Computability on
Continuous Higher Types

and its ~ role in the semantics of
programming languages

R. L. Constable+and H. Egli*
TR 74-209

July 1974

Department of Computer Science
Cornell University
Ithaca, New York 14850

!

/

¥ Part of this work was supported by’NSF contract GJ-579

* pPresent address: Forschungsinstitut fur Mathematik,
ETH - Zurich
CH-8006 Zurich

Abstract

§1 Introduction

§2 Type

2.1
2.2
2.3

§3. Type

3.1
3.2

3.3
3.4

3.6

$4 Type

¢

4.1
4.2

"3

4.4
4.5

5.2

Page
1
Zero 2
integers and effective integers 2
extended integers, D, E 5
non-deterministic extended integers ﬁ, i ki
One 9
recursive partial functions, ¢;,¥; 9
extended partial recursive functions, 11
& ecol
effective operators of type 1, 3% 14
relationship between functions and 15
operaéionq

non-deterministic computable functions, 17

A

%

non-deterministic effective operations 19
™o 20
type 1 inputs 20

discussion of type 2 computability over 23
]

type 2 partial computable operators,cbz 24
2

type 2 effective operators EV 27
non-deterministic partial computable 31
operators on)

Three . 33
comparison 'with other types of 33
computability’

the role of continuity . 34

§6 Prroliminaries for the general theory
6.1 program
6.2 types
6.3 complete partially ordered sets
6.4 two remarks
§7 Computable operators of type T
7.1 bases
7.2 definition of the computable operators
§8 Effective operators of type T
8.1 generalized partial recursive functions
8.2 definition of the effective operators
§9 Equivalence between computable and effective
operators
9.1 summary of notations
9.2 the main theorem

§10 Typeless operators

Acknowledgments

References

48
48
54

COMPUTABILITY ON
CONTINUOUS HIGHER TYPES

and its role in the sumantics of
programming languages

R.L. Constable and H. Egli

Department of Computer Science
Cornell University
Ithaca, N.Y.

Abstract: ,
This paper is about mathematical problems in programming
language semaritics and their influence on recursive function theory.
In the process of constructing computable Scott models of the
lambda calculus we examine the concepts of deterministic and non-
deterministic effective operators of all finite types and
continuous deterministic and non-deterministic partial computable
operators on continuous inputs of all finite types. These are new

" recursion theoretic concepts which are appropriate to semantics

and were inspired in part by Scott's work on continuity.

KEY WORDS: effective operators of all finite types, continuous
functions, partial computable operators, lambda calculus, Scott
models of lambda calculus, recursive functions, non-determinism,

parallelism, mathematical semantics of programming languages.

COMPUTABILITY ON
CONTINUOUS HIGHER TYPES

and its roloe in the samantics of
programming languages

1. INTRODUCTION

Recent work on the secmantics of programming languages has led_
computer scientists to refbrmulate and extend certain basic ideas
in classical recursive function theory. As a simple example, we
no longer exclusively use the convention that a partial recursive
function ¢() is undefined if any of its arquments is. This paper
is about mathematical problems in the study of programming language
semantics and their influence on basic recursive function theory,
in particular on the treatment of non-determinism and parallelism
and the role of continuity in higher type objects.

Our main work consists first of definitions of continuous
deterministic and non~deterministic partial computable operators
on arbitrary continuous inputs of all finite types and of
deterministic and non-deterministic effective operators of all
finite types, and consists second of a theorem which relates
these objects.

We were led to these objects by an attempt to construct
computable Scott models of the lambda calculus adequate ior.
programming language semantics. Such constructions are straight-
forward once the objects mentioned are in hand (as we show in §10),

but the existing recursive function theory literature

-2-

does not provide them.

None of the definitions or theorems is very complicated-
(and that is one of their virtues). In fact, one consequence of
this work is a delineation of the simple parts of the somewhat
arcare subject of computability theory of all finite types on
partial inputs. Another consequence is a set of simple observa-
tions about parallelism (and non—deterhinism), about call by
value and about representation of data which illustrate the ways
in which a computer oriented account of computability differs from
a purely mathematical account. '

Most of ﬁhe ideas of this paper can be demonstrated on the
low types: 0,1,2 and 3, which is done in §§2 through 5.
Therefore the paper is organized to present most definitions and
theorems first for those low types where they are more widely
familiar. Then in §6-9the results are given in general. Except
for an intuitive description of the results, the presentation of
the general definitions and theorems in §§6-10 is self-contained.
For some readers it might be helpful to read the general account
first and £ill in the motivation and special instances later.

Aside from the consequences mentione§ above, we feel that the
main results of this paper may become interesting for two reasons.
Orie, the computable lambda calculus model may be an interesting
vehicle for basic recursive function theory. Two, the objects we
define and the model built from them may answer interesting
questicns about programming language semantics. It has been widely
accepted that the semantics of higher type programming language

constructs such as arbitrary procedures and jumps can be given in

spirit of mathematical semantics only if typeless function spaces

are available [22], [24], [4). If such function spaces are
necessary, we would like to understand them computationally. For
example we ask, must such powerful function spaces contain non-
recursive objects if they contain "all computable finite type
objects" (perhaps because of their necessa;ily high cardinality)?
We show that they need not.

Our results also reveal an interesting relationship between
the operational semantics of languages with arbitrary procedures
(as represented mathematically by the effectivé operators) and the
mathematical semantics of such languages (as represented by the
computable operators on continuous inputs).

We might also wonder whether programming language features
which are described computably can be represfnted'in the model.
Our results show that they can be.

Furthermore we hope that our treatment of semantics in terms
of recursive function theory will further clarify the relationship
of the two subjects to each other. It is our view that just as
the theory of computational complexity leaves a rich residue in

pure recursion theory, so semantics too will leave such a residue.
2. TYPE 2ERO

2.1 integers and effective integers

We will be considering computable functions of all finite

types. The ground type is denoted 0. If t and ¢ are types, then

Y.

T + 0 is the type of a function from type t objects to type ¢
objects. Thus 0.+ 0 is the type of a function from individuals to
individuals while (0 + 0) + 0 is the type of a functiqn from
functions to individuals. The domain of objects of type t will be
denoted by D'. Thus the domain of individuals is Do.

There are two common ways to treat the type of multi-argument
functions (or equivalently, functions from a Cartesian product of
domains). We can introduce a new clﬁss of types, say 1xg, to
represent the domain D'xp’. We can also interpret a multi-argument
function, ¢(x,y), as two applications of a single argument function;
namely ¢ (x) (y) where ¢ (x) produces a name for a function whose

0 would have

argument is y. In this case a function ¢: DOXD0 +D
type 0 » (0 =+ 0). This device is due to Sch¥nfinkel and is used
extensively in the A-calculus and combinatory logic.

In this paper we are mainly interested in computing over the
integers as the base type. Let N:= {0,1,2,...} be the integers
in decimal representation.

In computing as opposed to mathematics it is frequently
impertant to consider the representation of objects. For example,
the classical mathematician will accept the following representation
of an integer:

if F;rmat's conjecture is true then 1 else 0 fi.

But this notation suffers defects compared with the decimal
representation. B
A particularly important set of representations for integers

are the arithmetic expressions of programming languages, e.g. from the

the simple expressions such as INTEGER(SIN(x#2)) + x + F(x) to
complex forms iavolving loops. These are integer reprecsentations
actually manipulated in computing. These particular expressions
for integers depend on the programming language.under éiscussion.
But we can capture the important mathematical properties of such
notations in terms of recursive function theory. Let>¢i:bJ*bJ

be an indexing of the partial recursive functions, say as defined
in Kleene [7] or Rogers [17]. The arithmetization of algorithms
used to define the indexing provides a number for every "arith-
metic expression", i.e. the expression oi(IO) is denoted by the
index of the algorithm for evaluating this expression (formally
the index of ¢ (10) is Sé(i,lO) where S: is Kleene's s-m-n functio:

These indices can be called effective representations of integers.

Such notations will be important in describing the semantics of
programming languages. ~.

For our purposes the most convenient effective representation
of integers arises from an indexing of the recursively enumerable
sets, {wi}. Let

1-
W= {y | Ix.¢;(x) = y}
Then if Wi:= {n} we can think of i and the indexing ¢ as an
effective representation of n.

2.2 extended integers

In computing over the domain of integers,ﬁQ, we are led to
objects other than integers. Consider for example a composition

of algorithms of type (0 + 0), say ¢(¥(x)). If algorithm ¢ on

t This notation is similar to that in Rogers. He uses
W 2= x| Jy ¢; (x) = Y} . The two definitions are recursively

equivalent.

input x is not defined, e.g. the computation runs forever, then
the input to ¢ is not ar integer. If we want to think of the
composition of algorithms as function composition, then we need
some non-integer as input value.

Suppose we introduce the undefined value,l, read "bottom".
Then if ¥ {x) runs forever we say ¥ (x) =.L, and we say that the
input to ¢ is the value l.In classical recursive function theory,
the value of any function on A is again J s i.e. ¢(1) = 1 for all
partial recursive functions. But in computing it is possible. to

have algcrithms such as

21)
TYPE(0 -+ 0) TYPE(0 +~ 0)
READ x PRINT 3
PRINT 3

The first algorithm, ¢1, computes a function whose value on .l is_L.
The second algorithm satisfies ¢2(x) = 3 for all x including x =L,
Thus even for the task of describing the behavior of algorithms

over the integers,ﬁd, we are led to consider an extended domain,

D:= {.l,N} and extended functions fi: lD - [D . Note, these extended
functions are not computed by the algorithms (since they are not

computable), only édefined by them. We will say much more about

_them in the section on type 1.

Given the domain D we are interested in the "extended arith-
metic expressions" for the same reason that we considered arithmetic
expressions. Again as before we can treat these expressions
abstractly using indexings. We let E denote the indices of extended

integers, that is, E 2= (i] Wy = {x} & x €N or W, = ¢},

-7

(For technical reasons this definition is slightly different in
the general theory in §§8,9.)

The appropriate notion of equality on E is i Zo j iff "i = Hﬁ.
We sometimes write E° for E. Also the objects denoted by the
indices in E° are denoted ED°. Thus ED° =].

2.3 non-deterministic extended integers

.When we consider parallel or non-deterministic algorithms
over D, individual objects other thanl, [N appear necessary. For
example, consider an algorithm using a "parallel or" such as:

* Y= (L2 (0 - 8(x))) | OR| (1= (0« ¢0e+l)))

where x | OR | y has the following meaning:

x y x |OR | ¥

1 L 1

1l n n = ~—

n L n ’ o~
n n n

n m {n,m} m#n

This operation, "parallel or", can be considered to map D x P into
subsets of N (where l is the null set and n is the unit set, {n}).
If we intended our algorithm to map from P x D intoD, then we must
treat {n,m} as an undefined value.

If we define proper subtraction and multiplication on D to mear
1>2l=J1andx +l =1+ x=1, then the algorithm * above assigns
the value 1 to y exactly when one or both of $(x) and ¢ (x+l) is
defined. This assignment defines a unique function of tyre

(0 + 0) x 0 - 0., The function being computed requires non-determin:

¥hen we conaider the related algorithm

an Y = ¢(x) | OR | &(x+1)
we notica that it has valua L whon both ¢ (x) = | and ¢ (x+1) = L
but has an "undefined value" when ¢ (x) and ¢ (x+l) are different
numbers.

In order to distinguish this new sort of undefined function
value we introduce a new symbol, ~, say “top" or "overdefined".
Then when treating parallel or non-deterministic procedurcs we
are interested in computing over the éomain P = {lzw.“T of non-

detorninistic extended integers.

For reasons of continuity to be discussed later we want an

ordering on these elements.’~The ordaring is given by the diagram
<
N\
That is, L €EnCncC "~ for all n € N and no other relationships
hold.
As before we want to consider effective representations of

these domain elements. We are thus led to a class of non-

deterministic effective extended integers £o° =’|‘B. The index i

denotes the extended integer enumerated by wi. 1f wi = {n,m,...}
n ¥ m, then i represents ".

Again as before we introduce the notation ﬁ‘, f}° and i %, 3j
iff wi is ;mpty or contains one element and wi = wj or if wi

contains two or more elements, then so does Wi.

3. TYPE ONE

3.1 recursive pariial funetions

We have already seen how an attempt to describe numerical
computation leads us from the domain N to the extended domains D
andB. When we want to mention either of them we will use the
notation DS.

We now want to examine the type 1 functions p° + p° more
carefully. We are interested in the abstract problems associated
with describing programming languages, an& the type 1 objects are
especially illuminating for this task because the most comron
algorithms are those for computing number theoretic tunctiéns.

The original goals of classical recursive function theory
were to describe the computable functions, not to model prograrming
languages. Therefore we cannot expect all the basic ideas of that
theory to suit our purposes. However, recursion theory provides
an abstract setting in which to formulate many of our problerns,
and it provides a precise basis for new concepts and definitions.
As we mentioned earlier, the central notion in this theory is that
of the partial recursive functions

¢i:bl‘ud

defined via some formalism such as recursion equations or Turing

machines, etc.,which formalism is then arithmetized to provide an
indexing, {°i}‘ For technical reasons, however, we shall assume
that we begin with some formalism for r.e. sets, (Wi}. From this

we define the partial computable functions L7 N -D by single-

valuing the Wi and regarding them as enumerations of the grarh of *i

w

“f

i, .,

-10~

This is one of the most technically convenient ways to extend the
definition of computability to higher types. Here are the details.

Let pz: N2

+ NN be a pairing function with inverses si, sg.
Thus si(pz(x,y)) = x, sg(pz(x,y) = y). In the presence of a set
of pairing functions every integer n can be considered as a pair,
<si(n), s%(n)>. Thus aax r.e. set Wi can be considered as a set of
ordered pairs. For convenience we let <x,y> := pz(x,y). Such a
set will represent the graéh of a function M +» D iff it is single-
valued, i.e. if <x,y> € Wi' then <x,z> € wi iff z = y. Given any
r.e. set W, we can describe a procedure to single-value it which

produces another r.e. set W The procedure is to enumerate

s(i)*
"i and cancel any pair x,y iff a pair <x,z> with z # y was
previously enumerated.

Cefinition 1: Given any single-valued r.e. set W X it defines

s(i
a partial recursive function wi: EI+D by the rule that
vilx) =ye N iff <x,y> e ws(i) and ¢, (x) = l iff there is no pair
<x,y>, y € Nin ws(i)‘
This formalism can be extended to multi-argument functions
v’;: Nn + D by the use of n-tupling functions pn: NP +D.
For purposes of illustrating the relationship of these ideas
to programming languages, we shall consider a simple
programming larguage vhich can also be used to define an indexing
of partial computable functions ¢i=bq-+nq or r.e. sets wi.
The language possesses type declarations, TYPE 0 and TYPE(0 + 0)

and the following statements.

-1l-

input/output | arithmetic | control
READ xi IF xi # 0 THEN GOTO Li
PRINT Xy xX; o+ xi+l] HALT

X5+ xi-l
Each program is a type -declaration followed by a finite list of
statements. The ordering of programs is denoted {éi}. This
formalism is similar enough to the literature (say Minsky [4] or
[2]) that we do not discuss it in detail.

3.2 extended partial recursive functions.

Now with all the preliminaries aside we can turn to the problel
of the semantics of programs. The examples of §2 suggest that in
order to describe the behavior of programs of type N -N we need
extended functions §i: D ~D. We can now éefine them.

Definition 2: Given a recursive partial function oi:N - N it

defines an extended partial recursive function fi: D+D by the

conditions

(a) ¢;(x) = y=#‘§;(x) =y

®) ¢, ()t => £, (x) =L

(c) if program ¢i of type 0 + 0 returns a value y without

reference to the input, then Ii(L) = y, otherwise Ii () =1.
Remarks: . The defined functionfl characterizes the algorithm i
better than the computable functicn ¢i. Furthermore in the case
of determiﬁistic programs the semanéics of composition are
described precisely by cormposition of thafi.

The definition of \‘:hefi given above is somewhat unsatisfactor:

because it relies so heavily on the formalism. We would like a

-12- . "

characterization in the spirit of the W definition of “’1-

s(i)

Suppose we try the definition that §i is specified by single-
valuod subsets of D xD. Then a function like

£ (x) = if x = L then 0 else 1
is computable since its graph is simply {<L,0>,<x,1> | x €N},

Unfortunately the function £ does not arise as the defining
function of any numerical algorithm i, for if it did it would Se the
defining function of a computable function which solves the halting
problem over N.

The restriction which is missing is that func\:ii:ns_;?:L defined
by algorithms fromN toN are monotomic on D in the sense that
Ei(j_) QEi (x) for all x. This is because any algorithm which
" outputs a iralue_on input L cannot query its input, therefore it
must give the same value on all inputs (we prove this in Theorem 1
below).

These obsecrvations lcad us to define the partial racursive
monotone functions over P. We will actually use the term
continuous rather than monotone because the appropriate concept
for higher types is continuity which degenerates to monotonicity at
type 1.

First we describe a procedure for creating r.e. subsets of
. D x D which define continuous functions. We could present subsets
of P x D directly, call them\.Ji and single value them by canceling
aﬁy pair <c,d> if a pair <a,b> was previously enumerated and a ¢ ¢
but not bC d or ¢ C a but not d & b.

We prefer however to define these <>!;>:ie<:t:s.§i in terms of the

r.e. sets wi over N. We can do this by arithmetizingD. To conform

. M . .

13-

to our future terminology we will speak of a basis for the domain

D. The basis is the r.e. family of sets Bo=l, By= OyevesB g™ Dreooy
Using pairing functions we will interpret an r.e. set Wi as a set

of pairs, {<n ,m >} which represent pairs of basis elcments

{<13n ,Bm > | <n ,m> € wi} . Then we can make Wi monotone and

single-valued by enumerating Vi; and guaranteeing that the pair
<c,d> is cancellcd from the enumeration i€ a pair <a,b> was
previously enumerated and B, € B, but not B, ¢ B or B, ¢ B, but
not B C By. Call the resulting modified sct Ys(i)°
Definition 3: Given any single-valued r.e. subset of D xD, as

above, say ws(i)’ it defines (or partially coroutes) the continuous

partial recursive extended functionfi:lb-v D. such that
£ (B,) = By s (i)
Ei(Bx) =1 if no pair <x,y> €W

if <x,y> e w or if <,L,By> € W, (4yr and

s(i)*
Notice for future reference that we can write this definition

as Ei(x) :=|__]{!.°.y | <z,y> ew and B, c x} .

s (i)
Remarks: We specak of the total function §i:D-vD as nartizl
recursive because we can compute pzrt of it, namely the part with

numerical range. We can say that the set W "partially computes

s(i)
.the function é’i". We also imagine that some algorithm for -
function N -~ Ndefinesfi, but in this account we are nct interewicd
in that algorithm.

The functions fi:D* D are not computable in the usual senge
because they never return | as a value (i.e., 1| is never printed

on the output tape). But we can however compute with the indices

of inputs and cutputs, i.e. from i and index j for input x we can

-14-

compute a k such that}',: -fi(}.:l') . This is similar to what we
do when treating effective operators as we hext see.

3.3 effective operators of type 1

One of the ways in which real programming languages deal with
the undefined value l is by passing unevaluated expressions as
arguments to procedures. Thus in the case of a composite function
fb(fi(x),fz(y)), the arguments u:fo may come as decimal represen-
tations of integers, if §l(x) andfz(y) are evaluated, or they may
come as effective representations of integers, i.e. as expressions
to be evaluated. In the case of a purely numerical language;
expressions such as §l(x) may be considered as indices via the
S-r~n function; thusj?l(x) has the index sé(l,x).

In classical recursive function theory this treatment of
expressions and indices as arguments is usually not introduced
until effective operations of typé'z are defined. éut for this
paper we want an account of effective operations of-:all types,
including 0 and 1 because all types are important in modeling
programning languages.

Let us denote effective operations of type 1 bylyg: ED +» ED.
We can define them using a programming language formalism which
makes provision for passing names as values and evaluating names,
We can also cdefine them in terms of the wi. The latter is the
more mathematically concise approach, but it does not of course
reveal the programming language issues.

Definition 4: An effective operation of type 1,1 }: %p° + 5p°

is cefined by the partial recursive function wjzbl**D iff for all

-15=

X,y € E°, x 2, y implies wj(x) - Wj(y), in which case

© em
Yj(Yx) : "'j(x)'
Remark: Given an index j it is of course undecidable whether it
defines an effective operation on EP°. The set of indices of
type 1 effective operations is denoted !:l. It is a non-recursive

subset of N.

3.4 relationship between effective operations and recursive

. functions
It is natural to wonder whether the effective operaciong and
the extended partial recursive functions define the. same functions
from D toD. We answer this question with the following theorem.
Theorem 1:
(a) Given anyf%: p° + p° we can find a}"jz E> + Ep such
that * holds: '
* Fpens i) =¥iE .
(b) Given any YJ.: ED° + ED° we can find afi: D~ D
such that * holds.
Proof: This theorem follows as a.special case of the maigz’__éiéo:em
in § 9, therefore its proof sketch need only be examired !:-y,«“t,hose
wanting to see a simpler proof unencumbered by the £full not'a‘tional
generality required for arbitrary types.
(a) Given fi and x do the following simultaneously:
(i) evaluate x
(ii) compute £,
Iffi(j_) has a value, then output that value. If x evaluates to
a decimal value n, then compute € i(n) and output that value.

This procedure succeeds in defining an operation because fi

-16=-

is a continuous function. It defines an effective operation because
the entire procedure described is computable.

(b) Given!Tj= E -+ E and given n, first compute an index, x,
for n (say wx(y) = n for all n). Then simultaneously

(i) compute wj(x)
(ii) compute wj(xo) where x, is an index forl , i.e.
¥y -1
0 .

it wj(x) evaluates to my, thcnjf}n) -m

1f wj(xo) evaluates to m,, then put £ (n) = my.,

Now how do we know that the resulting function € is actually
a fj? It is conceivable that by using information about the
indices, Oj might compute some non-continuous function.

To show that this is impossible, consider the two possible
cases:

(a) yy(xg) = my # L and y (0 = my # L for’¥] .-'E'xo and

m ¥ om

(B) Vylxg) = my #L and yy(x) = my, m, 1.
Consider case (a). In order to decide whether wi(i) halts, we
produce a function wt(i) such that t(i) is an index for L iff w{if
diverges. Otherwise we make t(i) =, x. Now to decide the halting
problem in index we simply compute wj(t(i)). If the value is m,
. . : then y; (1)
converges. If the value is m,,

then wi(i) diverges.

In case (b), to decide whether wi(i) halts we again produce

a function Ye (i) suéh that t(i) is an index for l if vy ()

diverges and otherwise is an index for x. We can again decide
the halting problem,
Q.E.D.

3.5 non-deterministic computable functions

In classical recursive function theory, non-deterministic
algorithms,are rarely mentioned. In fact Kleene ! 7) 2does not
permit them in his trcatment of type 1 or type 2 . . :..,. 3Eut
in computing theory these algorithms are vital. Not only are they
important in the study of parallelism and attendant subjects in
the study of operating systems, but they are also important in
computational complexity and the theory of algorithms.

As in the case of the f;, we can define extended non-
deterministic computable functions §i=§ -B in at least two ways;
we can provide a new formalism with non-deterministic instructions
(such as the non-deterministic goto, GOTO L;:L, or parallel
assignments (as in [2] etc.) or we can define them in terms of
the wi. Again we adopt the second alternative, yet again for
comparison the reader might want to examine the language which
would result from adding a non-deterministic goto. Say that
GOTO leLz is allowed as a statement.

Notice that in a non-deterministic programming language, a
program, say 31, may calculate several different values, say
l,yl,yz, on input x depending on what brancn of the goto is taken.
When this happens we say that the program is indeterminate on x_

(which amounts to being pverﬁefined in our notations).

-18~

To define the non-deterministic partial computable extended
functions we proceed as in the case offi by arithmetizing a basis
and using pairing functions to interpret each W; as an enumeration
of basis pairs which define the graph ofj?i.

Definition 5: Given pairing functions p:N2 ~+NN and a basis for'l‘) 0
say By =L, By =", B, = 0,..., B ., =n,... and the ordering
on ﬁ, then the r.e. set wi defines a non-deterministic partial
computable extended function fi:’(s -»fb by the condition fi (x) =
Uis, | <z,y> €W, and B, = x}. The weak domain of, is

Ax Ig’i(x) # ~} and the domain ofg’_’:'i is {x lé\'i(x) eN}.

Remarks: (1) To computej?i on input x, f£ind the least upper bound
of the elements By such that <z,v> € W, and B, ¢ x. Notice, if
<z,y> and <z,y'> are in W; and y # y', thenf?i(x) = ", Also notice
if <Z),¥1>r <Z5.¥> € Wy and y; # Yor theni?i(“) =",

(27 These conditions clearly define a unique continuous
function on ﬁ. In the case when we know that the output is
numerical, the value is computable because we can secarch wi looking
for a pair <z,y>, L # By .

{3) Notice also that this definition allows functions of
the sort Q) =0, F(x) =, for all x # L. This may seem strange,
but we can compute such a function by the following program:

TYPE(0 + 0)
PRINT 0
READ X
PRINT X+1

END °

(4) It is interesting to notice that non-deterministic
functions fi:ﬁ *'113 do not compute "any more than" the deterministic
functions£ ;: D'~ D in the sense that given any graph {<x,y> | x,y €8
of a non-deterministic functicné?i, that graph is a subgraph of a
deterministically computed function. To find the & erministic
function we need only use the single-valuing of wi.

_'It: is, however, the case that t:l'u-.‘gi are more complex than!i
in the sense that their domains are more complex. The domains of
!1 are r.e. sets, but the domains ofj?i cannot be recursively
enumerated. To see this consider the function defingd by the
program :

TYPE(0 - 0)
READ X
PRINT 0

Y + ¢y (X)
PRINT Y+l

END
For x € N, whenever ¢x(x) diverges the output of the program will
be 0, but when ¢x(x) converges, the output will be *. Thus domain
3?- {x | o, (x) diverges}. ‘

3.6 non-deterministic effective operations

The reasons that led us to examine the effective operations
3‘_’3: ED » EP lead us also to consider non-deterministic effective
operations;_?’j: i:\m - ﬁb . We can define them via a programning
language or via the q’i‘ We choose the latter approach. The

following definitions are simplicity itself.

-20-

First to define the non-deterministic recursive partial
functions $1’N +IN, we use the W, as follows.

Definition 6: Given pairing functions|N? =N, an r.e. set Wy

defines a non-deterministic recursive partial function 31:{}4 N

by the condition
~if 3 <x,y>, <x,z> € Wiro#y.

Py ex(y if 3 <x,y> € W, and ¥, (x) # .
ifq3 <x,y> € W,
Now using the definition of I"j as a model we say

Definition 7: a non-deterministic effective operation of type 1

i;: £b+ ED , is defined by the non-daterministic partial recursive
function 3 :N+D 1ff for a1l x,y €.E° x =, y implies Ej - $j (y)
inD s in wluch case z’j (1-") 1= 'J'j (x).

Let t denote the indices of these operations.

4. TYPE THWO

4.1 type 1 inputs

We now want to examine what happens when we lift the results
for type 1 up to type 2. We identify functionals, i.e.
type (0 + 0)». 0+ 0, with operators of type 2, i.e.
type (0 -+ 0) » (0 +~ 0).

. Clearly operators and functionals are important objects in
prograrming languages. They appear in even a primitive language
like FORTRAN. Advancing from type 1 to type 2 requires new concepts
because the input objects are so different. Here are lome'bt

the important differences which affect this paper.

(1) Input objects xla D° » D° cannot be completely represented
by a unique finite notation system as can the type 0 objects in N
and D, and as can the type 1 inputs to effective operations of
type 2.

(2) Non-determinism is an essential feature of type 2 com-
putability, as we show in Theorem 3, §4.5.

(3) There is no literature which treats all the objects of‘ J_(
interest to us, so in particular there is no simple theoretical 'QA
programming language model for non-determinism (such as those citéd'
above in § 2). A

The problem of representing irputs determines our agprqach to
type 2 computability. The idea is to represent type 1 input objects
by finite approximations to them. This is also the approach taken
in treating functions ¢ :N + N as inputs to type 2 operators over N.
A finite approximation to ¢() is a finite partial function, say
F:N + N such that F() € ¢().

We can represent every function ¢:N-+ N as a limit of finite
functions Fi such that Fi+1 is more defined than Fi+l' thus O’lJPi-
(For example, see Kleene's proof of the Recursion Theorem, (7] p349)

To represent functions §: D° + D° we might also try using
finite functions P° + D°. But now we have a problem. Should we
represent arbitrary functions P° + P° or only the continuous
functions? If we seek guidance from the N +IN case we see that
each ¢:N +~ N satisfies the condition ¢(i) = 1 and is thus
continuous. This suggests we approxirate only continuous functions.

Further, and more decisive, reasons for using continuous

functions appear at type 3. Looking ahead for a moment, we can

-22=-

see that one cannot hppe to represent arbitrary type 2 objects by
monotone chains of finite approximations because there are too many
arbitrary type 2 functions. On the other hand, one might expect
our approach to continuous objects to carry over to type 2 inputs.
For these reasons (which will be elaborated in the type 3
discussion) we consider only continuous functions from P° + D°.
Definition 1: Dl = {&: D° + D° ‘| E‘ is continuous under ¢ }.
We will choose continuous finite functions as our basis for l_)i
We derote these by Bg, Bi, B%, Because these B% are continuous,
the basis {<1,1>...} represents the constant function £(x) = 1 for
all x @ N. Likewise any function { <l,y>} represents Z(x) = y

for all x € D.

. Given these definitions we observe that
Proposition 1: Every & € Dl is the least upper bound of a chain

of basis elements, i.e. Z:={JB, where B, g B .
Lj :Lj 1j+1

We observe also that the computable type 1 objects, cml, are
simply those continuous clemants of Dl with r.e. approximating

chains. This situation suggests our approach to type 2 computability.

rw

Tuarw Toe: e

e T———_

B e

- A -

4.2 discussion of type 2 computability'overD

Given the representation of type 1 inputs and thinking ahead
to defining type 3 objects, it is natural to try to define
computable type 2 objects as r.e. sequences of basis elements.

Before we can do this we must define type 2 basis elements.

A "finite piece" of a type 2 object will be a finite function

paired with a finite function. These correspond to the argument
valﬁe pairs, <x,yy, of the type 1 case. Basis elements are then
finite unions of these elenents(just as functions are unions of
sets of argument value pairs).)

For example, consider the operatorfzz Dl -lel which maps

each x1 to the function‘AN[xl(2y)], thus Ay(2y] is mapped to

_X[4yl. Some typical argument value pairs are:

Bil := <{<0,0>, <1,1>, <2,2>}, {<0,0>, <1,2>}>
Biz = <{<5,5>, <7,3>, <9l1>}l {<L1L>}>
2

913 im <{<5,5>, <7,3>, <9,1>, <10,2>} , {<5,2>}>

We can now take as basis elements unions of compatible argument
value pairs. Perhaps computable type 2 objects will be r.e.
sequences of these bases. But this is not quite correct. Con-
sider the following type 2 object:

1

Example: if x~ is defined on an even integer then 2

if x*

is defined only on cdd integers then 1

£ x* is undefined then L.

-

We can cnumcrate a sot of basis elcments for this functional
(type(0 + 0) + 0). The enumeration is quite simple, e.qg.
<{<0,0>}, 2>, <{<1,1>}, 1>, <{<0,0>, <1,1>}, 2>, ...

Clearly this functional is not computable.

If we define the computable type 2 objects by a formalism,
it will be clear what is missing. Likewise if we compare to our
definition of type 1 objects it will be clear what is missing.

We need to impose continuitx.*

4.3 definitions of tvpe 2 computable objects over I

We can now define type 2 computable objects over P. The
idea is to single-value and make continuous with respect to type 2
the subsets of basis elements, and then say that}:i(xl) =

LI{BJ.‘ <k,j> e w and B! x‘l}. The difficulty is that we
3 k &

8, (i)
must define an appropriate single-valuing procedure for sets of
basis elements (note in the non-deterministic case this subtlety
disappears).

Single-valuing can be understood from a few simple examples.
Clearly given the argument value pairs (encoded as integers of
course) in a set W, {<<0,0>, <1,1>>, <0,2>} and
{<<0,0>, <1,1>, <2,2>>, <0,3>} we have an instance of a non-single-
valued set W. This type of incompatibility is easy to recognize.
Namely, there are basis elements <B,sBp>, <B,,By> such that B, g B,
but not B, ¢ B;. .

We might also have the situation that W contains '

(<<o,b>, <3,3>>, <0,2>} and {<<1,1>, <3,3>>, <0,3>}.. In this case

the set is also not single-valued, but now we have <a,b>, <c,d>

where B, and B, are not comparable under C. However B, and B, are

t Even in the case of type 2 objects (N -+ N) = N continuity is a
crucial property; whereas in the type 1 case, if we consider func-
tions N + N then continuity disappears. At type 1 it is necessary
only for functions D +~ D. .

-2Ye

compatible in tha sense that their union, BaIJ By i3 a hasis
element. Whenever that happens, the pair Bb and Bd must also be
compatible if the dcfinition sugqested akbove i3 to work.
Intuitively we can see this if we imagine how a computation using
W might procued. Suppose the input is xl. facn the program
examines the values xl(O), xl(l), xl(Z). If the resvli: .
independent of the time taken for the oracle to resnund, tin.n it
must give the same value when xl(O), x1(2) coriverge first or when
xl(l), xl(z) converge first. But it does not if W represents the
program,

We must also consider the case where ¥ contains
{<<l,1>, <0,1>>, <0,2>} and {<<0,1>, <1,1>>, <0,3>}. Such a set
is also not single-valued because the input pair <J,1> must mean
that the basis element has value 1 on all inputs. —~ —

To single-value a set wi with respect to type 2 means to

produce a new r.e. set We which can represent an enumeration

2 (1)
of finite pieces of a type 2 object. To do this we cancel frcm
Wi those argument value pairs which are not compatible with what

is already in W Inccmpatibility among value~

s, (1)
argument pairs means that they can not all be part of the sare

function, e.g. <0,1> and <0,0> are incompatible argument value
1-

pairs for a type 1 function. In the type 2 case, two argument
value pairs, say <Bi,ai> and <Bé,5é> are incompatible iff Bi and

1 : 1 1
Bc are compatible but By and B, are not.
These examples lead us to the following definition of sirgle~

valuing with respect to type 2.
*

We can view type 1 single-valuing in the same way: we cancel an
incompatible pair,e.g. <0,1> and <0,2> are incompatible. Conversely,
finite functions are compatible iff their union is a finite function.

-26~-

Definition 2: Given pairing functions p :mz.*ﬂd and a basis for

Dl, say B%,Bi,... and an r.e. set W;, the single-valued with

respect to type 2 set, Wg (4)* is obtained by canceling an argument
2

value pair <c,@> iff there is a pair <a,b> which was previously

i are compc:cible but Bi and Bé are not.

erumerated such that Bi,B
This procedure is recursive because it is possible to decide the
compatibility condition for a finite set of basis elements.

Definition 3: Define fz:Dl -+ Dl by W as

s, (1)
2,1 1 2
S{(x7) == {B | <a,b> € wsz(i) and B, ¢ X }. 1let P be the class

of gomputable type 2 gobjccts.

Remark: Computing fi on input xl

e P! results in another

ccntinuous type 1 object, say yl, i.e. §§(x1) = yl. To obtain a
nurerical value we must evaluate yl on some type 0 input xo.
Intuitively to obtain the numerical value yl(xof given xo we compute
as follows. Compute finite segments of x1 by calling for the value
of x1 on various inputs (doing this assumes some type of parallelism

1 1 on points where it is

in the evaluation of x~ so that a call to x
undefined does not stop the comput:at:ion)..r
Simultaneously with the calls to xl, search "s(i) for pairs

<a,b> where B: is a finite part of xl obtained by evaluating xl.
Once such a pair is found, search Bg looking fer a pair <x°,y°>.
If such a pair is found, then output yo.

From the definition of thesc objects it is ecasy to sce
Proposition 2: The type 2 computable operatorsfﬁ:lbl - Dl are

continuous, i.e.j!i(lim x%) - lhn§f(x;). o

*We obtain another class of operators if we assume that x1 is

evaluated in the order called for by the enumeration of ws 1)°
2

Remark: We can also state the definition of single-valuirg and
type 2 computable operator in terms of type 2 basis elements
rather than in terms of argument value pairs. In this case the
definition of,E; has the form

- #2 U8 | kevh
where Ui is a single-valued set of indices of type 2-basis elements

. This is the approach taken in §7.

4.4 type 2 effective operations

It is reasonably clear how type 2 effective operations should
be defined. This is even done in Rogers (16]. 1In this case the
inputs are concretely represented by indices.

Definition 4: The tvpe 2 effective Qp.e.:ﬂ.ti.qnsl"g 3 ml - !:p1 are
defined ‘by those functions wj: i + N such that x El y implies
Wj(X) E2Y wj(y). Let 292 denote the set of type 2 effactive
operations.

It will be important in what follows to know that these
effective operations are continuous. We prove this now for this
special case. We also prove this in much more generality as
Lemmas in 92.So this proof is mainly expository and is necessary
only for those readers who do not want to read the general proof
or for :hése who want a simple introduction to the general proof.

Lemma l: The effective type 2 operators,1f§, are monotone, i.e.
eyt =¥i’32(x1) ¥ o).

-28=

Proof: Suppose that somae YE is not monotone. Then there are

type 1 objects x! and y! with x* £ y! but not]g(xl) c Eg(yl).

1

If x" ¢ yl, then there are basis clements Bi ' B} such that
1 2

sil c Biz and Bil c <L, 512 c yl, but not’fj(sil) e ¥ (Biz).

This is because if not'ya(xl) Elﬂa(yl), then there is some finite
part of these values for which this is true. Those finite parts
are generated by basis elements. Suppose we write

A= EB(Bil), A, = E}(Biz). Then.not A; C A,.

To complete the proof we will show that we can dse the fact
that]f} is an effective operation . and the fact that Al ¢ A, to
decide the halting problem To this end, consider the following
special irdices for Bil and Biz. Arrange a description of the
basis elements $o0 that b(i) is an index for B12 ;t oi(i) converges

and is an index for B; if ¢i(i) diverges (somewhere in the basis
1l

B, there is a pair <x,y> which is not in B, , otherwise not B, ¢
i, i L=

B. , So have <x,y> included in By iff ¢, (i) halts).
i, 1 i

Ncw consider the ways in which A Z A2 might hold. There are

two ways.
(1) 3x A (x) =y; #y, = Byix) Yy:¥y €N
(2) 3x A (x) =y Aﬂm-L yeiN

(Of course Al g_az may happen for both reasons.)
In case (1) it is clear how we could solve the halting

problem. We compute]f}(b(i)) and ask whether Al(x) = ¥y, OF

Az (x) = Ya-

In casa (2) we must be more caroeful., To decide whether f,i(i)
halts, we start computing ¢i(i) and-}'_"j (b(i)). 1If °i(i) halts we
know what happens. On tho other 1‘mnd"i"j (b(i)) returns an index
for Al or “2' We compute with this index on x and if a value y € N
rosults, then we know that d»i(i) diverges. Thus we can golve the
halting problenm.

Theorem 1l: The type 2 effective operators are continuous over the
cpo Dl, i.e. for every monotone chain xi, Yj (lim x;) = lim Yj (x5).
gr_olo_fz This theorem follows from §92 and the proof is given for
purely expository purposes. We consicer two cases.

(I)Yj(lim x;) £ lim'![j (x;). To prove this we notice that
¥F(lim xi) is a function, so we can evaluate it on y € Do. We
consider the subcases

(a) !L"j (lim x;) (y) =L T~
() ¥ im x;) (v) = z elN. o~

In case (a) we are done because clearly (1lim Yj (x1)(y) 2 1.
For convenience of expression let us write the limit function
lim }"j(xi) as ¥ .

In case (b), some finite basis B is used to compute 2z, say
1’3(3) (y) = z. But then by Lemma 1 , since B ¢ Xy for some 1,
¥y ¥ (%)) g lim¥x;) =¥, so ¥, (y) = z also.

(2) 1lim Yj (x4) '_:_Yj(nm x4)

Again we consider two cases

(a) ¥ (y) =1
) ¥ (v} =zeN
As before in case (a) we are done. 1In case (b), we know that

Yj (y) = z can be computed using some Yj (x;). But then by the

-30-

monotomicity lemma, since x; € lim x,, ¥ (y) =¥ xp) v) e ¥ (lin x;).
Q.E.D.

We are now in a position to state and sketch a proof of the
main theorem for the special case of type 2 objects.
Theorem 2:

(a) Givenéi:ml - ml we canA find aY?:!:{p - ml such that *‘
holads. .

* ’:",1‘ =yl et =$§§(y1) -’:"’?("f;lc)

(b) Given Y%xnbl + ot we can find asz_:pl - Dl such that *
holds. '

Proof: Again the reader is reminded that this proof is given for
expository purposes only and should be ignored by the reader who
will examine the proof of our-main theorem (9.2].

(a) To define 2’32. on 1nput§’i, start evaluating x and forming
(finite) basis elements while simultaheously searching for these
elements in the wsz(i) defining.:’-"i. Output the index of a procedure
for treating the basis elements as functions of type 1. This works
because fi is continuous.

(b) Given Efg and an oracle for nl € D, calculate finite
function segments of nl. These are basis elements. Find indices
for them and evaluate them with ?§. Find finite segments of the
output and put the resulting value-argument pairs into an r.e. W
set. This r.e. set will define fi because "irg is continuous.

. Q.E.D.

' -31-

4.5 type 2 non-deterministic partial computable operators

Some form of non-determinism or parallelism is necessary to
compute the most gereral class of computable type 2 objects on
arbitrary (continuous) inputs.+ For example, the functional
defined in §2.3

Yi= (120 ¢(x)) | OR| (120« ¢(xtl))
can be seen to require non-determinism because a deterministic
procedure would decide whether to evaluate ¢ (x) or ¢ {x+1)
first. If it chooses ¢ (x) and only ¢ (x+1) is defined, then the
procedure will never finish evaluating ¢ (x) so it will never
discover that ¢ (x+1) is defined.

The important question is how to treat operators which may
be indeterminate on certain inputs. On one hand we can follow
Kleene and eliminate such operators, considering them to be non-
computable. This leaves us with the subclass of determinate non-
deterministic partial computable operators.

On the other hand, we can attempt to compute with operators
which may have indeterminate values on some inputs., This lcads to

the full class of non-deterministic partial computable operatcrs.

The domain‘ﬁ not only indicates that we are considering this
new class of operators, but it allows us to define an ordering in

terms of which the new operators will be continuous. To see what

this ordering should be, consider the following simple example of

This most general class is called by Rogers the partial reocursive

operators. He dous not distinguish the deterministic and ron=
deterministic varieties. Kleena [7,9,10]) does not allow the most
gereral class. He allows only the recursive operators in Rogers'
terminology or in our terminology ne allows only the deterministic
partial computablo oporators.

-32- : T

an operator i‘on the inputs §°,§1,§3. These are dofined by:
0if x=0 lifx=1

§o(x) 2= gy (x) :=

1 otherwise L otherwise
0if x=0

§3(x) tm{ 1 if x =1
L otherwise
$@ = §0) | OR | §(1). Thus 5§y = 0, E(F;) = 1, but IF;)
is undefined. Since §° c 53 and §1 = 53 if gis to be monotone,
then we need

$gy) ¢ fay ana fap e 3@y
This can happen only if §(§3) has a value larger than all integers.
This leads us to define the ordering

Lexge” forall x €N
In this ordering the operators are continuous.

It is fairly easy to see that allowing non-deterministic
operators overﬁ provides a larger class of operators than those
over D. For example the operator | OR | cannot be made computable
over D. Moreover, this class is larger in a stronger sense than
in the type 1 case. Namely, one can prove the following theorem
due to Myhill and Shepherdson (see Rogers [17]) pp. 281-282).
Theorem 3: There is a total function f:N-+ N and a. partial

~ A
function N + W such that for some £, f =§§ (¢), but for no
0

32, £ =20 |

We will not state the definition of non-deterministic effective
operations over S in this section, nor will we state the main
theorem for the domain '5 since both are given in §8,9,and no new

ideas can be illustrated neatly by this special case.

5. TYPE THREE

5.1 comparison with other notions of computability

In the cases of type 1 and type 2 computability, our ccncept
of a continuous partial computable function on D agrees with the
usual notions of computability on N as much as possible. That {is,
in the case of type 1 objects, the §1 andgi are defined by the
same algorithms which compute 05

and 55. .

In the case of type 2 objects on N, the inputs are partial
functions from N to N, denoted F({;N). Given a ¢ € F£(h:M), it has
va canonical embedding in Dl; namely it is mapped to ¢+ defiped by
AT L

$(x) xeN

These ¢* objects are continuous. Furthermore, the computable
operators themselves, F: Q(N;N) + F(MN;%), are cont;;EEGS'on the
domain P(N;N) with the ordering ¢ defined as ¢, ¢ ¢, iff §] & 4.

So the natural generalization of type 2 computability theory
to the domain D calls for continuous objects operating on continuous
inputs. Therefore the type l-and 2 theory on M agrees with the
type 1 and 2 theory onD. This is not true for type 3 and higher
types.

In the first place, the concept of a computable object of
type n > 3 on arbitrary partial'functions is not develcped in the
literature. Kleene [9;10] has considered higher type computability
on total functions, and Platek [16] has considered a special case
of higher type compucabi}ity on partial functions. These approaches
allow discontinuous inputs. For example, consider the object fz

defined by

-34-

fz(xl);- Ay[xl(zy)] if xl is partial recursive

ky[x1(3y)] if xl is not partial recursive.
The object 22 cannot be represented in mz because it is not the
limit of basis elements of type 2, i.e. if one examines f2 on
finite inputs, the output will always be a piece of Ay[xl(Zy)];
but in the limit the basis elements may define a non-recursive
function, so the output may discohtinﬁously change in the limit.

In general at type n > 3, the number of functions which can

. be input is larger than 2’%. which is the number which can be
approxirated by basis elements.

Thus at type 3 and beyond our definition of computability
over P is much more restricted than the notion of general com-
putability over N with function oracles for arbitrary (non-
discontinuous) inputs over N as in Kleene [8, 9,10). However,
we justify this approach, via our main theorem, as an appropriate
definition for a recursion theory applicable to programming
language semantics.

5.2 role of continuity

Why dovwe consider only continuous inputs to our operators?
Historically speaking the answer is that in our original approach
t& constructing computable Scott models we first used effective
operations., We tried to extend the result to arbitrary computable
operators, and found we could succeed if we limited the inputs
to continuous objects, We justified this condition by the observa=-
tion that in "real" programming languages the inéuts are always
computable (hence effective operations model the real situation)

and these objects are continuous. Moreover, we sav the approach

' -35-

via effective operations as modeling operatisnal semantics and the

approach via computable objects as similar to Scott's work on

mathematical semantics in which the notion of continuity is crucial,
At type 3 one justification for ccntinuous inputs is that we

could find no other approach that worked.

At type 2 we offered less arbitrary rgasons in §4.1 for our
restriction to continuous type 1 inputs, but even at type 2
discontinuous inputs (such as ¢(i) = 1 and ¢(x) = 0 for all x e N)
are meaningful (and can be approximated by finite functions) and

sy . s s t
therefore our definition of computability is clearly restrictive.

6. PRELIMINARIES FOR THE GENERAL THEORY

6.1 program

In the remainder of this paper we develop a general thecry
which generalizes to all finite types the ideas that we have discuss
for lower types (computable operators, effective operators and their
equivalence). We then cover briefly (typeless) computable operators
which constitute a A-calculus model. Their study was cur original
motivation for developing a theory of computable operators of all
(finite) types. Once this theory is on hand, the typeless operators

that we were looking for can be obtained easily.

1.;\.x*.ot:her justification for coatinuity of inputs is that in a con-
structive mathematics, even if Church's thesis is not accepted, it
is reasonable and interesting to assume the weaker condition that
arbitrary functions on N are continuous because an arbitrary functio
in constructive mathematics is effectively computable; hence continu

.36~

In this scction we recall some basic notions that wa are going to
use (types, cpo's, continuous functions, etc.). A more detailed
presantation can be found for instance in [3) or [13].

6.2 types

The tvpes that we are going to rse are defined by:

== 0 is a type (it is the only basic type)

~=- if 1,0 are types then (t+g) is a type

== there are no othar types.
’ Among those types, we have selected the integer types to be defined
inductively by n+l := (n + n). 1In the literature, integers are
sometimes used to denote the "functional types" defined inductively
by n+l := (n =~ 0) [8) . Our definition is the one which is
usually used in connection with A-calculus models. Let us emphasize
that the integer types are simply a subset of all types, but
logically the other types are as good as well. Integer types are
introduced only because they often allow simplification of the
notation. Another notational convenience for types is the convention
that T + 0 + p denotes the type (1 + (g +.p).

6.3 complete partially ordered sets

Complete partially ordered sets and their use in programming
language semantics(fixed point semantics) have been discussed in
[12], [3]. We review only the basic definitions and properties
that we neeé in this paper.

== a cpo (complete partially ordered set) is a partially

ordered set with the properties that:

(i) Each ascending chain has a least upper bound.

(ii) There is a least element, denoted by J (bottom).

== the appropriata functions between cpp's D and D' arc the
functions that respect least upper bounds of chains. They

arc callced continnous functions., The cot of all continuous

functions from D to D' is itself a cpo urder the pointwise
induced partial ordering and is denoted by [D,D']. Given a
cpo 0°, wo can dufine for cach type 1.~ ¢ a cpo D' ~ ©

T 79 e 0%, 0%,

inducti¥vely by D
== Tho product of any numbor of cpo's is ohtained by taking
the cartesian product of the underlving sets with the com-
ponentwise induced partial ordering.

== Continuous functions with several arguments can be viewed
as functions on iterated function spaces since there 15 a
continuous natural isomorphism (D»°',D"] % [D,[D',D"]] for
any cpo's D,D' and D". We will therefore allow writing
u(xl,...,xn) instead of a(xl)(xz)...(xn), but we do not intro-
duce explicitly a "many-argument type® since it is easier for
the formal trcatment to have only one-argument functions to
consider.

6.4 two remarks

(I) In the previous sections we have encountered two cpo's, namely

~

D° = ,'};] and ne =

kezd)

D°® was used fo;'daterministic operatorz, £°for ncn-determiristic
operators. For the general theory, we work abstractly wigh a cpo
D°, thinking of it to be either B° or B°. All restrictions that
we impose on D° are properties that D° and §° have in common, so
that our theory applies td boﬁh éeterministic and non-deterministic

operators, depending on the actual choice of D°.

-38-

(II) All our notions of computable objects will be based on an
indexing of r.e. sets, {“5)' We do not specify how this indexing
is obtained. However, we require that a canonical procedure for

enumerating each wj be given.

1. COMPUTABLE OPERATORS OF TYPE T

In this section we introduce the notion of computable operators
of arbitrary type t (with continuous inputs). We first generalize
the idea of an r.e. basis (as discussed for low types) to arbitrary
type T. A computable operator of type T will then be the limit of
an r.e. chain of basis elements of type t.

7.1 bases

The six properties (axioms) that we require below for an r.e.
basis B of a cpo D are not at all independent. But we want to
present them in a form in which they are actually needed to
guarantee that (1) B is r.e. and generates D, (2) we can compute
with elements represented by r.e. sequences of basis elements and
(3) the continuous function space of two cpo's with r.e. bases has
itself an r.e. basis.

Given a cpo D we define

== A subset X c D is called compatible (what we actually mean

is that the elements of X are compatible) if X has an upper

bound in D. '

== A subset B C D is called an r.e. basis of D if

1) B is an r.e. subset of D (B, L'Bl'Bz"";
2) Bach element x € D is the lub of a chain of basis

elements

e i e

-39=

3) For all chains {x;} ¢ D and all j e N:
Ux; 2 Bj = there is an i s.t. x; 2 8y
4) It is decidable whether for j,k € N:
(a) Bj c By
(b) {Bj.Bk} is compatible

5) For all bl""'bn € B:

(bl""'bn} is compatible €= bi'l are pairwise compatible

6) If {Bi,aj} 1s compatible then we can find a k € N s.t.

By = U8y, 85}
If we list all elements of D° (or De respectively), we obviously
obtain an r.e. basis for d° (or B° respectively). What we want to
show is that DT(ﬁFresp.) has an r.e. basis for all types t. This
follows immediately from the theorem below. Rememb;r that p¥ * ¢
is defined to be [D',D%], i.e. the space of all continuous functions
from D' to DY.
Theorem 1l: Let D and D' be cpo's with r.e. bases B and B'. Then
we can construct an r.e. basis B for D := (p,D'].
Proof: We think of basis elements as generalized finite functions.
They can be described by a finite collection of functions which
*only have a value on ane arqyment', let us say on b € B we want
the value b' € B'., However, in order to make such a simple function
continuous we have to require at least that for all x 2 b we get
also the value b'.

Formally now, we defihe
(b,b') 1= x € D. If x 3 b then b' else 1'.

and prove some properties about this definition.

t In our general treatment here we use B to denote a basis and B
to denote basis elements. This should not be confused with our
earlier notation where we used BI and I to denote basis elements of

o and ' respectively.

=40=-

Lemma 1: For all b € B, b' @ B': (b,b') is an element of D.
Proof: Axiom 3) for B.

lemma 2: Each monotonic function m:B + D' extends uniquely to a
continuous function £:D + D',
Proof: 1If x -Ubi' then £(x) must necessarily be equal to lllm(bi).
We have to show:

(1) £is well defined

(i) £is continuous.
Let x; = Ll bi and x = lﬁb ‘'such that (xi] is a chain and x is its
l.u.b. For all i,% we have bi €x; Cx= UbK. Axiom 3 then implies
that there is a k such that bi c bX. Therefore U m(bi) c Um(b).

On the other hand, bk

cx= L!x!L for all k implies that there is
an i such that b c xi = lei (Axiom 3). Using axiom 3 once more
tells us that there is an & such that b = b". Therefore

lil‘n(b) = 1LJ m(bi) and (i) and (ii) follow.
)

Let b; = (b;,b;') for i = 1,...,n.
Lemma 3: The foilowing statements are equivalent:

(a) {51,...,Sn} is compatible.

(b) Si's are pairwise compatible

(c) U(Sl,...,sn} exists.
Proof: (a)=> (b) and (c)=> (a) are trivial. We show z (b)=) (c).
Assume that the S‘i's are pairwise compatible. Then for all b € B, ,
the Si(b) 's are pairwise compatible, hence compatible (axiom 5) and
therefore their lub (Si (b))} exists (using axiom 6 repeatedly).
The function m:B + D' defined by m(®) := U(Si (1} is monoi;on:bc and
therefore extends uniquely to a function #:D + D', '€ fs the lud
of {Byse..0Byle

Now consider b, = (b;,b,') for i = 1,2,
Lemma 4: (51,52) is compatible iff({b;,b,} is not compatible or
. {b;',b,'} is compatible).
Proot:
=%: Suppose {51,52} compatible and {b,,b,}compatible. Then
(B;u b,) (byjuby) 2 by'sby', dee. {b;",by'} is compatible.
—3 (i) suppose {b;,b,} not compatible. Then the function
M. If x Db, then b,' else (If x 3 b, then b," else L') -
is continuous and 3 b,,b,.
(ii) Suppose {bl',bz'} is compatible. Then
(k. by'y by') 3b,,b,.

With these preliminaries it is easy to define a basis B for D. We
simply enumerate all U{ (8, ,B. '),...,(B. ,B. ')} that exist (whether
1 j1 *h In
these lub's exist or not is decidable by lermas 3 and 4). We
have then to check the axioms for an r.e. basis. From the con-
struction and the lemmas, the axioms 1), 4b), 5) and 6) are
immediately verified. We only give the verifications for the
remaining 3 axioms.

axiom 2) Given £#e D. By continuity, f(Bk) = UBk ' shows that &
i
is the least upper bound of the set {(8,,8, ') | x,i} ¢ B. since
i

B contains all lub's of finite sets of basis elements as well, we
can construct a chain'{sz) which approximates 2.

‘axiom 3) lLet B, = (b b, ') for i = 1,...,n. And let:({x]}Bea
chain in D. ‘

-2~

Ux, oWB,,....5.}
== UXx; 2b, fork = 1,...,n
<= UX, (b)) 2 b, for k = 1,...,n (definition of 5,)
> 3i %) b for k = 1,...,n (axiom 3 for D')
&> 31 % 3 UB,,....5).
axiom 4a) Llet again Si = (by,b;') for i = 1,...,n+m.
UGB, ,en B} £ UGB,y 0een iByynd
<> b; £ (B 3seesb) for i =1,...,n
& b cub,,, ...B)by for i=1,...,n.
< b'c U{sn+1(bi)""'sn+m(bi” for i = 1,...,0.
The last statement is decidahle since we have to compare only

basis elements of B'.

7.2 definition of the computable operators

Starting with a cpo D® which has an r.e. basis B®, our theorem
guarantees that each D' has also an r.e. basis B'. The computable
elements of D' are going to be those which are represented by an
r.e. set of basis elements, i.e. those which are the lub of an r.e.
set of basis elements. If we think of p* as being'%T then each
such set has a lub. However, if p® is D' , this is not true. So
for the general theory we have to single-value the wj's with respect
to the enumeration of the basis B'. The single-valuing procedure

gives us for each wj an r.e. set W, () which we will write as U; o
T

. It is defined by:

== Enumerate sz xl,xz,...

--,U§ s Y e¥oreae is obtained by
(a) Yy = X

®) X 1f {8F ,ec0eBY /BY
n+l X,
Yn+1 -{ yl Yn

} is compatible
n+l
Yo otherwise

-43-

U; is clearly r.e. and (8; | x e U;} “is compatible (because
each finite subset is compatible). If(Bk | x e wj} happens to be
compatible then U; = wj'

We now can define the operator with gddel number j of type 1,
5;, by:

fj 1= U{Bk | x e uj} .

We call those the computable operators of txg 1, cp' :=

{ §; | 3 e N}). For a concrete choice of p* (p" or), we obtain
respectively the deterministic ox the non-deterministic computable
operators of type T. '

We have discussed these objects oﬂ lower types. Let us now
indicate how we can compute with those objects of arbitrary type.

We first have to decide on how we want to represent an input
of type T. If it happens to be a.E; then we know that the index i
defines the single-valued r.e. set U which defines £ ° by 2 5T =
LI{Bk | x e Ui} But now remember that the basis B' generates D',
thus all elements of D' are of the form £ = U{BT I k € s}, where
sc hlis some single-valued subset of M. Equally, for each j, the
operator a° :=5§; * 9 (£¥) is of the form 9° = IJ(S% | x € O}for
some O gnd. The question now is: how do we "compute O from S"2
We use the following model (which is used also by Rogers to define
enumeration operators). We think of S as being presented element
by element. Then from each finite piece of S we obtain a finite
piece of the “output set" O. So suppose that at time n we know
(sl,...,sm} € S. We then add to the output set an index % with
the property Bl (U{BT R B; * °))(U{B; ,...,B; }), where

m
k. is the r-th element 1n the enumeration of U{ +0o.,

-44-

Remark: The output set O obviously depends on the order in which
S is presented. However, the operator described by O depends only

on S.

It is now easy to see that if S is an r.e. set, then we can
find effectively from its index i an. index k of the output set
(which is thus r.e. also). This can be done for all types. 1In
addition, for type 0 we can do more than give the index of an
element. We can partially compute the element of D° that is
denoted by an index. We have discussed this in detdil earlier in
this paper.

8. EFFECTIVE OPERATORS OF TYPE T

8.1 generalized partial recursive functions

The idea of effective operators is to let higher type objects
be induced by partial functions (deterministic or non-deterministic)
on the indices (programs) of the arguments. Consequently, an
effective operator.is not defined on all continuous functions of
appropriate type as this was the case for computable operators.
However, we will show in the next section that the two notions of
operators of arbitrary type are equivalent. In particular, this
inmplies that eacb effective operator has a unique continuous ex-
tension to arbitrary continuous inputs. Again, we develop the
theory abstractly so that it applies to both the deterministic and
the non-deterministic case, depending on the actual choice of D°.
Pormally, we requir; for D°® that

ABATLE L W T

-45-

1) D® is a cpo
2) N is embedded into D°, i.e.
N €& D°
k+— k
3) It is decidable whether {k,%} is compatible
4) k,4 compatible implies that kui exists.
We first define n-argument partial recursive functions with valiu:s
in D°. This allows us to treat deterministic and non-dctcrrrnis.
partial reaursive functions simultaneously (it all depends on the
actual choice of D°). We define these functions using the indexing
of r.e. sets {wj} that we used before. In addition we assume that

2

a pairing function p“. on the integers is given. We write <xg %53

for pz(xl,xz) and define inductively CKyreoo s X X g3

<<x1,...,xn>, X >. For computable operators of type T we had

n+l
to single-value the Wj's with regard to the basis of type t; here
we have to single-value the Wj's with respect to D® and (n+1)~-tuples
given by the pairing function, just as we did in §3.1 for n=1 to
define wj.4 The r.e. set obtained from single-valuing w& in this
vhy is denoted by V?. It is defined by:
Vg: yl,yz,... is obtained from

sz Xy rXgrees by:

@)y, =%

() Yy if Y41 = Ppee--ePp/P and
32 < k: (Y, = <Pys---sP,,q"> and.{g,a'}

Y -
k+l not compatible.

X+l otherwise.

-46-

This single-valuing has the effect that for all XyresssXy e N,
Ufx | <XyreeesX k> € Vg} exists. This allows the definition of
w'; : Nx... xN - Dp°
n times

to be
Wg(xl,...,xn) i= LI{k | <xys.000x./k> € V?}.

That these generalized partial recursive functions have the s-m-n
property can be seen immediately. All we really need are the si-
functions. Remember that these are recursive functions with the

property that for all j, XgreeesX,

n+l

n
Wj (xo,...,xn) = wsl (xl,...,xn).
n

(34%g)

8.2 definition of the effective operators

Por the inductive definition of the effective operators of
type T we have to know what kind of arguments this type expects.
Notice that each type t has a unique decomposition

T =T+ Ty > eee * Tp * 0.

We call p the length of T, |t] := p; it is the number of arguments
that T expects. In the following, Ty for i ¢ |tv| will refer always
to the decomposition of t.

We can now define E.C N, the indices of effective operators

of typet, and e £ e', the equivalence relation between indices

of effective operators of type T, inductively by:

== @A) E*=Pk; (i) e =, e' & yg =yg,
— (Weer' "% N iff

(a) Y x e ETs S}q"(e,x) e 9 and
(b) ¥V x,x' € E% x 5 X' = S%ql(e,x) L s%cl (e,x')

(44) Por e,0' € ET * Y4

-47-

e'é&> Y xe€E": S}a‘(e.x) z st

(-] lol(e.’X)

e ET"NG

The effective operators of type 1, ED', are obtained as follows:

-- ED° = {I: € D° | e € E°} where ¥ = ¥2
- " "% = ¥ "% " - ED° | eee %

T + 0 g
where?’e (Y:() = ¥ 1

SVal

Remark: (a) For e € E', %, € E i(x= Ty o+ e 2T, > 0

(e,x)

T T
&f;(ifxl) e BN =Vl x)
1

(b) For e,e' € E': .

T,
- i, .n, - = P
ez e = v X, @ E 71 volxyseeasxy) Vv (Xyreeaexy)

The effective operators provide a notion of higher type computabilif
which is probably the one that we expect when we éhink of a
programming language. If a function arises as an input for an
operator, it is given by some kind of a program, or equivalently
by a gbtdel number. If we compare this notion of computzbility with
the computable operators introduced earlier, there are two
immediate observations. On one hand, effective operators seem to
be more restricted because they can take as arguments only other
effective operators. But on the other hand, computable operators
seem to be more restricted because they are required to be con-
tinuous. That the two notions of computability are in fact

equivalent will be shown in the next section.

-48-

9. EQUIVALENCE BETWEEN COMPUTABLE AND EFFECTIVE OPERATORS

9.1 summarv of notations

This short summary is intended to ease the reference to the
notations that we have already introduced. The set of computable
operators of type t is defined to be CD' = { §§ | 3 €W} with
extensional equality relation (with respect to arbitrary continuous
arguments) . §; is obtained by’f; 1= U{B; | ke U;] . The B;'s
are basis elements of type Tt and U; is an r.e. set obtained from
"j by "single-valuing"”. This has the effect that the lub in the
definition of.§; exists. The set of effective operators of type T
ED' = (EZ | e € E'}) has been defined inductively. Each t has a
unique decomposition T = Ty P oeee T 0. If x; € ETi (i.e. xq
is an index of an effective operator of type ri) and e € ET, then

H’;di-i) .- (1';:) = R0ty eee X))

w: is a (generalized) partial recursive function with values in D°,
It is defined by w:(yl,...,yn) = Uk | <ypreeery k> € vg) .

Vg is the r.e. set obtained from wj by single-valuing for the
purpose of making the lub exist.

9.2 the main theorem

We are now ready to show that the two notions of higher type
computability are equivalent for both deterministic and non-
detarministi? operators respectively. For D° we clearly require
all properties that we required when we introduced computable
operators on one hand (basis) and effective operators on thg other
hand (embedding of N into D°). When we use common properties of

D°® and %‘ that we have not formalized for D°®, we will say 8o.

- =

The thcorem below states that the systems {CD'} and (ED'} are

isomorphic (with respect to application).

Main Theorem h
an ‘hcorem .
Assume that recursive functions E° = N\ &= N
9o
% ° °
are given with the property thatl = §q (e) 2nd f ‘fh Gre

Then there are for each type 1 recursive functions qt and hT H

N .__'L..)N
BT-/ T

with the properties

(I) For all e € E* 9 - X € ET, y € E°:

+ 0 g al + 0 g
r (L4 -'.‘L’ = 3 (e)(F o) = =2

e 9t + 0 95 &)

(II) For all j,i,k € N: ™~
T *+ 0 o U‘l"’d
B, b - P TEC ST s

(III) 9. and hT induce an equivalence between ED' and CD'.
Remark: The functions 90 and h9 (which must .induce the identity
CD°® = ED°) can be given easily.for both deterministic ard non-
deterministic operators, so the theorem can be applied in either
case.

Proof: The proof is by induction on the structure of the types.
We assume that the theorem is true for t,0,0;, where

o ; 01'¢ cee O ¥ 0, and show that it is true for type 1 + o

The easy part is to show that each computable operator gives

rige to an effective operator. We do this first:

-5Q~

(a) definition of h,

Set h_ , _(3) t= index of ¥"*) vhich satisfies
g g
n+l v FT 0 3T 1 n).
'l (x,xl, eee 'xn) H Ij Egt (x) 'Egdl (xl) goce ,igon (xn)
and show:
T.+0
—h L) eE

-~ (II) of the theorem.
+These are straightforward verifications. .

(b) definition of 9% + ¢

Foreepe T9, 8T should be equivalent to¥T "9, 1f we
9r.+0 (e) e
apply l‘: * 0 o effective operators corresponding to hasis
elements of type 1, we can determine exactly what - *o (e) should
T+0

be. What is not obvious however is thatlf; * 9 induces a
continuous element. We first prove two lemmas which expreai
exactly this fact.
Let c(k) be a canonical index for {k}, i.e. Wok) " {x},
T - 8T
therefore ic x) By -

+ 0 i

(4]
lemma 1: (monotonicity) For all k,j €N, e € E' ' Xy €E
8 £ 25 => v (el xpaeeix) 29T M () ixg0eeeiny)
. . T+ 0 %4
Lemma 2: (oompactness) For all j eéN, e € E " Xy e E
there exists a k € N such that B; c !; and

W 0D xps e xg) = VBT M G)xg e xg).

Proof of lemmas: We show that the negation of each of the lemmas

allows us to solve the halting problem (wz(z)i). Therefore the

proofs are not constructively valid.

-51-

Proof of Lemma l: Assume that there exist k,j €N, e e E* ™~ °

; and

and
%3 T

x; @ E ~ such that 8, = #
Vi (e k)) yxpae k) g VR G)xpaee k)
We define an r.e. set "v(z) for each z € N by:

“v(z) 3 output k.

If ¢,(2z)+ then output U;.

Properties:

T
== Uy(z) * Yv(z)

(o ~Ej = ¢, ()¢

v(z)

T T
-2 = Bk‘"“z("“

v(z) .
Por deciding whether 0,(2)* we can ask simultaneously:
(a) ¢ (2)+ 2

) V26 () xpaeeex) VI L G ixye) 2

®Remark: If we use P°® or D° for D® then (b) is selitdecidable, so
A4 ~

we have what we want. For an abstract theory, a sufficient

condition for D° to ensure semidecidability of (b) would be for

instance the requirement B® = D°,

Proof of Lemma 2: Assume that there exist j eN, e e E* ~ 9,

4]
x4 € E i such that for all k € N:

B £ 3] = v2* i (et ixpae) © VDB) ixp e).

This means that no "finite segment" off; is sufficient for \.';:ﬂ‘.
therefore U; must be 1nfinite;U§z k;,kz,k3....
For each z € N we define an r.e. set Woz)?

For n € N do

If ¢,(2)4 5" then output LI

l
v

-52=
- Remark: Qz(z))‘:" means: Qz(z) does not converge in at most n steps

=n+1
and ’z(?)* means ¢:(z) converges in exactly n+l .steps.

S;V.P‘.‘rogerties :
e Y, . =
;_' Uviz) ™ Yv(z)
T T

==, (2) -Ijﬂoz(z)f .
T T T T -
'»'--fv(:) - U(Bkl,'..:!ek')\c Ij H .z(z)‘
For deciding whether ¢z(z)+ we ask simultaneously :

(a) 0‘(!)$?

®* 2 (vi2))xyaeeeexg) 2 W0 G kg e X2
*Remark: As for Lemma 1, question (b) is semidecidable for both
P* and D°.

We now define g

For ¥ * ¢
9% + 0

T - c(e) in the way we have already outlined briefly.

(e)' we enumerate all basis elements that we obtain from
consideting?.: o applied to effective operators corresponding to
basis elements of type T. The lemmas that we have just proved will

then be used to show that g (e) sas the desired properties.

T+0
Formally now, we define W for all q € N by:
: 9 » o
W__ 1 enumerate all i € N such that
9 + oW

B] + © = (8}.83) with r @ U3, where p(X) = g, (s} (qh, (c(K))))

" Proposition: For all e € ET * %

uvt*te -W
9 s ol®) . 9, gle)

.

Remark: This proposition tells us that all basis elements that we

have enumerated are indeed available for &' * ¢ (e)*
9 + gl®

Proof: We show that (s{; °.BI;) is compatible for all i,,i, €

Yar o+ gte).

-53=

Let 85 T ° = (87 ,8%) and assume that {87 ,8%) is compatible.
i ky'try k1" kg

*

Let k be such that g} = U(a;l,e; }. We have to show that
2

{B:I.B‘;; is compatible (§7, Lemma 4).

1
Let p(kj) = 9, (s, (e/h (c(kj)))). Since ij e WgT CK
sgj Eﬂ(xj)' Using Lemma 1 we can show that 3° plky) € Ec(k) since

T T
Bkj € By. Therefore B c'?lvi(k) for j = 1,2, i.e. {srl,sr; is

compatible.
So now we know that for e € E' ~ °,
£ =UB; | xew }.
9+ gle k 9+ gle)
We have to show that L S satisfies (I) of the theorem which is
equivalent to saying:
o
-roraueer‘*",’xes‘, xiexz1
T +
£ @)(})-w L (ke%ypeensx)
9r - o(e) g, (x) e & n

where £ := (;].

L)"""qancx:

T -+ =T =0 T T T
Since Igt N a(e) (i (x)) (gt'*. a(e) (Bk) l Bk E§9T (x)}
T+0 (] T T
and§ . do (ak) «-u(!p)| By €8,
we deduce
T+ 0 T
.f 1 . a(.) (I (x)) (.%) = U(Ip(l) (f)l Bl c .§ (x))

s U{wn+1(h (c(l)),xl,-..,x) BL cs q (x

Our two lemmas finally tell us that this is equal to -
*2’1 (x XKoo ‘.,th which' 'concludes the.proof of *,

=54-

The only thing left in the proof of the theorem is (III),

i.e. that hy , s and g, , 4 induce an equivalence between oot "¢

ana ED° ~ °. This is immediate since both sets are defined with
extensional equality and furthermore, inequality of two elements
of CDT ra shows up on computable arguments (even on basis

elements) of type T.

10. TYPELESS OPERATORS

We mentioned earlier that we were led to investigate computable
operators of arbitrary type in the process of constructing a
M=calculus model which (1) contains only computable objects and
(2) contains "all"™ computable objects of finite types. If we
now use the notion of computable operators that we have defined,
the construction of a computable model containing all those
computable operators of finite type becomes very easy. Roughly
speaking, we simply take all elements which are limits of r.e.
sequences of finite type basis elements in thé X-calculus model D.
To be somewhat more specific without going too much into details,
let us mention that the A-calculus model D over a cpo D° -- as
discussed in [3) -- is constructed essentially the same way as
the model originally given by Scott [20], except that everything
is done over cpo's rather than continuous lattices. Thus, the

. dcalculus model D is a cpo and the finite type domains D' are
(homomorphically) embedded into D by the continuous functions
L D' + D. If we define B := (‘18; It e Types, j € N}
(actually it is sufficient to have only images of integer type,

i.e. (tnsg)), it can be shown that B is an r.e. basis for D.

«58-

Once we know this, we can single-value the Hj with respect to this
(enumeration of the) basis B. Let us denote the resulting r.e.

set by Uj. The j'th typeless operator is theq defined by

fj i= [Bk| k e Uj) and CD := {fj | 3 e N}. Obviously, if we
restrict the Ij's to computable arguments, the extensional
equality on CD remains the same. This allows us to verify that

CD is indéed a A-calculus model. That it ;ontains all finite type-
computable operators is immediate from the definition. We can call
it computable for several reasons. Not only can application be
described by an effective function on the indices of the elements
of CD, but the elements themselves can be subject to computations,
for instance their O-component in D° can be computed. More
generally, the projections RTz CD +.CD' are all computable, so we

can get a pretty good insight into the nature of‘thegg objects.
. R N

Acknowledgments

We would like to thank Helene Jacobowitz for her careful

job of typing and improving the manuscript.

(11

(2]

(31

14)

(s}

(6]

n

(8]

{10}

11]

PR |
REFERENCES

Church, A, The Calculi of Lambda-Conversion. Ann. of Math.
Studies 6, Princeton, 1941.
Constable, Robert L. and David Gries. On Classes of Program

Schemata . SIAM J. Computing, 1, 1, March 1972, 66-118.

Egli, Herbert. An Analysis of Scott's A-Calculus Models.

TR 73-191, Cornell University. Dec. 1973.

Egli, Herbert. Programming language Semantics Using
Extensional A-Calculus Models. TR 74-206, Cornell University.
Gandy, R.O. Computable functionals of finite type I. Sets,

Models and Recursion Theory, ed. by J.N, Crossley, North-Holland,

1967, 202-242.
Harrison, J. Equivalence of the effective operations and the
hereditarily recursively continuous functionals , Foundations

of Classical Analysis, report of Stanford summer seminar, 1963,

Appendix vc.

Kleene, S.C. Introduction to Metamathematics, D. Van Nostrand,

Princeton, 1952.

Kleene, §.C. Countable Functionals , Constructivity in Mathe-
matics, ed. A. Heyting, North-Holland, 1959. 81-100..
Kleene, S.C. Herbrand-Gddel-style Recursive Functionals of

Finite Types. Recursive Function Theory, 1962, Providence,

49-75.
Kleene, S.C. Turing machine computable functionals of finite

type I, logic,Methodology and Philosophy of Science, Proc. 1960

International Congress, Stanford University Press, Stanford,
California, 1962, 38-45.
Kreisel, G., D. Lacombe, and J.R. Schoenfield. Partial

(12]

[13]
(14]

(15]

(16}
(17]

(18]

(19]

(20}

(21}

recursive functionals and effective operations , Constructivity
in Mathematics, ed. A. Heyting, North-Holland, 1959, 290-297.
Milner, Robin. Implementation and applications of Scott's

logic for computable functions , Proc. ACM Conf. on Proving

Assertions About Programs, Los Cruces, New Mexico, 1972, 1-6.

Milner, Robin. Models of LCF , AIM-186/CS-332, Computer Science
Department, Stanford University, 1973.

Minsky, Marvin.Computation, Finite and Infinite Machines.

Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
Park, David. Fixed Point Induction and Proofs of Program

Properties. Machine Intelligence 5, American Elsevier, New

York, 1959, 59-78.

Platek, Richard Alan. Foundations of Recursion Theory. Ph.D.

thesis, Stanford University, Jan. 1966.

Rogers, Hartley,Jr. Theory of Recursive Functions and Effective

Computability. McGraw-Hill, New York, 1967.

Scott, Dana. The Lattice of Flow Diagrams, in Lecture Notes
in Mathematics, 188, Symposium on Semantics of Algorithmic
Languages, ed. E. Engeler, Springer-Verlag, 1970, 311-366.
Scott, Dana. Outline of a Mathematical Theory of Computation.

Proc. 4th Annual Princeton Conference on Information Sciences

& Systems. Princeton, 1970, 169<176.
Scott, Dana. Continucus Lattices , Proc. Dalhouise Ccnference

on Toposes, Algebraic Geometry and Logic, Lecture Notes in

Mathematics, 274, Springer-Verlag, Berlin, 1972.
Scott, Dana. Data Types as Lattices , lecture notes in
Amsterdam, 1972.

{221

[23)

[24]

[25]

Scott, Dana and Christopher Strachey. Toward a Mathematical

Semantics for Computer Languages. Proc. of the Symposium on

Computers and Automata, Polygechnic Institute of Brooklyn, New

York, 1971, 19-46.

Stenlund, S. Combinators, A-terms, and Proof Theory. D. Reidel

Publishing Co., Dordrecht-Holland, 1972.

Strachey, C. and C. Wadsworth. Continuations, A Mathematical
Semantics for Handling Full Jumps , Oxford University Computing
Laboratory, Technical Monograph PRG-11l, 1974.

Strong, H.R. High Level Languages of Maximum Power. Confgrence
Record 1971, 12th Annual Symposium on Switching and Automata

Theory,'zast Lansing, Michigan, Oct. 1971, 1-4.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif

