, D=dominant model, R=recessive model 

**Beta-coefficient estimates the association of allele with FEV1, based on genetic model shown and 

adjusted for age, height, smoking, gender, study site, and ancestry principal components. 
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Table 3.4 The Association of SNPs in Vitamin D-Responsive Genes (nominal P<2.0x10-02) with 

FEV1 (mL) for African Americans in the Health, Aging and Body Composition Study (sorted by 

gene)* 

Gene RS# Chr 

Coded 

Allele 

MAF 

(%) β**  SE Nominal P Model 

DAPK1 rs3128491 9 G 33 51.48 21.4 1.65x10-02 A 
FSTL1 rs4676781 3 T 8 -110.13 35.3 1.88x10-03 A 
 rs13100865 3 G 9 -105.96 35.0 2.54x10-03 A 
 rs13097755† 3 T 28 -60.46 21.6 5.20x10-03 A 
KAL1 rs6530200 23 T 47 -45.28 16.8 7.20x10-03 A 
 rs974655 23 A 49 79.23 30.3 9.14x10-03 D 
KCNS3  rs1031771† 2 A 16 243.76 83.5 3.60x10-03 R 
RSAD2 rs4669114†† 2 G 10 -119.55 36.2 9.93x10-04 D 
 rs6431837 2 C 47 -101.06 33.6 2.66x10-03 R 
 rs7570384 2 C 38 -55.35 20.1 5.88x10-03 A 
 rs4669111 2 A 41 -49.75 20.1 1.34x10-02 A 
SGPP2 rs4528748†† 2 C 27 -209.95 54.1 1.11x10-04*** R 

 

*Abbreviations: Chr, chromosome; MAF, minor allele frequency; β, regression coefficient; SE, 

standard error; A=additive genetic model, D=dominant model, R=recessive model 

**Beta-coefficient estimates the association of allele with FEV1, based on genetic model shown, 

adjusted for age, height, smoking, gender, study site, and ancestry principal components. 

*** FDR q-value <0.05  

† one redundant SNP not shown 

†† two redundant SNPs not shown 
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Table 3.5 Associations of SNPs in SGPP2 with Risk of Prevalent COPD* in African Americans in 

the Health, Aging and Body Composition Study 

SNP** Odds Ratio 95% Confidence Interval Nominal P 

rs4528748 2.63 1.19, 5.80 
1.23, 5.99 
1.07, 5.11 

1.64x10-02 

rs7556867 2.71 1.35x10-02 
rs6758392 2.34 3.33x10-02 
 

*COPD defined as FEV1 and FEV1/FVC ratio below the Lower Limit of Normal 

*All SNPs modeled as recessive (two copies of the minor allele) to reflect the most significant 

coding from Table 3, and models adjusted for age, height, smoking, gender, study site, and ancestry 

principal components. 
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Figure 3.1  Association between SNPs and FEV1 in SGPP2. This figure shows all SNPs tested for 
association with FEV1 in African Americans (red markers) and European-Americans (blue 
markers) in Health ABC. The top graph shows the p-values for each SNP on a negative log scale. 
The threshold for significance, nominal P = 2x10-02, is shown as a line in the figure. Effect 
estimates (βSNP) for FEV1 (in mL) for each ancestry group are shown underneath the P-values 
(dotted line shows null value of 0). Effect estimates and p-values are from recessive, dominant, or 
additive genetic models for SNPs with p<0.02, and from an additive genetic model for all other 
SNPs. Finally, the linkage disequilibrium structure of SGPP2 in the Health ABC European-
American population is shown at the bottom, with darker shading representing higher R2. 
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Figure 3.2  Locus Zoom plot of SGPP2 eQTL associations 
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SUPPLEMENTAL METHODS 

Gene Expression Study 

 Serum 25(OH)D Assays 

Frozen serum samples from the 26 individuals recruited for the gene expression study were 

sent to the Division of Laboratory Sciences at the Centers for Disease Control and Prevention to be 

assayed for 25(OH)D by liquid chromatography-tandem mass spectrometry. Samples were 

evaluated in parallel with NIST standard SRM 972, and results were within 2 standard deviations of 

NIST target values. External quality assurance was provided through participation in the Vitamin D 

External Quality Assessment Scheme. 

 Two individuals were excluded because serum and cell collections occurred in different 

seasons and more than 120 days apart (their serum measurements were in the second tertile of the 

distribution). The average time between serum and epithelial cell collection was 42 ± 40 days, 

within the 10-week half-life of serum 25-hydroxyvitamin D. 

Microarrays 

Image files for the arrays were assessed for quality of hybridization by comparing 3’ to 5’ 

intensity of transcripts for actin and GAPDH (ratio < 3). Normalization was carried out by 

GeneChip Robust Multi-Array Average using MADMAX software 

(https://madmax.bioinformatics.nl). Quality control of normalized data was evaluated using plots of 

relative log expression and normalized unscaled standard errors to identify array artifacts. Only 

probe sets with an interquartile range (IQR) of log2 normalized values < 0.5 were included in 

analysis.  

Gene Ontology Analysis  
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Gene ontology annotations were obtained from the UniProtKb-GOA database 

(http://www.ebi.ac.uk/QuickGO/), with preference given to IDA annotations (inferred from direct 

assay) or TAS (traceable author statement) evidence codes. IEA (inferred from electronic 

annotation) evidence codes were used if no other information was available.  

Population-based Cohort Study 

Participants, Data Collection and Statistical Approach 

 Participants: To be eligible for the Health ABC cohort study, participants were required to 

be ambulatory, that is, to have no difficulty walking ¼ mile or climbing 10 stairs without resting, 

and to be able to independently perform basic activities. Additionally, participants were required to 

have no history of active cancer treatment at baseline, and no plans to leave the area within 3 years 

after study baseline. A total of 3,075 individuals were enrolled.  

 Data Collection: Spirometry was conducted by trained personnel using a dry rolling seal 

spirometer (SensorMedics Corporation, Yorba Linda, CA) connected to a personal computer. 

Pulmonary function tests from the baseline clinic visit meeting American Thoracic Society (ATS) 

criteria for acceptability were included in this study.(17) 

Statistical Approach: In all statistical models, SNPs were coded as the number of minor 

alleles an individual had at a specific genetic locus, based on Health ABC-specific allele frequency 

data. All models adjusted for population substructure using principal components, which were 

computed separately by race across all markers. Redundancy between SNP associations was 

assessed using SNAP (36) in CEU and YRI HapMap populations. SNP-pulmonary function 

associations were visualized using SynthesisView (37), and linkage disequilibrium in the Health 

ABC cohort was evaluated in Haploview 4.2. 
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Genetic Models for SNP—FEV1 Regression Analyses: In models estimating the main effect 

of SNPs on cross-sectional FEV1, an additive genetic model was used to estimate the main effect of 

each SNP; SNPs with a nominal P ≤ 0.02 were further tested in dominant and recessive genetic 

models to refine effect estimates. SNPs are modeled in terms of the effect of the minor SNP allele. 

The regression model is presented below with an explanation of additive, dominant, and recessive 

SNP coding. The SNP used as an example is rs4528748 in the SGPP2 gene; in African-Americans, 

rs4528748 had the strongest association with cross-sectional FEV1.  

Regression Model:  

 

FEV1 = β0 + β1Height + β2Age + β3Gender + β4Site + β5Pack-years + β6Smoking status + 

β7Principal component 1 + β8Principal component 2 + β9SNP + ε 

 

Additive genetic model: 

The SNP beta coefficient (β9 from model above) represents the estimated effect per copy of 

the minor allele on cross-sectional FEV1. For the example SNP, rs4528748, the SNP beta 

coefficient represents the estimated effect per copy of the C minor allele on cross-sectional FEV1. 

Recessive genetic model: 

In the recessive model, individuals with two copies of the minor allele are compared to 

heterozygotes and homozygous individuals with zero copies of the minor allele, combined. For 

rs4528748, the SNP beta coefficient represents the estimated association with cross-sectional FEV1 

of the CC genotype compared to the CT + TT genotypes. 

Dominant genetic model: 
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In the dominant model, individuals with one or two copies of the minor allele 

(heterozygotes and homozygous recessive individuals, combined) are compared to individuals with 

zero copies of the minor allele. For rs4528748, the SNP beta coefficient represents the estimated 

association with cross-sectional FEV1 of the CT + CC genotypes compared to TT.  

Sensitivity Analyses: In a sensitivity analysis to explore the effect of spirometry quality on 

the findings, individuals with acceptable tests that were lower quality by reproducibility criteria 

were excluded and the SNP—FEV1 association was assessed in the subset. The direction and 

magnitude of all effect estimates were similar to the full sample results (data not shown). 

Replication in Framingham Heart Study  

 The Framingham Heart Study (FHS) cohort (n=7,694; includes individuals from the 

original, offspring, and third generation cohorts) was used as a replication cohort to examine the 

genes with cross-sectional SNP associations (nominal p<0.02) in Health ABC European-

Americans. FHS genotyping used the Affymetrix GeneChip Human Mapping 500K Array and 50K 

Human Gene Focused Panel(15).  

eQTL Analysis:  

Data Collection and Statistical Approach 

 Associations between SNPs and gene expression of 13 vitamin D-responsive genes in lung 

small airway epithelium tissue were analyzed. Tissue samples were taken from a diverse cohort of 

smokers and non-smokers of different genders and ancestries (see Table 1, Gao et al(38)). Details 

of the sample collection are published elsewhere,(14) and details on  

normalization of gene expression values are available in Gao et al.(38) SNPs were assayed using 

Affymetrix 500k arrays, which provided data on 191,959 genotypes; only SNPs with MAF of > 0.1 

were analyzed for associations with gene expression. Thus, there were far fewer SNPs available in 
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the eQTL study in comparison to the Health ABC GWAS study, and although very few of the exact 

SNPs studied in Health ABC were in the eQTL database, the eQTL SNPs tagged the sequence 

variation in each gene.    

SNPs within 100kb of the 13 candidate genes (Supplemental Table 3.7 for gene names) 

were tested for association with gene expression using PLINK v1.07.  Quantile-quantile plots were 

generated in R and Locus Zoom(39) plots were generated to visually examine P-value distributions. 

Genome-wide Q-Q plot and Manhattan plot were also examined.  
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Supplemental Table 3.6  Characteristics of 26 Non-smoking Human Volunteers in the Gene 
Expression Study, by Tertile of Serum 25-Hydroxyvitamin D Concentration 
 
 Serum 25-Hydroxyvitamin D 

Variable Tertile I (n=9) Tertile II (n=9) Tertile III (n=8) 
Serum 25-OH-D,  
ng/mL (range) 

8.99 (2.3 - 11.8) 20.9 (12.7 - 26.7) 33.3 (27.9 - 39.7) 

Age, years (median)  36.9 (38) 44.1 (45) 50.6 (46.5) 
Males (%) 6 (67%) 6 (67%) 7 (87%) 
Race/Ethnicity (%) 

African American 
 

5 (56%) 
 

6 (67%) 
 

1 (13%) 
European 1 (11%) 3 (33%) 7 (87%) 
Hispanic 2 (22%) 0 (0%) 0 (0%) 

Asian 1 (11%) 0 (0%) 0 (0%) 
*mean (standard deviation), unless noted 
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Supplemental Table 3.7 The Distribution of Studied SNPs in Thirteen Vitamin D-Responsive 
Genes for European- and African American Ancestry Groups in the Health ABC Cohort Study 
 

Gene Chromosomal 
Position 

EntrezGene 
ID 

Size 
(bp)* 

# SNPs in 
European-

Americans** 

# SNPs in African 
Americans** 

CST6 11q13 1474 7513 2 2 
DAPK1 9q34.1 1612 216792 124 121 
DTX4 11q12.1 23220 42200 11 10 
EMB 5q11.1 133418 48724 11 11 

FSTL1 3q13.33 11167 62698 22 24 
KAL1 Xp22.32 3730 209311 35 47 

KCNS3 2p24 3790 60279 22 25 
KLF4 9q31 9314 10620 1 1 

PTGER2 14q22 5732 20207 24 37 
RSAD2 2p25.2 91543 26567 9 11 
SGPP2 2q36.1 130367 140294 40 46 

SLITRK6 13q31.1 84189 12561 7 9 
TMEM40 3p25.2 55287 31416 5 11 

       Total = 313 355 
*Includes 3,000 bp at 3’ and 5’ ends of gene 
** SNPs filtered for Minor Allele Frequency and Hardy-Weinberg Equilibrium  
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Supplemental Table 3.8 Gene Ontology of Thirteen Nominally Significant Candidate Genes from 
the UniProtKb-GOA Database (http://www.ebi.ac.uk/QuickGO/) 
 
Gene Gene Name Function(s) Pathway(s) Location(s) 
CST6  Cystatin E/M cysteine-type 

endopeptidase 
inhibitor 

anatomical 
structure 
morphogenesis 

cornified envelope, 
extracellular 
region 

DAPK1 
 
 

Death-associated 
protein kinase 1 

ATP and calmodulin 
binding 

intracellular 
protein kinase 
cascade, apoptosis 
regulation 

actin cytoskeleton 

DTX4 
 

Deltex homolog 4 zinc ion binding Notch signaling 
pathway 

cytoplasm 

EMB 
 

Embigin N/A cell adhesion integral 
membrane protein 

FSTL1 
 
 

Follistatin-like 1 calcium ion binding, 
heparin binding 

Bone 
morphogenetic 
protein signaling 
pathway 

Extracellular 
space 

KAL1 Kallmann syndrome 1 
sequence 

extracellular matrix 
structural 
component, serine-
type endopeptidase 
inhibitor 

axon guidance, 
chemotaxis, cell 
movement, cell 
adhesion 

cell surface, 
extracellular 
space 

KCNS3  
 
 

Potassium voltage-
gated channel, 
delayed-rectifier, 
subfamily S, member 3 

delayed-rectifier 
potassium channel 

potassium ion 
transport, 
regulation of 
insulin secretion 

Golgi and plasma 
membrane 

KLF4 
 

Kruppel-like factor 4 transcription 
repressor activity 

regulation of cell 
proliferation, 
mesodermal cell 
fate determination 

nuclear 

PTGER2 
 

Prostaglandin E 
receptor 2 (subtype 
EP2) 

G protein coupled 
receptor for 
prostaglandin E  

GPCR signaling, 
regulation of cell 
proliferation 

integral to plasma 
membrane 

RSAD2 
 
 

Radical S-adenosyl 
methionine domain 
containing 2 

 iron-sulfur cluster 
binding, metal ion 
binding 

defense response 
to virus 

endoplasmic 
reticulum 

SGPP2 
 

Sphingosine-1-
phosphate phosphatase 
2 

sphingosine-1-
phosphate 
phosphatase activity 

sphingosine 
metabolic process 

endoplasmic 
reticulum 
membrane 

SLITRK6 
 

SLIT and NTRK-like 
family, member 6 

N/A axonogenesis integral 
membrane protein 

TMEM40 
 

Transmembrane 
protein 40 

N/A N/A integral 
membrane protein 
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Supplemental Table 3.9  Gene-Level Replication of Health ABC European-American SNP 
Associations with the FEV1 phenotype in the Framingham Heart Study Cohort  
 

Gene 
Total # of 

FHS SNPs 

# SNPs 

with p<0.05 

Most Significant SNP in Gene 

RS# 
MAF 

(%) 
Beta (mL)* Nominal P 

SGPP2 145 23 rs10932956 21 29.2 2.23 x10-02 

DAPK1 340 23 rs7025760 21 23.6 1.86x10-02 

 
*all models use additive genetic coding 
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Supplemental Table 3.10   The most statistically significant associations (nominal P<2.0x10-02) 
between single nucleotide polymorphisms in vitamin D-responsive genes and FEV1 for a) 
European-Americans and b) African Americans (all SNPs, including redundant SNPs are shown). 

b) European-Americans 

Gene RS# Chr Coded 
Allele 

Coded 
Allele 

Freq. (%) 
β (mL) SE (mL) Nominal 

P Model 

DAPK1 rs11141878 9 A 36 -103.98 36.33 4.26x10-03 R 
 rs4877361 9 G 14 72.47 27.36 8.17x10-03 D 
 rs17477827 9 A 14 70.66 27.33 9.82x10-03 D 
 rs4878089 9 A 46 39.68 16.93 1.92x10-02 A 
SGPP2 rs4674656 2 A 25 -58.70 19.67 2.88x10-03 A 

 
b) African Americans 

Gene RS# Chr Coded 
Allele 

Coded 
Allele 

Freq. (%) 
β (mL) SE (mL) Nominal P Model 

DAPK1 rs3128491 9 G 33 51.48 21.44 1.65X10-02 A 
FSTL1 rs4676781† 3 T 8 -110.13 35.34 1.88X10-03 A 
  rs13100865† 3 G 9 -105.96 35.02 2.54X10-03 A 
  rs13097755† 3 T 28 -60.46 21.59 5.20X10-03 A 
  rs2272515† 3 C 28 -60.46 21.59 5.20X10-03 A 
KAL1 rs6530200 23 T 47 -45.28 16.81 7.20X10-03 A 
  rs974655 23 A 49 79.22 30.33 9.14X10-03 D 
KCNS3 rs3747515 2 T 16 243.92 83.47 3.56X10-03 R 
  rs1031771 2 A 16 243.76 83.52 3.60X10-03 R 
RSAD2 rs4669114 2 G 10 -119.55 36.20 9.93X10-04 D 
  rs10495546 2 C 10 -119.08 36.18 1.03X10-03 D 
 rs4669113 2 C 10 -119.08 36.18 1.03X10-03 D 
 rs6431837 2 C 47 -101.06 33.55 2.66X10-03 R 
 rs7570384 2 C 38 -55.35 20.05 5.88X10-03 A 
  rs4669111 2 A 41 -49.75 20.07 1.34X10-02 A 
SGPP2 rs4528748† 2 C 27 -209.95 54.10 1.11X10-04* R 
  rs7556867† 2 G 27 -207.89 54.48 1.44X10-04* R 
  rs6758392† 2 T 28 -182.36 51.94 4.67X10-04* R 

Abbreviations: Chr=chromosome; Freq=frequency; β=beta coefficient; SE=standard error; 
A=additive model; D=Dominant model; R=recessive model 
Model adjusted for age, height, smoking, gender, study site, and ancestry principal components. 
* = FDR q-value <5.0x10-02 
† SNP is nominally significant (P<2.0x10-02) for both FEV1 and FEV1/FVC phenotypes in African 
Americans 
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Supplemental Table 3.11   The most statistically significant associations (nominal P<2.0x10-02) 
between single nucleotide polymorphisms in vitamin D-responsive genes and the FEV1/FVC ratio 
for a) European-Americans and b) African Americans in the Health ABC cohort 
 
a) European-Americans 

Gene RS# Ch
r 

Coded 
Allele 

Coded 
Allele 

Freq. (%) 
β (%) SE (%) Nominal P Model 

KLF4 rs2236599 9 A 19 -0.85 0.33 1.15x10-02 A 
 
b) African Americans 

Gene RS# Chr Coded 
Allele 

Coded 
Allele 

Freq. (%) 

β 
(%) SE (%) Nominal P Model 

FSTL1 rs4676781 3 T 8 -1.92 0.67 4.47x10-03 A 
 rs13100865 3 G 9 -1.81 0.67 6.65x10-03 A 
 rs13097755 3 T 28 -1.03 0.41 1.27x10-02 A 
 rs2272515 3 C 28 -1.03 0.41 1.27x10-02 A 

KAL1 rs5933668 23 T 19 -2.76 0.86 1.32x10-03 R 
 rs1859867 23 C 40 0.95 0.32 3.13x10-03 A 
 rs1079854 23 G 38 1.83 0.63 3.65x10-03 R 
 rs2108400 23 C 38 1.81 0.63 4.11x10-03 R 
 rs4830593 23 A 38 1.80 0.63 4.22x10-03 R 
 rs16998683 23 C 12 1.82 0.70 9.75x10-03 D 

SGPP2 rs4597517 2 A 23 -3.30 1.21 6.71x10-03 R 
 rs4528748 2 C 27 -1.15 0.43 7.70x10-03 A 
 rs7556867 2 G 27 -1.15 0.43 8.18x10-03 A 
 rs6758392 2 T 28 -1.10 0.43 1.01x10-02 A 

Abbreviations: Chr=chromosome; Freq=frequency; β=beta coefficient; SE=standard error 
Model adjusted for age, height, smoking, gender, study site, and ancestry principal components. 
A=additive model, D=Dominant model, R=recessive model 
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Supplemental Figure 3.3  Genome-wide Quantile-Quantile Plot for SGPP2 eQTL findings (shows 
results for all genotyped SNPs). 
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Supplemental Figure 3.4  Genome-wide Manhattan Plot for SGPP2 eQTL findings.  Red line: 
Bonferroni P-value for 191,959 markers. 
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ABSTRACT 

Background Strong cross-sectional vitamin D—lung function associations have stimulated 

interest, but provide weak evidence for causal inference. Investigations of 25(OH)D and rate of 

change in lung function are needed. 

Methods Using a linear mixed-effects model, we investigated genetic variants in vitamin D 

metabolic genes, hypothesized to influence usual 25(OH)D status, in relation to rate of change in 

forced expiratory volume in the first second (FEV1) in 3,230 Framingham Heart Study (FHS) 

Offspring participants. We also estimated the 25(OH)D—rate of change in FEV1 association in 

FHS Third Generation participants.  

Results Variants in four vitamin D metabolic genes were associated with FEV1 rate of change 

(Pnominal<0.05). The associations showed consistent direction of effect in a meta-analyzed set of 4 

independent cohorts (PBinominal=0.06). 2 SNPs, rs11819875 (CYP2R1) and rs842999 (GC), were 

close to the replication significance threshold; both SNPs were statistically significant in a meta-

analysis including FHS.  For 3 of 4 SNPs, the SNP—serum 25(OH)D association in SUNLIGHT 

was consistent with FEV1 associations. While cross-sectional 25(OH)D—lung function 

associations were replicated, there was little or no association with rate of change in FEV1 in 

FHS Third Generation participants (P=0.97).  

Conclusions SNP markers of 25(OH)D status were associated with rate of change in FEV1, 

supporting a causal role for vitamin D in lung health during aging. The Third Generation study 

was comprised of healthy, middle-aged adults with sufficient serum 25(OH)D; lack of an 

association between 25(OH)D and rate of change in FEV1 highlights the importance of 

background nutriture on these associations. 
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INTRODUCTION  

Decreased lung function due to airflow obstruction is the primary characteristic of 

chronic obstructive pulmonary disease (COPD), the 3rd leading cause of mortality in the United 

States (1). Vitamin D status, assessed via the circulating serum biomarker 25-hydroxyvitamin D 

[25(OH)D], plays a well-known role in bone health, and is also associated with non-skeletal 

outcomes including lung function (2, 3). National surveys estimate that over 30% of Americans 

are at risk for insufficient vitamin D (defined as serum 25(OH)D <20 ng/mL) (3, 4). Vitamin D 

is obtained by sun exposure and diet (2), and genome-wide association studies (GWAS) have 

identified single nucleotide polymorphisms (SNPs) in vitamin D metabolic genes that are 

significantly associated with serum 25(OH)D concentrations (5, 6).  

The active vitamin D metabolite, 1,25OH2D, is constitutively synthesized from 25(OH)D 

in lung epithelial cells in vitro (7) and is involved in biological processes critical to lung function 

including inflammation and airway remodeling (8-10). Several cross-sectional, population-based 

observational studies have demonstrated strong, positive associations between vitamin D and 

lung function (11-13), although one study in the Hertfordshire cohort did not replicate cross-

sectional associations (14). Additionally, vitamin D deficiency is common in COPD patients 

(15), higher vitamin D is associated with reduced risk of respiratory infections (13, 16), and 

high-dose vitamin D supplementation reduced COPD exacerbations in patients with severe 

vitamin D deficiency (17). The few existing reports of longitudinal associations between vitamin 

D and lung function have been inconclusive; an observational study in COPD patients reported 

no association between serum 25(OH)D and longitudinal lung outcomes (18), but a recent 

population-based study in an elderly male cohort reported steeper lung function decline in 

current smokers with serum 25(OH)D ≤ 20 ng/mL compared to smokers with higher 25(OH)D 
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(19). Genetic variants in the vitamin D binding protein, encoded by the GC gene, are associated 

with COPD risk (15, 20-23), and GC may be an important mediator of hypothesized vitamin D 

effects on lung function (24).  

We investigated the association of vitamin D with lung function outcomes in two 

generational cohorts of the Framingham Heart Study (FHS). First, we investigated single 

nucleotide polymorphisms (SNPs) in vitamin D metabolic genes in association with rate of 

change in FEV1 in FHS Offspring participants. To strengthen our analysis, we pursued 

replication in four independent cohorts, and also investigated the SNPs in relation to serum 

25(OH)D status in the SUNLIGHT consortium. Second, we investigated the association of serum 

25(OH)D with cross-sectional and rate of change in FEV1 in a subset of the FHS Offspring and 

in FHS Third Generation participants. As previous studies were limited by consideration of 

smokers, restricted age groups, or males only, this study provides a comprehensive exploration 

of vitamin D associations with FEV1 in a healthy, adult population-based sample including both 

males and females.  

 

METHODS  

Study Population and Ethics 

Study participants were from the Offspring and Third Generation cohorts of the 

Framingham Heart Study (FHS), a longitudinal family-based study established in 1948 in 

Framingham, MA. The FHS Offspring cohort, consisting of original cohort offspring and their 

spouses, began in 1971 (25). The FHS Third Generation cohort was initiated in 2002, enrolling 

children of the Offspring cohort (26). Self-reported ethnicity across all FHS cohorts was >99% 

Caucasian (26).  
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3,230 FHS Offspring participants (63% of all Offspring) with genotype data and 

spirometry measurements from Exams 5-8 were included in SNP—rate of change in FEV1 

analyses. 1,435 FHS Offspring participants (28% of all Offspring) with serum 25(OH)D 

measured between Exams 6 (1995-1998) and 7 (1998-2001) and subsequent spirometry 

measurements (from Exams 6, 7, or 8) were available for the serum 25(OH)D—FEV1 analyses. 

FHS Third Generation participants (N=3,599; 88% of full cohort) with serum 25(OH)D 

measurements from Exam 1 (2002-2005) and spirometry measurements from Exams 1 and 2 

(2008-2010) were included in serum 25(OH)D— FEV1 analyses (Supplemental Figure 1). 

All study participants provided written informed consent for this study, and local 

institutional review boards approved the study protocols.  

Measures 

Genotyping was performed using the Affymetrix 500K SNP array with a supplemental 

Affymetrix 50K gene-focused array. Genotyping and imputation methods are described in detail 

elsewhere (6, 27).  

241 imputed SNPs in six candidate genes with well-established roles in vitamin D 

metabolism and transport [CYP24A1, CYP27A1, CYP27B1, CYP2R1, DHCR7/NADSYN1 (these 

two genes considered jointly as a candidate genomic locus due to prior GWAS associations), and 

GC] were analyzed (+/- 5KB region on either end of genes included; Supplemental Table 4.6 

for details). 

 In the FHS Offspring 5th, 6th, and 7th examinations, spirometry was performed using a 

Collins Survey II spirometer (Collins Medical, Inc. Braintree, MA) calibrated daily and 

connected to a computer running software developed by S&M Instruments, Doylestown, PA (28, 

29). For Offspring Exam 8 and Third Generation Exams 1 and 2, spirometry was performed 
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using a Collins CPL system (nSpire Health Inc., Longmont, CO) calibrated daily (29). 

Acceptable pulmonary function test measurements (as defined by American Thoracic Society 

standards (30)) were used.  

Serum 25(OH)D was assayed separately in the Offspring and Third Generation cohorts 

using radioimmunassay (DiaSorin Inc, Stillwater, MN, USA) (6, 31), and log-transformed values 

were used in all analyses. Offspring serum samples for 25(OH)D assays were collected between 

1998-2001 (31) and Third Generation serum samples between 2001-2005 (6). The Diasorin RIA 

assay was reformulated in 1998; however, all FHS samples were analyzed after 1998, so assay 

drifts due to the reformulated RIA assay, described for the NHANES data (32), do not affect 

25(OH)D measurements in Framingham. In addition to the RIA assay reformulation, drifts in 

assay performance were noted in NHANES, affecting the comparability of NHANES 25(OH)D 

measurements between 2003-2006.  While it is not known if similar assay variation affects 

comparability between FHS Offspring and Third Generation serum 25(OH)D measurements, the 

effect of the assay drift was relatively small (statistical adjustment of mean 25(OH)D for assay 

drift in NHANES 2003-2004 and 2005-2006 resulted in mean 25(OH)D differences of 1-2 

ng/mL(33)). 

Statistical Analysis  

Linear mixed effects models were used for all analyses in R (version 2.15.3), with 

adjustment for FHS family structure. In SNP—rate of change in FEV1 analyses, the coefficient 

of interest was the interaction of SNP x time (time elapsed between each FEV1 measurement and 

baseline), which estimated the effect of genotype on rate of change in FEV1. In serum 

25(OH)D—rate of change in FEV1 analyses, the coefficient of interest was the interaction of 

25(OH)D x time, which estimated the effect of serum 25(OH)D on rate of change in FEV1. All 
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models were adjusted for baseline age, gender, height, current smoking status, smoking pattern 

during follow-up and the interaction of smoking pattern x time, and baseline pack-years. Genetic 

models were further adjusted for the first two ancestry principal components to account for 

population substructure. Serum 25(OH)D— FEV1 models were further adjusted for month of 

25(OH)D measurement, body mass index (BMI), and FHS cohort (cross-sectional analysis only). 

Smoking pattern was defined as: persistent smoker (current smoker, all time points during 

follow-up), intermittent smoker (current smoker at > 1 time point), former smoker (former 

smoker, all time points), and never smoker (never smoker, all time points). The cross-sectional 

serum 25(OH)D—FEV1 association was estimated using the coefficient for serum 25(OH)D 

from the above-described models. Smoothing spline analyses evaluated log-transformed 

25(OH)D by residual FEV1, after adjustment for described covariates to examine linearity of the 

association. 

SNPs associated with rate of change in FEV1 at P<0.05 in FHS were assessed for 

replication in four independent cohorts with ≥ 3 FEV1 measurements per participant (Online 

Supplement for details). The combined replication cohorts included a total of 10,476 participants 

and 32,054 spirometry observations. The FHS results were meta-analyzed with the other four 

cohorts to provide final overall estimates. 

The SNPs associated with rate of change in FEV1 at P<0.05 were further evaluated for 

association with serum 25(OH)D using data from the SUNLIGHT consortium, which comprised 

33,996 individuals of European ancestry, including FHS participants, with GWAS data for the 

serum 25(OH)D phenotype (6). 

 
RESULTS  
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Average serum 25(OH)D in FHS Offspring participants was 18.0 ng/mL, compared to 

34.5 ng/mL in the Third Generation; similarly, the proportion of FHS participants at risk of 

vitamin D deficiency (defined as serum 25(OH)D <12 ng/mL) was 14.4% and 1.2% in the 

Offspring and Third Generation, respectively (Table 4.1). As expected, Offspring participants 

were older, had lower baseline FEV1, had slightly higher body mass index, and were more likely 

to be former smokers compared to the Third Generation participants. Average spirometry follow-

up time for Offspring and Third Generation participants with serum 25(OH)D measurements 

ranged from 6-7 years (considering only spirometry measurements subsequent to serum 

25(OH)D measurement); average spirometry follow-up time for Offspring participants 

contributing to the SNP—rate of change in FEV1 analysis was 14.7 years because this analysis 

used all available spirometry data. 

Vitamin D Metabolic Gene SNPs and rate of change in FEV1 

We explored the association of SNPs in vitamin D metabolic genes with rate of change in 

FEV1, and found that SNPs in 4 genes, namely CYP27B1, CYP2R1, DHCR7, and GC, were 

associated at a nominal P <0.05 (most significant SNP per gene presented in Table 4.2; full 

results in Supplemental Table 4.7). The most significant SNP association in DHCR7 was for 

rs1790349; the minor allele of this SNP was associated with 2.2 mL/year steeper FEV1 decline 

(P=0.0015). The most significant SNP associations in CYP27B1 and CYP2R1 were for 

rs10877013 and rs11819875, respectively; the minor alleles of these SNPs were also associated 

with steeper FEV1 decline. However, the minor allele of rs842999, the most significant SNP in 

GC, was associated with about 1 mL/yr attenuation in rate of change in FEV1. No SNPs in 

CYP24A1 and CYP27A1 met the threshold for statistical significance (P<0.05), and thus these 

genes were not considered further.  
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We explored replication of the most significant SNP in CYP27B1, CYP2R1, DHCR7, and 

GC in a meta-analyzed set of four independent cohorts, namely the Health, Aging and Body 

Composition Study (Health ABC), the Coronary Artery Risk Development in Young Adults 

Study (CARDIA), the Busselton Health Study (BHS), and the Cardiovascular Health Study 

(CHS), using a P-value threshold of p<0.0125 (representing the Bonferroni correction for 4 tests 

with overall α = 0.05). Although no SNPs reached the replication threshold, all four SNPs had a 

direction of effect that was consistent with findings in FHS (P-value for binomial test = 0.06), 

and rs11819875 (CYP2R1) and rs842999 (GC) were close to the statistical threshold (P-values 

<0.09; Table 4.2). A second analysis, combining the 4 independent cohorts with the FHS data, 

thus combining data across all five cohorts, showed that all four SNPs were associated with rate 

of change in FEV1 at P < 0.05, and rs11819875 (P=2.20 x 10-3) and rs842999 (P=7.48 x 10-3) 

had the strongest evidence for association (Figure 4.1; Table 4.2 and Supplemental Table 4.8 

for replication results). 

We investigated the association of the four above-mentioned SNPs with serum 25(OH)D 

in the SUNLIGHT consortium.  The minor alleles of rs10877013, rs1790349, and rs11819875 

were associated with both steeper FEV1 decline and lower 25(OH)D. However, for rs842999 in 

GC, the minor allele was associated with an attenuated rate of FEV1 decline and a lower serum 

25(OH)D (Table 4.3). 

25(OH)D Associations with Cross-sectional and Longitudinal FEV1 

25(OH)D had a positive association with cross-sectional FEV1 in the combined sample of 

Offspring and Third Generation participants, such that a 1-unit increase in log-transformed 

25(OH)D was associated with a 45 mL increase in FEV1 (P=0.0035) (Table 4.4). A consistent 

direction of association was observed when modeling vitamin D as a dichotomous variable at 
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thresholds of <12 ng/mL (considered risk of vitamin D deficiency) or <20 ng/mL (considered 

risk of vitamin D inadequacy), but coefficients for the dichotomous serum vitamin D variables 

did not reach the significance threshold of P<0.05. Visual inspection of the serum 25(OH)D—

FEV1 association in the spline analysis revealed an approximately linear positive association in 

the range of serum 25(OH)D < 12 ng/mL; in the 12-40 ng/mL range, the serum 25(OH)D—

FEV1 association was positive and linear, but attenuated. However, the serum 25(OH)D—FEV1 

association reached a plateau above a threshold of about 40 ng/mL (Figure 4.2). 

 In longitudinal models including both Offspring and Third Generation participants to 

assess the serum 25(OH)D association with rate of change in FEV1, a highly significant 

association of cohort with rate of change in FEV1 was observed (P=1.23x10-30). This association 

indicated that the Offspring cohort had a less steep rate of change in FEV1 compared to the Third 

Generation cohort, an unexpected finding given Offspring participants are about 20 years older 

than Third Generation participants. Thus, the average rate of change in FEV1 in Offspring 

participants with serum 25(OH)D measured was -14 mL/year; in comparison, in the full 

Offspring cohort, using all available data (i.e., not limited to participants with serum 25(OH)D 

measurement nor to lung function measurements subsequent to the serum assay), the average rate 

of change in FEV1 was -26 mL/year (personal communication). This definitive evidence of 

significant selection bias in the 28% subset of Offspring participants with 25(OH)D 

measurements precluded further analysis of longitudinal 25(OH)D—FEV1 associations in the 

Offspring. 

There was little or no association between serum 25(OH)D and rate of change in FEV1 in 

the Third Generation cohort (P = 0.97; Table 4.5). The average rate of decline in the Third 
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Generation participants was -28 mL/year, similar to the rate of decline in the Offspring 

participants included in the genetic analyses.  

 

DISCUSSION 

In this population-based cohort study, we investigated associations between vitamin D 

and both cross-sectional and rate of change in FEV1, considering genetic variants in vitamin D 

metabolic genes and serum 25(OH)D as exposures. SNPs in four vitamin D metabolic genes, 

CYP2R1, CYP27B1, DHCR7, and GC, were associated with rate of change in FEV1 in the FHS 

Offspring cohort, and the most significant SNP from each gene showed evidence of replication 

in a meta-analysis of four independent cohort studies. In three genes, SNPs associated with 

steeper FEV1 decline in FHS were also associated with lower 25(OH)D in the SUNLIGHT 

consortium, supporting the hypothesis that SNPs influencing usual 25(OH)D status are 

associated with lung function. SNPs in vitamin D metabolic genes are randomly assigned at 

conception and are hypothesized to reflect usual serum 25(OH)D status; thus, investigating 

genetic variants in association with pulmonary function reduces potential bias from lifestyle 

confounding and reverse causality.  

We demonstrated an association of serum 25(OH)D with cross-sectional FEV1 consistent 

with previously published studies. Serum 25(OH)D was not associated with FEV1 decline in 

FHS Third Generation participants, which is likely due to the fact that > 90% of Third 

Generation participants had sufficient serum 25(OH)D [defined as 25(OH)D ≥ 20 ng/mL]; 

conversely, only 8.6% and 1.2% were considered to be at risk of inadequacy (<20 ng/mL) and 

deficiency (< 12 ng/mL), respectively (thresholds defined by the IOM (3)). These findings 

support the assertion that longitudinal associations between 25(OH)D and lung function are non-
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linear, and may be limited to individuals with low 25(OH)D. Neither was there any evidence for 

a differential effect by smoking status (19). We were unable to estimate serum 25(OH)D—rate 

of change in FEV1 associations in the Offspring cohort given selection bias.  An ideal study 

would investigate the association between SNPs in vitamin D metabolic genes, serum 25(OH)D, 

and FEV1 in the same study population, but this was not feasible in the FHS data. 

Rs11819875 in CYP2R1 (G allele) was associated with steeper FEV1 decline in FHS, had 

the strongest evidence for association in the meta-analysis of 4 replication cohorts, and was 

associated with lower serum 25(OH)D in SUNLIGHT. CYP2R1 is a key hepatic 25-hydroxylase 

enzyme (34), and variants in this gene are consistently associated with 25(OH)D in GWAS (5, 

6). Rs11819875 is located less than 2.5 KB away from rs10741657, the SNP in CYP2R1 most 

strongly associated with 25(OH)D concentrations in SUNLIGHT (6), but these two SNPs are in 

low linkage disequilibrium (R2=0.13).  

Rs842999 in GC (G allele) was associated with an attenuated rate of change in FEV1 in 

FHS and in the meta-analysis of 4 replication cohorts. Contrary to our hypothesis, the rs842999 

G allele was associated with lower serum 25(OH)D in the SUNLIGHT consortium. Rs842999 is 

in strong linkage disequilibrium (R2=0.9) with rs7041, a nearby non-synonymous SNP in GC. 

The rs842999 G allele has the same minor allele frequency as the rs7041 T allele, which was also 

associated with attenuated FEV1 decline in FHS (P=0.08) and in the meta-analysis of 4 

replication cohorts (P=0.04); furthermore, the rs7041 T allele was similarly associated with 

lower serum 25(OH)D in SUNLIGHT. The GC gene exists in three common isoforms, GC1F, 

GC1S, and GC2, based on the alleles present at rs7041 and rs4588, a second non-synonymous 

GC SNP. Importantly, the rs7041 T allele is part of both GC2 (rs7041 = T allele, rs4588 = A 

allele) and GC1F (rs7041 = T allele, rs4588 = C allele). GC2 was associated with lower risk of 
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COPD in several studies (implying attenuated rate of decline), while GC1F was associated with 

higher risk of COPD and a steeper rate of FEV1 decline (20-23, 35). GC2 is associated with 

reduced macrophage activation compared to GC1 variants, providing a hypothesized mechanism 

for this effect (22), although, paradoxically, the GC2 alleles were associated with lower serum 

25(OH)D in Caucasian populations (15, 22, 36, 37). Our finding for rs842999 could be tagging 

the effect of the GC2 haplotype, which is associated with both lower serum 25(OH)D levels and 

a protective effect on lung function. Because rs4588 was not imputed in FHS we cannot directly 

investigate GC2 frequency or the haplotype association with FEV1; however, GC2 has a higher 

prevalence (vs. GC1f) in Caucasian populations (38, 39).  

Both rs1790349 (DHCR7), and rs10877013 (CYP27B1) had a consistent direction of 

effect on FEV1 decline in FHS and in the meta-analysis of 4 replication cohorts, although the 

effect sizes were close to the null value in the replication. Rs1790349 was strongly associated 

with serum 25(OH)D concentration (5), and the C allele was associated with lower 25(OH)D in 

SUNLIGHT. DHCR7 encodes the 7-dehydrocholesterol reductase enzyme, which converts pro-

vitamin D to cholesterol, thus removing the substrate for endogenous 25(OH)D production(6). 

Similarly, the T allele of rs10877013 in CYP27B1, associated with steeper lung function decline 

in FHS, was associated with lower serum 25(OH)D in SUNLIGHT; CYP27B1 is a 1-α-

hydroxylase that converts 25(OH)D to the active vitamin D metabolite, 1,25(OH)2D, and is 

expressed in airway epithelial cells (7).  

Our study has a number of strengths as well as several limitations worth mentioning. A 

major strength is use of the Framingham Heart Study, a large, population-based study including 

both male and female smokers and non-smokers. The FHS Offspring participants included in the 

genetic analysis had an average spirometry follow-up of 14.7 years leading to increased accuracy 
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of the rate of decline estimates. A limitation of this study is that serum 25(OH)D was measured 

only once; however, a recent study showed that 25(OH)D measurements 12 months apart had a 

correlation of 0.8 (40). As the follow-up period for serum 25(OH)D—FEV1 analyses was 6-7 

years, we assumed baseline 25(OH)D was a good approximation of 25(OH)D status throughout 

follow-up. While spirometry follow-up in the Third Generation cohort averaged 6.1 years, longer 

follow-up may be needed to identify associations between vitamin D and rate of change in FEV1. 

A related limitation is that supplement use data was not available, thus we could not investigate 

whether low baseline 25(OH)D was associated with subsequent supplement use.  

CONCLUSIONS 

The SNP—FEV1 findings show that genetic variants influencing usual 25(OH)D status 

are associated with rate of change in lung function over time, which is suggestive of a true 

association, although associations between genetic variants in GC and FEV1 may not be 

straightforward.  Further, these findings suggest that populations with a low prevalence of 

vitamin D inadequacy are unlikely to demonstrate serum 25(OH)D—lung function association, 

suggesting important study design considerations regarding potential to benefit. 
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Table 4.1  Baseline* population characteristics of Framingham Heart Study participants  

 SNP—FEV1 analysis 25(OH)D—FEV1 analysis 

 

Offspring  

Cohort 

(N=3,230) 

Offspring  

Cohort  

(N=1,435) 

Third Generation 

Cohort  

(N=3,599) 

Follow-up duration, yr 14.7 7.2 6.1 

N of FEV1 measurements 11,275 3,093 6,493 

FEV1, L 3.0 (0.8) 2.7 (0.8) 3.6 (0.8) 

Baseline age, yr 50.9 (10.3) 59.9 (9.2) 40.2 (8.7) 

Male, % 47 48 47 

Height, cm 165.5 (9.5) 168.0 (9.1) 170.6 (9.3) 

Baseline pack-years 25.4 (21.3) 26.0 (22.7) 13.7 (14.2) 

Current smokers**, % 24.6 12.8 15.2 

Former smokers, % 39.8 50.8 27.0 

BMI Not available 28.0 (5.1) 26.9 (5.4) 

25(OH)D†, ng/ml Not available 18.0 (1.5) 34.5 (1.5) 

N of 25(OH)D deficient 

(<12 ng/mL) 
Not available 207 (14.4%) 44 (1.2%) 

N of 25(OH)D insufficient 

(<20 ng/mL), % 
Not available 801 (55.8%) 311 (8.6%) 

* Baseline measurements for Offspring participants in SNP—FEV1 analysis are from Exam 5. 

Baseline measurements for the Offspring participants included in 25(OH)D—FEV1 analyses are 

from the exam closest to time of vitamin D measurement (either Exam 6 or 7). Baseline 

measurements for the Third Generation participants are from Exam 1. 

**Current smokers at baseline; former smokers at all time points 

† Geometric mean of 25(OH)D  
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Table 4.2  Association of the most statistically significant SNP per gene with the rate of change in FEV1 in FHS and in the meta-

analyzed replication cohorts (sorted by gene) 

 

SNP Chr Position Gene 
Coded 

Allele* 
Freq 

FHS (N=3,230) 

Replication cohorts, 

excluding FHS 

(N=7,246) 

Replication cohorts, 

including FHS 

(N=10,476) 

β SE P β SE P β SE P 

rs10877013 12 56451352 CYP27B1 T 0.30 -1.3 0.5 0.0210 -0.4 0.5 0.3996 -0.7 0.4 0.0424 

rs11819875 11 14873873 CYP2R1 G 0.18 -1.9 0.7 0.0043 -1.0 0.6 0.0851 -1.3 0.4 0.0022 

rs1790349 11 70819998 DHCR7 C 0.15 -2.2 0.7 0.0015 -0.1 0.6 0.8869 -0.9 0.5 0.0447 

rs842999 4 72830554 GC G 0.44 +1.1 0.5 0.0300 +0.8 0.4 0.0784 +0.9 0.3 0.0075 

Abbreviations: Chr = chromosome; SNP = single nucleotide polymorphism; β = beta coefficient for SNP x time effect; SE = standard 

error; P = P-value 

Adjusted for: baseline age, gender, height, smoking pattern over follow-up and its interaction with time, baseline smoking pack-

years, and the first two principal components for genetic ancestry 

*Coded allele and frequency for the Framingham Heart Study (FHS). All effect estimates presented in terms of FHS coded allele. 

Coded allele frequencies between FHS and replication cohorts were nearly identical. 
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Table 4.3  Association of the most statistically significant SNP per gene with serum 25(OH)D in 

the SUNLIGHT Consortium 

 

Gene Chr SNP 
Coded 

Allele* 
Freq 

SUNLIGHT 

Effect on 25(OH)D P ** 

CYP27B1 12 rs10877013 T 0.30 Decrease 0.1067 

CYP2R1 11 rs11819875 G 0.18 Decrease 0.1458 

DHCR7 11 rs1790349* C 0.15 Decrease 2.28x10-8 

GC 4 rs842999 G 0.44 Decrease 2.12x10-45 

Abbreviations: Chr = chromosome; SNP = single nucleotide polymorphism; β = beta coefficient 

for SNP x time effect; SE = standard error; P = P-value 

*Coded allele and frequency for the Framingham Heart Study (FHS) 

** P-value from combined SUNLIGHT discovery and replication cohorts 
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Table 4.4  Cross-sectional Association of 25(OH)D and FEV1 (mL) in the Offspring and Third 

Generation cohorts, combined (N=5,034) 

 

Model parameterization of vitamin D: β  SE P 

Continuous log-transformed 25(OH)D 45.2 15.5 0.0035 

At risk of vitamin D deficiency (<12 ng/mL) vs. not -46.8 26.7 0.079 

At risk of vitamin D inadequacy (<20 ng/mL) vs. not -30.6 16.6 0.065 

Abbreviations: β = beta coefficient; SE = standard error; P = P-value 

Adjusted for: baseline age, gender, height, smoking pattern, current smoking status, baseline 

pack-years, FHS cohort, baseline BMI, and month of blood draw; all coefficients show expected 

direction of effect 
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Table 4.5  Association of 25(OH)D and Rate of Change in FEV1 (mL/yr) in the Third 

Generation Cohort  

 

 Third Generation Cohort (N=3,599) 

Model parameterization of vitamin D: β SE P 

Continuous log-transformed 25(OH)D -0.06 1.7 0.97 

At risk of vitamin D deficiency (<12 ng/mL) vs. not* -0.02 6.9 0.997 

At risk of vitamin D inadequacy (<20 ng/mL) vs. not 2.0 2.5 0.41 

Abbreviations: β = beta coefficient; SE = standard error; P = P-value 

*Interpretation: Third Generation participants at risk of vitamin D deficiency have a 0.02 mL/yr 

steeper rate of decline compared to Third Generation participants not at risk of deficiency 

Adjusted for: baseline age, gender, height, smoking pattern over follow-up and its interaction 

with time, baseline pack-years, current smoking at each time point, BMI, and month of blood 

draw 
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Figure 4.1  Forest plots for rs11819875 and rs842999, where the size of the square for each 

study represents its contributing weight to the meta-analyzed replication results. 

A) rs11819875 

 

B) rs842999 
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Figure 4.2  Spline analysis of log-transformed 25(OH)D by residual FEV1  
 

 
 
 
Residual FEV1 values from model adjusted for baseline age, height, smoking status, baseline 

pack-years, BMI, FHS cohort, and month of blood draw   
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ONLINE SUPPLEMENT 

Supplemental Methods 

Replication Cohorts 

 Three cohorts from the CHARGE (Cohorts for Heart and Aging Research in Genomic 

Epidemiology) consortium and one cohort from the SpiroMeta consortium were used for 

replication of the SNP—FEV1 findings in the Framingham Heart Study. Cohorts included for the 

replication had ≥ 3 FEV1 measurements per participant, namely the Busselton Health Study 

(BHS), the Coronary Artery Risk Development in Young Adults (CARDIA), the Cardiovascular 

Health Study (CHS), the Health, Aging, and Body Composition Study (HABC), and the 

Framingham Heart Study (FHS). Further details on each cohort provided elsewhere (manuscript 

in preparation).  

 

Supplemental Results 

Association of 25(OH)D with Rate of Change in FEV1 in the Offspring Cohort 

In longitudinal analyses of 25(OH)D with rate of change in FEV1 , we observed a 

statistically significant interaction of cohort by time such that the Offspring cohort had a 

significantly attenuated rate of FEV1 decline compared to the younger Third Generation cohort, 

as reported earlier. We further explored this finding in two sensitivity analyses. First, we 

excluded Offspring participants with COPD, defined as GOLD stages 1-4 (222 participants 

excluded), but the cohort x time interaction remained significant (P=1.74x10-25). Second, we 

excluded all Offspring Exam 8 spirometry measurements given there was a change in the type of 

spirometer used at Exam 8 (186 participants excluded); however, the cohort x time interaction 

remained significant in this analysis as well (P=2.32x10-30). 
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We hypothesize that the attenuated rate of decline in the Offspring compared to the Third 

Generation participants reflects a “healthy survivor” bias in the 1,435 Offspring cohort 

participants with serum 25(OH)D data, leading to systematic differences in rate of decline 

between cohorts. A previously published study examining FEV1 change in the Framingham 

Offspring cohort from Exams 1-6 demonstrated that the oldest male participants had a slight 

increase in FEV1, which the authors attributed either to healthy survivor bias or measurement 

variability (28).  
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Supplemental Table 4.6  Imputed SNPs in Vitamin D Metabolic Genes in FHS 

Gene Symbol Chr Function 
Imputed SNPs 

in FHS 

CYP24A1 20 Degradation of 1,25(OH)2D 42 

CYP27A1 2 Vitamin D 25-hydroxylase 23 

CYP27B1 12 25(OH)D 1-α-hyroxylase 5 

CYP2R1 11 Vitamin D 25-hydroxylase 15 

DHCR7/NADSYN1 11 

DHCR7 converts vitamin D3 substrate to 

cholesterol; NADSYN1 is a flanking 

gene 

105 

GC 4 Vitamin D binding protein 51 
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Supplemental Table 4.7  SNPs in CYP27B1, CYP2R1, DHCR7/NADSYN1, and GC associated 

with the rate of change in FEV1 in FHS at P < 0.05 (sorted by gene) 

 

Gene SNP Chr Position 
Coded 
Allele 

Freq β SE P 

CYP27B1 rs10877013 12 56451352 T 0.30 -1.3 0.5 0.0210 
 rs703842 12 56449006 G 0.30 -1.2 0.5 0.0228 
 rs1048691 12 56439215 T 0.21 1.4 0.6 0.0241 
CYP2R1 rs11819875 11 14873873 G 0.18 -1.9 0.7 0.0043 
 rs16930625 11 14874884 G 0.10 -2.1 0.8 0.0075 
 rs16930609 11 14872484 C 0.10 -1.9 0.8 0.0170 

DHCR7/ 
NADSYN1 rs1790349 11 70819998 C 0.15 -2.2 0.7 0.0015 

 rs7120029 11 70876605 A 0.15 -2.1 0.7 0.0024 
 rs3829251 11 70872207 A 0.15 -2.1 0.7 0.0026 
 rs10898193 11 70874731 T 0.15 -2.1 0.7 0.0026 
 rs10898203 11 70881084 T 0.14 -1.9 0.7 0.0051 
 rs11233933 11 70887718 T 0.14 -1.9 0.7 0.0060 
 rs10898211 11 70888325 C 0.14 -1.9 0.7 0.0060 
 rs736894 11 70829906 T 0.20 -1.6 0.6 0.0103 
 rs1630498 11 70828433 C 0.20 -1.5 0.6 0.0107 
 rs1790324 11 70828168 G 0.20 -1.5 0.6 0.0115 
 rs1790345 11 70823589 A 0.20 -1.5 0.6 0.0120 
 rs1792229 11 70857043 G 0.19 -1.5 0.6 0.0166 
 rs1792234 11 70859666 C 0.19 -1.5 0.6 0.0166 
 rs1540127 11 70856686 A 0.19 -1.5 0.6 0.0168 
 rs1790343 11 70854855 C 0.19 -1.5 0.6 0.0169 
 rs1792226 11 70854222 T 0.19 -1.5 0.6 0.0171 
 rs1629220 11 70852201 T 0.19 -1.5 0.6 0.0174 
 rs2002064 11 70841068 G 0.19 -1.4 0.6 0.0194 
GC rs842999 4 72830554 G 0.44 1.1 0.5 0.0300 

 rs705120 4 72833004 A 0.42 1.0 0.5 0.0498 
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Supplemental Table 4.8  Replication cohort associations of the most significant SNPs per gene with the rate of change in FEV1 

(sorted by gene) 

SNP Gene 
Coded 

Allele 

BHS (N=3,230) CARDIA CHS Health ABC 

β SE P β SE P β SE P β SE P 

rs10877013 CYP27B1 T -1.2 1.1 0.2574 -0.2 0.6 0.6941 +1.1 1.2 0.3751 -1.5 1.2 0.2117 

rs11819875 CYP2R1 G -1.1 1.4 0.4279 -0.2 0.7 0.7924 +0.2 1.5 0.9188 -5.0 1.5 0.0006 

rs1790349 DHCR7 C -1.8 1.5 0.2184 +0.5 0.7 0.4593 +0.1 1.7 0.9354 -1.3 1.6 0.4423 

rs842999 GC G +2.4 1.0 0.0168 +0.1 0.6 0.8621 +2.2 1.1 0.0523 -0.3 1.2 0.8117 

Abbreviations: BHS = Busselton Health Study; CARDIA = Coronary Artery Risk Development in Young Adults Study; CHS = 

Cardiovascular Health Study; Health ABC = Health, Aging, and Body Composition Study; SNP = single nucleotide polymorphism; β 

= beta coefficient for SNP x time effect; SE = standard error; P = P-value 

Adjusted for: baseline age, gender, height, smoking pattern over follow-up and its interaction with time, baseline smoking pack-

years, and the first two principal components for genetic ancestry 
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Supplemental Figure 4.3  Overview of Framingham Heart Study Cohorts 

    

  
 

Original Cohort (N=5,209) 
Original Framingham Heart Study 

participants 

Offspring Cohort (N=5,124)  
Offspring of Original Cohort + 

Offspring spouses 

Third Generation Cohort (N=4095)  
At least 1 parent in Offspring Cohort 

Offspring Cohort 
SNP—FEV1 analysis, N=3,230 

25(OH)D—FEV1 analysis, N=1,435 

Third Generation Cohort 
25(OH)D—FEV1 analysis, N=3,599 
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CHAPTER 5 

 

CONCLUSION  

 

Vitamin D has generated enormous interest following studies showing associations between 

vitamin D status and numerous health outcomes including cancer, cardiovascular disease, and 

diabetes. National surveys estimate that approximately 1/3 of the United States population is at 

risk for vitamin D insufficiency (defined as serum 25(OH)D < 20 ng/mL) (1), suggesting that 

many individuals could benefit from improved vitamin D status, although the precise meaning of 

deficiency in relation to health outcomes is yet to be fully characterized. Indeed, definitive causal 

associations with vitamin D have been established only for bone health outcomes, and the 

Institute of Medicine has identified further elucidation of vitamin D associations with non-

skeletal outcomes as a research priority (2). 

Understanding vitamin D—lung function associations is a growing research area following 

cross-sectional observational studies that demonstrated strong, positive associations between 

serum 25(OH)D and lung outcomes. Decline in lung function is the primary characteristic of 

chronic obstructive pulmonary disease (COPD), which is currently the 3rd leading cause of death 

in the U.S. and a significant burden on healthcare resources (3). However, representative, 

longitudinal, population-based studies of vitamin D and lung outcomes are lacking, and to date 

there are no published randomized controlled trials investigating vitamin D effects on lung 

function.  

The three projects described in this dissertation were designed and conducted to assess the 

determinants of serum 25(OH)D status in a population at high risk of inadequacy, and to 
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investigate associations between serum 25(OH)D and pulmonary function outcomes with an 

exploration of mechanisms. The three completed studies are as follows: 1) genetic and 

environmental determinants of serum 25(OH)D were explored in elderly African American 

participants in the Health, Aging, and Body Composition (Health ABC) study to understand the 

relative contributions of modifiable and non-modifiable factors to vitamin D status; 2) genetic 

variants in vitamin D-responsive genes were evaluated in association with cross-sectional lung 

function in Health ABC to elucidate potential mechanisms for vitamin D—lung function effects; 

and, 3) the cross-sectional and longitudinal associations of vitamin D with lung function were 

explored in the Framingham Heart Study (FHS), considering both serum status and genetic 

variants in vitamin D metabolic pathway genes.  

These distinct yet complementary projects investigate the role of vitamin D in lung, 

providing important information about a non-bone health outcome and addressing gaps in the 

published literature. A brief summary of each project is presented below.   

 

Genetic and Environmental Predictors of Serum 25-Hydroxyvitamin D in African Americans in 

the Health, Aging, and Body Composition Study (Chapter 2) 

No published studies to date explore both genetic and non-genetic determinants of serum 

25(OH)D status in elderly African Americans, a group at high risk of vitamin D insufficiency 

due to the dual factors of advanced age and skin pigmentation. In studying about 1,000 African 

American Health ABC participants, we estimated that 25% of the variation in serum 25(OH)D 

was explained by non-genetic factors; the use of multivitamin supplements was the strongest 

predictor of status. Up to 23% of 25(OH)D variability was estimated to be attributable to additive 

genetic variation in Health ABC, and this finding was replicated in a separate cohort of African 
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Americans. However, we were unable to separate the effects of population ancestry from other 

genetic effects on 25(OH)D. We studied SNPs associated with 25(OH)D in GWAS of 

Caucasians, to assess whether these identified SNPs were associated with 25(OH)D in African 

Americans, and found that none were associated with 25(OH)D at P<0.05. However, rs7041, a 

non-synonymous SNP in the vitamin D binding protein (GC), had a borderline statistically 

significant association with 25(OH)D (P=0.08). Given the biological function of GC, we further 

explored SNP interactions with multivitamin supplement use. The rs7041 TT genotype, 

associated with lower 25(OH)D status in previous studies, modified the 25(OH)D response to 

multivitamin supplementation such that supplement users with the TT genotype had lower 

25(OH)D and increased odds of vitamin D insufficiency compared to supplement users with the 

GG/GT genotype. There was little or no association of genotype with 25(OH)D in participants 

who did not use multivitamin supplements.  

Overall, we identified an effect of genetic variation on 25(OH)D status in two cohorts of 

African Americans, consistent with a true effect, but further exploration of the genetic 

architecture of 25(OH)D in African Americans is needed. Modifiable predictors of 25(OH)D, 

including dietary patterns, supplement use, physical activity, and BMI were identified. Finally, 

we demonstrated that the rs7041 SNP modifies the effect of multivitamin supplement use on 

serum 25(OH)D, highlighting an important consideration for clinical trials of vitamin D 

supplementation. 

 

Vitamin D-Responsive SGPP2 Variants Associated with Lung Cell Expression and Lung 

Function (Chapter 3) 
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The second study investigated the cross-sectional associations between genetic variants in 

vitamin D-responsive genes and lung function in Health ABC, with the goal of identifying lung 

tissue-specific mechanisms for observed 25(OH)D—lung function associations. Although 

vitamin D has a role in biological processes important for lung health, translational studies 

directly investigating vitamin D’s effects in vivo are lacking. This study expanded on a 

previously completed gene expression study, which identified 13 genes differentially expressed 

by 25(OH)D in human lung epithelial cells. Using a cross-sectional design, we investigated 

genetic variation in these 13 genes in association with pulmonary function in Health ABC 

European Americans and African Americans. The strongest finding was for the SGPP2 gene, a 

phosphatase that catalyzes the degradation of the signaling molecule sphingosine-1-phosphate 

(S1P). SGPP2 has also been implicated in inflammatory signaling. SNPs in SGPP2 were 

associated with forced expiratory volume in 1 second (FEV1), a key parameter of lung function, 

in both Health ABC racial groups; also, a linked group of SNPs was associated with increased 

COPD risk in African Americans.  Gene-level replication of SGPP2 in association with cross-

sectional lung function was observed in the Framingham Heart Study.  

We hypothesized that these risk-associated SNPs would influence gene expression, and 

performed an expression quantitative trait loci (eQTL) analysis to evaluate the association 

between genetic variants and gene expression. We identified a highly significant eQTL 

association, although it was in a different region of SGPP2 as the previous risk-associated 

variants. SGPP2 SNPs associated with FEV1 or expression may affect binding of 

1,25(OH)2D/VDR or the co-regulatory complexes required for gene expression and translation, 

but we could not directly assess specific mechanisms. SGPP2 remains a promising candidate 

gene for future study.  
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25-Hydroxyvitamin D Status and Genetic Variation in the Vitamin D Metabolic Pathway in 

Association with FEV1 in the Framingham Heart Study (Chapter 4) 

We investigated associations between 25(OH)D and rate of change in FEV1 in the 

Framingham Heart Study, a representative population-based cohort of healthy adult participants. 

Both genetic variation in vitamin D metabolic genes, hypothesized to influence usual vitamin D 

status, and serum 25(OH)D were considered in association with rate of change in FEV1. The 

cross-sectional association of serum 25(OH)D and FEV1 was also evaluated. Given some 

variation in available data, these analyses considered data from the Offspring cohort participants 

(offspring of original study members) and the Third Generation cohort participants (children of 

offspring).  

Genetic variants in four vitamin D metabolic genes were associated with rate of change in 

FEV1, and showed an overall consistent direction of effect on rate of change in FEV1 in 4 

independent replication cohorts. We further investigated the association of these identified SNPs 

with serum 25(OH)D concentrations in the SUNLIGHT consortium. Rs11819875 (CYP2R1) 

demonstrated the strongest association with rate of change in FEV1; the G allele of rs111819875 

was associated with steeper FEV1 decline and, in SUNLIGHT, with lower 25(OH)D. Rs842999 

(GC) was strongly associated with attenuated FEV1 decline, and, in SUNLIGHT, with lower 

25(OH)D (contrary to expectation). Rs842999 is in strong linkage disequilibrium (R2=0.9) with 

rs7041, and the T allele of rs7041 had the same direction of effect on FEV1 and 25(OH)D as the 

G allele of rs842999. The rs7041 T allele is part of two common GC isoforms, GC1F and GC2; 

both are associated with lower 25(OH)D, but GC1F is associated with an increased risk of COPD 
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while GC2 has a protective effect. The reason for the opposite direction of association with the 

lung outcomes is unclear. 

We confirmed the well-known cross-sectional association of serum 25(OH)D with FEV1, 

and found that the association was steepest in the insufficient range of vitamin D [25(OH)D <20 

ng/mL]. There was no association between 25(OH)D and rate of change in FEV1 in the Third 

Generation cohort; however, the average 25(OH)D was 34.5 ng/mL, and only 8.6% of 

participants had insufficient 25(OH)D status. Due to evidence of selection bias, we were unable 

to evaluate associations between 25(OH)D and rate of change in FEV1 in the Offspring cohort 

with 25(OH)D measurements (a limited subset of all Offspring cohort data). 

Overall, SNP analyses support an effect of 25(OH)D on lung function change over time. 

Although no association was observed between 25(OH)D and rate of FEV1 change in the Third 

Generation cohort, the average serum 25(OH)D in this cohort was in the sufficient range, 

limiting our ability to detect associations with low 25(OH)D. 

 

Emerging Themes & Future Directions 

 Several important themes emerge in this work that are relevant for future vitamin D-

related research. First, we show that rs7041, a genetic variant in the vitamin D binding protein 

(GC), affects serum 25(OH)D status in multivitamin supplement users. This is an important 

consideration for vitamin D supplementation trials, particularly as frequency of rs7041 varies 

across race/ethnicity. Further, we found that a SNP in strong linkage disequilibrium with rs7041 

was associated with both lower 25(OH)D in SUNLIGHT and attenuated rate of lung function 

decline in FHS. This highlights that associations between 25(OH)D and health outcomes may 

depend on underlying genetic variation. Finally, vitamin D effects may be restricted to the 
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insufficient ranges of 25(OH)D, and baseline 25(OH)D status is an important consideration for 

future studies. 

Further research is needed to characterize fully the association between serum and lung 

tissue 25(OH)D concentrations, including whether an increase in serum 25(OH)D similarly 

increases lung tissue 25(OH)D concentrations. Along the same vein, a better understanding of 

vitamin D uptake into the lung is needed.  The major pathway for vitamin D uptake to the kidney 

is via receptor-mediated endocytosis, specifically through the action of the megalin and cubulin 

proteins (4, 5).  Megalin and cubulin are expressed in lung alveolar cells (6), and this pathway of 

vitamin D uptake has been demonstrated in mammary cells (7).  However, no studies to date 

have directly explored mechanisms of in vivo 25(OH)D uptake into lung tissue.  Alternatively, 

free 25(OH)D (not bound to the vitamin D binding protein) may diffuse across the cell 

membrane, as described by the “free hormone hypothesis” (8).  However, given that >99% of 

circulating 25(OH)D is bound to the vitamin D binding protein (4), it is unlikely that diffusion is 

the only and/or the primary mechanism for vitamin D uptake in non-renal tissues.  As discussed 

in Chapter 4, there are three major isoforms of the vitamin D binding protein; these isoforms 

have different vitamin D binding affinities (9), which may also affect 25(OH)D tissue uptake.  

Large-scale genomics studies are needed to further elucidate how VDR binds to the 

genome in lung tissue and interacts with co-regulatory complexes to influence gene expression 

and protein synthesis. ChIP-seq analyses of genome-wide VDR binding in human 

lymphoblastoid and osteoblast cell lines have revealed critical information about VDR gene 

regulation (10, 11); however, associations may be cell- and tissue-specific (12), and there are no 

published ChIP-seq studies of VDR binding in lung tissue. 
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Finally, further longitudinal studies examining the association between serum 25(OH)D 

and rate of change in lung function are needed, particularly studies with sufficient representation 

of healthy individuals with insufficient serum 25(OH)D status.  An ongoing vitamin D 

supplementation trial, VITAL (VITamin D and OmegA-3 Trial), which studies cardiovascular 

and cancer endpoints, has an ancillary study, lungVITAL (Clinical Trials.gov Identifer: 

NCT01728571), which registers a subgroup to study the effect of supplementation on rate of 

change in lung function. While this trial is expected to contribute answers to some of the 

questions raised above, the exact contribution awaits a better understanding of the proportion of 

vitamin D insufficient participants registered in the trial. An important understanding from the 

work reported herein is that if such persons are under-sampled, the trial may be less likely to 

contribute new information to the ongoing debate on the role of vitamin D in non-bone health 

outcomes. 
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APPENDIX 

 

A. Exploratory Gene-Environment Interactions in the Health ABC Cohort 

METHODS 

Serum 25(OH)D measurements were completed on a majority of Health ABC 

participants, which allowed the consideration of gene by nutrient interaction. Serum 25(OH)D 

was measured in stored serum samples from the 12-month follow-up visit using a 2-step 

radioimmunoassay (25-Hydroxyvitamin D 125I RIA Kit, DiaSorin, Stillwater, Minn., USA); 

the interassay coefficient of variation was 6.8% for log transformed 25(OH)D values.[34] 

Although the serum 25(OH)D measurements are from the 12-month follow-up visit, a recent 

study reported a correlation of 0.8 between vitamin D measurements taken a year apart[35], 

supporting the assumption that measured 25(OH)D is an excellent representation of vitamin D 

serum status at study baseline.  

Genotype by serum 25(OH)D interactions were assessed for the FEV1 and FEV1/FVC 

phenotypes in an additive model by including a product term between each SNP and serum 

25(OH)D, adjusting for season of vitamin D measurement; a less stringent nominal P-value 

threshold (P<0.05) was used for interaction analyses because of lower power to detect effects. 

In gene-nutrient interaction analyses, participants with missing serum 25(OH)D data were 

excluded. 

RESULTS 

In European-Americans, the genotype—FEV1 association was modified by serum 

25(OH)D for 10 SNPs in 4 genes (DAPK1, KAL1, SGPP2, and SLITRK6) at nominal 

P<5.0x10-02. In African-Americans, the genotype—FEV1 association was modified by serum 
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25(OH)D for 43 SNPs in 9 genes (DAPK1, DTX4, EMB, FSTL1, KAL1, KCNS3, PTGER2, 

SGPP2, SLITRK6) at nominal P<5.0x10-02 (Appendix Table 1). 

In European-Americans, the genotype—FEV1/FVC association was modified by 

serum 25(OH)D for 11 SNPs in 4 genes (KAL1, PTGER2, SGPP2, and TMEM40) at nominal 

P<5.0x10-02. In African-Americans, the genotype—FEV1/FVC association was modified by 

serum 25(OH)D for 26 SNPs in 8 genes (DAPK1, DTX4, EMB, FSTL1, KAL1, KCNS3, 

PTGER, and SGPP2) at nominal P<5.0x10-02 (Appendix Table 2).  

The SGPP2—lung function association was consistently modified by serum 25(OH)D. 

Thus, the SNP—phenotype association for SNPs in the SGPP2 gene was modified by serum 

25(OH)D in European- and African-Americans for both the FEV1 and the FEV1/FVC 

phenotypes, with consistent direction of effect for the interaction effect (higher serum vitamin 

D concentrations attenuated genotype—phenotype associations). Similarly, SNPs in DAPK1, 

DTX4, EMB, FSTL1, KAL1, and PTGER2 showed consistent evidence of genotype—serum 

25(OH)D interactions for both FEV1 and FEV1/FVC in African-Americans. 

For statistically significant genotype x serum 25(OH)D interactions (nominal 

P<5.0x10-02) the mean FEV1 was estimated (from model coefficients) for serum 25(OH)D 

concentrations of 12 ng/mL, 20 ng/mL, and 30 ng/mL, corresponding to typical definitions of 

deficient, sufficient, and optimal levels of vitamin D nutriture, respectively. At each level of 

serum 25(OH)D, individuals with 0 copies of the variant allele (wild-type homozygotes) were 

compared to individuals with 1 or 2 copies of the variant allele. In European-American 

participants, gene x nutrient interactions were consistent such that the allele—FEV1 

association was stronger at the “deficient” level of serum 25(OH)D (12 ng/ml). In African-
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Americans, findings were mixed; interaction results went in both directions (Appendix Table 

1). The pattern of findings for the ratio phenotype is similar (Appendix Table 2). 
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Appendix Table 1   SNP by 25(OH)D interactions associated with the FEV1 phenotype in a) 

European-Americans, and b) African-Americans. 

 
a) European-Americans 

  
  Predicted FEV1 difference 

(mL) by serum 25(OH)D  

Gene SNP 
Interaction 
Coefficient 
βInteraction** 

Nominal 
P-value* 12 ng/ml 20 ng/ml 30 ng/ml 

DAPK1 rs2378753 -6.98 4.00x10-03 108.6*** 52.8 -17.0 
 rs3095747 -7.68 5.17x10-03 111.2 49.8 -26.9 
KAL1 rs5933673 5.77 9.70x10-03 -121.7 -75.5 -17.8 
SGPP2 rs13021671† -4.97 1.90x10-02 52.5 12.8 -36.9 
 rs2009150 5.91 2.42x10-02 -67.1 -19.9 39.2 
 rs6714352† 6.05 3.15x10-02 -86.2 -37.7 22.7 
 rs735678† -8.31 4.45x10-02 108.0 42.0 -41.0 
SLITRK6 rs1337267 -3.05 4.54x10-02 58.3 33.9 3.3 
 rs356279 -3.25 4.82x10-02 53.6 27.6 -5.0 
 rs631906 -3.05 4.82x10-02 58.3 33.9 3.3 

 
b) African-Americans  

   Predicted FEV1 difference 
(mL) by serum 25(OH)D 

Gene SNP βInteraction** Nominal 
P-value* 12 ng/ml 20 ng/ml 30 ng/ml 

DAPK1 rs1056719 5.76 2.87x10-02 -67.96*** -21.89 35.70 
 rs11141934 14.62 2.04x10-02 -91.70 25.23 171.40 

 rs3128519 5.97 2.07x10-02 -61.26 -13.49 46.24 
 rs10868609 -8.43 3.47x10-02 95.62 28.21 -56.04 
 rs3128477 -6.11 4.04x10-02 49.62 0.70 -60.44 
 rs10512187 5.57 4.36x10-02 -79.76 -35.24 20.42 
DTX4 rs12284698† 9.52 2.70x10-02 -54.63 21.50 116.65 
 rs1048444 -5.27 5.43x10-03 44.21 2.04 -50.67 
 rs656163 -5.67 8.44x10-03 66.63 21.30 -35.37 
EMB rs13159894 -10.10 2.77x10-02 97.08 16.25 -84.79 
 rs16879113 -10.10 2.77x10-02 97.08 16.25 -84.79 
 rs7729211† 11.74 2.82x10-03 -84.71 9.24 126.69 
FSTL1 rs2673704 10.71 3.75x10-02 -21.76 63.90 170.97 
KAL1 rs7051071† -8.50 3.17x10-02 105.89 37.88 -47.14 
 rs10127300† -5.04 3.24x10-02 43.06 2.75 -47.63 
 rs5978935† -5.03 3.30x10-02 41.42 1.16 -49.16 
 rs5933677 7.53 6.61x10-03 -56.64 3.61 78.92 
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   Predicted FEV1 difference 
(mL) by serum 25(OH)D 

Gene SNP βInteraction** Nominal 
P-value* 12 ng/ml 20 ng/ml 30 ng/ml 

 rs5978934 5.88 7.81x10-03 -61.70 -14.65 44.16 
 rs5933668 8.37 3.06x10-03 -122.50 -55.57 28.08 

 rs6530187† 6.79 7.15x10-03 -66.38 -12.02 55.93 
 rs5978943 -8.07 8.10x10-03 83.65 19.07 -61.66 
KCNS3 rs1461949 -7.77 4.91x10-02 69.93 7.79 -69.89 
 rs1870822 -8.17 2.16x10-02 35.66 -29.69 -111.37 
 rs4832524 -8.10 4.11x10-02 75.68 10.91 -70.04 
 rs7583266 -8.53 5.18x10-03 51.12 -17.12 -102.41 
PTGER2 rs10136396 -8.87 2.89x10-02 91.80 20.88 -67.78 
 rs10136414 -8.94 2.82x10-02 91.94 20.41 -69.01 

 rs10151916 -8.91 2.83x10-02 89.87 18.61 -70.46 
 rs11851457 -8.42 3.66x10-02 91.94 24.58 -59.63 
 rs12587363 -8.68 4.88x10-02 86.47 17.06 -69.71 
 rs12590616 -8.18 2.84x10-02 79.80 14.32 -67.53 
 rs1254598† 8.11 1.30x10-02 -78.28 -13.41 67.68 
 rs708499 -10.02 1.53x10-02 106.51 26.33 -73.89 
 rs708498 -9.30 2.19x10-02 109.09 34.66 -58.37 
 rs10142849 -9.11 2.51x10-02 96.62 23.75 -67.33 
 rs28613641 -8.26 4.14x10-02 84.68 18.61 -63.98 
 rs12587410 -8.87 4.25x10-02 91.80 20.88 -67.78 
SGPP2 rs7559017 6.40 4.13x10-02 -29.40 21.82 85.85 
 rs10176933 -8.41 4.52x10-02 77.59 10.35 -73.70 

 rs4674662 6.03 5.00x10-02 -23.96 24.29 84.60 
 rs4673024† 9.02 1.40x10-03 -45.95 26.22 116.42 

 rs1436786 7.84 2.40x10-04 -28.37 34.34 112.74 
SLITRK6 rs431057 10.52 3.28x10-02 -76.38 7.77 112.95 

* Nominal p-values are from additive models, adjusted for age, height, smoking, gender, 
study site, ancestry principal components, season of vitamin D measurement, and serum 
25(OH)D. 
**Interaction regression coefficient compares individuals heterozygous or homozygous for 
the minor allele (≥1 copy of the minor allele) to individuals with the homozygous wild-type 
genotype (i.e., no copies of the minor allele) 
***Illustrative interpretation: In participants with serum 25(OH)D of 12 ng/mL, participants 
≥1 copy of the minor allele had an estimated mean FEV1 68 mL lower than homozygous 
wild-type individuals  
† This SNP has a significant SNP by serum 25(OH)D interaction for both the FEV1 and 
FEV1/FVC phenotypes (within racial group) 
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Appendix Table 2  SNP by serum 25(OH)D interactions in association with the FEV1/FVC 

phenotype in a) European-Americans, and b) African-Americans. 

a) European-Americans 

   
Predicted FEV1/FVC 

difference by serum 25(OH)D 

Gene SNP βInteraction** Nominal 
P-value* 

12 
ng/mL 

20 
ng/mL 

30 
ng/mL 

KAL1 rs1079854 0.074 4.59X10-02 -1.86*** -1.27 -0.53 
 rs11095490 0.078 3.37X10-02 -1.88 -1.26 -0.48 
 rs12840575 0.074 4.59X10-02 -1.86 -1.27 -0.53 
 rs1859867 0.068 3.84X10-02 1.45 0.84 2.72 
PTGER2 rs2229187 0.164 3.87X10-02 -2.62 -1.31 0.33 
SGPP2 rs13021671 -0.090 1.62X10-02 1.29 0.57 -0.33 
 rs4416206 0.088 3.04X10-02 -1.48 -0.78 0.10 
 rs6714352 0.105 2.12X10-02 -1.19 -0.35 0.70 
 rs6758392 0.085 2.98X10-02 -1.31 -0.63 0.23 
 rs735678 -0.118 5.10X10-03 1.94 0.99 -0.19 
TMEM40 rs9876483 -0.122 1.58X10-02 2.21 1.24 0.02 

 
b) African-Americans  

   
Predicted FEV1/FVC difference 

by serum 25(OH)D 

Gene SNP βInteraction** Nominal 
P-value* 12 ng/mL 20 ng/ml 30 ng/mL 

DAPK1 rs3118867 -0.088 2.68x10-02 0.22*** -0.48 -1.36 
 rs3818584 -0.135 3.79x10-02 0.55 -0.52 -1.87 
 rs4878115 -0.133 2.03x10-02 0.58 -0.48 -1.82 
 rs1927975 -0.128 3.17x10-02 0.25 -0.78 -2.06 
 rs2274605 -0.138 3.48x10-02 0.62 -0.48 -1.86 
 rs943855 -0.131 4.10x10-02 0.50 -0.55 -1.85 
DTX4 rs12284698 0.159 3.77X10-02 -0.04 1.23 2.82 
EMB rs7729211 0.173 1.33x10-02 -1.91 -0.52 1.21 
FSTL1 rs1105220 -0.148 2.68x10-02 1.78 0.60 -0.88 
 rs1624195 -0.117 3.45x10-02 1.24 0.31 -0.86 
 rs4533682 -0.143 3.57x10-02 1.53 0.39 -1.04 
KAL1 rs6530187 0.155 3.68x10-02 -1.07 0.17 1.72 
 rs5978934 -0.144 2.22x10-02 0.97 -0.18 -1.62 
 rs6640194 -0.104 2.52x10-02 -0.01 -0.84 -1.88 
 rs5978943 0.143 3.11x10-02 -0.85 0.29 1.73 
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Predicted FEV1/FVC difference 

by serum 25(OH)D 
 rs10127300 -0.078 4.04x10-02 0.96 0.34 -0.43 
 rs5978935 -0.077 4.11x10-02 0.93 0.31 -0.46 
 rs7887099 -0.094 4.18x10-02 0.08 -0.67 -1.61 
 rs7051071 -0.184 4.42x10-02 0.77 -0.70 -2.54 
KCNS3 rs3747516 0.145 2.02x10-02 -1.48 -0.32 1.13 
PTGER2 rs1254581 -0.150 2.90x10-02 0.31 -0.89 -2.39 
 rs1495785 -0.098 4.99x10-02 0.08 -0.70 -1.68 
 rs1254598 0.121 2.42x10-02 -1.12 -0.15 1.06 
SGPP2 rs17562982 -0.118 3.68x10-02 0.41 -0.54 -1.72 
 rs2009150 0.164 1.18x10-02 -1.95 -0.65 0.99 
 rs4673024 0.181 1.41x10-03 -1.20 0.25 2.05 

 
* Nominal p-values are from additive models, adjusted for age, height, smoking, gender, 
study site, ancestry principal components, season of vitamin D measurement, serum 
25(OH)D. 
**Interaction regression coefficient compares individuals heterozygous or homozygous for 
the minor allele (≥1 copy of the minor allele) to individuals with the homozygous wild-type 
genotype (i.e., no copies of the minor allele) 
***Illustrative interpretation: In participants with serum 25(OH)D of 12 ng/mL, participants 
≥1 copy of the minor allele had an estimated mean FEV1 0.22 higher than homozygous wild-
type individuals  
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