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Recently, there has been much interest in the problem of finding semantic mod-
els for various kinds of concurrent systems. A common property of concurrent
systems is indeterminate behavior, either because of unpredictable interactions
between processes, or because of abstractions removing the temporal details of
the interaction. As a result, the study of the semantics of indeterminacy is nec-
essary and important to the understanding of concurrency. The goal of any
semantic model is that it capture our intuitions about the operational behavior
of the underlying system and aid in our reasoning about it. Two properties of
semantic models that we find useful in achieving this goal are full abstraction
and fixed-point principles. In this thesis we investigate the problem of finding
semantic descriptions with these properties for indeterminate systems.

We begin by looking at a simple imperative language containing unbounded

indeterminacy, based on one studied by Apt and Plotkin. We use category-



theoretic techniques to develop a fixed-point semantics that, while not fully ab-
stract, reduces ‘5 a fully abstract semantics via a simple abstraction functor.

We then concentrate on the more general setting of dataflow networks and the
hierarchy ofE iI:determinate merge primitives. We show that the straightforward
generalization of Kahn’s semantics based on the input-output relation fails to be
compositional for any ciass of indeterminate dataflow networks. We then extend
previous results and show that a semantics based on traces is fully abstract for
all indeterminate and determinate dataflow networks, thereby providing a model
considerably more general than Kahn’s.

This generalization has the drawback.that it does not have a simple fixed-
point principle. We proceed to study a class of networks that models purely
internal indeterminacy, called oraclizable networks, and show that for this class a
generalization of Kahn’s semantics to sets of functions is both fully abstract and
has a natural fixed-point principle. We also show that the oraclizable networks
are in fact universal for this representation. Finally, we use this representation
to compare the class of oraclizable networks to other classes, and discover new

relations among the classes.
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Chapter 1

Introduction

Recently, there has been much interest in the problem of finding semantic mod-
els for various kinds of concurrent systems. A common property of concurrent
systems is a certain amount of indeterminate behavior, either because of unpre-
dictable interactions between processes, or because we wish to abstract away the
temporal details of the interaction. As a result, the study of the semantics of
indeterminacy is necessary and important to the understanding of concurrency.
The goal of any semantic model is that it capture our intuitions about the op-
erational behavior of the underlying system and aid in our reasoning about the
system. Two properties of semantic models that we find useful in aéhieving this
goal are full abstraction and fixed-point principles. In this thesis we will in-
vestigate the problem of finding semantic descriptions with these p;roperties for

indeterminate systems.



1.1 Properties of a Model

We would like any semantic description of a programming language or system
to be faithful ;to our concrete operational understanding of the behavior of the
system [note: henceforth in this section we will use terminology appropriate for
describing a seqﬁeﬁtial programming language, though the settings to which this
discussion apply may be much more general]. In order to achieve this, we first
must have a way of describing the observable operational behavior. Formally, we
assume we have some operational semantics Op[ ], such that Op[A] describes the
observable behavior of the given program A. What may be observed and what
constitutes an observation varies according to the setting. In some cases it may
be that only full programs may be observed, and hence Op[] is only defined for
that subset of all phrases of the language that constitute full programs.

One of the advantages of a denotational semantic model is that it typically
can be used to reason about arbitrary program phrases. We wish to define an
equivalence on our language, based on the operational semantics, that determines
when two programs or program phrases are operationally identical. We do this
by employing the notion of program contexts. A pfogra.m context C[] is just a
program with “holes” into which a phrase A may be put, such that the completed
program is observable (i.e. is in the domain of Op[]). For example, in the
typed lambda calculus, C[] is typically required to yield a closed term of ground
type. We then call two program phrases equivalent if they can be substituted

freely for one another in any program context without changing the observable



behavior of the completed context. In other words, we define A =,, B if we
have Op[C[A]] = Op[C[B]] for all program contexts C[]. Note that A and B may
themselves be observable, but that Op[A] = Op[B] doesn’t necessarily imply
A=y B.

Two closely related properties that we require of almost any semantic model
are compositionality and adequacy. Compositionality states that the denotation
of a composite program or process can be determined from the denotations of
its components. Thus, if D[] is our semantic mapping, then a compositional
semantics has the property that if D[A] = D[B] then D[C[A]] = D[C[B]] for all
contexts C[]. That is, if two phrases are identified in the model, then any com-
posite programs built using them will have identical denotations in the semantic
model.

The property of adequacy states something similar — that if two phrases are
identified in the model, then they are operationally equivalent and any composite
programs built using them will have identical operational semantics. That is, if
D[A] = D[B] then Op[C[A]] = Op[C[B]] for all contexts C[]. This is a very
reasonable property to require; it simply ensures that if two processes can be
observed to be different in some operational context, then they are distinguished
in the denotational model.

Adequacy directly relates the denotational and operationzlallsemantics, but it
allows a modél to be over-distinguishing, perhaps making denotational distinc-
tions between programs that in fact behave identically. This may be the case

when a model fails to abstract away enough information irrelevant to observabil-



ity. The stronger property of full abstraction was introduced by Milner [Mil75]
to describe the situation where this does not occur. A semantic model is fully
abstract when the converse of adequacy holds as well, and it contains the mini-

mal amount of information necessary to distinguish between observably different
processes. That is, D[A] = D[B] if and only if Op[C[A]] = Op[C[B]] for all
contexts C[]. It is clea;' that a fully abstract semantics, while much harder to
achieve, exactly captures our operational understanding of the language.

A final, somewhat different property we desire of a semantic model is that it
have a fixed-point principle. Most useful languages contain the ability to loop or
iterate, and it is desirable to be able to describe the meaning of such constructs
as least fixed points of some recursive expression. Having this property allows
us to build up such descriptions as a limit of a sequence of approximations, and

allows us to reason about the constructs using an inductive definition.

1.2 Indeterminacy

A great deal of work has been done on the semantics of determinate languages. As
the properties of determinate languages became well understood, people naturally
began to look at more complex settings, such as concurrency and indeterminacy.
In this thesis we concentrate on indeterminate settings — particularly unbound-
edly indeterminate settings. Unbounded indeterminacy may arise naturally in
" many situations, especially those involving fairness constraints (as with schedul-
ing or resource allocation), and also those involving unknown external input or

unpredictable delays in communication. Real systems such as operating systems



must be able to deal with the presence of such indeterminacy, hence a greater
understanding of it via well constructed semantic descriptions is important and
useful.

In this thesis we study two different abstract indeterminate settings. The first
is a simple imperative language with an atomic unbounded assignment primitive.
The second is dataflow networks, which is a slightly more realistic setting involv-

ing communicating concurrent processes.

1.3 Overview

In Chapter 2 we study a simple imperative language containing an unbounded
random assignment primitive, and use ca.tegory-theoretic techniques to develop
a natural continuous least fixed-point semantics for it that abstracts to a fully
abstract semantics. We also show that this result is optimal in a certain sense,
given results of Apt and Plotkin. In Chapter 3 we introduce the different setting
of dataflow networks, which is the focus of our study for the remainder of the
thesis. We present the basic definitions, describe the work of Kahn on deter-
minate dataflow networks, and describe the various indeterminate primitives for
this setting. In Chapter 4 we present the result that the straightforward gener-
alization of Kahn’s semantics fails to be compositional for even the weakest form
of indeterminacy. We go on to extend previous results and sh;)vl' that a semantics
based on trac:es is fully abstract for all indeterminate and deterfninate dataflow
networks, thereby providing a model considerably more generﬂ than Kahn’s.

However, the trace model, while general enough to represent the full range of



indeterminacy, does not have a convenient fixed-point property. In Chapter 5
we consider oraclizable networks, a class of networks that models the situation
where indeterminacy results from imperfect knowledge of the inputs to a system.
We develop ;a ;emantics for this class that is a natural generalization of Kahn’s,
and we prove that it is both fully abstract and has a simple fixed-point principle.
In Chapter 6 we use thé results of both the previous chapters to show that the
class of oraclizable networks is in fact universal for the semantic model devel-
oped in Chapter 5. We also use these results to relate the oraclizable networks
to other classes of indeterminate networks, and we discover several new relations
among these classes. In Chapter 7 we describe and discuss related work, and in

Chapter 8 we present conclusions and future directions.



Chapter 2

A Category-Theoretic Semantics

for Unbounded Indeterminacy

2.1 Introduction

In this chapter we present a self-contained study of a simple imperative language
containing unbounded indeterminacy and a category-theoretic semantic descrip-
tion of it. In a recent paper, Apt and Plotkin [AP86] showed that it is impossible
to have a continuoﬁs, least fixed-point, fully abstract semantics using domain
theory for such a language. This proof does not depend on the details of any
particular powerdomain construction. We show that by using category-theoretic
methods developed by Lehmann [Leh76], one can get a “continuous” semantics
in which the meanings of while loops are given by colimits of wadiagrams. The
semantics that we provide is adequate, though not fully abstract. However it

collapses, via an abstraction function, to a semantics that coincides with oper-



ational equality and is fully abstract. Apt and Plotkin [AP86] give a semantics
for this language that is fully abstract, but it is not continuous. The failure of
continuity’ ip our case is isolated to the abstraction function.

Lehman!n’; category-theoretic approach to powerdomains was based on the
idea that morphisms in a category could convey a more precise notion of approx-
imation than partial orders could. He developed category-theoretic generaliza-
tions of many standard domain-theoretic concepts including the Smyth powerdo-
main [Smy78]. He did not use these constructions for defining the semantics of
any languages. Several years later, Samson Abramsky [Abr83] sketched a seman-
tics for an applicative language with unbounded indeterminacy and investigated
mathematical properties of the resulting powerdomains. The language that he
studied had its operational semantics defined via a term rewriting system. The
study in this chapter is in the context of an imperative language, i.e. one with
an updatable store. This work gives a more detailed study of the relationship
between the operational semantics and the denotational semantics. Abramsky’s
study of this relationship is done by defining an appropriate operational pre-
order on computation sequences, along lines suggested by Boudol [Bou80], and
relating this operational preorder to the categorical approximation. Boudol’s
analysis of the operational semantics of an applicative language could probably
be mimicked in the setting of this chapter, but the treatment of the operational
semantics given should be more perspicuous to most readers. This work clearly
owes much to Abramsky’s treatment of the subject though the details are devel-

oped differently.



The rest of this chapter is organized as follows: Section 2.2 describes the
language and its operational semantics. In Section 2.3 we describe categorical
powerdomains; this material is essentially a summary of the relevant parts of
Lehmann’s thesis [Leh76]. Sections 2.4 and 2.5 describe the semantics and pro-
vide some examples. In Section 2.6 we establish the relationship between the

operational semantics and the denotational semantics.

2.2 Operatiohal Semantics of the Language

We describe a simple language for indeterminacy based on the one presented in
Apt and Plotkin [AP86]. Our language is a simplified version of that one, the
state consisting of the value of a single integer variable, usually called z. It should
be clear that the treatment extends readily to any “flat” domain of states.

The Atomic Commands are the ones that change the state, i.e. set the value
of z.

Aus=zi=n|zi=z-1|z:=zc+1|z:=?

The intended meaning of z :=? is indeterminate assignment to z of any value
from the underlying domain (which in this case is the integers). The details of the
Boolean expressions are not important, since they are intended to be side-effect

free. We assume at least the ability to detect when z is 0.

B :=2z2z=0|z#0|---

a |

Finally, we have the following Commands:

S = A skip | S1; Sz | if B then S) else S; fi | while B do S od
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We give the operational semantics via a one-step transition function Com x
States —» Com x States U States. We assume the existence of a boolean evalu-
ation function B[] : Bexp — (States — {true,false}); we explicitly assume that
the eva.luati(!)n"of boolean expressions terminates. In what follows we use o to
range over States:

(z:=n,0) —n

r:=z—-1,0) »0-1
z:=z+1,0) »0o+1
z:=?0) 2nVneD
skip, o) — o

515 52, o) — (8152, 0') if (81, 0) — (S}, o)

{

(

(

(

(

(S1;S2, 0) — (S2, 0') if (S1,0) — o
(if B then S else S3 fi, ) — (51, o) if B[B]o = true

(if B then S; else S3 fi, ¢) — (S, o) if B[B]o = false

(while B do S od, 0) — (S;while Bdo S od, o) if B[B]o = true
(

while Bdo S od, ) — o if B[B]o = false

We define the notation (S, o) T to mean that there exists an infinite sequence of

transitions
(S, o) = (S0, 00) = (51, 91) = (S2, 02) — -+~
and we define the operational meaning function Op[] by

Op[Sle & {o'I(S, o) =* o'} U {L[(S, o) T}.
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2.3 Categorical Powerdomains

Powerdomains were originally introduced as the domain-theoretic analogues of
powersets and were intended to be used for semantic treatments of indetermi-
nacy [Plo76,Smy78]. The approach was generalized to categories by Lehmann
in [Leh76]. Lehmann’s approach was to use categories as the semantic spaces
rather than domains. His idea was that a ‘more detailed’ notion of approxima-
tion between elements can be expressed by using morphisms between objects in a
category than by using partial orders. Dually, one may view traditional domain
theory as a special case of a category-theoretic approach in which the homsets
are at most singletons.

Abramsky [Abr83] used Lehmann’s construction to model unbounded inde-
terminacy. A categorical approach, but with a different construction for the
powerdomain, was also used by Panangaden [Pan85] to model dataflow networks
with fair merge. Recently it has been realized that one can use categories to
model lambda calculi [Cog88].

Though Lehmann’s original construction was for domains that were general-
ized to categories, in this work we assume that the underlying domain is a partial
order. As already noted, a poset can be viewed as a category in which the arrows
are unique; we will often adopt this view of our doméin when discussing the
powerdomain construction. o
Given a domain E containing the least element L the const.ru;:tion of what

we will call the categorical powerdomain of E, CP(E), is straightforward. The
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objects of the category are taken to be multisets — sets with repetitions — of the
elements of E. Multisets are represented as tagged sets, i.e. each element of a
multiset M is written e,, where ¢ € E, and a is chosen from some (uncountable)
set I' of tags;so;that no two elements of M have the same tag. ArrowsG: A — B
are defined such’that for each bs € B, G uniquely associates with bﬂban ay € A
and an arrow a — b ;)f E. In our case where E is a poset, arrows of E are

always unique and G need only associate with each bg € B an aq € A with a C b.

Hence, we will use the following definition of an arrow G:

G C Ax B such that i) (aq, bg) €G=>aCb &
1) Vbg € B3la, € A.(a, ) € G.
Composition of arrows and identity arrows in C P(E) are straightforward.

Note that two multisets with the same number of copies of the same element,
but possibly different tags, are isomorphic as objects of CP(E). In general, it is
important to specify the way in which functors or arrows act on the differently
tagged elements, and the details of these constructions can be quite subtle. How-
ever, the constructions described in the rest of this chapter are éuﬁiciently clear
that explicitly stating the tagging is more cumbersome than i]lu-mjnating, and
hence the tagging details are omitted.

The categorical analog of a continuous function is a functor that preserves
colimits of w-diagrams. The definition of f a functor automatically assures the
analog of monotonicity — i.e. if there is an arrow a — b, then there is an arrow
fa) 12 5.

We now present two theorems about C P(E) originally due to Lehmann. These
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establish that CP(E) has the properties that one associates with a complete

partial order.
Theorem 2.1. {1} is the initial object.

Proof: For all e € E we have L C e, hence for any object B of CP(E) there is

a unique arrow { L} — B given by G = {(L, b)|b€ B}. 1
Theorem 2.2. All w-diagrams have colimits

Proof (sketch): Consider a diagram X Co, Xi G, Xz G, |

Let S be the collection of all chains @ = {qo,q1,...} s.t. for all 7 we have
g¢i € X; and (gi, gi+1) € Gi. We define the colimiting object X* by X* =
coim(X;) = WgesUQ. The colimiting arrows X; S, X* are given by G} =
Woes{(z, UQ)|z € X; N Q}. We omit the proof that this is the colimit.

Note that in the above (and in the sequel) we use the ’tagged union’ symbol
l¥) for unions that yield multisets. The intention is that the union guarantees
that each element of the result has a unique tag, and hence multiple copies of

the same element will not be identified.

2.4 Semantics of the Language

In this section we use the categorical powerdomain construction defined above
to give a denotational semantics to our language. First, we need to define our
domains. Our base domain D will be an unrelated set of states (evh.ich in this

case is the integers w). However, since non-termination is a possibility in the

language, we must consider CP(D]), the categorical powerdomain of D with
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1 added. We write it in this way to emphasize the special treatment that L
requires. Our semantics will then be a function Com — (D — CP(D,)), i.e.
the meanjng of commands will be given as w-colimit preserving functors from D
to CP(D,)

Before we can give the semantics, there are three auxiliary functors we must
define: |

Singleton {-}: This takes an element d of D to the object {d} (the singleton
multiset containing one copy of d) of CP(D, ). It takes an arrow a — bin D
to the arrow {a} S, {b} given by G = {(a, b)}. It is easily seen that this is
w-colimit preserving.

Lifting (-)!: This is a functor between the functor categories (D — CP(D_))
and (CP(D,) — CP(D})). Note that L ¢ D, so a functor f : (D — CP(D,))
is not defined on L, while multisets A € CP(D ) may contain . For this reason

it is necessary that lifting specify explicitly the action of f! and 7t on L.

FHA) L Waea f(a) WHLea{Ll}
fG:Aa—BY W fa—bdy ¥ W (L, y) e
{a,b)€G (L,0)eG yef(b)
afl b#L
¥ {(L L)}
(L,.L)EG

The above describes what lifting does to objects (which in this case are functors).
We now describe what lifting does to arrows (which are natural transformations).
Recall that natural transformations are maps from objects to arrows.

Given 7 : f — g, we have pt : ft — gt, given by
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HAE W @) s (L L)

acA 1l€A
a#L

Two important properties of lifting are that g’ is w-colimit preserving if g is,
and that (-)! is itself an w-colimit preserving functor.

Sequential composition - ;- : f;g is shorthand for g'o f, and as such it inherits
the desirable w-colimit preservation properties from lifting.

We now describe a semantic function D[] : Com — (D — CP(D,)). Note
that since D is completely “flat”, when it is interpreted as a category the only
arrows are the identities. Thus, when we describe the functors in the semantics
we will specify only their action on objects, since functors by definition preserve
identity arrows. If we were to give a semantics for a non-flat domain, we would
be required to explicitly specify the action of the semantic functors on the arrows
of the domain, since in general this is not trivial. We use the variable d to refer
to elements of D.

D[z :=?] = Ad.D

D[z := c] = Md.{c}

Dlz:=z—1] = Md.{d -1}

D[z :=z + 1] = Ad.{d + 1}

D[skip] = M\d.{d}

D[$1; S2] = D[51]; D[S:]

_ D[S:]d if B[B]d = true

DJif B then S; else S3 fi] = Ad.

D[S:]d if B[B]d = false

We want to define the meaning of a while loop as a colimit, and since the
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meaning is a functor, it must be the colimit of a diagram in the functor category
D — CP(D,). This is the category whose objects are functors D — CP(D,)
and whose'a;rows are natural transformations. The initial object is the functor
Ad.{Ll}, as i e;sily verified. We will call this . Define

D[while B do § od] = coim(Wy =% W; -5 Wy 2 -.)
where W; and 7; are deﬁned as follows:
Wo = Q = Ad.{L}

D[S]; Wa_1)d if B[B]d = true
Forn > 1: W, = \d. (PLs] ) 5]

D[skip]d if B[B]d = false
M (L, L)} if B[B]z = true
noz : Woz — Wi = Worepspe{Ls 1)} [B]
{(L, z)} if B[B]z = false
Forn > 1: gpz : Wpz — Wyt =
B mear’w Y {(L, L)} if B[B]z = true
z'€D[S)= LeD[S)=
z'#£L
{(z, z)} if B[B]z = false

The colimit is determined pointwise; i.e. for all d, D[while Bdo S od]d =

colim(Wod ™% Wrd 24 w,d 224 .. ).
2.5 Some Examples

Example 2.1.
D[while true do skip od]z =
colim((Ad.{L})z — (Ad.{d}; \d.{L})z — (Md.{d}; Ad.{d}; \d.{L})z — ---)

= colim({1} — {1} — {1} —--")
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= {1}

Thus, D]while true do skip od] = Ad.{ L} = Q. This is a pleasant property, since it
means we can replace  in the definition of D[while B do S od] by D[loop], where

loop = while true do skip od.
Example 2.2. D[z :=0]d = {0} &
Example 2.3.

Dlwhilez > 0doz :=z —1od]d =
d times
colim(T_L} — {L} — {_Lr--—+ {0} — {0} —--1)

= {0}

Thus, D[whilez > 0do z := z — 1 0d] = A\d.{0} = D[z := 0].

Example 2.4. D[z :=?;whilez > 0doz:=z —1od] =

coim( {1, 1, 1, ... }
{0, L, L, ...}
{0, o, L, ...}

= {0,0,0,...} B
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Of course, we should have expected this, since

D[z :=?;whilez > 0doz :=z ~10od] = D[z :=?;z:=0]
L = (Md.{0})' o (Ad.D)

W {o}.

deD

This may seem unnatural, but it is a necessary effect of our approach that
D[z :=7;whilez > 0do z := z — 1 od] is different from D[z := 0]. The use of mul-
tisets and functors provides a more detailed description of the approximations,
but at the same time can increase the cardinality of the approximate objects to
account for indeterminate behavior. The semantics of programs over the deter-
minate portion of our language (i.e. without “z :=7") will always be a singleton,
and will satisfy all the usual semantic relations.

The previous example also serves to point out how our semantics differs from
those considered by Apt and Plotkin. In their proof they consider the same
statement as above, but in a domain theoretic setting. Without arrows for ap-

proximation or multiset objects, they show

D[z :=?;whilez >0doz:=z—10d] = || {{O,J.}, {o0,1}, {0,_L},...}

{0, 1}.

This clearly does not agree with the operational behavior, therefore full abstrac-
tion must fail. In our semantics, L is not a possibility in the limit, and hence
except for the multiplicity of the result, we can achieve full abstraction. This is

the subject of the next section.
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2.6 Relationship with the Operational
Semantics

In this section we begin by investigating properties of the operations semantics
Op|[], ultimately proving its compositionality. We then demonstrate that an
abstraction of the denotational semantics D[] exactly coincides with Op[]. From

these, the full-abstraction of the abstracted semantics follows as a corollary.

Lemma 2.3. For all statements S and states d,

Op[S]d = U  0op[S'ld u{d|(s,d) —d}.
S'.d' s.t.
(S,d) —(S5',d")

Proof: Straightforward from the transition relations. B

Lemma 2.4. For all statements Sy, S9, and states d,

Op[S1; S2]d = U Op[S2]d' U {L|L € Op[S:1]d}.
d'€0p[S1)d
ditL

Proof: Straightforward from the transition relations. ll

Theorem 2.5. If Op[S] = Op[S'], then for all contexts C[:], we have
0p[C[S]] = Op[C[S"]].

Proof: The proof is a structural induction on the context C[].
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Case C = if Bthen[-]else T fi: From Lemma 2.3 it follows that, for all d,

. . Op[S]d if B[B]d = true
Oplif B then Selse T fijld = <

i .
i L]

| Op[T]d if B[B]d = false

Op[S']d if B[B]d = true
<

. (by hypothesis) =
' | Op[T]d if B[B]d = false

(by Lemma) = Oplif B then S’ else T fi]d

Case C = if B then T else [-] fi: Similar to above.

Case C = [-]; T: We know from Lemma 2.4 that

Op[S;T]d = U Op[T]d u {L1|L € Op[S]d}
d'€0p[S}d
d'#l
(byhyp) =  |J  Op[T]d U{L|L € Op[S']d}
d'€0p[S')d
ditl
(by Lemma) = Op[S';T]d

Case C =T;[-]: As above, we know that

Op[T;Sld = U  Op[S]d u{Ll|L e Op[T]d}
d'€Op[T)d
d£L
(by hyp.) = U  0plS']d U {L|Ll € Op[T]d}
d'eOp[T]d
AL
(by Lemma) = Op[T;S']d
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Case C = while B do -] od: We show that for all d,

Op[while B do S od]d C Op[while B do S’ od]d.

By symmetry, the reverse must also be true, and the desired equality follows.

Case 1: If B[B]d = false, then
Op[while B do S od]d = Op[while B do S’ od]d = {d}

Case 2: Suppose B[B]d = true, and let d' € Op[while Bdo S od]d, d' # L.
Then 3n > 1 and a sequence d = dy, d;,...,d, = d' such that
di+1 € Op[S]d; for: =0,...,n -1,
B[B]d; = truefor i =0,...,n — 1,
and B[B]d, = false.
By the hypothesis, this means
diy1 € Op[S']d; for i =0,...,n -1,
B[B]di = truefor: =0,...,n —1,
and B[B]d, = false,
which is equivalent to

d € Op[while B do S’ od]d.

Case 3: Suppose B[B]d = true, and L € Op[while B do de]ld. Then there

a !

exists a sequeﬁce d = dop,d;, ... such that
di+1 € Op[S]d; for all ¢,
and B[B]d; = true for all i.
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By the hypothesis, this means

diy+1 € Op[S']d; for all ¢,
. and B[B]d; = true for all ¢,

or equivalently,

L € Op[while B do S’ od]d.

Definition Let Pg(D, ) be the Smyth powerdomain of D, . Viewed as a category,
the objects of Ps(D, ) are sets of elements of D, and there is an arrow A — B
if and only if A Cg B. Ps(D]) is the result of collapsing the objects of CP(D)
from multisets to sets, and of collapsing parallel arrows to a single one in Ps(D ).
We define ab : CP(D) — Ps(D)) as the obvious abstraction functor, taking
multiset objects of CP(D, ) to their corresponding set objects of Ps(D, ), and
taking arrows of CP(D,) to the corresponding arrows of Ps(D, ). ab is easily

seen to preserve composition and identity arrows.

Note that ab is not an w-colimit preserving functor (as can be seen by applying
ab to the sets in Example 2.4). This is the only aspect of our semantics that is

not “continuous”.
Theorem 2.6. ab(D[S]) = Op[S] for all commands S.

Proof: The proof is a structural induction by cases.
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Case S = A: For the atomic commands A, it is trivially the case that

Op[A]d = ab(D[A]d) for all d in D.

Case S = skip: Also trivially,

Op[skip]d = {d} = ab(D[skip]d) for all d in D.

Case S = if B then S else S fi: From Lemma 2.3 it follows that, for all d,

Op[S1]d if B[B]d = true
Oplif B then S else Sy fild = plsi] LB]

| Op[S2]d if B[B]d = false

' ab(D[S1]d) if B[B]d = true

(by ind. hyp.) =
ab(D[Sq]d) if B[B]d = false

= ab(D[if B then S else S; fi]d)

Case S = 51; S2: From the definition of sequential composition we have

D[S1;S2]ld = (DIS:DN(D[S1]d)

= ¥ DSddw W (L}

d'eD[S|d LeD[S:}d
d'#1 K
This means that, for all d, o
ab(D[S1; Sa]d) = U ab(D[S3]d') U {L|L € ab(D[51]d)}
d'€ab(D[S1]d)

d#L
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(by ind. hyp.) = U 0p[S]d u{L|L € Op[s:i]d}

d'€0p[S1]d
d'£1
(by Lemma 2.4) = Op[Sy; Sq]d

Case S = while B do S od: This case proceeds via two lemmas.

Lemma 2.7. For all d, Op[while B do S od]d C ab(D[while B do S od]d)

Proof: Let d' € Op[while B do S od]d.
Case 1: If B[B]d = false, then d = d’, and

Dlwhile Bdo Sod] = colim(Wyd — Wid — ..

= {d},

so d' € ab(D[while B do S od]d).

)
= colim({l} — {d} —...)

Case 2: Suppose B[B]d = true, and d' # L. Then 3n > 1 and a sequence

d=dy,d,...,d, =d such that

di+1 € Op[S]d; (equivalently (S, d;) —* di41) fori =0,...

B[B]d; = true for i =0,...,n — 1,
and B[B]d, = false.
Now note that if B[B]d; = true, then for any j > 1
W;d; = (D[S]; Wj_l)d,'

e€eD[S)d;
e#l
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so given that di;; € Op[S]d; implies that di+1 € D[S]d; by the induction hy-

pothesis, we have that
W;_1diy1 € Wjd;, for i < n.
Also, B[B]d, = false implies that
Widn = {dn} for any j > 0.
This, together with the chain d = do, d,...,d, = d’ defined above, gives us
{d'} = {dn} = Widn C Wadp_1 C --- C Wpdy C Wayido = Wypad.

Now, if we look at the definition of the natural transformation 7;, for j > 0, we

see that

d 41, deWe = deWid
& d € D]while B do S od]d

= d € ab(D[while B do S od]d).
Case 3: Suppose B[B]d = true, and d = L. Then there exists a sequence
d = dy,dy,... such that

di+1 € Op[S]d; for all 1,
and B[B]d; = true for all :.

We wish to show that D[while B do S od]d contains L, or (by unfolding the defi-

nition) that the diagram

d d d
WOdOnOOWldonlowzdonzO‘"
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contains an infinite chain {L} — {1} — ---.
Noting that by the induction hypothesis, di1; € Op[S]d; for all i, it is a

stra.ightfor'wiard induction to show that, for any n > 0
| }Undj : Wadj — Whiadj 3 (L, L) for all 5 > 0. |
B[B]d; = true for all j 2 0 implies
nod; : Wod; — Wid; 5 (L, L) forall j >0

from the definition of 9. For n > 1, we have that, for all j > 0

TIndj : Wndj — Wn+1dj 3 U Mm-1T
IGD[S]dJ'
(since dj+1 € D[S]d;) 3 na-1dj+1

(by induction) 3> (L, L1).
Thus,

d=1 € coim(Wody ™8 Wido ™% Wady 2% ...)

= D[while B do S od]d,

and we have d' € ab(D[while B do S od]d).

Lemma 2.8. For all d, ab(D[while B do S od]d) C Op[while B do S od]d

Proof: Let d' € D[while B do S od]d. Then

d € colim(Wod - Wid — ---) = d' = UQ,
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where ) is a chain through the diagram, as defined in Theorem 2.2. From the
definition of the W; and the n;, we know that the only distinct elements of Q are L
and d'. Thus, d’ € Q, which implies d' € W,d for some finite n. Let m be the least
such index. Now, assuming d' # L, there is a sequence d = do,d1,...,dyn = d

such that
di+1 € D[S]d; fori =0,...,m -1,

B[B]d; = truefor i =0,...,m — 1,
and B[B]d, = false.

But this means that (by induction hypothesis)

di+1 € Op[S]d;i for: =0,...,m — 1,
B[B]d; = truefor : =0,...,m — 1,
and B[B]d,, = false.

This we know is equivalent to d' = dr, € Op[while B do S od]d.

If d = 1, then there is an infinite sequence d = dy, d, ... such that
di+1 € D[S]d; for all 1,
and B[B]d; = true for all 3.
But this means that (by induction hypothesis)
di+1 € Op[S]d; for all 3,
and B[B]d; = true for all 1,

which implies L = d' € Op[while B do S od]d. W
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Corollary 2.9 (Full-abstraction) For all statements S and S’ we have
ab(D[S]) = ab(D[S])

if and only if *

: .0p[C[S]] = Op[C|[S']] for all contexts C[-].

Proof: ab(D[S]) = ab(D[S']) is equivalent to Op[S] = Op[S'] by Theorem 2.6. If
we take C[-] to be the empty context, we see that Op[C[S]] = Op[C[S']] implies

that Op[S] = Op[S']; Theorem 2.5 gives us the reverse implication. H

These results are the main results of this chapter. The primary achievement
is that this semantics generalizes the usual notion of continuous least-fixed-point
semantics. It is continuous in the category-theoretic sense, and it is fully ab-
stract via an abstraction functor from multisets to sets. The failure of continuity
required by Apt and Plotkin’s result is isolated to this abstraction functor. The
framework we have developed here is general enough to accommodate domains
that are not “flat”, and even Lehmann’s categorically generalized domains.

In the next chapter we begin to look at a more general setting than sequential
languages, one better suited to studying the problems of unbounded indetermi-

nacy.



Chapter 3

Dataflow Networks and

Indeterminacy

Beginning with this chapter, we change the setting of our study. In this chap-
ter we introduce and describe a different programming paradigm called dataflow
networks. Dataflow networks provide a general framework for studying the inter-
action of concurrency and indeterminacy, and provide a more interesting setting
than sequential languages for discussing the problems of semantic mo.dels for
indeterminacy.

In the first section we present the necessary background, deﬁm'tioﬁs, and oper-
ational semantics of dataflow networks. In the second selctionwe describe Kahn'’s
principle, which is an elegant semantic model for determinate dat.a.ﬁ;ow networks.

' f
Finally, in the third section we introduce indeterminacy into the dataflow context.

For the remainder of this thesis we will work in the dataflow setting, and

29
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study the problem of extending the work of Kahn by developing good semantic

models for indeterminate dataflow networks.

3.1 Dataﬂow Networks

3.1.1 Background and Definitions

In this section we briefly review the definitions and terminology of dataflow net-
works. Since the main point of this thesis is to investigate relations between
semantic models and observable properties of networks, in this section we only
give an informal presentation of the necessary background. See, for example,
[Sta89a,PS88,5ta87,JK88,Jon89,5ha90] for the formal development on which this
is based.

The fundamental unit of a network is a type of state transition machine
called an port automaton. This type of automaton is actually a special case of
the input-output automata described by Lynch and Tuttle [LT87]. Port automata
communicate with each other and the outside world by sending and receiving
data values (or “tokens”) on “ports”. Each port is either an input or an output
port for the automaton, and in each step of its execution an automaton may poll
or read an input port, write to an output port, or change its internal state. The
ports of the automata are buffered, meaning that the tokens may be arbitrarily
delayed entering (or leaving) the input (or output) ports, and hence an external
observer cannot distinguish the relative order of unrelated events on separate
channels. Furthermore, the automata are required to be receptive, meaning that

no automaton can at any time prevent itself from receiving input tokens. It is
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important to note that an input-output port automaton may have an infinite
number of states, and the domain of data values may be infinite, so there is no
restriction on the function the automaton may compute on the data values.

A dataflow network consists of a set of concurrently executing port automata
connected together by directed channels. The channels act as perfect, unbounded
FIFO queues. Each channel may be connected to at most one input port, and at
most one output port. There are three types of channels: input channels, which
are not connected to an output port of any automaton, and transmit data into
the network from outside; output channels, which are not connected to an input
port of any automaton, and transmit data from the network outside; and internal
channels, which transmit data between network nodes.

An important feature of dataflow networks is that they can be composed,
and larger networks can be built using smaller networks in place of individual
automata. As with the port automata, networks to be composed must satisfy
the compatibility condition that each channel may occur at most once as an
input channel and at most once as an output channel. The definitions of input
and output channels remain the same (though in the process of composition an
external channel of a component network may become an internal channel of the
larger network). For a network N, we denote its set of input channels by Iy and
its set of output channels by Oy.

There are two atomic operations of network composition: aggregation and
looping. The aggregate of networks M and N, written M||N ,' is the network

formed by combining them ’side-by-side’ with no identification of channels. Given
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a network M, loop(a,b, M) is the network formed from M by identifying input
channel a with output channel b. It is clear that any network can be constructed

from these operations.

Example 3.1. Figure 3.1 illustrates the aggregation and looping operations.

Al||B: loop(a, z, M):

(=]

Figure 3.1: The aggregation and looping operations of network composition

The diagram on the left shows the aggregate of a network A with I4 = {z},
O4 = {y,z}, together with a network B with Ig = {a,b}, Op = {c}. The
aggregate network A||B has I3 = {z,4a,b}, Oy = {y,2,c}. The diagram
on the right shows the network loop(a, z, M), where Iy = {z,a,b} and Oy =
{y,z,c}. The looped network has ljgop(s,z,a) = {2,6} and Ojoop(a,z,nm) = {¥>¢}-
Note that if M is A||B, then the result is a network consisting of subnetworks A

and B, with output channel z of A connected to input channel a of B. i

For the remainder of this thesis, we will only explicitly label channels when

necessary for clarity. Also, we will refer to particularly simple networks or au-
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tomata simply as processes, and we will typically describe them as if they were
programmed in a simple sequential language (rather than by describing an au-
tomaton).

A computation of a network is a linear sequence of state transitions of the
component automata that captures a “complete” run of the network. The for-
mal condition corfesponding to the intuitive notion of a complete run is nontrivial
to state; see Panangaden and Stark [PS88] for a description. We define commu-
nication events as transitions of a computation in which data either arrives on an
input channel or is sent along an output channel (input events and output events,
respectively). A trace of a network is the sequence of communications events
of a computation of the network. Traces are commonly written as sequencés of
pairs (channel_name, data_value). For a network N, we define I'[N] as the set of
computations of N, and 7 [N] as the set of traces of N. If I' is a computation of
N, and C is a set of channels, we define I'[¢ as the subsequence of I' consisting
only of events on channels in C. Similarly, for a trace T of N, we define T'[¢ as
the subsequence of T consisting only of events on channels in C.

We call the sequence of values of the input or output events on a channel the
history of the channel. We write H(T') for the sequence of values passed over the
channel ¢ in the computation I' — the history of channel ¢ in the computation.
Similarly, for a trace T we define H.(T) as the sequence of values from all the
events on channel ¢ in T. For a set of channels C, we define HBc(T) (similarly
Hc(T)) as the C-indexed tuple of histories of the channels in C.
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Example 3.2. Consider the network shown in Figure 3.2. The process LR-merge

-l [ in-r\

LR-merge

out \

Figure 3.2: An example network

has IT.R-merge = {in-l,in-r} and OLR-merge = {out}. It merges its two inputs
by first reading channel in-l and outputting the token it gets (if there is one)
on channel out, then reading channel in-r and outputting the token it gets on
channel out, and repeating indefinitely. If LR-merge tries to read a channel that
is empty, it waits (possibly forever) for data to arrive.

The following are two possible traces of this network:
(in-r, 1) (in-1, 2) (in-r, 3)(out, 2) (out, 1)
(in-1,2)(out, 2)(in-r, 1)(out, 1)(in-r, 3)
Both of these traces have channel histories
HIpp merge(T) =(2,13), and

HOLR-merge(T) =21.
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3.1.2 Operational Semantics

The input-output relation of a network N is the set of all pairs of input and
output channel histories, (H1,(T), Hoy(T)), with T € T[N]. The input-output
relation of a network is what we consider to be the “observable” behavior. From
the outside, an observer can see the values of the input and output channels,
but cannot distinguish the relative order of the input events, output events, and
internal events. Note that we consider the full, possibly infinite, streams of
values to be observable. Other, more restrictive notions are possible, as in the
work of Rabinovich and Trakhtenbrot [RT88], who consider a theory based on
finite observations (we discuss their work further in Chapter 7). We write 7. O[[N |
for the input-output relation of the network N, and since this is the observable
behavior we have Op[N] = ZO[N] for all dataflow networks N.

We now remind the reader of some of the properties useful in relating abstract
semantics of dataflow networks to observable operational behavior. We say two
networks N; and N, are operationally equal if, for every network context C[], the
composite networks C[N;] and C[N3] have the same input-output relation, i.e.
that ZO[C[M]] = ZO[C[Na]].

A semantic model D[] is adequate if whenever D[N;] = D[Nz], N1 and N,
are operationally equal. A semantic model D[] is fully dbstragt. if the converse of
adequacy holds as well, i.e. that D[N;] = D[N,] if and only if N1 and N, are

. !
. 1

operationally equal.
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3.2 Kahn’s Principle

The first major work in the area of dataflow semantics was by Kahn [Kah77],
who gave a $iniple and elegant semantics for dataflow networks in which all the
processes are detgrminate. Processes are determinate when there is only one pos-
sible stream of outputs for every stream of data tokens input to the network, and
his semantics describes networks as continuous stream-valued functions corre-
sponding to the (functional) input-output relation of the network. Specifically, a
network M with m input channels and n output channels is represented as a func-
tion fjr : S™ — S™, where S represents the domain of streams over the underlying
domain of data tokens. If N is a network with m' inputs and n’ outputs, then
funv = (fm, fn) gm+m’ _, gn+n’ here (fM, fn) is the function that on input
(i,i') € S™*™ (with i € S™,i' € S™) produces output (fa (), fxn(i')) € S*+7.
Similarly, fioop(as,m) = fix(a,d, fur), where g = fix(a, b, fpr) is the function in
Sm-1 — S"-1 that computes fixed points of fu; g(i) = o means that o is the
least output on the components other than b such that there exists a stream !
with fup(i,1) = (o,l) (where [ is actually the ath component of the input and the
bth component of the output). A nice presentation and proof of Kahn'’s principle
is given by Lynch and Stark [LS89]

Kahn’s semantics has two particularly desirable properties that we focus on
for this thesis. The first is that it is fully abstract, which is a direct consequence
of the fact that the denotational representation by functions coincides with the

operational semantics. The second is a fixed-point property; that the denotation
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of a comyposite network can be obtained from the denotations of its components as
the least fixed point of the recursive equations describing the network, providing

us with a simple method for computing the meaning of a looped network as a

limit.
Example 3.3. Consider the network in Figure 3.3. Switch is a process that first

0

1.

Switch +1

Copy

}

Figure 3.3: An example network

reads and passes to output channel c the first token from channel a (in this case a
0), and thereafter reads and passes everything from channel . Copy copies every
token from channel ¢ to channels e and d. +1 is a process that continuously reads
the value from channel d, and outputs that value plus one to channel b. These

definitions generate the set of equations:

¢ = cons(0,d)
e,d = ¢

+1(d)

o
il
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where a, b, ¢, d, e are variables representing streams, and +1() is a stream function
that produces a stream of values pointwise one greater than those of its argument.

This system reduces to the recursive equation

e = cons(0,+1(e)),

which has least fixed-point solution e =012 .... It is obvious from the descrip-

tions that this equals the actual output of the network. W

For the remainder of this thesis we will use Kahn’s principle as a base, and
study the problem of generalizing it to the setting of indeterminate dataflow
networks. As we shall see, in the next section and beyond, the indeterminate
dataflow setting is rich with complications — not the least of which is that “inde-

terminate dataflow” is by itself not well defined.

3.3 Indeterminate Dataflow Networks

Indeterminate dataflow networks are those for which the input-output relation is
not functional. The most common examples of indeterminate networks are those
containing the various merge primitives, e.g. fair merge, angelic merge, infinity-
fair merge, and unfair merge. While for some time identifying such networks
simply as indeterminate was assumed to have an unambiguous meaning, the
work of Panangaden, Stark, and others [MPS88,Sta88,PS88,PS87] has shown
that in fact there are many provably inequivalent indeterminate primitives.

We can relate indeterminate primitives by the class of operationally distinct

networks constructible using them, and these authors have shown that when
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related in tius way they form a hierarchy of several different levels. In particular,
each «f the merge primitives mentioned above (and described below) is in a

distinct level of this indeterminate hierarchy.
3.3.1 The Indeterminate Merge Primitives

We now describe the various indeterminate merge primitives. We present infor-
mal descriptions of the processes, but these are sufficiently precise that the set
of possible traces of each merge primitive is determined.

Fair merge was introduced by programmers as an abstraction of a fair sched-
uler. Like all the merge primitives, it is a process with two input channels and
one output channel that produces on its output some interleaving of the tokens
appearing on its inputs. Fair merge has the property that it guarantees that
its output is a shuffle of its inputs, i.e. that the relative order of tokens on
each input is preserved in the output, and that every token that is in either in-
put will (eventually) be in the output. We define its input-output relation by
((z,y),2z) € TO[Fair Merge] if and only if z is a shufle of z and y. Fair merge
is equivalent to having the ability to ’poll’ a channel for the availability of data
(like select in UNIX). We can think of fair merge having two separate “fairness”
characteristics; it avoids trying to read data from an empty channel (which would
result in a deadlock from waiting infinitely), and it avoi(is starvation of its inputs
by assuring that both its inputs will be serviced eventually as long as they are

not empty.
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Angelic merge is a primitive that has only the first “fairness” characteristic of
fair merge — it guarantees it will never try to read from an empty channel, but
does not guarantee a fair servicing of both its channels. As a result, angelic merge
has the propitert;y that if one of its inputs is finite, it will read all of the other input.
Formally, its input-output relation is defined by ({(z,y), z) € TO[Angelic Merge]
if and only if z is a shuﬁie of 2’ and y', where z’' and y' are prefixes of r and y

(¢'Czand y' Cy)and

if  is finite, then y' = y;

if y is finite, then 7' = z;

if both z and y are infinite, then ' = z or y' = y (or both).
Angelic merge is what we would get if we were to program a merge using Mc-
Carthy’s ambiguity operator.

Angelic merge can be implemented by (is operationally equivalent to) a net-
work built using fair merge and determinate processes, but the converse is prov-
ably not true, as shown in [PS88]. Thus, angelic merge is strictly less expressive
than fair merge, meaning that the class of angelic merge networks is strictly
contained in the class of fair merge networks. One of the ways of showing this
difference is by noting that the input-output relation of any network built using
angelic merge and determinate processes is monotone in the Hoare ordering, and
the input-output relation of fair merge is not.

Infinity-fair merge is a primitive that has only the second “fairness” charac-
teristic of fair merge — it guarantees it will service both input channels infinitely

often, but does not guarantee that it will avoid the deadlock of trying to read
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from an empty channel. As a result, infinity-fair merge has the property that
if one of its inputs is infinite, it will read all of the other input. Formally, its
input-output relation is defined by ((z,y),2) € TO[Infinity-Fair Merge] if and

only if z is a shuffle of prefixes z' C z and y' C y where

if = is infinite, then y' = y;

if y is infinite, then =’ = z;

if both r and y are finite, then 2’ = z or y' = y (or both).
Infinity-fair merge is the type of merge we could program in a language with the
ability to do repeated random integer assignment (like z :=? from the previous
chapter).

Infinity-fair merge can be implemented by a network built using angelic merge
and determinate processes, but the converse is not true, as shown in [PS87].
Hence, infinity-fair merge is strictly less expressive than angelic merge and sits
at a lower level of the hierarchy. As with the angelic merge and fair merge
networks, the infinity-fair merge networks are separated from the angelic merge
networks by a monotonicity property. The input-output relation of any network
built from infinity-fair merge and determinate processes is monotone in the Egli-
Milner ordering, but the input-output relation of angelic merge is not.

Unfair merge is the final indeterminate merge primitive we describe. It has
neither of the “fairness” characteristics of fair merge, and caﬁ only guarantee
that it will atltempt to service some channel infinitely often, unlé;ssg it deadlocks

reading from an empty channel. Thus, the only property that unfair merge can

guarantee is that it will read all of at least one of its inputs. Formally, its input-
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output relation is defined by ((z,y),z) € TO[Unfair Merge] if and only if z is
either a shuffle of z with a prefix y' C y, or a shuffle of y with a prefix z' C z.
Unfair mérge is what we could program in a language having the ability to do
repeated boiun.ded choice, as with an indeterminate “or”.

Unfair merge?c‘an be implemented by a network built using infinity-fair merge,
but the converse is not true. This is clear by noting that infinity-fair merge (and
the primitives above it) embodies unbounded indeterminacy, while unfair merge
is only boundedly indeterminate. Of course, unfair merge (and all the merge
primitives) are strictly more expressive than only determinate processes.

The relationship among the classes of indeterminate dataflow networks de-
fined by the different indeterminate merge primitives is illustrated in Figure 3.4.
This diagram shows a pictorial representation of the hierarchy of indeterminate
primitives, where the levels higher in the diagram contain those below them.
Fair merge defines the highest known level of this indeterminate hierarchy and
unfair merge defines the lowest level, although in [MPS88] the authors describe
several unboundedly indeterminate primitives that lie between unfair merge and

infinity-fair merge.
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Figure 3.4: The hierarchy of indeterminate primitives
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Chapter 4

Full Abstraction for
Indeterminate Dataflow

Networks

In this chapter we discuss the extension of Kahn’s principle to dataflow networks
containing indeterminate primitives. The focus of this chapter will be on devel-
oping a semantics for indeterminate networks that, like Kahn'’s, is fully abstract.
We will do this without putting any restriction on the type of indeterminacy
allowed; neither restricting ourselves to networks that must contain at least a
particular level, nor to networks that contain at most a particular level.

We begin by motivating and describing an approach of the first type — a
semantics that is fully abstract for networks that contain fair merge. We will

go on to extend this to a model that is fully abstract for all networks. The

44
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drawback, as we shall see, is a somewhat cumbersome formalism, and the lack
of a convenient fixed-point property. In the next chapter we consider a class of
networks of the second type mentioned above, and find that by restricting the
expressiveness of the indeterminacy allowed, we can achieve both full abstraction

and a fixed-point property.

4.1 The Brock-Ackerman Anomaly

In the previous chapter we described Kahn’s semantics. This semantics is based
on, and coincides with, the (functional) input-output behavior of networks, and
is fully abstract largely because the input-output relation is compositional for
determinate networks.

Unfortunately, for networks containing certain indeterminate primitives, the
input-output relation fails to be compositional, as was first shown by Brock and
Ackerman [BA81]. They exhibited two networks that have the same input-output
relation, but that are distinguishable in an appropriate context (see Figure 4.1).
The operation of the processes in the example networks X and Y is as follows:

D: These processes “double” their input, outputting two copies of every token
that appears on their input.

Fair Merge: This is the fair merge described in the previous chapter. It
produces on its output a fair interleaving of the tokens that arfive on its inputs;
guaranteeing that every input token will eventually appear on theioutput, and
preserving the relative order of input tokens on each channel.

Pass: This simply passes each input token directly to its output.
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Figure 4.1: The example processes and context of Brock and Ackerman

1-Buffer: This process will buffer its first input token until it receives a second
input, then will output both in the order they were received, and then will repeat
this behavior. In other words, it will pass its input to its output in pairs, waiting
until it has the second of the pair before outputting the first.

It is easy to see that the two networks X and Y have the same input-output
relation; since the doubling processes guarantee an even number of tokens on
each input to the fair merge, there will be no observable difference if they are
output one at a time or two at a time. However, we can observe a difference
in the behavior of these networks when they are put into the context shown in

Figure 4.1. This context consists of a process Copy that copies its input to an
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output channel and also to a feedback loop through a process Plus! which adds
one to its input.

Consider what happens if we supply the token ’5’ as input to the composite
network with X. This results in two 5’s appearing on the left input of the
fair merge, so when the first 5 appears on the output of the merge, it may be
immediately passed around through the feedback loop, becoming a 6 and then
two 6’s. The first of these 6’s may now be the next token through the merge,
since the second 5 on the left input may be arbitrarily delayed. In this case, we
observe as output of the composite network a stream of tokens beginning 56 - - -.

Now consider what happens if we supply the same input (the token ’5’) to
the composite network with Y. As before, this results in two 5’s appearing on
the left input of the fair merge, but in this case when the first 5 appears on the
output the I-Buffer process holds onto it until the second 5 appears. Hence, the
only output we may observe from this network is a stream of tokens beginning
55 .

Thus, we see that the two networks with the same input-output behavior are in
fact distinguishable, and hence the straightforward generalization of Kahn’s prin-
ciple based on the input-output relation fails even to be compositional. Clearly,
we must look for a semantic representation that captures more information than
the input-output relation in order to allow us to distinguish‘s{ich networks and

i

achieve compbsitiona.lity. .
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4.2 Semantics for Fair Merge Networks

In the previous chapter we defined the trace of a network execution. In this section
we describe: a;semantic model for indeterminate networks based on traces, and
present the result (originally due to Jonsson [Jon89]) that such a model is fully
abstract for the .cl;':tss networks containing fair merge.

Let T[N] be the set of all possible traces of the network N. It is clear from
the definitions that 7[N] determines the input-output relation ZO[N], since the
input-output behavior is just the histories of the input and output channels of a
trace. The representation of networks by sets of traces is a more detailed model
than the input-output relation because of the relative timing information present
in traces. The Brock-Ackerman example points out that we need a more detailed
model, and in fact we see that the model 7[-] does distinguish the processes in

the previous section.

Example 4.1. Notice that the trace

(a,5)(c,5){c,5)(b,6) -

is a possible trace of either network X or Y of the previous section, corresponding
to the case where both 5’s on the left input to the fair merge are output before

anything on the right input. However, the trace

(a,5){c,5)(b,6)(c,6) - --

is a possible trace of network X, but not of network Y. If for network Y the

only input event was a 5 on channel a, a 5 could only be produced on the output
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channel c if the buffer process had already seen both the duplicated 5’s. In this

case, the second output event must also be a 5, which is not true of this trace.

Hence, T[X] # T[Y]. 1

More generally, the trace model reclaims the property of compositionality

that the input-output relation loses for indeterminate dataflow networks.

Theorem 4.1 (Compositionality) Given an indeterminate dataflow network
N' constructed from component networks Nj,..., Ni, we can derive the repre-

sentation 7 [N'] from the representations of the components, T[N1],..., T [Vi].

Proof: The proof proceeds by describing the operations of network composition

for trace sets, and showing that they correspond to the operational definitions.

Given T[N] and T[M], we have
T[N||M] = {T"|T" is a shuffle of some T € T[N] and T' € T[M]}.
Given T[N], we have

T [loop(a,b, N)] =
{T| 3T’ € T[N] such that:
Ho(T') = Hy(T'), and
for all ¢, the 7th output event on channel b in T' preceeds
the ith input event on channel a in T, and '
T is equal to T' with the events on channels a a.n(i b:deleted.}

It is intuitively clear that these operations on trace sets correspond to the

operational definitions of aggregation and looping, but the proofs are quite in-
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tricate, so they are omitted here. We refer the reader to Jonsson [Jon89] for a

detailed proof of the compositionality of traces. il

The cdngpt;sitionality of traces leads directly to a stronger property — that
if two networks are identified in the trace model, then they are observationally
ind.istinguishablé in all network contexts. In other words, that 7 -] is an adequate

model.

Theorem 4.2 (Adequacy) T[] is adequate for indeterminate dataflow nets.
That is, given networks N and M, if T[N] = T[M] then ZO[C[N]] = ZTO[C[M]]

for all network contexts C[].

Proof: If T[N] = T[M], then by compositionality we know that T[C[N]] =
T[C[M]] for all contexts C[], and since we know that T[] determines ZO[], this
implies ZO[C[N]] = TO[C[M]] for all contexts C[]. I

Actually, it is not altogether surprising that the trace model is adequate,
given the amount of extra relative timing information a trace contains over the
input-output relation. However, the amount of timing information added by 7 []
is not as much as it may at first appear, as is shown in the following theorem,

since we represent a network by the set of all its possible traces.
Theorem 4.3. If T € T[N] and T" satisfies the following two properties:
1) H(t) = H.(t') for all channels c;

2) Given input channel c¢;,, output channel c,y:, and integers ¢, j, if the ¢th
input event on channel ¢;;, precedes the jth output event on channel coy¢ in

T, then the same is true in T";
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then T" is also in T[N].

Proof: See Jonsson and Kok [JK88] or Shanbhogue [Sha90]. il

In other words, T[N] is closed under the delaying of output events and the
exchanging of adjacent input events or output events on different channels, sub-
ject to the condition that the overall input-output behavior is not changed. In
the next chapter we will discuss another representation that avoids some of these
redundancies of trace sets.

The importance of this closure property is that if a model is too detailed
it may fail to be fully abstract by distinguishing networks that are observably
equivalent. Jonsson showed that the model T[] is in fact fully abstract for

networks containing fair merge.

Theorem 4.4 (Full Abstraction for Fair Merge Networks) Given N and
M in the class of indeterminate dataflow networks using fair merge, 7[N] =

T[M] if and only if ZO[C[N]] = ZO[C[M]] for all contexts C[].

Proof: The ’only if’ direction is the adequacy of Theorem 4.2. We prove the
other direction by showing that if T7[N] # 7[M] then there exists a context C[]
such that ZO[C[N]] # TO[C[M]]. The context we exhibit is independent of N
and M, and is illustrated in Figure 4.2. It is closely related tq one described by
Kok [Kok88]. The operation of the processes of C[] are as follows:

Fair Merge: This is as described before. .

in-tag; : These “tag” the input channels. For each token d that in-tag; gets

as input, it builds and outputs the “tagged” token (in;,d).
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Figure 4.2: The distinguishing context C[]

out-tag; : These “tag” the output channels of N. For each token d that
out-tag; gets as input, it builds and outputs the “tagged” token (out;, d).

Router: This “directs the traffic” coming out of the merge. For each token
it gets as inpﬁt, it immediately copies it to channel C-out. Additionally, if the
token is of the form (inj,d) then the Router process will output the token d on
channel :n;.

N : This can be any network with input channels Iy = {in,...,in;} and
output channels Oy = {out,...,out;}.

The proof rests on showing that the composite network C[N] has the property
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that it generates T[], the traces of the network N. In other words, we must
show that T is a possible output of C[N] on input : if and only if T is a possible
trace of the network N and T has input history i. We sketch this proof here, and
again refer the reader to Jonsson [Jon89] for details.

If T € T[N], we see that T is a possible output of C[N] by noting that if
N behaves according to T, then the tagged input and output tokens may arrive
at the inputs to the fair merge in the same order as they appear in T. Hence,
they may be merged in that order, and the output of the composite network will
coincide with T'.

If (:,T) € IO[C[N]] we see that T is a possible trace of N by noting that if
N actually behaves according to a trace T', then T must consist of the events of
T' in the order they came out of the merge. From the definition of fair merge
we know that T will contain all of the events of T', and will preserve the relative
order of events on each channel. Hence, from the definition of the context we
see that T may differ from T’ only in that the output events may be delayed
and adjacent input or output events may be exchanged. Since we know from
Theorem 4.3 that T7[N] is closed under such differences, and that T' € T[N] by
assumption, we conclude that T' € T[N].

This clearly implies full abstraction, for if the observable output of C[N] is

T[N], then T[N] # T[M] means that ZO[C[N]] # ZO[C[M]]. B

This seems to completely solve the problem exposed by the Brock-Ackerman
anomaly, in that we have a model that is compositional, correctly distinguishes

observably different indeterminate networks, and makes no unnecessary distinc-
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tions among fair merge networks. However, notice that both the Brock-Ackerman
anomaly and the distinguishing context of the previous theorem rely on the pres-
ence of the fa.ir merge primitive. We know from the previous chapter that fair
merge is onily 'the strongest of many possible indeterminate primitives. Thus,
many questions remain unanswered: Do anomalies like that shown by Brock and
Ackerman exist at lower levels of the indeterminate hierarchy, or will a semantics
like Kahn’s ‘based on the input-output relations be fully abstract at some level
below fair merge? What kind of semantic models are fully abstract for weaker
forms of indeterminacy? Is there a semantic model that is fully abstract for the

whole hierarchy?

The answers to these questions are the main results of this chapter.

4.3 An Example for Bounded Indeterminacy

In this section we give an example which shows that the input-output relation
of networks is not compositional in the presence of even the weakest form of
indeterminacy — bounded choice. This extends the scope of the Brock-Ackerman

anomaly to the entire indeterminate hierarchy.

Theorem 4.5. The input-output relation is not compositional for networks con-

taining bounded choice.

Proof: Consider the two network processes each with one input channel and one
output channel shown in Figure 4.3. The operation of these processes is as follows:

P, indeterminately chooses between the two following determinate behaviors:
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Figure 4.3: The example processes

A) First read a token from channel a, then output a 0 followed by a 1 on

channel b, and stop.

B) First output a 0 on b, then read a token from a, then output another 0 on

b, and stop.
P, chooses among A) and B) above as well as:

C) First output a 0 on b, then read a token from a, then output a 1 on b, and

stop.

The above reads are determinate, meaning that they do not time out, and that
if channel a is always empty, the process waits forever.

Note that P; and P; have the same input-output relations, given by ZO[P;] =
IO[P,] = {(¢;¢), (¢,0)}u{(¢,01),(t,00)| t any nonempty stream},(m;re use € to de-
note the empty stream). However, if we look at the networks obtained by com-

posing with the process Copy, which copies all tokens from channel b to channels
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a and ¢, we see that they are observably different. Specifically, their input-
output relations are given by ZO[Copy[P;]] = {(,¢€),(,00)} and ZO[Copy[P:]] =
{(,€),(,00),(,01)} (since the composite network has no input channels, the input

part of the i’nput-output pairs is nonexistent). il

Though simpble' to describe, this is an important example — it shows that we
must look for a semantic model more detailed than Kahn’s in order to describe
networks with any kind of indeterminacy.

While bounded choice may be viewed as the weakest form of purely “internal”
indeterminacy, there is a weaker form of “external” indeterminacy. This is defined
by a process that has no input channels and a single output channel on which
it indeterminately chooses to output nothing or a single token ’1’. It is worth
noting here that even for networks containing this more restrictive indeterminacy
the input-output relation is not compositional, though the example for this case

1s more complex.

4.4 Full Abstraction for All Indeterminate
Networks

In this section we extend the previous work and show that the semantics in
which a network N is represented by its set of traces 7[N] is fully abstract for
all networks, with no restriction on the class of primitives used.

The adequacy of T[] described in the prior sections is independent of the
class of indeterminacy, so we will show T[] to be fully abstract by demon-

strating that if T7[N] # T[M] then there is a network context C[] such that
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ZO[C[N]] # TO[C[M]]. In fact, we construct such a context that is independent
| of N and M (except for the number of input and output channels). Furthermore,
the context we construct is composed only of determinate (and sequential) pro-
cesses, and therefore puts no restriction on the class of networks for which 7]
is fully abstract. We construct this context by borrowing from ideas common in
complexity theory and verifying (rather than generating) traces.

Consider the network context V[] shown in Figure 4.4. V(] has Iyy) = {Fin}

MN]  pecmmcmeea- .
> ]
F z'n F ! '
eeder ! '
- N l
out out
s OVin l[ 11
‘ , Cy| Ci
outy T
Output X
Verifier -~
out]
" . . . n
outy | out;

Figure 4.4: The context V[]

and Oypy) = {out],...,out]}, and is composed of the following determinate
processes:
Feeder: This expects a trace of N as input on the channel Fin, which it reads

one event at a time. For each input event (inj,d) it gets on Fin, it sends the

token d out on channel inj. For each output event (out;, d) it gets on Fin, it sends
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this pair out on channel OVin, and then waits until it receives the distinguished
signal token # on channel s’ before continuing. This is a determinate process,
so if any iriput' it expects is malformed or fails to arrive, it halts. The important
aspects of Féetier are that it supplies tokens to the channels in; in the same order
as they appear in its input, and its output to the channel OVin is exactly the
subsequence of its input consisting of output event pairs.

Output Verifier: This reads a sequence of output events off the channel OVin.
For each event (out;, d) it receives, it waits until it can read a token d’ on channel
out;, and if d = &, it sends a signal token # out on channel s'. If d # d' it halts.

Cj: These are copy nodes. They read from channel out; and copy onto outg-,
then out].

N : This can be any network with input channels Iy = {in;,...,in;} and
output channels Oy = {out;,...,out;}. N is not required to be determinate.

We now prove that the context V[] actually “verifies” traces of N.

Lemma 4.6. A trace T is a possible trace of the network N if and only if on
input T to the network V[N], a possible output is Hout; (T ) on channel out; for

1<j <1 Thatis, T € T[N] <= (T, Hoy(T)) € IO[V[N]].

Proof: <=: We will use the notation T, to denote the prefix of the trace T
consisting of the first n events of T. First, we note the following fact that follows

directly from Theorem 4.3: If there exists a trace S € T[N] such that

()  Hiy(S)=Hi(T) & Hoy(S) = Hoy(T), and

(1)  VYnIms.t. Hiy(Sm) = Hiy(Ta) & Hopn(Sm) 2 Hon(Th),
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then we may conclude T' € T[N], since S may be transformed into it by delaying
output events. We will show that under the hypothesis, such a trace S must
exist.

Let T’ be a computation of V[N] such that Hpyy(T) = T, and Hoyy, (T) =
Hp,(T). Since T includes a computation of N, we know I'[;,u0, is in T[N].
Let S =T'[ryuoy .i It follows from the definition of Feeder that I'[;,= T[], and
hence Hyy(S) = Hiy(T). By assumption, we have H{o“t/{,m’out;/}(l‘) = Hoy (T),
so from the definition of the C;, we know that Hp (T') = Ho,(S) = Hoy(T).

Now, for all n we define I'y, as the largest prefix of I' such that Ty [7y = Tn[1y,

and Hovin(Tn)[oy= Tnloy. Let Sm(n) = TnlIyuoy- Then we see that
Calin=Tal1y = Hiy(Tn) = Hyy(Ta)
= Hiy(Smn)) = Hiy(Th).

From the definition of Output Verifier and the maximality of I'y,, we know
that every output event on OVin is matched by an event on an out’ channel.
Hence, for 1 < j <,

Hovin(Ta)[out;C T'n [out; = Hoy(Hovin(Th)) E H{out'l,...,out;}(rn)
= Hon(Tn) € Hiout,,....outt}(T'n)
(by the definition of Feeder)
= Hou(Tx) € Hoy(Tx) = Hop(Smie)
(by the definition of .C.j

Now, by applying the fact stated above, we conclude that T' € T[N].
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=: Assume T € T[N]. We show how to construct compatible traces of the
components of V[N], such that their composition, T* (which is a trace of V[N]),

generates the input-output pair

 (Hiyy(T"), Hoyyy (T7)) = (T, Hon (T)).
We construct the traces for each component based on T as follows:

Feeder:  For each event (inj,d) in T, replace it with the two
events (Fin,(inj,d))(inj,d). Replace each event (outj,d) with the events
(Fin, (outj, d)){(OVin, (out;j,d))(s', #).

Output Verifier: Leave out all events in T of the form (inj,d), and replace
each event (out;,d) by the events (OVin, (out;, d))(out},d)(s', #).

C;: For each event of the form (out;,d) in T, replace it by the events
(out;, d)(out}, d)(out!,d). Leave out all other events in T.

It is straightforward to see that the composition of the traces constructed
above and T yields the trace T* defined as follows: For each event (in;,d)
in T, replace it with (F'in,(inj,d)), and replace each event (out;,d) with the
events (Fin, (outj,d)){out],d). Clearly, T* is in T[V[N]], Hp,,,(T*) = T, and
Hoy (T*) = Hoy(T). Hence, (T, Hoy(T)) € ZO[V[N]]. B

From the above lemma, the full abstraction of 7] follows directly.

Theorem 4.7 (Full Abstraction) Given dataflow networks N .and M, T[N] =
T[M] if and only if ZO[C[N]] = ZO[C[M]] for all network contexts C[].

Proof: We already know that 7] is adequate — this is the ’only if’ direction.

For the other direction, assume there exists T € T[N],T ¢ T[M]. Then by

»
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the above lemma, the input-output pair (T, Hoy(T)) is in ZO[V[N]] but not

TOV[M]], so TO[V[N]] # ZO[V[M]]. B

This completely solves the problem of finding a fully abstract semantics for the
full range of indeterminate primitives. Thus, we have succeeded in generalizing
this aspect of Kahn’s semantics. However, the trace model is cumbersome to
work with and does not have a nice fixed-point principle like Kahn’s semantics.
In the next chapter we take a somewhat different approach to find a model that

is both fully abstract and has a convenient fixed-point principle.
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Chapter 5

On Oraclizable Networks and

Kahn’s Principle

In this chapter we generalize another aspect of Kahn’s principle. The approach we
take here is to concentrate our attention on a particular type of indeterminacy,
and to consider a class of indeterminate networks called oraclizable networks.
This class represents the situation where indeterminacy results from imperfect
knowledge of the behavior of a system, and is modeled as determinate network
that has an extra input channel hidden from the external observer. Since we do
not know the contents of the hidden input, it acts as the source of indeterminacy
in the network. We develop a particularly nice model for the class of oraclizable
networks, and the model that we develop is a true generalization of Kahn’s — it
is fully abstract and has the same fixed-point property.

In the first section we begin by defining a useful alternative to the trace model

62



63

for representing networks. In the second section we give a formal definition of
oraclizable networks and present our first semantic model for this class. This
model is a straightforward extension of Kahn’s in which oraclizable networks are
represented by sets of stream-valued functions, corresponding to all their possible
determinate behaviors. With this representation, the fixed-point property of
Kahn’s semantics extends directly to this model by applying it to each of the
possible equations.

Unfortunately, this straightforward representation fails to be fully abstract.
In the third section we modify this model and represent oraclizable networks
by sets of functions that are closed in a certain sense. With this modification,
we show that this second semantics becomes fully abstract, and preserves the

fixed-point property of the first.

5.1 Checkpoint Sequences

In this section we describe an alternative representation for indeterminate pro-
cesses, which we call checkpoint sequences. Checkpoint sequences are defined in
terms of traces, and are equivalent in expressive power, but they have two impor-
tant advantages: First, they more closely resemble descriptions of stream-valued
functions than traces; and second, they avoid some of the redundancy associated
with the ordering of unrelated input (or output) events neceésé.ry in traces.
Intuitively", a checkpoint of a network N is a pair of finite strea.l:jas (z,0), such
that on input :, N may be observed to produce output at least o (if N has

more than one input (or output) channel, then ¢ (or o) is an appropriate channel
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indexed tuple of finite streams). The finiteness of : and o guarantee that this
observation can be made in finite time.

A checkpoint sequence is a sequence of checkpoints

(20,00), (21,01),...(3,0)
where it T tn41,0n C 0n41 V1, and Ug(in,0n) = (2,0) (¢ and o need not be finite
in the limit). Such a checkpoint sequence is meant to represent a computation of
network N during which on input i, at least oy is observed as output, and after
this the input is increased to 71, and at least o0; is observed, and then the input
is increased to i3, etc. The total input to IV is then 7, and the total output is o.

Formally, we define checkpoint sequences in terms of traces.

Definition 5.1. A checkpoint sequence of network M

(io, 00)’ (il’ol)’ <o (i,O)

is shorthand for a trace T of M consisting of all the input events of z¢, followed
by the output events of-og, followed by the input events of 1; — 29, followed by the
output events of 0; — 0g, etc. F urthermore, the entire input history of T must be
i, and the output history of T' must be 0. Note that a given checkpoint sequence
actually represents a family of traces related by the permutation of adjacent input
(or output) events on different channels, since trace sets are closed under such

permutations.

Given a network M we define CX[M] to be the set of all checkpoint sequences

of the network M. It is clear from the definition that CKX[M] determines, and is
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determined by, T[M], and therefore for all networks M and N, CK[M] = CK[N]
if and only if T[M] = T[N]. Thus, CK[] is automatically a fully abstract model
for all indeterminate dataflow networks.

By grouping the inputs and outputs together as in checkpoint sequences, we
obtain a representation that looks like a function specification, as opposed to the
sequence of operational steps of a trace. This will be very useful in the following

sections.

5.2 The Direct Semantics of Oraclizable
Networks

Definition 5.2. An indeterminate network M is oraclizable if it is operationally
equal to an indeterminate network Mo without input channels (the “oracle”),

connected to some inputs of a determinate network Mp.

Given an oraclizable network M, we can identify its oracle part Mp with the
set of possible outputs of Mp. Additionally, we can regard its determinate part
Mp, which we know acts as a function fys,, from oracle inputs and external inputs
to outputs, as function from oracle inputs to functions from external inputs to
outputs. With this view it is easy to see that the class of oraclizable networks
is closed under composition, since we can compose oracles simply by combining

the sets of possible outputs. This view also leads naturally to our first semantic

a !
)

model.

Definition 5.3. Given an oraclizable network M, we represent it by its set of
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possible functional behaviors

AMIE U fup(o)-
0EMp

Lemma 5.1. *

FIMI|IN] = {glg = (f, f), f € F[M], f' € A[N]}
Fifloop(a, b, M)] = {f|f = fix(a,b, f'), f' € F1[M]}

Proof: These follow directly from the definitions. W

F1[] is an attractive semantic model, since the network composition oper-
ations of aggregation and looping correspond to function aggregation and least
fixed point applied to each of the functions in the representation, as we desire.
Now we compare the semantics F1[] to the fully abstract checkpoint sequence

semantics CK[].

Lemma 5.2.
CK[M] = {(30,00), (21,01),---(2,0)|3f € Fi[M], f(2) = o, f(in) D 04 for all n}

Proof: Direct from the definition of F;[M] and the observation that for a deter-

minate network D,

CK[D] = {(50,00), (i1,01), - . . (5,0)|f(i) = 0, fp(in) T 0n for all n}

From Lemma 5.2 we conclude that F;[M] = F1[N] implies CK[M] = CK[N],
and hence Fi[] is adequate. It is not, however, fully abstract, as is shown in the

following example.
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P ===

10,1 ! , 0,1 ]

0: 0:
a—0,b— 2 a— 0,b— 3

1: 1:

.ar—+1,b|—>3 .ar—>1,bv—+2

{a, b} {a, b}
| |

l{0,1,2,3} 1{0,1,2,3}

Figure 5.1: Two indistinguishable processes with different sets of functions.

Example 5.1. Consider the processes shown in Figure 5.1. Both of the processes
take as input a single token, either a or b, and if it is an a produce either 0 or
1, and if it is a b produce either 2 or 3. However, the process on the left uses its
oracle to choose between the functions a — 0,b+— 2 and a — 1,5 — 3, while the
process on the right uses its oracle to choose between the two different functions
a— 0,b— 3 and a — 1,b— 2. Thus, these two processes are distinguished by

the semantic model Fi[], even though they are observably equivalent. Hence,

Fi[] is not fully abstract. B

5.3 A Fully Abstract Variation

Intuitively, fll[M]] fails to be fully abstract because it only includes the func-
tional behaviors explicit in M, while there may be other functions inherent in

the behavior of M, though not corresponding to any single oracle value. In order
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to be fully abstract, the representation must identify networks differing only by

such functions.

Definition 54 Given a set of functions F', CI(F) is the closure of F' under the

addition of functions not finitely distinguishable from F. These are the functions

inherent in the Behavior of F.

CIl(F) def {f| V chains of finite inputs i C¢; C ---,7 = | |i,, and
V chains of finite outputs o C 01 C -, f(i) = 0n,
on C f(in) for each n,
3f' € F with f'(¢) = f(2), f'(in) 3 on for each n}
Definition 5.5. Given an oraclizable network M, we represent it by the closure

of its set of functional behaviors.
FIM] ¥ ciFA[M])

Clearly F,[M] 2 F1[M] for any M.
As justification for the claim that the additional functions were inherent in

M we have the following:

Lemma 5.3. Given an oraclizable network M, suppose M' is an oraclizable net-
work whose functional behaviors are all those in F2[M] (i.e. F1[M'] = F[M]).

Then M and M’ are operationally indistinguishable.

Proof: We will show CK[M'] = CK[M]. Using Lemma 5.2 and the definition of
F2[] we have

CKHM’]I = {(io,OO),(il,ol),. .. (z,o)|3f (S f]ﬂM’],f(z) = o,
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F(in) 3 0n for all n}

= {(¢0,00),(21,01),...(3,0)|3f € CI(F[M]), f(z) = o,
f(in) 3 on for all n}

= {(io,00), (11, 01),... (3,0)3f' € A[M], f'(i) = f(&) = o,
f'(in) 3 0n for all n}

= CK[M]

Thus, the sets F2[M] and Fi[M] represent the same operational behavior.

However, F,[] is general enough that it is fully abstract.

Theorem 5.4 (Full Abstraction for Oraclizable Networks) Given oracliz-

able networks M and N,
Fo[M] = F[N] < CK[M] = CK[N]
Proof: <: It is clear from Lemma 5.2 and the definition of 5[] that

Fo[M] = {f| V chains ¢ C i3 C---,i=|lia, and

V chains 09 C 01 C - -+, f(i) = Uon, 0n C f(in) for each n,

the checkpoint sequence (io, 09), (i1,01), - - - (5, (i) is in CK[M]}
Hence CK[M] determines 3[M], and the result follows.
=>: Say (20, 00),(¢1,01),-..(i,0) € CK[M]. Then by Lemma 5.2 ;ve know there ex-
ists f € .7-'1[[M]] with f(i) = o, f(in) 3 o, for each n. But f € fl[[tMiI C R[M] =
£[N1, so from the above equality we conclude (io, 09), (i1, 01), - .- (i, 0) € CK[N].
[



70

Thus, F3[] is a modification of F;[] that is fully abstract. We now verify

that F3[ ] preserves the desirable composition and fixed-point properties of Fi[].

Theorem 54.5‘. F2[] has the same composition and fixed-point properties as

Fi[]. Specifically,

Fo[M||IN] = {glg = (f, f'), f € F1[M], f' € F,[N]}
Falloop(a, b, M)] = Ci({glg = fix(a,b,9'),g' € F2[M]}).
Proof: The aggregation property follows directly from the definitions.
We see Fa[loop(a, b, M)] C Cl({glg = fix(a,b,¢'),d' € F2[M]}) directly, since

Falloop(a, b, M)] = CI(Fi[loop(a, b, M)]) = CI({£|f = fix(a, b, f'), f' € Fi[M]})

and F[M] C F[M].
Finally, we show F2[loop(a,b, M)] 2 {glg = fix(a,b,g'),¢ € F2[M]} via the fol-
lowing somewhat intricate construction.

Given g = fix(a, b, ¢') for some g’ € F3[M], choose chains

wEHCE- -7, and

00Co0C--.o,
with ¢() =0, and ¢(i,) 3 op for all n. For every n we define p, = g(in), which
we know means that p, is the least tuple of output streams such that there exists
a stream I, (the 'looped’ input) with ¢'(in,1n) = (pn, ln) (Where I, is actually the
ath component of the input and the bth component of the output). Note that
(In)n>0 and (pn)n>o0 form increasing chains (not necessarily of finites), and for

! = Upn!n and p = |, pn we have ¢'(¢,1) = (p,!) (and thus g(i) = p = o).
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We now introduce the notation [s], to denote the prefix of the stream s of
length at most n. Similarly, if s is a tuple of streams, [s], is defined compo-
nentwise. Using this notation, for each n we define chains of finites (I}’ )n>0 and

(p7 )n>0 approximating l, and p, as follows:
19 def ¢
def .
(P lvT+l) = [9'Gns I7)lm ¥m > 0.
Since l,,, p,, are least fixed points, we know from this construction that ||, I’ = lx
and ||, p* = pn for all n. It is also easy to see that for n < n' and m < m' we

have

mCim and p* Cpl.

For every n we have p, = g(in) 3 on, therefore we know that p;' 3 o, for

some finite m. We use this fact to define a family of indices k, as follows:

ko = the least index such that pSO Joo
knt1 (n > 0) = the greater of k, + 1, and

the least index k4 such that pﬁ'_‘:l‘ 3 opy1-

Finally, we may consider the following chains of finites:
(i0,56°) € (i1, 11") E (i2,5") E -+ (35])
(po®, 56" € (P, 1) € (23", 5" ) E - ()
with ¢'(in, [5*) 3 (pkn, knt)Wn, ¢'(3,1) = (p,1), and pk» 3 0,Vn, p = o. Then,
since ' € F2[M], there exists f € Fi[M] with f'(in, k") T (pkn,lkn+1)Vn,

and f'(:,1) = (p,]). Now let f = fix(a,b, f') € Fifloop(a,b, M)], and we have
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f(in) 3 0nVn, f(i) = p = 0. Hence, we may conclude g € Cl(F;[loop(a,b, M)]) =
Fa[loop(a, b, M)]. B

Thus, .wie 1;1’ave succeeded in finding what we want: A semantic model for the
class of ora.élizable networks that is fully abstract and that comes équipped with a
fixed-point prinéiﬁle, thereby generalizing both aspects of Kahn'’s principle to this
class. In the next chapter we use this characterization to investigate the relative

expressiveness of this and other classes of indeterminate dataflow networks.



Chapter 6

Expressiveness of Different

Classes

In this chapter we use the characterization of the previous chapter to explore
the relationship of the class of oraclizable dataflow networks with other classes of
indeterminate dataflow networks. We will show that the oraclizable networks are
| closely related to, but different from, both the infinity-fair merge networks and
the Egli-Milner monotone networks. In doing so, we will discover new relations
between the specification of a network in terms of its input-output relation and

its possible implementation in terms of the various indeterminate primitives.

6.1 The Universality of Oraclizable Networks

In the previous chapter we restricted ourselves to the class of oraclizable networks

and discovered that the representation by certain sets of functions was fully

73
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abstract. This representation is a particularly pleasing one, and we naturally
want to know for what other classes of networks might it apply. In this section
we answer that question, and show that the oraclizable networks are universal

for this repfesentation; i.e. that the oraclizable networks are the largest class of

networks represéntable by sets of functions.

Theorem 6.1. The oraclizable networks are exactly those whose behavior can

be described by a set of functions.

Proof: By Lemmas 6.2 and 6.3. B

Lemma 6.2. The behavior of any oraclizable network is representable by a set

of functions.

Proof: This is the semantics of the previous chapter. i

Lemma 6.3. Given any set of functions F, there is an oraclizable network M

that implements F (i.e. F1[M] = F).

Proof: Given F, we explicitly construct the network M, with determinate part
Mp, and oracle part Mp.

The idea behind M) is that F can be organized into a countably branching
tree indexed by infinite integer sequences. As in the previous chapter, for a
stream i we use the notation [i], to denote the prefix of i of length at most n;
similarly for [f(:)],. Given functions f, f' € F, we write f =, f' if and only if

for all 1,

[f(lidn)ln = [F'([i]n)]n-
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Now we note that there are only countably many equivalence classes of F' modulo
=;. Hence, we can index them by integers and denote them Cj,. Similarly, for
every integer ki, we index the equivalence classes of Ci, modulo =3 by integers
and denote them Cp,i,. Proceeding in this way, we can define C, for any finite
sequence s of integers. For s infinite, C, is the intersection of all Cy with s’ a
prefix of s, and hence is either empty or contains a single function from F. We
will let S be the set of infinite sequences s for which C, is not empty.

Now we define a function P such that given input : and a sequence of integers

s, we have

[£([E]n)]n, f € Cs if s finite of length n
P(s,1) o f(x),f€C, if s infinite and C,; not empty
U{P(s',?)| s’ a finite prefix of s} if s infinite and C, empty
It is easy to see that P is continuous, and that for infinite s with C, not empty,
P computes the unique function f € F indexed by s. We take Mp to be the
determinate process that computes P.
Finally, we take Mp to be an oracle process that produces exactly the streams
s € S. Clearly, with this definition of M, M can behave like any and all the
functions in F - that is, F;[M] = F. Note that although Mp is defined for
infinite streams not in S (and may not compute a function in F' on such streams),
restricting the oracle Mo to the set S assures that the “extré”:' functions are not

possible behaviors for M. il . |

This result is both pleasing, in that it says that there is an exact corre-

spondence between our representation and the class of oraclizable networks, and
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disappointing, since it means that our representation will not work for any larger
class of networks. We will take advantage of the exact correspondence in the

following sections, as we compare the oraclizable networks to other classes.

6.2 Oraclizable Networks and Inﬁnity;Fair
Merge

In this section we attempt to characterize the class of oraclizable networks in
terms of, and relate it to, the various indeterminate network primitives introduced
in Chapter 3. Specifically, we relate it to the infinity-fair merge primitive, and
show that while any network constructed with infinity-fair merge is oraclizable,
the class of infinity-fair merge networks is properly contained in the class of

oraclizable networks.

Theorem 6.4. The class of all networks constructible with infinity-fair merge is

a proper subclass of the oraclizable networks.

Proof: By the following two lemmas. W

Lemma 6.5. All networks constructible with infinity-fair merge and determinate

processes are oraclizable.

Proof: Infinity-fair merge is oraclizable, since it is equivalent to an oracle that
produces fair bit streams connected to a deterministic merge that uses the oracle
input to decide which channel to read next. Since oraclizable networks are closed

under composition, the result follows. il
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Lemma 6.6. The set of oraclizable networks has strictly greater cardinality than

the set of infinity-fair merge networks.

Proof: As we have already noted, infinity-fair merge is equivalent to an oracle
that produces all fair bit streams connected to a determinate merge. Hence, any
infinity-fair merge network can be implemented as this fair oracle connected to
some determinate network. Thus, the number of infinity-fair merge networks is
bounded by the number of determinate networks, which by Kahn’s principle is
the same as the number of continuous stream-valued functions. Since the domain
of streams is w-algebraic, this is the same cardinality as the powerset of w, P(w).

In general, the oracle part of an oraclizable network may emit any set of
streams. Hence there are at least as many oraclizable networks as the powerset
of the domain of streams, P(S). Since the domain of streams is as large as P(w),
the cardinality of the set of oraclizable networks is at least that of P(P(w)),

which is strictly greater than the cardinality of P(w). N

The proof of Lemma 6.6, while straightforward, is somewhat unsatisfying be-
cause of its nonconstructive nature. Of course, because of the difference in cardi-
nalities of the two classes, it is possible to explicitly construct a network that is
oraclizable but is not implementable with infinity-fair merge by a diagonalization
argument. However, this is a rather contrived example and is nearly as unsatisfy-
ing as none at all. Unfortunately, at the present this is the bes‘.t we can do, since
we know of n; “natural” example (either in the sense of having a'.naj‘tural descrip-
tion, or in the sense of being implementable with some stronger indeterminate

primitive) of an oraclizable network not implementable with infinity-fair merge.
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6.3 Oraclizable Networks and Egli-Milner
Monotonicity

In Chaptér 53,;we saw that one of the characteristics that separates the networks
built from i'nﬁnity-fa.ir merge from those at higher levels of the hierarchy is that
the infinity-fair én'erge networks all have input-output relations that are monotone
in the Egli-Milner ordering. It had been conjectured that there was an equiv-
alence between the two classes, namely that any Egli-Milner monotone relation
was the input-output relation of some oraclizable network. The result of the
previous section, coupled with the observation that the input-output relation of
any oraclizable network is Egli-Milner monotone, shows that this conjecture fails.
However, the apparent lack of a natural oraclizable network not implementable
with infinity-fair merge suggests the possibility that the addition of oracles adds
only cardinality but no “real” expressiveness. Given this, a modified question
suggests itself; perhaps the class of oraclizable networks is equivalent to the Egli-
Milner monotone networks.

In this section we consider this question, and show that the two classes are
unarguably distinct. We do this by exhibiting a natural (in the sense of being
implementable with some indeterminate primitive) Egli-Milner monotone relation

that cannot be the input-output relation of any oraclizable network.

Recall that given sets A and B, A Cgy B if and only if
Vac AFbe Bst.aCb & Vbe BJa€ As.t. aC b

We say that the input-output relation of a network M is Egli-Milner monotone
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(1,1) {(1,1,¢,1),(1,¢,1,1)}
(1,¢€) (e, 1) {(1,1,¢,¢€),(6,6,1,1)}  {(1,€,1,€),(e,1,¢,1)}

{(1,¢¢€,€), (€, €,€,1) }

Inputs Outputs

Figure 6.1: An Egli-Milner monotone input-output relation from S? to S%.

if and only if : C ¢/ implies
{ol(i,0) € IO[M]} Ceum {d|(¥,0') € TO[M]}.

Theorem 6.7. The class of oraclizable networks (and hence the infinity-fair
merge networks) is a proper subclass of the class of networks with Egli-Milner

monotone input-output relations.

Proof: Tt is easily seen that all oraclizable networks have Egli-Milner monotone
input-output relations. To see that the containment is proper, consider the input-
output relation described in Figure 6.1 (lines are drawn between comparable
elements). It is clearly Egli-Milner monotone, but cannot be represented by any
set of functions, since the “diamond” of relations among the inputs does not
appear in the output. Since we know that sets of functions are universal for

infinity-fair merge networks, no such network can implement this relation. il

Finally, we demonstrate the naturality of the relation by exhibiting a network

built using angelic merge that computes it.
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Example 6.1. Consider the network shown in Figure 6.2. The operation of

1 Reverse?:
Ta,gL !Ta‘gR r----------------------f- ---------- 1
: :
\ ' !
: — o1 :
Angelic Merge ' 1 l :
l - :
‘ v | AM. Yy R 2
R | R ] 1
= el X Choose Choose | !
L =4 1, € BOth? 1 .
1 ' ) '
! g 1
' L y Y Yy v 1
! |
l 1 ! : Choose Choose X
' ' .
! 1
]

1 Re[erse? 1 l besomooo- 1' ------ [ t

Figure 6.2: An angelic merge network that computes the given relation

<

each of the processes is as follows (the connections marked with e’s represent
copy processes):

Ta;(]L, TagR: These tag the left and right inputs with an 'L’ and 'R’, respec-
tively.

Angelic Merge: This is as described in Chapter 3. It will output whichever of
its left or right channel that has data on it. If both channels are nonempty, they
may be output in either order. The output of this merge is fed into a process

that checks the tag on the first token it gets; if it is an 'L’ it outputs a '1’ on
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its left channel and nothing on its right, and if it is an 'R’ it outputs a '1’ on its
right channel and nothing on its left.

Both?: This checks its inputs, and outputs a "1’ only if it finds input on both
input channels.

Reverse?: This randomly chooses whether to reverse the order of its four
input channels. It is implemented as shown on the right of Figure 6.2. The
angelic merge with inputs 0’ and ’1’ will either produce '01’ or ’10’, and this
output is used by the four Choose processes. Each Choose process reads the first
token of the input coming from the merge; if it is a ’0’ it will pass its left input,
and if it is a ’1’ it will pass its right input.

It is easy to verify that the input-output relation of this network is that shown

in Figure 6.1. i

The results of this chapter give us a clearer picture of the relationship of the
oraclizable and Egli-Milner monotone networks with previously studied classes
of indeterminate dataflow networks. This suggests a pictorial relation among the
classes like that shown in Figure 6.3 (contrast this with Figure 3.4). In this figure
each class contains those completely below it, and the classes defined by their
implementation are more on the left, while classes defined by their input-output
behavior are more on the right. The regions containing marks (@) are the ones
that we know to be nonempty. This diagram illustrates what vs:e know about the
relationship l;etween the specification of a network by its input-c;ub;put behavior
and the implementation of the networks, and it points out that there is still more

to be discovered.
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Fair Merge
o / Hoare Monotone
Angelic
Merge
Egli-Milner
o Monotone
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Onadlizable
Infinity Fair °
Merge
°
Unfair
Merge
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Figure 6.3: The inclusions among different classes of networks



Chapter 7

Related Work

In this chapter we present and discuss some of the work of other authors related
to that presented in the last few chapters. In Chapter 2 we discussed work
particularly relevant there, so in this chapter we will concentrate on related work
in the dataflow setting.

Many semantic models for indeterminate dataflow networks have been de-
veloped [Pan85,BA81,KP85,Bro83,Pra86,Par82,SN85], but only recently have
fully abstract models emerged [Jon89,JK88,Kok88,Rus89,RT88|. The full ab-
straction results of Chapter 4 are related to the work of Jonsson [Jon89], which
we described in detail within the chapter. Panangaden and Shanbhogue [PS89]
independently discovered the same full abstraction result as ;Tonsson, although
using a slightly different formalism, and the results in Chapter 4 were also in-
spired by th.ié work. Both of these papers used a distinguishian éoptext based

on one described by Kok [Kok88]. In his paper, Kok describes a semantic model
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for indeterminate dataflow networks based on tuples of infinite streams of finite
strings of data tokens. This representation is closely related to traces, as is shown
in [JK88], although it does not have the same linear interleaving structure. Kok’s
operationalgse;ting does not allow fair merge, but he uses the distinguishing con-
text based on angelic merge to show that his semantics is fully abstract for those
networks. |

Rabinovich and Trakhtenbrot [RT88] have studied dataflow networks using
a different observational philosophy than we do. In their work they consider a
notion of observation in which only finite observations are allowed. They define
a process by a prefix-closed set of finite strings (which are essentially what we
call traces). This allows indeterminacy in their setting, but it means that they
can only approximate infinite behaviors. As a result, for the purpose of dis-
tinguishing functional from nonfunctional behavior, the input-output relation is
identified with the set of maximal (or limit) elements of the possible input-output
behaviors. For example, a process with a single output channel that indeterrﬂi—
nately chooses to output nothing or a single 1’ is identified in their model with
a process that will always output a ’1’. Given this more restrictive notion of ob-
servation, the merge primitives introduced in Chapter 3 are not distinguishable
in their model. The problem of finding a fully abstract semantics for this setting
is both more and less difficult than for the setting we consider. In Rabinovich
and Trakhtenbrot’s setting with the restricted observations, it is harder to make
observations to distinguish networks, but there are fewer observably different

networks to distinguish among.
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In [RT88], they describe an extended Kahn’s principle for their setting. They
discuss an adaptation of the Brock-Ackerman anomaly and the resultant mod-
ularity issues. They also show that their model of a process as a prefix-closed
set of finite strings is fully abstract for their notion of observation. The method
they employ, like that of Chapter 4, is based on verifying possible strings (traces)
of a network. Given a possible string s for a network N, they define a network
context to test that N behaves according to s, called an s-tester. The s-tester
context connects to the input and output channels of N, and has only one ex-
ternal output. It proceeds by sending the tokens to the inputs of N specified in
s, and verifying that the tokens on the output channels of N agree with s. As
soon as all the data of s have been observed correctly, the s-tester emits a special
token its external output channel. By design, the s-tester will emit the special
token only if s is in their representation of N, and this suffices to distinguish any
networks with different representations. This s-tester strategy is made possible
by the fact that s is known to be finite.

With respect to related work that concentrates on fixed-point principles,
Keller and Panangaden [KP86,Pan85] have developed models for the full range of
indeterminacy that employ fixed-point constructions, but they are cumbersome
and not fully abstract. Staples and Nguyen [SN85] describe a compositional
model for indeterminate dataflow networks based on partially' ordered multisets
of input-output histories. This model has a fixed-point principle,i but it is not
fully abstract. Misra [Mis89] has described an equational system for rea.sohing

about indeterminate networks in which network meanings are ’smooth’ solutions
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to recursive equations, but he does not consider full abstraction, nor provide
fixed-point techniques for computing the smooth solutions. Abramsky [Abr89]
has developed a general categorical theory for Kahn-type models for indetermi-
nate dataﬂ(;)w"networks.

In several papers Broy [Bro83,Bro87,Bro88] has studied fixed-point semantics
for indeterminate da.taﬂow networks, but for the most part does not consider
full abstraction. This work was done before the results of [Sta88,PS88,PS87]
detailing the differences among the merge primitives, so his treatment of inde-
terminacy is somewhat inconsistent. In [Bro83] he describes a semantics for an
applicative language for representing dataflow networks that contains McCarthy’s
ambiguity operator. The semantics is given via an intermediate description of
the program constructs as sets of functional behaviors. The descriptions of most
of the constructs are straightforward, but the description of the behaviors for the
amb construct is dependent on the input to the program. We now know that
such a dependence is unavoidable, since amb is capable of implementing angelic
merge, but sets of functions cannot represent it. Broy’s semantic representation
is then given as the set of fixed points of the functional behavibrs of the interme-
diate description. This representation is fully abstract for the language, but the
intermediate description is not. A drawback of this representation is that the set
of fixed points can only be constructed once and cannot be composed, and thus
this representation fails to be compositional for complete networks.

In [Bro87] Broy describes semantic models for several classes of dataflow net-

works, including networks with unfair merge, infinite recursively defined net-
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works, and networks with fair merge. Omne of the models he presents for the
unfair merge networks is based on limit-closed sets of functions, and uses the cor-
responding fixed-point principle. To describe the fair merge networks he modifies
this semantics as before so that the set of functions depends on the input to the
network. He does this by including a predicate that limits the functions in the
representation of fair merge to those that actually have fair behavior for the given
input. He does not consider full abstraction for either of these models. In [Bro88]
Broy provides an interesting discussion of different operational interpretations for
the anomalies of Keller and Brock-Ackerman. However, he apparently was not
aware that the Brock-Ackerman anomaly relies on the presence of fair or angelic

merge, and the semantics he describes applies only to unfair merge.



Chapter 8

Conclusions

In this thesis we considered the problem of finding semantic models for indeter-
minacy that are both fully abstract and have fixed-point principles. We began
by looking at a simple imperative language containing unbounded choice, and
achieved a result that was as close to optimal as possible. We then moved on to
the more general setting of dataflow networks and the hierarchy of indeterminate
merge primitives. We showed that the straightforward generalization of Kahn’s
semantics based on the input-output relation fails to be compositional for any
class of indeterminate dataflow networks. We then extended previous results and
showed that a semantics based on traces is fully abstract for all indeterminate
and determinate dataflow networks, thereby providing a model considerably more
general than Kahn’s.

This generalization has the drawback that it does not have a simple fixed-

point principle. We then restricted our attention to the smaller class of oraclizable

88
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dataflow networks, and showed that for this class a generalization of Kahn’s
semantics to sets of functions is both fully abstract and has natural fixed-point
principle. We then used this representation to compare the class of oraclizable
networks to other classes, and discovered new relations among the classes.

A closely related direction for future work is to extend these results and
develop semantic models for larger classes of indeterminate networks that are
both fully abstract and have fixed-point principles. Possible approaches to this
problem include introducing explicit timing information into the model, and em-
ploying category-theoretic constructions of fair merge as a limit.

The results of Chapter 6 demonstrattad new relations between the specifica-
tion of the input-output behavior of a network and its implementation in terms
of the different primitives. This suggests another future direction of investigating
further relations among the classes, including those defined by the weaker mono-
tonicity properties and the possible addition of oracles to networks with fair or.
angelic merge. Also, it would be interesting to know under what conditions one
can attain an exact correspondence between a extensional specification and an
implementation class. Our definition of oraclizable put no restrictions on the set
of streams that makes up the oracle. It is a separate and interesting study to
explore classes in which the oracles are restricted to satisfy certain properties.
Some specific work has been done in this area, as in [Sta89b] or [MPS88], but
there is no doubt more to be discovered. .

Another area of further study is the study of semantic models for other set-

tings, and the relation of the results of this thesis to these models. Such settings
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may be extensions of the dataflow setting, such as one in which processes as
well as data may be passed along channels, or one in which networks may be
recursively defined. One may also consider extensions of the lambda calculus to
include diﬁ';zrént kinds of concurrency and indeterminacy. There has been re-
cent interest in:concurrent constraint programming; this setting would also be

interesting to study.
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