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This research focuses on the development and implementation of e�cient optimization

algorithms that can solve a range of computationally expensive groundwater simulation-

optimization problems. Because groundwater model evaluations are expensive, it is impor-

tant to find accurate solutions with relatively few function evaluations. As a result, all the

algorithms tested in this research are evaluated on a limited computation budget.

The first contribution to the thesis is a comparative evaluation of a novel multi-objective

optimization algorithm, GOMORS, to three other popular multi-objective optimization

methods on applications to groundwater management problems within a limited number

of objective function evaluations. GOMORS involves surrogate modeling via Radial Basis

Function approximation and evolutionary strategies. The primary aim of the analysis is to

assess the e↵ectiveness of multi-objective algorithms in groundwater remediation manage-

ment through multi-objective optimization within a limited evaluation budget. Three sets of

dual objectives are evaluated. The objectives include minimization of cost, pollution mass

remaining/pollution concentration, and cleanup time. Our results indicate that the over-

all performance of GOMORS is better than three other algorithms, AMALGAM, BORG

and NSGA-II, in identifying good trade-o↵ solutions. Furthermore, GOMORS incorporates

modest parallelization to make it even more e�cient.

The next contribution is application of SO-MI, a surrogate model-based algorithm de-

signed for computationally expensive nonlinear and multimodal mixed-integer black-box op-

timization problems, to solve groundwater remediation design problems (NL-MIP). SO-MI



utilizes surrogate models to guide the search thus save the expensive function evaluation

budget, and is able to find accurate solutions with relatively few function evaluations. We

present numerical results to show the e↵ectiveness and e�ciency of SO-MI in comparison

to Genetic Algorithm and NOMAD, which are two popular mixed-integer optimization al-

gorithms. The results indicate that SO-MI is statistically better than GA and NOMAD in

both study cases.

Chapter 4 describes DYCORS-PEST, a novel method developed for high dimensional,

computationally expensive, multimodal calibration problems when the computation bud-

get is limited. This method integrates a local optimizer PEST into a global optimization

framework DYCORS. The novelty of DYCORS-PEST is that it uses a memetic approach to

improve the accuracy of the solution in which DYCORS selects the point at which the search

switches to use of the local method PEST and when it switches back to the global phase.

Since PEST is a very e�cient and widely used local search algorithm for groundwater model

calibration, incorporating PEST into DYCORS-PEST is a good enhancement for PEST and

easy for PEST users to learn. DYCORS-PEST achieves the goal of solving the computation-

ally expensive black-box problem by forming a response surface of the expensive function,

thus reducing the number of required expensive function evaluations for finding accurate so-

lutions. The key feature of the global search method in DYCORS-PEST is that the number

of decision variables being perturbed is dynamically adjusted in each iteration in order to be

more e↵ective for higher dimensional problems. Application of DYCORS-PEST to two 28-

parameter groundwater calibration problems indicate this new method outperforms PEST

by a large margin for high dimensional, computationally expensive, groundwater calibration

problems.
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Chapter 1

Introduction

Computationally expensive simulation models exist in high numbers. Some examples of such

models are watershed simulations, groundwater model simulations, etc. Computationally

expensive models are often like black-box functions, where the mathematical characteris-

tics, including derivatives, are not known. These models aim to mimic natural phenomena,

where the relationship between the varying inputs and outputs is highly complex. As a

result, obtaining the output of each simulation can be time-consuming. Models which take

considerable amount of computer time in evaluation of one scenario are commonly referred

to computationally expensive simulations, or computationally expensive black box functions,

since the relationship between inputs and outputs are hard to define.

These expensive simulation models provide a basis to forecast and simulate di↵erent

alternatives. The decision makers or engineers can then choose the best possible option

or optimal solution. The need for optimization algorithms to choose the optimal solution

arises when the range of parameters and number of parameter combinations is too large to

enumerate and test all the possible alternatives. So optimization algorithms are associated

with the simulation model to guide the search for good solutions. The typical framework

used for these kind of real world optimization problems is ’Simulation-Optimization’, where

the simulation model attempts to mimic reality using numerical approximations of partial

1



di↵erential equations and the optimization model then tries to find the best set of input pa-

rameters for the simulation model. Most of the earlier work done for addressing these kinds of

simulation-optimization problems are based on the standard linear programming and global

optimization tools like Genetic Algorithms (GA) etc, which need simulation model to be run

many many times. For a computationally expensive models, it is practically impossible to

perform a large number of simulations e.g. millions or sometimes even thousands. There-

fore, e�cient optimization algorithms that requires relatively fewer expensive simulation are

desirable. Since the optimization problems that we focus on in this thesis belong to class

of ’Global Optimization’, the ability of e�ciently explore the whole search space within a

certain time frame for a global optimization problem of an algorithm is another important

area to examine. The focus of this thesis is to address this issue of e�cient optimization of

computationally expensive real world environmental system problems.

Simulation optimization problems can be divided into two categories: (1) calibration

optimization and (2) decision optimization. Chapter 2 and chapter 3 will focus on deci-

sion optimization of a groundwater contamination problem based on a groundwater EPA

superfund site. Decision optimization involves the identification of optimal decisions (e.g.

pumping rates for groundwater contamination cleanup). The total cost for cleaning up con-

taminated groundwater can exceed many millions of dollars and the cleanup process can

take many years. Groundwater remediation at a contaminated site involves multiple con-

flicting objectives. Consequently, by providing a new dimension to the optimization problem,

multi-objective optimization is introduced to groundwater management problems in chapter

2. We compare performance of four multi-objective optimization algorithms for application

to groundwater contamination cleanup problems. Chapter 3 addresses the issue of compu-

tational expense of some mixed-integer nonlinear problems. These problems arise in the

groundwater sites where installation costs must be accounted in addition to Operation and

Maintenance cost to determine optimal policy. A novel mixed-integer optimization algo-

rithm SO-MI is introduced and applied to these problems. Calibration optimization involves

2



the deduction of values for simulation model parameters (e.g. hydraulic conductivity in

groundwater models) that ensure that model outputs are as close to observed data as pos-

sible. Given that both of the problems are computationally expensive, e�cient and robust

optimization algorithms are necessary and required. Using optimization for groundwater

calibration problems was studied in my Master thesis. There I discussed the performance of

three optimization algorithms and proposed a new hybrid optimization method. The algo-

rithms were applied to calibration of a groundwater model for part of Beijing water supply.

Chapter 4 proposes a new method to enhance a widely used local optimizer PEST by inte-

grating PEST into a novel surrogate based algorithm DYCORS. PEST is the most popular

tool for groundwater model calibration in water resources field given it is very e�cient in

finding the local optimal for the convex objective function. But the limitation of local opti-

mization algorithm is that it may trap into local minimum when the problem is multimodal.

DYCORS-PEST provides a way to integrate a widely used local search algorithm into a

global optimization algorithm. This algorithm is applied to two study cases of calibration of

Beijing groundwater model, and compared against Stochastic RBF and PEST on the same

problems.

3



Chapter 2

Comparison of Algorithms for

Multi-objective Optimization on

Computationally Expensive

Groundwater Contaminant Transport

Models

2.1 Introduction

Groundwater flow and transport models have been widely used by researchers and decision

makers to understand aquifer remediation movements and processes. Numerous simulation-

optimization models have been developed for obtaining optimal groundwater remediation

strategies. Major optimization approaches include linear programming, dynamic program-

ming, simulated annealing and genetic algorithms; robust optimization, and evolution strate-

gies. These papers consider a single objective, such as minimization of remediation cost,

maximization of cleanup, and minimization of uncertainty, and there exists many studies

4



dealing with single-objective optimization algorithms for optimal groundwater remediation

design and management problems. However, solving real-world groundwater remediation

and management problems based on a single aggregated performance metric could lead to

a significant loss of information within the optimization process. The problems are gener-

ally multidisciplinary, which require inputs from di↵erent parties and thus involve multiple

and often conflicting objectives. The use of multi-objective optimization has added a new

dimension to groundwater remediation cleanup and management problems, providing added

insight into decision making. In multi-objective optimization a set of “non-dominated” so-

lutions (the Pareto front) are computed. Non-dominated means none of the solutions are

better or worse than each other. As a result the Pareto Front is also called the trade-o↵

curve.

There are a few studies dealing with groundwater remediation problems using multi-

objective optimization technique. McKinney and Lin ([55]) used a nonlinear programming

algorithm to solve multi-objective groundwater remediation problems. However, the trade-

o↵s were obtained by single-objective optimization technique. Deb has shown that this

approach can miss part of the Pareto Front if the feasible set (solutions satisfying the con-

straints) is not convex [20]. In general, groundwater models involving transport are not

convex so this is a shortcoming of the nonlinear programming method. Erickson et al. ([30])

used niched Pareto genetic algorithm (NPGA) to solve the pump-and-treat groundwater

remediation problem. Ren and Minsker ([75]) applied non-dominated sorting genetic algo-

rithm (NSGA-II) [21] to two multi-objective remediation problems. Singh and Minsker ([78])

developed a robust multi-objective optimization method and applied it to a field-scale pump-

and-treat design problem at the Umatilla Chemical Depot at Hermiston, Oregon. Singh and

Chakrabarty ([79]) used a new technique of coupling NSGA-II (non-dominated sorting ge-

netic algorithm ) with both MODFLOW 2000 and MT3DMS to find a trade-o↵ between

remediation cost and extraction rate.

Multiple algorithms have been proposed algorithms for multi-objective optimization,

5



within the simulation-optimization framework ([17, 20]). Various algorithmic contribu-

tions, within the water resources community have also been made, focusing primarily on

evolutionary strategies. Evolutionary strategies are frequently referred as multi-objective

evolutionary algorithms (MOEA) in contemporary literature. Tang et. al provide a com-

parative analysis of various evolutionary algorithms, in order to deduce their e↵ectiveness in

hydrological calibration.[48]compare the performances of four state-of-the-art evolutionary

multi-objective optimization algorithms on a four-objective long-term groundwater moni-

toring (LTM) design problem. [68]provide a comprehensive diagnostic assessment of ten

benchmark MOEAs including NSGA-II [21],, BORG[36] and AMALGAM [86] , for water

resources applications addressing rainfall–runo↵ calibration, long-term groundwater moni-

toring (LTM), and risk-based water supply portfolio planning. However, there are no journal

papers outside this one that applies BORG and AMALGAM to groundwater remediation

problem.

While many multi-objective optimization techniques have been studied and applied to

groundwater remediation problems, the computational complexity of the numerical ground-

water models pose a huge challenge to the use of multi-criteria optimization algorithms. It

should be noted that the groundwater remediation and cleanup design problem is a com-

putationally expensive simulation optimization problem, since the objective functions are

evaluated via simulation and a simulation evaluation for groundwater flow and transport

model take a very long time. Hence, algorithms that require fewer model evaluations to

produce good trade-o↵ solutions are desirable.

In this study, we compare performance of four multi-objective optimization algorithms

for application to groundwater remediation management problems. The algorithm compared

in this study includes the (NSGA-II) [21], AMALGAM [86] , BORG [36], which are popular

evolutionary algorithms. Performance of these algorithms is compared against a response

surface assisted optimization method GOMORS[7]. The focus of our analysis is on compar-

ing algorithm performance, within a limited evaluation budget. Our results indicate that

6



GOMORS outperforms all other algorithms within a limited model evaluation budget, when

applied to groundwater remediation cleanup case studies.

2.2 Optimization Model Formulations

2.2.1 Overview of Multi-Objective Optimization Technique

The framework of the multi-objective optimization problem can be stated as:

min
x2⌦

F (x) = [f1(x), f2(x), . . . , fk(x)]
T (2.1)

subject to x

min

i

 x

i

 x

max

i

, i = 1, 2, . . . n

where x = [x1, x2, . . . , xn

] is the vector of decision variables, bounded by x

min and x

max.

F (x) is the vector of user-defined objective functions and k is the number of objectives to

be optimized. Some important concepts are defined as follows:

Domination: One candidate solution x1 dominates another solution x2 if and only if

f

i

(x1)  f

i

(x2) for all 1  i  k, and f

i

(x1) < f

i

(x2) for some 1  i  k.

Non-Domination: Given a set of solution S, a candidate solution x

⇤ 2 S is non-

dominated in S if there does not exist anther solution which dominates x⇤.

Pareto Optimality: If S is the entire feasible domain space of the defined problem, a

non-dominated solution x

⇤ 2 S is called Pareto-optimal solution.

Trade-o↵ Curve/Pareto Front: The set of Pareto Optimal solutions.

The purpose of the multi-objective optimization problem is to find a set of pareto-optimal

solutions, such that x⇤ is a non-dominated solution for the set of objective functions in the

entire domain. In practice, the true pareto-front cannot be found exactly especially when

the objective functions are computationally expensive. Therefore, an additional challenge for

the multi-objective optimization problems is that good solutions need to be found within a
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limited number of function evaluations. The aim of a multi-objective optimization algorithm

with application to groundwater problems is to find a solution set which is adequately close to

the optimal solution set within a limited calculation budget. In later section, we discuss how

to measure the goodness of the solutions found by multi-objective optimization algorithms.

2.2.2 Case Study Application

The three groundwater applications used in our analysis are derived from the Umatilla

Chemical Depot which are adapted from NAVFAC (Naval Facilities Engineering Command)

technical report TR-2237-ENV, NAVFAC 2004. Umatilla Chemical Depot is located at

Hermiston, Oregon. It is a 19728 acre military reservation established in 1941 as an ordnance

depot for storage and handling of munitions. From the 1950s until 1960s the depot was

operated as an onsite explosives washout plant which processed munitions to remove and

recover explosives with a pressurized hot water system. During this time, about 85 million

gallons of wash water was discharged into two unlined lagoons, from where the wash water

infiltrated into the soil system.

The two major chemicals, RDX (Hexahydro-1,3,5-trinitro-1,3,4-triazine, and commonly

known as Royal Demolition Explosive) and TNT (2,4,6-Trinitrotoluene) are the focus of the

remediation and it is assumed that in the process of removing them, other contaminants

will also be removed. A pump-and-treat system was designed by the U.S.Army Corps of

Engineers (USACE, 1996 and 2000) to remediate the RDX and TNT plumes(Figure 2.1).

The designed pump-and-treat system consists of 3 pumping wells and 4 extraction wells

(one of which is not operating currently so it is marked as inactive in the figure 2.1) which

play role in the cost definitions. According to USACE design, the cleanup levels for RDX

and TNT are set at 2.1 µg/l and 2.8 µg/l, respectively. In the pump-and-treat system,

the contaminated water is pumped from the extracting wells. After being treated by GAC

(granulated activated carbon) units, water is discharged into the infiltration basins.

The proposed multi-objective optimization framework consists of three components that
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are (1) groundwater simulation models, (2) optimization formulations and (3) multi-objective

optimization algorithms. In our study cases, groundwater flow and transport systems are

simulated by MODFLOW 2000 and MT3DMS[97] to predict the contaminant concentra-

tions at every model grid point. The study model has 125 rows, 132 columns and 5 layers,

with variable grid spacing of 24.8ft - 647.9ft along the rows and 21.6ft - 660.7ft along the

columns. The formulation only focuses on contaminants transport in the first layer of the

model and the boundary conditions for all four sides of the model domain were simulated

as constant head. The model inputs are Hydro-geological data, Domain-discretization data

and the pumping data, where the pumping/extracting data includes the well locations and

the corresponding pumping/extracting rate. However, well locations are fixed in this study

and only pumping/extracting rates are considered as the decision variables. After taking the

input information, MODFLOW and MT3DMS start to simulate the model and concentra-

tions of RDX and TNT are calculated as the model outputs which are used to formulate the

objective functions. The multi-objective optimization algorithms links with both simulation

models and the optimization formulations. In this framework, the optimization algorithm

prepares inputs or decision variables of the optimization formulations. Then simulation

models use the inputs to simulate model outputs, such as hydraulic heads from MODFLOW

and contaminant concentrations from MT3DMS, which along with the decision variables

contribute to calculate the objective functions. The optimization routine generates a new

set of inputs based on the objective function values calculated earlier and passes them to

the simulation models again. The whole process runs through iteratively until the maximum

number of function evaluations is exceeded.

2.2.3 Formulation for Optimization

Three formulations are developed from the Umatilla Chemical Depot groundwater system

which try to do the cleanup by finding the optimal pumping rates for fixed well locations

and the lowest variable cost. Figure 2.1 shows the fixed wells locations.
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Figure 2.1: Site Map: NAVFAC (Naval Facilities Engineering Command) technical report
TR-2237-ENV, 2004 showing location of extraction wells and infiltration fields (recharge
basins)
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2.2.3.1 Formulation 1

This formulation aims at highlighting the trade-o↵ between the total operation costs and the

mass remaining above the cleanup level for the entire project duration. The first objective is

to minimize the total cost for the pump-and-treat groundwater remediation system and the

other objective of the problem is the minimization of the mass of the contaminants remaining

above cleanup level after the remediation period. In all formulations, the box constraints in

2.1 are imposed.

The model formulation 1 is as follows:

minCost = V CE(Q) + V CG(Q) + PenaltyCost(Q) (2.2)

minMass =
X

c

X

i

max(0, Conc

c,i

� CleanupLevel

c

) ⇤ V olume

i

(2.3)

where, V CE(Q) is the variable electric cost of operation wells, V CG(Q) is the variable

cost of GAC units, PenaltyCost(Q) is the cost for violating the total pumping constraint, as

the decision variable, Q = [Q1, Q2, . . . , Q10] is a vector of pumping rates for 10 wells, among

which well 1-8 are pumping wells and well 9-10 are recharge basins with the last recharge

basin getting a recharge as constraint 3, all the costs are computed in net present value

(NPV) with a discount rate of r = 5%, c states the chemical type (RDX or TNT in this

study), Conc

c,i

is the concentration of chemical c from cell i of the groundwater numerical

model, CleanupLevel

c

is the fixed maximum concentration level that chemical c can get up

to which is discussed earlier and the clean up levels for RDX and TNT are 2.1 µg/l and

2.8 µg/l, respectively, V olume

i

is the volume of cell i of the groundwater model, and the

function max(0, Conc

c,i

�CleanupLevel

c

) demonstrates that the mass of chemical c in cell i

only gets accounted when its concentration is above the cleanup level. The second objective

formulation is also discussed by [78].

The formulation includes the following constraints:
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1. This model consists of 1 management period of 4 years, within which the pumping

rates of all the wells are kept throughout this period.

2. the total pumping rate, after adjustment for the average amount of system uptime,

cannot exceed 1300 gpm. Therefore, the current maximum capacity of the treatment

plant is Q
total

 1300↵ gpm, where ↵ is the coe�cient of the average amount of system

time (↵ = 0.9 in this study). The total pumping constraint is implemented by using

the penalty function thus the solutions not satisfying this constraint are penalized to

force the algorithm to look for solution points satisfying the constraint.

3. The pumping capacity of individual wells must not exceed 400 gpm in the less per-

meable portion of the aquifer and 1000 gpm in permeable portion. This constraint is

implemented as the lower and upper bounds of the decision variables.

4. The total amount of pumping must equal the total amount of injection through the

infiltration basins within an error tolerance. Thus, the pumping rate of the third

recharge basin is set to be (Total pumping)-(Total recharge).

2.2.3.2 Formulation 2

This formulation aims at finding the trade-o↵ between the total operation costs and the

total contaminant concentration above the cleanup level for the entire project duration.

Similar to formulation 1, the first objective is to minimize the total cost for the pump-and-

treat groundwater remediation system. The second objective is the minimization of the

concentration of RDX and TNT of the contaminants remaining above cleanup level after the

remediation period.

The model formulation 2 is as follows:

minCost = V CE(Q) + V CG(Q) + PenaltyCost(Q) (2.4)
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minTotalConcentration =
X

c

max(0,MaxConc

c

� CleanupLevel

c

) (2.5)

where, V CE(Q) is the variable electric cost of operation wells, V CG(Q) is the variable

cost of GAC units, PenaltyCost(Q) is the cost for violating the total pumping constraint, as

the decision variable, Q = [Q1, Q2, . . . , Q10] is a vector of pumping rates for 10 wells, among

which wells 1-8 are pumping wells and wells 9-10 are recharge basins with the last recharge

basin getting a recharge as constraint 3. All the costs are computed in net present value

(NPV) with a discount rate of r = 5%. The variablec states the chemical type (RDX or TNT

in this study). MaxConc

c

is the maximum concentration of chemical c of the groundwater

numerical model among all the nodes. CleanupLevel

c

is the fixed maximum concentration

level that chemical c can get up to which is discussed earlier and the clean up levels for

RDX and TNT are 2.1 µg/l and 2.8 µg/l, respectively. The function max(0,MaxConc

c

�

CleanupLevel

c

) demonstrates that the concentration of chemical c only gets accounted when

its maximum concentration is above the cleanup level. This formulation is very similar to

formulation 1, but it provides some insights focusing on contaminant concentration instead

of mass. The constraints are identical to formulation 1 and are given in 2.1.

2.2.3.3 Formulation 3

In the first and second formulation, the remediation period is fixed to be 4 years. In the

groundwater remediation problems, reducing the remediation time is as important as reduce

the cost. Therefore, incorporating remediation time as a decision variable in the optimiza-

tion problem may give better results in minimizing the remediation cost. Thus similar to

Formulation 1, the first objective is the minimization of the total operation cost. The second

objective is the minimization of the remediation time.

The formulation 3 is as follows:

minCost = V CE(Q, t) + V CG(Q, t) + PenaltyCost(Q, t) (2.6)
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minTime = t (2.7)

where, Q represents the vector of pumping rates for the 10 wells, t stands for the reme-

diation time, V CE(Q, t) is the variable electric cost of operation wells, V CG(Q, t) is the

variable cost of GAC units, and PenaltyCost(Q, t) is the cost for violating the constraints.

Di↵erent from the Formulation 1 and 3, the penalty function consists of two components:

the penalty cost for violating concentration constraints and the penalty cost for violating

the total pumping constraint. The total pumping constraints remains the same as the For-

mulation 1. If the predicted concentration is above the cleanup level, the penalty cost will

be added to the total cost. The constraints of Formulation 3 are listed as follows:

1. The total pumping rate, after adjustment for the average amount of system uptime,

cannot exceed 1300 gpm. Therefore, the current maximum capacity of the treatment

plant Q
total

 1300↵ gpm, where ↵ is the coe�cient of the average amount of system

time (↵ = 0.9 in this study). Same as Formulation 1, the total pumping constraint

is implemented by using the penalty function thus the solutions not satisfying this

constraint are penalized to force the algorithm to look for solution points satisfying

the constraint.

2. RDX and TNT concentrations cannot exceed their respective cleanup levels at the end

of the remediation time. Similar to the first constraint, it is built into the penalty

function.

3. The pumping capacity of individual wells must not exceed 400 gpm in the less per-

meable portion of the aquifer and 1000 gpm in permeable portion. This constraint is

implemented as the lower and upper bounds of the decision variables.

4. The lower and upper bounds of the remediation time is 0 and 8, respectively

5. The total amount of pumping must equal to the total amount of injection through
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the infiltration basins within an error tolerance. Thus, the pumping rate of the third

recharge basin is set to be the balance of (Total pumping)-(Total recharge).

One purpose of constructing three di↵erent 2 objective problems is to have three test cases

on which to test the relative performance of multiple algorithms.

2.3 Optimization Algorithms

2.3.1 Non-Dominated Sorting Genetic Algorithm - II (Parallel

version)

The Elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II), proposed by [21], is

a widely known evolutionary algorithm for solving multi-objective optimization problems.

NSGA-II is a second generation MOEA which made significant improvement to NSGA.

NSGA-II has been used as a classic benchmark algorithm in many studies and has been

applied to various real engineering problems across numerous fields, especially where the

objectives are highly nonlinear [17]. Some of recent applications of NSGA-II to water re-

sources problems include multi-objective automatic calibration of SWAT model[13], Long-

term groundwater monitoring design [69], watershed water quality management [26], and

decision making in water distribution network [10]. In the evolutionary search optimization

process of NSGA-II, it ranks and archives parent and child populations based on the non-

dominating sorting and crowding distance on a particular front. The non-dominating sorting

approach makes use of fitness value to rank the solutions and assign them to di↵erent fronts.

Crowing distance is a measure of diversity of a solution. NSGA-II moves the non-dominated

front towards convergence by using Pareto-dominance during the whole search process.
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2.3.2 AMALGAM - A MultiAlgorithm Genetically Adaptive Multi-

Objective Optimization Method

AMALGAM, proposed by [86], is a multi-method evolutionary multi-objective optimization

algorithm, which adaptively incorporates multiple MOEAs, NSGA-II, PSO, DE, and adap-

tive metropolis (AM). The key features of AMALGAM is the simultaneous multi-method

search and self-adaptive o↵spring creation. The recent application of AMALGAM includes

a complex hydrologic model calibration problem in [95]with comparison against SPEA2 and

NSGA-II.

2.3.3 BORG

BORG is a multi-objective evolutionary algorithm designed for many-objective, multi-modal

optimization problems, which is proposed by Hadka et al.[36]. The key features of BORG

are 1) ✏-dominance archive and ✏-progress to insure a well-spread Pareto front; 2) a restart

mechanism triggered to avoid local minima; 3) adaptive multiple search operator selection.

Similar to AMALGAM, BORG incorporates a class of operators, Simulated Binary Crossover

(SBX), Di↵erential Evolution (DE), Parent-Centric Crossover (PCX), Unimodal Normal

Distribution Crossover (UNDX), Simplex Crossover (SPX) and Uniform Mutation (UM).

These operators can be adaptively selected by BORG based on the optimization problem.

Applications of BORG to water resources engineering problems and comparison against

other multi-objective optimization algorithms are extended by[68]. Across these applications,

BORG is the top overall algorithm. A commercial package for BORG [36] that is highly

parallelized is also available, but has not been applied to groundwater problems. This paper

uses the serial version of BORG.
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2.3.4 GOMORS - Gap Optimized Multi-Objective Optimization

with Response Surfaces

GOMORS [7] is a novel surrogate-based multi-objective optimization strategy, which is de-

signed for multi-modal and computationally expensive optimization problems. GOMORS

consists of 4 major components: 1) sampling initial points, 2) constructing a Response Sur-

face Model, 3) solving the multi-objective problem from the surrogate model by MOEA,

4) picking additional points from the surrogate based Pareto front. The unique feature of

GOMORS is that GOMORS is an iterative scheme which makes use of Radial Basis sur-

rogate response surface model to approximate the expensive objective functions such that

multi-objective search is guided towards the optimal solution with limited computation bud-

get. During the search in the surrogate model approximated via Radial Basis Functions,

MOEAs (NSGA-II and MOEA/D) are embedded and the solutions obtained from the cheap

function evaluations are selected for expensive function evaluations. The other advantage

of GOMORS is that it can be easily modified to incorporate parallelization during the ex-

pensive function evaluations, and hence can be more e�cient. In this study, GOMORS is

parallelized up to 8 processors and NSGA-II is also modified into a parallel version with 8

processors.

2.4 Algorithm Comparison Methodology

The e↵ectiveness of a multi-objective optimization algorithm can be assessed via analysis of

algorithm ”e�ciency”. E�ciency corresponds to the e↵ectiveness of an algorithm in deducing

a set of good ”quality” trade-o↵ solutions, quickly and within a limited simulation evaluation

budget. Due to the stochastic nature of all algorithms compared in this analysis, it is also

important to understand and compare algorithm ”reliability”, i.e the ability of an algorithm

to produce good ”quality” solutions, consistently over multiple trial runs. Defining ”quality”

of trade-o↵ solutions is an ongoing debate within the research community today. [20] defines
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”quality” of a multi-objective solution (also called approximate front and non-dominated

front) to be a combination of two (potentially conflicting) properties: 1) ”convergence” and

2) ”diversity”. Convergence can be described as the proximity of an algorithm’s solutions,

to the Pareto front, and ”diversity” is the extent of the true trade-o↵ represented by an

algorithm’s solutions.

A visual analysis and comparison of trade-o↵s obtained via di↵erent algorithms is the

most common comparison methodology employed in prior literature [82, 20]. E↵orts have

also been employed to quantify ”quality” of trade-o↵ solutions, within a single performance

measure. In our analysis, we employ a combination of visual trade-o↵ analysis, and perfor-

mance metric based analysis, in order to understand and compare performance of algorithms

on the test suite. Three performance metrics have been used in this analysis, the hypervol-

ume metric [99], the Inverted Generational Distance (IGD) [85]metric and the Generational

Distance metric [84].

2.4.1 Performance Metrics

Performance metrics are used to evaluate the approximation sets produced by running an

MOEA, allowing the comparison of approximation sets using numeric values. It provides a

measure of “convergence” and “diversity” by calculating the volume of the feasible objective

space not dominated by solutions obtained by an algorithm. The feasible objective space

is the hypercube bounded by the “Reference Set” and the “worst point”. The “Reference

Set” of a multi-objective optimization problem is the vector depicting minimum attainable

values of all objectives. In our case studies, we would like to reduce all the objectives to

zeros. Hence, the “Reference Set” for all the groundwater management problems is the zero

vector. It should be noted that the “Reference Set” is usually an unattainable solution, and

the Pareto front of a groundwater problem is dominated by the “Reference Set”. Since the

true Pareto front is not known for all the groundwater management problems discussed in

this analysis, we generated our best approximations of the problems’ Pareto fronts across all
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runs of all the algorithms as our ’Reference Sets’, which served as references for assessing

convergence through the performance metrics. The “worst point” is the vector with the

worst attainable values of all objectives. Since the worst attainable values are not known

in the problems discussed in this study, the “worst point” vector is estimated by the worst

values of all objectives obtained in our computer experiments.

Our results and analysis will focus on three performance measures: (1) hypervolume ,

(2) inverted generational distance (IGD), and (3) generational distance (GD) . Each of these

measures provides unique insights into the performance of MOEAs.

The hypervolume [99] is the most challenging of the three measures to satisfy. Hypervol-

ume measures the volume of objective space dominated by an approximation solution set.

The Approximate Solution Set is the final approximation of the Pareto front deduced by

a single run of an algorithm. The hypervolume indicator is calculated as the di↵erence in

hypervolume between the Approximate Solution Set and the “Reference Set”. The hyper-

volume calculations is performed across the normalized objective function values, hence the

volume integral is calculated between the reference points 0 to 1. In our study, we focus

on the uncovered hypervolume, which is the volume between the “Reference Set” and the

Approximate Solution Set. The sum of hypervolume and uncovered hypervolume is 1. The

hypervolume provides a comprehensive quantification of algorithms’ convergence and diver-

sification abilities. Figure 2.2(a) provides a visual illustration of the hypervolume metric,

i.e., the blue shaded region is the hypervolume and the pink shaded region is the uncovered

hypervolume.

The Inverse Generational Distance (IGD) metric [85] is illustrated in Figure 2.2(b). The

IGD metric is the minimum distance of the Approximate Solution Set from the “Reference

Set” and is depicted by the green line in Figure 2.2(b). For the algorithms discussed in this

analysis, the Approximate Solution Set is the set of non-dominated solutions obtained from

a single algorithm run. The IGD metric is a measure of convergence of an algorithm to the

“Reference Set”.
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The Generational Distance (GD) metric [84] is illustrated in Figure 2.2(c) GD metric

is the average distance between the Approximate Solution Set and the “Reference Set”

as depicted by green lines. Similar to IGD, GD is a measure of convergence towards the

“Reference Set”.

2.4.2 Experimental Setup

We initiated the algorithm comparison methodology by deducing suitable values for pa-

rameters of all algorithms under discussion. A small trial-and-error exercise was performed

to tune population sized for all multi-objective evolutionary algorithms (MOEAS). Since

performance of MOEAs is highly dependent on population sizes, we ran multiple trials of

NSGA-II, AMALGAM on the Umatilla groundwater test case studies, with population sizes

of 20, 50, 100 and 200, with an evaluation limit of 500. The initial trial-and-error analysis

showed that within the limited evaluation budget of 500, a population size of 20 was desir-

able for all MOEAs, for all three test cases. BORG’s configuration recommended by Hadka

et. al.[36] was employed.

Due to the stochastic nature of all algorithms, multiple trial runs were performed for all

groundwater case studies and each trial was using the same starting points for all algorithms.

Our analysis was focused at comparing algorithms’ performances, in terms of e�ciency,

e↵ectiveness, and reliability, within a simulation evaluation budget of 200. E�ciency of all

algorithms was compared via plotting performance metric values (averaged over multiple

trial runs) against number of function evaluations. These plots are called progress graphs in

our discussion. Since it is hard to quantify quality of solutions obtained via an algorithm,

through a single metric, we used three metrics in this analysis, namely, hypervolume, IGD

and GD, all of which have been discussed before. We performed 10 trials for each algorithm

with 200 function evaluations for the three groundwater study cases.
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E↵ectiveness and reliability of all algorithms was compared via a visual comparison of

worst-trade-o↵s obtained through each algorithm after a fixed number of function evalua-

tions, along with a box plot comparison of the hypervolume metric. The worst trade-o↵

obtained by an algorithm refers to the worst approximation of the Pareto front obtained by

an algorithm in multiple trials, according to the hypervolume metric value.

2.5 Results

2.5.1 Time Analysis - Performance Metrics

The relative e�ciency of the algorithms discussed in this analysis can be summarized by

progress graphs. Progress graphs plot values of performance metrics against number of

function evaluations, to visualize algorithm progress with time. Before moving towards

a detailed discussion of comparative performance of the algorithms, we summarize their

relative performances on all groundwater test problems in Figure 2.3-2.5 through progress

graphs. Each figure corresponds to one groundwater test problem and provides visualization

of algorithm progress with number of function evaluations according to the three performance

metrics discussed earlier. Each figure contains 3 plots, depicting progress of algorithms

according to a) hypervolume metric, b) IGD metric and c) GD metric. As was mentioned

earlier, the hypervolume metric tends to highlight both convergence and diversification, while

the IGD and GD metrics capture convergence capabilities of algorithms. Please note that

lower values of all metrics are desirable.

Two deductions are evident from the analysis in 2.3-2.5: 1) Overall average performance

of GOMORS is better than all other algorithms for all test problems within a limited eval-

uation budget of 200 and 2) NSGA-II is the least e�cient algorithm for all groundwater

test problems within a limited evaluation budget of 200. The progress graph also shows

that results can vary significantly according to the choice of performance metric. Hence, we

employed three di↵erent metrics to ensure a fair comparison and to identify if any algorithm
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performs consistently better for all metrics. The performances of BORG and AMALGAM

are also consistently good. 2.3 and 2.5 indicate a better performance of AMALGAM than

BORG, but the di↵erence between them are very small. Overall, the progress graphs indi-

cate relative superiority of GOMORS, AMALGAM and BORG over NSGA-II for a limited

evaluation budget of 200.

2.5.2 Box Plot Analysis

While the analysis of 2.5.1indicates relative superiority of GOMORS over all other algorithms

according to a performance metric based analysis based on average across trials, a box plot

comparison is employed to show the e↵ectiveness and consistency in producing a better

trade-o↵ (with better convergence and diversification), and robust over multiple trial runs.

The box plot comparisons, based on the hypervolume metric, depict superior performance

of GOMORS, AMALGAM, and BORG, within a limited evaluation budget of 200, for all

case studies.

In Figure 2.6 GOMORS obtains the smallest median in all three case studies and smallest

spread in Case 2 and 3 for both 100 and 200 function evaluations among all four algorithms.

In Case 1, AMALGAM has the smallest spread and median and followed by BORG and

GOMORS. It is also noticed that GOMORS, BORG and AMALGAM converge very fast

before 100 function evaluations except NSGA-II in Case 3. AMALGAM performs slightly

better than BORG on average. The overall trend of this analysis shows that performance of

GOMORS is consistently good across all test case studies for 100 and 200 function evalua-

tions.
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Figure 2.6: Box plot algorithm comparison of the uncovered hypervolume metric after 100
and 200 function evaluations (10 trials): (a-b) Problem UMA-1 after 100 and 200 function
evaluations; (c-d) Problem UMA-2 after 100 and 200 function evaluations; (e-f) Problem
UMA-3 after 100 and 200 function evaluations;

We assess the di↵erence in performance between GOMORS, AMALGAM and BORG

through the Mann-Whitney Rank Sum test performed over the hypervolume metric values
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obtained for each algorithm in multiple trials. The Rank Sum test is a non-parametric sta-

tistical hypothesis test for deducing whether results obtained from one algorithm in multiple

trials runs are significantly di↵erent from results obtained from another algorithm in mul-

tiple trials. The algorithms are compared in pairs, the hypervolume metric value is used

as the performance quality measure and the Rank Sum Test is performed for all three for-

mulations (three cases) after 50, 100 and 200 evaluations (except for Case 3 because of the

fast convergence of all the algorithms). Hence, there are 18 Rank Sum tests, 6 for each test

problem.

A summary of the Mann-Whitney Rank Sum Test is provided in Table 2.1. The indicated

results in the table cells are the p-values of the Rank Sum Test. * after the p-value denotes

that GOMORS is significantly di↵erent from the algorithm in the row with significant level

5%. The results indicate that performance of GOMORS is better than AMALGAM, in 5

out of 9 comparisons. AMALGAM is never statistically better than GOMORS. Performance

of GOMORS is better than BORG in 4 out of 9 comparison. However, BORG is never

statistically better than GOMORS.

Table 2.1: Summary of p-values from a statistical comparison via Mann-Whitney Rank Sum
Test applied to GOMORS, AMALGAM, BORG, according to hypervolume metric after 50,
100, and 200 function evaluations. * after the p-value denotes that GOMORS is better than
the algorithm in the row with significance level at ↵ = 5%.

Problem Algorithm
50 evals 100 evals 200 evals

(30 evals for Case 3) (40 evals for Case 3) (50 evals for Case 3)

Case 1
AMALGAM 0.7959 0.9560 0.9557

BORG 0.9118 0.5920 0.1964

Case 2
AMALGAM 0.0433* 0.0094* 0.2520

BORG 0.7394 0.0409* 0.0194*

Case 3
AMALGAM 0.0054* 0.0188* 0.0205*

BORG 0.0437* 0.0478* 0.4270
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2.5.3 Long-term Analysis

While GOMORS, AMALGAM and BORG have good performances within a function eval-

uation of 200, it is also important to know, how consistent the performances will be after

considerably more function evaluations. Figure 2.7-2.9 provides a progress graph of GO-

MORS, AMALGAM, BORG and NSGA-II with a function evaluation budget of 500. The

same as the time analysis in section 2.5.1, each figure corresponds to one groundwater test

problem and provides visualization of algorithm progress with number of function evalua-

tions according to the three performance metrics a) hypervolume metric, b) IGD metric and

c) GD metric.

The results indicate the same overall trend as the time analysis in section 2.5.1 that the

overall performance of GOMORS is superior to all other algorithms and NSGA-II is least

e�cient algorithm among the four algorithms. When the iteration number approaches 500,

the di↵erences between GOMORS and AMALGAM become very small and AMALGAM

has slightly lower value than GOMORS in 2 out of 9 cases. However, we can still observe

that GOMORS has the fastest drop at the beginning for almost all the cases in all three

performance metrics indicating its superior e�ciency with small number of function evalua-

tions. It is evident from Figure 2.9 as well, that GOMORS tends to converge quickly within

a limited evaluation budget. BORG has better performance than NSGA-II in all the test

cases, but it’s not as e�cient and consistent as GOMORS and AMALGAM.

2.5.4 Meaningful Trade-o↵s Analysis

While it is important to know that the level of convergence and diversity obtained within

a limited simulation evaluation budget is acceptable, an equally important ability of an
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algorithm is to produce “meaningful trade o↵s” e↵ectively. The term “meaningful trade-

o↵s” has been defined and used by various authors in the water resources literature (e.g.[29,

49]). It essentially refers to trade-o↵ (non-dominated) solution obtained by multi-objective

optimization, which are typically within upper or lower bounds on the range of permissible

values of each of the objective functions. As a result, the definition of a meaningful trade-

o↵ is subjective which depends on the preference of the stakeholders or the features of the

optimization problem. We define box constraints on objective function values to identify

meaningful solutions for trade-o↵s obtained from di↵erent algorithms. Figure 2.10 provides

an illustration of the implementation of meaningful trade-o↵s. While many trade-o↵ solutions

might exist between competing objectives for groundwater flow and transport problems, the

number of meaningful trade-o↵ solutions might be very limited. This is illustrated in the

trade-o↵s obtained in our analysis as well. For instance, clean up cost values for Case 1

for trade-o↵ solutions obtained via GOMORS range up to hundreds of million dollars. One

can argue that any cost greater than $10million is not acceptable. Consequently, many non-

dominated solutions will not be considered acceptable or meaningful if the cost is greater

than $10 million.

We investigate the ability of GOMORS, AMALGAM, BORG and NSGA-II, in producing

acceptable or meaningful solutions, by using constraints to remove trade-o↵ solutions that do

not achieve acceptability thresholds according to each objective. The meaningful trade-o↵

analysis is performed for all three groundwater test cases. The first step in this process is to

define acceptability thresholds for every objective in three test cases. According to previous

studies of Umatilla chemical depot [12, 78], the acceptability thresholds for Case 1 are no

greater than $10 million as the cleanup cost and 8kg as the maximum contaminant mass

remaining. In the case of the second test problem, all trade-o↵ solutions with cleanup cost

less than $10 million and total concentration less than 10 are considered as meaningful or

acceptable trade-o↵s. For Case 3, trade-o↵ solutions with cleanup cost less than $20 million

and cleanup time less than 5 years are deemed meaningful or acceptable.
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Figure 2.10: The heavy line is an illustration of the region on the Pareto Front that has
meaningful tradeo↵. In this case, there are two objectives, relative bias and relative variabil-
ity. Acceptability thresholds are defined according to user preference and solutions in the
trade-o↵ set which are within acceptability thresholds, are called meaningful.

Figure 2.11 provides the uncovered hypervolume progress graph in terms of producing

meaningful trade-o↵ solutions of the four algorithms on a limited evaluation budget of 200

and 500, respectively. The progress graph shows that GOMORS outperforms all other

algorithms with 200 function evaluations and then followed by AMALGAM and BORG.

The advantage of GOMORS is more obvious than the time analysis in section 2.5.1 evident

by GOMORS’s stochastic dominance of all the other algorithms for all number of function

evaluations. After 200 iterations, the di↵erences between among GOMORS, AMALGAM

and BORG become smaller as indicated by Figure2.11d) and f).
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Figure 2.11: Meaningful Trade-o↵s analysis: Progress graphs with plots of average values
of uncovered Hypervolume metric against number of function evaluations, averaged over
10 trials with meaningful constraints: (a-b) Problem UMA-1 after 200 and 500 function
evaluations; (c-d) Problem UMA-2 after 200 and 500 function evaluations; (e-f) Problem
UMA-3 after 200 and 500 function evaluations;

The Rank Sum Test result of meaningful trade-o↵ analysis is provided in Table 2.2.

Similar to the results from the earlier hypothesis testing, GOMORS frequently outperforms
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AMALGAM and BORG, whereas none of the other algorithms outperforms GOMORS on

any case study.

Table 2.2: Summary of statistical comparison of meaningful trade-o↵s analysis via Mann-
Whitney Rank Sum Test applied to GOMORS, AMALGAM, BORG, according to hyper-
volume metric after 50, 100, and 200 function evaluations. * after the p-value denotes that
GOMORS is better than the algorithm in the row with significance level at ↵ = 5%.

Problem Algorithm 50 evals 100 evals 200 evals

Case 1
AMALGAM 0.1859 0.1620 0.3847

BORG 0.7337 0.1859 0.0376*

Case 2
AMALGAM < 0.001* 0.0036* 0.4274

BORG 0.0376* 0.0211* 0.0173*

Case 3
AMALGAM 0.1405 0.0487* 0.0307*

BORG 0.4727 0.0472* 0.0046*

2.6 Conclusions

This study provides a brief introduction to various popular and state-of-art multi-objective

algorithms, including MOEAs and surrogate assisted search methods, and investigates their

relative e↵ectiveness in groundwater contaminant cleanup management problem, within a

limited budget of simulation evaluations. The e↵ectiveness of all algorithms is evaluated

in terms of their ability to reliably produce trade-o↵ solutions with good convergence and

diversification capabilities.

We employed three di↵erence performance metrics, hypervolume, IGD and GD, to assess

the e↵ectiveness of four multi-objective optimization algorithms. Our initial time analysis

clearly shows that GOMORS, AMALGAM and BORG are significantly more e�cient than

NSGA-II. Furthermore, statistical testing analysis is conducted, which shows that GOMORS

is not outperformed by any algorithm, within an evaluation budget of 200, after application

to 3 groundwater management test cases.
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A box plot comparison is also conducted to show the e↵ectiveness and consistency in

producing good solutions over multiple trial runs. The result indicates the superiority of

GOMORS, AMALGAM and BORG in all the cases with 100 and 200 function evalua-

tions. A further analysis, with more function evaluation, supports that findings of the initial

time analysis and indicates the advantages of GOMORS with fewer function evaluations.

The meaningful trade-o↵ solution analysis shows that GOMORS outperforms AMALGAM,

BORG and NSGA-II with a computational budget of 200 and has more advantages with

fewer function evaluations.

Given the computational burden associated with large distributed groundwater numerical

models, computationally e�cient algorithms can be employed to produce good and meaning-

ful solutions within a very limited simulation evaluation budget. GOMORS , AMALGAM

and BORG are a very promising algorithms, which can be used more frequently to e�ciently

analyze groundwater flow and transport numerical models. While all three algorithms are

very promising, GOMORS is more e�cient with even more limited computation budget.

Moreover, GOMORS can be easily modified to incorporate modest parallelization, and hence

can be more e�cient in producing good trade-o↵ solutions.
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Chapter 3

Groundwater Remediation Long Term

Optimal Policy Design by a Surrogate

Model Based Mixed-integer Global

Optimization Algorithm

3.1 Introduction

This study applies a new surrogate model based nonlinear mixed-integer optimization algo-

rithm to solve fixed cost problems i.e. a problem with dual discrete and continuous value

decision variables. These problems generally arise when the objective is to minimize the sum

of installation cost and the operation-maintenance cost. The installation cost is a fixed cost

that can be represented in the objective function by c

j

I

j

, where c

j

is the fixed cost at well

j and I

j

is a binary integer variable that is 1 if and only if a facility is installed at location

j. Thus the first objective is to choose the best possible location (i.e.pick the optimal val-

ues of the I

j

) out of all feasible options and then to choose the respective rates such that

the operation-maintenance cost is minimized over time. These problems can be categorized
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under Nonlinear Mixed Integer problems (NL-MIP). Nonlinear mixed-integer optimization

problems are in general di�cult to solve due to their large search spaces. For example in

fixed cost problems, both integer and continuous decision variables need to be determined.

When decision variable has high dimension and multiple local minima are involved, solving

the NL-MIP problems becomes more challenging.

The design of groundwater optimal remediation system is an example of complicated NL-

MIP problem. There are generally two types of decision variables that need to be considered

in a typical practical groundwater remediation design problem. First type is the integer

variable that is which of the available locations for a groundwater are to be used. Second

type of decision variable is the continuous variable i.e. (pumping or injection rates for the

selected wells). The first type of variable decides the installation cost whereas the second

type decides the operation and maintenance cost. Once the integer variable configuration is

fixed, the installation cost is no longer a variable, then the objective function is to minimize

the variable cost for that configuration. Such types of multimodal NL-MIP problems in

water resources management are very di�cult to optimize not only due to the large search

domain, but also because of the computational complexity of the numerical groundwater

models, which poses a huge challenge to the multimodal NL-MIP problem. Groundwater

optimal remediation design is a computationally expensive simulation optimization problem,

since the objective functions are evaluated via simulation and a simulation evaluation for

groundwater flow and transport model may take long time. As a result, algorithms that

require fewer model evaluations to produce good solutions are desirable.

Most of the earlier research [35, 6, 19, 55, 76]was more focused on integrating mathe-

matical optimization techniques with simulation for important environmental management

issues without addressing the issue of decisions both about optimization of pumping well

locations and pumping rates. Zheng and Wang [98]developed an integrated approach to

solve the mixed-integer remediation design problem using Tabu Search. Yan and Minsker

[92] used an adaptive Neural Network Genetic Algorithm to solve a groundwater remedia-
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tion design problem. Babbar and Minsker [11] proposed multiscale strategies for GAs that

evaluate designs on di↵erent spatial grids at di↵erent stages of the algorithm to save some

computation e↵ort. Such approach becomes computationally expensive for large-scale mod-

els where one model simulation takes significant time. Therefore, investigating more e↵ective

and robust nonlinear mixed-integer optimization methods becomes the goal and is necessary

if the models are highly computationally expensive.

A global mixed-integer optimization algorithm SO-MI [59] is introduced in this study.

SO-MI is a surrogate model based algorithm for computationally expensive mixed-integer

black-box global optimization problems with both binary and non-binary integer variables. It

can be applied to both nonlinear and even multimodal problems. One of the main attractive

features of surrogate model based methods is that the methods are “gradient free” i.e. the

methods do not need actual gradient information for optimization run. This feature makes

this kind of method very suitable for environmental problems as they generally have black

box formulation. None of the response surface methods (including the method used) needs

any additional information other than function values for minimization.

The SO-MI algorithm is tested for an optimal pumping strategy for groundwater remedi-

ation on a hypothetical case and a real groundwater case derived from the Umatilla Chemical

Depot, which is an EPA groundwater site. The objective functions for both problems are

to minimize the sum of fixed and variable costs subject to some constraints. The fixed cost

depends on the integer variable configuration, whereas the variable cost depends on the con-

tinuous variables. The integer variables are essentially binary variables and the continuous

variables are bounded with upper and lower limit. The results from the SO-MI algorithm

are compared to other two widely used mixed-integer optimization algorithms, GA (Genetic

Algorithm) and NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search).

This paper is organized as follows. Section 3.2 introduces the application problems and

optimization formulations. Section 3.3 gives an overview of the algorithms discussed in this

study. Experiment setup and results are explained in Section 3.4 and the last Section 3.5
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addresses the conclusions.

3.2 Mixed-integer Optimization Problems and Study

Cases

3.2.1 Overview of Mixed-integer Optimization Problem

The optimization problems considered in this study are global or nonlinear mixed integer

optimizations applied in groundwater management. This type of optimization problems can

be formulated as

Minimize
x,i

F (x, i) = c

T

i+ f(x) (3.1)

subject to

h(x) = 0

g(x)  0

x 2 X =
�
x : x 2 Rn

,x

l

 x  x

u

,x  x

T · i
 

where x is the vector with n dimension of continuous decision variables representing the

pumping rates and i denotes the m dimension vector of 0-1 binary variables, representing

the potential existence of wells at various locations in an aquifer or a treatment system. The

objective function is usually the cost function, which consists of both fixed costs c

T

i and

variable cost f(x), where c is a vector of constants associated with fixed costs. Equality

constraints are represented by the vector equation h(x) = 0 whereas inequality constraints,

conditions such as capacity constraints, are represented by the vector inequality g(x)  0.

The continuous decision variables x is bounded by a lower bound vector x

l

and a upper

bound vector x
u

. In addition, continuous decision vector x is subject to the constraint that
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x  x

T · i to ensure no variable cost associated with locations where wells are not installed.

3.2.2 Model Description

The new algorithm SO-MI is tested and compared with other popular mixed-integer algo-

rithms on two groundwater management problems: one hypothetical groundwater problem

and one real demonstration site. The demonstration site, Umatilla Chemical Depot, is

adapted from NAVFAC (Naval Facilities Engineering Command) technical report TR-2237-

ENV. The objective function both of the two groundwater problems is the sum of fixed and

variable cost for the contaminant cleanup as described in Section 3.2.1. The fixed costs are

associated with the integer variable configuration i.e. which locations will have wells in-

stalled, and the variable costs depend on the continuous decision variables, i.e. the pumping

or rejection rates of the chosen facilities. A ’fixed cost constraint’ ensures that a continuous

variable exists only if the well is chosen to be constructed. More details of the problem

formulation for the two test groundwater problems are discussed in this section.

3.2.2.1 Hypothetical Case

The objective function for the hypothetical groundwater problem is to minimize the sum

of fixed and variable cost such that the contaminant concentration constraint is satisfied at

the end of management period. This hypothetical problem has 32 binary decision variables

representing the potential 32 locations for facility construction and 32 continuous decision

variables representing variable costs associated with the corresponding facilities in the 32

locations. This hypothetical problem is formulated as
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Minimize
x,I

pX

j=1

I

j

F

j

+ V C(x) + penalty(C) (3.2)

subject to

x

min

 x  x

max

x  I · x
max

C  C

max

where, p is the number of integer variables; x is the continuous decision vector; I is the

vector with elements I

j

, the binary variable associated with j

th well; F
j

is the fixed cost

associated with j

thwell; V C(x) is the variable cost; C is the maximum concentration at the

end of management period measured at observation wells; penalty(C) represents a penalty

cost is incorporated to the objective function if the concentration constraint is violated.

3.2.2.2 Umatilla Chemical Depot Study Case

Umatilla Chemical Depot is a 19728 acre military reservation established in 1941 for storage

and handling of munitions. From the 1950s until 1960s the depot was operated as an onsite

explosives washout plant to remove and recover explosives with a pressurized hot water

system. During this time, about 85 million gallons of wash water was discharged into two

unlined lagoons, from where the wash water infiltrated into the soil system.

The two major chemicals, RDX and TNT are treated as contamination indicator parame-

ters. A pump-and-treat system was designed by the U.S.Army Corps of Engineers (USACE,

1996 and 2000) to remediate the RDX and TNT plumes(Figure 3.1). The designed pump-

and-treat system consists of 3 pumping wells and 2 extraction wells which play role in the

cost definitions. The cost of activating the inactive well is considerably less than the cost of

installing a new well whereas is no installation cost associated with any other existing wells.

This study uses binary integer variables associated with all of the pumping well locations,
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i.e. ’1’ if active and ’0’ if inactive. According to USACE design, the cleanup levels for RDX

and TNT are set at 2.1 µg/l and 2.8 µg/l, respectively. In the pump-and-treat system,

the contaminated water is pumped from the extracting wells. After being treated by GAC

(granulated activated carbon) units, water is discharged into the infiltration basins.

In both hypothetical and Umatilla cases, MODFLOW 2000 and MT3DMS[97] are uti-

lized to simulate groundwater flow and transport systems. The models are used to predict

the contaminant concentrations at every model grid point. The formulation only focuses

on contaminant transport in the first layer of the model and the boundary conditions for

all four sides of the model domain were simulated as constant head. The model inputs are

hydrogeological data, domain discretization data and the pumping data, where the pump-

ing/extracting data includes the well locations and the corresponding pumping/extracting

rate. After taking the input information, MODFLOW and MT3DMS start to simulate the

model, and concentrations of RDX and TNT are calculated as the model outputs which are

used to calculate the objective functions.

The optimization algorithm links with both simulation models and the optimization

formulations. In this framework, the optimization algorithm prepares inputs or decision

variables of the optimization formulations. Then simulation models use the inputs to simulate

model outputs, such as hydraulic heads from MODFLOW and contaminant concentrations

from MT3DMS, which along with the decision variables contribute to calculate the objective

functions. The optimization routine generates a new set of inputs based on the objective

function values calculated earlier and passes them to the simulation models again. The

whole process runs through iteratively until the maximum number of function evaluations is

exceeded.
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Figure 3.1: Site Map: NAVFAC (Naval Facilities Engineering Command) technical report
TR-2237-ENV, 2004 showing location of extraction wells and infiltration fields (recharge
basins)

The overall objective for this problem is to obtain the optimal well locations and the
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corresponding pumping/injection rates of the active wells. Each pumping well has a binary

variable (location) with value ’1’ if it’s active well or ’0’ if it’s inactive and respective pumping

rates (continuous variables). For this case, since there are two infiltration basins with fixed

locations, we have in total 8 binary variables and 10 continuous variables. Similar to the

hypothetical case, the objective of this formulation is to minimize the total operations and

maintenance costs for the project duration and the objective function is provided as follows:

Minimize
Q,I

pX

j=1

I

j

F

j

+ V CE(Q) + V CG(Q) + penalty(Q, C) (3.3)

where, p is the total number of wells and I

j

is the binary variable associated with j

th

well; F

j

is the fixed cost associated with j

thwell with $75,000 for installing a new well

and $25,000 for converting an existing inactive well to services. The decision variable, Q =

[Q1, Q2, . . . , Q10] is a vector of pumping rates for 10 wells, among which wells 1-8 are pumping

wells and wells 9-10 are recharge basins with the last recharge basin getting a recharge as

constraint 3. C is the maximum concentration at the end of management period measured at

observation wells. The penalty(Q, C) represents a penalty cost incorporated to the objective

function if the concentration or pumping constraints are violated.V CE(Q) is the variable

electric cost of operation wells, and V CG(Q) is the variable cost of GAC units. Note that

all the costs are computed in net present value (NPV) with the following discount function

NPV = cost

y

/(1 + r)y�1 , where NPV is the net present value of a cost incurred in year y

with a discount rate of r = 5%.

The formulation includes the following constraints that must be satisfied while the ob-

jective function is minimized:

1. This model consists of 1 management period of 4 years, within which the pumping

rates of all the wells are kept throughout this period.

2. Cleanup must be achieved at the end of 4 years, meaning the maximum concentration
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of RDX and TNT in model layer 1 must be less than their respective cleanup targets

by the end of 4 years: Cmax

RDX

 2.1ppb and C

max

TNT

 2.8ppb.

3. The total pumping rate, after adjustment for the average amount of system uptime,

cannot exceed 1300 gpm. Therefore, the current maximum capacity of the treatment

plant Q
total

 1300↵ gpm, where ↵ is the coe�cient of the average amount of system

time (↵ = 0.9 in this study). The total pumping constraint is implemented by using

the penalty function thus the solutions not satisfying this constraint are penalized to

force the algorithm to look for solution points satisfying the constraint.

4. The pumping capacity of individual wells must not exceed 400 gpm in the less per-

meable portion of the aquifer and 1000 gpm in permeable portion. This constraint is

implemented as the lower and upper bounds of the decision variables.

5. The total amount of pumping must equal to the total amount of injection through

the infiltration basins within an error tolerance. Thus, the pumping rate of the third

recharge basin is set to be the balance of (Total pumping)-(Total recharge).

6. Binary constraint: I
j

is 0 or 1.

7. Well pumping constraint: Q  I ·Q
max

.

3.3 Optimization Algorithms

3.3.1 SO-MI

The goal of this study is to introduce a novel mixed integer global optimization algorithm

SO-MI with applications to the two groundwater study cases and access the performance of

this new algorithm as well as two other widely used algorithms. SO-MI, a surrogate model

based algorithm designed for computationally expensive nonlinear mixed-integer black-box

optimization problems, is developed by Müller et al. [59]. The key feature of this algorithm
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is that it utilizes surrogate models to guide the search and thus saves the expensive function

evaluation budget, and is able to find accurate solutions with relatively few function evalu-

ations. A full description of the inner working of SO-MI can be found in Müller et al.[59],

where SO-MI is applied to some computationally expensive mixed integer optimization test

problems and is approved to be more e�cient than other algorithms. SO-MI has never been

used in any water resources management problems, including expensive groundwater model

analysis.

The specific steps of the surrogate model based algorithm SO-MI for computationally

expensive mixed-integer problems described in [59] are summarized below:

Step 1: Use Latin hypercube design to initially generate 2k + 1 points, where k is the

dimension of decision variables. Round the discrete variables to the closest integers, and add

one known feasible point to the design such that the total initial points are n0 = 2(k + 1).

Step 2: Do the costly function evaluations of the initial points to obtain y

t

= f(z
t

), and

constraints c
j

(z
t

), where z

t

denotes the initial points, t = 1, . . . , n0, j = 1, . . . ,m. Find the

best feasible point with lowest function value and the worst feasible point with the highest

function value.

Step 3: Compute the adjusted objective function values according to

f

p

(z) =

8
>><

>>:

f

max

+ c

p

v(z) if z is not feasible

f

z

otherwise

where, c
p

denotes the penalty factor, f
max

is the worst feasible function value found so far,

and �(z) is the constraint violation function.

Step 4: Calculate the surrogate Radial Basis Function (RBF) model parameters by using

of the data points.

Step 5:

(a) Create four groups of candidate points by randomly (i) perturbing only continuous

variable values of z
min

, (ii) perturbing only the discrete variable values of z
min

, (iii) perturbing
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both continuous and discrete variable values of z
min

, (iv) uniformly sampling points from

decision space.

(b) Calculate the scoring criteria for every candidate point. Note that this step is inex-

pensive.

(c) Choose the points with the best score and do the expensive function evaluations at

these points (in parallel)

(d) Update the adjusted objective function values and RBF model parameters. Iterate

until the maximum iteration number is achieved.

Step 6: Return the best feasible solution.

The features of SO-MI that are di↵erent from Stochastic RBF, a method developed

by Regis and Shoemaker [71, 72], are summarized as follows: (1) A radial basis function

surrogate model is used to select candidate points for both integer and continuous decision

variable points at which the computationally expensive objective and constraint functions are

to be evaluated, whereas Stochastic RBF can only be used for continuous decision variables.

(2) In every iteration multiple new points are selected based on di↵erent methods to increase

the likelihood of finding good new solutions, and the function evaluations are done in parallel.

(3) The adjusted objective function is used to calculate the surrogate model to make the

algorithm model e�cient.

3.3.2 Genetic Algorithm

Genetic Algorithm (GA), one of the most widely used evolutionary optimization algorithms,

is a method for solving both constrained and unconstrained optimization problems based on

a natural selection process that mimics biological evolution [34]. The algorithm repeatedly

modifies a population of individual solutions. At each step, the genetic algorithm randomly

selects individuals from the current population and uses them as parents to produce the

children for the next generation. Over successive generations, the population converge toward

an optimal solution. GA involves several operators i.e. crossover, mutation, elitism. Reed et.
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al. [67] discusses the importance of setting appropriate GA operators and initial population

size to achieve a better performance in water resources problems. GA can be applied to solve

problems that are not well suited for standard optimization algorithms, including problems in

which the objective function is multimodal, discontinuous, non-di↵erentiable, stochastic, or

nonlinear. GAs have been used for water resources problems due to its capabilities of solving

global optimization problems without knowing the derivatives. Many previous studies in

groundwater remediation design have used GAs to find the optimal design scheme[8, 42,

54, 57, 94]. In this study, Genetic Algorithm solver in Global Optimization Toolbox from

MATLAB R2014a is employed to solve the two aforementioned groundwater remediation

problems and the results are compared with the other two global mixed-integer optimization

algorithms.

3.3.3 NOMAD

Another derivative-free algorithm compared with SO-MI in this study is NOMAD (Nons-

mooth Optimization by Mesh Adaptive Direct Search) [4, 2, 5]. NOMAD implements MADS

(mesh adaptive direct search) algorithm, which is based on Generalized Pattern Search al-

gorithms. MADS is an extension of generalized pattern search algorithms with superior

convergence properties as shown in [3]. These algorithms are iterative methods with each

iteration consisting of two phases: a search and a local Poll phase. In the search phase,

the objective function is evaluated over a finite number of mesh points to find a new point

with better objective function value. It calls the Poll procedure if the algorithm fails to find

an improved mesh point, where a barrier objective function (at neighboring mesh points) is

evaluated to find a better function value. If Poll also fails to find an improved point, then

the mesh is refined and the procedure is repeated.

NOMAD is applicable to mixed-integer global optimization problems. It is an open source

algorithm and is encapsulated into the OPTimization Interface (OPTI) toolbox, which is a

free MATLAB toolbox for constructing and solving linear, nonlinear, continuous and discrete
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optimization problems [51]. A range of open source and academic solvers are implemented

into this MATLAB optimization solver.

3.4 Numerical Results

3.4.1 Experiment Setup

The goal of this study is to implement the new mixed-integer optimization algorithm SO-MI

to identify good solutions for computationally expensive groundwater remediation design

problems when computational budget is limited. Thus the experimental runs for the study

were designed to test SO-MI against two open source mixed-integer optimization algorithms

(Genetic Algorithm and NOMAD) with a fixed number of function evaluations. Branch and

Bound method was not used because [59] showed branch and bound did not work at all well

on global optimization problems.

Due to the stochastic nature of all algorithms, 20 trial runs were performed for all ground-

water case studies and each numbered trial was using the same starting points for that num-

ber for all algorithms. SO-MI uses a symmetric Latin hypercube design which consists of

2(k + 1) points, where the integer constraints are satisfied by rounding the corresponding

variable values to the closest integers. To ensure a fair comparison, GA and NOMAD are

also using the same Latin hypercube design initial points. Since Genetic Algorithm was ob-

tained from the Global Optimization Toolbox from MATLAB, the algorithm parameters are

defined by MATLAB’s default, which sets population size of 100. The initial 100 population

of GA is obtained from SO-MI’s first 100 solution points. The starting point for NOMAD is

obtained from the best point of Latin hypercube initial design since NOMAD requires one

initial starting point.

This analysis focuses on comparing algorithms’ performances, in terms of e�ciency and

reliability, within a simulation evaluation budget of 1000. E�ciency of all algorithms was

compared via plotting progress graphs (average best objective function values among 20 trial
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runs vs. number of function evaluations)in our discussion. E↵ectiveness and reliability of

all algorithms was compared via box plot comparisons of the objective function values. The

next section presents the results for the algorithm comparison with discussion about the

algorithm.

3.4.2 Algorithm Comparison

This study compares a surrogate response surface based mixed-integer optimization algo-

rithm SO-MI to two earlier discussed mixed-integer problems. The results for the two

groundwater remediation design problem are summarized by the progress graph, which plot

values of average objective function values (cleanup costs) against number of function eval-

uations, to visualize algorithm progress with time. Figure 3.2 and Figure 3.3 depict the

progress graphs of the hypothetical groundwater test case and Umatilla groundwater study

case. For each figure, the function value (y-axis) is plotted against the specific i

thfunction

evaluation (x-axis). This function value is the average over 20 trial runs for the best solu-

tion found on or before the i

th function evaluation, respectively. In this study, the objective

functions for both study cases are the groundwater remediation cleanup costs.

For both hypothetical case (Figure 3.2) and Umatilla case (Figure 3.3), with a fixed

number of total allowed function evaluations, the SO-MI algorithm significantly outperforms

the other two methods (GA and NOMAD). Since the goal is to minimize the cleanup cost,

the superior algorithm should be a curve with lowest average objective function value and

fastest drop. As shown in the progress graphs, SO-MI (red solid line) drops the fastest

(after 110 function evaluations) and remains the lowest function value for all the number of

function evaluations.

In other words, SO-MI has the best e�ciency with the whole optimization procedure

among the three algorithms. The performances of GA and NOMAD in the hypothetical

study case are very close to each other towards the end of 1000 function evaluations and

NOMAD is better than GA in the range of 110 to 400 evaluations. Notably even after
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1000 evaluations, the GA and NOMAD solutions (which have flattened out) are much worse

than the SO-MI solution. For the Umatilla study case, GA performs relatively better than

NOMAD as compared to the hypothetical study case. It can also be noticed that the

di↵erence between SO-MI and other two algorithm are more significant in Figure 3.3, which

is the Umatilla groundwater study case. The Umatilla groundwater case, as discussed in

earlier sections, involves two types of chemicals and the model scale itself is larger than

the hypothetical groundwater problem. Thus Umatilla case is a more di�cult optimization

problem than the hypothetical one in terms of its nonlinearity and multi-modal nature. SO-

MI demonstrates its advantage of being used in a harder problem than other algorithms

as shown in Figure 3.3, whereas GA and NOMAD need significant number of additional

function evaluations to locate a relatively good solution.
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Figure 3.2: Objective function value for feasible points averaged over 20 trials vs. number
of function evaluations; for groundwater hypothetical problem
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Figure 3.3: Objective function value for feasible points averaged over 20 trials vs. number
of function evaluations; for Umatilla groundwater problem

Table 3.1 shows the mean and standard deviation of objective function value for the

best solution at the end of 200, 500 and 1000 function evaluations of all three algorithms

for both Hypothetical and Umatilla Cases, where the best results of the mean values are

marked by bold. The results indicate that SO-MI has the lowest mean among all three

algorithms with di↵erent number of function evaluations in both cases (marked bold). The

standard deviation results show that SO-MI gets the smallest standard deviation as the

number of function evaluation increasing. To analyze the reliability of the algorithms, box

plot comparisons are employed to show the e↵ectiveness and consistency in producing a good

solution, and robust over multiple trial runs. The box plot comparisons are based on the

average best function evaluation at the end of 1000 function evaluations. In both study cases,

SO-MI has the smallest median and spread among as the comparison to GA and NOMAD.

NOMAD has the largest spread in the hypothetical groundwater study case depicting its

unstable performance with multiple trials, though it has lower median than GA. The spread
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of NOMAD and GA are not much di↵erence in the Umatilla study case, but GA has slightly

lower median than NOMAD. The overall trend of this analysis shows that performance of

SO-MI is consistently good in both groundwater study cases for 1000 function evaluations.

Table 3.1: Mean objective function values over 20 trials with 200, 500 and 1000 function
evaluations for Hypothetical Case and Umatilla Case. Best result of the mean values among
all algorithms is marked by bold.

Problem Algorithm Statistics 200 eval. 500 eval. 1000 eval.

Hypothetical Case

SO-MI
Mean 4.123 4.021 3.948
SD. 0.052 0.035 0.022

NOMAD
Mean 4.169 4.127 4.069
SD. 0.072 0.072 0.085

GA
Mean 4.262 4.141 4.091
SD. 0.116 0.030 0.030

Umatilla Case

SO-MI
Mean 4.657 3.800 3.218
SD. 0.916 0.864 0.862

NOMAD
Mean 6.351 5.292 4.780
SD. 0.686 0.972 1.127

GA
Mean 5.306 4.985 4.385
SD. 0.757 0.691 0.989
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Figure 3.4: Box plot algorithm comparison after 1000 function evaluations (20 trials); for
groundwater hypothetical problem
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Figure 3.5: Box plot algorithm comparison after 1000 function evaluations (20 trials); for
Umatilla groundwater problem

The hypothesis testing for di↵erences in means between the di↵erent algorithms in Table

3.2 indicates that for both Hypothetical and Umatilla Cases SO-MI produces significantly

lower mean at significance level ↵ = 5% or even ↵ = 1% from all the other tested algorithms.

Thus, this result further supports the evidence of SO-MI’s superior algorithm performance.

Statistical test results for comparison of NOMAD and GA fails to indicate any significant

di↵erence at 5% significance level between the results for NOMAD and GA.

The comparisons in the previous section indicate clearly that SO-MI performs well with

a limited computational budget and is much better suited to handle global mixed-integer

blackboard optimization problems with multiple local minima.
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Table 3.2: Hypothesis testing for di↵erences in means at the final function evaluation of the
Hypothetical Case and Umatilla Case (1000th simulation) with significant at the ↵ = 5%.
* after the p-value denotes that the algorithm in the row is better than the one in the row
with significance level at ↵ = 5%.

Problem Algorithm SOMI NOMAD GA

Hypothetical Case
SO-MI 1.000 < 0.001* < 0.001*
NOMAD 1.000 0.2457

GA 1.000

Umatilla Case
SO-MI 1.000 < 0.001* < 0.001*
NOMAD 1.000 0.2838

GA 1.000

To test the quality of the results obtained from SO-MI for Umatilla groundwater site,

the pumping rates and well configuration results are compared to the results presented by

Becker et.al [12]. The results presented by Becker et.al for this formulation the optimal

solution point after 1000-8000 simulations uses 2 new wells, 2 existing wells and 2 existing

basins. Out of 20 trials done using SO-MI 20 obtained the same configuration with slightly

di↵erent pumping rates as optimal solution point.

3.5 Conclusions

The results of optimal policy design for pump and treat system, which is a problem involving

both integer and continuous decision variables, illustrate the success of the new SO-MI

algorithm. The study compared the suggested SO-MI method with NOMAD and Genetic

Algorithm (GA) for two mixed integer value optimization problems. The algorithm, SO-MI,

iteratively evaluates the computationally expensive simulation model and updates a radial

basis function surrogate model to reduce the amount of function evaluations to be done to

find optimal solution.

The results presented indicate that under limited computational budget, SO-MI method

is able to find significantly better solutions than the other algorithms for both the hypo-
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thetical groundwater study case and the real groundwater case. The genetic algorithm has

the worst performance for both study cases, whereas NOMAD is able to find competitive

solutions in some trial runs. These results are based on groundwater pump and treat system

problems do not prove that SO-MI will always be better than other algorithms in mixed-

integer optimization problems. However SO-MI was tested in many other problems in [59]

and was proved to be the best algorithm among many widely used mixed-integer algorithms.

As a result, this study suggests that SO-MI should be considered as alternatives to widely

used methods such as evolutionary algorithm, especially with applications to groundwater

remediation designs.

In conclusion, the introduced algorithm SO-MI extends the research area of using surro-

gate models for solving mixed-integer optimization problems. The computational results in-

dicate that SO-MI is a promising algorithm and performs significantly better than commonly

used algorithms for groundwater remediation design problems (mixed-integer problem).
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Chapter 4

Implementation of DYCORS-PEST

Algorithm for Computationally

Expensive Groundwater Calibration

Problems

4.1 Introduction

Groundwater numerical models have been widely used as e↵ective tools to analyze and

manage water resources. Numerous mathematical models have been developed to solve

groundwater problems [74, 89, 93, 37]. Generally speaking, physically based mathematical

models are solved by finite-di↵erence or finite-element methods and most of these models

are distributed parameter models. The parameters used to characterize the groundwater

numerical models are not directly measurable and have to be determined through parameter

estimation processes or model calibration. Thus, parameter calibrations in groundwater

models are essential for successful modeling and the inaccuracy of parameter estimation

may cause unreliable model output for future predictions or management purposes. The
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problem of parameter identification has been studied extensively during the past decades,

and numerous approaches have been developed for solving this problem. Groundwater inverse

methods have been reviewed by Yeh [93], Kuiper [50], Ginn and Cushman [33], Sun [80],

Sun et al. [81], McLaughlin and Townley [56], Hyun and Lee [43], Carrera et al. [15], Hill

and Tiedeman [40] and Hill et al. [41].

To solve the parameter estimation problem, various techniques have been developed.

Manual calibration, which is also named trial-and-error method, has been popular and is

a frequently used approach for model calibration in the old days. The whole processes re-

quire a large amount of human time as well as perception of the model. Thus, the manual

calibration is very tedious and time-consuming. To reduce computation time and human

e↵ort, automatic calibration that involves the use of an optimization method to search for

the parameter set subject to a specified goodness-of-fit function were developed. Com-

pared to manual calibration, automatic calibration requires much less human time and has

higher possibility finding a better parameter set since more model simulations could be per-

formed without worrying about saving human e↵ort. To solve the automatic calibration

problem, Gradient-based optimization methods, such as Gauss-Newton, gradient steepest

descent, conjugate gradient, quasi-Newton, truncated-Newton, and Levenberg-Marquardt

methods, have been widely used in groundwater model calibration. Previous researches

have demonstrated the performance of applying gradient-based algorithms to groundwater

calibration problems [52, 9, 93, 16, 61, 39, 41, 45]. The variations of the Gauss-Newton

optimization approach were written into solution codes for applying into groundwater in-

verse problems, such as UCODE [?, 40], iTough2 [31] , PEST [23]. The model indepen-

dent Levenberg-Marquardt (LM) method based parameter estimation software PEST, which

quantifies model-to-measurement misfit in the weighted least squares sense, has been widely

used for environmental numerical model calibration. This software is e�cient in terms of

its model run requirements. The major advantage of using these gradient-based algorithms

is that these local optimization methods are computationally e�cient at searching for local
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minima of the non-linear objective functions. However, groundwater inverse problems are

typically highly nonlinear with multiple local minima. Thus, these gradient-based methods

can be easily trapped into local optimum and cannot necessarily find the global optimum

solution.

To solve this problem, many classic heuristic optimization methods are developed and ap-

plied to water resources problems, i.e. Genetic Algorithm [34, 32], Artificial Neural Networks

[46, 47], tabu search [96], simulated annealing [96], and ant colony optimization (ACO) [1]

etc. In addition, there are some other heuristic methods were developed and implemented to

inverse problems. For example, shu✏ed complex evolution (SCE) algorithm [27], dynamically

dimensioned search (DDS) algorithm [28], Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [38]. This algorithm has been encapsulated into the PEST software package [24]

as the global optimizer with name CMAES P. The di�culty with heuristic methods is that

they tend to require hundreds of thousands of function evaluations to obtain adequately good

solutions. Since simulations in engineering applications can be computationally extremely

expensive and time consuming, several surrogate based methods have been proposed to

solve such global optimization problems. Examples include E�cient Global Optimization

(EGO) method, which is the first surrogate global optimization method [44], UOBYQA [63],

which has been applied to watershed model calibration by Shoemaker et al. [77], NEWUOA

[62, 64], DFO [18], ORBIT [91], FA-RS [70], which was applied to bioremediation models

[58], and Stochastic RBF [72], which uses a weighted score computed based on the objective

function value prediction by the response surface and the distance to previously evaluated

points to iteratively select sample points. The sampling method has also been employed as

a framework in DYCORS (DYnamic COordinate search using Response Surfaces), which is

developed by Regis and Shoemaker [73]. DYCORS is a surrogate-based optimization algo-

rithm for high dimensional expensive black-box functions that incorporates an idea from the

DDS algorithm. This algorithm is applied to a watershed calibration problem and produces

very promising results[73].
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In this study, we introduce the new method DYCORS-PEST, which uses the DYCOR, a

surrogate global optimization method, in conjunction with PEST, a widely used local search

algorithm. This method is developed for high dimensional, computationally expensive, mul-

timodal calibration problems when computation budget is limited. DYCORS-PEST achieves

the goal of solving the computationally expensive black-box problem by forming a response

surface of the expensive function. This response surface function is used as a surrogate for

the expensive function during the search, thus the number of required expensive function

evaluations for finding accurate solutions can be significantly reduced. The global search

method in DYCORS-PEST perturbs the best point found so far in order to find a new sam-

ple point. The number of decision variables being perturbed is dynamically adjusted in each

iteration in order to be more e↵ective for higher dimensional problems. The procedure for

dynamically changing the dimensions perturbed is drawn from earlier work on the DYCORS

algorithm. The novelty in DYCORS-PEST is a memetic approach to improve the accuracy

of the solution in which we use a local optimization search around a subset of the previously

evaluated points. Since PEST is a very e�cient and widely used local search algorithm,

incorporating PEST into DYCORS-PEST is a good enhancement for PEST and easy for

PEST users to learn.

The new integration methodology is applied to two real groundwater calibration prob-

lems, and the results are then compared to Stochastic RBF and PEST, which are studied in

[87]. This study is organized as follows. Section 4.2 introduces the details of the new method

and the other two algorithms compared to. Section 4.3 introduces and explains the model

calibration and application problems with details of objective function and constraints. Ex-

periment setup and results are then discussed in section 4.4. Section 4.5 highlights the

conclusions.
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4.2 Optimization Algorithm Description

The goal of this study is to develop and demonstrate a global optimization algorithm for rela-

tively high dimensional calibration problems that improves the accuracy of the solution while

maintaining high e�ciency for computationally expensive problems with limited computa-

tion budget. This method integrates a widely used local optimization method (PEST) with

a response surface based global optimization method (DYCORS). In the following subsec-

tions, the general Stochastic Response Surface (SRS) Framework, Stochastic Radial Basis

Function (Stochastic RBF), DYCORS, PEST and details of DYCORS-PEST framework

will be discussed. Stochastic RBF [72] is another global optimization algorithm designed

for computationally expensive Black-box functions. In the earlier study of the performance

of Stochastic RBF with application to groundwater calibration problems, Stochastic RBF

shows its superiority with comparison to PEST and other two global optimizers [87]. In this

study, we compare the performance of the new method with Stochastic RBF in the same

groundwater calibration problems.

4.2.1 Stochastic Response Surface (SRS) Framework

Regis and Shoemaker [72] introduced a class of stochastic response surface algorithms, called

SRS (Stochastic Response Surface) which is a framework for expensive global optimization.

Examples of methods based on SRS are LMSRBF [72] and DYCORS [73]. The SRS frame-

work is given in Algorithm 4.1. The iteration of any surrogate based optimization consists

of performing the function evaluations of the points in the initial experimental design and

building an RBF model to approximate an expensive objective function. The algorithm then

makes use of this computationally inexpensive response surface to determine the location of

the next function evaluation point. Finally, the algorithm updates the surrogate after the

new evaluated point is added in.
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Algorithm 4.1 Stochastic Response Surface (SRS)

Input: initial experimental design

1: build initial response surface
2: repeat
3: generate candidate points around x

best

;
4: select a point for function evaluation;
5: update x

best

, the best point found so far;
6: update response surface;
7: until termination condition is met

Output: the approximate global minimum

4.2.2 Stochastic Radial Basis Function (Stochastic RBF)

Regis and Shoemaker [72] introduced the Stochastic Radial Basis Function (Stochastic RBF)

method based on the SRS Framework. Two new global optimization methods were devel-

oped: Global Metric Stochastic Radial Basis Function (Global MSRBF) and Multistart Local

Stochastic Radial Basis Function (Multistart Local MSRBF). In this paper, we used Multi-

start Local MSRBF. The key idea of these two global optimization methods is to utilize radial

basis functions (RBF) [65, 66, 14] as the response surface model to approximate the expen-

sive objective function and thus reduce the number of function evaluations needed. Global

MSRBF and Multistart Local MSRBF are both designed for continuous, multimodel and

computationally expensive functions, especially if no derivative information is inexpensively

available.

With the idea from SRS Framework, Stochastic RBF uses radial basis functions (RBF)

to approximate the objective functions that are expensive to compute. The RBF model can

then be represented as

s(x) =
nX

i=1

�

i

�(kx� x

i

k) + p(x), x 2 Rd (4.1)

where s(x) is the surrogate model prediction at the point x, k·k is the Euclidean norm,
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and p(x) is a polynomial tail. The order of the polynomial tail depends on the chosen

RBF type. for a cubic RBF �(r) = r

3 with a linear polynomial p(x) = ↵

T

x + ↵0 , where

↵ = (↵1,...,↵d

)T 2 Rd, Eq. 4.1 can be simplified to the following form:

s(x) =
nX

i=1

�

i

�(kx� x

i

k) +↵

T

x+ ↵0, x 2 Rd (4.2)

4.2.3 DYCORS

Dynamic Coordinate Search using Response Surface Models (DYCORS) is one of the algo-

rithms from the family of surrogate-based optimization algorithm, and it is developed by

Regis and Shoemaker [73]. While most of the previous surrogate-based optimization meth-

ods are suitable and have only been tested on problems with low dimension, DYCORS, on

the other hand, was developed especially for problems in a class of HEB (High dimensional

Expensive Black-box) problems. DYCORS incorporates an idea from the DDS [83], where

it does not perturb all variables of the best point found so far in order to create candidate

points, but rather each variable is perturbed with probability

P (n) = p0


1� log(n�m+ 1)

log(N
max

�m)

�
, (4.3)

for all m  n  N

max

, and where m is the number of point in the initial experimental

design, p0 = min(1, 20/d), n is the iteration number, and N

max

is the maximum number

of allowed evaluations for the optimization. As a result, the probability of perturbation for

each variable decreases as n grows.

DYCORS was tested on problems up to 200 dimensions and a watershed calibration

problem[73], where DYCORS had superior performances. Since the problems of model

calibration involve parameter sets with high dimension, DYCORS is integrated into this

new DYCORS-PEST framework.
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4.2.4 PEST

In this study, The most widely used method for groundwater calibration is PEST [23]. The

core of PEST is the Gauss-Marquardt-Levenberg (GML) [53] algorithm, which is a derivative-

based local optimization method. Doherty and co-workers have made series of improvements

to PEST [22, 25, 24] and the authors have o↵ered many training sessions, which have con-

tributed to the propagation of its use. Many features are added to PEST, like the Automatic

User Intervention (including truncated singular value decomposition method) that instructs

the algorithm to not perturb some most insensitive parameters for a certain number of it-

erations. PEST is very e�cient to find the local optimal when the objective function is

convex. PEST requires a significant amount of user input for the algorithm parameters

such as maximum increment for derivative computation, step size, stopping criterion, etc..

However, it can be applied to many existing simulation models without accessing to models’

source code, thus allowing simple calibration setup with an arbitrary model. Although the

algorithm PEST will stop when a local optimum is found, the user can manually restart the

algorithm at di↵erent starting points.

Gradient-based methods can be easily trapped into local optimum and cannot necessarily

find the global optimum solution. To avoid the drawbacks of PEST, Stochastic RBF [72], a

global optimization algorithm, is combined with PEST to solve computationally expensive

groundwater calibration problems [87]. However, when the problem is highly multimodal,

the hybrid method is still not su�ciently e�cient to find the global optimum. In this study,

we propose the new framework to enhance the local optimizer PEST by integrating PEST

into DYCORS [73].

4.2.5 DYCORS-PEST

DYCORS-PEST involves a memetic search, which is a combination of global and local search

methods. It has two main phases:

66



1. high dimensional global optimization search with DYCORS.

2. gradient-based local optimization with PEST

Phase 1 utilizes DYCORS algorithm because it has been shown to be able to e�ciently find

good solutions for high-dimensional, computationally expensive multi-modal black-box prob-

lems when computation budget is limited. As we discussed in Subsection 4.2.3, DYCORS

di↵er from earlier algorithms in that the number of perturbed dimensions is random and

the expected number of perturbation decreases with iteration. This dynamical dimensioned

search feature has been shown to be e�cient for higher dimensional problems [83]. The

DYCORS-PEST framwork is shown in Algorithm 4.2 and the details of the Phase 1 is given

in Algorithm 4.3 and works as DYCORS.
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Algorithm 4.2 DYCORS-PEST

Input:

I-1 A real-valued black-box function f defined on a hypercube D = [a, b] ✓ Rd.

I-2 N

max

: The maximum number of allowed function evaluations.

I-3 A response surface model

I-4 A set of initial evaluation points S0 = {x1, . . . ., xn0}determined by a randomly generated
Latin Hypercube design.

I-5 N

cand

: The number of candidate points randomly generated in each iteration.

I-6 A function '(n) defined for all positive integers n0  n  N

max

� 1 whose values are in
[0, 1].

I-7 The tolerance for the number of consecutive failed iterations ⌧
fail

and the threshold for
the number of consecutive successful iterations ⌧

success

.

I-8 The initial step size �

init

and the minimum step size �

min

.

I-9 T

max

: The maximum number of times the step size can be reduced before starting the
local search.

1: Initialization. Set �0 = �

int

, C
fail

= 0, C
success

= 0, T
shrink

= 0.
2: Initial point evaluation and initial surrogate. Set n = n0, fbest = f(x

best

), where
x

best

is the best point found so far. Build the initial response surface s0(x) based on the
initial n0 evaluated points.
3: while n < N

max

do
4: Global search phase;
5: Local search phase; The best point found by Global search phase is denoted by
x

G

best

. Use PEST starting from x

G

best

on the true objective function to further improve the
solution
6: end while

Output: Best solution found so far: x
best

and f

best

.
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Algorithm 4.3 Global Search Phase
1: while Global termination condition is not satisfied do
2: Compute the probability of perturbing a coordinate: p

select

= '(n).
3: Generate N

cand

candidate points around x

best

: generate ⌦

n

= {y
n,1, . . . , yn,Ncand

}by
perturbing each variable with probability p

select

. The perturbation magnitude is an N(0, �
n

)
random variable.
4: Select next iterate x

n+1through the function
Select evaluation point(⌦

n

,s
n

(x),S
n

).
5: Compute the expensive function value f(x

n+1).
6: Update the best solution: update the set of evaluated points S

n+1 = S

n

[ {x
n+1};

update x

best

, f
best

and response surface.
7: Update counters: if f(x

n+1) < f

best

, reset C

success

= C

success

+ 1 and C

fail

= 0;
otherwise reset C

fail

= C

fail

+ 1 and C

success

= 0.
8: Adjust step size: [�

n+1, Csuccess

, C

fail

] = Adjust Step Size(�
n

, C

success

, ⌧

success

, C

fail

, ⌧

fail

).
T

shrink

= T

shrink

+ 1 if �
n+1 < �

n

.
9: Reset n = n+ 1.
10: end while

The global stopping criterion which is either the maximum number of function evaluations

(in which case Algorithm 4.2 stops after Step 4), or T
shrink

= T

max

(in which case Algorithm4.3

Step 8). The global search phase in Algorithm 4.3 shows that after building an initial

response surface in Algorithm 4.2 Step 2, candidate points are created by adding a random

multivariate perturbation to the current best point (Algorithm 4.3, Step 3). P

select

= '(n)

(Algorithm 4.3, Step 2), which is the probability that any one dimension is perturbed, is

computed in order to generate random perturbations. If no variable of x

best

is selected

for perturbation, we select one variable at random. By perturbing the selected dimensions

through adding a random variable N(0, �
n

), N
cand

candidate points are generated. Then in

the next step (Algorithm 4.3, Step 4), the point with a minimum score which is computed

as the weighted sum of the surrogate surface value s(x
cand

) and a metric that is based on

the distance between x

cand

and the set of previously evaluated points S

n

is selected for

expensive function evaluation. After updating the best solutions, response surface model

and counters in Algorithm 4.3 Steps 6 and 7, the variance �

n

(for N(0, �
n

)) is adjusted in

Algorithm 4.3 Step 8 to speed up the convergence. The term T

shrink

in Step 8 is a measure

of the iterations done without improvement and when T

shrink

reaches the value T

max

, the
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global search stops and Phase 2 starts. More details for generating the candidate points,

adjusting '(n), Select evaluation point and Adjust Step Size should refer to Regis and

Shoemaker [73].

In Phase 2, we start a local search with a widely used local search package PEST on the

true objective function starting from x

G

best

which denotes the best solution found after the

global phase in an attempt to further improve the solution. As we discussed in Subsection

4.2.4, PEST is a widely used local optimization algorithm especially in the field of water

resources. PEST is very e�cient to find the local optimal when a good starting point is

provided, so continuing the local search with PEST after the global phase ensures a better

starting point than using PEST alone. The performance of PEST heavily depends on x

G

best

.

If x
best

is in the vicinity of the global minimum, PEST converge to and stop at a global

optima. We must note that PEST is derivative-based algorithm, so in each iteration at least

d function evaluations to numerically compute the derivatives and then it needs one or more

additional function evaluations to find the point for starting the next iteration. As a result,

we must use a global variable to count expensive function evaluations rather than counting

the algorithm’s iterations. If there are function evaluation budget left after PEST stops, the

algorithm goes back to the global search phase.

4.3 Model Description

4.3.1 The Problem of Model Calibration

We consider calibration of a model of transient groundwater flow in an unconfined, hetero-

geneous, isotropic aquifer and we assume the groundwater is incompressible with constant

density and viscosity. The equations used in this study to describe groundwater flow are

@

@x

(hK
@h

@x

) +
@

@y

(hK
@h

@y

)±Q = µ

@h

@t

x, y 2 ⌦, t = 0 (4.4)
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h(x, y, t)|
t=0 = h(x, y, 0) x, y 2 ⌦, t = 0 (4.5)

h(x, y, t)|
�1 = h(x, y, t) x, y 2 �1, t � 0 (4.6)

hK

@h

@

�!
n

|
�2 = q(x, y, t) x, y 2 �2, t � 0 (4.7)

where t is time (T); x, y are Cartesian coordinates (L); h is the hydraulic head (L),

h(x, y); K is the value of hydraulic conductivity (L/T); µ is specific storage coe�cient of the

aquifer (1/L); Q is the fluid sinks/sources term (1/T); ⌦ is the model domain; �1 is Dirichlet

boundary; �2 is Neumann boundary; �!n denotes the normal to the boundary �2; h(x, y, 0)

indicates the initial water table; h(x, y, t) is the water table on Dirichlet boundary at time

time t; and q(x, y, t) represents lateral flux of Neumann boundary. Since the direction and

rate of groundwater flow is determined by spatial or temporal variations in some hydrologic

and hydro-geological parameters (e.g. K and µ), to apply the groundwater flow models, the

knowledge of these hydrologic and hydro-geological parameters is required. Therefore, as one

of the first steps in modeling study, field measurements of these parameters, such as pumping

tests, are essentially point measurements providing an estimation of parameters for the area

near the observation wells. However, the data from field measurements can only represent

a small part of the study area in many cases because of the limited number of observation

wells. Hence estimations of spatially distributed parameters with whole aquifer model rather

than using point measurements become necessary. Hence the field measurements are used to

establish the ranges of each parameter in each zone and the optimization-driven calibration

is used to estimate the parameters in each zone within this range.

Automatic calibration with optimization algorithms is a way to obtain the best values

of model input parameters. In most cases, the objective function in the optimization is to

minimize an error function which defines the discrepancy between model outputs and the
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observations. Generally, calibration of parameters can be formulated as a box-constrained

minimization problem, where the objective function is a error function and decision variables

are the model parameters to be calibrated. are bounded. To compute the objective function

for each set of potential parameter vector, one the groundwater numerical models simulation

will be performed. As discussed in the introduction, we mainly focus on the cases where the

groundwater model is computationally expensive to simulate, which may take from many

minutes to many hours to compute just one simulation in serial or parallel. As a result,

only very limited number of function evaluations are allowed with a limited computational

budget.

4.3.2 Study Cases

The study groundwater aquifer in this paper is called Miyun-Huai-Shun watershed basin,

which is one of the major water supply resources of Beijing city. In the following the Miyun-

Huai-Shun aquifer will be referred to as Miyun aquifer. As shown in Figure 4.1, Miyun

aquifer is located in the northeast of Beijing city, China. The main aquifer area is 456 km2

with three boundaries: eastern, western and south. According to previous studies of these

three boundaries, they can be regarded as relatively impervious boundaries. Given that the

horizontal dimension of this aquifer ranges from tens of kilometers while the depth varies only

from tens to hundreds of meters, the groundwater problem in this aquifer has been simplified

as a two-dimensional, unconfined, heterogeneous, isotropic, transient flow system. The model

is governed by a partial di↵erential equation as Eq.4.4, and the boundary conditions can be

expressed as Eq.4.5-4.7. This groundwater problem is solved by Finite element method

(FEM) [90] and has been applied to several engineering projects with di↵erent regimes [90,

88].
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Figure 4.1: Site Map: Miyun-Huai-Shun aquifer site and surroundings. Location with hy-
draulic head observation wells of the study area, zones of model for parameters [90]

In our study, according to the lithological information and hydro-geologic characteristics

from previous studies and research, the entire model aquifer can be divided into 14 zones

in horizontal direction as shown by di↵erent colors in Figure 4.1. The model parameters

required to be determined by the optimization procedure vary according to di↵erent zones,

but the parameters are assumed to be constant in the same zone. In this study, two sets of

model parameters, hydraulic conductivity (K) and specific yield (µ), were selected for the

automatic calibration, since these two parameter sets are comparatively more important for
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groundwater model. Thus two parameters are taken into account in each zone, a total of

(14×2=) 28 model parameters need to be calibrated in the problem. The observed values

of water levels were obtained from 46 observation wells scattered in the entire aquifer. As

shown in Figure 4.1, the solid blue points demonstrate the 46 observation wells. Therefore,

the objective of automatic groundwater model calibration process in this study was to change

the input parameter vectors (K and µ) until model outputs were close enough to the observed

water levels of 46 observation wells.

The groundwater system discussed in this paper is modeled with Finite Element Method

(FEM), and triangles grid were used to discretize the aquifer domain. According to the

theory of FEM, up to some limit the finer the grid is, the more accurate FEM performs. To

show the performance of the new optimization algorithms in di↵erent grid size FEM models,

two di↵erent scaled meshes were applied for the entire model area. The ’Coarse Grid’ has

478 nodes and 871 triangular elements. The individual grid area ranges from 0.059 km2

to 1.71 km2. The ’Fine Grid’ has 1239 nodes and 2337 elements (Figure 4.1) with a range

of individual grid are from 0.032 km2 to 0.5 km2. Since the ’Coarse Grid’ has much fewer

model grids, it saves a lot of computation cost per simulation. The ’Fine Grid’, on the other

hand, has much finer grids, so it requires more computation time each model simulation.

In order to demonstrate the e↵ectiveness of our algorithm, we include both ’Coarse

Grid’ and ’Fine Grid’ in the study cases and compare performance of the new algorithm

to Stochastic RBF, which has shown its superiority in early study. In Case 1, the “Coarse

Grid” groundwater model to calibration 28 parameters. In Case 2, we applied the “Fine

Grid” groundwater model with all 28 parameters calibration as well. Both of the two cases

are based on the real observed data from 46 observation wells and the decision variable

boundaries are defined according to the previous aquifer study of hydro-geologic parameters.

The available pumping tests demonstrate that the ranges of hydraulic conductivity and

specific yield are from 120 m/d to 270 m/d, 0.12 to 0.24, respectively. However, we used

slightly broader ranges than pumping tests since the pumping tests were taken in limited
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areas and the ranges from those tests might not be exact enough. The aquifer parameter

bounds are shown in Table 4.1.

Table 4.1: Range of Calibrated Parameters for the Miyun-Huai-Shun Groundwater Aquifer

Zone K
i

(m/d) µ

i

i K

lower

i

K

upper

i

µ

lower

i

µ

upper

i

1 50 800 0.10 0.35
2 50 800 0.01 0.30
3 50 800 0.10 0.30
4 20 800 0.10 0.30
5 50 500 0.10 0.30
6 50 800 0.10 0.30
7 50 800 0.10 0.30
8 30 500 0.10 0.30
9 30 800 0.10 0.35
10 50 500 0.10 0.35
11 20 500 0.01 0.35
12 50 800 0.01 0.35
13 50 800 0.10 0.35
14 20 500 0.10 0.35

For the purposes of this study, simulation model output is denoted as hsim

i,j

(K,µ), which

specifies the hydraulic head at well j and simulation time period i for given parameter sets K,

m. The value hobs

i,j

represents the corresponding observed hydraulic heads from the observation

wells. The whole aquifer domain is divided into N zones, thus each component of the model

parameter is associated with one zone. The objective function seeks to find a good match

between the observed and simulated hydraulic heads by minimizing their squared di↵erence.

There are a number of functions that can be used to specify the objective function, i.e. total

squared residual error, R2, root mean squared error, maximum absolute error and Nash-

Sutcli↵e index (NSE) [60]. In this study, a nonlinear least squares function is implemented

to evaluate the goodness-of-fit measures of groundwater model calibration. The objective

function for the optimization algorithm is to find the parameter sets that minimize SSE. The

objective function formulated by total squared residual error (SSE) is defined as follows
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Minimize
K,µ

SSE(K,µ) =
TX

j=1

NX

i=1

[!
i,j

(hobs

i,j

� h

sim

i,j

(K,µ))2] (4.8)

where, T is the total simulation period of time; N is the total number of wells; SSE(K,µ)

is the sum of squared error between observed and simulated hydraulic heads given the values

of parameter sets (K and µ) to be calibrated in the groundwater numerical model. The

lengths of these two decision vectors are equal to the number of zones of the aquifer area.

Groundwater models can be nonlinear, non-convex, non-smooth and even multimodal func-

tion of parameter values, so the corresponding inverse problems are very complicated to solve

and the objective function has multiple local minima. The optimization processes requires a

repeated simulation of a forward groundwater model in order to compute simulated hydraulic

head using decision variables from parameter sets K and µ.

4.4 Numerical Results

The goal of this study is to integrate a local optimizer PEST with global optimization al-

gorithm (DYCORS). Thus the experimental runs were designed to test the new method

against two other methods (PEST and Stochastic RBF), which have been applied to the

same groundwater problems. Because of the multi-modal behavior of combinatorial opti-

mization problems multiple trials for each of the algorithms were done. Multiple trials also

helps to account for stochastic nature of of all three algorithms. In both of the cases, each

algorithm was run 20 times for up to 1500 function evaluations. For both DYCORS-PEST

and Stochastic RBF, symmetric Latin hypercube design, which consists of 2(d + 1) points.

The starting point for PEST is obtained from the first point of Latin hypercube initial design

since PEST requires one initial set.

To compare the optimization algorithms, we examined mainly two characteristics of the

new method: (1) e�ciency in giving good objective function for a given number of function

evaluations; (2) variability of solutions in multiple trials.
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The performance of all three algorithms is compared in Figure 4.2 by using progress plots:

average best objective function value versus the number of function evaluations. Average

best objective function value indicates the average over 20 trials of the best objective function

solution obtained in the given number of evaluations. The lowest curves are the best since

the goal of optimization is to reduce the di↵erences between the observed data and simulated

data, and hence have the lowest objective value. Thus, the smaller the average objective

values are, the better optimization results we get. From Figure 4.2, PEST is clearly the

algorithm with the worst performance by looking at the significant distance between the

green dashed curve (PEST) and the other two curves (solid red curve denotes Stochastic

RBF; solid blue curves is DYCORS-PEST) in both Case 1 and Case 2. In order to visualize

the performance of DYCORS and Stochastic RBF, PEST is removed from the progress plot

as shown in Figure 4.3. In both cases, DYCORS-PEST is clearly superior to Stochastic RBF

as it has the fastest drop and lowest average SSE at all the number of function evaluations.

As described in earlier sections, Case 2 uses the ’Fine Grid’ groundwater model which results

a more global problem thus this case is a more di�cult optimization problem than Case 1

(’Coarse Grid’). Figure 4.2 shows that the advantages of DYCORS-PEST in Case 2 is more

obvious than in Case1 given Case 2 solves a harder problem.

77



0 500 1000 1500
5500
6000

7000

8000

9000

10000

20000

30000

50000

Number of function evaluations

A
vg

. 
fu

n
ct

io
n

 v
a

lu
e

 

 

DYCORS−PEST
Stochastic RBF
PEST

(a) Case 1 (Coarse Grid)

0 500 1000 1500
2500

3000

4000

5000

6000

10000

20000

30000

50000

Number of function evaluations

A
vg

. 
fu

n
ct

io
n

 v
a

lu
e

 

 

DYCORS−PEST
Stochastic RBF
PEST

(b) Case 2 (Fine Grid)

Figure 4.2: Objective function value averaged over 20 trials vs. number of function evalua-
tions, including PEST; a) Case 1, b) Case 2
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Figure 4.3: Objective function value averaged over 20 trials vs. number of function evalua-
tions, excluding PEST; a) Case 1, b) Case 2

Although Figure 4.2 and 4.3 show the e�ciency of the algorithms, the robustness of al-
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gorithms cannot be demonstrated only by the average values of objective function values.

In a real calibration practice, probably only one algorithm will be applied to calibrate be-

cause the objective functions for environmental models are usually extremely expensive to

calculate. Therefore, it is particularly important to choose an algorithm that can produce

better results consistently, which implies the mean is low and the variance is small. A smaller

variability with a low mean of objective function value suggests a more reliable algorithm for

producing a good calibration in any given trial. Thus, an algorithm that produces a good

solution consistently is clearly a superior choice to an algorithm that has a sizable chance of

producing a poor solution. The mean and standard deviation of objective function value for

the best solution at the end of 200, 500, 1000 and 1500 function evaluations for both Cases

and all the algorithms are shown in Table 4.2, where the best results are marked by bold.

The reported results show that DYCORS-PEST has the lowest mean and standard deviation

among all three algorithms with di↵erent number of function evaluations in both cases. In

order to demonstrate the variability of these algorithms, the best solutions at the end of 1500

function evaluations of each algorithm are plotted into box plots as shown in Figure 4.4. The

box plot shows the median, interquartile range, and outliers based on the 20 trials for each

algorithm. Figure 4.4a) and b) denote box plots for Case 1 and Case 2, respectively. PEST

clearly is the worst among all three algorithms as indicated by its large spreads. Figure 4.5

shows box plots with only DYCORS-PEST and Stochastic RBF, where DYCORS-PEST has

the smaller spread (more reliable) when compared to Stochastic RBF for the SSE objective

function formulation. In addition, both PEST and Stochastic RBF have outliers while there

is no outlier in DYCORS as shown in Figure 4.4. However, the outlier value of PEST is

substantially large in both Cases because PEST is not a global optimization algorithm and

it can be easily trapped into local minima without moving to the global optimal solution if

the initial solutions assigned to PEST are close to local minima.
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Table 4.2: Mean and Standard Deviation of objective function (SSE) over 20 trials with 200,
500, 1000 and 1500 function evaluations for Case 1 and Case 2. Best result of all algorithms
is marked by bold.

Problem Algorithm Statistics 200 eval. 500 eval. 1000 eval. 1500 eval.

Case 1

DYCORS-PEST
Mean 6057.9 5821.4 5744.9 5726.7
SD. 98.45 69.23 47.96 38.16

Stochastic RBF
Mean 6133.6 5879.7 5813.4 5774.2
SD. 167.35 67.06 66.62 52.74

PEST
Mean 24698 19242 15269 13120
SD. 16069 14911 14309 12946

Case 2

DYCORS-PEST
Mean 2999.0 2711.6 2663.2 2636.6
SD. 142.82 58.48 44.02 45.24

Stochastic RBF
Mean 3205.5 2968.1 2799.2 2757.9
SD. 203.39 151.89 100.44 81.48

PEST
Mean 15340 7690 4127 3416
SD. 10579 5490.7 2060 1274.4
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Figure 4.4: Box plot of best solution for each algorithm based on 20 trials after 1500 function
evaluations, including PEST; a) Case 1, b) Case 2
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Figure 4.5: Box plot of best solution for each algorithm based on 20 trials after 1500 function
evaluations, excluding PEST; a) Case 1, b) Case 2

In order to ensure a fair comparison between the tested algorithms, this study initiates

all the algorithms from the same set points. Pairwise two sample statistical tests were

performed for significant di↵erence in the means of the objective function values for the best
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objective function value by each algorithm. Table 4.3 show the p-value for each pairwise

test. A p-value is the smallest value of the type-I error (i.e. incorrectly rejecting the null

hypothesis when it is true) such that the observed results would be su�cient to reject the

null hypothesis (which in this cases is that the algorithms are the same). A low p-value

suggests a strong evidence for rejection the null hypothesis. The results indicate that for

both cases DYCORS-PEST produces significantly di↵erent (lower) mean at a 5% significant

level from all the other tested algorithms, thereby providing strong evidence of superior

algorithm performance. The test results between Stochastic RBF and PEST indicate that

Stochastic RBF has significant di↵erent mean than PEST when ↵ = 5%.

Table 4.3: Hypothesis testing for di↵erences in means at the final function evaluation of
Case 1 and Case 2 (1500th simulation) with significant at the ↵ = 5%. * after the p-value
denotes that the algorithm in the row is better than the one in the row with significance
level at ↵ = 5%.

Problem Algorithm DYCORS-PEST Stochastic RBF PEST

Case 1
DYCORS-PEST 1.000 0.0023* 0.0095*
Stochastic RBF 1.000 0.0268*

PEST 1.000

Case 2
DYCORS-PEST 1.000 < 0.001* 0.0148*
Stochastic RBF 1.000 0.0154*

PEST 1.000

4.5 Conclusions

In this study, we introduced the algorithm DYCORS-PEST, which is a surrogate model based

optimization algorithm for computationally expensive calibration problems. DYCORS-

PEST is essentially an integration method by combing a global optimization algorithm DY-

CORS introduced by Regis and Shoemaker [73]with a local optimization method PEST [23].

DYCORS-PEST extends DYCORS by another local search phase, which is a gradient based

local optimization on the true objective function to improve the accuracy of the solution.
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We evaluated the performance of DYCORS-PEST on two 28-parameter groundwater cal-

ibration study cases based on Miyun Aquifer with real observation data. Both of the two

cases are multi-modal, nonlinear and computationally expensive groundwater calibration

problems. Case 2 uses a finer model grid thus the problem is more di�cult than Case 1.

Numerical experiments showed that DYCORS-PEST was superior to PEST and Stochastic

RBF in both cases within 1500 function evaluations (see Figure 4.2 and Figure 4.3). This

result further illustrates that DYCORS-PEST is an e↵ective tool for calibrating parameter

for computationally expensive groundwater models with high dimension. The reliability of

DYCORS-PEST as indicated by the box plots also provided clear evidence of superiority

of this algorithm over other methods. DYCORS-PEST applied in this study can be ex-

tended to any high dimensional calibration problem that requires computationally expensive

simulations for cost evaluation within a limited number of function evaluations.
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Chapter 5

Conclusions

This dissertation focuses on development and implementation of computationally e�cient

optimization algorithms for groundwater management and calibration of computationally

expensive models. The application of GOMORS, a new multi-objective optimization algo-

rithm, was conducted to solve the computationally groundwater management problems with

multiple conflicting objectives. A new mixed-integer optimization algorithm, SO-MI, was im-

plemented to minimize the computational expense of fixed cost problems with applications

to groundwater remediation designs. We developed a new methodology DYCORS-PEST to

solve high dimensional computationally expensive groundwater calibration problems.

In Chapter 2, we have shown that the surrogate based multi-objective optimization algo-

rithm, GOMORS, does outperforms others in a statistically significant manner, especially

for with limited computation budget. We employed three di↵erence performance metrics,

hypervolume, IGD and GD, to assess the e↵ectiveness of four multi-objective optimization

algorithms. NSGA-II, the most widely used multi-objective optimization algorithm as the

baseline in the comparison, has the worst performance. The other two popular algorithms,

AMALGAM and BORG, also have very promising performance. However, our results show

that GOMORS is more e�cient given very limited computation simulation times for prob-

lems that are computationally expensive.
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In Chapter 3, we applied a novel mixed-integer optimization algorithm SO-MI on two ground-

water pump-and-treat system design problems. SO-MI is a surrogate model based algo-

rithm designed for computationally expensive nonlinear mixed-integer black-box optimiza-

tion problems. The key feature of this algorithm is that it utilizes surrogate models to guide

the search thus save the expensive function evaluation budget, and is able to find accurate

solutions with relatively few function evaluations. We also evaluated the performances of

two other popular mixed-integer algorithms, Genetic Algorithms and NOMAD. One of the

study cases is a hypothetical case involving one chemical contaminant with 64 decision vari-

ables (32 integer and 32 continuous) and the other study case is modified from a real EPA

study case, which deals with two di↵erent contaminants with 18 decision variables (8 integer

and 10 continuous). Thus, the real application is a more computationally expensive and

complicated problem. The results indicate that SO-MI is able to find significantly better

solutions than the other two algorithms under limited computation budget (1000 function

evaluations in this study) for both study cases and SO-MI has more advantages when it is

applied to more complicated problem.

In Chapter 4, a new methodology DYCORS-PEST, integrating local search method PEST

with response surface based global optimization method DYCORS was developed for ground-

water model calibration problems. The suggested DYCORS-PEST method tries to use a

memetic approach to improve the accuracy of the solution in which we use a local optimiza-

tion search around a subset of the previously evaluated points. Starting with a surrogate

based global search algorithm can e�ciently explore the problem domain and locate a good

starting point for the local search. PEST is a well-known e�cient local search algorithm in

Water Resources field. With the information from the global search phase, PEST is able to

quickly find the local minimum. Another feature of the global search method in DYCORS-

PEST is that the number of decision variables being perturbed is dynamically adjusted in

each iteration in order to be more e↵ective for higher dimensional problems. The study com-

pared the suggested DYCORS-PEST with Stochastic RBF, another surrogate based global
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search algorithm and PEST with applications to two 28-parameter groundwater calibration

problems. Our results indicate this new method outperforms Stochastic RBF and PEST for

high dimension computationally expensive groundwater calibration problems.

New Methods GOMORS, SO-MI and DYCORS-PEST are shown to be distinctly better than

previous algorithms on water resources problem in the sub area of Groundwater Hydrology.

Although this study focused on groundwater management and calibration models, the results

are just as relevant to all environmental simulations of a computationally demanding model.

In further research, the suggested methodologies should be extended for much larger scaled

water resources problems and to the problems from other application areas using traditional

optimization methods.
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