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ABSTRACT 

Total tree volume estimation is an integral part of forest growth and yield forecasting. 
Complex formulae are used to estimate bole volume by section, based on relationships 
proposed by Huber, Smalian and Newton. All these relationships require many measurements 
of bole diameters at certain heights that are difficult to obtain on standing trees especially 
when diameter measurements have to be taken several meters above ground. The common 
practice used till now days to face the problem is the application of regression analysis for 
tree-bole estimation, but there are many problems to be solved and assumptions to be 
carefully selected etc. In this paper an attempt was made to overcome the above difficulties 
by indirect tree volume estimation using the necessary values of the diameters at certain 
heights and the Cascade Correlation Artificial Neural Network models (CCANNs). The 
cascade correlation algorithm accomplished the training of the ANNs, which is a feed-
forward and supervised learning algorithm. Adaptive gradient and Kalman’s learning rules 
were used to modify the artificial neural networks weights. Kalman’s learning rule was found 
superior for the estimation of diameter values at certain heights of the tree-bole. The 
networks are designed to adapt weights of the synapses, by using the hyperbolic-tangent 
function of training. The reliability of the developed CCANNs is assessed by validation on 
independent testing data set. Paired t-test and 45-degree line test were also used for validation 
of the selected CCANNs. The system proposed in this paper, can be applied in forest 
inventory calculations producing an accurate estimate of any bole section volume. For 
example, total tree-bole volume estimation resulted to a root mean square error value of 
0.0054 m3 (9.2%). This tree-bole volume estimation is based only on two diameter 
measurements (stump diameter, d0.3 and diameter at breast height, d1.3) and an estimate of 
total tree height (h), and is accurate enough to replace many standard forestry measurement 
procedures. 

Keywords: Cascade correlation, neural networks, adaptive gradient, Kalman filtering, 
diameters, volume, pine trees  

 
 

1. INTRODUCTION 

Financial exploitation of forests composes an important part of man activity. Volume is the 
most widely used measure of wood quantity and tree volume can be estimated from empirical 
relationships between certain tree-bole dimensions and the tree volume. There have been 
numerous approaches for modeling the bole volume of a tree (Cao et al., 1980; Bailey, 1994; 
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Philip, 1994). A well-known and accepted procedure in finding relationships between 
predictable quantities and predictors is regression analysis (Draper and Smith, 1998). 
Artificial neural networks (Dowla and Rogers, 1995; Gurney, 1999) are becoming a very 
popular estimation tool, because they do not require no assumptions about the form of a 
fitting function. Data-driven models, such as artificial neural network models, which can 
discover relationships from data without having the complete physical understanding of the 
system, are preferable, due to their superior ability to resolve the nonlinear nature of the 
relationships, given a sufficient training data set. 

In recent years, Artificial Neural Network (ANN) models have become extremely popular for 
prediction and forecasting in a number of areas, including finance, power generation, 
medicine, water resources and environmental science (Maier and Dandy, 2000; 
Diamantopoulou et al., 2005). Artificial neural networks are gaining wide acceptance in 
control and management applications in agriculture (Sigrimis et al., 1999). With the ANN 
models new opportunities have emerged to enhance the tools we use to process data. When 
combined with the data storage and processing capabilities of Geographic Information 
Systems (GIS), ANN models promise to provide new analytical capabilities in modeling 
management operations and decision support systems (Ayala et al., 1999; Cros et al., 2003; 
Satake et al., 2003). A number of researchers have investigated the applicability of artificial 
neural network models to the field of forest modeling (Guan and Gertner, 1991; Blackard and 
Dean, 1999; Zhang et al., 2000; Hasenauer et al., 2001; Leduc et al., 2001; Liu et al., 2003; 
Corne et al., 2004; Diamantopoulou, 2005a, 2005b). In general, artificial neural networks are 
appropriate in modeling situations (Bailey and Thompson, 1990; Leduc et al., 2001): 1. 
where the application is data intensive and dependent on multiple interacting parameters; 2. 
where the problem area is rich in historical data or examples for their using as training data; 
3. where the available data are incomplete and contain errors for filling missing values, and 4. 
when the function to determine solutions is unknown or expensive to discover. 

Most of these conditions are to some degree met by pine trees stem diameter prediction 
functions investigated in this paper. So, an attempt was made to identify a neural network 
procedure that will be available for accurate estimation of stem diameters at certain heights as 
an alternative to a typical regression relationship. Such neural network models could replace 
many standard forestry mensuration procedures difficult to apply in a forest environment, in 
order to use them for estimating not only the total stem volume, but also the volume of many 
parts of the tree-bole. 

 
 

2. MATERIALS AND METHODS 

A total of 94 pine trees from the Seich – Sou urban forest of Thessaloniki, Greece, were 
measured. This forest is an almost pure pine (Pinus brutia) forest. Systematic sampling was 
used to ensure that all different site classes would be included. Tree measurements included: 
1. stump diameter (0.3m height from ground, d0.3), and diameter at breast height (1.3m height 
from ground, d1.3), both measured by Finnish caliper (Philip, 1994) and 2. all diameters at 
one-meter height interval above breast height (d2.3, d3.3, d4.3, d5.3, d6.3, d7.3, d8.3 and d9.3) and 
total height (h) of the sampled trees, both measured by Speigel Relaskop (Philip, 1994).  
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2.1 Artificial Neural Networks 
Artificial neural networks are simply a system of interconnected computational units, or 
nodes. A simple neural network consists of an input, a hidden and an output layer. The input 
layer has a certain number of nodes (input nodes) that receive data from sources external to 
the network and send them to the second, the hidden layer. The hidden layer consists of 
hidden nodes, which send and receive data only from other nodes in the network. The third 
(output) layer consists of output nodes that receive data generated by the network and 
produce outputs (Figure 1). 

The mathematical form of a three layer feed-forward neural network having nI input nodes, 
nH hidden and nK outputs, is given by (Gupta et al., 2000): 

∑
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where xi(t) is the input value of node i of the input layer, yj(t) is the quantity computed by the 
node j of the hidden layer and zk(t) is the output computed by the node k of the output layer, 
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Figure 1. A three-layer feed-forward neural network architecture. 
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In this study, the training of artificial neural network models suitable for the current 
application is the cascade correlation algorithm (Fahlman and Lebiere, 1990), which 
produces the Cascade Correlation Artificial Neural Network (CCANN) that is a feed-forward 
type with a supervised training algorithm.  

For the training of a neural network model, it is very important to split the data into a training 
and a testing data set to ensure against overfitting and in an effort capturing not just general 
patterns but sampling variations, as well (Leahy, 1994). For CCANN models construction, 
data were randomly partitioned into training (90% of all data) and test (the remaining 10% of 
all data) data sets were used.  

As mentioned above, the type of training of CCANNs selected for evaluation is supervised 
feed-forward. That is the process where the information flows in one direction from the input 
layer to the hidden layer to the output layer and adjusting the weights in the neural net using a 
learning algorithm, as well. Adaptive gradient descent algorithm (Jacob, 1988; 
Charalambous, 1992; Gupta et al., 2000) and Kalman’s learning algorithm (Kalman, 1960; 
Brown and Hwang, 1992; Grewal and Andrews, 1993; Demuth and Beale, 2001) were used. 
The adaptive gradient method is relatively simple to understand and implement. Begins with 
a guess for the values of the weights and the weights are iteratively updated by adjustments in 
a direction that tends to most rapidly reduce the sum of squared-output errors. Training is 
considered to be completed when values of the weights have been found for which the 
gradient of the sum squared-output errors function is almost zero. For a specified number of 
hidden nodes the best values of the network weights can be found by minimizing the sum of 
squared-output errors. During training, the adaptive gradient learning rule modifies the 
weights in response to the training data. The weights of a processing element can latch onto 
spurious information in the training data, such as data that does not represent a general trend 
in the input data (overtraining). Only the general trends remain encoded in the weights. 

 Kalman’s learning rule is acceptable to regression type problems in which the number of 
inputs is not too large. In addition, for these applications, since it is not always possible or 
desirable to measure every variable that one wishes to control, a Kalman filter is used, 
because it provides a means for inferring the missing information from indirect and noisy 
measurements (Grewal and Andrews, 2001). This filter combines all available measurement 
data in order to produce an estimate of the desired variables in such a way that the error is 
statistically minimized. A Kalman filter is an optimal recursive data processing algorithm. It 
includes two phases: Predict and Update. The predict phase uses the estimate from the 
previous step to produce an estimate of the current state. In the update phase, measurement 
information from the current step is used so as to refine this prediction and arrive at a new, 
more accurate estimate. The feed-forward ANN models can be trained by adjusting their 
weights using a stream of input-output observations. The objective is to obtain a set of 
weights, so that the neural network accurately predicts future outputs. The architecture that 
was used is the Cascade method of training, based on the Cascade Correlation (Fahlman and 
Lebiere, 1990). This architecture represents a kind of meta-algorithm, in which classical 
learning algorithms, like adaptive gradient or Kalman’s, are embedded. The Cascade part 
refers to the architecture and its mode of construction entails adding hidden units one at a 
time and always connecting all the previous units to the current unit. The Correlation part 
refers to  the  way  hidden  units  were  trained  by trying to maximize the correlation between  
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output of the hidden unit and the desired output of the network across the training data. 

Generally, the objective of the training algorithm needed by the network is to reduce the 
global error e (Deo and Thirumalaiah, 2000) by adjusting the weight and biases: 

( ) ∑
=

⋅=
P
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peP1e  (3) 

where: P is the total number of training patterns and ep is the error for the training pattern 
p defined by: 
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where: nK is the total number of the output nodes, Oi is the network output at the ith output 
node and the di is the desired target output. 

The critical question is how many hidden nodes are required with concern to overfitting, 
undertraining and training efficiency. The cascade correlation algorithm starts the training 
without any hidden nodes. If the error between the network realized output and the target is 
not small enough, it adds one hidden node. This node is connected to all other nodes except 
the output nodes. Because of its dynamic expansion that continues until the problem is 
successfully learned the cascade correlation algorithm automatically consists a suitable 
algorithm for a given problem. This procedure goes on until the correlation between the 
hidden node’s output and the residual error of the network, is maximized (Deo and 
Thirumalaiah, 2000): 

( ) ( )∑∑ −⋅−=
O P
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where: o is the oth node, p is the pth train pattern, vp is the candidate node’s value at pth 
training pattern, v  is the average of v over all patterns, ep,o is the residual error observed at 
node o at pth training patern and oe  is the average of ep,o over all patterns. 

The architecture of the neural networks used is three-layer feed-forward neural network 
architecture. There is one input layer composed of three input variables (d0.3, d1.3, h), one 
output layer composed of one output variable (di, different in each CCANN model) and 
between them one hidden layer composed of a number of nodes that has to be specified 
(Yuan et al. 2003). The optimal number of hidden nodes is commonly determined by trial 
and error. The usual approach is to begin with a small number of hidden nodes and train the 
network, iteratively repeating the process for an increasing number of nodes till no further 
improvement in network performance is obtained. The geometry of CCANNs, which 
determines the number of connection weights and how these are arranged, depends on the 
number of hidden layers and the number of the hidden nodes in these layers. In the developed 
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CCANNs, maximizing the correlation between output of the hidden unit and the desired 
output of the network across the training data optimizes the number of the hidden nodes. 
However, the final network architecture and geometry are tested to avoid over-fitting as 
suggested by Maier and Dandy (2000). The activation function selected to be a continuous 
and bounded nonlinear transfer function form (Fausett, 1994): 

⎟
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where: ∑= ii xws .That is the information the node transmits, in which wi are the weights 

and xi are the input values with [ ]+∞∞−∈ ,s  and ( )1,1)stanh()s(f +−∈= . 

The indicators calculated for total data set, training and test set were the correlation 
coefficient (R), the average absolute error (AVABE), the maximum absolute error (MAE), 
the root mean square error (RMSE) and the % root mean square error (RMSE%) of the mean 
of each diameter used as the output node, of each trained network. 

In addition, using train and test data sets validation of the chosen CCANN models was also 
made. For this, the measured values of diameters at 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3 and 9.3 
meters above ground were compared with the corresponding values predicted by the chosen 
CCANN models, for each diameter separately. The comparisons were made with the help of 
paired t-test and 45–degree line test. In addition, using train and test data sets the chosen 
CCANN models were also validated. 

 
 

3. RESULTS AND DISCUSSION 

The descriptive statistics of stump diameter (d0.3), diameter at breast height (d1.3), all 
diameters at one-meter height intervals above breast height (d2.3, d3.3, d4.3, d5.3, d6.3, d7.3, d8.3 and 
d9.3) and total height (h) of the sampled trees, are given in Table 1.  
 
Table 1. Descriptive statistics of pine trees diameters, and total height 

Variable Min. Max. Mean Variance Number of trees 

d0.3, cm 9.00 39.00 17.87 33.90 94 
d1.3, cm 6.00 38.50 13.69 35.20 94 
d2.3, cm 4.14 30.90 10.72 23.20 94 
d3.3, cm 2.54 23.88 8.65 17.67 94 
d4.3, cm 0.32 21.34 6.65 16.77 93 
d5.3, cm 1.27 17.52 5.58 12.97 72 
d6.3, cm 0.95 14.33 4.94 11.27 47 
d7.3, cm 1.27 12.10 4.75 10.05 25 
d8.3, cm 1.27 9.55 4.63 7.18 13 
d9.3, cm 2.87 6.67 4.28 2.53 7 

h, m 3.3 12.0 6.44 2.76 94 
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Different networks structures using using Kalman’s and adaptive gradient learning 
algorithms were tested in order to determine the weights and the optimum number of hidden 
nodes in each hidden layer (Table 2).  

Adaptive gradient learning rule uses back-propagated gradient information to guide an 
iterative line search algorithm. Kalman’s filter learning rule considers the weights to be states 
and the desired outputs to be the observations within a discrete space transition framework.  

Standard non-linear Kalman filter theory via algorithms coded in Matlab (Grewal and 
Andrews, 2001) is used to obtain the best estimate of the weights based on the stream of 
training data. The best solution given by the network that composed of one input layer with 
three input variables, one hidden layer with specific number of nodes for each output variable 
(Table 2) and one output layer with one output variable. The number of nodes in this one 
hidden layer was determined based on the maximum value of correlation coefficient. Table 2 
clearly shows that the correlation coefficients (R) of the selected CCANN models by using 
the adaptive gradient learning rule are less than those using the Kalman’s learning algorithm, 
for all output variables. Consequently, for this study, better results have been reached by 
using Kalman’s learning algorithm. 

 
 
Table 2. The correlation coefficient and the optimum number of nodes in the hidden layers of 
the selected CCANN model, for each output variable for the training data, using Kalman’s 
and adaptive gradient learning algorithms 

Output variable (in cm) d2.3 d3.3 d4.3 d5.3 d6.3 d7.3 d8.3 d9.3 

Kalman’s learning algorithm 
Optimum number of 
nodes in the hidden layer 

3 2 2 1 1 1 1 1 

Maximum value of 
Correlation Coefficients 

0.982 0.974 0.984 0.983 0.991 0.986 0.988 0.992 

Adaptive gradient learning algorithm 
Optimum number of 
nodes in the hidden layer 

1 6 3 4 1 2 1 1 

Maximum value of 
Correlation Coefficients 

0.949 0.948 0.957 0.934 0.909 0.899 0.886 0.986 

 

The hyperbolic transfer function (eq. 6) was chosen as the activation function of all nodes and 
networks tested.  

The correlation coefficient (R), the average absolute error (AVABE), the maximum absolute 
error (MAE), the root mean square error (RMSE) and the % root mean square error 
(RMSE%) of the mean of the variable used as output in each network, between the output of 
each hidden unit and the desired output of each network, for total data set, training and test 
set using Kalman’s learning algorithm are given in Table 3.  
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Table 3. R, AVABE, MAE and RMSE (%) for total, training and test data set for all output 
variables, using Kalman’s learning algorithm 

Variable Data set R AVABE MAE RMSE (%) 

Total 0.9823 0.709 3.479 0.9338 (8.71%) 
Train 0.9819 0.710 3.479 0.9480 (8.85%) 

d2.3 

Test 0.9920 0.703 1.282 0.8046 (7.59%) 
Total 0.9757 0.708 4.161 0.9261 (10.71%) 
Train 0.9744 0.736 4.161 0.9582 (11.06%) 

d3.3 

Test 0.9902 0.452 1.354 0.5910 (6.87%) 
Total 0.9836 0.577 1.989 0.7377 (11.09%) 
Train 0.9838 0.579 1.989 0.7459 (11.19%) 

d4.3 

Test 0.9824 0.565 1.414 0.6656 (10.24%) 
Total 0.9839 0.496 1.719 0.6403 (11.48%) 
Train 0.9834 0.509 1.719 0.6574 (11.72%) 

d5.3 

Test 0.9887 0.390 0.908 0.4824 (9.04%) 
Total 0.9903 0.255 2.449 0.4810 (9.74%) 
Train 0.9910 0.237 2.449 0.4732 (9.83%) 

d6.3 

Test 0.9860 0.403 0.859 0.6004 (10.03%) 
Total 0.9822 0.424 1.360 0.5528 (11.64%) 
Train 0.9862 0.425 1.360 0.5403 (11.21%) 

d7.3 

Test 0.9944 0.422 1.089 0.6369 (14.99%) 
Total 0.9878 0.365 0.853 0.4671 (10.09%) 
Train 0.9883 0.352 0.853 0.4443 (9.474%) 

d8.3 

Test 0.9999 0.433 0.813 0.5764 (13.41%) 
Total 0.9755 0.338 0.939 0.2807 (6.56%) 
Train 0.9924 0.394 0.939 0.2905 (5.05%) 

d9.3 

Test ---- ---- ---- ---- 
 

The corresponding values of the root mean square error (RMSE) and the % root mean square 
error (RMSE%) of the mean of the variable used as output in each network, using the 
adaptive gradient learning rule, are given in Table 4. 

 
Table 4. RMSE and RMSE (%) for total, training and test data set for all output variables, 
using adaptive gradient learning rule 

Output 
var.  

d2.3 d3.3 d4.3 d5.3 d6.3 d7.3 d8.3 d9.3 

Total 1.510 
(14%) 

1.310 
(15%) 

1.247 
(19%) 

1.297 
(23%) 

1.297 
(23%) 

0.934 
(20%) 

0.870 
(19%) 

0.597 
(14%) 

Train 1.531 
(14%) 

1.352 
(16%) 

1.237 
(18%) 

1.329 
(24%) 

1.329 
(24%) 

1.841 
(17%) 

1.800 
(17%) 

0.932 
(11%) 

Test 1.318 
(12%) 

0.877 
(10%) 

1.333 
(20%) 

1.006 
(19%) 

1.006 
(19%) 

0.986 
(24%) 

0.54 
(13%) 

--- 
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In order to estimate all diameter values of tree bole at one-meter height intervals above 1.3 
meters from the ground, the traditional multiple linear regression (MLR) method was also 
used for an indicative comparison. In this study, the total data sets were used for the 
regression model building work. MLR technique in statistical package SPSS (Norusis, 2000) 
was used to develop estimation equations for the same output diameters as dependent 
variables (d2.3, d3.3, d4.3, d5.3, d6.3, d7.3, d8.3 and d9.3) and the corresponding to the selected 
CCANN models input parameters (d0.3, d1.3 and h) as independent variables. The 
corresponding values of the root mean square error (RMSE), used as the basic indicator, of 
the MLR models, for all dependent variables, for the total data sets, are given in Table 5. 

Table 5. Root mean square error (RMSE) of the MLR models, for the total data sets 

Dependent 
var.  

d2.3 d3.3 d4.3 d5.3 d6.3 d7.3 d8.3 d9.3 

Total data 
set 

94 94 93 72 47 25 13 7 

RMSE 1.72 1.73 1.94 1.88 2.08 2.28 1.84 1.01 
 

According to the results of Tables 3, 4 and 5, it is clear that for the same output variable, the 
MLR models precision could not be considered sufficient as for all dependent variables the 
values of RMSE were higher. 

Comparing the RMSE and RMSE (%) values of Table 3 with those of Table 4, it is clear that 
the CCANN models trained using the adaptive gradient learning rule are considered of 
inferior accuracy. 

Finally, the best prediction solution for all diameter data sets has been given by the network 
that composed of one input layer with three input variables (d0.3, d1.3 and h), one hidden layer 
with specific number of nodes for each output variable (Table 2) and one output layer with 
one output variable, trained using the Kalman’s learning algorithm. The number of nodes in 
this one hidden layer was determined based on the maximum value of correlation coefficient 
(Table 2). 

The computed t-values and slopes for the selected CCANN models for all diameters, using 
train and test data sets, are given in Table 5. The computed t-values for the CCANN models 
were less than two-sided tabular t-values (a=0.05), for both train and test data sets. These 
imply that there were no significant differences between the measured and the predicted 
values. Also, it can be observed that the CCANN models tended to make an angle of 45 
degrees with the axes, meaning there is no significant difference between the measured and 
the predicted values.  

As mentioned above data randomly partitioned into training (90% of all data) and test (the 
remaining 10% of all data) data sets, were used for the CCANN models training and gradual 
build. It is very important to mention that the test data sets were never seen by the selected 
models in the training procedure. After the confirmation of the validity of the chosen 
CCANN models, we can get easily the diameter values at one meter height intervals from 
breast height of single pine trees of 9cm≤ d0.3≤ 39cm, 6cm≤ d1.3≤ 38.5cm and 3.3m≤ h≤ 12m.  
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Table 5. t-values and slopes for the CCANN models, for all diameters, using train and test 

data sets 
Model Variable Data set valuet −  Two-sided tabular 

value (a=0.05) 
Slope (o) 

CCANN d2.3 Train 1.364 1.989 45.8 
CCANN d2.3 Test 2.112 2.262 46.5 
CCANN d3.3 Train 0.210 1.989 44.8 
CCANN d3.3 Test 0.768 2.262 44.0 
CCANN d4.3 Train 0.390 1.989 45.4 
CCANN d4.3 Test 0.402 2.262 45.2 
CCANN d5.3 Train 0.209 1.999 44.8 
CCANN d5.3 Test 0.027 2.365 45.1 
CCANN d6.3 Train 2.012 2.019 46.0 
CCANN d6.3 Test 0.015 2.776 45.8 
CCANN d7.3 Train 0.950 2.080 45.7 
CCANN d7.3 Test 1.242 4.303 43.0 
CCANN d8.3 Train 1.175 2.228 43.5 
CCANN d8.3 Test 1.141 12.71 41.0 
CCANN d9.3 Train 1.742 2.571 47.1 
CCANN d9.3 Test ---- ---- ---- 

 
The diameter values produced by CCANN models could be used for several purposes. For 
example, the values of these diameters are necessary for efficient estimation of a single tree 
volume using the well-known Smalian’s sectional method (Philip, 1994): 
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where: vi is the ith volume of the k sections of the bole; vt is the top section volume; d1.3, d2.3, 
…, dk are all diameters at one-meter height intervals above breast height and lt is the length of 
the top bole section.  

The average absolute error (AVABE), the maximum absolute error (MAE), the root mean 
square  error (RMSE)  and  the  %  root mean square error (RMSE%) of the mean between 
the  total  volume  values  (vCCANN)  as  calculated  by  Smalian’s sectional method using 
diameter values estimated by the CCANN models and the measured total volume values (v), 
for the 94 pine trees, are given in Table 6 and are shown in Figure 2. 

Table 6. R, AVABE, MAE and RMSE (%) for the total volume values (vCCANN) 
Variable Data set AVABE MAE RMSE  RMSE (%) 
vCCANN Total 0.00365 0.02103 0.00538 9.217 

 
The measured (v) values and the estimated (vCCANN) values yielded slope equal to 44.04o. The 
proximity of each point to the 45-degree line (Figure 2a) and the similar height of the 
columns (Figure 2b), throughout the range of the measured volume indicate that the ANN 
model is reasonable accurate. Moreover, the data of Figure 2 were tested using the paired t-
test  and  the  percentage  estimation  error.  The computed  t-value = 0.2211 was less than the 
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Figure 2. 45-degree line plot (a) of estimated total volume (vCCANN) values vs the 

corresponding measured values (v) and histogram (b) of estimated and the corresponding 
measured total volume values (v). 
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two-sided tabular t-value = 1.986 (a=0.05), for the total volume data set and the  
percentage estimation error in minimum and maximum total volume estimates was equal to 
+2.44% and -2.37%, respectively. These imply that there was no significant difference 
between the measured total volume values and the calculated by Smalian’s sectional method 
using the diameter values estimated by the CCANN models.  

 
 

4. CONCLUSIONS 
An artificial neural network modeling technique has been successfully applied for predicting 
all diameters at one-meter height intervals above breast height (d2.3, d3.3, d4.3, d5.3, d6.3, d7.3, d8.3 
and d9.3) of pine trees. The method is accurate enough and promise of replacing many 
standard forestry mensuration procedures.  

Neural networks are becoming a popular estimation tool, because of the absence of 
assumptions that free the modeler from searching on parametric approximating functions that 
may fit the observed data. Although a model does not have to be specified, the number of 
hidden nodes and layers and the transfer function to be used still must be determined. The 
cascade correlation algorithm achieved the successful configuration and training of neural 
networks. Kalman’s and adaptive gradient learning rules were used to modify the artificial 
neural networks weights. Kalman’s learning rule was found to be superior and it was adapted 
for the modification of the artificial neural networks weights. The networks are trained by 
adjusting weights between neurons and using the hyperbolic-tangent function for activation. 
The neural network model that was found to be appropriate for all diameters prediction was a 
three layer network, that is one input layer composed of three nodes, one output layer 
composed of one node and between them one hidden layer composed of specified number of 
nodes, different for each diameter with values of correlation coefficients between 0.9744 to 
0.9999 and values of mean square errors between 5.05% to 14.99%.  

Based on the results obtained by the comparative study between regression models and the 
CCANN models, where both, Kalman’s and adaptive gradient learning algorithms, are 
embedded, the ANN modeling technique seems to be a promising alternative to regression 
analysis.  

The system proposed, can be applied in forest inventory to produce an accurate estimate of 
the total volume. Total volume values (vCCANN) as calculated by Smalian’s sectional method 
using diameter values estimated by the CCANN models, gave results with root mean square 
error equal to 0.00538 m3 (9.2%). 
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