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Public health emergencies require rapid responses from federal, state, and lo-

cal authorities to prevent widespread mortality and morbidity. However, ex-

isting response plans seldom account for the variety of risks and uncertainties

inherent in emergency scenarios. Our goal is to construct models that will help

policy makers respond effectively to two different potential emergencies: an in-

halational anthrax bioterrorist attack and an influenza pandemic. We present

a three-echelon capacitated distribution network model of the United States’

antibiotic mass-dispensing system for responding to a large-scale anthrax at-

tack. We construct two inventory allocation policies and present a numerical

study that compares their performance to that of planned allocation methods.

We also present detailed simulation models of an antibiotic-dispensing clinic

and the multi-echelon supply chain that operate to support such clinics. Along

with the results of our earlier numerical study, these simulations can be used to

demonstrate the importance of flexible clinic staffing plans, show the value of

centralized command and control during emergency response operations, and

provide other public health policy insights. Finally, we investigate the value of

using the commercial pharmaceutical supply chain to dispense antiviral medi-

cation during an influenza pandemic. We construct historically-based regional

antiviral demand scenarios, simulate the performance of the supply chain, and



describe inventory allocation and staffing models that could be used to improve

system operations.
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CHAPTER 1

INTRODUCTION

Public health emergencies require rapid responses from federal, state, and local

authorities to prevent widespread mortality and morbidity. However, existing

response plans seldom account for the variety of risks and uncertainties inher-

ent in emergency scenarios. Our goal is to construct models that will help policy

makers respond effectively to potential emergencies.

Throughout this thesis, we use the phrase “public health emergency” to re-

fer to events that are caused by biological agents, including viruses, bacteria,

and other toxins, and we focus on events that could occur in the United States.

Examples of potential emergencies include naturally occurring events, like in-

fluenza pandemics, as well as deliberate bioterror incidents, such as a smallpox

or anthrax attack. Since it is impossible to anticipate and prevent all public

health emergencies, preparedness is of utmost importance. Public health emer-

gency preparedness involves creating response plans that minimize the impact

of an emergency event and ensure that the individuals and organizations that

will be called upon to respond have the requisite resources, training, and tools.

In the United States the Centers for Disease Control and Prevention (CDC) coor-

dinates preparedness efforts at the national level; but states, counties, and some

private organizations also dedicate significant time and energy to preparedness

planning. The CDC provides funding and guidance to the states and some

cities; the states, however, are largely responsible for managing the response

to emergencies that affect their populations.

This thesis will present models and simulation tools that will contribute to

emergency preparedness at the federal, state, and local levels. We have de-

1



signed quantitative methods to help policy-makers better understand and plan

for emergencies. We focus on two particular types of emergencies: a large-scale

inhalational anthrax attack and an influenza pandemic. These two emergencies

were chosen because they have been designated as significant risks to the pop-

ulation of the United States and because they require very different response

systems.

Anthrax has existed as a disease in humans and animals for hundreds of

years [Inglesby, 2002, Cieslak & Eitzen, 1999]. It is caused by the bacteria Bacil-

lus anthracis, which forms spores that can survive for decades in soils [Cieslak &

Eitzen, 1999]. Humans can contract anthrax in three ways: by inhaling, consum-

ing, or coming into prolonged contact with anthrax spores; the disease is not

contagions between humans [Cieslak & Eitzen, 1999]. In nature, these spores

tend to clump and bind to soils, mitigating the likelihood that humans will con-

tract the disease, but it is possible to produce weapons-grade anthrax powder

with a high concentration of spores and low electrostatic charge to minimizing

clumping [Cieslak & Eitzen, 1999, Inglesby, 2002]. The existence of weapons-

grade anthrax has made the possibility of a large scale inhalational anthrax at-

tack one the most serious bioterrorist threats facing the United States [Hender-

son, 1999, Cieslak & Eitzen, 1999, Inglesby, 2002].

Inhalational anthrax begins with an incubation period of 1 to 6 days, fol-

lowed a prodromal phase during which cold and flu-like symptoms appear

[Cieslak & Eitzen, 1999, Wilkening, 2008]. Major organ failure follows not long

after. If treatment is not begun within 48 hours after the onset of symptoms,

death is a likely outcome for as many as 95% of patients [Cieslak & Eitzen, 1999].

An anthrax vaccine has been developed, but it is not widely used due to lim-
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ited supplies and low production capacity, as well as concerns about adverse

reactions [Inglesby, 2002]. The recommended treatment for inhalational anthrax

is a 60 day regimen of antibiotic prophylaxis [Brookmeyer et al., 2003, Inglesby,

2002]. To minimize the number of mortalities following an inhalational anthrax

attack, the CDC’s goal is to ensure that all individuals exposed to anthrax spores

begin a course of antibiotic prophylaxis within 48 hours of the time the attack is

detected [CDC, 2004].

Influenza is a very different type of disease. It is caused by the rapidly mu-

tating influenza virus. There are two main types of influenza, A and B, but

many different strains of the virus exist and new ones appear each year [Barr

et al., 2010]. Most strains are seasonal, which means that they are contagious

and can be fatal for high-risk groups, such as the elderly, the very young, and

the immunocompromised, but for most of the population, the severity is rela-

tively low [CDC, 2010]. A pandemic strain of influenza is different from sea-

sonal ones because of its much higher rates of severe complications and fatal-

ities, combined with an unusually high reproductive rate so that the disease

spreads much more quickly than the seasonal strains.

The World Health Organization (WHO) coordinates ongoing international

influenza surveillance to identify the current strains of influenza circulating in

the population [Gerdil, 2003, Barr et al., 2010]. Every six months, the WHO

compiles the results of this surveillance to identify the strains that will likely

be circulating during the upcoming influenza season [Gerdil, 2003, Barr et al.,

2010]. In the Northern Hemisphere, the influenza season runs from approxi-

mately November through April; in the Southern Hemisphere, it runs from May

through October. To produce, validate, and distribute a tailored influenza vac-
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cine takes six to eight months [Gerdil, 2003, Barr et al., 2010]. Hence, the WHO

makes its recommendations in February and September for the Northern and

Southern Hemisphere influenza seasons, respectively [Gerdil, 2003, Barr et al.,

2010]. The efficacy of each vaccine depends on the degree to which the actual

influenza strains circulating in a population match those predicted by the WHO.

Influenza is spread through particles, droplets, and direct contact, which

makes it easy to pass between humans [CDC, 2010]. Infected individuals ex-

perience a 1 to 4 day asymptomatic incubation period; for most people this is

followed by a 3 to 7 day period of illness after which they recover and retain

immunity to the virus [CDC, 2010]. The influenza virus may also cause viral

pneumonia and other secondary respiratory illnesses, and it may exacerbate ex-

isting cardiac, pulmonary, and other medical conditions [CDC, 2010]. Infected

individuals are infectious to others during the last day of the incubation pe-

riod and remain so for 5 to 10 days following the onset of illness [CDC, 2010].

However, young children and immunocompromised individuals may remain

infectious for significantly longer periods of time [CDC, 2010].

When a vaccine is unavailable, antiviral drugs may be used as prophylaxis

to reduce the likelihood of infection. For maximum effectiveness, prophylaxis

must be continued for ten days to six weeks [Fiore et al., 2011]. Antiviral drugs

may also be used to treat patients who contract influenza. Patients who begin

taking antivirals before becoming symptomatic experience reduced symptoms

and have a lower likelihood of transmitting the virus to others [Fiore et al., 2011].

Antivirals, when used as treatment, are usually prescribed for five days [Fiore

et al., 2011]. Antiviral drugs have the advantage of being fairly flexible; they are

specific only to influenza type (A or B), rather than particular strains. Given a
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limited supply of antivirals, far fewer individuals can be provided with prophy-

laxis, compared to treatment. For this reason, during an influenza pandemic the

CDC pandemic influenza plan calls for antivirals to to be used exclusively for

treatment of those to whom a physician has issued a prescription [HHS, 2005].

As noted earlier, a targeted vaccine is unlikely to be available during the early

stages of a pandemic.

For both anthrax and pandemic influenza, the CDC has taken responsibil-

ity for stockpiling the antibiotics and antivirals that would be used to mitigate

these emergencies [CDC, 2004, HHS, 2005]. The United States Department of

Health and Human Services (HHS) and the Centers for Disease Control and

Prevention created the Strategic National Stockpile (SNS), formerly the National

Pharmaceutical Stockpile, in 1999 to ensure that essential pharmaceuticals and

medical supplies will be available to the American population during emergen-

cies [CDC, 2011]. The SNS stores its inventory in multiple warehouses around

the country to ensure that it can deliver an initial shipment of antibiotics and

medical supplies to any affected state rapidly [CDC, 2011]. Supplies for selected

fast-acting emergencies like anthrax have been collected in “Push Packages,”

which are stored in ready-to-ship pallets that can be shipped to states within

twelve hours after the SNS is activated [CDC, 2011]. Additional shipments tai-

lored to the particular emergency may be sent over time.

Each state has at least one Receiving Staging and Storing (RSS) warehouse,

which will be opened to accept materials from the SNS and send them to the ap-

propriate dispensing locations [Nelson et al., 2008]. There are several proposed

methods for dispensing medical supplies at the local level, but the most com-

mon is the use of Points of Dispensing (PODs), which are ad hoc clinics set up
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throughout the affected region [SNS, 2008]. These PODs may be operated by

state or local health departments to distribute antibiotics to the general public

or they may be “closed” locations that serve well-defined populations such as

hospital patients, nursing home residents, or prison inmates [SNS, 2008]. In the

case of an anthrax attack, this distribution network, shown in Figure 1.1, may

only remain in place for days. Public health planners must ensure that the lo-

gistics of the system work seamlessly to ensure that the affected population is

served within the 48 hour window to minimize mortality and morbidity.

Figure 1.1: The United States Strategic National Stockpile distribution net-
work.

The distribution of medical supplies to all people living in an affected area

following a large-scale emergency like an anthrax attack is called a “mass-

dispensing campaign.” A large mass-dispensing campaign would also be car-

ried out during an influenza pandemic once a targeted vaccine is available, al-
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beit over a longer period of time than is allowed after an anthrax attack. How-

ever, both before and after a vaccine is available antivirals will be distributed to

those who seek treatment for influenza, but no one will receive them without

a written prescription. Such a scenario calls for a “controlled-dispensing cam-

paign,” in which only a subset of the population in any given region is served.

Current CDC plans call for state health departments to run the antiviral dispens-

ing in accordance with their emergency response plans. The SNS distributed 11

million courses of antivirals to the states during early stages of the 2009 H1N1

pandemic [HHS, 2009]. The states were responsible for the distribution of these

antivirals to their populations. The states were also responsible for the initial

distribution of the H1N1 vaccine, but when the vaccine became widely avail-

able to the public in December 2009, the CDC worked with states to provide

H1N1 vaccine directly to commercial pharmacies in an effort to make the vac-

cine more accessible [Koonin et al., 2011]. The use of pharmacies to dispense vac-

cines was considered highly successful [Koonin et al., 2011]. Lisa Koonan, the

Senior Advisor for the Influenza Coordination Unit in the Office of Infectious

Diseases at CDC, and others have pointed out that the commercial pharmaceu-

tical supply chain is well-suited to a long-term controlled antiviral dispensing

campaign [Koonin et al., 2011, Lien et al., 2006]. This would avoid straining the

resources of state health departments, leaving them free to focus on providing

antivirals to special groups that cannot reach commercial pharmacies, such as

nursing home patients or residents of Native American reservations.

The proposed system would take advantage of a highly effective supply

chain that already serves the vast majority of Americans. There are more than

60,000 commercial pharmacies in the United States; over 95% live within five

miles of one of these locations [SK&A, 2011,CDC, 2012]. These pharmacies cur-
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rently fill over 90% of the prescriptions in the United States; the remainder use

mail-order or other sources [CDC, 2012]. A small number of national pharma-

ceutical distributers make daily deliveries to over 93% of the pharmacies, and

computerized systems are already used to transfer information about inventory

needs from many of the pharmacies to their distributers [CDC, 2012]. Leverag-

ing this system to include antiviral distribution would allow the states to avoid

recreating a system that already exists. However, while the idea of using the

commercial system may be appealing, it raises many questions about which

pharmacies should be included in the dispensing effort, how inventory allo-

cation decisions will be made, and how the CDC can ensure that inventory is

allocated “fairly,” without favoring or marginalizing particular populations.

In the following three chapters, we present models of the SNS distribution

network responding to both an anthrax attack and an influenza pandemic. In

Chapter 2 we describe a resource allocation model of the full SNS-RSS-POD dis-

tribution network under an anthrax attack scenario. We present several inven-

tory allocation strategies, including a novel Lagrangian relaxation approach. We

show computational results from testing these strategies with simulations and

discuss public health policy implications. In Chapter 3 we present two simula-

tion models, one of a single POD and one of the full three echelon supply chain,

under an anthrax scenario. We describe how these models can assist planners

who are responsible for designing these response systems. In Chapter 4 we fo-

cus on the influenza pandemic scenario. We explore the proposed use of the

commercial supply chain to dispense antivirals. We present models that could

be used to make inventory and staff allocation decisions during the pandemic,

describe a method for estimating historical pandemic curves, and use a simula-

tion of the dispensing network to identify potential strengths and pitfalls of the
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proposed system. To give context to this work, the next section will review the

relevant public health modeling literature.

1.1 Emergency Preparedness Literature Review

In the last decade, a great deal of attention has been given to planning an ef-

fective response to an anthrax attack, and operations researchers have made

some significant contributions to these efforts. A number of papers have pre-

sented high-level models and simulations of the anthrax response network to

help policy-makers invest in the most cost-effective mitigation strategies. [Craft

et al., 2005], building off earlier work in [Wein et al., 2003], constructed a simula-

tion of an anthrax attack and the response, from spore dispersal to detection to

prophylaxis and treatment. They identify the need for an education program to

impress on people the importance of fully adhering to the antibiotic prophylaxis

regime; the importance of minimizing the delay in beginning prophylaxis and

maximizing POD throughput rates; and the need for increased hospital surge

capacity. [Bravata et al., 2006] used a compartmental simulation model to study

the cost-effectiveness of various emergency response strategies . They found

that POD dispensing capacity is the most important determinant in the suc-

cess of a response plan, and show that the cost-effectiveness of many strategies

is sensitive to the probability that an anthrax attack occurs. [Braithwaite et al.,

2006] considered several different anthrax attack scenarios and concluded that

effective surveillance and rapid prophylaxis is more cost-effective than large-

scale anthrax vaccination, in agreement with the previously mentioned papers.

However, there have been many papers that have questioned whether the
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CDC’s antibiotic prophylaxis plan is the best possible medical response. Other

possible responses include pre- or post-exposure vaccination as well as antibi-

otic treatment for those who have become symptomatic. [Fowler et al., 2005]

and [Fowler & Shafazand, 2011] found that post-exposure vaccination and an-

tibiotic prophylaxis is the most effective and least costly strategy. However, they

noted that if antibiotic prophylaxis cannot be distributed quickly after expo-

sure, then pre-exposure vaccination would become cost-effective. [Brookmeyer

et al., 2004] and [Baccam & Boechler, 2007] modeled the impact of various an-

tibiotic prophylaxis and vaccination strategies. They both agreed that rapidly

beginning post-exposure antibiotic prophylaxis and high levels of adherence

are essential, but Baccam and Boehler concluded that vaccination may also be

valuable, while Brookmeyer et al. disagreed. [Hupert et al., 2009] found that the

total time required to complete the antibiotic dispensing campaign and the ini-

tial delay before beginning antibiotic prophylaxis must be carefully controlled

to minimize mortality and morbidity. Others have confirmed these conclusions

for various scenarios [Mitchell-Blackwood et al., 2011, Schmitt et al., 2007]. De-

spite a wide variety of model parameter values and assumptions, there is gen-

eral agreement among all of these papers that antibiotic prophylaxis is a highly

effective strategy, provided that the dispensing campaign is begun soon after

the initial anthrax attack and that it is concluded promptly, within the CDC’s 48

hour goal.

Another set of papers have focused on modeling the PODs in great detail,

trying to find optimal designs and staffing strategies that will help the clinics

operate as efficiently as possible. [Hupert et al., 2002] used simulation to deter-

mine POD staffing levels based on patient arrivals; this work was an early ex-

ample of a model that was widely used to assist in POD planning. [Washington,
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2009] simulated POD operations to show that assigning staff efficiently within

a POD allows the clinic to serve more patients over time. [Lee et al., 2006b] and

Lee06b present RealOpt, a decision support tool that planners can use in real

time to determine staffing and the layout of the POD stations. They describe

how RealOpt has been successfully used in POD drills around the country. [Lee

et al., 2010b] extended this work to model the spread of disease within PODs,

when PODs are operated during the outbreak of an infectious disease such as

influenza. [Aaby et al., 2006] developed the Clinic Planning Model Generator, a

queuing-based capacity-planning model that estimates POD performance based

on user-specified inputs.

Other papers have focused on addressing practical planning questions re-

lated to other parts of the anthrax response plan. [Zaric et al., 2008] present

a compartmental simulation model in conjunction with a simple spreadsheet-

based interface to let policy-makers use the model to address many planning

questions. They emphasize the need for rapid dissemination of the news that

an attack has occurred to the affected population, and, like [Wein et al., 2003],

they stress the importance of education to ensure a high level of adherence to

the prophylaxis regimes. They also question the value of push packages and

show that direct tailored shipments may be more useful, if these can be de-

livered rapidly. [Lee et al., n.d.] present a tool for determining optimal POD

locations using a facility location optimization model. [Berman et al., 2011] ad-

dress the same problem using game theoretic methods to avoid the likelihood

of a terrorist attack on the PODs. [Lu et al., 2010] present an algorithm that

uses Markov switching models to improve the performance of surveillance sys-

tems. [Montjoy & Herrmann, 2010] provide algorithms for routing delivery ve-

hicles in emergency scenarios that will provide as much flexibility as possible
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to account for potential disruptions in traffic. [Lee, 2008] considers the response

plan to more general emergencies and shows that the inclusion of a basic sup-

ply chain model can help planners better understand the resource needs and

requirements of a response plan .

The requirements for an effective response to an influenza pandemic are less

well-defined than those of an anthrax attack response plan. Since the appear-

ance of H5N1 in the early 2000s, a large number of papers have used analytic

and simulation models to better understand the spread of influenza globally

and locally, as well as the value of potential mitigation strategies. [Germann

et al., 2006] used a large-scale, computationally intensive agent-based simula-

tion study of potential pandemics in the United States to explore the value of

strategies including antiviral prophylaxis, mass vaccination, school closures,

and social distancing through travel restriction, quarantine, or voluntary behav-

ior modification. They found that school closures, combined with antiviral pro-

phylaxis for high-risk individuals, could have a significant impact on the spread

of the pandemic. [Ferguson et al., 2006] also used a large-scale computer simu-

lation, originally developed in [Ferguson et al., 2005], to study a potential pan-

demic in the United States under a variety of mitigation scenarios. They found

that travel restrictions were unlikely to be effective, and that school closures

would have a minimal effect on the overall pandemic. [Glass et al., 2006] focused

on simulating influenza within a single small town and concluded that social

distancing methods could be highly effective, even in the absence of antivirals

and vaccinations. [Larson, 2007], [Nigmatulina & Larson, 2009], and [Teytelman

& Larson, 2012] present analytic models that account for some population het-

erogeneity and emphasize the importance of social distancing measures, with

particular focus on highly social and highly susceptible individuals.
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[Milne et al., 2008] used a detailed simulation of a single community, with

a model that included detailed social dynamics, to consider the value of non-

pharmaceutical mitigation measures. They found that school closures and other

social distancing measures are likely to be moderately effective in containing

a pandemic if implemented sufficiently early and the influenza attack rate is

moderate. However, [Milne et al., 2008] points out that, despite using simi-

lar epidemiological data, their results differ significantly from those of several

previously mentioned papers, [Germann et al., 2006], [Ferguson et al., 2006],

and [Glass et al., 2006]. They emphasize that this indicates the degree to which

model parameters affect the outcome of these types of simulation studies. [Ri-

ley, 2007] reviews several influenza models, and draws a similar conclusion, as

do [Halloran et al., 2008], who present a simulation study showing that a com-

bination of mitigation measures is likely to be useful, but caution that these

results must be considered tentative without better data to support the model

parameters.

In spite of these concerns, many researchers have continued to use mod-

eling techniques to better understand how an influenza pandemic might be

controlled. [Wein & Atkinson, 2009] focused on modeling the transmission of

influenza within a household. They identify several key factors for reducing

transmission rates, including using separate bedrooms for infected individuals

and beginning infection control measures immediately upon the introduction

of illness to the household. A number of researchers addressed the potential

value of travel restrictions. [Colizza et al., 2007] and [Epstein et al., 2007] used

simulation models to show that travel restrictions could be useful in containing

the spread of influenza worldwide. [Brownstein et al., 2006] used an empirical

study of airline flight data to conclude that travel restrictions could shift the

13



peak of a pandemic by several weeks, providing more time for vaccine pro-

duction and dissemination. [Balcan et al., 2009] found that international travel

patterns primarily affect the spread of influenza during the first weeks of a pan-

demic; however, once the disease has been introduced into a region local effects

take over.

When the H1N1 pandemic occurred in 2009, a number of researchers imme-

diately began working to determine epidemiological parameters. One essential

parameter estimated was the basic reproductive number, R0, which indicates

the expected number of new cases that would be generated by an infectious

individual in a population of susceptible people [Fraser et al., 2009, Yang et al.,

2009, White et al., 2009, Tuite et al., 2010, Presanis et al., 2009]. Disease severity

measures, including case hospitalization ratios (CHR) and case fatality ratios

(CFR), the percentages of infected individuals who are hospitalized and who

die, respectively, were also estimated [Fraser et al., 2009, Presanis et al., 2009].

These papers appeared as early as June 2009, based on the first cases of H1N1

that appeared around the world, particularly in Mexico.

Other modeling papers continued to make an effort to guide public health

policy. [Medlock & Galvani, 2009] produced a model whose results indicated

that the CDC and the Advisory Committee on Immunization Practices (ACIP)

were prioritizing the wrong vaccination groups. The ACIP recommended that

equal priority be given to people aged six months to 24 years old, as well as

caregivers for infants under six months, pregnant women, and immunocom-

promised individuals of any age [Lee et al., 2010a]. [Medlock & Galvani, 2009]

suggested that school children and their parents (adults aged 30-39) should re-

ceive vaccination priority to minimize the spread of influenza. [Lee et al., 2010a]
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quickly responded by tailoring a large-scale simulation to the H1N1 scenario

and showing that, while the ACIP recommendations may be expected to yield a

slightly higher overall attack rate, they also result in decreased mortality, mor-

bidity, and economic consequences by protecting groups at risk for severe com-

plications from influenza.

Since 2009, many influenza-focused papers have attempted to accurately

represent the H1N1 pandemic and to determine how events might play out

under similar pandemic scenarios in the future. [Carrat et al., 2010] used the in-

fluenza surveillance data collected in France to estimate the actual H1N1 attack

rates for that country. They used these attack rates to show that, if a new strain

of H1N1 is reintroduced into the population, the extensiveness of the vaccina-

tion campaign will depend on the level of cross-immunity imparted by the 2009

pandemic. [Halder et al., 2010] performed a detailed simulation of a pandemic

occurring in a single town with similar epidemiological parameters to those of

the H1N1 pandemic. They investigated various mitigation measures and found

that, if the pandemic had become more severe, school closures combined with

antiviral treatment would be very effective in stemming the spread of the pan-

demic. [Savachkin & Uribe, 2011] showed that a vaccine and antiviral distribu-

tion network that would allow for redistribution of these resources would be

valuable during a more severe pandemic scenario. [Bajardi et al., 2011] modeled

the impact of the travel restrictions to and from Mexico during 2009. Contra-

dicting earlier papers, they show that the decline in air travel did not slow the

spread of the pandemic and conclude that, given the increasing mobility of the

global population, travel restrictions are unlikely to be effective containment

strategies in the future.
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Many people have dedicated time to sifting through the available data

sources that give information about the number, location, and severity of H1N1

cases that occurred during the 2009-2010 season. [Nishiura et al., 2010] and

[White & Pagano, 2010] have presented statistical methods to help improve

estimates of epidemiological parameters during the early stages of future pan-

demics. [Shaman et al., 2011] have linked the value of basic reproductive number

R0 for H1N1 to decreased absolute humidity conditions. [Shrestha et al., 2011]

have used the data collected by CDC, corrected for missing data, and produced

the most complete estimates of the actual number of H1N1 cases that occurred

in the United States.

However, researchers continue to struggle to make reasonable inferences

from the very limited data collected during the 2009 pandemic. [Lipsitch et al.,

2011] describe the need for improved influenza surveillance data that should be

collected during a pandemic. They emphasize the high potential value that ac-

curate, real-time data would have for quantitative modeling and public health

policy support tools. [Schuchat et al., 2011] describe the CDC’s response to the

pandemic and some of its successes and challenges, specifically mentioning the

importance of various modeling techniques. They also identify the need for

accurate real-time data to support public health decision making. [Chao et al.,

2011] describe the highly successful use of modeling in Los Angeles County’s

pandemic planning and response efforts. Models were used to predict the lo-

cal timing of the pandemic peak and to provide justification for keeping schools

open by showing that short-term closures would have minimal value in contain-

ing the pandemic, while long-term closures would take too great an economic

toll.
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Our goal throughout this thesis is to develop models that will similarly

help public health authorities respond more effectively in emergency scenar-

ios. [Brandeau et al., 2009] offers a detailed review of papers related to public

health and medical disaster response modeling and gives recommendations for

evaluating these and future models. In particular, they mention the need for

stakeholder input, user-friendly and customizable model interfaces, outcomes

that address relevant policy needs, and the inclusion of fundamental uncertain-

ties. They also emphasize the need for models that balance simplicity and com-

plexity. They believe models should focus on specific public health needs with-

out relying on a huge number of unknown parameters that can significantly

change the results of the model. [Milne et al., 2008] noted that estimating these

parameter values was problematic in determining the value of school closures

during influenza pandemics.

In the following chapters, we present a set of models that fill some of the

gaps in the literature described above, while aiming to satisfy the goals laid

out by [Brandeau et al., 2009]. In Chapter 2 we describe a model of the com-

plete supply chain that would move antibiotics from the SNS to the PODs for a

mass-dispensing campaign following an anthrax attack. This is a much needed

contribution to the literature, since none of the papers above include supply

chain logistics in their models, except for [Lee, 2008], who included a distribu-

tion warehouse in his model of a more general emergency event. In Chapter 3

we present a POD simulation model that allows dynamic staffing plans and is

the first POD model to include nonstationary patient demand patterns. In the

same chapter we present a novel simulation model of the emergency response

supply chain; no other model has focused on helping policy-makers understand

how the full response system will fit together. In Chapter 4 we address the open
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question of whether the commercial pharmaceutical supply chain could support

a controlled antiviral dispensing campaign during an influenza pandemic.
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CHAPTER 2

ANTHRAX RESPONSE NETWORK MODEL

In the previous chapter we explained why it is essential that the public health

emergency response network operate effectively to minimize mortality and

morbidity. Running frequent realistic exercises of the response network would

be a good way to ensure that all parts of the network will perform well, but such

exercises would also be extremely expensive and time-consuming. In reality, ex-

ercises are only run occasionally, and they are usually carefully planned, thereby

removing the elements of surprise and confusion that would be present during

an actual emergency response effort. Instead, policy-makers have come to rely

on models, like those described in Section 1.1, to help them understand how

to design and execute emergency response plans. Planning-oriented models

can help policy-makers understand the potential performance of their response

plans. Our goal in this section is to present a model that will help planners eval-

uate the possible outcomes that may occur due to their distribution network

designs, supply chain logistic plans, and inventory allocation policies.

Our model includes physical parameters of the system, including trans-

portation capacity, lead times, and the structure of the network. We construct

two methods for making inventory allocation decisions within a given system,

with the aim of minimizing inventory in the system and patient delay. The

next section describes the model notation, constraints, and cost functions. The

second section describes the allocation methods that we have constructed, and

the third describes the allocation methods currently in general use. The final

section presents the results of the simulation study performed to evaluate the

allocation methods and demonstrates how these results may help public health
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officials better prepare to respond to an anthrax attack.

2.1 Model Description and Notation

We now describe a model of the SNS-RSS-POD network described in the pre-

vious chapter. The SNS has strong central control and contractual agreements

with competent shipping organizations to ensure that inventory can be moved

around as necessary, so we model the SNS as a single location. This single SNS

facility will be called location 0 in our model. It has a large stockpile of inven-

tory and may be resupplied over time by suppliers with unlimited inventories.

We allow M RSSs, numbered 1, ...,M, and N PODs, numbered M +1, ...,M + N, as

shown in the Figure 2.1. Let R = {1, ...,M} be the set of RSSs, P = {M+1, ...,M+N}

be the set of PODs, L = {0, ...,M + N} be the set of all locations, and S = {0, ...,M}

be the set of all upper echelon locations, which includes both the SNS and the

RSSs. Each RSS receives inventory from the SNS and each POD receives in-

ventory from exactly one RSS, so the network has a tree structure. We define

umn = 1 if location m serves (i.e., sends inventory to) location n and 0 otherwise,

and P(m) is the set of all PODs served by RSS m, P(m) = {n ∈ P : umn = 1}.

Time in this model is divided into T periods numbered 1, 2, ...,T ; we as-

sume that within each period events always occur in a particular order. Define

T = {1, ...,T } to be the set of all time periods. At the beginning of each time

period t, the current state of the system is known. This state consists of all past

decisions as well as the current inventory levels and patient queues at the PODs.

The number of patients waiting in the queue at POD n in period t is given by qnt.

We define a quantity called the “echelon on-hand inventory position” to be the
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Figure 2.1: Location numbers in our model of the SNS network.

sum of the inventories on-hand at, in-transit to, and downstream from a par-

ticular location. Let xnt be the echelon on-hand inventory position at location n

at the beginning of period t. Since there are no locations downstream from any

POD, at POD n, xnt is simply the amount of inventory on-hand plus the amount

in-transit to POD n. At the SNS, which is location 0, x0t is the total amount of in-

ventory on-hand at or in-transit to any location in the system, since all locations

in the distribution network are downstream from the SNS.

Given the state variables xnt and qnt for each location, inventory allocation

decisions must be made. We choose rnt, the amount of inventory to be shipped

to each location n in period t; the new inventory position for location n then

becomes
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ynt = xnt + rnt.

These rnt units of inventory arrive after a lead time of τn periods to location n;

notice that the lead time τn is assumed to be constant over the time horizon.

This is acceptable if we ensure that the time periods are sufficiently coarse (for

instance, hours or days rather than seconds or minutes), in which case we can

estimate a lead time in terms of periods with accuracy. If the lead time is less

than the length of a time period for location n, we let τn = 0; in this case, the

rnt units shipped in period t arrive in the same time period. We assume that

the PODs are relatively close to their respective RSSs, so we set the lead times

to zero for the PODs, that is, τn = 0 for n ∈ P. In general, after the allocation

decision is made, the shipment sent τn periods ago arrives to each location n.

P The set of all PODs in the network (P = {M + 1, ...,M + N})

P(m) The set of all PODs in the network that are served by RSS m

(P(m) = {n ∈ P : umn = 1})

R The set of all RSSs in the network (R = {1, ...,M} )

L The set of all locations in the network (L = {0, ...,M + N} )

S The set that contains the SNS and all RSSs in the network (S =

{0, ...,M} )

T The set of all time periods (T = {1, ...,T } )

ant Service capacity at (or downstream from) location n in period

t

an,t1,t2 Service capacity at (or downstream from) location n for peri-

ods t1, t1 + 1, ..., t2
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C̃nt(·) Cost function for location n in period t (in the initial formula-

tion of the problem)

Cnt(·) Updated cost function for location n in period t, in which all

costs associated with decisions made at location n are charged

to location n

C′nt(·) Cost function for location n in period t, as a function of inven-

tory position

dnt Known (observed) demand at (or downstream from) location

n in period t

Dnt Random demand at (or downstream from) location n in pe-

riod t

Dn,t1,t2 Total demand at (or downstream from) location n in periods

t1, t1 + 1..., t2 (Dn,t1,t2 =
∑t2

t=t1 Dnt)

fnt(·) The probability mass function for Dnt

fn,t1,t2(·) The probability mass function for Dn,t1,t2

gnt(·) The state transition function for period t for location n

hnt The holding cost charged for each unit of inventory at or in-

transit to location n at the end of period t

hR
nt The holding cost charged for each unit of inventory at or in-

transit to the supplier of location n at the end of period t (so

hR
nt =

∑
m∈L umnhnt)

M Total number of RSSs in the network

N Total number of PODs in the network

qnt Number of patients waiting at (or downstream from) location

n at the beginning of period t
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pnt Transportation capacity from location n to the locations it

serves in period t

p0
t Transportation capacity to the SNS in period t

rnt Inventory shipped to location n in period t

S nt Number of patients served at (or downstream from) location

n in period t

S n,t1,t2 Total patients served at (or downstream from) location n in

periods t1, ..., t2 (S n,t1,t2 =
∑t2

t=t1 S nt)

S̃ n,t1,t2 Upper bound on patients served at (or downstream from) lo-

cation n in periods t1, ..., t2, calculated using cumulative values

T Total number of time periods

umn Indicator variable that is 1 if location m serves location n and

0 otherwise

xnt Echelon on-hand inventory at location n at the beginning of

period t

xO
nt On-hand inventory at location n at the beginning of period t

x̄nt Inventory position at location n at the beginning of period t

(x̄nt = xnt − qnt)

ynt Echelon on-hand inventory at location n after allocation deci-

sions in period t

ȳnt Inventory position at location n after allocation decisions in

period t (ȳnt = ynt − qnt)

Zt The vector of all state variables for period t

γnt Lagrangian multiplier associated with the relaxation of a ser-

vice constraint for location n in period t
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λnt Lagrangian multiplier associated with the relaxation of the

non-negative inventory shipment constraint for location n in

period t

µmt Lagrangian multiplier associated with the relaxation of the

transportation constraint for location m in period t (m ∈ S)

µU
nt Lagrangian multiplier associated with the relaxation of the

transportation constraint for location m that serves location n

in period t (µU
nt =

∑
m umnµmt)

ψnt(·) Decomposed dynamic program associated with location n in

period t

∆mt(·) Penalty function that charges additional costs incurred when

location m cannot supply the optimal demands of the loca-

tions it serves in period t

τn Lead time to location n from its supplier

τ Lead time from the SNS to an RSS, assuming that these lead

times are identical

Table 2.1: Table of Model Notation. Variables names

written in boldface, with one or more subscripts sup-

pressed, indicate a vector (e.g., xt = (x0t, x1t, ...xM+N,t)).

Adding the superscript past to a variable indicates

the vector of past values of the variable, starting

one lead time ago, and, if it is known, the current

value (e.g., xpast
mt = (xm,t−τm , xm,t−τm+1, ..., xmt) and dpast

nt =

(dn,t−τn , dn,t−τn+1, ..., dn,t−1)).
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The amount of inventory that can be shipped to and from the SNS in each

period and the amounts of inventory that can be shipped from the RSSs are

limited by transportation constraints. We define pmt to be the maximum number

of units that can be shipped from location m at the beginning of period t, for

m ∈ S, and we define p0
t to be the maximum number of units that can be shipped

to the SNS at the beginning of period t. When p0
t = 0, no inventory can be

shipped to the SNS, so we can use this parameter to control when shipments to

the SNS are allowed. For most scenarios, we will set p0
t = 0 for all time periods

before 36 or 48 hours have passed since manufacturers could not realistically

resupply the SNS any faster. Subsequently, if shipments would be sent once per

day or week, then p0
t would be 0 for most time periods. Similarly, pmt could be

set to 0 to ensure that shipments to the RSSs and PODs are made only at certain

times throughout the planning horizon.

After the inventory shipments arrive in period t, patients are served at each

POD. The total number of people arriving to location n in period t is called

the “patient demand” or just the “demand” and is denoted by Dnt. Let Dnt1t2 =∑t2
t=t1 Dnt be the cumulative number of patients who arrive in periods t1, ..., t2. We

assume that the demands are independent by time and location and each Dnt is

a discrete random variables with a known probability mass function fnt. Let the

range of Dnt be denoted by Dnt. That is, Dnt is the set such that Dnt may only

take values in Dnt. The total number of patients who request service at POD n

in period t is given by the number waiting at the beginning of the period plus

the new demand, qnt + Dnt.

The number of patients served is limited by each POD’s service capacity for
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the current time period. We assume that staffing decisions are made in advance,

so at the time of the emergency response, staffing levels at PODs are fixed and

deterministic service capacities are known as a function of these plans. Staffing

levels may not be modified in response to observed patient demand or inven-

tory availability. Our focus in this model will be on determining the value of

a complete response plan and in particular, on the importance of inventory al-

location policies. In Chapter 3 we will return to the question of staffing and

the value of flexible staffing plans. For now, we define ant to be the service ca-

pacity, or the maximum number of patients who could be served at POD n in

period t, and let ant1t2 =
∑t2

t=t1 ant be the cumulative number who could be served

in periods t1, ..., t2. Then the number of people who actually are served at POD

n in period t, S nt, can be found. Let S nt1t2 =
∑t2

t=t1 S nt be the cumulative number

served in periods t1, ..., t2. The number of patients served in each period will be

constrained by the inventory available, the number of patients present, and the

service capacity.

Figure 2.2: Timeline of events within a single time period.
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We take an echelon-oriented view of this network. We define echelon de-

mands, service capacities, queue lengths, and patients served at each upper ech-

elon locations, m ∈ S, to be the sum of those parameters at the locations down-

stream from m. That is, Dmt =
∑

n∈L umnDnt, amt =
∑

n∈L umnant, qmt =
∑

n∈L umnqnt,

and S mt =
∑

n∈L umnS nt.

At the end of each time period costs are incurred at every location in the

network. Holding costs, hnt, are incurred for each unit of inventory at location n

at the end of period t. We will generally assume that holding costs are larger at

the RSSs than at the SNS and larger still at the PODs:

h0t < hmt < hnt for m ∈ R, n ∈ P and t ∈ T .

At the PODs, “backorder” costs are also incurred for any arrived patients who

have not been served. These costs are determined by the functions f B
nt(u), where

u is the number of unserved patients at POD n at the end of period t. We will

assume that f B
nt(u) is convex, and nondecreasing in u, and for u ≤ 0, f B

nt(u) = 0.

Thus, there will never be negative backorder costs, but the costs will increase

rapidly to help ensure that large queues are not allowed to build up at the PODs

due to inventory shortages. Furthermore, since the number of backorders u

should always be integer-valued, we can assume without loss of generality that

f B
nt(u) is piecewise linear, and that changes in slope only occur at integer-valued

points. We will discuss these costs in greater detail in section 2.1.2.

Figure 2.2 shows the sequence of events that we have described. We will

refer this figure throughout the rest of this chapter to explain when events occur

within a time period. For example, below we will describe how to find the on-
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hand inventory at point (0) in a time period, and how to modify this calculation

to determine the on-hand inventory at point (2).

At the end of each time period (point (5) in the diagram), the period t de-

mand and numbers of patients served are known for all PODs n ∈ P, and we

can calculate the updated inventory positions and queue lengths, xn,t+1 and qn,t+1:

xn,t+1 = ynt − S nt for n ∈ L; (2.1)

qn,t+1 = qnt + Dnt − S nt for n ∈ L. (2.2)

To make decisions about how much inventory to ship to each location, we

need to know how much inventory is on hand and available for distribution at

each RSS and the SNS. Inventory located at a location m ∈ S at the beginning

of period t must have been in-transit to that location no later than period t − τm.

The echelon on-hand inventory at location m at the beginning of period t − τ

includes all of the inventory in transit to, on hand at, and downstream from m at

that time. All of that in-transit inventory will have arrived at m by the beginning

of period t. Thus, to determine the on-hand inventory at m in period t, we can

use the value xm,t−τm and subtract the current downstream inventory,
∑

n∈L umnxnt

and the inventory that has been used to serve patients in periods t − τm, ..., t − 1,

S m,t−τm,t−1:

On-Hand at location m at the beginning of t = xm,t−τm −
∑
n∈L

umnxnt

−S m,t−τm,t−1. (2.3)

Notice that, for location m and u < t, the number of people who were served
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in periods u, ..., t−1 is equal to the total number of patients who required service

in those periods less the number still waiting at the beginning of period t. This is

equal to the number who were already waiting at the beginning of period u, qmu,

plus the number who arrived during that time, dm,u,t−1, less the number waiting

at the beginning of t, qmt:

S m,u,t−1 = qmu + dm,u,t−1 − qmt. (2.4)

Substituting t − τm for u, we see that equation (2.3) can be written as

On-Hand at location m at the beginning of t = xm,t−τm −
∑
n∈L

umnxnt − qm,t−τm

−dm,t−τm,t−1 + qmt. (2.5)

Before patients are served at point (3) in period t, location m also receives

an inventory shipment of size ym,t−τm − xm,t−τm and, if it supplies any downstream

locations, it ships out a total of
∑

n∈L umn(ynt − xnt) units of inventory, so the on-

hand inventory becomes

On-Hand at location m at point (2) in period t = xm,t−τm −
∑
n∈L

umnxnt − qm,t−τm

−dm,t−τm,t−1 + qmt

+(ym,t−τm − xm,t−τm)

−
∑
n∈L

umn(ynt − xnt)

= ym,t−τm −
∑
n∈L

umnynt − qm,t−τm

−dm,t−τm,t−1 + qmt. (2.6)
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For the SNS and RSSs, equation (2.6) also gives the inventory on-hand at the

end of time period t (point (5) in the diagram). At POD n, where the lead time

is 0, the amount of inventory available at point (2) is ynt.

Since the lead time to each POD is 0, there is no in-transit inventory for the

PODS. For the upper echelon locations, m ∈ S, we can calculate the amount

of inventory in-transit at the beginning of period t by taking the sum of all the

shipments that have not arrived by the beginning of period t. These are the

shipments that were sent in period t − τm or later. The amount of inventory

shipped to m in period r is ymr − xmr. Then, using the fact that xm,t+1 = ymt − S mt,

we have

In-Transit to location m at the beginning of t =

t−1∑
r=t−τm

(ymr − xmr)

=

t−1∑
r=t−τm

((xm,r+1 + S mr) − xmr)

= xmt − xm,t−τm + S m,t−τm,t−1

= xmt − xm,t−τm + qm,t−τm

+dm,t−τm,t−1 − qmt. (2.7)

During time period t, the in-transit inventory for location m increases when the

quantity ymt − xmt is allocated to it, and it decreases when the quantity ym,t−τm −

xm,t−τm arrives, so we have
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In-Transit to location m at the end of t = xmt − xm,t−τm + S m,t−τm,t−1

+(ymt − xmt) − (ym,t−τm − xm,t−τm)

= ymt − ym,t−τm + qm,t−τm

+dm,t−τm,t−1 − qmt. (2.8)

There is no on-order inventory because allocation decisions are made by a cen-

tral planner and no inventory will be allocated unless it is available at the sup-

plying location.

The number of patients served in each period is limited by inventory on-

hand, patients present, and service capacity. We cannot know how many pa-

tients will be served in period t until the patient demands, Dt, has been ob-

served for that period. At point (4) in the time period, when demand has been

observed, we can also calculate the number of patients served at each POD n ∈ P

in period t:

S nt = min{On-Hand at POD at point (2), qnt + Dnt, ant}

= min
{
ynt, qnt + Dnt, ant

}
for n ∈ P. (2.9)

The number of patients served over several periods cannot exceed the cumu-

lative service capacity, patient demand, or inventory available in those peri-

ods. Thus, at POD n, the number of patients served in periods t, t + 1, ..., t + k is

bounded by
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S n,t,t+k ≤ min
{
an,t,t+k, qnt + Dn,t,t+k, xn,t−τn+k + rn,t,t+k

}
. (2.10)

Updating the inventory positions for each location using equations (2.1) and

(2.2) requires that we know the numbers of patients served over various time

intervals. To determine the exact number of patients served at a POD over some

length of time, we need to use equation (2.9) for each period, which requires

knowing the demands, inventory levels and queue lengths in each period. In a

classic inventory model with no limitations on service capacity, equation (2.10)

would provide the actual number of people served, rather than an upper bound,

and we would only need to know the cumulative demands and inventories to

calculate the number served. Our model, however, is more complicated because

it is possible to have both inventory available and unserved patients present

since service capacity is limited.

2.1.1 Constraints on Inventory Allocation Decisions

Using expressions derived in the previous section, we can construct the con-

straints that control inventory allocation in each time period. The first constraint

ensures that inventory cannot be returned to an upper echelon. We include this

constraint because there is no infrastructure in place to allow for returning in-

ventory to upper echelons and returns are impractical in the very short time

horizon of an anthrax attack response scenario. We have

ymt ≥ xmt for all m ∈ L and t ∈ T . (2.11)
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The other inventory constraint states that we cannot ship inventory to lower

echelons unless it has already been received by the beginning of a time period.

The on-hand inventories at the SNS and RSS at the beginning of time period t are

given by equation (2.5). Using this expression we obtain the second constraint

on allocation decisions:

∑
n∈L

umnrnt ≤ on-hand at location m at the beginning of time t

= xm,t−τm −
∑
n∈L

umnxnt − qm,t−τm − dm,t−τm,t−1 + qmt∑
n∈L

umnynt ≤ xm,t−τm − qm,t−τm − dm,t−τm,t−1 + qmt for m ∈ S, t ∈ T ; (2.12)

The transportation constraints in period t limit the amount of inventory that

can be shipped from the SNS and the RSSs in each period and the total inventory

that can be sent to the SNS in each period. These constraints are

∑
n∈L

umn(ynt − xnt) ≤ pmt for all m ∈ S, t ∈ T and (2.13)

y0t − x0t ≤ p0
t for all t ∈ T . (2.14)

For the SNS or any RSS, m ∈ S, the outgoing transportation constraint, inequal-

ity (2.13), can be rewritten as

∑
n∈L

umnynt ≤ pmt +
∑
n∈L

umnxnt,

and we see that this constraint will never be active when the on-hand inventory

at location m in the beginning of period t is less than pmt:
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pmt +
∑
n∈L

umnxnt ≤ xm,t−τm − qm,t−τm − dm,t−τm,t−1 + qmt

pmt ≤ xm,t−τm − qm,t−τm − dm,t−τm,t−1 + qmt −
∑
n∈L

umnxnt.

Given the constraints (2.11-2.13), we can characterize the set of feasible so-

lutions at time period t, Ut. The feasible decisions depend on the state of the

network at the beginning of the time period. We need to keep track of the cur-

rent and previous starting inventory levels, queue lengths, and demands. In

time period t we need to know xnt for all n ∈ L and for locations m ∈ S we need

xm,t−τm , qm,t−τm =
∑

n∈L umnqn,t−τm , and dm,t−τm,t−1 =
∑t−1

t′=t−τm
dmt′ . Define

xpast
mt = (xm,t−τm , xm,t−τm+1, ..., xmt); (2.15)

xpast
t = (xpast

0t , xpast
1t , ..., xpast

M+N,t); (2.16)

and define qpast
mt and qpast

t the same way. Define dpast
mt , dpast

t , Spast
mt , and Spast

t in a

similar manner, except the vector should only include periods t − τm to t − 1,

since dmt and S mt are unknown at the beginning of time period t. Since the PODs

(locations n ∈ P) have lead times of τn = 0, we have xpast
nt = xnt, qpast

nt = qnt, and

dpast
nt = ∅. In period t, our state variables are the vectors xpast

t , qpast
t , and dpast

t . Each

of the first two vectors contains τ0 +
∑

m∈R τm + M + N + 1 elements, while dpast
t

contains τ0 +
∑

m∈R τm elements. For convenience, we will also define a vector of

state variables to be Zt = (xpast
t ,qpast

t ,dpast
t ). Using this notation, we can write the

feasible set of allocation decisions at time t as
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Ut(xpast
t ,qpast

t ,dpast
t ) =

{
yt : ymt ≥ xmt for all m ∈ L;∑

n∈L

umn(ynt − qnt) ≤ xm,t−τm − qm,t−τm − dm,t−τn,t−1 for m ∈ S;∑
n∈L

umn(ynt − xnt) ≤ pmt for all m ∈ S;

y0t − x0t ≤ p0
t

}
. (2.17)

2.1.2 Costs

When allocating inventory, our goal is to minimize the expected cost incurred

throughout the system over the time horizon. At the end of each time period,

we are charged linear costs for holding inventory at each location in the network

and backorder costs for any patients still waiting for service at the PODs.

At the end of time period t, the inventory on-hand at POD n is ynt − S nt, and

the number of unserved patients waiting for service is qnt + Dnt − S nt. Thus for

n ∈ P the total expected cost charged at location n at the end of time period t is

C̃nt(ynt, qnt) = E
[
hnt

(
ynt − S nt(ynt, qnt,Dnt)

)
+ f B

nt

(
qnt + Dnt − S nt(ynt, qnt,Dnt)

)]
. (2.18)

We have written S nt as a function of ynt, qnt, and Dnt to emphasize its dependence

on these variables. For the SNS and the RSSs, the on-hand inventory at the end

of period t is the same as the on-hand inventory at point (2) in period t, which

is given in equation (2.6). So for m ∈ S the total cost charged at location m at the

end of period t is
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C̃mt(ym,t−τm , yt) = E
[
hmt

(
ym,t−τm −

∑
n∈L

umnynt − qm,t−τm − dm,t−τm,t−1 + qmt

)]
. (2.19)

Notice that by this definition we are charged costs based on decisions made

one lead time ago, but we would prefer to express the costs as functions of the

current decisions. To do so, we define a modified cost function C by rearranging

terms:

C0t(y0t, q0t) = h0,t+τ0(y0t − q0t) − h0,t+τ0 E[D0,t,t+τ0−1]; (2.20)

Cmt(ymt, qmt) = (hm,t+τm − h0t)(ymt − qmt) − hm,t+τm E[Dm,t,t+τm−1] for m ∈ R; (2.21)

Cnt(ynt, qnt) = E
[
hnt(ynt − S nt(ynt, qnt,Dnt)) + f B

nt(qnt + Dnt − S nt(ynt, qnt,Dnt))
]

−
∑
m∈R

umnhmt(ynt − qnt) for n ∈ P; and (2.22)

Ct(yt,qt) =
∑
n∈L

Cnt(ynt, qnt), (2.23)

where hnt = 0 and Dnt = 0 for t > T and for all n. These definitions are very

similar to equations (2.18) and (2.19), but all of the terms in the cost equation

for location n have been shifted by τn and the terms related to decisions made at

location n have been shifted to the cost equation for location n.

It is straightforward to show that, over time, the total cost is equivalent to

our original definition, C̃, less an initial fixed cost. We state this result and the

convexity of the cost functions as lemmas.

Lemma 2.1.1. The total cost calculated using the updated cost functions plus a fixed

cost of
∑

m∈S
∑τm

t=1 hmtxm1 is equivalent to the total cost calculated using the original cost

functions:
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T∑
t=1

Ct(yt,qt) +
∑
m∈S

τm∑
t=1

hmt(xm1 − qm1 − E[Dm,1,t−1])

=

T∑
t=1

[∑
m∈S

C̃mt(ym,t−τm , yt) +
∑
n∈P

C̃nt(yn,t−τn , qn,t−τn)
]
.

Proof. Recall that for all n ∈ L, we defined hnt = bnt = 0 when t < 1 or t > T . Also,

for t < 1, ynt = xn1 and qnt = qn1. We begin with the sum of cost functions defined

initially:

T∑
t=1

[∑
m∈S

C̃mt(ym,t−τm , yt) +
∑
n∈P

C̃nt(yn,t−τn , qn,t−τn)
]
.

For m ∈ S and t = 1 − τm, ..., 0, we substitute xm1 for ymt and qm1 for qmt:

=
∑
m∈S

τm∑
t=1

hmt(xm1 − qm1 − E[Dm,1,t−1] −
∑
n∈L

umn(ynt − qnt)

+
∑
m∈S

T∑
t=τm+1

hmt(ym,t−τm − qm,t−τm − E[Dm,t−τm,t−1] −
∑
n∈L

umn(ynt − qnt)

+
∑
n∈P

T∑
t=1

E
[
hnt(ynt − S nt) + f B

nt(qnt + Dnt − S nt)
]
.
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Rearranging terms, changing summation indices, and recalling that hm,t+τm = 0

for t > T − τm gives us

=
∑
m∈S

τm∑
t=1

hmt(xm1 − qm1 − E[Dm,1,t−1]

+

T∑
t=1

h0,t+τ0(y0t − q0t − E[D0t,t+τ0−1])

+
∑
m∈R

T∑
t=1

hm,t+τm(ymt − qmt − E[Dmt,t+τm−1]) − h0t(ymt − qmt)

+
∑
n∈P

T∑
t=1

E
[
hnt(ynt − S nt) + f B

nt(qnt + Dnt − S nt)
]
−

∑
m∈R

umnhmt(ynt − qnt)

=
∑
m∈S

τm∑
t=1

hmt(xm1 − qm1 − E[Dm,1,t−1]

+

T∑
t=1

∑
n∈L

Cnt(ynt, qnt).

�

Lemma 2.1.2. The cost functions Cnt(ynt, qnt) are convex in ynt for fixed qnt.

Proof. Since the cost functions at the RSS and SNS are linear, they are also triv-

ially convex. To see that the cost function for the PODs is convex, let us rewrite

the cost function as

Cnt(ynt, qnt) =
∑

d∈Dnt

fnt(d)
(
hnt

(
ynt − S nt(ynt, qnt, d)

)
+ f B

nt

(
qnt + d − S nt(ynt, qnt, d)

))
−

∑
m∈R

umnhmt(ynt − qnt).

The term
(
−

∑
m∈R umnhmt(ynt − qnt)

)
is linear in ynt and therefore convex. We know

fnt(d) ≥ 0, so if the holding cost term hnt

(
ynt − S nt(ynt, qnt, d)

)
and backorder cost

term f B
nt

(
qnt + d − S nt(ynt, qnt, d)

)
are convex in ynt for each d and fixed qnt, then

39



the full cost function is also convex, since nonnegative linear combinations of

convex functions are convex.

First consider hnt

(
ynt − S nt(ynt, qnt, d)

)
. Suppose that ant ≤ qnt + d. Then

hnt

(
ynt − S nt(ynt, qnt, d)

)
= hnt

(
ynt −min(ynt, ant, qnt + d)

)
= hnt

(
max(0, ynt − ant, ynt − qnt − d)

)
= hnt max(0, ynt − ant).

The maximum of 0 and a linear function of ynt is a convex function of ynt, and

multiplying the maximum by the nonnegative constant hnt maintains convexity.

Hence, the holding cost term of the cost function is convex in this case. When

ant > qnt + d, then

hnt

(
ynt − S nt(ynt, qnt, d)

)
= hnt

(
ynt −min(ynt, ant, qnt + d)

)
= hnt

(
max(0, ynt − ant, ynt − qnt − d)

)
= hnt max(0, ynt − qnt − d).

For the same reasons as above, this expression is convex in ynt, so the holding

cost term is convex for all fixed values of ant, qnt, and d.

Next, consider f B
nt

(
qnt + d − S nt(ynt, qnt, d)

)
. As with the holding cost term, we

can rewrite this as

f B
nt

(
qnt + d − S nt(ynt, qnt, d)

)
= f B

nt

(
max(qnt + d − ynt, qnt + d − ant, 0)

)
.
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As discussed above, we know that the maximization is a convex function of ynt.

Since f B
nt(·) is a convex, nondecreasing function, we see that the backorder cost

term is convex. �

2.1.3 Dynamic Programming Formulation

Our goal in period t is to make inventory allocation decisions that not only min-

imize the cost Ct(yt,qt), but that also minimize the expected cost over all future

time periods. In particular, we want to minimize

Expected Current and Future Cost =

T∑
r=t

Cr(yr,qr), (2.24)

subject to the appropriate constraints. Let us define the value function

Vt(xpast
t ,qpast

t ,dpast
t ) = min Ct(yt,qt) + E[Vt+1(xpast

t+1 ,q
past
t+1 ,d

past
t+1 )]

)
(2.25)

such that yt ∈ Ut(xpast
t ,qpast

t ,dpast
t )

where the transition functions for the state variable vectors are
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xpast
n,t+1 = ynt − S nt for n ∈ P;

xpast
m,t+1 =

(
xm,t−τm+1, xm,t−τm+2, ..., xmt, ymt −

∑
n∈P

umnS nt

)
for m ∈ S;

qpast
n,t+1 = qnt + Dnt − S nt for n ∈ P;

qpast
m,t+1 =

(
qm,t−τm+1, qm,t−τm+2, ..., qmt, qmt +

∑
n∈P

umn(Dnt − S nt)
)

for m ∈ S;

dpast
m,t+1 =

(
dm,t−τm+1, dm,t−τm+2, ..., dm,t−1,

∑
n∈P

umnDnt

)
for m ∈ S;

and gt is the transition function defined so that Zt+1 = gt(Zt, yt,Dt).

From Bellman’s Equation, we know that Vt(xt,qt) is equal to expression

(2.24). This dynamic program is computationally intractable, due to its large,

complex state space. In the following section we will present several methods

for constructing approximate solutions.

2.2 Inventory Allocation Strategies

In this section we will focus on several different mathematical techniques that

we use to approximately solve the dynamic program (2.25). We begin by defin-

ing the Wait-and-See value, which is the cost that we could achieve if the patient

demands were known exactly at the beginning of the time horizon. This value

is a lower bound on the cost that could be achieved by any allocation policy.

We will then describe a myopic heuristic, which makes decisions based on esti-

mated costs for several periods into the future. Finally, we will present a novel

method for relaxing and decomposing the dynamic program.
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2.2.1 Wait-and-See Solution

Suppose that we could always wait to make our decisions until we had perfect

information about all of the patient demands for the whole time horizon. That

is, suppose we could “wait and see” before making our decisions. We could

then make optimal inventory allocations by solving a single linear program. The

expected cost of implementing this is called the “Wait-and-See” (WS) value, as

discussed by Birge and Louveaux [Birge & Louveaux, 1997]. The cost associated

with these decisions is a lower bound on the total cost incurred when perfect

information about patient demands is unavailable.

Let dt
′ = (dt, ...,dT) be the actual demands incurred at all PODs from period

t through the end of the time horizon. Let yt
′ = (yt, ..., yT) be a complete solution

for all locations and all time periods. Recall that we defined the period t state

vector Zt = (xpast
t ,qpast

t ,dpast
t ) with the transition function gt(·). Define the feasible

setVt to be the set of all feasible decisions for periods t, ...,T :

Vt(Zt,dt
′) =

{
yt
′ : yt ∈ Ut(Zt),Zt+1 = gt(Zt, yt,dt)

}
. (2.26)

Define Ĉt(yt,qt,dt) to be the actual cost incurred as a consequence of decisions

made in time period t given the true patient demands. That is, Ĉt(yt,qt,dt) =

Ct(yt,qt) when Pr(Dnt′ = dnt′) = 1 for all n ∈ P and t′ = t, ...,T . The value of the

Wait-and-See solution for periods t, ...,T is given by

WS t(Zt) = E
[

min
yt′∈Vt(Zt,dt

′)

T∑
t′=t

Ĉt′(yt′ ,qt′ ,dt′)
]
. (2.27)
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We see that WS t(Zt) is a lower bound on DPt(Zt) = Vt(Zt) by applying

Jensen’s inequality, since the Wait-and-See solution takes the expectation of the

minimum of the total cost, while the dynamic program minimizes the expected

total cost.

Lemma 2.2.1. WS t(Zt) ≤ DPt(Zt).

Notice that, for fixed sets of patient demands d′t, the problem

min
yt′∈Vt(Zt,dt

′)

T∑
t′=t

Ĉt′(yt′ ,qt′ ,dt′) (2.28)

can be written as a linear program, since Ĉt′(yt′ ,qt′ ,dt′) is convex and piecewise

linear. An optimal solution to problem (2.28) must exist, since the objective

function is convex and there is always a trivial feasible solution of ynt = xnt

for all locations n ∈ L and time periods t ∈ T . Furthermore, we observe that

there must always exist an optimal integer solution. Recall that we mentioned

earlier that the backorder cost function is piecewise linear whose slope changes

only at integer values, so there must exist an unconstrained minimum which

is integer-valued. Since all of the parameter values are also integer, bounds on

the decision variables will be integer, so there must exist and integer-valued

minimum solution. Other non-integer minimum solutions may also exist.

2.2.2 Expected Value Solution

In an actual emergency, we will always need to make logistics decisions before

the patient demands are known, so the Wait-and-See solution may be a poor
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estimate of the cost that we would actually incur. Instead, assume patient de-

mands equal their expected values. We call this the Expected Value (EV) solu-

tion in accordance with Birge and Louveaux [Birge & Louveaux, 1997]. Let

EVt(Zt) = min
yt′∈Vt(Zt,E[Dt

′])

[ T∑
t′=t

Ĉt(yt,qt, E[Dt])
]
. (2.29)

The EV problem also has an optimal integer solution, as long as the expected

demands, E[Dt], are integer, since it is simply a special case of the WS problem.

We state this as a corollary.

Corollary 2.2.2. If the initial state vectors x1 and q1 are integer-valued and the service

capacities at and transportation capacities pt and p0
t are integer for all time periods

t ∈ T , then for any set of integer expected values E[D] there exists an optimal integer

solution to problem (2.29).

Let yE
t be the optimal inventory position decisions for EVt(Zt); let xE

t be the

inventory position state variables generated when using these allocations. De-

fine

rE
nt = yE

nt − xE
nt for all n ∈ L and t ∈ T

to be the optimal EVt(Zt) allocation amounts. We know yE
nt ≥ xE

nt, so rE
nt ≥ 0. We

can use the vector of r values to construct a feasible solution y for any set of

demands, since the feasibility of allocation decisions depends only on invento-

ries at the SNS and RSSs and the transportation capacities. So we can find the

expected cost of implementing the EV solution, called the Expectation of the

45



Expected Value solution (EEV) as in Birge and Louveaux [Birge & Louveaux,

1997], which is given by

EEVt(Zt) = E
[ T∑

t=1

Ct(xt + rE
t ,qt,Dt)

]
.

where xn,t+1 = xnt + rE
nt − S nt for all n ∈ L and t = 1, ...,T − 1

qn,t+1 = qnt + Dnt − S nt for all n ∈ P and t = 1, ...,T − 1

S nt = min{xnt + rE
nt, qnt + Dnt, ant} for all n ∈ P and t ∈ T

S mt =
∑
n∈L

umnS nt for all m ∈ S and t ∈ T .

Note that DPt(Zt) ≤ EEVt(Zt) because the EEVt(Zt) is the expected cost of

using some feasible solution to the same problem for which DPt(Zt) finds the

minimum. From Jensen’s inequality know that EVt(Zt) ≤ WS t(Zt). We state this

result as part of the proposition below.

Proposition 2.2.3. EVt(Zt) ≤ WS t(Zt) ≤ DPt(Zt) ≤ EEVt(Zt).

2.2.3 Truncated Cumulative Approximation

The EV solution presented above is feasible for problem (2.25), but Proposition

2.2.3 shows that the expected cost of using this solution is larger than the cost

of solving the dynamic program. In practice, the gap is quite large unless the

demand random variables have extremely low variances. In this section, our

goal is to construct a much better method for making feasible decisions. We

shift our focus from thinking about the total cost that would be incurred over

the time horizon to considering how the best decisions may be made in each

period.
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In the first hours after an anthrax attack, patient demands at the PODs will

be highly unpredictable and inventory shortages are possible. Because of this

uncertainty, a good inventory policy should call for small, frequent shipments

to be sent to the PODs. This would help ensure that no inventory is wasted at

a POD that sees lower-than-expected demands so additional supplies may be

sent quickly to assist PODs with higher demands. Each shipment would only

be expected to cover a small portion of a location’s demand, so it is not unrea-

sonable to consider a myopic allocation policy. In a myopic allocation policy,

we make allocation decisions in each time period by optimizing inventory deci-

sions over just a few time periods, rather than considering the full horizon. We

can repeat this process in a rolling horizon manner, re-solving the problem in

each time period to review our decisions based on further information.

We also need to ensure that we can efficiently solve the problem in each time

period. As we discussed earlier, the presence of service capacities increases the

complexity of our problem by preventing us from writing it in terms of cumu-

lative quantities. We can significantly simplify the problem if we approximate

the number of people served over some time horizon by its upper bound, as

given in inequality 2.10. We will call this rolling horizon, myopic approximation

approach of constructing a solution the Truncated Cumulative Approximation

(TCA).

Let us assume that the length of our time horizon will be k + 1 time peri-

ods. For the best performance, one must look over the full time required for

inventory to be shipped to the SNS and travel to a POD, so we will always set

k ≥ τ0 + max τm : m ∈ R + 2. So, in each period t, we will calculate a solution that

approximately minimizes the expected costs for periods t, t+1, ..., t+k. We define
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the approximate number served in periods t, ..., t + j to be

S̃ n,t,t+ j = min
{
an,t,t+ j, qnt + Dn,t,t+ j, xn,t−τn+ j + rn,t,t+ j

}
for j ≤ k. Since S̃ n,t,t+ j is a function of Dn,t,t+ j, it is a random variable. Notice that

for j = 0, S̃ n,t,t = S nt. We now rewrite problem (2.25) with these two modifica-

tions

V̂t(xpast
t ,qpast

t ,dpast
t ) = min

t+k∑
t′=t

Ct′(yt′ ,qt′) (2.30)

such that ynt′ ≥ xnt′ for all n ∈ L, t′ = t, ..., t + k∑
n∈L

umn(ynt′ − qnt′) ≤ xm,t′−τm − qm,t′−τm − dm,t′−τm,t′−1

for all m ∈ S, t′ = t, ..., t + k∑
n∈L

umn(ynt′ − xnt′) ≤ pmt′ for all m ∈ S, t′ = t, ..., t + k

y0t′ − x0t′ ≤ p0
t′ for all t′ = t, ..., t + k

xn,t′+1 = ynt′ − S̃ nt′ for all n ∈ L, t′ = t, ..., t + k − 1

qn,t′+1 = qnt′ + Dnt − S̃ nt′ for all n ∈ L, t′ = t, ..., t + k − 1.

This formulation includes constraints that rely on Dnt′ and S̃ nt′ , whose values are

unknown for t′ = t, ..., t + k, and on xnt′ and qnt′ , whose values are unknown for

t′ = t + 1, ..., t + k. Hence, the problem cannot be solved in its current form. But

we can rewrite the problem in terms of on-hand inventory at the upper echelons

and use shipment quantities as our decision variables.

Recall that Dntt′ is the cumulative demand random variable for location n for

periods t through t′, fntt′ is the associated probability mass function, Dntt′ is the
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range of Dntt′ , and rnt is the amount of inventory shipped to location n in period

t, so ynt = xnt + rnt. Let rntt′ = rnt + ... + rnt′ be the total amount shipped in periods

t through t′, and let antt′ = ant + ... + ant′ be the total service capacity for periods t

through t′. Let xO
mt be the inventory on-hand at location m ∈ S at the beginning

of time period t.

For the SNS or an RSS m ∈ S in period t we showed in equation (2.3) that the

on-hand inventory is given by

xO
mt = xm,t−τm −

∑
n∈L

umn(xnt + S n,t−τm,t−1).

To update this value in subsequent periods, we can use the following equation

for t′ = t, .., t + k − 1 and m ∈ S:

xO
m,t′+1 = xO

mt′ + rm,t′−τm −
∑
n∈L

umnrnt′ .

Using the on-hand inventory and shipment decision variables, we can rewrite

the constraints above as follows

ynt′ ≥ xnt′ ⇒ rnt′ ≥ 0 n ∈ L, t′ = t, ..., t + k∑
n∈L

umn(ynt′ − qnt′) ≤ xm,t′−τm − qm,t′−τm − dm,t′−τm,t′−1

⇒
∑
n∈L

umnrnt′ ≤ xO
mt′ m ∈ S, t′ = t, ..., t + k∑

n∈L

umn(ynt′ − xnt′) ≤ pmt′ ⇒
∑
n∈L

umnrnt′ ≤ pmt′ m ∈ S, t′ = t, ..., t + k

y0t′ − x0t′ ≤ p0
t′ ⇒ r0t′ ≤ p0

t′ t′ = t, ..., t + k
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These constraints no longer rely on any unknown variables. We have not

included a replacement for the final constraint, which showed how to update

the values of qnt′ , nor have we included a method for updating xnt′ , because the

new formulation does not rely on these variables for t′ > t. Thus, we must

modify the cost function so that it relies only on the state variables for period

t, the on-hand inventories upstream, and the shipment decision variables. The

cost functions rely on the (ynt − qnt) for all n ∈ L. We can rewrite this expression

for the PODs, n ∈ P, as

ynt′−qnt′ = (xO
nt +rntt′−S nt,t′−1)− (qnt +Dnt,t′−1−S nt,t′−1) = xO

nt +rntt′−qnt−Dnt,t′−1. (2.31)

For the upper echelon locations, m ∈ S, we can write

ymt′ − qmt′ =
(
xO

mt′ + rm,t′−τm,t′ +
∑
n∈L

umnynt′
)
−

∑
n∈L

umnqnt′

= xO
mt′ + rm,t′−τm,t′ +

∑
n∈L

umn(ynt′ − qnt′) (2.32)

= xO
mt′ + rm,t′−τm,t′ +

∑
n∈L

umn(xO
nt + rntt′ − qnt − Dnt,t′−1) (2.33)

For periods t′ > t, we rewrite the cost function in terms of the on-hand invento-

ries and shipments:
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Ct′(yt′ ,qt′) = h0,t′+τ0(y0t′ − q0t′) − h0,t′+τ0 E[D0,t′,t′+τ0−1]

+
∑
m∈R

(
(hm,t′+τm − h0t′)(ymt′ − qmt′) − hm,t′+τm E[Dm,t′,t′+τm−1]

)
+

∑
n∈P

(
E
[
hnt′(ynt′ − S nt′) + f B

nt′(qnt′ + Dnt′ − S nt′)
]

−
∑
m∈R

umnhmt(ynt′ − qnt′)
)
.

Applying equation (2.32) for the SNS, grouping the RSS terms, setting ynt′−S nt′ =

xO
nt + rntt′ − S̃ ntt′ for n ∈ P, and setting qnt′ + Dnt′ = qnt + Dntt′ − S̃ ntt′ for n ∈ P:

Ct′(yt′ ,qt′) = h0,t′+τ0(xO
0t′ + r0,t′−τ0,t′ − E[D0,t′,t′+τ0−1])

+
∑
m∈R

(
(hm,t′+τm + h0,t′+τ0 − h0t′)(ymt′ − qmt′) − hm,t′+τm E[Dm,t′,t′+τm−1]

)
+

∑
n∈P

(
E
[
hnt′(xO

nt + rntt′ − S̃ ntt′) + f B
nt′(qnt + Dntt′ − S̃ ntt′)

]
−

∑
m∈R

umnhmt′(ynt′ − qnt′)
)
.

Applying equation (2.32) to the RSS terms, grouping the POD terms, and apply-

ing equation (2.31):

Ct′(yt′ ,qt′) = h0,t′+τ0(xO
0t′ + r0,t′−τ0,t′ − E[D0,t′,t′+τ0−1])

+
∑
m∈R

(
(hm,t′+τm + h0,t′+τ0 − h0t′)(xO

mt′ + rm,t′−τm,t′) − hm,t′+τm E[Dm,t′,t′+τm−1]
)

+
∑
n∈P

(
E
[
hnt′(xO

nt + rntt′ − S̃ ntt′) + f B
nt′(qnt + Dntt′ − S̃ ntt′)

]
+ (h0,t+τ0 − h0t +

∑
m∈R

umn(hm,t+τm − hmt))(xO
nt + rntt′ − qnt − E[Dnt,t′−1])

)
= C̄t′((xO

0t′ , x
O
1t′ , ..., x

O
Mt′), (xO

M+1,t, ..., x
O
M+N,t),qt, rpast

t′ ).

The expectations included in the period t′ cost function are taken over the

cumulative demand random variables Dntt′ . If we used the exact cumula-
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tive numbers of people served S ntt′ , we would need to take expectations over

Dnt,Dn,t+1, ...,Dnt′ , for a total of t′ + 1 − t nested expectations for each POD n ∈ P.

Replacing S ntt′ with S̃ ntt′ allows us to consider only one expectation for each POD

n ∈ P, significantly reducing the computational complexity of the cost calcula-

tion.

We use the newly defined cost function C̄t(·) in formulating the truncated cumu-

lative approximation problem:

V̂t(Zt) = min
t+k∑
t′=t

C̄t′((xO
0t′ , x

O
1t′ , ..., x

O
Mt′), (xO

M+1,t, ..., x
O
M+N,t),qt, rpast

t )
)

(2.34)

such that rnt′ ≥ 0 for all n ∈ L and t′ = t, ..., t + k∑
n∈L

umnrnt′ ≤ xO
mt′ for all m ∈ S; t′ = t, ..., t + k∑

n∈L

umnrnt′ ≤ pmt′ for all m ∈ S; t′ = t, ..., t + k

r0t′ ≤ p0
t′ , for all t′ = t, ..., t + k

xO
m,t′+1 = xO

mt′ + rm,t′−τm −
∑
n∈L

umnrnt′ for m ∈ S, t′ = t, ..., t + k − 1.

To make decisions using the TCA model, we must re-solve problem (2.34)

during each time period in a rolling horizon manner, as described by Algorithm

1 below.

Algorithm 1:

1. Initialize the state variables Z1 = (x1,q1).

2. For t ∈ T :

a. Solve problem (2.34) to find V̂t(Zt) and obtain allocation decisions yt.
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b. Observe the simulated demand: dnt = Dnt for n ∈ P.

c. Calculate the number of patients served, S nt = S nt(ynt, qnt, dnt) for n ∈ P.

d. Calculate the costs incurred in time period t from making decisions

yt: C̄t(yt,qt,dt).

e. Update state variables: Zt+1 = gt(Zt, yt,dt).

3. Return TCA(Z1,d) =
∑T

t=1 C̄t(yt,qt,dt).

The expected cost of using the approximate myopic solution to make allocation

decisions for the full time horizon can be estimated by calculating TCA(Z1,Di)

for i = 1, ..., I, where I is a large number and setting

ETCA(Z1) =
1
I

I∑
i=1

TCA(Z1,Di). (2.35)

It is clear that ETCA(Z1) ≥ DP1(Z1) since the decisions made by the TCA solution

method are feasible, but not necessarily optimal for the original problem (2.25).

However, we expect to find that ETCA(Z1) < EEV1(Z1), since the TCA approach

responds to the current inventory position over time and, as we discussed at

the beginning of this section, the modifications that we made to problem (2.25)

are reasonable ones. In the following section, we present a different method for

estimating DP1(Z1) and constructing near-optimal solutions to problem (2.25).

2.2.4 Lagrangian Relaxation Method

The SNS emergency response network is a three-echelon divergent supply

chain. Many people have studied inventory allocation in multi-echelon sup-
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ply chains; we review a few of the relevant papers here and discuss how we can

build on some of these methods to construct a Lagrangian Relaxation inventory

policy. [Clark & Scarf, 1960] published one of the first papers on multi-echelon

inventory theory. They studied an N-echelon serial system under periodic re-

view, with discounted holding and backorder costs. They showed that it is pos-

sible to decompose this system into a set of small dynamic programs which can

be solved for an optimal solution. They also introduced the balance assumption,

which states that it will never be desirable to redistribute inventory among the

retailers; that is, the inventory will never become “imbalanced.” However, [Do-

gru et al., 2005] showed that there are a number of scenarios when the balance

assumption is inadequate.

[Eppen & Schrage, 1981] studied a two echelon divergent inventory system,

and, under a number of assumptions, they derived an approximately optimal

policy for inventory allocation. [Federgruen & Zipkin, 1984a] and [Federgruen

& Zipkin, 1984b] extended Eppen and Schrage’s model by relaxing many of the

restrictive assumptions. They showed that a myopic allocation policy is optimal

at all of the lower-echelon locations when these locations are allowed to return

inventory to the upper echelons.

In recent years, [Kunnumkal & Topaloglu, 2008] and [Kunnumkal &

Topaloglu, 2010] have improved on the work of Federgruen and Zipkin. They

allow negative inventory allocations, but they include Lagrange multipliers to

penalize negative allocation decisions. In [Kunnumkal & Topaloglu, 2008], they

present a method for obtaining the Lagrange multipliers by solving convex opti-

mization problems, and in [Kunnumkal & Topaloglu, 2010] they present a much

faster linear programming method that produced lower expected cost policies
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for a set of their problems.

Most multi-echelon supply chain research has focused on serial systems or

two echelon divergent networks. However, [Diks & de Kok, 1998] and [Diks

& de Kok, 1999] have studied general N-echelon divergent systems in which

all of the locations in the network can hold stock. Under the balance assump-

tion, they show that order-up-to policies are optimal at all locations in the sys-

tem, and they show how to find the optimal levels and allocation policies for

each location [Diks & de Kok, 1998]. [Diks & de Kok, 1999] presents a faster,

easier method for making allocation decisions under similar assumptions. [Do-

gru et al., 2004] perform similar studies using discrete demand distributions.

[Graves & Willems, 2008] determine optimal base stock levels for general com-

plex supply chains under nonstationary demand and [Neale & Willems, 2009]

extends this work for practical applications, but both papers assume that the

demands have known upper bounds.

Imbalance may be a very significant problem in an emergency response sce-

nario, since demand is highly uncertain, so the work by Diks, de Kok, and Do-

gru et al. does not translate directly to this problem. Instead, we build on the

work from Kunnumkal and Topaloglu, who include Lagrange multipliers to

discourage negative inventory shipments. They have shown that their method

produces tight lower bounds on the value function and good simulated perfor-

mance in a two-echelon uncapacitated distribution network. In this section, we

extend their work to the three-echelon capacitated SNS distribution network.

Our goals are twofold: to calculate a lower bound that is tighter than the Wait-

and-See bound and to construct an inventory policy with lower expected cost

than the TCA allocation method.
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In this subsection, we will use a four stage process to relax problem (2.25)

and decompose it into a set of smaller, tractable subproblems. The four steps

are: (1) use Lagrangian relaxation to replace the transportation constraints and

some of the nonnegative shipment constraints with costs; (2) rewrite the prob-

lem in terms of inventory position instead of on-hand inventory and patient

queues; (3) use Lagrangian relaxation to relax some of the service constraints;

and (4) decompose the problem by location into a set of single variable dynamic

programs.

Before we propose the first relaxation, observe that in the dynamic program

(2.25) it is never advantageous to ship inventory from the SNS to RSS m after

time period T − τm − 1 since such shipments will not reach the RSS in time to

be sent on to a POD for use before the end of the time horizon. Similarly, it is

never useful to ship inventory to the SNS after time period T −τ0−minm∈R τm−2.

Therefore, without loss of generality, we can add the following constraints to

the dynamic program (2.25):

ymt = xmt for m ∈ R and t = T − τm, ...,T, (2.36)

y0t = x0t for t = T − τ0 −min
m∈R

τm − 1, ...,T. (2.37)

We will include these two constraints in subsequent statements of the dynamic

program (2.25).

Let us now define two sets of Lagrange multipliers:
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λnt = the Lagrange multiplier associated with the constraint ynt ≥ xnt for

n ∈ R ∪ P and t = 1, ...,T − τn − 1, and

µnt = the Lagrange multiplier associated with the constraint∑
n∈L

umn(ynt − xnt) ≤ pmt for m ∈ S and t = 1, ...,T − τn.

For notational convenience, let λnt = 0 for n ∈ R and t = 1, ...,T − τn − 1, λ =

{λnt : n ∈ R ∪ P, t ∈ T }, and µ = {µmt : m ∈ S, t ∈ T }. For n ∈ R ∪ P, let

µU
nt =

∑M
m=0 umnµmt and hU

nt =
∑M

m=0 umnhmt be the parameters associated with the

upper echelon location that supplies location n. Let τ = minm∈R τm.

We now relax problem (2.25) by removing the constraints associated with the

multipliers defined above and adding Lagrange terms to the cost function. We

also include the additional constraints stated above in equations (2.36)-(2.37):

V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) = min

{∑
n∈L

Cnt(ynt, qnt) + E[V ′t+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 |λ, µ)]

−
∑

n∈P∪R

λnt(ynt − xnt)

−
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ynt − xnt)
)}

(2.38)

such that x0t ≤ y0t ≤ x0t + p0
t∑

n∈L

umn(ynt − qnt) ≤ xm,t−τm − qm,t−τm − dm,t−τm,t−1 (2.39)

for all m ∈ S

ymt = xmt for m ∈ R if t = T − τm, ...,T

y0t = x0t if t = T − τ0 − τ − 1, ...,T.

As in Kunnumkal and Topaloglu [Kunnumkal & Topaloglu, 2008], we can show
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that problem (2.38) provides a lower bound on the problem (2.25).

Lemma 2.2.4. Suppose the Lagrange multipliers λ and µ are nonnegative. Then

V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) ≤ Vt(xpast

t ,qpast
t ,dpast

t ).

Proof. Let yt
∗ be the optimal solution to Vt(xpast

t ,qpast
t ,dpast

t ). Then we know yt
∗ ≥

xt and pmt ≥
∑

n∈L umn(ynt − xnt) for m ∈ S. So for any nonnegative λnt and µmt, we

see that

λnt(y∗nt − xnt) ≥ 0 for n ∈ R ∪ P and

µmt

(
pmt −

∑
n∈L

umn(y∗nt − xnt)
)
≥ 0 for m ∈ R.

Consequently

−
∑

n∈P∪R

λnt(ynt − xnt) −
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ynt − xnt)
)
≤ 0. (2.40)

Note also that yt
∗ is feasible for V ′t (x

past
t ,qpast

t ,dpast
t |λ, µ).

In time period T we see that
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V ′T (xpast
T ,qpast

T ,dpast
T |λ, µ) = min

{
CT (yT,qT) −

∑
n∈P∪R

λnt(ynT − xnT )

−
∑
m∈S

µmt

(
pmT −

∑
n∈L

umn(ynT − xnT )
)}

≤ CT (yT
∗,qT) −

∑
n∈P∪R

λnt(y∗nT − xnT )

−
∑
m∈S

µmt

(
pmT −

∑
n∈L

umn(y∗nT − xnT )
)

≤ CT (yT
∗,qT)

= VT (xpast
T ,qpast

T ,dpast
T ),

where the first inequality follows from the definition of feasibility and the sec-

ond from inequality (2.40).

Let us assume that V ′t+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 |λ, µ) ≤ Vt+1(xpast

t+1 ,q
past
t+1 ,d

past
t+1 ). Then fol-

lowing the same reasoning,

V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) = min

{
Ct(yt,qt) −

∑
n∈P∪R

λnt(ynt − xnt)

−
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ynt − xnt)
)

+E[V ′t+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 |λ, µ)]

}
≤ Ct(yt

∗,qt) −
∑

n∈P∪R

λnt(y∗nt − xnt)

−
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(y∗nt − xnt)
)

+E[V ′t+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 |λ, µ)]

≤ Ct(yt
∗,qt) + E[Vt+1(xpast

t+1 ,q
past
t+1 ,d

past
t+1 |λ, µ)]

= Vt(xpast
t ,qpast

t ,dpast
t ).

�
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A good allocation policy should never set ynt > ant for any POD n in any

period t, unless this is required by another constraint in the problem. Inventory

above the value of ant cannot be used at a POD; setting ynt > ant guarantees

additional holding cost. Since ant is known, the lead time from the RSSs to the

PODs is 0, and holding costs are lower at the RSSs than at the PODs, it would

always be better to hold inventory above ant units back at the RSS when possible.

Now that the constraint ynt ≥ xnt has been removed, there are no constraints to

require ynt to be larger than ant; the only reason why an optimal solution might

set ynt > ant would be if the newly introduced Lagrangian cost terms made such

a decision cost-effective. Suppose that, for POD n in period t, ynt ≥ ant. The cost

function terms that include ynt are

E
[
hnt(ynt − S nt(ynt, qnt,Dnt)) + f B

nt(qnt + Dnt − S nt(ynt, qnt,Dnt))
]
− hU

ntynt

+λntynt + µU
ntynt + V ′t (x

past
t ,qpast

t ,dpast
t |λ, µ).

The number of patients served is given by S nt(ynt, qnt,Dnt) = min(ant, qnt + Dnt), so

we can remove these terms:

hntynt − hU
ntynt + λntynt + µU

ntynt + V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ).

The only impact that ynt will have on future costs is through xn,t+1 = ynt − S nt. The

cost terms containing xn,t+1 or ynt are

hntynt − hU
ntynt + λntynt + µU

ntynt + λn,t+1xn,t+1 − µ
U
ntxn,t+1

= hntynt − hU
ntynt + λntynt + µU

ntynt + λn,t+1(ynt − S nt) − µU
nt(ynt − S nt).
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Dropping the S nt terms leaves us with

(hnt − hU
nt + λnt + µU

nt + λn,t+1 − µ
U
nt)ynt.

So, if

hnt − hU
nt − λnt + µU

nt + λn,t+1 − µ
U
n,t+1 ≥ 0, (2.41)

then any optimal solution will force ynt to be as small as the constraints allow.

Since we assumed ynt ≥ ant, an optimal solution would set ynt = ant. Since ynt ≥ ant

implies that ynt = ant, we see that in general ynt ≤ ant when equation (2.41) holds.

Thus, we can add the constraint ynt ≤ ant to problem (2.38) without any loss of

generality to get the new dynamic program

V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) = min

{∑
n∈L

Cnt(ynt, qnt) −
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ynt − xnt)
)

−
∑

n∈P∪R

λnt(ynt − xnt)

+E[V ′t+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 |λ, µ)]

}
(2.42)

such that x0t ≤ y0t ≤ x0t + p0
t∑

n∈L

umn(ynt − qnt) ≤ xm,t−τm − qm,t−τm − dm,t−τm,t−1 for m ∈ S

ynt ≤ ant for n ∈ P

ymt = xmt for m ∈ R if t = T − τm, ...,T

y0t = x0t if t = T − τ0 − τ − 1, ...,T.

We make two observations about problem (2.42) in the following lemma:
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Lemma 2.2.5. Let V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) be defined as in problem (2.42) and suppose

that for all PODs n ∈ P, hnt − hU
nt − λnt + µU

nt + λn,t+1 − µ
U
n,t+1 ≥ 0. Then

1. S nt(ynt, qnt,Dnt) = min(ynt, qnt + Dnt) for all n ∈ P, and

2. in any optimal solution to problem (2.42), for each n ∈ P, at most one of xnt and

qnt may be positive (i.e., xnt > 0⇒ qnt = 0 and qnt > 0⇒ xnt = 0).

Proof. Consider problem (2.42). Since ynt ≤ ant, the number of people served can

be written as

S nt(ynt, qnt,Dnt) = min(ynt, qnt + Dnt, ant) = min(ynt, qnt + Dnt),

which proves (1).

Now, assume that qn1 = 0 or xn1 = 0 for all PODs n. In any optimal solution,

in periods t = 2, ...,T we have

xnt = yn,t−1 − S n,t−1(yn,t−1, qn,t−1,Dn,t−1) = max(0, yn,t−1 − qn,t−1 − Dn,t−1)

and similarly

qnt = qn,t−1 + Dn,t−1 − S n,t−1(yn,t−1, qn,t−1,Dn,t−1) = max
(
0,−(yn,t−1 − qn,t−1 − Dn,t−1)

)
,

so at least one of the xnt and qnt must be 0. This proves (2). �
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We now use Lemma 2.2.5 to reduce the number of state variables required

by problem (2.42). Define the inventory position variables for points (0) and (2)

in each time period to be

x̄t = xt − qt and

ȳt = yt − qt,

respectively, with x̄past
t defined as in section 2.1.3. Let the transition functions be

given by

x̄past
m,t+1 = ȳmt − Dmt for m ∈ P; (2.43)

x̄past
m,t+1 =

(
x̄m,t−τm+1, x̄m,t−τm+2, ..., x̄mt, ȳmt −

∑
n∈P

umnDnt

)
for m ∈ S. (2.44)

The vector x̄past
t , which gives the current and past inventory positions at the

beginning of each time period, will replace xpast
t and qpast

t in the vector of state

variables in our new problem formulation. The new decision variable vector

will be ȳt, the inventory positions after inventory has been shipped in period t,

but before patients have been served at the PODs.

We will define modified cost functions in terms of the new variables x̄past
t and

ȳt. Let
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C′nt(ȳnt) =
∑

d∈Dnt

fnt(d)[hnt(ȳnt − d)+ + f B
nt(d − ȳnt)]

−
∑
m∈R

umnhmtȳnt for n ∈ P;

C′nt(ȳnt) = (hn,t+τn − h0t)ȳnt − hn,t+τn E[Dn,t,t+τn−1] for n ∈ S;

C′0t(ȳ0t) = h0,t+τ0 ȳ0t − h0,t+τ0 E[D0,t,t+τ0−1]; and

C′t (ȳt) =
∑
n∈L

C′nt(ȳnt).

We can now state a modified dynamic program in terms of the new variables,

with the new value function, V̄t(x̄past
t ,dpast

t |λ, µ):

V̄t(x̄past
t ,dpast

t |λ, µ) = min
{
C′t (ȳt) + E[V̄t+1(x̄past

t+1 ,d
past
t+1 |λ, µ)] −

∑
n∈P∪R

λnt(ȳnt − x̄nt)

−
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳnt − x̄nt)
)}

(2.45)

such that
∑
n∈L

umnȳnt ≤ x̄m,t−τm − dm,t−τm,t−1 for all m ∈ S

x̄0t ≤ ȳ0t ≤ p0
t + x̄0t

ȳnt ≤ ant + x̄nt for all n ∈ P

ȳnt ≤ ant for all n ∈ P

ȳmt = x̄mt for m ∈ R if t = T − τm, ...,T

ȳ0t = x̄0t if t = T − τ0 − τ − 1, ...,T.

We can prove that the new problem (2.45) is equivalent to the earlier relaxed

problem (2.42):

Proposition 2.2.6. Let V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) be defined as in problem (2.42) and let

V̄t(xpast
t − qpast

t ,dpast
t |λ, µ) be defined as in problem (2.45). Suppose that the Lagrange
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multipliers λt and µt are nonnegative and hnt − hU
nt − λnt + µU

nt + λn,t+1 − µ
U
n,t+1 ≥ 0. Then

for all time periods t ∈ T ,

V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) = V̄t(xpast

t − qpast
t ,dpast

t |λ, µ)

Proof. Let x̄nt = xnt − qnt and ȳnt = ynt − qnt for all n and t. We begin by writing

the cost function at each POD n for period t, Cnt(ynt, qnt) in terms of ȳnt. Recall the

cost function definition for the PODs, n ∈ P, from equation (2.22),

Cnt(ynt, qnt) = E[hnt(ynt − S nt(ynt, qnt,Dnt)) + f B
nt(Dnt + qnt − S nt(ynt, qnt,Dnt))]

−
∑
m∈R

umnhmt(ynt − qnt).

Applying Lemma 2.2.5, we substitute min(ynt, qnt + Dnt) for S nt(ynt, qnt,Dnt) to get

Cnt(ynt, qnt) = E[hnt(ynt − qnt − Dnt)+ + f B
nt(Dnt + qnt − ynt)]

−
∑
m∈R

umnhmt(ynt − qnt)

=
∑

d∈Dnt

fnt(d)[hnt(ȳnt − d)+ + f B
nt(d − ȳnt)]

−
∑
m∈R

umnhmtȳnt

= C′nt(ȳnt).

The cost functions at the SNS and RSSs can also be written in terms of ȳnt:
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C0t(y0t, q0t) = h0,t+τ0(y0t − q0t) − h0,t+τ0 E[D0,t,t+τ0−1]

= h0,t+τ0 ȳ0t − h0,t+τ0 E[D0,t,t+τ0−1]

= C′0t(ȳ0t) and

Cmt(ymt, qmt) = (hm,t+τm − h0t)(ymt − qmt) − hm,t+τm E[Dm,t,t+τm−1] for m ∈ R

= (hm,t+τm − h0t)ȳmt − hm,t+τm E[Dm,t,t+τm−1]

= C′mt(ȳmt).

Thus Ct(yt,qt) = C′t (yt − qt) = C′t (ȳt).

We now show that the feasible regions of both dynamic programs are equiv-

alent. We first write problem (2.42) in terms of ȳt and x̄t. Notice that for all

n ∈ L

ynt − xnt = (ynt − qnt) − (xnt − qnt) = ȳnt − x̄nt,

and

ynt = xnt ⇔ ynt − qnt = xnt − qnt ⇔ ȳnt = x̄nt.

Thus, substituting into problem (2.45),
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V ′t (x
past
t ,qpast

t ,dpast
t |λ, µ) = min

{∑
n∈L

C′nt(ȳnt) + E[V ′t+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 |λ, µ)]

−
∑

n∈P∪R

λnt(ȳnt − x̄nt)

−
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳnt − x̄nt)
)}

(2.46)

such that
∑
n∈L

umnȳnt ≤ x̄m,t−τm − dm,t−τm,t−1 for all m ∈ S

x̄0t ≤ ȳ0t ≤ p0
t + x̄0t

ynt ≤ ant for all n ∈ P

ȳmt = x̄mt for m ∈ R if t = T − τm, ...,T

ȳ0t = x̄0t if t = T − τ0 −min
m∈R

τm − 1, ...,T.

Only the one constraint still relies on ynt instead of ȳnt. If qnt is subtracted from

both sides of the inequality, we get ȳnt ≤ ant − qnt. From Lemma 2.2.5 we know

that if qnt > 0 then xnt = 0 so x̄nt = xnt − qnt = −qnt. So we see that

ant − qnt =


ant if qnt = 0

ant + x̄nt if qnt > 0
.

Thus, we can replace the constraint ynt ≤ ant in problem (2.46) with the two

constraints

ȳnt ≤ ant

ȳnt ≤ ant + x̄nt.

It remains only to show that the state transition functions are equivalent for

the two problems. We see that
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x̄n,t+1 = ȳnt − Dnt

= ynt − qnt − Dnt

= (ynt − S nt) − (qnt + Dnt − S nt)

= xn,t+1 − qn,t+1.

Thus, problem (2.42) now has the same cost function, constraints, and state tran-

sition function as problem (2.45), so the two are equivalent. �

Problem (2.45) has fewer state variables and a simpler cost function than our

original problem (2.25), but we need to relax one more set of constraints before

we can decompose the problem into a set of single variable problems. We now

define the Lagrange multipliers

γnt = the Lagrange multiplier associated with the constraint ȳnt ≤ ant + x̄nt for

n =∈ P and t ∈ T .

Relaxing the constraint ȳnt ≤ ant + x̄nt gives us
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Ṽt(x̄past
t ,dpast

t |λ, µ, γ) = min
{
C′t (ȳt) + E[Ṽt+1(x̄past

t+1 ,d
past
t+1 |λ, µ, γ)]

−
∑

n∈P∪R

λnt(ȳnt − x̄nt) −
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳnt − x̄nt)
)

−
∑
n∈P

γnt(ant + x̄nt − ȳnt)
}

(2.47)

such that
∑
n∈L

umnȳnt ≤ x̄m,t−τm − dm,t−τm,t−1 for all m ∈ S

x̄0t ≤ ȳ0t ≤ p0
t + x̄0t

ȳnt ≤ ant for all n ∈ P

ȳmt = x̄mt for m ∈ R if t = T − τm, ...,T

ȳ0t = x̄0t if t = T − τ0 −min
m∈R

τm − 1, ...,T.

If the optimal solution of Ṽt(x̄past
t ,dpast

t |λ, µ, γ) has x̄nt ≥ 0 for all n ∈ P and t ∈ T ,

then the optimal solution of problem (2.47) will equal that of problem (2.45)

since the constraint ȳnt ≤ ant + x̄nt is completely dominated by the constraint

ȳnt ≤ ant. However, if some PODs have positive queues for some time periods,

then x̄nt < 0 and the problems are not equivalent. The new problem (2.47) al-

lows a service capacity of ant + (queue length) = ant − (x̄nt)− for POD n in period

t, which means that more patients may be served than the true capacity allows.

For large queues this relaxation could be problematic, although the convex in-

creasing backorder costs will help to discourage large queues by charging high

penalties. The Lagrange multipliers will help to ensure that the system does not

allow too many patients to be served over the planned service capacity.

We now state a modified version of Lemma 2.2.4 to show that problem (2.47)

provides a lower bound on our first relaxed problem (2.38).

Lemma 2.2.7. Suppose the Lagrange multipliers λ, µ and γ are nonnegative, hnt −hU
nt −

λnt + µU
nt + λn,t+1 − µ

U
n,t+1 ≥ 0. Then
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Ṽt(xpast
t − qpast

t ,dpast
t |λ, µ, γ) ≤ V ′t (x

past
t ,qpast

t dpast
t |λ, µ) ≤ Vt(xpast

t ,qpast
t ).

Proof. The right-most inequality is a re-statement of Lemma 2.2.4, which is true

since we still satisfy the same nonnegative multiplier condition. We only need

to prove the left inequality. We showed that V ′t (x
past
t ,qpast

t dpast
t |λ, µ) = V̄t(xpast

t −

qpast
t ,dpast

t |λ, µ) in Proposition 2.2.6. We will show that

Ṽt(xpast
t − qpast

t ,dpast
t |λ, µ, γ) ≤ V̄t(xpast

t − qpast
t ,dpast

t |λ, µ). (2.48)

We complete the proof using an induction argument. Inequality (2.48) is easy

to show for time period T . Suppose now that it is true for periods t = t + 1, ...,T .

We will prove that it also holds in period t. Define x̄past
t = xpast

t − qpast
t . Let ȳ∗t be

the optimal solution to V̄t(xpast
t − qpast

t ,dpast
t |λ, µ). Then certainly ȳ∗t is feasible for

Ṽt(xpast
t − qpast

t ,dpast
t |λ, µ, γ), which means that ȳ∗nt ≤ ant + x̄nt for all PODs n ∈ P. So

for any POD n and any γnt ≥ 0, we see that

−γnt(ant + x̄nt − ȳ∗nt) ≤ 0. (2.49)

So
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Ṽt(x̄past
t ,dpast

t |λ, µ, γ) = min
{
C′t (ȳt) + E[Ṽt+1(x̄past

t+1 ,d
past
t+1 |λ, µ, γ)]

−
∑

n∈P∪R

λnt(ȳnt − x̄nt) −
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳnt − x̄nt)
)

−
∑
n∈P

γnt(ant + x̄nt − ȳnt)
}

≤ C′t (ȳ
∗
t ) + E[Ṽt+1(x̄past

t+1 ,d
past
t+1 |λ, µ, γ)]

−
∑

n∈P∪R

λnt(ȳ∗nt − x̄nt) −
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳ∗nt − x̄nt)
)

−
∑
n∈P

γnt(ant + x̄nt − ȳ∗nt)

≤ C′t (ȳ
∗
t ) + E[V̄t+1(x̄past

t+1 ,d
past
t+1 |λ, µ)]

−
∑

n∈P∪R

λnt(ȳ∗nt − x̄nt) −
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳ∗nt − x̄nt)
)

= V̄t(xpast
t − qpast

t ,dpast
t |λ, µ),

where the first inequality follows from the definition of feasibility, and the sec-

ond follows from equation (2.49) and our inductive assumption. �

We have now relaxed the problem sufficiently to decompose it into single

variable subproblems, which will be presented in the next subsection.

Decomposition

We first define the subproblems and then state and prove the main decomposi-

tion theorem of this section. We will also present a simple algorithm for solving

the decomposed problem.

For PODs n ∈ P, let
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ψnt(x̄nt|λnt, γnt) = min
{
C′nt(ȳnt) + (µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant

+E[ψn,t+1(ȳnt − Dnt)]
}

(2.50)

such that ȳnt ≤ ant.

Recall that µU
nt =

∑
m∈R umnµmt. The following lemma shows that solving problem

(2.50) is straightforward.

Lemma 2.2.8. For n ∈ P the optimal solution to ψnt(x̄nt|λ, µ, γ) is given by

ȳ∗nt = argminynt≤ant

{
([γnt − λnt + µU

nt] − [γn,t+1 − λn,t+1 + µU
n,t+1])ȳnt + C′nt(ȳnt)

}
,(2.51)

and

ψnt(x̄nt|λ, µ, γ) = (γnt − λnt + µU
nt)(ȳ

∗
nt − x̄nt) + C′nt(ȳ

∗
nt) − γntant +

T∑
t′=t+1

[
C′nt′(ȳ

∗
nt′)

−γnt′ant′ + (γnt′ − λnt′ + µU
nt′)(ȳ

∗
nt′ − ȳ∗n,t′−1 + E[Dn,t′−1])

]
. (2.52)

Proof. This proof is based on a similar proof in Kunnumkal and Topaloglu [Kun-

numkal & Topaloglu, 2010].

We begin by showing that equation (2.51) holds.

ψnt(x̄nt|λ, µ, γ) = min
ȳnt≤ant

{
C′nt(ȳnt) + (µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant

+ E[ψn,t+1(ȳnt − Dnt)]
}
.
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Substituting for ψn,t+1(ȳnt − Dnt) gives us

ψnt(x̄nt|λ, µ, γ) = min
ȳnt≤ant

{
C′nt(ȳnt) +

(
µU

nt + γnt − λnt

)
(ȳnt − x̄nt) − γntant

+ E
[

min
yn,t+1≤an,t+1

{
C′n,t+1(ȳn,t+1) − γn,t+1an,t+1

+ (µU
n,t+1 + γn,t+1 − λn,t+1)(ȳn,t+1 − x̄n,t+1)

+ E[ψn,t+2(ȳn,t+1 − Dn,t+1)]
}]}

.

Since x̄n,t+1 = ȳnt − Dnt we get

ψnt(x̄nt|λ, µ, γ) = min
ȳnt≤ant

{
C′nt(ȳnt) +

(
µU

nt + γnt − λnt

)
(ȳnt − x̄nt) − γntant

+ E
[

min
yn,t+1≤an,t+1

{
C′n,t+1(ȳn,t+1) − γn,t+1an,t+1

+ (µU
n,t+1 + γn,t+1 − λn,t+1)(ȳn,t+1 − (ȳnt − Dnt))

+ E[ψn,t+2(ȳn,t+1 − Dn,t+1)]
}]}

.

Rearranging terms gives us

ψnt(x̄nt|λ, µ, γ) = − (µU
nt + γnt − λnt)x̄nt − γntant

+ E
[

min
yn,t+1≤an,t+1

{
C′n,t+1(ȳn,t+1) − γn,t+1an,t+1

+ (µU
n,t+1 + γn,t+1 − λn,t+1)(ȳn,t+1 + Dnt) + E[ψn,t+2(ȳn,t+1 − Dn,t+1)]

}]
+ min

ȳnt≤ant

{
C′nt(ȳnt) + (µU

nt + γnt − λnt)ȳnt − (µU
n,t+1 + γn,t+1 − λn,t+1)ȳnt

}
.

This proves equation (2.51), since only the last line of the final equation depends

on ynt; the first terms are independent of ynt.

We now prove that equation (2.52) holds using induction. In time period T

we see that
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ψnT (x̄nT |λ, µ, γ) = min
ȳnT≤anT

{
C′nT (ȳnT ) +

(
µU

nT + γnT − λnT

)
(ȳnT − x̄nT ) − γnT anT

= min
ȳnT≤anT

{
C′nT (ȳnT ) + (µU

nT + γnT − λnT )ȳnT

}
− (µU

nT + γnT − λnT )x̄nT ) − γnT anT .

From the definition of ȳ∗nt, we see that

ψnT (x̄nT |λ, µ, γ) = C′nT (ȳ∗nT ) + (µU
nT + γnT − λnT )ȳ∗nT

− (µU
nT + γnT − λnT )x̄nT ) − γnT anT .

Now suppose that equation (2.52) holds in all periods t + 1, ...,T . We will show

that it also holds in period t by substituting for ψn,t+1(ȳnt − Dnt).

ψnt(x̄nt|λ, µ, γ) = min
ȳnt≤ant

{
C′nt(ȳnt) + (µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant

+ E[ψn,t+1(ȳnt − Dnt)]
}
.

Substituting for ψn,t+1(ȳnt − Dnt) and letting x̄n,t+1 = ȳnt − Dnt gives us

ψnt(x̄nt|λ, µ, γ) = min
ȳnt≤ant

{
C′nt(ȳnt) + (µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant

+ E
[
(µU

n,t+1 + γn,t+1 − λn,t+1)(ȳ∗n,t+1 − (ynt − Dnt)) + C′n,t+1(ȳ∗n,t+1)

− γn,t+1an,t+1 +

T∑
t′=t+2

[
C′nt′(ȳ

∗
nt′) − γnt′ant′

+ (µU
nt′ + γnt′ − λnt′)(ȳ∗nt′ − ȳ∗n,t′−1 + E[Dn,t′−1])

]]}
.
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Rearranging terms, we see that

ψnt(x̄nt|λ, µ, γ) = −(µU
nt + γnt − λnt)x̄nt − γntant −

T∑
t′=t+2

(µU
nt′ + γnt′ − λnt′)ȳ∗n,t′−1

+

T∑
t′=t+1

[
C′nt′(ȳ

∗
nt′) − γnt′ant′ + (µU

nt′ + γnt′ − λnt′)(ȳ∗nt′ + E[Dn,t′−1])
]

min
ȳnt≤ant

{
C′nt(ȳnt) + (µU

nt + γnt − λnt)ȳnt − (γn,t+1 − λn,t+1 + µU
n,t+1)ynt

}
.

Finally, we use the definition to substitute for ȳ∗nt:

ψnt(x̄nt|λ, µ, γ) = −(µU
nt + γnt − λnt)x̄nt − γntant −

T∑
t′=t+2

(µU
nt′ + γnt′ − λnt′)ȳ∗n,t′−1

+

T∑
t′=t+1

[
C′nt′(ȳ

∗
nt′) − γnt′ant′ + (µU

nt′ + γnt′ − λnt′)(ȳ∗nt′ + E[Dn,t′−1])
]

C′nt(ȳ
∗
nt) + (µU

nt + γnt − λnt)ȳ∗nt − (µU
n,t+1 + γn,t+1 − λn,t+1)ȳ∗nt.

If we rearrange these terms slightly, we see that we have satisfied equation

(2.52), so by induction, the equation holds for all time periods. �

As we showed in Section 2.1.1, the echelon inventory position at RSS m at

the beginning of period t minus any in-transit inventory is given by x̄m,t−τm −

Dm,t−τm,t−1, and we refer to this as the RSS’s echelon on-hand inventory. For RSS

m to provide all of its PODs with their desired inventories would require a total

of
∑

n∈P(m) ȳ∗nt units of inventory. If the RSS had an on-hand echelon inventory of

x̄′mt = x̄m,t−τm −Dm,t−τm,t−1 and x̄′mt <
∑

n∈P(m) ȳ∗mt, then the additional cost incurred by

the PODs served by RSS m in period t would be

75



∆mt(x̄′mt|λ, µ, γ) = min
∑
n∈P

umn

[
[(µU

nt + γnt − λnt) − (µU
n,t+1 + γn,t+1 − λn,t+1)](ȳnt − ȳ∗nt)

+C′nt(ȳnt) −C′nt(ȳ
∗
nt)

]
(2.53)

such that
∑
n∈P

umnȳnt ≤ x̄′mt

ȳnt ≤ ant for n ∈ P

and ∆mt(x̄′mt|λ, µ, γ) = 0 for t > T . We can use this expression to define the single

variable problems for the RSSs. For m ∈ R let

ψmt(x̄mt|λ, µ, γ) = min
{
C′mt(ȳmt) + E[∆m,t+τm(x̄mt − Dmt,t+τm−1|λ, µ, γ)]

−λmt(ȳmt − x̄mt) − µmt pmt + E[ψm,t+1(ȳmt − Dmt|λ, µ, γ)]
}
.(2.54)

ȳmt = x̄mt if t = T − τm, ...,T.

Notice that, for RSS m in periods t = 1, ...,T −τm−1, the optimal solution ȳmt = ȳ∗mt

is independent of x̄mt. However, in periods t = T −τm, ...,T , no shipments should

be sent to the RSS so the optimal solution is ȳ∗mt = x̄mt. Since this solution is

known, we analytically calculate the costs for periods t = T − τm, ...,T in the

following lemma:

Lemma 2.2.9. For periods t = T − τm + 1, ...,T ,

ψmt(x̄mt|λ, µ, γ) = −h0,t,T x̄mt +

T∑
t′=t

(
h0,t′+1,T E[Dmt′] − µmt′ pmt′

)
. (2.55)

In period T − τm,

76



ψm,T−τm(x̄m,T−τm |λ, µ, γ) = (hmT − h0,T−τm,T )x̄m,T−τm + E[∆mT (x̄m,T−τm − Dm,T−τm,T−1)]

−hmT E[Dm,T−τm,T−1]

+

T∑
t′=t

(
h0,t′+1,T E[Dmt′] − µmt′ pmt′

)
. (2.56)

Proof. By induction. �

The next step is to define a penalty function ∆0t(·) that accounts for the cost

incurred by the system when the SNS does not have sufficient inventory to give

the RSSs all of the inventory that they require in period t. To ensure that this

function can be calculated efficiently, we must assume that the lead times to the

RSSs are identical, that is, there exists τ ≥ 0 such that τm = τ for all m ∈ R. We

can, however, maintain some control over the times when shipments are sent by

choosing the transportation capacities carefully. For example, if we set pmt = 0

and pm,t+1 > 0 for some m ∈ R and some period t, then we will try to avoid

shipping to RSS m in period t − τ and instead wait to ship until period t + 1 − τ.

We noted above that ȳ∗mt = x̄mt for t = T − τ, ...,T and ȳ∗mt is independent of x̄mt

for t = 1, ...,T − τ − 1. So, for periods t = 1, ...,T − τ − 1, let the echelon inventory

minus the in-transit inventory at the SNS in period t be x̄′0t = x̄0,t−τ0 + D0,t−τ0,t−1,

and define
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∆0t(x̄′0t|λ, µ, γ) = min
∑
m∈R

(
C′mt(ȳmt) −C′mt(ȳ

∗
mt) − λmt(ȳmt − ȳ∗mt)

+E[ψm,t+1(ȳmt − Dmt|λ, µ, γ)

−ψm,t+1(ȳ∗mt − Dmt|λ, µ, γ)]
)

(2.57)

such that
∑
m∈R

ȳmt ≤ x̄′0t.

For t ≥ T − τ we will not incur any penalty, since no new allocations are made to

the RSS after this time, and we have ∆0t(x̄′0t|λ, µ, γ) = 0.

We use the penalty function ∆0t(x̄′0t|λ, µ, γ) to state our final single variable

problem for the SNS. Let

ψ0t(x̄0t|λ, µ, γ) = min
{
C′0t(ȳ0t) + E[∆0,t+τ0(x̄0t − D0t,t+τ0−1|λ, µ, γ)] − µ0t p0t

+E[ψ0,t+1(ȳ0t − D0t|λ, µ, γ)]
}

(2.58)

such that x̄0t ≤ ȳ0t ≤ x̄0t + p0
t

ȳ0t = x̄0t for t = T − τ0 − τ − 1, ...,T.

We can state a lemma similar to Lemma (2.2.9) that provides an analytical solu-

tion for ψ0t(x̄0t|λ, µ, γ) for periods t = T − τ0 − τ − 1, ...,T :

Lemma 2.2.10. For periods t = T − τ0 − τ, ...,T ,

ψ0t(x̄0t|λ, µ, γ) = h0,t+τ0,T x̄0t −

T∑
t′=t

(
µ0t′ p0t′

+h0,t′+τ0 E[D0,t′,t′+τ0−1] + h0,t′+τ0+1,T E[D0t′]
)
. (2.59)
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For period t = T − τ0 − τ − 1,

ψ0t(x̄0t|λ, µ, γ) = h0,t+τ0,T x̄0t + E[∆0,t+τ0(x̄0t − D0t,t+τ0−1|λ, µ, γ)] −
T∑

t′=t

(
µ0t′ p0t′

+h0,t′+τ0 E[D0,t′,t′+τ0−1] + h0,t′+τ0+1,T E[D0t′]
)
. (2.60)

Proof. By induction. �

Finally, we will define the total expected costs incurred in periods t through

T by the ψnt(·) functions in period t to be

ψt(x̄t|λ, µ, γ) =
∑
n∈L

ψnt(x̄nt|λ, µ, γ). (2.61)

Before stating the main proposition, we make several observations about equa-

tion (2.61). First, notice that the new function ψt(x̄t|λ, µ, γ) only relies on current

inventory positions, x̄t, while the value function Ṽt(x̄past
t ,dpast

t |λ, µ, γ) defined in

problem (2.47) relies on both current and past inventory positions as well as

previous demands. This difference exists because the times at which costs are

charged have been modified. In the definition of the new function ψt(x̄t|λ, µ, γ),

the expected cost of not having enough inventory at the SNS or an RSS, m ∈ S,

in period t + τm is charged in period t. The value function Ṽt(x̄past
t ,dpast

t |λ, µ, γ)

charges this cost in period t + τm. Also, the new function ψt(x̄t|λ, µ, γ) does not

charge any costs for failing to have sufficient inventory at the SNS or an RSS for

periods t = 1, ..., τm. These costs are unavoidable consequences of the initial con-

ditions, but the original relaxed problem (2.47) includes all of the costs incurred

at each location n starting in period τn even if these costs are unavoidable given

the initial conditions of the problem.
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Proposition 2.2.11. Suppose that bnt = bt and hnt = hP
t for all PODs n, and that

hmt = hR
t for all RSSs m, with hP

t > hR
t > h0t. When Ṽt(x̄past

t ,dpast
t |λ, µ, γ) is defined as in

problem (2.47), then

Ṽt(x̄past
t ,dpast

t |λ, µ, γ) = ψt(x̄t|λ, µ, γ)

+
∑
m∈S

t+τm−1∑
t′=t

E[∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)]. (2.62)

Proof. We will prove that equation (2.62) holds using induction. Consider time

period T . We know that ȳmT = x̄mT for m ∈ S from the equality constraint and

ψn,T+1(x̄n,T+1) = 0 for all locations n ∈ L, so we substitute the definitions to see

that

N+M∑
n=0

ψnT (x̄nT ) +
∑
m∈S

T+τm−1∑
t′=T

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

=
∑
n∈P

min
ȳnT≤anT

{
C′nT (ȳnT ) + (µU

nT + γnT − λnT )(ȳnT − x̄nT ) − γnT anT

}
+

∑
m∈R

{
C′mT (x̄mT ) + E[∆m,T+τm(x̄mT − DmT,T+τm−1|λ, µ, γ)]

− λmT (x̄mT − x̄mT ) − µmT pmT

}
+

{
C′0T (x̄0T ) + E[∆0,T+τ0(x̄0t − D0T,T+τ0−1|λ, µ, γ)] − µ0T p0T

}
+

∑
m∈S

T+τm−1∑
t′=T

E[∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)]. (2.63)
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For m ∈ S and t′ > T we know that ∆mt′(·) = 0, so the only ∆ terms that remain

are the ∆mT terms. Further, E[∆mt(x̄m,T−τm − dm,T−τm,T−1)] = ∆mt(x̄m,T−τm − dm,T−τm,T−1).

Canceling the other ∆ terms and substituting y∗nT into the first line leaves

N+M∑
n=0

ψnT (x̄nT ) +
∑
m∈S

T+τm−1∑
t′=T

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

=
∑
n∈P

{
C′nT (ȳ∗nT ) + (µU

nT + γnT − λnT )(ȳ∗nT − x̄nT ) − γnT anT

}
+

∑
m∈R

{
C′mT (x̄mT ) − λmT (x̄mT − x̄mT ) − µmT pmT

}
+

{
C′0T (x̄0T ) − µ0T p0T

}
+

∑
m∈S

∆mT (x̄m,T−τm − dm,T−τm,T−1|λ, µ, γ). (2.64)

Noting that ∆0T (·) = 0 and expanding the ∆mT (·) terms for m ∈ S gives

N+M∑
n=0

ψnT (x̄nT ) +
∑
m∈S

T+τm−1∑
t′=T

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

=
∑
n∈P

{
C′nT (ȳ∗nT ) + (µU

nT + γnT − λnT )(ȳ∗nT − x̄nT ) − γnT anT

}
+

∑
m∈R

{
C′mT (x̄mT ) − λmT (x̄mT − x̄mT ) − µmT pmT

}
+

{
C′0T (x̄0T ) − µ0T p0T

}
+

∑
m∈R

[
min

ȳnT≤anT ;
∑

n umnȳnT≤x̄m,T−τm−dm,T−τm ,T−1

∑
n∈P

umn

(
C′nT (ȳnT ) −C′nT (ȳ∗nT )

+ (µU
nt + γnt − λnt)(ȳnt − ȳ∗nt)

)]
.
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Canceling the y∗nt terms leaves

N+M∑
n=0

ψnT (x̄nT ) +
∑
m∈S

T+τm−1∑
t′=T

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

= min
{∑

n∈L

C′nT (ȳnT ) +
∑
n∈P

[
(µU

nT + γnT − λnT )(ȳnT − x̄nT ) − γnT anT

]
−

∑
m∈R

[
λmT (ȳmT − x̄mT ) + µmT pmT

]
− µ0T p0T

}
s.t. ȳmT = x̄mT for m ∈ S;

ȳnT ≤ anT for n ∈ P;∑
n∈L

umnȳnT ≤ x̄m,T−τm − dm,T−τm,T−1 for m ∈ S

= ṼT (x̄past
T ,dpast

T |λ, µ, γ). (2.65)

We now assume that the proposition holds in time period t+1. We will show

that it also holds in time period t. Suppose that t < T − τ0 − τ − 1. We first group

all of the ∆mt(·) terms together in the last expression:

N+M∑
n=0

ψnt(x̄nt) +
∑
m∈S

t+τm−1∑
t′=t

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

=
∑
n∈P

min
ȳnt≤ant

{
C′nt(ȳnt) + (µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant + E[ψn,t+1(ȳnt − Dnt|λ, µ, γ)]
}

+
∑
m∈R

min
{
C′mt(ȳmt) − λmt(ȳmt − x̄mt) − µmt pmt + E[ψm,t+1(ȳmt − Dmt|λ, µ, γ)]

}
+ min

x̄0t≤ȳ0t≤x̄0t+p0
t

{
C′0t(ȳ0t) − µ0t p0t + E[ψ0,t+1(ȳ0t − D0t|λ, µ, γ)]

}
+

∑
m∈S

t+τm∑
t′=t

E[∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)].
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We replace the ∆mt terms with their definitions and note that, as in the case of

t = T , we do not need the E[·] for these terms. We also substitute for y∗nt for

n ∈ R ∪ P to get

N+M∑
n=0

ψnt(x̄nt) +
∑
m∈S

t+τm−1∑
t′=t

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

=
∑
n∈P

{
C′nt(ȳ

∗
nt) + (µU

nt + γnt − λnt)(ȳ∗nt − x̄nt) − γntant + E[ψn,t+1(ȳnt − Dnt|λ, µ, γ)]
}

+
∑
m∈R

{
C′mt(ȳ

∗
mt) − λmt(ȳ∗mt − x̄mt) − µmt pmt + E[ψm,t+1(ȳ∗mt − Dmt|λ, µ, γ)]

}
+ min

x̄0t≤ȳ0t≤x̄0t+p0
t

{
C′0t(ȳ0t) − µ0t p0t + E[ψ0,t+1(ȳ0t − D0t|λ, µ, γ)]

}
+

∑
m∈R

[
min

ȳnt≤ant;
∑

n umnȳnt≤x̄m,t−τm−dm,t−τm ,t−1

∑
n∈P

umn

(
C′nt(ȳnt) −C′nt(ȳ

∗
nt)

+ [(µU
nt + γnt − λnt) − (µU

n,t+1 + γn,t+1 − λn,t+1)](ȳnt − ȳ∗nt)
)]

+

[
min∑

m ȳmt≤x̄0,t−τ0−d0,t−τ0 ,t−1

∑
m∈R

(
C′mt(ȳmt) −C′mt(ȳ

∗
mt)

+ E[ψm,t+1(ȳmt − Dmt|λ, µ, γ) − ψm,t+1(ȳ∗mt − Dmt|λ, µ, γ)]
)]

+
∑
m∈S

t+τm∑
t′=t+1

E[∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)].
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Notice that for n ∈ P, E[ψn,t+1(ȳnt − Dnt)] − E[ψn,t+1(ȳ∗nt − Dnt)] = −(µU
n,t+1 + γn,t+1 −

λn,t+1)(ȳnt − ȳ∗nt). Substituting and canceling terms leaves

N+M∑
n=0

ψnt(x̄nt) +
∑
m∈S

t+τm−1∑
t′=t

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

= min
{∑

n∈L

C′nt(ȳnt) +
∑
n∈P

[
(µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant

]
−

∑
m∈R

[
λmt(ȳmt − x̄mt) + µmt pmt

]
− µ0t p0t

+
∑
n∈L

E[ψn,t+1(ȳnt − Dnt|λ, µ, γ)]

+
∑
m∈S

t+τm∑
t′=t+1

E[∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)]
}

s.t. ȳnt ≤ ant for n ∈ P;∑
n∈L

umnȳnt ≤ x̄m,t−τm − dm,t−τm,T−1 for m ∈ S.

Applying the inductive hyothesis gives

N+M∑
n=0

ψnt(x̄nt) +
∑
m∈S

t+τm−1∑
t′=t

∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)

= min
{∑

n∈L

C′nt(ȳnt) +
∑
n∈P

[
(µU

nt + γnt − λnt)(ȳnt − x̄nt) − γntant

]
−

∑
m∈R

[
λmt(ȳmt − x̄mt) + µmt pmt

]
− µ0t p0t

+
∑
n∈L

E[Ṽt+1(ȳt − Dt|λ, µ, γ)]

s.t. ȳnt ≤ ant for n ∈ P;∑
n∈L

umnȳnt ≤ x̄m,t−τm − dm,t−τm,T−1 for m ∈ S

= Ṽt(x̄past
t ,dpast

t |λ, µ, γ). (2.66)

For T − τ0 − τ− 1 ≤ t < T − τ, the same argument holds, but we have ȳ0t = x̄0t. For

t ≥ T − τ, we also have set ȳmt = x̄mt.
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Solving the Decomposition

We now describe a method for calculating ψt(x̄t|λ, µ, γ). Let Mnt be the minimum

value that may be taken by x̄nt and let Mnt be the maximum value that may be

taken by x̄nt. We can then use the following algorithm:

Algorithm 2:

1. Calculate ψnt(x̄nt|λ, µ, γ) for the PODS:

(a) Solve the LP (2.51) to find ȳ∗nt and C′nt(ȳ
∗
nt) for n ∈ P and t ∈ T .

(b) Use equation (2.52) to calculate ψnt(x̄nt|λ, µ, γ) for n ∈ P, t = T, ..., 1, and

x̄nt = Mnt, ...,Mnt.

2. Calculate ∆mt(x̄′mt|λ, µ, γ) for the RSSs:

(a) The smallest possible value for x̄′mt is M′

mt = Mm,t−τ−max d : d ∈ Dm,t−τ,t−1.

Use marginal analysis to calculate ∆mt(x̄′mt|λ, µ, γ) for m ∈ R, t =

τ + 1, ...,T , and x̄′mt = M′

nt, ...,
∑

n∈L umny∗nt.

(b) Calculate

E[∆m,t+τ(x̄mt − Dm,t,t+τ−1)] =
∑

d∈Dm,t,t−τ−1

Pr(Dm,t,t−τ−1 = d)∆m,t+τ(x̄mt − d)

for m ∈ R, t = 1, ...,T − τ, and x̄′mt = Mmt, ...,
∑

n∈L umny∗nt.

3. Calculate ψmt(x̄mt|λ, µ, γ) for the RSSs:
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(a) Use equation (2.55) to calculate ψmt(x̄mt|λ, µ, γ) for m ∈ R, t = T − τ +

1, ...,T , and x̄mt = Mmt, ...,Mmt.

(b) Use equation (2.56) to calculate ψmt(x̄mt|λ, µ, γ) for m ∈ R, t = T − τ, and

x̄mt = Mmt, ...,Mmt.

(c) For t = T−τ−1, ..., 1 and m ∈ R: (1) Solve the MIP (2.54) without the ∆(·)

term or the x̄mt terms to find ȳ∗mt and C′mt(ȳ
∗
mt)+E[ψm,t+1(ȳ∗mt−Dmt|λ, µ, γ)].

Then, (2) calculate

ψmt(x̄mt|λ, µ, γ) = C′mt(ȳ
∗
mt) + E[ψm,t+1(ȳ∗mt − Dmt|λ, µ, γ)] − λmt(ȳmt +

E[∆m,t+τm(x̄mt − Dmt,t+τm−1|λ, µ, γ)] − x̄mt) − µmt pmt

for x̄mt = Mmt, ...,Mmt.

4. Calculate ∆0t(x̄′0t|λ, µ, γ):

(a) The smallest possible value for x̄′0t is M′

0t = M0,t−τ0
−max d : d ∈ D0,t−τ0,t−1.

Use marginal analysis to calculate ∆0t(x̄′0t|λ, µ, γ) for t = τ0+1, ...,T−τ−1

and x̄′0t = M′

0t, ...,
∑

m∈R ȳ∗mt.

(b) Calculate

E[∆0,t+τ0(x̄0t − D0,t,t+τ0−1)] =
∑

d∈D0,t,t−τ0−1

Pr(D0,t,t−τ0−1 = d)∆0,t+τ0(x̄0t − d)

for t = 1, ...,T − τ0, and x̄′0t = M0t, ...,
∑

m∈R ȳ∗mt.

5. Calculate ψ0t(x̄0t|λ, µ, γ) for the SNS:

(a) Use equation (2.59) to calculate ψ0t(x̄0t|λ, µ, γ) for t = T − τ0 − τ, ...,T ,

and x̄mt = Mmt, ...,Mmt.

(b) Use equation (2.60) to calculate ψ0t(x̄0t|λ, µ, γ) t = T − τ0 − τ − 1 and

x̄0t = M0t, ...,M0t.
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(c) Solve the MIP (2.58) for ψ0t(x̄0t|λ, µ, γ) for t = T − τ0 − τ − 2, ..., 1 and

x̄0t = M0t, ...,M0t.

6. Calculate ψt(x̄t|λ, µ, γ) =
∑

n∈L ψnt(x̄nt|λ, µ, γ).

To estimate Ṽt(x̄past
t ,dpast

t |λ, µ, γ) in time period t, we also need to add in the

additional penalty terms to account for the gap between the costs counted by the

decomposition and the costs accounted for by the original problem. Given the

historical inventory positions x̄past
t and demands dpast

t , we can do the following

in time period t:

1. For m ∈ S, t′ = t − τm, ..., t − 1, and d ∈ Dm,t′,t′+τm−1, use marginal analysis to

calculate ∆m,t′+τm(x̄mt′ − d|λ, µ, γ).

2. For m ∈ S and t′ = t−τm, ..., t−1, calculate E[∆m,t′+τm(x̄mt′−dm,t′,t′+τm−1|λ, µ, γ)] =∑
d∈Dm,t′ ,t′+τm−1

Pr(Dm,t′,t′+τm−1 = d)∆m,t′+τm(x̄mt′ − d|λ, µ, γ).

3. Calculate

Ṽt(x̄past
t ,dpast

t |λ, µ, γ) = ψt(x̄t|λ, µ, γ)

+

t+τm−1∑
t′=t

∑
m∈S

E[∆mt′(x̄m,t′−τm − dm,t′−τm,t′−1|λ, µ, γ)].

We showed in Lemma 2.2.7 that Ṽ1(x̄1,d2|λ, µ, γ) is a lower bound on the to-

tal cost of the dynamic program. We can also use the relaxed value functions

Ṽt(x̄past
t ,dpast

t |λ, µ, γ) to make inventory decisions in a rolling horizon manner, as

in the TCA approach. In time period t, we can make inventory decisions by solv-

ing the original, unrelaxed problem (2.25), replacing Vt+1(xpast
t+1 ,q

past
t+1 ,d

past
t+1 )]

)
with

Ṽt+1(xpast
t+1 − qpast

t+1 ,d
past
t+1 |λ, µ, γ). We will refer to this as the Lagrangian Relaxation

(LR) inventory policy. Further, we can use a simple Monte Carlo simulation,
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like the one described in Algorithm 1, to estimate the cost of implementing the

LR policy. Since the relaxed future cost functions, Ṽt+1(xpast
t+1 − qpast

t+1 ,d
past
t+1 |λ, µ, γ),

are approximations of the original ones, the expected cost given by the Monte

Carlo simulation is an upper bound on the true cost that could be incurred. In

Section 2.4 we will explore the gap between these bounds. First, however, we

must show how the Lagrange multipliers are calculated.

Calculating Lagrange Multiplier Values

We showed in Proposition 2.2.7 that the Lagrangian relaxation (2.47) is a lower

bound on the original problem (2.25). Hence, we would like to find sets of

Lagrange multipliers λ, µ, and γ that maximize this lower bound, given that the

multipliers must be nonnegative and satisfy inequality (2.41). That is, we wish

to solve

max
λ,µ,γ

Ṽ1(x̄t|λ, µ, γ) (2.67)

such that λnt, µnt, γnt ≥ 0 for all n ∈ L; t ∈ T

hnt − λnt + λn,t+1 +
∑
m∈R

umn(µmt − hmt − µm,t+1) ≥ 0 for n ∈ P; t ∈ T .

However, solving this problem is quite difficult, so instead we will use a method

for estimating the multiplier values using dual variables presented by Kun-

numkal and Topaloglu [Kunnumkal & Topaloglu, 2010]. First, let us make sev-

eral observations about the multipliers. Each Lagrange multiplier is associated

with a constraint. The multiplier’s value is approximately equal to the cost that

could be saved by relaxing the constraint by one unit in the original problem

(2.25).
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To estimate the values of the Lagrange multipliers, we average dual vari-

ables associated with deterministic versions of the original problems, in which

we minimize the expected cost in each time period, but step forward in time

using known demand values. We use a two stage method. First, we will con-

struct the λ and µ multipliers from the unrelaxed deterministic problem. Then

we will obtain the γ multipliers from the relaxed problem, in which the λ and µ

multipliers are used in the cost function. The first problem is given by

G1(d) = min
∑
t∈T

Ct(yt,qt) (2.68)

such that ynt ≥ xnt for all n ∈ L (2.69)∑
n∈L

umn(ynt − qnt) ≤ xm,t−τm − qm,t−τm − dm,t−τm,t−1 for all m ∈ S; t ∈ T∑
n∈L

umn(ynt − xnt) ≤ pmt for all m ∈ S; t ∈ T (2.70)

y0t − x0t ≤ p0
t for all t ∈ T

xn,t+1 = ynt − S nt(ynt, ant, qnt, dnt)

for all n ∈ P; t = 1, ...,T − 1.

qn,t+1 = qnt + dnt − S nt(ynt, ant, qnt, dnt)

for all n ∈ P; t = 1, ...,T − 1.

We λnt for n = 1, ...,M + N and t ∈ T from the dual variables associated with con-

straint (2.69). We find µnt for m ∈ S and t ∈ T from the dual variables associated

with constraint (2.70). We use Algorithm 3, given below, to estimate values for

λ and µ. We choose the number of iterations, I, to be a large number.

Algorithm 3:
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1. For i = 1, ..., I:

a. Randomly draw a set of demands d = {dnt : n ∈ P, t ∈ T }.

b. Solve the linear program (2.68).

c. For n ∈ R ∪ P and t ∈ T , set λnt(i) to be the dual variables associated

with constraint (2.69).

For m ∈ S and t ∈ T , set µmt(i) to be be the dual variables associated

with constraint (2.70).

2. For the appropriate values of n and t ∈ T , return

λnt =
1
I

I∑
i=1

λnt(i) and µmt =
1
I

I∑
i=1

µmt(i).

Using these λ and µ multipliers, we can calculate the values of γ in a similar

manner. The next deterministic problem is given by

G2(d) = min
∑
t∈T

{
C′t (ȳt) −

∑
n∈P∪R

λnt(ȳnt − x̄nt)

−
∑
m∈S

µmt

(
pmt −

∑
n∈L

umn(ȳnt − x̄nt)
)}

(2.71)

such that
∑
n∈L

umnȳnt ≤ x̄m,t−τm − dm,t−τm,t−1 for all m ∈ S; t ∈ T

ȳ0t − x̄0t ≤ p0
t t ∈ T

ȳnt ≤ ant + x̄nt for all n = M + 1, ...,M + N; t ∈ T (2.72)

ȳnt ≤ ant for all n ∈ P; t ∈ T

x̄n,t+1 = ȳnt − dnt for all n ∈ P; t = 1, ...,T − 1.
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We can find γ using a modified version of Algorithm 3, in which we solve prob-

lem (2.71) in step (1b) and we let γnt be the dual variables associated with con-

straint (2.72) for n ∈ P and t ∈ T in step (1c).

To satisfy all previously stated propositions and lemmas, the calculated La-

grange multipliers must satisfy several requirements. First, the multipliers must

satisfy the constraints λnt, µnt, γnt ≥ 0 for all n ∈ L and t ∈ T and

hnt − λnt + λn,t+1 +
∑
m∈R

umn(µmt − hmt − µm,t+1) ≥ 0 for all n ∈ P and t ∈ T .

Also, we know that γnt = 0 if x̄nt > 0, since in this case the constraint ȳnt ≤ ant + x̄nt

will always be slack because it is dominated by the constraint ȳnt ≤ ant. So if

γn1 > 0 we must have x̄n1 ≤ 0, and we should have

γn1 x̄n1 ≤ 0 for all n ∈ P.

Finally, if λnt > 0, then ȳnt = x̄nt, so ȳnt−x̄nt ≤ 0 and hence the constraint ȳnt ≤ x̄nt+ant

will be satisfied and its associated multiplier, γnt, will be 0. The contrapositive is

also true (γnt > 0 implies λnt = 0), so we have

λntγnt = 0 for all n ∈ P and t ∈ T .
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2.3 Decentralized Allocation Methods

Most existing state and local emergency response plans call for inventory deci-

sions to be made in one of two ways. The most common allocation strategy calls

for all locations in the network to receive a “fair share” of the available inven-

tory. Upper echelon locations “push” inventory downstream so that each loca-

tion receives inventory proportional to the total population that it is expected

to serve. Inventory is shipped without regard to the state of the receiving loca-

tions, so no information needs to be passed upstream for allocation decisions to

be made. The second allocation strategy in use allows each location in the distri-

bution network to place inventory orders, which are filled as long as sufficient

inventory is available at the supplying locations. This “independent ordering”

policy is slightly more sophisticated than the Fair Share policy, since some in-

formation is passed upstream, in the form of inventory orders.

We will implement both the Fair Share and Independent Ordering policies

to establish a baseline performance of the distribution network to allow us to

assess the value of the TCA and Lagrangian Relaxation policies described in the

previous sections. Since neither of the two decentralized policies is well-defined

mathematically, we must first establish detailed decision-making rules for each

each allocation method.

2.3.1 Fair Share Method

For the planning model, we have consistently assumed that the expected de-

mands are known in advance for all time periods, and we will make the same
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assumption here. We will assume that for POD n, the proportion of the total

inventory that will be shipped to POD n is

Fair Sharen =

∑
t∈T E[Dnt]∑

t∈T
∑

n∈P E[Dnt]
.

The question remains of how much inventory would be shipped in each pe-

riod. The likely answer would involve an initial large push followed by smaller

subsequent pushes. However, to make the comparison between the Fair Share

method and the other policies more reasonable, we will assume shipments are

sent out more frequently, taking advantage of information regarding the ex-

pected demands. The total expected demand in period t is
∑

n∈P E[Dnt]. We will

suppose that the policy accounts for some safety stock, and the total inventory

shipped out to PODs in time t will be the expected total demand plus k standard

deviations of the total demand. If the POD demands are Poisson distributed,

then this is

∑
n∈P

E[Dnt] + k
√∑

n∈P

E[Dnt],

and in period t POD n receives a shipment of size

(Fair Sharen)

∑
n∈P

E[Dnt] + k
√∑

n∈P

E[Dnt]


 .

Given these shipment values, we can calculate the desired size of the shipments

that should to be sent to the RSSs and the SNS to make this possible. However,

shipment constraints may prevent material from being sent in the period during

which it is required. We will resolve this by shipping any un-sent inventory
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as soon as excess capacity becomes available. And, of course, each POD and

RSS receives a “fair share” of the available shipping capacity, as well. We will

use a Monte Carlo simulation like Algorithm 1 to estimate the expected cost of

implementing the Fair Share method.

2.3.2 Independent Ordering Method

To implement the Independent Ordering allocation method, we need to define

the policy that each location in the network will use to determine its order quan-

tities. Most regions that use an Independent Ordering system provide PODs

with little or no guidance in determining order quantities, but we will optimisti-

cally assume that each location in the network will order its myopic optimal

quantity.

Each POD determines its inventory without regard for system capacities,

so we define the problems to be solved at the PODs without any linking con-

straints related to inventory or transportation. With these constraints removed,

we know that we can write the problem in terms of the inventory positions ȳnt

and x̄nt, so in period t, the optimal inventory level ỹnt for POD n is found by

solving

ỹnt = argminȳnt≥x̄nt
C′nt(ȳnt).

The optimal solution is ỹnt = max{x̄nt, argminC′nt(ȳnt)}, so the PODs use an

order-up-to policy. Let Int be smallest value of ȳnt that minimizes C′nt(ȳnt), so

ỹnt = max{x̄nt, Int}. Since C′nt(ȳnt) is convex in ȳnt, Int is the smallest value for which
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C′nt(ȳnt + 1) − C′nt(ȳnt) ≥ 0. Notice that if ȳnt ≥ ant, then S nt(ynt) = S nt(ynt + 1) =

min(ant,Dnt) and

C′nt(ȳnt + 1) −C′nt(ȳnt) =
∑

d∈Dnt

fnt(d)
[
hnt(ȳnt + 1 −min(ant, d)) + f B

nt(d −min(ant, d))

−hnt(ȳnt −min(ant, d)) − f B
nt(d −min(ant, d))

]
=

∑
d∈Dnt

fnt(d)
[
hnt(1)

]
= hnt.

So the cost function is increasing for all ȳnt ≥ ant. Thus, the optimal myopic

solution will never exceed ant. This is reasonable, since there is no point in ac-

cumulating inventory if there is not enough service capacity to use it. We will

only have ỹnt > ant if x̄nt > ant.

Thus, we wish to find

Int = argminȳnt≤ant

∑
d∈Dnt

fnt(d)
[
hnt(ȳnt −min(ȳnt, d)) + f B

nt(d −min(ȳnt, d))
]
.

If f B
nt is a simple linear function of the form f B

nt(u) = bntu, then the optimal solution

is

Int = min
{
ant,

⌈
F−1

nt

(
bnt

bnt + hnt

)⌉ }
,

which is a classic inventory management result [Muckstadt & A., 2010]. There

is not a simple analytic solution when f B
nt(·) is nonlinear, but since the function

is piecewise linear, the problem can be solved by a linear program.
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A more sophisticated mechanism for calculating order quantities for the

PODs would be to solve a dynamic program for each POD, minimizing costs

over the full time horizon rather than just a single time period. The problem

that we would wish to solve could be written as the following value function

vnt(x̄nt) = min
x̄nt≤ȳnt

C′nt(ȳnt) + E[vn,t+1(ȳnt − Dnt)].

As in the case of the myopic problem, the objective function is convex, so the

optimal ordering policy is an order-up-to policy, I′nt. If the random demands

are stochastically nondecreasing, then the myopic optimal order-up-to levels,

Int, are optimal for the dynamic program, as well [Muckstadt & A., 2010].

We must also define ordering and allocation policies for the RSSs and the

SNS. We optimistically assume that all locations independently calculate the

optimal inventory levels for the PODs, according to the myopic or dynamic

programming minimization problems. When shortages arise, we assume that

the SNS and RSSs will send equal proportions of the amount ordered to each

of the lower echelon locations served, so that all of the on-hand inventory is

consumed. Then RSS m places an order in period t−τm−1 for
∑

n∈P umnInt units of

inventory (or I′nt, if we are using the dynamic programming order-up-to values).

If there is not sufficient shipping capacity in period t − τm, then the inventory

is shipped when it becomes available. Similarly, the SNS orders
∑

n∈P Int (or I′nt)

units of inventory in period t−τ−τ0−2. This policy provides reasonable and clear

rules for placing orders at all locations, and we will use it in our simulations.

Note that we are effectively assuming that all of the locations in the network

share information about order-up-to levels at the beginning of the time horizon,

so that the SNSs and RSSs may place orders for the quantities described here.
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2.4 Computational Results and Discussion

We now compare the performance of the Truncated Cumulative Approxima-

tion (TCA), Lagrangian Relaxation (LR), Individual Ordering (Order), and Fair

Share inventory allocation policies discussed in the previous section. Our goals

are to evaluate how well these allocation methods perform under a variety of

conditions and to identify some insights that can help public health planners

improve emergency response plans.

We tested the four allocation methods, using them to make decisions and cal-

culating costs incurred, patient waiting times, and inventory required for simu-

lated patient demands in each period of a time horizon. We repeated this pro-

cess for a number of iterations to estimate the expected cost of applying each

method for each set of simulation parameters. We ran 23 simulation experi-

ments with varying parameter values, which are described in Table 2.2. In all

of the simulations we modeled a distribution network with two RSSs, each of

which served an equal number of the PODs. Time periods were assumed to

be four hours long. The lead time from the manufacturer to the SNS was set to

three periods, and the lead times from the SNS to the RSSs were each one period.

Patient demands were assumed to be independent and Poisson distributed, but

the means varied by time and location. The numbers of PODs and the service

capacity at each POD in each period also varied. The per unit holding costs

were 0.01 at the SNS, 0.1 at the RSSs, and 1 at the PODs, and the backorder costs

at each POD were given by a linearized quadratic function.
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Cumulative Cumulative Demand

Data Number Time Service Expected Rate Iters.

Set of

PODs

Periods Capacity

(per POD)

Demand

(per POD)

Description

1.11 10 12 21,600 14,400 Constant 50

1.12 10 12 21,600 14,400 Increasing 20

1.13 10 12 21,600 14,400 Decreasing 20

1.14 10 12 21,600 14,400 Alternating

high and

low

20

1.15 10 12 21,600 14,400 High then

low

20

1.21 10 12 43,200 14,400 Constant 20

1.22 10 12 43,200 14,400 Increasing 20

1.24 10 12 43,200 14,400 Alternating

high and

low

20

2.11 10 10 10,000 10,000 Constant 30

2.12 10 10 13,000 10,000 Constant 30

2.13 10 10 1600 10,000 Constant 30

2.21 10 10 13,000 10,000 Increasing 30

2.22 10 10 13,100

(varying)

10,000 Increasing 30

2.23 10 10 16,200

(varying)

10,000 Increasing 30
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2.31 10 10 13,000 10,000 Decreasing 30

2.32 10 10 13,100

(varying)

10,000 Decreasing 30

2.33 10 10 16,200

(varying)

10,000 Decreasing 30

3.11 2 10 9,600 6,400 Constant 50

3.12 4 10 9,600 6,400 Constant 50

3.13 8 10 9,600 6,400 Constant 50

3.14 16 10 9,600 6,400 Constant 50

3.23* 8 10 19,200 6,400 Constant 50

3.24* 16 10 19,200 6,400 Constant 50

Table 2.2: Simulation Parameters. *All simulations be-

gan with initial RSS inventories set at two periods of

expected demand and initial SNS inventories set at five

periods of expected demand, except for simulations

3.23 and 3.24, which were initialized with five periods

of expected demand at the RSSs and nine periods of

expected system demand at the SNS.

We ran three main sets of simulations, which we will refer to as experiments.

The first experiment (simulations 1.11-1.24) explored the consequences of vary-

ing expected patient demand rates and service capacities in a ten POD network

over twelve time periods. In simulations 1.11-1.15, all of the simulation param-
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eters, except for the demand patterns, were identical. Simulations 1.21, 1.22,

and 1.24 were identical to simulations 1.11, 1.12, and 1.14, respectively, except

the service capacity in the former simulations is double that of the latter. The

goal of these simulations was to measure the effect of demand on system per-

formance, when other capacities were ample. Note that the first digit of each

simulation number indicates the experiment of which it was a part.

The second experiment (simulations 2.11-2.33) was a more thorough investi-

gation of the importance of varying service capacity in a ten POD network over

ten time periods. Simulations 2.11-2.13 used a constant expected patient arrival

rate of 1,000 people per POD per time period, but the service capacity for each

POD increased from 1,000 to 1,300 to 1,600 for the three simulations. Simula-

tions 2.21-2.23 assumed an expected patient demand rate that increased from

600 to 1,400 people per hour over the course of the day. The service capacities

for simulation 2.21 remained a constant rate of 1,300 people served per period.

For simulation 2.22, the service capacity was dynamic, changing over time with

the demand rate. For each period, service capacity was set to the expected pa-

tient demand plus one standard deviation of the demand. For simulation 2.23,

we also set service capacity in a dynamic manner, increasing the per period

capacity to the expected patient demand plus two standard deviations. Simu-

lations 2.31-2.33 used the same rules for setting service capacity as were used

in simulations 2.21-2.23, but the expected demand pattern for these simulations

decreased steadily over time from 1,400 to 600 patient arrivals per period.

The third experiment (simulations 3.11-3.24) explored the impact of modi-

fying the network structure given a constant set of resources. In simulations

3.11-3.14 the total expected patient demand and total service capacity remained
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constant across the network in each time period. Both the expected demand

and the service capacity were divided evenly among the PODs. There were 2, 4,

8, and 16 PODs in simulations 3.11, 3.12, 3.13, and 3.14, respectively, so the net-

works became more dispersed as the simulation number increased. Simulations

3.23 and 3.24 were identical to simulations 3.13 and 3.14, but increased both the

initial inventory in the system and the available service capacity in each period

to measure the consequences of more dispersed POD networks under generous

constraints.

The next section presents a comparison of the costs incurred in each simula-

tion under each allocation method. We also discuss the quality of the Wait-and-

See (WS) and Lagrangian Relaxation (LR) lower bounds. The following section

presents further results from these simulations in terms of patient delay and

inventory use, and we show how these may help public health officials better

improve their emergency preparedness plans.

2.4.1 Cost Comparison of Allocation Methods

Figure 2.3 shows the average cost incurred by each allocation method in all of

the simulations done for each of the three experiments. We observe that there

is very significant variance between the costs incurred under different simula-

tions. In particular, we can see that in the top graph of Figure 2.3, all of the

allocation methods accumulated costs of almost 200,000 in simulations 1.13 and

450,000 in simulation 1.15, while the costs for each allocation method in simula-

tions 1.11, 1.12, and 1.14 generally remained well below 25,000. The reason for

this significant disparity is the difference in demand patterns; the distribution
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network is overwhelmed in simulations 1.13 and 1.15; huge backorder costs are

incurred no matter which allocation method is used because the service and

transportation capacities are insufficient for the patient demand.

For most simulations, however, we see that TCA and LR methods both per-

form very well. The Order method generally performs almost as well, while the

Fair Share method incurs significantly larger costs. There are, of course, some

exceptions to this pattern, which we will discuss below. However, it is diffi-

cult to compare the different simulation runs simply from examining the costs;

to understand the actual performance of each method, we scale these average

costs by the two lower bounds that we have defined. The scaled costs are pre-

sented in Table 2.3.

Table 2.3 displays the average cost from each allocation method in each

simulation divided by the Wait-and-See (WS) and Lagrangian Relaxation (LR)

lower bounds. Recall that the Wait-and-See lower bound is the expected cost

that would be incurred if the patient demands were known perfectly in ad-

vance. The LR lower bound is found by calculating the decomposed, relaxed

dynamic program, as in Algorithm 2. We observe that the Wait-and-See lower

bound is tighter than the LR lower bound in about 70% of the simulations that

we ran. The WS bound is large (and therefore tight) when there are significant

“unavoidable” costs; that is, costs that result from limitations of the system pa-

rameters rather than poor allocation decisions. For example, in simulations 1.13

and 1.15 the costs are dominated by unavoidable costs, so the WS bound is very

good. However, when there is ample capacity in a simulated distribution net-

work, the WS bound becomes quite small, and the LR lower bound becomes

more useful, as in simulations 3.23 and 3.24. In networks with ample capacity,
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Figure 2.3: Total cost incurred for all simulations.
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the constraints that were relaxed to obtain the LR bound are not very impor-

tant to the problem, so the cost estimated by the relaxed problem will be close

to the true cost. Thus, the WS and LR lower bounds complement one another,

allowing us to guarantee an optimality gap of at most 20% in more than half

of the simulations that we ran. Unfortunately, since neither the WS nor the

LR captures the cost of imbalance very well, neither bound is very good when

significant imbalance arises, as in simulations 3.13 and 3.14. In the following

section, we discuss some of the challenges of managing more dispersed POD

networks in which imbalance is more likely.

We also see from Table 2.3 that the TCA solution is the smallest in just over

half of the simulations, while the LR solution is smallest in just under half. The

Order solution gives the minimum in one simulation, and the Fair Share so-

lution is never minimal. However, in addition to considering these averages,

we can examine the performance of each method during each iteration. Table

2.4 below shows the number of iterations that each allocation method provided

the minimum cost solution and the second smallest solution. We see that the

TCA method provided the smallest or second-smallest solution in 87% of the

iterations, while the LR method was smallest or second smallest in 75% of the

iterations. Somewhat surprisingly, the Order method performs best or second

best in over 30% of cases.

The performance of the Order method seems too good to be true for an al-

location method that shares so little information between the different parts of

the supply chain. However, recall that the method that we used for calculat-

ing order-up-to levels at the RSSs and SNS allows these locations to predict the

PODs’ orders with great accuracy, effectively implementing collaboration be-
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tween the different members of the supply chain. We also assumed that the

PODs would order exactly their optimal value in every period, which is overly

optimistic, since most POD managers are given little or no training in deter-

mining their order quantities. To explore the robustness of the Order policy,

we explored what would happen if the PODs sometimes ordered too much or

too little inventory. We re-ran the simulations, allowing order-up-to levels at

the PODs to range uniformly from 0.7 to 1.3 times their optimal quantities. We

refer to this new method as the “Imperfect Order” policy. Table 2.5 shows the

number of iterations for which each allocation method provided the minimum

cost solution and the second smallest solution, when the Order policy has been

replaced by the Imperfect Order policy. When compared to the Imperfect Order

policy, the TCA method provides the best or second-best solution in about 95%

of simulation iterations, with the LR method a close second at about 93%.

This comparison may seem rather unfair, since we have only modified the

calculations of the Order policy, while continuing to allow the TCA and LR

methods to operate correctly. In fact, we argue that the Imperfect Order policy

is a more accurate representation of how a dispensing campaign would perform

when each location in the network makes independent decisions. To guarantee

that PODs would order accurately and ensure that the RSSs and SNS are also

aware of these future orders would require an information infrastructure system

that could calculate near-optimal order quantities for the PODs and share these

values throughout the network. However, if such a system were in place, then

there would be no reason to make decisions for individual locations without

accounting for the state of the complete network. A centralized policy like the

TCA or LR methods could be implemented to provide even better performance.
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In the next section, we continue discussing the implications that these sim-

ulations have for the design and operation of an emergency response network.

We specifically address several questions that have arisen during conversations

with public health authorities in New York City [Starr, 2012].
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TCA LR Order Fair Share
Sim. WS LB LR LB WS LB LR LB WS LB LR LB WS LB LR LB
1.11 1.431 1.634 1.423 1.625 1.575 1.798 2.465 2.814
1.12 1.094 8.931 1.135 9.263 1.155 9.433 2.047 16.715
1.13 1.074 2.208 1.089 2.240 1.089 2.240 1.122 2.307
1.14 1.130 2.609 1.166 2.693 3.865 8.928 1.839 4.248
1.15 1.035 1.992 1.040 2.001 1.050 2.020 1.052 2.025
1.21 1.344 1.045 1.343 1.044 1.408 1.095 3.069 2.386
1.22 3.393 1.374 3.602 1.459 3.385 1.370 19.519 7.903
1.24 1.137 1.973 1.171 2.033 3.787 6.572 2.067 3.587
2.11 1.140 4.413 1.160 4.491 1.261 4.880 1.499 5.802
2.12 1.557 2.194 1.553 2.188 1.699 2.395 2.386 3.362
2.13 1.550 1.406 1.558 1.413 1.680 1.524 2.784 2.526
2.21 1.536 3.379 1.578 3.472 1.723 3.791 2.936 6.459
2.22 2.072 1.527 2.136 1.575 2.291 1.689 7.032 5.185
2.23 3.793 1.202 4.051 1.284 4.033 1.278 16.598 5.259
2.31 1.176 2.263 1.181 2.273 1.265 2.436 1.353 2.604
2.32 1.195 2.902 1.195 2.900 1.247 3.028 1.332 3.232
2.33 1.243 2.003 1.240 1.998 1.280 2.061 1.410 2.271
3.11 1.145 1.619 1.138 1.609 1.149 1.625 1.249 1.766
3.12 1.324 1.361 1.312 1.348 1.336 1.372 1.876 1.928
3.13 1.590 2.021 1.581 2.010 1.770 2.250 2.599 3.304
3.14 1.978 2.303 1.935 2.253 2.248 2.617 3.673 4.276
3.23 3.964 1.135 4.059 1.162 4.227 1.210 26.509 7.588
3.24 5.151 1.374 5.039 1.344 5.493 1.465 31.156 8.311

Table 2.3: Average total costs scaled by the Wait-and-See (WS) and La-
grangian Relaxation (LR) lower bounds. The minimum value
in each row is indicated by bold font.
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Simulation TCA LR Order Fair Share
1.11 16 / 25 25 / 18 9 / 7 0 / 0
1.12 13 / 7 3 / 10 4 / 3 0 / 0
1.13 12 / 6 0 / 8 7 / 5 1 / 1
1.14 18 / 2 2 / 18 0 / 0 0 / 0
1.15 15 / 4 3 / 12 1 / 3 1 / 1
1.21 7 / 7 9 / 8 4 / 5 0 / 0
1.22 11 / 9 0 / 7 9 / 4 0 / 0
1.24 33 / 17 17 / 32 0 / 0 0 / 1
2.11 19 / 11 9 / 17 2 / 1 0 / 1
2.12 11 / 15 13 / 13 5 / 1 1 / 1
2.13 13 / 14 11 / 12 6 / 4 0 / 0
2.21 11 / 17 7 / 8 11 / 5 1 / 0
2.22 13 / 16 3 / 11 14 / 3 0 / 0
2.23 11 / 19 4 / 7 15 / 4 0 / 0
2.31 18 / 10 9 / 19 2 / 1 1 / 0
2.32 14 / 13 10 / 15 5 / 2 1 / 0
2.33 8 / 15 10 / 10 8 / 4 4 / 1
3.11 16 / 17 14 / 21 15 / 6 5 / 6
3.12 10 / 19 17 / 19 20 / 12 3 / 0
3.13 22 / 22 23 / 16 5 / 12 0 / 0
3.14 15 / 29 33 / 15 2 / 6 0 / 0
3.23 31 / 18 4 / 28 15 / 4 0 / 0
3.24 7 / 25 28 / 22 15 / 3 0 / 0

Totals: 344 / 337 254 / 346 174 / 95 18 / 12
Fraction in 1st: 0.435 0.322 0.220 0.023

Fraction in 2nd : 0.427 0.438 0.120 0.015
Fraction in 1st or 2nd: 0.862 0.759 0.341 0.038

Table 2.4: Number of iterations for which each solution method gives the
smallest / second smallest cost.
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Simulation TCA LR Imperfect Order Fair Share
1.11 20 / 28 28 / 21 0 / 0 2 / 1
1.12 17 / 3 3 / 17 0 / 0 0 / 0
1.13 14 / 5 1 / 13 2 / 0 3 / 2
1.14 18 / 2 2 / 18 0 / 0 0 / 0
1.15 16 / 3 3 / 14 1 / 3 0 / 0
1.21 9 / 11 11 / 9 0 / 0 0 / 0
1.22 20 / 0 0 / 20 0 / 0 0 / 0
1.24 21 / 19 7 / 30 0 / 0 22 / 1
2.11 21 / 9 9 / 20 0 / 1 0 / 0
2.12 13 / 14 14 / 15 2 / 1 1 / 0
2.13 18 / 12 12 / 18 0 / 0 0 / 0
2.21 22 / 8 7 / 22 1 / 0 0 / 0
2.22 26 / 4 4 / 26 0 / 0 0 / 0
2.23 26 / 4 4 / 26 0 / 0 0 / 0
2.31 19 / 10 10 / 20 1 / 0 0 / 0
2.32 14 / 14 11 / 16 1 / 0 4 / 0
2.33 11 / 15 11 / 12 5 / 0 3 / 3
3.11 20 / 22 22 / 19 6 / 8 2 / 1
3.12 19 / 28 27 / 22 3 / 0 1 / 0
3.13 24 / 25 25 / 21 0 / 0 1 / 4
3.14 16 / 32 34 / 16 0 / 0 0 / 2
3.23 45 / 5 5 / 45 0 / 0 0 / 0
3.24 7 / 43 43 / 7 0 / 0 0 / 0

Totals: 436 / 316 293 / 395 447 / 13 39 / 14
Fraction in 1st: 0.552 0.371 0.028 0.049
Fraction in 2nd: 0.400 0.566 0.016 0.018

Fraction in 1st or 2nd: 0.952 0.937 0.044 0.067

Table 2.5: Number of Minima and Second Place (Imperfect Ordering).
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2.4.2 Policy Implications

Our goal in this section is to demonstrate how simulations like these can help

public health authorities prepare better for emergencies. We will address three

questions that have been asked during meetings with New York City public

health officials. First, why is a command and control system necessary? How

could it help reduce patient waiting times or inventory use? Second, how much

staffing capacity is necessary at PODs, and how can we best use limited staff?

Third, is opening additional PODs a good idea? The last question was a direct

consequence of complaints from the public during the H1N1 vaccination cam-

paign in 2009-2010. New York City opened PODs to give vaccines, and some

people felt that more PODs should have been opened to reduce the travel bur-

den for patients. Since then, the NYC Department of Health and Mental Hygene

(DOHMH) Office of Emergency Preparedness and Response has been asked to

consider opening more PODs, but they are concerned that this could strain their

resources. In this section, we show how these questions can be addressed quan-

titatively.

As discussed earlier, the costs in this model are proxies for our actual goals

of reducing inventory use and patient delay. In this section, we present simu-

lation results in terms of average patient waiting time and average inventory

required per person, which is the total amount of inventory sent out from the

SNS divided by the number of patients served over the time horizon. To deter-

mine the value of a command and control system, we begin by considering the

patient delays and inventory requirements under our four allocation methods

for a variety of simulations. Figure 2.4 shows the average waiting time per per-

son for experiments 1 and 2. It is clear that the TCA and LR methods provide
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the lowest patient delays; decisions are made centrally for both of these meth-

ods, so we could not implement them without a good command and control

system that shares inventory and patient demand information in every time pe-

riod. However, the Order policy performs almost as well in most simulations,

and the Fair Share policy only performs significantly worse in simulations 2.13

and 2.21-2.23. But we must consider inventory use, as well.

Figure 2.5 shows the average units of inventory required per person, which

allows us to quantify the degree of waste that results from each allocation pol-

icy. Notice that that in simulation 1.11, about 1.1 units of inventory are used

for each patient served under the TCA policy, but almost 1.5 units are required

for each patient served under the Fair Share policy. So almost 40% more inven-

tory would be required to serve the same number of patients if the Fair Share

policy were implemented instead of the TCA policy. We see that the situation

is even worse in many of the simulations. This means that if we implemented

the simple Fair Share policy, which does not require any information sharing or

central decision-making, we may require 40% or more additional units of inven-

tory to provide patients with longer waiting times. Any money that was saved

by not creating a command and control system would quickly be consumed in

inventory costs.

We discussed some problems with the Order policy in the previous section.

To obtain the high performance that we observe in Figures 2.4 and 2.5 would

require significant infrastructure support. If PODs truly operated individually,

it is unlikely that they would order near-optimal quantities. Instead, we pre-

sented the Imperfect Order policy to be a more accurate representation of inde-

pendent POD performance. Figure 2.6 shows the average patient waiting times
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and inventory use per person that would result from implementing the Imper-

fect Order method. We see that the patient delay under the Imperfect Order pol-

icy increases significantly, in some cases more than doubling compared to the

original Order policy delays, and the inventory required per person increases

as well.

There are also two exceptions to the good performance displayed by the un-

modified Order method: simulations 1.14 and 1.24. In the top graph in Figure

2.4, we see that the average patient delay under the Order policy in these sim-

ulations is more than double the delay under the TCA and LR policies. In the

top graph in Figure 2.5, we see that the ratio of inventory distributed to patients

served is only slightly larger than one; this indicates that there was almost no

excess inventory remaining in the system at the end of the time horizon. Re-

call that simulations 1.14 and 1.24 were identical, except for the service capacity,

which was doubled for 1.24. But we see from these results that this increase had

virtually no impact on the performance of the network. The demand pattern for

both simulations 1.14 and 1.24 was an oscillating one. The Order policy, with its

myopic perspective, significantly underestimated the inventory that would be

required. All other demand rates simulated changed much more gradually, and

the Order policy performed significantly better. However, in a public health

emergency, highly unpredictable demands may occur, and the Order policy

would perform very poorly in such a scenario. Thus, we see that the policy

of allowing individual PODs to place orders is not robust for unpredictable de-

mand patterns or imperfect ordering strategies, while the centralized TCA and

LR methods perform well in both cases. This provides further evidence of the

value of a strong command and control system which would allow centralized

allocation methods to be implemented easily.
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To address questions related to staffing and service capacity, we first com-

pare the outcomes of simulations 1.11, 1.12, and 1.14 with those of 1.21, 1.22,

and 1.24. Recall that the latter group of simulations was identical to the former,

except that the service capacities were doubled. Figure 2.7 displays the aver-

age patient waiting times and inventory required per person for these simula-

tions. In simulations 1.11 and 1.21 and in simulations 1.12 and 1.22, increasing

staffing capacity significantly decreases the expected per patient waiting times,

although there is little effect on the expected inventory use per person. Simula-

tions 1.14 and 1.24 do not display this trend; these simulations experienced the

highly oscillating patient demand discussed earlier. We see that the difficulty

in responding to the highly unpredictable patient demand pattern outweighed

the limitations presented by staffing capacity in this case.

Of course, it is unsurprising that doubling service capacity yields some im-

provement in performance. In most public health emergency responses, staff

are a limited commodity, so in experiment 2 we explored the impacts of smaller

increases in service capacity and dynamic staffing decisions. Recall that the sim-

ulations in groups 2.11-2.13, 2.21-2.23, and 2.31-2.33 were each identical except

for varying service capacities. For simulations 2.22-2.23 and 2.32-2.33, the ser-

vice capacities varied over time with the expected demand rates. The bottom

graph in Figure 2.4 shows the patient delay for these simulations. Average pa-

tient delay decreases significantly as staffing capacity increases in simulations

2.11-2.13. Simulations 2.22-2.23 and simulations 2.32-2.33 also demonstrate the

value of increasing service capacity. However, we observe that patient waiting

times are significantly lower in simulation 2.22 compared with simulation 2.21,

even though the total service capacity remains almost constant. The main dif-

ference between the two simulations was the allocation of the service capacity
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over time; in simulation 2.22 service capacity increases when patient demand is

high and decreases when demand is low. We refer to this as a dynamic staffing

plan.

However, the same pattern is not present in simulations 2.31 and 2.32. In-

stead, patient delay increases under the dynamic staffing plan implemented in

simulation 2.32 due to inventory shortages. In simulation 2.32, the increased

staffing capacity matches the arriving demand in the beginning of the time hori-

zon, but there is insufficient inventory at the PODs at that point, so the extra

service capacity goes unused. Later in the time horizon, when inventory ar-

rives, the service capacity has decreased so the inventory cannot be dispensed

as efficiently as in simulation 2.31. This example emphasizes the importance

of modifying a staffing plan to conserve service capacity when inventory is un-

available.

Finally, we wish to address the value of increasing the number of PODs in

a distribution network. In experiment 3, we explored the consequences of in-

creasing the number of PODs in a dispensing network. The numbers of PODs

operating in the dispensing networks were 2, 4, 8, and 16 in simulations 3.11,

3.12, 3.13, and 3.14, respectively. Figure 2.8 shows that both average patient de-

lay and average inventory required per person increase significantly when the

number of PODs increases. Of course, this does not account for the increased

travel time that would be required of people when there are very few PODs in a

distribution network, but the value of decreased waiting times is not solely one

of individual convenience. Decreased waiting times also decrease the likelihood

of crowd control problems and the level of security and support facilities that

would be required. If capacities are not a limiting factor in a response network,
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as in simulations 3.23 and 3.24, increasing the number of PODs will not present

any problems. But in a public health setting, resources are always limited, and

simulations like these can help public health officials justify the construction of

more compact POD networks.

A good command and control system could allow public health officials to

retain some benefits of a compact distribution network even when a large num-

ber of PODs are necessary to serve a population. Such a system would allow

for rapid sharing of information about staff availability and service rates, pa-

tient demand, and inventory levels, so that resources could be shared between

different PODs. It could also be used to inform the public about current waiting

times at PODs, to encourage people to seek service at lower demand times or

less-busy PODs. Dynamic staffing plans could also be implemented: if demand

information were collected and shared with a central staffing office, newly ar-

riving staff could be assigned to PODs that have both high patient demands

and sufficient inventory to serve them. And, of course, centralized command

and control would allow us to use an information-rich inventory allocation pol-

icy like the TCA or LR methods to serve patients with a minimum of delay and

inventory, allowing us to achieve our primary goal of minimizing mortality and

morbidity following.
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Figure 2.4: Average per patient waiting time for experiments 1 and 2.

2.5 Future Work

We have presented a model of the public health emergency response supply

chain that would be used to support a mass-dispensing campaign following
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Figure 2.5: Average units of inventory required per person served for ex-
periments 1 and 2.

an emergency such as an inhalational anthrax attack. We constructed two in-

ventory allocation methods: the myopic Truncated Cumulative Approximation

method and the Lagrangian Relaxation method. Both may be used for more

general service capacity-constrained three echelon distribution networks, but

we are primarily interested in their value during an emergency response effort.

117



Figure 2.6: Average per patient waiting time and inventory required per
person for simulations 1.11, 1.22, 2.21-2.23, and 3.11-3.12.

We presented two lower bounds and used these to show that the TCA and LR

allocation methods perform well, particularly in comparison to the allocation

methods currently in use by public health authorities. Finally, we demonstrated

how our model can help public health authorities answer questions about the

value of a command and control system, the potential value of dynamic staffing
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Figure 2.7: Average per patient waiting time and inventory required per
person for simulations 1.11, 1.12, 1.14, 1.21, 1.22, and 1.24.

plans, and the benefits of more compact POD networks. Future work will in-

clude a more comprehensive simulation study to explore more realistic POD

networks and an investigation of the TCA look-ahead period, to determine

whether shorter periods may provide similarly strong results. Extensions to

the model may include allowing staffing levels to be changed over time in re-
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Figure 2.8: Average per patient waiting time and inventory required for
experiment 3.

sponse to observed patient demands and the increasing number of staff who

may become available once the emergency response is underway.
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CHAPTER 3

MASS PROPHYLAXIS SIMULATION MODELS

When making staffing and capacity planning decisions, it may be desirable to

consider some portions of the system in greater detail than was included in

Chapter 2. In this chapter, we describe two simulation models that focus on

particular aspects of the public health emergency response network. The first

of these, presented in Section 3.1, is called the Dynamic Point of Dispensing

Simulator (D-PODS) and includes a detailed model of staffing and patient flow

within a single POD. D-PODs allows users to explore the value of various POD

layouts and different staffing strategies under nonstationary patient demand

scenarios. The second model, presented in Section 3.2, is called the Emergency

Supply Chain Operations Evaluator (ESCOE). It allows users to simulate the

operations of a complete emergency response network. One can use ESCOE

to explore different network structures and logistical capacities and to evaluate

system performance under a variety of conditions.

Both models described below include user-friendly interfaces and are im-

plemented in Excel and Visual Basic for Applications. This choice of implemen-

tation makes the models easy to run on any computer with Microsoft Office,

making them accessible to the public health officials who are the target user

group. User manuals for the models are included in the appendices. In the fol-

lowing sections, we describe the models in detail, give brief overviews of their

user interfaces, and show examples that illustrate the types of policy insights

that one can draw from them.
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3.1 Dynamic Point of Dispensing Simulator

The Dynamic Point of Dispensing Simulator (D-PODS) is a flexible simulation

tool that can model and simulate the performance of a wide variety of POD

designs. During the last decade, a number of researchers have created software

tools to help POD planners better organize, staff, and operate their PODs, as

described in Section 1.1 [Hupert et al., 2002,Lee et al., 2006b,Lee et al., 2006a,Aaby

et al., 2006]. These tools have all proven useful in planning and operating POD

exercises; but all three have assumed either stationary or deterministic patient

arrival patterns. D-PODS eliminates this assumption to more accurately reflect

the significant uncertainty that is present in any emergency scenario and its

impact on system operations.

A POD must perform a set of tasks such as collecting personal information

from arriving patients, informing patients about the treatment or prophylaxis

that they will receive, basic triage to determine what treatment is appropriate

for each patient, and drug dispensing. The exact tasks required and the type

of staff who may perform them vary between different states and counties. For

example, in some states, antibiotics and vaccines must be dispensed by medi-

cally trained personnel, while other states have relaxed this requirement during

declared emergencies. The amount of information provided at the POD and the

degree of detail in triage or medical evaluation also vary by area. However,

basic organization of a POD generally remains the same.

Most PODs consist of a sequence of stations. Staff members at each station

perform some task for each patient, such as distributing information or dispens-

ing antibiotics. Patients move through the POD from station to station to receive
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complete treatment. For a POD constructed to dispense antibiotic prophylaxis

following an anthrax attack, the stations could include a greeting station, where

patients receive paperwork from general staff to fill out and some basic informa-

tion; a triage station, where medically trained staff quickly review each patient’s

paperwork to ensure that they are eligible to receive antibiotics and then check

for basic symptoms of prodromal (early-stage) anthrax; a medical evaluation

station, where more experienced medical staff do a more thorough examination

of potentially ill patients; and a drug-dispensing station, where patients receive

bottles of antibiotics. Different types of patients may require different resources

or have different arrival patterns. For instance, more time may be required to

serve non-English speakers or mobility-impaired individuals. D-PODS allows

planners to describe whatever set of stations has been selected for their area, or

to experiment with different types of layouts.

However, even with a fixed POD layout and a set of patient types there is

significant uncertainty about the number of patients who will arrive over time.

Since every emergency is unique and a large-scale anthrax attack has never oc-

curred, there is no way to know exactly when or how many people will seek

care. The rate at which staff can serve patients will vary, as well. The goal of

D-PODS is to help users understand the dynamics of patient flow within a POD

under a variety of scenarios. We allow POD planners to estimate the conse-

quences of different potential layouts and staffing plans. In the following sec-

tions we describe the model and its interface in more detail, and then show how

D-PODS can be used to model a particular example scenario and help address

policy-related questions.
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3.1.1 Model Description

D-PODS is a discrete event simulation model of operations within a single POD.

The POD consists of a set of stations; each station performs a particular task

(such as triage or drug dispensing) and is assigned staffing levels that may

change over time. Patients move from station to station to receive service. We

can model many different types of patients, who may require different service

levels. Patients of each type arrive to the POD according to independent nonho-

mogeneous Poisson processes whose means vary by time and by patient type.

The POD has a maximum capacity; if a patient arrives when the POD is full,

the patient enters a queue outside the POD. Patients in this queue are admitted

to the POD as other patients finish service and leave the POD. Upon entering the

POD, all patients enter the queue for the first station in the POD. Each station

is modeled as a single queue, multi-server system, in which each staff person

assigned to the station is a server. Lee et al. found that triangular probability

distributions model service times well in an anthrax dispensing exercise [Lee

et al., 2006b]. We also use triangularly distributed service time random vari-

ables; the distribution parameters depend on the station and the type of patient

being served. We do not model changes in staff efficiency due to learning curves

or fatigue.

After completing service at a station, each patient moves to his next station,

which is chosen according to a transition probability matrix. Travel time be-

tween the stations is negligible; the patient immediately enters the queue for

his next station. This process repeats until the patient completes service. Nor-

mally this means that the patient will receive antibiotics or, if the patient is ill,

will be transported to a hospital. Other exit possibilities, such as being sent to a
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special clinic for further evaluation, may also exist in some POD designs.

PODs may remain open continuously or they may close for some portion

of each day. When a POD closes, all patients who have entered the POD will

be served, including those who are waiting in the queue for the first station.

Patients who have not yet entered the POD will be sent away. The POD will

remain open for as long as it takes to complete service for the remaining patients

inside the POD. For the sake of simplicity, we assume that staffing schedule

and patient arrival distributions are identical for each day of the dispensing

campaign.

3.1.2 Model Interface

A large number of user inputs are required to describe the POD layout, staffing

plan, and patient demand parameters. The interface consists of a sequence of

Microsoft Excel worksheets that guide the user through the input process, which

is outlined in the D-PODS menu interface and shown in Figure 3.1. The user

then runs the simulation, generating a large quantity of output data which is

stored in an Access database. The Excel interface allows users to explore these

data in both tabular and graphical formats. We will give a brief overview of the

tool here, and the User Manual, presented in the appendix, provides more de-

tail. It explains how to get started using D-PODS and how to enter information

on the user input sheets, as well as how the simulation outputs can be analyzed

and interpreted.

The most time-consuming part of running D-PODS is simply describing the

input. The input sheet asks the user to enter the duration of the dispensing
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Figure 3.1: The main menu of the D-PODS interface.

campaign and the number of hours that the POD will be open each day and to

define the structure of the POD, including the number of stations, their names,

and the station transition probability matrix that determines each patient’s path

from station to station within the POD. The next input sheet allows the user

to describe the patient arrival patterns by defining a set of time intervals and
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the expected number of patients of each type to arrive in each interval. We

assume that the mean arrival rate is constant during each interval. Next, the

user defines the triangular service time distributions for each station. One of

the patient types is assigned to be the “base type;” other types may be assigned

a “service time increase factor,” which adjusts their expected service times ac-

cordingly without requiring the user to define new distributions for each type.

The last input step involves setting the staffing levels for each station over time.

This sheet includes a simple staffing calculator that estimates staffing require-

ments using queueing approximations from [Buzacott & Shanthikumar, 1993],

which would provide optimal staffing levels in a stationary setting. Users may

use, modify, or ignore these advised staffing levels.

Finally, the user may choose some number of simulation replications and run

the model. Detailed output is saved in a Microsoft Access database, but users

may easily view some of the results in tables that display summary statistics

describing patient arrival rates and throughput, as well as waiting and service

times by station. Graphs of queue length, staff utilization, and patient arrivals

over time are generated by station and for the entire POD. In the following sec-

tion, we will describe a set of sample inputs and show the kinds of insights that

one may draw from D-PODS.

3.1.3 Staffing Policy Implications

We now want to explore the impact of nonstationary patient arrival patterns

on a POD’s operations and determine the value of instituting nonstationary

staffing policies in response to observed demands. We will also investigate the
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relationship between the number of PODs in a response network and the total

staffing requirements across the network and explore the importance of con-

structing an effective command and control system.

In the examples discussed below, we represent and evaluate the performance

of a large POD dispensing antibiotics in response to an inhalational anthrax

attack. We run the model for 48 hours, which is the federal goal for completing

antibiotic prophylaxis following an anthrax attack, as discussed in Chapter 1.

We assume that the POD closes for two hours each day to allow for restocking

and cleaning, but otherwise remains open to serve as many people as possible.

The POD is expected to serve up to 11,000 people per day, since a service rate of

500 people per hour is considered reasonable for medium-sized PODs in many

cities [Hupert, 2011]. We will vary the rate at which these people arrive over

time, but the total expected demand will remain constant in all of the examples

below.

The POD modeled will have a standard layout with four stations: Greeting,

Triage, Medical Evaluation, and Drug Dispensing. To keep our discussion as

simple as possible, we have run the simulations described below with only one

patient type. Most patients will not require medical evaluation, but 5% of indi-

viduals will show symptoms of anthrax at the Greeting station and be sent for

evaluation. At the more thorough Triage station, an additional 5% of patients

will be identified as symptomatic and be sent for evaluation. However, 95% of

those who were sent to the Medical Evaluation Station will still be sent to the

Drug Dispensing station and subsequently released; only 5% of those evaluated

will be taken to a health center for treatment. Figure 3.2 shows a diagram of

patient flow within the POD. The staffing levels at these stations will vary over
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time; we will describe the potential staffing strategies in the examples below.

Figure 3.2: POD patient flow diagram.

For ease of data analysis, we assume that the POD is sufficiently large so

that its total capacity will never prevent patients from entering the POD. The

service time parameters at each station are based on discussions with the RAND

Corporation and CDC staff; they are very similar to the numbers used in an

anthrax dispensing exercise by Lee et al. [Lee et al., 2006b]. These values are

summarized in Table 3.1 below along with the patient service path transition

probabilities.

Parameter Name Value Units

Transition Probability (Greeting to Medi-

cal Evaluation)

0.05 (n/a)

Transition Probability (Triage to Medical

Evaluation)

0.05 (n/a)
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Transition Probability (Medical Evalua-

tion to Hospital)

0.05 (n/a)

Service time for Greeting/Entry station Triangular(0.25,0.50,1) minutes

Service time for Triage station Triangular(1,2,3) minutes

Service time for Medical Evaluation sta-

tion

Triangular(2.5, 5, 10) minutes

Service time for Drug Dispensing station Triangular(0.5, 1, 2) minutes

Table 3.1: Simulation parameter values.

The Impact of nonstationary Patient Arrival Patterns

The goal of our first set of simulation experiments is to quantify the impact of

nonstationary patient arrival patterns on POD performance. As mentioned ear-

lier, most POD planning tools assume a constant rate of patient arrivals and con-

stant staffing levels during all operating hours. However, this type of constant,

predictable demand seems unlikely in an emergency scenario. Spikes and drops

in arrival rates could occur for a variety of reasons. Arrivals might increase over

time as more people learn about the POD, or decrease as other PODs open. Ar-

rivals might spike in response to the availability of public transit or drop due to

inclement weather. We consider three scenarios, labeled A, B, and C, in which

patient demand varies throughout the day, as shown in Figure 3.3, and we will

simulate each with two different staffing strategies.
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Figure 3.3: Expected patient arrival scenarios.

If we were to staff to accommodate patients arriving at a constant expected

rate of 500 per hour, to yield a total expected demand of 11,000 people over the

22 hours during which the POD is open, then we would expect to underutilize

the staff during periods when the demand is low and overwhelm the staff when

the demand peaks. We would also expect to see long waiting times when the

demand peaks in any of the three scenarios shown in Figure 3.3. However,

if we could accurately predict the average patient arrival rate over time and

staff accordingly, we would expect to provide much better service to patients.

We call any staffing plan that changes over time a “dynamic staffing plan.” We

calculated a “constant staffing plan” using the simple queueing calculation built

into D-PODS to determine approximate the staffing levels for a constant patient

arrival rate of 500 people per hour. To define the dynamic staffing plans, we

used the same queueing calculation, but allowed the staffing levels to change

every two hours, and we staffed to accommodate the maximum patient arrival

131



rate in every two hour period.

Figure 3.4 shows that our predictions about system performance are correct

on both counts. When a dynamic staffing plan is instituted, the average patient

time spent in the POD decreases by a factor of 10 to 18, depending on the arrival

scenario, while the number of staff-hours required only increases by 10 to 14%.

Figure 3.4: Average patient time spent in the POD and staff-hours required
each day, given constant or dynamic staffing plans.

However, the averages displayed in Figure 3.4 do not show the whole story;

we also need consider how events unfold over time. Figures 3.5 and 3.6 show

the patient queues under both constant and dynamic staffing plans for patient

arrival scenario A at the greeting and triage stations, respectively. When the

constant staffing plan is in effect, the queue at the greeting station becomes very

large when patient demands peak, while it remains at a reasonable size when

the dynamic staffing plan is in place. The queue length for the triage station,

shown in Figure 3.6, is slightly smaller under the constant staffing plan, but
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does not grow significantly for either plan. When the constant staffing plan is in

place, the Greeting station acts as a bottleneck and buffers the rest of the POD

from the unmanageable demand. The excessively long queues at the Greeting

station are worrisome not only because they significantly inconvenience indi-

viduals, but long waits could also result in balking or crowd control problems.

Figure 3.5: The length of the queue at the Greeting Station for Scenario
A for Constant Staffing (top) and Dynamic Staffing (bottom).
The small blue dots show the queue lengths from 10 simulation
replications for every five minute interval; the yellow-green cir-
cles show the 95th percentile queue length for each five minute
interval.
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Figure 3.6: The length of the queue at the Triage Station for Scenario A for
Constant Staffing (top) and Dynamic Staffing (bottom). The
small blue dots show the queue lengths from 10 simulation
replications for every five minute interval; the yellow-green cir-
cles show the 95th percentile queue length for each five minute
interval.

Clearly, the ability to modify staffing levels over time as patient arrivals vary

is important to a POD’s ability to serve patients efficiently. But our examples

have assumed that planners can predict the true expected patient demand rates

over the time horizon, which is unlikely. In the following example, we will

consider how a system might perform when there is a time lag in adjusting staff
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to patient demands.

The Value of Flexible Staffing

Suppose that staffing levels are determined by forecasted demand levels, which

are calculated dynamically throughout the day. We will allow staffing levels to

change every two hours, but during the two hour periods, staffing levels remain

constant. We consider four staffing plans. In Plan 1, we forecast perfectly. That

is, we know the exact expected patient arrival rates for the next two hours, and

we staff to accommodate the maximum arrival rate; this is equivalent to the

dynamic staffing plan discussed in the previous section. In Plan 4, we know

the expected total number of patient arrivals for the next two hours, and we

staff assuming that they arrive at a constant rate. In Plans 2 and 3, we use a

very simple forecasting mechanism; we will assume that the patient demand

at the time of forecast will remain constant for the foreseeable future. In Plan

2, we observe demand and determine staffing levels 30 minutes before these

new staffing levels will go into effect. In Plan 3, we have a delay of 1 hour. In

general, we will expect Plans 2 and 3 to under-staff when the patient arrival rate

is increasing and over-staff when it is decreasing.

We ran simulations of the POD operating under each staffing plan with pa-

tient arrival Scenario A, defined in Figure 3.3. In Figure 3.7 we see the average

patient waiting times for each of the staffing plans. Implementing staffing plan

3 results in the longest patient waiting times, but notice that these are still sig-

nificantly better than the waiting times observed for the constant staffing plan

discussed in the previous section (see Figure 3.4). Dynamically adjusting staff,

even using a naive forecasting method like those used in Plans 2 and 3, de-
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creases average patient waiting times by more than half.

Figure 3.7: Average patient time spent in the POD for patient arrival Sce-
nario A for each of the four staffing plans.

Figure 3.7 seems to imply that Plans 1 and 4 are almost equally effective. This

would be impressive, since the forecasting mechanism used to set staffing levels

for Plan 4 requires less information about the actual expected patient arrival

rates than the perfect forecasting used by Plan 1. However, Figures 3.8 and 3.9

show the dynamics of these two simulations, and we see that the queues at both

the Greeting and Triage stations grow significantly longer under Staffing Plan 4.

At the Greeting Station, the queue grew longer than 100 people in many of the

replications under Plan 4, but under Plan 1 the queue seldom exceeded 30. At

the Triage Station we see that the queue sometimes grew longer than 200 under

Plan 4, but generally remained stable under Plan 1.

We show these results only for patient arrival Scenario A, which is the most

variable of the three patient arrival patterns considered. The performances of

all of the staffing plans improve under the less variable patient arrival pat-
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terns, Scenarios B and C. All four plans would yield identical outcomes if pa-

tient arrival rates were constant. If the patient arrival rates changed exactly

when staffing shifts changed and remained constant during each staffing inter-

val, then Plans 1 and 4 would provide identical staffing levels. In general, the

performance of the system under Plans 1 and 4 will be similar, but Plan 1 will

yield slightly better POD performance and Plan 4 will yield slightly higher staff

utilization rates, since Plan 1 staffs for the maximum expected patient arrival

rate during each staffing interval, while Plan 4 staffs for the average.

Figure 3.8: Queue lengths at the Greeting station for Plans 1 and 4 with
patient arrival Scenario A.
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Figure 3.9: Queue lengths at the Triage station for Plans 1 and 4 with pa-
tient arrival Scenario A.
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It is clear that the quality of patient demand forecasting can have a sig-

nificant impact on patient waiting times and queue lengths. Less variable, or

“flatter,” demand curves are much more forgiving of the forecast quality. Some

cities, such as New York City, have constructed online tools to tell patients the

current waiting times at various PODs throughout the city [Starr, 2012]. The

goal of such tools is to encourage individuals to go to under-utilized PODs or

wait to seek treatment until queue sizes have dropped, thereby flattening the

demand across the POD network. The results shown here strongly support the

development of such information-sharing strategies, which could help provide

good POD performance across the dispensing network, especially if combined

with simple forecasting methods and a dynamic staffing system. But dynamic

staffing plans are only useful if there is sufficient staff available to fulfill these

plans. It is also essential to design a response network that can be operated by

the limited number of staff who will be available during the first hours after an

emergency occurs. In the following section, we show how the overall design of

the POD network affects the number of staff that will be necessary to run it.

The Impact of Network Design on Staffing Requirements

There is pressure on some local public health departments to open a very large

number of PODs so that individuals in the community will not need to travel

very far to receive treatment [Starr, 2012]. We ran two simple experiments to

show the consequences of increasing the number of PODs in a dispensing net-

work. Consider a network of 10 small PODs, which each serve an average

of 500 patients per hour. We compare this with a network consisting of only

one large POD which serves an average arrival rate of 5,000 patients per hour.
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Both systems will experience the same total expected daily patient demand. For

each system, we used the queueing formulae built into D-PODS to calculate the

staffing levels necessary to limit average patient waiting times to five minutes

at each station within the PODs.

We find that each of the small PODs requires 984 staff-hours to provide an

average patient waiting time of 6.72 minutes; this gives a total of 9,840 staff-

hours to operate the POD network for two days. The large POD, on the other

hand, requires only 8,664 staff-hours to provide an average patient waiting time

of 6.28 minutes. That is, almost 15 percent more staff-hours are required to

provide slightly worse service to patients in the 10 POD network, compared to

the single POD. Furthermore, additional fixed costs would likely be required to

operate a POD network that is more widely-distributed over many locations.

There are many factors that affect capacity-planning decisions for PODs, but

in general one can show that increasing the number of PODs also increases the

number of staff-hours required to provide a desired level of service to the same

number of patients. Clearly, then, if the number of staff-hours is limited, having

fewer larger PODs would provide the best service for patients. For large emer-

gencies, opening only a few PODs would be infeasible. However, an effective

command and control system could facilitate the creation of a virtual single,

large POD, if it allowed for monitoring and adjusting staffing levels and service

capacity throughout the system. As we have demonstrated, the number of staff

required to meet patient needs in a timely manner will be reduced substantially

if such a virtual system could be implemented.
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3.1.4 Discussion

We used D-PODS to demonstrate that nonstationary and uncertain patient ar-

rival patterns have a significant impact on POD performance; that dynamic

staffing policies can greatly improve patient waiting times and queue lengths;

and that POD networks require fewer staff-hours when fewer large PODs are

used, compared to many smaller PODs. Patient waiting times and queue

lengths are minimized in an environment in which POD staffing levels are ap-

propriately calculated to match expected patient arrival rates. These results

strongly suggest that a responsive and robust POD system can exist only if a

command and control system is in place that can balance staff and other re-

sources throughout a dispensing network. If such a system is not developed,

then either significantly larger staffs must be employed or patients will experi-

ence very long waiting times; neither of these outcomes is desirable. We also

note that these observations are not limited to the setting of staff levels. Greater

amounts of other resources such as medical supplies, equipment, and space will

all be needed if scarce resources are allocated ineffectively. If we could predict

patient arrival rates with great accuracy and allocate staff and other resources

accordingly in advance, then the need for an effective command and control

system would be reduced. But there is so much uncertainty regarding where

and when spikes in patient demand will arise that developing mechanisms to

balance loads throughout the POD network by moving staff and other scarce

resources among PODs should be considered essential.

D-PODS can help public health planners better understand the operations

of PODs and the importance of developing flexible plans that account for the

inherent uncertainty of emergency scenarios. A planner may experiment with
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D-PODS to construct potential staffing plans for different types of demand pro-

files and to estimate POD service rates more accurately over time. In the next

section we describe a model that allows planners to consider uncertainty and

interdependencies in the full emergency response system.

3.2 Emergency Supply Chain Operations Evaluator

The Emergency Supply Chain Operations Evaluator (ESCOE) is, like D-PODS,

a tool that can to help public health planners better understand how the emer-

gency response system will work under a variety of uncertain conditions. ES-

COE focuses on the flow of inventory from the SNS warehouses to the RSSs to

the PODs. The goal of ESCOE is to allow policy makers to study the global

consequences of supply chain designs and operating policies.

Setting up and operating the emergency response supply chain is a difficult

task, due in large part to the large number of organizations and individuals in-

volved. During an emergency many of these will be called upon to perform

tasks far removed from their everyday jobs. For example, office workers may

staff warehouses, and public health officials might become managers of dis-

pensing clinics. As mentioned earlier, exercises are difficult to organize, time-

consuming, and very expensive to conduct. The exercises that do take place are

often incomplete, and they are usually carefully planned and scripted, thereby

minimizing the elements of surprise and uncertainty that are part of real emer-

gencies. Furthermore, exercises seldom involve more than one organization,

and they never involve all three echelons of the supply chain. The SNS per-

forms its exercises and evaluations, while states run separate events to practice
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operating RSSs, and local authorities are often responsible for figuring out how

to operate their PODs. To organize an exercise involving all three levels of the

distribution network would be overly burdensome and expensive. Instead, sim-

ulation models such as ESCOE offer more efficient and affordable opportunities

to study the workings of the emergency response network.

The need for a simulation tool like ESCOE is magnified by the fact that the

many supply chain design decisions are made by many different individuals.

While some efforts have been made to coordinate these decisions, current plans

allow the various parts of the system to operate largely independently. Prob-

lems could easily arise as a result of insufficient coordination. For example, at

PODs, there may be sufficient staff availability to respond to expected patient

demands, but if inventory arrives later than expected from the RSS, queues of

patients could build up, overwhelming the POD staff. Over the course of the

dispensing campaign there may be sufficient staff, transportation capacity, and

inventory to accommodate the cumulative patient demand, but the system may

still perform poorly if these resources are not carefully coordinated. ESCOE

brings the operational details of the system together so that policy makers and

planners can explore how the choices they make might affect the overall perfor-

mance of the supply chain. In the following sections we describe ESCOE and its

underlying assumptions in greater detail, and we provide a detailed example

of how ESCOE can be used to model an emergency scenario and identify some

attributes of effective response system designs.
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3.2.1 Model Formulation

Like D-PODS, ESCOE is a simulation tool built in Visual Basic with an Excel-

based interface, shown in Figure 3.10. Users enter input parameters through a

step-by-step process that helps them describe the emergency response network

that they would like to evaluate. The user describes the physical distribution

network and the basic capacity constraints that control how inventory flows

from one stage to the next.

Figure 3.10: ESCOE interface main menu.

The SNS maintains about ten main warehouses across the country, but in-

formation regarding their exact number and locations is not publicly available.

Since the SNS is centrally controlled, we model all of the SNS warehouses as a

single central location, just as we did in Chapter 2. We continue to abuse defi-

nitions slightly and refer to this single central location as “the” SNS or the SNS
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warehouse. In addition to the single SNS warehouse, our model allows for the

inclusion of Forward Deployed Stockpile (FDS) locations. An FDS is a smaller

SNS-maintained warehouse that is strategically located near a major popula-

tion center so that medical supplies can be delivered to that area faster than

the expected 12 hour time horizon. Unlike inventory stored at the main SNS

warehouse, which could be allocated to any RSS, the FDSs would only serve

one or two nearby RSSs. Unlike the SNS, the FDSs would not be resupplied by

vendors during the emergency; their sole purpose would be to provide rapid

service to their RSSs in the early stages of an emergency. Currently the SNS

is creating some FDSs in response to strong requests from large cities such as

New York City and Los Angeles. Thus, we include FDSs in our model to allow

planners to explore their potential operational value. Muckstadt and Caggiano

provide a model that estimates the monetary costs of operating an FDS over

time [Caggiano & Muckstadt, 2010].

Figure 3.11: Emergency supply chain diagram, including Forward De-
ployed Stockpiles (FDSs).
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Figure 3.11 shows a diagram of the distribution network. The network in-

cludes one or more RSSs, as well as at least one POD per RSS. The SNS central

warehouse serves all the RSSs. FDSs may serve multiple RSSs, but an RSS can

be served by at most one FDS. Each RSS serves a set of PODs, disjoint from the

PODs served by other RSSs. Thus, the supply chain network can be represented

by an acyclic directed graph; it is not necessarily a tree since RSSs may be served

by an FDS as well as the SNS warehouse. Once established, the network topol-

ogy remains fixed during the simulation. Figure 3.12 shows the ESCOE interface

that allows users to input parameters that describe this network topology. Af-

ter completing the worksheet, the user must click on the buttons at the left side

of the screen to move to the next steps of describing lead times, inventory, and

the characteristics of the SNS, FDSs, RSSs, and PODs, before finally running the

simulation.

Figure 3.12: The ESCOE interface for describing the distribution network.

Time in the simulation is divided into discrete time periods. In each period
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a particular set of events takes place. At each upper echelon location in the dis-

tribution network (SNS, FDSs, and RSSs), inventory is allocated and shipped

out, and any newly arrived shipments are processed. At the PODs, shipments

are received, and patients arrive and either receive service during the period or,

if there is insufficient service capacity or inventory, enter a queue to wait until

these resources become available. The number of patient arrivals during each

time period is randomly drawn from a non-homogeneous Poisson distribution.

We assume that these patients arrive at a constant rate throughout a time pe-

riod, but this rate may vary from period to period. Unlike D-PODS, we do not

simulate the internal workings of PODs in detail. Each POD’s patient service

capacity during a time period is triangularly distributed, with distribution pa-

rameters that are functions of the number of staff assigned to the POD.

The ESCOE model also includes some transportation and warehouse logis-

tics. There are limits on the number of pallets that can be loaded and unloaded

at each location in each time period. All of these constraints may vary over the

course of the simulated time horizon. For the SNS warehouse, FDSs, and RSSs,

the number of shipments that can be sent out in each time period is constrained,

and the number of pallets that may be sent in each shipment is limited. The

transportation lead times between locations in the network are also triangularly

distributed random variables, whose parameter values may differ for each pair

of locations.

Inventory Allocation Policy

Most state and local emergency response plans call for a standard order-up-to

policy to be used in allocating inventory. The par levels, as they are called, are
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predetermined for each location in the distribution network, and whenever in-

ventory falls below the par level, a shipment will be sent to raise the stock to

par level. In ESCOE, we set par levels to equal the expected demand over the

lead time plus safety stock equal to two standard deviations of the estimated

demand over the lead time. This is a standard method for setting inventory lev-

els in industry. It is optimistic to assume that the distribution of patient demand

over a lead time is known with accuracy, but doing so allows us to ensure that

the results given by ESCOE are the best possible outcomes; problems will not

arise due to quirks of the inventory ordering policy.

ESCOE also includes provisional allocation rules in case there is insufficient

stock in the system to bring all of the locations up to their desired inventory

levels. A fair share policy has been implemented, which attempts to distribute

the available inventory to locations that fall below their par levels so that the

probability of patient demand exceeding stock is approximately equal at each

location. Many states do not have contingency plans for the case where RSSs

run out of inventory. Hence, it is likely that materials would simply be sent out

in a first come, first served fashion until everything is gone, which could leave

some PODs unable to operate effectively.

This combination of the order-up-to and fair share policies is used by many

commercial and industrial supply chains for planning purposes, and it repre-

sents the most sophisticated type of plan currently in use by state and local

health departments. However, future work should include adding some of the

more complex inventory allocation policies given in Chapter 2. We now illus-

trate how ESCOE, using the inventory policies discussed here, can be used to

model a particular emergency scenario.
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3.2.2 Example Scenario: Modeling an Inhalational Anthrax At-

tack

To demonstrate the functionality of ESCOE we will consider a moderately sized

inhalational anthrax attack that affects both southeastern New York State and

western Connecticut. As in Section 3.1, we consider a 48 hour time horizon,

and we separate it into 24 two-hour time periods. Each state would likely open

one RSS warehouse and a number of PODs. We will simulate the system both

with and without one FDS per state. In responding to a large attack, Manhattan

alone might open as many as 100 PODs, but for this smaller example we will

assume that New York opens 50 PODs and Connecticut opens 10. PODs may

come in many sizes and each state’s plan varies, but for simplicity we assume

that there are three basic types of PODs: small, medium, and large, which are

staffed to serve up to 2,500, 5,000, and 10,000 patients per day, respectively. We

will suppose that New York opens 8 large PODs, 22 medium PODs, and 30 small

PODs, while Connecticut opens 2 large PODs and 8 medium PODs.

Western Connecticut is a relatively small region, so we assume that a truck

could reach any POD from the RSS within a single two-hour period. New York

is a much larger state, but it is not unreasonable to suppose that the RSS serving

New York City and southeastern New York State would be located within two

hours of the PODs that it serves, so we similarly assume that the lead time from

the New York State RSS to its PODs is one time period. For similar reasons, we

assume a single period lead time from the FDSs to their respective RSSs, when

FDSs are included in the simulation. We allow a twelve hour lead time from

the SNS to both RSSs in accordance with the federal goal, although this may be

overly pessimistic since in reality the SNS may maintain a stockpile near New
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York City. Although the modeling environment permits these lead times to be

random, in this example we assume that they are constant. For the purposes

of this simulation, we suppose that the lead times include all of the necessary

inventory processing time, as well as loading and unloading delays, in addition

to the actual travel time from one location to another.

In response to an inhalational anthrax attack the CDC plans to provide all

affected individuals with a course of antibiotic prophylaxis, so the PODs will

distribute “unit-of-use” bottles of pills. There are two or three types of antibi-

otics that would be dispensed in practice, but we include only one type in this

example due to the current limitations of ESCOE; future work will include ex-

tending the model to include multiple inventory types.

We assume that antibiotics are shipped in cases which contain 300 unit-of-

use bottles, and pallets hold 32 cases. Inventory initially at the SNS or FDSs

must be in pallet-sized quantities. In this example we limit the number of pallets

per truck to 26, which is the number of pallets that a standard 53 foot trailer can

hold without stacking, since material-handling equipment may be limited at the

RSSs and unavailable at PODs. We assume for simplicity that all trucks used in

the simulation are of the same size.

The set of parameters described above defines a distribution network topol-

ogy and some of its basic characteristics. However, we have not yet discussed

how we might define the storage limits or the inventory loading and unloading

constraints at the SNS, FDSs, or RSSs, nor have we addressed patient demands

or service capacities at the PODs. All of these will be defined in the follow-

ing section, as we illustrate how to set these parameters in order to address a

particular policy-oriented question.
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Using the Inhalational Anthrax Scenario to Evaluate Policy Decisions

There are many questions that we might ask about the distribution network de-

scribed above. For example, we could investigate how much inventory would

be required to ensure reasonable patient waiting times if demands are wildly

unpredictable and the RSS can only ship to a small number of PODs in each

time period. Alternatively, we could explore the impact of POD service capaci-

ties on system performance, comparing dynamic staffing plans, in which service

capacities correspond to patient demand or inventory levels, to constant staffing

plans. We could also consider the impact of varying the numbers and sizes of

PODs, the patient demand processes, or the POD processing capacities, as well

as comparing different inventory policies or the effects of longer lead times.

Since our purpose here is to illustrate the use of ESCOE rather than to provide

a detailed analysis of the New York-Connecticut inhalational anthrax example,

we will focus on just one area of interest, rather than all of these. Since, as

mentioned earlier, the CDC is interested in creating a number of FDSs, we will

explore whether these might be useful and to what degree.

FDSs have the greatest potential utility if the SNS can only send a small

amount of inventory initially, or if PODs and RSSs are ready to begin operating

before the initial shipment of inventory arrives from the SNS. For an anthrax

scenario, like the one we are currently considering, the former possibility is un-

likely since the SNS has run exercises and is confident that it will be able to

provide a sufficiently large quantity of inventory to each state in the initial ship-

ment [CDC, 2011]. Instead we will consider the latter option.

Setting up PODs and readying them to serve patients is nontrivial, since this

involves securing the POD location, bringing in the necessary equipment, and
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calling in volunteers and staff, to name just a few of the required tasks. Thus,

PODs may require 12 or more hours to prepare for operations. However, well-

organized PODs might be prepared to serve patients in fewer than 12 hours.

We consider cases in which PODs open at the fourth hour after the emergency

is declared, the eighth hour, and the twelfth hour.

We assume for these examples that patients do not begin arriving to wait

for service until two hours before the PODs open. Since the main priority in

responding to an inhalational anthrax attack is to distribute antibiotics to as

many people as possible, it is reasonable to suppose that the clinics remain open

continuously for the 48-hour time horizon. But we would not expect as many

patients to seek medical care in the middle of the night as we would expect

during the day, so patient arrival rates change throughout the day, rising higher

during the main part of the day, decreasing slightly in the evening, and then

falling to a lower level overnight.

Consequently, PODs should not be staffed to provide a constant rate of ser-

vice 24 hours per day. In the model we assume for simplicity that during each

eight-hour shift the expected rate of service remains constant, even though in

a true emergency productivity would likely change, possibly increasing as staff

become more familiar with their job within the POD and decreasing later in

a shift due to exhaustion. For this example we supposed that the expected pa-

tient demand could be predicted with reasonable accuracy, and expected service

capacities were set to be 25% greater than the expected demand in each time pe-

riod.

The loading, unloading, and storage capacities at each location were as-

sumed to be ample so that we could focus on inventory in this system, rather
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than attempting to identify other bottlenecks. We also initialized the network

with a very large amount of inventory at the SNS so that it will never require

additional supplies during the dispensing campaign. When they were included

in the simulation each FDS was provided with one pallet, or 9,600 units, of in-

ventory. We increased the initial SNS stock by the amount of inventory stored

in the FDSs when no FDSs were included in the simulation.

Thus, we have described how the remaining model parameters were set. The

six different cases we study are network topologies with and without FDSs, and

for each topology we consider the possibility of PODs opening at four, eight,

and twelve hours after the emergency is declared. The total expected number of

patient arrivals and service capacity will remain the same in every scenario. In

the following section we describe the results of these six cases and the lessons

that one might take away from these examples.

Example Results and Conclusions

We ran each of the simulations for ten replications. Figures 3.13 and 3.14 show

the average queue lengths for sample small and large PODs under the four and

twelve hour opening time scenarios. Unsurprisingly, when PODs are able to

open in hour 4, the cases in which FDSs are present show much shorter patient

queue lengths than the cases in which there are no FDSs. This is a somewhat

unfair comparison, though, since it is not reasonable to open a POD before there

is inventory available to stock it. The early case without FDSs is an example of

what could happen if a POD staffed and ready to open with patients waiting

before inventory arrives.
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Figure 3.13: Average queue lengths at a small POD for the 0 and 2 FDS
cases, with Early (4th hour) and Late (12th hour) POD open-
ing times.

Figure 3.14: Average queue lengths at a large POD for the 0 and 2 FDS
cases, with Early (4th hour) and Late (12th hour) POD open-
ing times.

On the other hand, notice that in both Figures 3.13 and 3.14 the presence of

FDSs makes little or no difference in the simulation output when PODs open
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later. We conclude unsurprisingly that FDSs may be valuable if PODs are pre-

pared to open and begin serving patients significantly before the 12th hour

when inventory from the SNS arrives. However, we should not invest in FDSs

unless assurance is given from local health departments that they are able to

open functioning PODs significantly faster than 12 hours after an emergency

is declared. This identifies a possible bottleneck in the distribution network,

namely POD setup time, and the CDC might consider an exercise to evaluate

realistic POD setup times before constructing FDSs. Policy makers might also

wish to weigh the cost of stocking and maintaining FDSs against their potential

benefits.

Figures 3.15 - 3.17 illustrate the importance of uncertainty in the system. Fig-

ures 3.15 and 3.16 show inventory levels and queue lengths at a single small

POD that opens in the twelfth hour without FDS support under two differ-

ent simulation replications. In the one replication, inventory at the POD drops

to zero and a large queue builds up for several time periods near the end of

the time horizon, while in the other replication the POD never runs out of in-

ventory and queue lengths remain fairly small. Many public health emergency

plans are designed to accommodate the expected patient demands, without ac-

knowledging the uncertainty inherent in patient arrivals and other parts of the

distribution network or how this uncertainty may affect system performance.

Figures 3.15 and 3.16 provide a clear example of how this uncertainty can affect

a system, causing troubles when things do not go as planned, as in simulation

replication 7. Figure 3.17 shows ten replications for the same small POD, fur-

ther emphasizing the potential variance of inventory levels over time due to

fluctuations in patient demands and service capacities.
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Drawing attention to this variation encourages policy makers to develop

flexible response plans that will allow the system to respond to unusually large

demands or lower-than-expected service capacities. Planners might consider

increasing safety stocks at the RSS to help protect the network from inventory

stockouts, or they could maintain a group of staff who move from POD to POD

to increase service capacities in response to large queues that may develop.

Other ideas could also be considered and modeled with ESCOE, but our goal is

to help policy makers identify potential operational problems and to evaluate

the impact of alternative operating strategies on response effectiveness.

Figure 3.15: Inventory on-hand over time in the seventh and eighth simu-
lation replications for one small POD that opens in the twelfth
hour without FDS support.

3.2.3 Discussion

There are many possible mass dispensing network designs, and ESCOE allows

for quantitative comparison between these different options. ESCOE also en-

courages users to consider the impact of uncertainty in the emergency response
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Figure 3.16: Queue lengths over time in the seventh and eighth simulation
replications for one small POD that opens in the twelfth hour
without FDS support.

Figure 3.17: Inventory on-hand over time in the seventh and eighth simu-
lation replications for one small POD that opens in the twelfth
hour without FDS support.

supply chain. Furthermore, since only the standard Microsoft Office programs

Excel and Access are required to run the simulations, ESCOE is easily accessible
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to public health officials. Its modular interface could also be extended to allow

users to describe particular distribution networks in greater detail. Some future

additions to the simulation that are currently under consideration include mod-

eling more complex inventory allocation strategies, multiple inventory types,

and more detailed truck routing policies.

Simulations such as ESCOE and D-PODS are essential tools for public health

policy-makers responsible for developing effective emergency preparedness

plans. Realistic exercises involving many organizations across the supply chain

are not feasible, so we must rely on simulation tools like these to understand

how decisions made by different groups will affect the network as a whole. Such

tools can help planners take a systems-oriented approach to planning emer-

gency response networks that involve large numbers of independent agencies

by allowing them to consider the entire scope of the planned response. D-

PODS, and models like it, can help planners thoroughly understand particu-

lar elements of the system, while ESCOE helps planners consider how these

pieces will fit together. These tools let policy makers better understand the con-

sequences of other plans, allowing them to evaluate and improve our true emer-

gency preparedness.
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CHAPTER 4

ANTIVIRAL DISPENSING MODELS FOR AN INFLUENZA PANDEMIC

In Chapter 1, we described the need for a controlled-dispensing campaign to

distribute antiviral medication in the early stages of an influenza pandemic. An-

tivirals can reduce the severity and infectiousness of individuals infected with

influenza, and the United States’ pandemic response plan calls for antivirals to

be distributed to sick individuals. Currently, the plan required states to under-

take the burden of dispensing antivirals, but compelling arguments have been

presented in favor of using the commercial pharmaceutical supply chain to op-

erate this campaign instead [Koonin et al., 2011]. We are working with a team of

CDC officials to construct models that will help policy-makers understand how

a commercially operated dispensing campaign might work.

There are three large pharmaceutical distributers in the United States:

McKesson, Cardinal Health, and Amerisource-Bergen. Each of these operates

about 25 warehouses, which supply the 60,000 commercial pharmacies [SK&A,

2011]. The pharmacies generally place orders to and receive shipments from one

or more of the distributers every day. In some cases computerized systems are

already used to transfer information about inventory needs from many of the

pharmacies to their distributers. In general, the distribution network operates

very effectively, and the idea of leveraging this system to dispense antivirals is

appealing. However, this raises many questions about how the dispensing net-

work will be structured, whether pharmacies can provide sufficient dispensing

capacity, and other policy concerns. With regard to the network structure, we

must consider which pharmacies will be included in the plan. One possible an-

swer would be to use all of them, but that could lead to undesirable outcomes.
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Either massive amounts of inventory could be required to ensure that demand

will be met with high probability in each pharmacy, or many pharmacies may

run out of stock, causing patients to hunt for antivirals by traveling from phar-

macy to pharmacy. Instead, the plan might select a subset of pharmacies, but

how will this subset be chosen?

We also must ensure that the chosen pharmacies will have sufficient capac-

ity to meet demand. How will the pharmacies handle a significant increase in

demand due to antiviral prescriptions? If only a subset of pharmacies is cho-

sen to participate in the campaign, then these locations may see a much larger

than normal number of new patients, who require longer service times. Other

questions arise with regard to policy. When will the SNS dispensing campaign

begin? Will the free antivirals immediately be accessible to everyone, or will

insurance companies pay for their customers’ antivirals as long as the initial

commercial supply is available? How will the SNS antivirals be processed in

the pharmacies’ inventory systems?

To identify some of the challenges that would arise, we must consider how

influenza would spread across the country. We constructed hypothetical an-

tiviral demand curves based on a variety of historical influenza data to help us

better understand the consequences of influenza. The model separates antiviral

demand by the HHS regions defined in Table 4.1. We discuss the construction of

these curves in the following section, but first we explore the lessons that can be

gleaned from them. Figure 4.1 shows the expected antiviral demands by region

for a moderate pandemic similar in scale to the 2009 H1N1 pandemic. Notice
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that the slopes of the demand curves are extremely steep and the peaks are very

large. The demand in region 4 increases from 20,000 units to over 100,000 units

in a single week. In most regions there is little or no “ramp up” period that

would give pharmacies and distributers time to prepare. Furthermore, the tim-

ing of the peak varies significantly from region to region. Hence, the pharmacies

in the distribution network must not only be capable of serving very high de-

mands, but they must be prepared to increase their capacity rapidly to keep up

with demand. Distributers must increase their on-hand inventories early in the

pandemic so that they will be prepared to supply the pharmacies with the large

quantities of antivirals that will be required.

Figure 4.1: Expected patient demands for each of the ten HHS regions dur-
ing a moderate 2009-like pandemic scenario.

However, because the timing of the pandemic varies by region, the dis-

tributers must also hold enough inventory in reserve to supply the regions in

which demand peaks later. Since the distributers make daily shipments to the
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pharmacies, we suggest that inventory should be sent to pharmacies in small,

frequent shipments. This will help ensure that large stocks of antivirals will

not remain unused when the demand drops off rapidly at the end of the peak

period. If inventory imbalances do arise at the local level, information about

the locations of available stock could be provided to the public so that patient

demand can self-adjust. These imbalances could also be corrected in part by

inventory-sharing between nearby pharmacies, but such a plan would require

additional coordination and infrastructure and there is no guarantee that this

would be possible.

The length of time during which the pandemic is active also varies by region.

Demand for antivirals is elevated for only about ten weeks in regions 8 and 10,

but in region 4 demand remains very highly elevated for 15 weeks and stays

significantly above the normal level for almost 30 weeks. The unusual curve in

region 4 is likely the result of a number of pandemic peaks arising in different

parts of the region, which is large and includes eight states in the southeastern

United States. However, we still see that the pharmacies must be capable of

filling large numbers of antiviral prescriptions over an extended period of time

while continuing to serve its regular customer base. Pharmacies must create

staffing plans to accommodate these requirements. If a pharmacy’s pandemic

plan calls for all employees to work overtime to fulfill antiviral prescriptions,

the pharmacy may not be capable of maintaining this pace for the complete

pandemic.

We also observe from this demand model that inventory shortages are likely

to occur in more severe pandemic scenarios. Figures 4.2 and 4.3 show the cu-

mulative national antiviral demand and the SNS inventory levels during two
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severe pandemic scenarios. Currently, the SNS has stockpiled 48 million courses

of adult antivirals and 12 million courses of pediatric antivirals [Hupert, 2011].

These figures show that during a severe pandemic national shortages would

certainly occur, so pharmaceutical distributers must allocate antivirals carefully

to ensure that equitable service is provided across the United States.

Figure 4.2: Burn rate for adult antivirals in a severe 1918-like scenario.

As we mentioned above, careful staffing would be essential to ensure that

the pharmacy can fill the required antiviral prescriptions, but it is unlikely that

other capacity constraints would present a challenge to the dispensing effort.

One case of antivirals contains 300 bottles of pills, which is more than enough

to supply daily demand at each pharmacy during all of but the peak times of

the pandemic. Hence, neither storage capacity at the pharmacy nor space on

the trucks that transport material daily from the distributer to the pharmacies

will be a bottleneck in the distribution network. Each pallet contains 32 cases of
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Figure 4.3: Burn rate for adult antivirals in a severe 1957-like scenario.

antivirals, or 9,600 bottles of pills. Even a very large initial shipment from the

SNS to the distributers of 10 million courses of antivirals would require send-

ing only about 14 pallets to each of the distribution warehouses, which would

fill just over half of a standard 53 foot trailer. This is a trivial amount of inven-

tory for these large distributers, so neither transportation nor storage capacities

should be problematic at the SNS-distributer level, either.

We will keep these observations in mind throughout this chapter. In the

following section we show how the antiviral demand curves shown in the pre-

vious three figures were constructed. In the subsequent section we present a

simulation of the pharmaceutical distribution network and use these demands

to demonstrate the potential performance of the network under different pan-

demic scenarios. Finally, we present several models to assist with inventory

allocation during a pandemic.
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Region 1 Connecticut, Maine, Massachusetts, New Hampshire,

Rhode Island, Vermont

Region 2 New Jersey, New York

Region 3 Delaware, District of Columbia, Maryland,

Pennsylvania, Virginia, West Virginia

Region 4 Mississippi, Alabama, Tennessee, Kentucky, Florida,

North Carolina, South Carolina, Georgia

Region 5 Illinois, Indiana, Michigan, Minnesota, Ohio, Wiscon-

sin

Region 6 Arkansas, Louisiana, New Mexico, Oklahoma, Texas

Region 7 Iowa, Kansas, Missouri, Nebraska

Region 8 Colorado, Montana, North Dakota, South Dakota,

Utah, Wyoming

Region 9 Arizona, California, Hawaii, Nevada

Region 10 Alaska, Idaho, Oregon, Washington

Table 4.1: HHS Regions.

4.1 Constructing Antiviral Demand Scenarios

Our goal in this section is to describe a method for estimating demand for an-

tivirals across the United States during hypothetical pandemic scenarios. A

number of papers have estimated epidemiological parameters, such as cumula-
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tive attack rates and basic reproductive numbers, for the 2009-2010 H1N1 pan-

demic [Fraser et al., 2009,Yang et al., 2009,White et al., 2009,Tuite et al., 2010,Pre-

sanis et al., 2009, Carrat et al., 2010, Nishiura et al., 2010, White & Pagano, 2010].

However, Shrestha et al. is the definitive paper whose authors worked with

CDC officials to estimate the true influenza attack rate in the United States

for the pandemic [Shrestha et al., 2011]. They used surveillance reports from

laboratory-confirmed influenza cases and hospitalization data and applied sta-

tistical methods to correct for under-reporting of influenza.

Shrestha et al. provide data at the national level, but the timing of the peak

and its magnitude of of the 2009 pandemic varied by region. Since pharmacy

capacity also varies significantly by region, more specific regional curves were

necessary to determine whether that capacity would be sufficient for antivi-

ral dispensing during a pandemic. The most detailed geographic information

available for outpatient influenza cases in the United States was collected by the

Influenza-Like Illness (ILI) Surveillance Program [CDC, 2009]. The ILI data in-

clude reports from a national network of over 3,000 health care providers who

record the number of confirmed influenza and unconfirmed influenza-like ill-

nesses that they observe each week. These data are compiled for each of the ten

HHS regions, which are defined in Table 4.1.

We show below how the ILI data and the model by Shrestha et al. determine

the shape of our regional antiviral demand curves. The magnitude of these

curves depends on census reports of population size by age and geographic re-

gion and on a set of epidemiological parameters [USCB, 2012]. We considered

twelve pandemic scenarios: low, medium, and severe versions of the four pan-

demics that have occurred in the last hundred years: 1918, 1957, 1968, and 2009.
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Our epidemiological parameters were constructed by CDC epidemiologists for

each of these pandemic scenarios [Koonin, 2012].

For each scenario, the parameters include ARa, the clinical attack rate for each

age group a; ta, the percentage of those ill in age group a that is both included in

the treatment protocol and will seek antiviral treatment; and wa, the percentage

of the population in age group a that is not ill, but will seek antivirals. We

sometimes refer to the latter group as the “worried well.” The age groups of

interest are determined by epidemiological parameters and treatment protocols.

Pediatric antivirals are required for individuals aged 0 to 11. Different attack

rate curves are expected for people under the age of 18, between the ages of 18

and 64, and ages 65 and above [Koonin, 2012]. We defineA = {0−11, 12−17, 18−

64, 65+} to be the set of age ranges of interest. The geographic regions of interest

are the ten HHS regions for which we have ILI data. Let R = {1, ..., 10} be the

numbers of the HHS regions.

Let POPar be the population of age group a in geographic region r, as given

by the 2010 census data. Then, using the epidemiological parameters defined

above, the total number of people in age group a in region r who require antivi-

rals is given by

zar = (ARa · ta + wa)POPar for a ∈ A, r ∈ R. (4.1)

Next, we determine when this demand occurs. In some influenza pan-

demics, a small spring wave of illness occurs in March, April, and May and

then mostly disappears before the main outbreak begins in August or Septem-

ber. Unfortunately, the ILI data from 2009 were only collected starting in week
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35 (August 24-30) of 2009, which fails to capture this initial curve. To estimate a

reasonable demand curve for a spring wave, we turn to the model by Shrestha

et al. [Shrestha et al., 2011]. Shrestha’s model begins showing influenza cases in

week 14 (April 2-8).

Define S t to be the number of cases occurring in week t according to the

Shrestha model [Shrestha et al., 2011]. Define S to be the total number of cases

occurring over the full pandemic in the model, so S =
∑

t S t. Define S F to be

the total number of cases that occur in the first wave (weeks 14 through 34) in

the model, so S F =
∑34

t=14 S t. The percentage of demand that occurs during the

first wave is given by S F
S , so for our demand model, the total number of cases

for age group a in region r that would occur in the first wave would be zar ·
S F
S .

However, we wish to allow additional flexibility to explore the impact of spring

waves of varying sizes, so we define the user-determined parameter p ∈ [0, 1] to

be the percentage of the total cases that will occur during the spring wave, and

the number of cases in the first wave is zar · p. Within the first wave, the fraction

of first wave cases that occur during week t is given by S t
S F

. So the expected

demand for age group a in region r during week t is given by

zart = zar · p ·
S t

S F
for a ∈ A, r ∈ R, t = 14, ..., 34. (4.2)

The total number of cases for age group a in region r that occur during the

second wave of our model is zar(1 − p). To determine the fraction of these cases

that occurs during week t, we apply the ILI data. These data from 2009 were

provided for five age categories: 0-4, 5-24, 25-49, 50-64, and 65+. To determine

an antiviral dispensing policy, we need to recalculate the disease data for the

age groups inA. This requires separating the age 5-24 group into three separate
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categories: 5-11, 12-17, and 18-24.

Let ILIart be the number of ILI cases recorded for age group a in region r

during week t. We define the ILI case data for the age categories a ∈ A = {0 −

11, 12 − 17, 18 − 64, 65+} to be the transformed values ILIart as follows:

ILI′0−11,r,t = ILI0−4,r,t +
POP5−11,r

POP5−24,r
· ILI5−24,r,t,

ILI′12−17,r,t =
POP12−17,r

POP5−24,r
· ILI5−24,r,t,

ILI′18−64,r,t = ILI25−49,r,t + ILI50−64,r,t +
POP18−24,r

POP5−24,r
· ILI5−24,r,t, and

ILI′65+,r,t = ILI65+,r,t.

This calculation assumes that, during the 2009-2010 influenza season, the attack

rate for H1N1 was uniform across the 5-24 age category. This seems to contra-

dict one of our reasons for further dividing that category, namely that the attack

rate will vary by age group. However, lacking more finely recorded data, we

cannot justify using any other method of estimating the demands.

In 2009, the total number of ILI cases for group a in region r is ILI′ar =∑
t ILI′art. The fraction of cases for week t is given by ILI′art

ILI′ar
. Since all of the ILI

cases occurred during the second wave of the 2009 H1N1 pandemic, this num-

ber is the fraction of the second wave cases that occur in week t. So the expected

number of people of age group a in region r who require antivirals in week t is

zart = zar · (1 − p) ·
ILI′art

ILI′ar
for a ∈ A, r ∈ R, t = 35, ...,T, (4.3)

where T = 91 is the last week of data available from the ILI records. Equations

169



(4.2) and (4.3) together define the weekly demand by age group and region for

a complete pandemic scneario.

4.2 Simulating System Performance

The demand models presented in the previous section provided some insights

into the requirements of the distribution network, but they do not capture the

fundamental uncertainty present during any influenza pandemic. We con-

structed a simulation of the system to help policy-makers identify potential

pitfalls of using the pharmaceutical supply chain and to understand more com-

pletely how this uncertainty could affect the operations of the response network.

We developed the simulation in collaboration with a group of CDC officials who

provided information about current and future SNS operations to set the param-

eter values used in our examples below.

We built the simulation in Visual Basic and Microsoft Access, with a Mi-

crosoft Excel interface to make it accessible for our audience of policy-makers.

There are three areas in which user input is required: the demand model, the

distribution network structure, and the rules for dispensing stocks from the SNS

inventory. For the former, the interface allows users to select one of the twelve

pandemic scenarios described in the previous section to simulate. Users may

further modify these scenarios by changing the epidemiological parameters or

by directly increasing or decreasing expected demands for particular regions in

particular weeks. The user also selects one state, for which supply and demand

will be simulated at the pharmacy level; in all other states, only cumulative

supply and demand values will be determined.
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We allow for several pharmacy types in the model. In the examples de-

scribed below, we will assume three such types: Large, Medium, and Small. We

populate the simulation with the actual numbers of pharmacies in each state; in

our example, we assume that all chain pharmacies are type Large, mass mer-

chant and supermarket pharmacies are type Medium, and independent phar-

macies are type Small. The user may select the percentages of pharmacies of

each type that are included for each state. Pharmacies have service capacities

which indicate the maximum number of antiviral prescriptions that they could

fill each day. These capacities are assumed to be constant within a region and

are assigned by the user. The proportions of demand assigned to pharmacies

of each type are also assumed to be constant over time within each region. In

the examples, we assume that twice as many patients seek service at medium

pharmacies as at small pharmacies, and twice as many seek service at large

pharmacies compared to medium ones.

Some information about distribution warehouse locations is publicly avail-

able, but there is information describing which distribution warehouses serve

particular pharmacies is proprietary. For simplicity, we assume that there is one

distribution warehouse in each state which serves all of the pharmacies in that

state. We do not model any constraints on service or transportation capacities

at the distributer warehouses since, as we mentioned earlier, the quantities of

antivirals under consideration would not strain distributer capacities. There are

shipping lead times between the SNS and the distributers and between the dis-

tributers and the pharmacies. In the example, the distributer-to-pharmacy lead

times are one day, since most pharmacies already receive daily shipments from

their distributers. The SNS-to-distributer lead times are two days.
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Recall that the SNS presently has on-hand 48 million courses of adult antivi-

rals and 12 million courses of pediatric antivirals. The SNS plans to begin its

inventory distribution effort with an initial push of inventory to the distributers

and pharmacies. The size of the initial push is determined by the user; the de-

fault values are 8 million courses of adult antivirals and 3 million courses of

pediatric antivirals, for a total 11 million, which was the size of the initial in-

ventory push in the 2009 H1N1 pandemic [HHS, 2009]. After the initial push,

the SNS will send new shipments periodically in response to orders from the

distributers; the default frequency of shipments is once each week.

Some portion of the SNS inventory would be sent directly to state public

health authorities to serve special populations. Since our goal in this simula-

tion is to evaluate the ability of the commercial pharmaceutical supply chain to

dispense most of the antivirals, we simply assume that each state would serve

some percentage of its population. We allow the user to set these percentages

and assign some portion of the SNS stockpile to be reserved for the state public

health authorities. In our examples, both of these are set to five percent.

We now describe the simulation environment. We model time in periods;

each period is one day long. Each day, inventory shipped from the SNS one

lead time ago is received at all of the distribution warehouses. As we men-

tioned above, we simulated operations at the pharmacy level only for a single,

user-selected state. For the other states, we calculate only cumulative perfor-

mance measures. For the chosen state, inventory shipped from its distribution

warehouse to the pharmacies one lead time ago is also received. Then each

of these locations places an order on its supplier. Each location forecasts its de-

mand over the lead time and sets its order-up-to level to this quantity plus safety
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stock equal to twice the square root of this demand, which is two standard de-

viations if the demand is Poisson distributed. Each location uses a simple look-

back forecasting method; that is, it assumes that daily demand in the future will

equal the previous day’s demand. This type of simple forecasting is a reason-

able reflection of what these systems might actually implement, but extensions

to the model could include using a triple exponential smoothing method, which

would allow us to capture long-term and local trends in the demands.

After orders have been placed, if the current day is one on which the SNS

makes a shipment, the SNS makes an allocation to the distributers. If sufficient

inventory is available at the SNS, all distributers will receive their desired order

quantities. Otherwise, each distributer will receive an equal fraction of its order

quantity. This process is repeated at the distributer in the chosen state as it

allocates inventory to the state’s pharmacies.

Next, we draw random patient demands. Demand at the regional level is

assumed to be Poisson distributed. In the previous section we showed how

the expected weekly demands are determined for each region. We determine

the initial daily expected demand for each region by linearizing the expected

weekly demands over the days of the week so that there are no “jumps” in

demand between weeks. To ensure that each randomly drawn set of patient

demands results in approximately the same total number of patients served, we

add one modification to these expected demands. The expected daily demand

for a particular region on a given day is the sum of this initial demand and ad-

ditional factor. The extra factor is the previous day’s expected demand minus

that day’s actual sampled demand. This ensures that, if fewer people than ex-

pected sought service on the previous day, then the current day’s demand will
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compensate by being larger. The demand for a chosen region on a given day

is drawn from a Poisson distribution whose mean is constructed as described

here. Each region’s demand is randomly assigned to states within the region in

proportion to the states’ populations. For the chosen state, the state’s demand is

further allocated to pharmacies in that state, in proportion to the demand ratios

mentioned above.

Once the day’s demand’s are known, we can calculate the number of people

served and unserved at each pharmacy in the chosen state, as well as the re-

maining inventory. Unserved patients do one of two things, depending on the

user-selected policy: either they return to the same pharmacy the following day

for antivirals, or they stop seeking to fill their prescriptions. The latter choice

is not unreasonable, since antivirals are unlikely to be effective in reducing the

severity of illness unless treatment begins immediately. Another reasonable pa-

tient behavior would be to seek treatment at nearby pharmacies on the same

day. The CDC has recently provided us with county-level pharmacy data, so

this extension to the model is currently underway.

For the states whose pharmacies are not simulated, we assume that the state

dispensing capacity is equal to the sum of all of its pharmacies’ capacities. The

number of patients served in each of these states is the minimum of the state

dispensing capacity, the total patient demand in the state, and the inventory on-

hand at the state’s distributer. The same rules for unserved patients apply, as

described above.
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4.2.1 Example Results

In this section we present a simple example and results to explore the simulation

output. We considered the four moderate pandemic scenarios (1918, 1957, 1968,

2009), simulating pharmacies for both New Jersey and Georgia, which were

chosen because they are typical states from two regions with noticeably differ-

ent expected demand curves. We included half of the pharmacies in each state

in the dispensing network and set antiviral dispensing capacities of 200, 100,

and 50 for the Large, Medium, and Small pharmacies, respectively. In each case

we simulated the pandemic for one year. We also explored the consequences

of patient behavior. We compared system performance when patients continue

returning until they receive service (the “Patients Return” policy) and when pa-

tients abandon their search for antivirals if their chosen pharmacy cannot pro-

vide service (the “Patients Leave” policy).

First, we consider the efficiency of the overall network. Figure 4.4 shows the

number of patients served under each pandemic scenario for the two possible

patient behavior patterns. We see that the different pandemic scenarios have

very different inventory requirements; the 1918 and 1957 scenarios are signifi-

cantly more severe than the 1968 and 2009 scenarios. Also, many more patients

are served under the Patients Return policy. This seems to indicate that such

a policy is preferable, since the goal of the dispensing campaign is to provide

antivirals to as many people as possible. However, antivirals are most effective

in reducing the severity of illness if they are taken soon after an individual is

infected with influenza. If individuals spend multiple days seeking service, the

window of effectiveness will be lost. If patients do not return for service, far

less inventory is required and the patients who are served will be individuals
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for whom the antivirals are most useful. While inventory will not be a limit-

ing factor in a moderate 2009 or 1968 pandemic scenario, almost the complete

stockpile is consumed in the moderate 1918 scenario. If the population could

be served equally effectively with far less inventory, that would be very highly

desirable. Of course, during an actual pandemic public health officials cannot

completely control patient behavior; they may use mass media to educate the

public and encourage them to behave in certain ways (e.g., asking people to

refrain from filling antiviral prescriptions that are more than one day old), but

such requirements would probably not be enforced. Panicked individuals and

the worried well may continue to seek treatment, even if it is unlikely to be ef-

fective. The actual performance of the system during a pandemic is likely to

fall somewhere between the two extreme policies (Patients Return and Patients

Leave) discussed here, so we may think of these examples as upper and lower

bounds on inventory requirements and service rates.

A natural question that arises from this discussion is whether service capac-

ity limitations, inventory shortages, or both cause patients to remain unserved

under these policies. In Table 4.2 we show the first days on which patient de-

mands for adult antivirals exceed available inventories under the Patients Leave

policy. Demand never exceeds capacity in any of these scenarios, but stockouts

occur less than halfway through the year. Table 4.3 shows the first day on which

pharmacy capacity is insufficient for the total patient demand under the Patients

Return rule. The Patients Return scenarios result in much higher effective de-

mands, since each day returning patients must be served in addition to newly

arriving patients. However, even under this demand-intensive policy, the effec-

tive demand never exceeds service capacity under the 2009 or 1968 pandemic

scenarios. These tables indicate that inventory shortages are the main prob-
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Figure 4.4: Number of patients served in the distribution network under
two possible patient behavior strategies: patients leave the sys-
tem stop seeking antivirals if inventory is unavailable or pa-
tients return until they are served.

lem in the system. A better inventory allocation policy or a more sophisticated

forecasting method could significantly improve system performance under ei-

ther patient behavior pattern. Recall that the current forecasting policy predicts

future demand based on the previous day’s demand. Even with a reasonable

quantity of safety stock, this forecasting method is insufficient when demand

increases rapidly as the pandemic proceeds. Inventory constantly lags behind

demand, so large numbers of backorders accumulate under the Patients Return

policy and large numbers of patients remain unserved under the Patients Leave

policy.

We can also explore patient demand at the pharmacies more directly. Fig-

ure 4.5 shows the average and maximum daily demands for New Jersey and

Georgia for each pandemic scenario when patients do not return to keep seek-

ing service. We make two observations. First, the average daily demand is very
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Pandemic Large Medium Small
Scenario NJ GA NJ GA NJ GA

2009 154 148 149 149 168 150
1968 98 99 119 120 115 85
1957 69 69 66 66 66 66
1918 61 65 60 61 59 59

Table 4.2: First day on which a stockout of adult antivirals occurs at phar-
macies in New Jersey (NJ) and Georgia (GA) in moderate pan-
demic scenarios under the Patients Leave policy.

Pandemic Large Medium Small
Scenario NJ GA NJ GA NJ GA

2009 Never Never Never Never Never Never
1968 Never Never Never Never Never Never
1957 206 156 206 156 205 155
1918 205 155 205 155 204 154

Table 4.3: First day on which demand exceeds service capacity at pharma-
cies in New Jersey (NJ) and Georgia (GA) in moderate pandemic
scenarios under the Patients Return policy.

low; for large portions of the pandemic the pharmacies will not experience any

strain on their resources, even under the more severe 1918 and 1957 pandemic

scenarios. Even the maximum demands never exceed half of the pharmacy ca-

pacities defined for this example. Given a better inventory allocation scheme,

the pharmacies in New Jersey and Georgia could easily serve all of the demand

that arises during any of the four pandemic scenarios shown.

However, in Figure 4.6 we see that the system may be overwhelmed when

patients return repeatedly seeking service. The average daily demand is low,

but the maximum effective patient demand (which includes returning and

newly arrived patients) is more than double the available service capacity at

all pharmacy types under the moderate 1957 and 1918 pandemic scenarios. This
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highlights the need for improved inventory management; we know from Figure

4.5 that the maximum number of patients arriving on each day is always rea-

sonable. If most patients were always served immediately, large queues such

as the ones we observe in the bottom graph of Figure 4.6 would never have the

opportunity to develop. Unfortunately, perfect inventory management will be

impossible during a pandemic due to highly unpredictable demands, so phar-

macies must construct staffing plans that will allow them to respond to higher

than expected demands.

Notice in Figure 4.6 that, for the 2009 and 1968 pandemic scenarios, the max-

imum effective demand remains reasonable even when patients return until

they are served. Thus, this example indicates that for mild pandemic scenar-

ios, the commercial pharmaceutical network would be very effective in oper-

ating a controlled dispensing campaign, even with extremely simple inventory

policies such as the ones currently implemented in this simulation. For more se-

vere pandemic scenarios, the commercial system has sufficient capacity to serve

the necessary demands, but inventory and other limited resources must be al-

located carefully to ensure that sick people throughout the country will have

access to antivirals.
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Figure 4.5: The top graph shows the average demand for antivirals each
day and the bottom shows the maximum demand on a single
day, under the Patients Leave policy.

4.3 Antiviral Allocation Models

In this section, we present some more sophisticated inventory allocation mod-

els that could be used to improve the performance of an antiviral dispensing

campaign operated by the commercial pharmaceutical supply chain, discussed

180



Figure 4.6: The top graph shows the average newly arriving demand for
antivirals each day and the bottom shows the maximum actual
demand (new arrivals + returning patients) on a single day, un-
der the Patients Return policy.

in the previous section. The inventory allocation methods implemented in the

simulation are reasonable representations of how the distribution network may

operate in practice, but we showed in Chapter 2 that centralized allocation

methods can significantly improve performance. In the next two subsections

we present several inventory models for making allocations from the SNS to
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the distributers and from the distributers to the pharmacies.

4.3.1 SNS-Distributer Inventory Allocation

In the simulated distribution network we assumed that one distribution ware-

house served each state and that cross-shipping was allowed between all of

the warehouses. In fact, there are three large pharmaceutical distributers in the

United States, each of which maintains its own distribution warehouses. All

three would likely be involved in the distribution effort, and while they may

cross-ship inventory between their own warehouses, it is unlikely that they

would share with one another. The SNS may ship directly to each of the distri-

bution warehouses, or the SNS may ship only to a few select locations, allowing

the distributers to determine how this inventory should be shared among their

warehouses. Below, we present models for both of these possibilities.

We define B to be the set of the three large distribution companies. Each

distributer must own at least one warehouse from which to ship inventory to

the pharmacies; letW be the set of all of these warehouses. For b ∈ B, letW(b)

be the set of warehouses that belong to distributer b. As we discussed above,

the SNS may ship antivirals to some or all of these warehouses; let W∗ be the

set of warehouses to receive direct shipments from the SNS. For each b ∈ B,

there must exist at least one w ∈ W(b) such that w ∈ W∗. Let H be the set

of pharmacies included in the network, and let H(w) be the set of pharmacies

served by warehouse w ∈ W. We assume that each pharmacy is served by

exactly one warehouse; that is, for any two warehouses w, v ∈ W,H(w)∩H(v) =

∅. Let R be the set of geographic regions of interest; these may represent HHS

182



regions or states or some other areas. Without loss of generality, we will also

assume that each warehouse serves only pharmacies in a single region. We

can simulate a warehouse that serves multiple regions by colocating several

warehouses in our model with 0 lead times for moving inventory between them.

Let R(w) be the regional location of warehouse w ∈ W; we know that R(w) ∈ R.

The SNS sends out shipments periodically, once every L days, where L is

likely to be 7 as in the simulation example discussed in the previous section. We

will refer to each period of L days between shipments as a “cycle.” There is a

lead time, τw, from the SNS to each warehouse w ∈ W∗ which includes the time

for picking, packing, and receiving inventory, as well as the transportation time.

We model two possible allocation mechanisms: either the SNS ships directly to

all of the warehouses, soW∗ = W, or the SNS ships only to a subset of ware-

houses, soW∗ ⊂ W. In the second case, the warehouses that receive shipments

from the SNS subsequently cross-ship inventory to other warehouses owned

by the same distributer. Let τvw be the time required to send inventory from

warehouse v to warehouse w.

We model two inventory types, pediatric (type 1) and adult (type 2). Let

I = {1, 2} be the set of inventory types. Let Di
w,t,t+k be the cumulative demand

for inventory of type i ∈ I at warehouse w for days t, ..., t + k. We assume that

the distribution of Di
w,t,t+k is known only for the near future. Let x̄i

wt be the ech-

elon inventory position for inventory type i at warehouse w at the beginning

of period t. Let ȳi
wt be the echelon inventory position after inventory allocation

decisions have been made and shipments sent in period t.

B the set of all distributers

W the set of all distributer warehouses
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W(b) the set of all distributer warehouses that belong to distributer

b ∈ B

W∗ the set of all distributer warehouses to receive shipments from

the SNS

H the set of all pharmacies in the network

H(w) the set of all pharmacies to receive shipments from warehouse

w ∈ W

R(w) the location of warehouse w ∈ W, where R(w) ∈ R

L the length of a cycle (i.e., the number of days between ship-

ments from the SNS)

τw the lead time for a shipment from the SNS to warehouse w ∈

W

τvw the lead time for a shipment from warehouse v to warehouse

w, where w, v ∈ W(b) for some b ∈ B

Table 4.4: Influenza model notation.

Let us now consider the case in which the SNS ships directly to every ware-

house. There are several constraints that may affect inventory allocation from

the SNS. First, the SNS may choose to hold back some inventory in each period

t. Let zi
0t represent the minimum quantity that the SNS is required to retain on

day t. In 2009, the SNS initially shipped out 8 million courses of adult antivirals,

but no further shipments were sent for some months. Since the initial quantity

of adult antivirals is currently 48 million, we would have z2
0t = 40, 000, 000 for
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the months following the initial shipments if the same decision was made in this

model. So, on day t, we have the allocation constraint

∑
w∈W

ȳi
wt ≤ x̄i

0t − zi
0t for all i ∈ I. (4.4)

Furthermore, the SNS may choose to limit the amount of inventory avail-

able to each region, to ensure that it does not receive more than its “fair share”

of antivirals. This type of “fairness” constraint has long been a centerpiece of

SNS decision-making. Let pi
r1 be the initial inventory of type i available to ware-

houses in region r, and pi
rt to be the remaining inventory of type i available to

be allocated to region r on day t > 1. Thus, on day t we have the constraint

∑
w:R(w)=r

(ȳi
wt − x̄i

wt) ≤ pi
rt for all r ∈ R and i ∈ I. (4.5)

In Chapter 2 we did not assume that imbalance was unlikely since there were

a large number of PODs serving very unpredictable demand patterns over a

short time horizon. However, we now model a relatively small number of ware-

houses serving a large number of pharmacies, so demand will be “smoothed”

at the warehouse level. While it is difficult to estimate exact demand levels with

accuracy far into the future, we may be confident that significant imbalance will

not arise because each the SNS will gradually ship out inventory over time, so

each warehouse will never have excessive stock of inventory. Hence, we make

the balance assumption, which means that we do not need to add the constraint

ȳi
nt ≥ x̄i

nt.

As we mentioned above, we assume that the demand distributions are only

known for the near future, so we make decisions to minimize cost only over the
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short term. Since our goal is to limit the inventory remaining unused at the end

of a period as well as the patients unserved, we charge per-unit holding costs of

hi
wt and backorder costs of bi

wt for inventory of type i at warehouse w in period t.

Thus, our cost function in period t + k is

Ci
w,t+k(y) = E

[
hi

w,t+k(y − Di
w,t,t+k)

+ + bi
w,t+k(D

i
w,t,t+k − y)+

]
. (4.6)

In period t, our goal is to minimize the costs that will be incurred as a result of

this decision. A shipment sent in period t arrives at warehouse w in period t+τw.

The next shipment is sent in period t + L and arrives in period t + τw + L. Hence,

we wish to minimize the inventory that remains unused and the patients who

are unserved in period t + τw + L − 1. Thus, our model can be written

Gt(x̄t,pt) = min
∑

w∈W,i∈I

Ci
w,t+τw+L−1(ȳi

wt) (4.7)

such that
∑
w∈W

ȳi
wt ≤ x̄i

0t − zi
0t for all i ∈ I∑

w:R(w)=r

(ȳi
wt − x̄i

wt) ≤ pi
rt for all r ∈ R and i ∈ I.

To find an optimal solution to model (4.7), we first calculate

ȳi
wt∗ = F−1

w,t+τw+L

(
bw,t+τw+L

bw,t+τw+L + hw,t+τw+L

)
,

for each warehouse w ∈ W. If
∑

w∈W ȳi
wt∗ ≤ x̄i

0t − zi
0t and

∑
w:R(w)=r(ȳi

wt ∗ −x̄i
wt) ≤ pi

rt

for all r ∈ R and i ∈ I, then the optimal solution is ȳi
wt = ȳi

wt∗. Otherwise,

we must use marginal analysis for each region to find values of ȳi
wt that satisfy
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the regional constraint. If
∑

r∈R pi
rt ≤ x̄i

0t − zi
0t, then this solution is optimal. If∑

r∈R pi
rt ≥ x̄i

0t − zi
0t, then we must perform an additional marginal analysis step to

reduce some of the inventories further to satisfy this constraint.

We now transfer our focus to the case where the SNS ships only to a subset

of the warehouses, w ∈ W∗. In this setting, there is a set of allocation decisions

made at the SNS and then cross-shipment decisions are made at the warehouse

after one lead time. We assume now that the lead time from the SNS to any

warehouse inW∗ is given by τ, where τ < L. Let the echelon inventory positions

of the warehouses after a shipment is sent from the SNS in period t be x̂i
wt; these

shipments are constrained by inventory availability and shipping constraints

from the SNS. The shipments arrive in period t + τ to all warehouses w ∈ W∗.

These warehouses immediately send cross-shipments to other warehouses that

belong to the same distributer. The demand from periods t, ..., t+τ−1 has already

been observed when these decisions are made. Our goal, as before, is to mini-

mize the inventory unused at the end of the cycle and the number of patients

unserved up until the next shipment arrives from the SNS in period t + τ + L, so

we minimize costs incurred in time t + τ + L − 1. We write the model as

G2
t (x̄t,pt) = min

∑
b∈B

Et,t+τ

[
Hb,t+τ

( ∑
w∈W(b)

[x̂i
wt − Dw,t,t+τ−1]

)]
(4.8)

such that
∑
w∈W

x̂i
wt ≤ x̄i

0t − zi
0t for all i ∈ I∑

w:R(w)=r

(x̂i
wt − x̄i

wt) ≤ pi
rt for all r ∈ R and i ∈ I.

x̂i
wt = x̄i

wt for all w <W∗ and i ∈ I.

where
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Hb,t+τ(x̂bt) = min
∑

w∈W(b),i∈I

Cw,t+τ+L−1(ȳi
w,t+τ) (4.9)

such that
∑

w∈W(b)

ȳw,t+τ ≤ x̂i
bt for all i ∈ I.

Problem (4.9) can be solved for a large number of values of x̂bt using marginal

analysis to define the function Hb,t+τ(x̂bt). Once this function is known, we can

solve problem (4.9) using the same two stage marginal analysis process that we

described for model (4.7). In the following section, we construct an inventory

allocation model distribution to the pharmacies.

4.3.2 Distributer-Pharmacy Inventory Allocation

At the pharmacy level, cross-shipments of inventory are unlikely, but customers

may be sent to nearby pharmacies that have excess antivirals on-hand if short-

ages arise arise at some pharmacies. While forcing sick customers to travel from

store to store in search of inventory would not be ideal, it is preferable to mak-

ing them wait for a future shipment to arrive, since the effectiveness of antivi-

rals decreases significantly if treatment is delayed. In this model, our first goal

is to minimize unused inventory at pharmacies and the likelihood of patients

arriving to a pharmacy where no inventory is present. Our second and more

important goal is to minimize the likelihood that all of the pharmacies in a par-

ticular area experience a stockout. We assume that all of the pharmacies in a

local area are served by the same distribution warehouse. Let H(w, k) be the

kth subset of pharmacies served by warehouse w such that all of the pharmacies

may share patient demand.
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Pharmacies receive daily shipments from the distribution warehouses. This

inventory can be used to serve patients the same day, so we have zero lead

times between each warehouse and its pharmacies. The costs incurred at each

pharmacy n on day t for inventory type i include per-unit holding cost hi
nt and

per-patient relocation costs cRi
nt which are charged if the patient cannot receive

inventory at the first pharmacy he visits. The cost incurred for inventory of type

i at pharmacy n on day t is thus given by

Ci
nt(ȳ

i
nt) = E

[
hi

nt(ȳ
i
nt − Di

nt)
+ + cRi

nt (D
i
nt − ȳi

nt)
+
]
, (4.10)

where, as before, x̄i
nt and ȳi

nt are the echelon inventory positions before and after

allocation decisions are made, respectively. There is also a cost charged if the

entire group of pharmacies H(w, k) runs out of inventory. Let cEi
nt be the cost

incurred for patient who cannot be served with the available inventory. We

assume that hi
nt < cRi

nt < cEi
nt .

Due to the unpredictability of demand and the fact that patients will be sent

to seek inventory at different pharmacies in the event of stockouts, we can rea-

sonably assume that inventory imbalance will not be a problem. Therefore, the

only constraints on inventory allocation are

∑
n∈H(w)

ȳi
nt ≤ x̄i

wt for all i ∈ I.

Thus, the complete model for the pharmacies served by warehouse w is
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gwt(x̄t) = min
∑

n∈H(w)

Ci
nt(ȳ

i
nt) +

∑
k

cEi
t E

[( ∑
n∈H(w,k)

(Di
nt − ȳi

nt)
)+]

(4.11)

such that
∑

n∈H(w)

ȳi
nt ≤ x̄i

wt for all i ∈ I.

Because of the emergency resupply cost term, the optimal inventory level for

each pharmacy cannot be determined as easily as in the previous section. We

must first calculate lower bounds on the optimal values by neglecting the cost

of the emergency resupply; the actual desired inventory level would likely be

higher to decrease the likelihood of paying the emergency resupply cost. Let ȳLi
nt

be the lower bound on the optimal level for inventory of type i at pharmacy n.

Then

ȳLi
nt =

⌈
(F i

nt)
−1

(
cRi

nt

cRi
nt + hi

nt

)⌉
.

If x̄i
wt ≥

∑
n∈H(w) ȳLi

nt , then the inventory assignments will have ȳi
nt ≥ ȳLi

nt for all phar-

macies n, because this will minimize the cost at each location; some pharmacies

may receive additional inventory to minimize the expected cost of emergency

resupply. These additional units may be assigned using a marginal analysis-

type algorithm. If x̄i
wt <

∑
n∈H(w) ȳLi

nt , we may also use a marginal analysis algo-

rithm to determine the optimal solution ȳt and the optimal cost Gt(x̄t).

All three of the models (4.7) - (4.11) include a number of approximations

and assumptions, but they provide solvable methods for making inventory al-

location decisions that take into account the state of all of the locations in the

distribution network and information about demand.
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4.4 Ongoing and Future Work

In this chapter, we have discussed the possibility of using the commercial phar-

maceutical supply chain to operate a controlled antiviral-dispensing campaign

during an influenza pandemic. We constructed a set of hypothetical regional

antiviral demand curves based on historical epidemiological data. We also built

a simulation of the pharmaceutical dispensing network and showed that it can

perform well under a variety of scenarios, but that improved inventory alloca-

tion methods are necessary. We proposed several such methods in the previous

section.

We are continuing to collaborate with CDC officials to make the simulation

a useful public health decision-making tool. Some improvements that are cur-

rently underway include allowing patients to seek service at multiple pharma-

cies on the same day and displaying histograms of patient demand to better

represent pharmacy throughput requirements. We also plan to implement more

sophisticated forecasting methods as well as the inventory allocation strategies

described above to show the high level of performance that the system may be

capable of under a strong command and control system. This work will be on-

going as we continue modifying and improving the models to support the CDC

in constructing a highly effective pandemic influenza response plan.
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APPENDIX A

D-PODS USER MANUAL

A.1 Introduction

The Dynamic Point of Dispensing Simulator (D-PODS) is a tool designed to

help local public health officials evaluate the operations of a single Point of Dis-

pensing (POD) during a mass prophylaxis campaign. D-PODS is a Monte Carlo

simulation model that accepts user inputs describing a POD’s layout, patient

arrival patterns, and staffing plan, and then outputs a probabilistic assessment

of system performance over time. This user manual explains the features and

limitations of D-PODS and offers some advice on using D-PODS to successfully

model POD systems.

D-PODS is implemented in Microsoft Excel, Access, and Visual Basic. A

large number of user inputs are required to run the simulation. These are en-

tered by the user in a series of four worksheets. Once the simulation has run, a

number of output statistics and plots are automatically generated by D-PODS.

This guide will explain how to get started with D-PODS and describe the in-

formation required by the user input sheets. The guide will further identify

potential pitfalls and assumptions implicit in the model that may cause surpris-

ing results. Finally, the guide will discuss how the simulation outputs can be

analyzed and interpreted and how D-PODS can be used to explore policy deci-

sions.
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A.2 Glossary of Important Terms

1. Arrival Rate - the expected hourly rate at which patients arrive to the POD

(this can vary throughout each day).

2. Arrival Types - different groups of patients who may require different ser-

vice times based on their special needs. These might include single adults,

mobility-limited individuals, non-English speakers, etc.

3. Maximum Average Waiting Time - the longest acceptable patient waiting

time in minutes. This input is used by the D-PODS staffing calculator to

estimate reasonable staffing levels.

4. Queue Length - the total number of people waiting to be served at a given

location.

5. Routing Probability - the probability that a patient will be routed from

one station to the next station in the layout of the model. The routing

probabilities are sometimes called “transition rates.”

6. Service Time Distribution - the probability distribution that governs the

length of time that will be required to serve a single patient at a work

station. These distributions are assumed to be triangular and hence are

defined by minimum, most likely (mode), and maximum values.

7. Service Time Increase Factor - the percent increase in service time required

by different arrival type groups. The service times for different arrival

types are calculated by drawing a random service time from the appropri-

ate service time distribution and then multiplying this number by one plus

the service time increase factor. For example, if the service time increase

factor is 100%, the service time doubles for that arrival type.

193



8. Simulation Replication - one repetition of the simulated prophylaxis cam-

paign.

9. Time Period - the duration of time over which the expected patient arrival

rate to the POD is constant, also referred to as an “arrival interval.”

10. Worker Interval - the duration of time for which the number of staff is

constant at all stations.

A.3 Working with D-PODS

To use D-PODS to model a particular POD, a larger number of user inputs will

be required. These data are entered in a series of four worksheets.

A.3.1 Getting Started

You will need Microsoft Excel and Access, versions 2003 or later, as well as the

files “PoD DB.mdb” and “PoD v27.xls.” Make sure that you have both the files

“PoD DB.mdb” and “PoD v27.xls” stored in the same directory; otherwise D-

PODS will not run. No other files should be placed in the D-PODS folder be-

cause they may cause errors to arise while running the program. If you ever try

to run the simulation and get an error that stops the simulation before it com-

pletes, then open the directory where these files are stored and delete all files

except these two.

To get started, open the Excel file “PoD v27.xls.” A “Security Warning” mes-

sage box may prompt you to set appropriate security settings; if this happens,
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select “Enable Macros.” Once the file is open, you will need to ensure that your

version of Excel includes all of the required libraries. To do this, go to Tools→

Macros→ Visual Basic Editor. From the Visual Basic Editor window, go to Tools

→ References. Make sure that the following references are selected:

1. Visual Basic For Applications

2. Microsoft Excel 11.0 Object Library

3. Microsoft DAO 3.6 Object Library

4. Microsoft Forms 2.0 Object Library

5. OLE Automation

6. Microsoft Office 11.0 Object Library

7. Microsoft ActiveX Data Objects 2.8 Library

8. Microsoft OLE DB Error Library.

Then click “Okay” and return to the Excel-PoD v27 window. You should only

need to complete this step the first time you run D-PODS.

A.3.2 Creating or Selecting a Case

The “PoD v27.xls” file opens to a cover page. Click the “Begin Model” button

in the lower right-hand corner of the screen, and the “Case Selection” page,

shown in Figure A.1, will appear. A “case” is a complete set of user inputs and

simulation outputs for a particular POD. You may choose to create a new case

from scratch by choosing the “Create New” option or you may open an existing

case by choosing the “Existing Case” option. If you select the former, you will
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be asked to confirm the choice and then taken to the “D-PODS Menu” page. If

you select the latter, a user form, shown in Figure A.2, will pop up, showing a

list of all cases currently in the database.

Figure A.1: Case selection screen shot.

Figure A.2: Load case data screen shot.

After selecting the case of interest, you can choose to “Analyze Output

Data,” which will allow you to immediately begin reviewing the case’s out-

put, or “Edit/Review Input Data,” which will allow you to examine and make

changes to the case’s inputs. You can also click “Cancel,” which returns the

screen to the “Case Selection” page. Clicking “Edit/Review Input Data” will

bring you to the “D-PODS Menu” page, while clicking “Analyze Output Data”

button will bring you directly to the “Output Tables” page.
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A.3.3 D-PODS Menu

The “Main Menu,” shown in Figure A.3 shows the different choices you have

when you are working with D-PODS and suggests the best order in which to

perform each task. Steps 1 through 4 guide you in filling in the information

required by each input worksheet. Steps 5 through 7 are concerned with the

details of saving inputs and running the simulation. Step 8 takes you to various

sheets that display the simulation output.

The buttons at the bottom of the menu allow you to work with the database

file or to restart the program. If you click the “Existing Case” button, you will

be prompted with the same “Case Selection” form shown in Figure A.2. You

can then select a different case to study. The “Manage Cases” button brings up

a similar form, but this one, shown in A.4, allows you to delete cases. Deleting

old cases allows you to manage the size of the database and to clean out old

data that are no longer of interest. Before a case is deleted from the database,

a warning box will appear to confirm you want to delete the case. The “Start

Over” button will bring you back to the cover page and allows you to start from

scratch.

A.3.4 Step 1: Constructing the Model

When you click the “Model” button in Step 1 of the D-PODS menu, the “Con-

struct the Model” worksheet will appear, which is shown in Figure A.5. To com-

plete this input step, complete Steps A, B, and C in order. In Step A, you first

specify the duration of the simulation in days. You may want to begin by con-

sidering only one or two days, rather than the entire duration of the planned
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Figure A.3: D-PODS menu screen shot.

prophylaxis campaign, because the simulation run time is proportional to the

number days simulated; doubling the number of days approximately doubles

the time required to run the simulation. Also, it is important to note that D-

PODS assumes that all days are identical. That is, the POD is required to have

the same operating plan and patient arrival pattern for each day. Beyond ran-
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Figure A.4: Manage cases screen shot.

dom variation, the only reason why two days might have significantly different

performances is if patient arrivals from one day cannot be served by the end

of the day and must be helped during the following work day. We discuss this

further below.

Figure A.5: Step 1 screen shot.

The “hours of operation per day” is the length of time during which patients

are allowed to arrive and enter the POD. In Figure A.5, this value is set to 22.
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That means that any patients who arrive to the POD between the 22nd and 24th

hour of the day will be turned away without service. However, any patients

who have already entered the POD will be served as long as staff is available,

even if this means that the POD remains open for longer than 22 hours. It is

possible that not all of these patients will be served by the time patients begin

arriving again for the next day; in this case, the newly arrived patients simply

queue behind the waiting patients. On the last day of the simulation, however,

the simulation will stop at the correct time, even if some patients have not been

served.

Step B asks that you describe the layout of the POD by declaring how many

workstations will be in use and their names. D-PODS assumes that each station

has one queue where patients wait for service. There can be 0 or more staff

working at each station, and the person at the front of the queue will be served

by the next available staff person at that station. When the patient has finished

receiving service, he immediately enters service at the next station or the queue

for that station, if no server is currently available. Travel time between stations

is assumed to be insignificant.

To complete Step B, first enter a whole number for the “number of stations”

and then click the “Station Names” button. This generates the “Station Names

Table.” Be careful, however, because clicking this button also clears current en-

tries from the table, and the “Undo” function in Excel will not let you get the in-

formation back. If you want to save the information, copy it to another location

before clicking the button. It is important to enter the station names in the cor-

rect order, because it is not possible for patients to travel from higher-numbered

stations to lower-numbered stations. So, if you name the first station “Greeting”

200



and the second station “Triage,” then it will be possible (but not required) for

patients to move from Greeting to Triage, but it is not possible to go from Triage

to Greeting. Note that this makes it impossible for patients to visit any station

in the POD more than once. So, the first station listed in the “Station Names Ta-

ble” should correspond to the immediate station that patients encounter upon

entering the POD. The last station in the POD is a “dummy” station called Exit,

which indicates that patients leave the POD after receiving treatment.

After completing the “Station Names Table,” you can click on the “Transition

Rates” button; this will generate the “Transition Rates Table,” which allows you

to input patient routing probabilities through the POD. So, for example, the

entry in row 3, column 4 of the table gives the probability that a patient at station

3 will move to station 4 after she has finished receiving service at station 3.

Since all patients must move to a new station after service, the probabilities

in each row must sum to one. If the values to not add up to one, a warning

box will appear when you try to move to a new worksheet. Notice that some

cells in the “Transition Rates Table” are greyed out; this enforces the condition

described above, making it impossible to move from a higher-numbered station

to a lower-numbered one. It also makes it impossible for a patient to remain at

the same station.

In Step C, you can enter the POD capacity, which sets the maximum number

of patients allowed in the POD at any point in time. The capacity may depend

on the size of the building or it may be set low to limit the risk of transmitting

disease. When the number of patients exceeds the POD capacity, patients form

a line outside of the POD and wait until another patient leaves before enter-

ing the queue for the first station inside the POD. Since these patients may be
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turned away without being counted at the end of the day and they are not in-

cluded in statistics describing the average time in the POD, some of the output

statistics may be misrepresentative if the queue outside the POD grows large. In

the experiments described in Chapter 3, the POD capacity was set to be almost

five times larger than the expected number of daily patient arrivals, so that all

patients who arrived to the POD immediately entered the queue for the first

station.

Once Steps A - C are complete, you can proceed to “Step 2: Input Arrival

Information.” There are two ways to do this. One option is to return to the “D-

PODS Menu” page by clicking the “Return” button in Step D and then clicking

the “Arrivals” button on the menu page. The other option is to simply click the

“Generate Arrivals” button on the left side of the screen.

A.3.5 Step 2: Input Arrival Rate Information

Step 2 allows you to enter information describing patient arrivals throughout

each day. Figure A.6 shows the “Input Arrival Rate Information” worksheet.

In Step A, you must decide how many patient arrival intervals you want to

use to describe the daily patient arrival pattern. You will be able to set a new

expected patient arrival rate for each arrival interval, but during each interval

the expected patient arrival rate remains constant. The number of arrival rate

intervals per day, can be anywhere between 1 and 96. Choosing 96 as the value

means that each arrival interval will be 15 minutes long, because there are 24

hours in each day.

In Step B, you can set the simulation start time. If you want to simulate a
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Figure A.6: Step 2 screen shot.

POD scenario in which patients begin arriving before the POD opens, you can

set the staffing levels at the beginning of the day to 0 at each station in Step

4: Establish Staffing Levels. If you want to simulate a POD that opens before

patients begin coming, enter “0” for the patient arrival rates at the beginning of

the day in Step E.

Step C allows you to enter the number of patient arrival types. Your basic

arrival type may be single, mobile, English-speaking adults, but other useful

arrival types may include disabled individuals, school children, non-English

speakers, or any other groups of special interest who require service times dif-

ferent from the average. In Step 3, it will be possible to define different service

rates for the different patient arrival types.

Step D requires that you click the “Chart” button to generate the patient

arrival rates table. Then, in Step E you can define the arrival intervals and the

patient arrival rates during each time interval. In the first input column you will

enter the duration of each arrival interval in hours; these durations do not all

need to be the same, but each one must be rounded to the nearest quarter hour
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and the values must sum to 24 hours. The next two columns show the start and

end time of each interval. The last two columns allow you to enter the expected

patient arrival rates during each interval. Any blank spots in the chart will be

treated as 0’s. Note that the values entered here are the expected rather than the

actual arrival rates. Patients arrive to the POD according to a nonhomogeneous

Poisson process, which means that the interarrival times between subsequent

patients are distributed according to a Poisson distribution. The values in this

chart provide the means for the Poisson process at each point in time.

Note that the arrival rates can only be entered for a single day, because we as-

sume that the arrival pattern on the subsequent days is identical. As mentioned

earlier, if the expected arrival pattern varies by day, then separate simulations

must be run for each individual day.

After you have completed the table, you may proceed to Step 3: Service

Time Parameters. To do this, either click “Return” to go back to the “D-PODS

Menu” page and then click the “Service” button, or simply use the “Set Service

Parameters” button on the left side panel.

A.3.6 Step 3: Service Time Parameters

Step 3 allows you to input parameters that govern how long it takes to serve

each patient type at each station. Figure A.7 below shows the Step 3 work-

sheet. The service time at a given station for each patient is drawn from that sta-

tion’s service time probability distribution, which is assumed to be triangular.

D-PODS further assumes that each patient is processed individually and that

the service time parameters for each station and arrival type remain constant
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over time; there is no accounting for changes in speed due to worker fatigue or

learning curve.

Figure A.7: Step 3 screen shot.

In Step A, you must click the “Chart” button to generate the two charts on

the right side of the screen. The charts include rows for the stations you defined

in Step 1 and the number of arrival types you entered in Step 2. Default charts

may be displayed before you click this button, but it is important that you click

the “Chart” button if you have changed number or names of stations or the

number of arrival types.

Step B requires that you fill in the Service Time Increase Factor table. Choose

one of your arrival types to be the base arrival type; enter “0” or “0%” for this

arrival type’s service time increase factor. The service time increase factors for

the other arrival types describe how the processing time of the other arrival

types compare to your base arrival type. For example, if Arrival Type 1 is your

base arrival type, with a service time increase factor of 0 and the service time

increase factor for Arrival Type 2 is 20%, then the service times for Type 2 pa-

tients will be 20% longer than the service times for Type 1 patients, on average.

If Type 2 patients have the same service time distributions as Type 1 patients,

then you should set the Type 2 service time increase factor to 0%. If Type 2 pa-

tients are processed 20% faster than Type 1 patients, then for the Type 2 service
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time increase factor you should enter “-20%.” All numbers in this table must be

between -100 and 100. Note that the same service time increase factor is applied

to all of the stations.

To complete Step C, you must fill out the far right table. Enter the parameters

that describe the triangular service time distributions at each station for Arrival

Type 1. The minimum and maximum times are strict limits on the service times,

and the most likely time is the peak of the triangular distribution, which means

it is the mode of the service times. All three parameters have units of minutes.

The minimum time must be less than or equal to the most likely time, which

must be less than or equal to the maximum time. If all three values are the

same, then the service time will be constant at that station.

After completing both tables, you may proceed to Step 3: Service Time Pa-

rameters. To do this, either click “Return” to go back to the “D-PODS Menu”

page and then click the “Staffing” button, or simply use the “Establish Staffing

Levels” button on the left side panel.

A.3.7 Step 4: Staffing Requirements

The fourth input step is setting the staffing plan at each station throughout each

day. Figure A.8 shows a screen shot of the Staffing Requirements sheet. Step

A allows you to set the maximum number of times during the day that you

want to change the number of staff at each station. If you plan to keep the

same number of staff at each station all day long, you may enter a 1 here. The

period of time during which staffing levels at each station are constant is called

a “worker interval.” D-PODS does not allow worker intervals shorter than two
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hours, so the maximum number of worker intervals each day is 12. That is, you

may not change the number of staff at each station more than 12 times each day.

The second line reminds you the start time for the POD operations, which you

entered in Step 2: Arrival Rate Information.

Figure A.8: Step 4 screen shot.

Step B involves clicking the “Chart” button to generate a new chart at the

bottom of the page. Note that clicking this button will clear the information

currently in the table, and this cannot be undone. Be sure to save any important

information about your previous work before clicking “Chart.” If the number of

worker intervals, number of stations, and station names are the same as those

currently shown in the chart, you do not need to click the “Chart” button.

Step C requires that you enter the duration of each worker interval in the
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“Hours per Interval” column of the table. This column must total 24 hours and

each interval must be at least two hours long, but the intervals do not have to

be of equal lengths. If the intervals do not sum to 24 hours, then a message will

appear at the bottom of the table. The next two columns of the table display the

start and end times of each interval.

In Step D you must click the “Arrival” button to display the maximum ex-

pected hourly patient arrival rate during each interval in the “Maximum Ar-

rival” column. This information is taken from the patient arrivals table in Step

2: Input Arrival Information. Even if you do not plan to use this information in

developing your staffing plan, you must click the “Arrival” button, or a warning

will appear that prevents you from proceeding to the next step.

In Step E, you must fill in the maximum desired patient waiting time (or

“Max Avg Waiting Time”) column of the table. The numbers in these columns

indicate the maximum expected waiting time for each station that you would

like to have during each segment of the day. It is not possible to set different

maximum expected waiting times for different stations. Once you have entered

these values, which must be positive real numbers, you must click the “Ad-

vice” button in Step F. The D-PODS staffing calculator then uses a calculation

from [Buzacott & Shanthikumar, 1993] to estimate the number of staff required

at each station to limit the maximum average patient waiting times. These esti-

mates are shown in “Advice” columns of the table. Note that D-PODS requires

that you complete Steps E and F, even if you do not plan to use this information

in your staffing plan.

Step G requires you to fill in the “Input” columns of the table with the num-

ber of staff at each station during each worker interval. One way that you may
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choose to do this is by using the “Use Advice?” button, which copies the val-

ues from the “Advice” columns into the “Input” columns. If you click the “Use

Advice?” button, a warning will pop up to ask if you are sure that you want

to use the advice. If you click “Yes” to indicate that you really do want to use

the advice from the D-PODS staffing calculator, any numbers currently in the

“Input” columns will be replaced by the advice numbers.

Once all of the “Input” columns are complete, you may return to the “D-

PODS Menu” page by clicking “Return” or by clicking the “Menu” page on the

left side panel. It is also possible to immediately begin running the simulation

by clicking the “Run” button on the left side panel, but if you do this you will

not have a chance to save your inputs as a new case or modify the simulation

parameters.

A.3.8 Step 5: Simulation Parameters

To complete Step 5, you must input the simulation parameters on the “D-PODS

Menu” page. The number of simulation replications is the number of complete

prophylaxis campaigns you would like to simulate. If, for example, you set

your campaign to be 3 days long and you declare that you want to run 100

replications, D-PODS will simulate the 3 day campaign 100 times. Note that the

run time is proportional to the number of replications, so doubling the number

of simulation replications will double the time required to run the simulation. If

you are not sure how fast D-PODS will run on your computer, start off with only

a few replications to avoid crashing Excel. If your computer is fairly new and

fast, you should have no trouble running 20 or more replications of D-PODS at
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one time. The number of simulation replications should be a positive integer; if

you enter a non-integer number, it will automatically be rounded.

You may also enter a new “Random Seed” in Step 5. This number should

be a positive integer. It is used in the Visual Basic random number generator

to determine the random numbers used in the simulation. If you use the same

random seed with exactly the same set of inputs, you will get the same output.

However, if you use the same set of inputs but change the random seed, the

simulation output will be different (although the average values will likely be

quite similar) because a different set of random numbers will be used for the

patient arrival and service times. If you want to compare two different sets of

inputs and keep the comparison as “fair” as possible, then it is a good idea to

use the same random seed for both simulations. This helps eliminate random

error as a confounding factor in your comparison. Step 5 can be completed at

any point during the input process.

A.3.9 Step 6: Input Case Name

In Step 6 you have an opportunity to save the inputs that you have entered and

the simulation output that will be generated when you run the simulation. In

the light blue box that initially reads “[ Enter Name ]” click and type the name

you would like to use. If you do this, you will be able to open this case in the

future using the Select Existing Case dialog. If you forget to enter a case name

before running the simulation and you want to save your work, you have two

options. One is to return to the D-PODS menu, enter a case name in the Step 6

box, and then re-run your simulation. Another option is to save the entire Excel
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workbook under a new name, but if you do this you may not be able to save all

of the simulation output.

A.3.10 Step 7: Run the Simulation

To execute the simulation, you must click the “Run” button in Step 7. The simu-

lation run time depends primarily on the number of simulations runs you have

chosen; the number of days in your prophylaxis campaign, and the number of

patient arrivals. Large simulations may easily take up to 5 or 10 minutes to

complete. If you think the run time is too long, you can stop the simulation by

hitting the “Esc” key. Then click “End” in the error dialog box that pops up. If

you do this, you must go to the directory where you have saved D-PODS and

delete any new files that have been generated; there will likely be one called

“Simulation Output.txt.” If you do not delete this file, D-PODS will not run in

the future. You may then modify your simulation by decreasing one or more

of the parameters mentioned above to speed up the running time. You will

know that the simulation is complete when the mouse pointer changes from a

spinning circle or hourglass back into an arrow.

A.3.11 Step 8: View the Results

D-PODS produces several of output tables and graphs that you can use to an-

alyze POD performance. From the D-PODS menu, click on either the “Output

Tables” button or “Output Graphs” button to begin viewing the results of your

simulation. You can easily move between the two using the buttons on the left
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side panel or by returning to the D-PODS menu at any time. Clicking the “Out-

put Tables” button will bring you to the “Output Tables” worksheet, as shown

below in Figure A.9.

Figure A.9: Output tables initial screen shot.

The tables at the top of the sheet show summary statistics that describe the

entire prophylaxis campaign. The number of patient arrivals is shown, as is

the total patient throughput. Patient throughput is the number of patients who

were processed during the campaign. If all patients who arrived were processed

before the end of the campaign, these two numbers will be the same. The means

and standard deviations are taken across all of the simulation replications.

“Average Throughput” is calculated for each simulation replication by di-

viding the total throughput by the operating hours. The mean and standard

deviation of these numbers are then reported. “Average Time in POD” is cal-

culated for each simulation replication by taking the mean of the patient times

in the POD. The numbers reported are calculated from these averages. “Aver-
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Figure A.10: Output tables station performance measures screen shot.

age Number in POD” is the average number of patients in the POD at a given

point in time. The values reported in the output table are the sample mean and

standard deviation of these numbers.

“Average Time in System” and “Average Number in System” are similar to

the previous two statistics, except that they include the patients waiting outside

the POD, so these means will always be at least as large as the “... in POD”
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statistics. If there are never patients waiting outside the POD, these values will

be equal to “Average Time in POD” and “Average Number in POD,” respec-

tively.

Figure A.11: Screen shot of output graphs after location selection and
replication selection.

The statistics are further broken down by workstation and by worker inter-

vals. You can use the drop down box beneath the main output table to select

either the entire campaign or a particular worker interval. For the time period

chosen, you can see statistics that describe the queue lengths, patient queue

times, and staff utilization at each station.

Clicking the “Output Graphs” button on either the left panel from the “Out-

put Tables” page or on the “D-PODS Menu” page brings you to the “Output
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Graphs” page. The drop down box allows you to choose the type of data you

would display: “Queue Lengths,” “Number of Staff Utilized,” or “Arrivals Per

Interval.” Once you have made a selection, two new boxes will appear. The first

allows you to select the location for which you would like to see information.

This location may be any of the work stations in the POD or “Outside of POD.”

However, note that if your POD is large enough to accommodate all arriving

patients, then there will not be any interesting data for the “Outside of POD”

option. Once you have entered valid options in each of the first two boxes, a

plot of the data you have selected will be shown, as in Figure A.11.

Next, you may select a specific simulation replication from the drop down

box on the right, or you may choose to view all replications. The scroll bar

below the drop down box also controls the simulation replication to be selected.

After selecting a specific simulation replication, the data for that replication are

highlighted with a red line; in Figure A.11, replication 2 is shown.

The data shown in these plots are drawn from the Access database. In order

to plot the data in different ways or view the raw numbers, you must explore

the database directly. This is discussed in the next section.

A.4 Navigating the Access Database

When you click the “Run” button to start your simulation, D-PODS immedi-

ately saves all input data to the database. The input data are stored in the tables

titled “CaseList,” “SingleInputs,” “ArrivalRates,” “ServiceIncreaseFactor,” and

“Staffing.”
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The “CaseList” table stores the case name specified on the “D-PODS Menu”

page. This table also assigns the unique CaseListID to each CaseName, which

creates a relationship throughout the tables. All data are stored with the

CaseListID included as one of the Access fields. This makes creating queries

relating to a specific case name much easier.

The “SingleInputs” table contains all input values that are not entered

through a chart within D-PODS, such as the number of simulation replications

or the number of days in the prophylaxis campaign. It also contains the station

names and station transition probabilities. The values are stored based on the

CaseListID, the variable name (varName), and the value the variable holds in

the program (varValue).

The “ArrivalRates” table contains the chart shown on the right on the “Step

2” page in D-PODS. The data are organized in the Access table just as it is in D-

PODS. The “ServiceIncreaseFactor” table stores the information from the chart

on the “Step 3” page in D-PODS that details the service time increase factor for

each of the arrival types. The “Staffing” table details the information held in the

chart at the bottom of the “Step 4” page in D-PODS.

While the simulation is running, the output data are stored in a text file called

“Simulation Output.txt,” which is transferred to the database at the end of the

simulation. These data are moved into the Access tables titled “SingleOutputs”

and “Outputs.” The “SingleOutputs” table is organized exactly like the “Sin-

gleInputs” table and contains information that is displayed in the tables on the

“Output Tables” page in D-PODS, such as the number of arrivals for the du-

ration of the planned campaign. The “Outputs” table contains the output data

that are stored at the end of every simulated five-minute interval. These data
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include the replication number, the shift number, the event time, the size of the

queues at each location, the number of arrivals to each location within the inter-

val, the average wait time for each location, and the number of servers that are

busy for each location. These data are organized by CaseListID and can easily

be queried to further analyze the output data.

217



APPENDIX B

ESCOE USER MANUAL

B.1 Introduction

This manual describes a tool called the Emergency Supply Chain Operations

Evaluator (ESCOE) that has been created to help policy makers and public

health officials evaluate the impact of policy on the operations of the entire sup-

ply chain. ESCOE is a Monte Carlo simulation model that accepts user inputs

describing a supply chain and then outputs a probabilistic assessment of system

performance over time. The goal of this document is to explain the features and

limitations of ESCOE as well as to offer advice on using ESCOE to successfully

model systems.

ESCOE is implemented in Microsoft Excel, Access, and Visual Basic. A large

number of user inputs are required to run the simulation. These are entered

by the user in a sequence of eight worksheets in Excel. Once the simulation

has run, output statistics and plots are automatically generated by ESCOE. This

guide explains how to get started with ESCOE and how to enter information

on the user input sheets. The guide will further identify potential pitfalls and

assumptions implicit in the model that may cause surprising results. Finally, the

guide will discuss how the simulation outputs can be analyzed and interpreted

and gives an brief introduction to the structure of the Access database.
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B.2 Model Assumptions

ESCOE is a discrete time model; that is, time is divided into periods of equal

length. A period may represent any length of time, but the total length of the

simulation must be some integer number of periods. For example, a period may

represent two hours, which means that the total length of the simulation must

be an even number of hours. All parameters of the network, including patient

demand rates and service rates, are identical within a single time period, but

may change from period to period. At most one shipment may be sent to each

location in the distribution network in each time period.

There are four types of locations included in the simulation: the Strategic

National Stockpile (SNS); Forward Deployed Stockpiles (FDSs); Receiving, Stor-

ing, and Staging Warehouses (RSSs); and Points of Dispensing (PODs). First, we

consider the SNS. For this model, we will treat the SNS as if it is one single loca-

tion with a large stockpile of inventory that is resupplied over time from suppli-

ers with unlimited inventories. Difficulties could arise from this assumption if

there are inventory imbalances at the various SNS locations, but this is unlikely

given the high degree of organization and cooperation at the SNS level.

The second location type modeled by ESCOE is the Forward Deployed

Stockpile (FDS), two of which are shown in the network diagram Figure B.1.

An FDS is a federally-controlled stockpile of inventory that can deploy inven-

tory to a small region of the country faster than the SNS. Although there are not

currently any FDSs in the SNS distribution network, several are currently being

developed. ESCOE users define their distribution networks using a process that

we will describe below, and users may choose to include zero or more FDSs in
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their networks. The third location type is the Receiving, Storing, and Staging

Warehouse (RSS). RSSs receive inventory from the SNS and, in some cases, an

FDS, and ship inventory to PODs. FDSs may serve any number of RSSs, but

each RSS can be served by at most one FDS.

Figure B.1: Emergency supply chain diagram.

The final location type is the Point of Dispensing (POD). A POD is any loca-

tion where people receive federally-supplied medical countermeasures during

an emergency. A POD may be a nursing home or doctor’s office or an ad-hoc

dispensing clinic set up in a community center, school, or other public space.

There may be tens or hundreds of PODs in a distribution network, and describ-

ing each individually would be burdensome for an ESCOE user. To reduce the

number of input steps required, we allow users to define “POD types.” Each

POD Type has its own nonstationary arrival patient arrival patterns, opening

and closing times, service capacities, resupply lead times, and other key charac-
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teristics. There may be many PODs of each type.

Further details regarding each location’s operations are described below as

we explain how to use ESCOE.

B.2.1 Glossary of Important Terms

1. Arrival Rate - the expected hourly rate at which patients arrive to a POD

(this can vary throughout each day).

2. Forward Deployed Stockpile (FDS) - regional federally controlled stock-

piles that rapidly provides supplies to RSSs in its region when an emer-

gency is declared.

3. Lead Time - the number of time periods required for medical supplies to

be made available at a receiving location following the decision to send

them. Lead times must be expressed in an integer number of time periods.

4. Patient Demand - the patients who arrive to a POD in a particular time

period plus the patients who arrived during previous time periods but

have not yet been served.

5. Point of Dispensing (POD) - location where patients go to receive appro-

priate medical countermeasures.

6. POD Type - a description of a POD that includes its lead times, unloading

rates, arrival rates and service rates over time. The simulation may include

many PODs of each POD Type.

7. POD Type Amount - the number of PODs of a particular POD Type within

the network. This is an input on the “Construct the Network” page.
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8. Queue Length - the total number of people waiting to be served at a given

POD at the end of a time period.

9. Receiving, Storing, and Staging warehouse (RSS) - a warehouse that serves

a particular state or city by receiving medical supplies from federal stock-

piles during an emergency response operation and distributing these sup-

plies to PODs.

10. Simulation Replication - one repetition of the simulated prophylaxis cam-

paign.

11. Strategic National Stockpile (SNS) - federally owned stockpile of medi-

cal countermeasures for responding to a variety of emergencies. When

an emergency is declared, the SNS rapidly distributes inventory to the af-

fected regions’ RSSs.

B.3 Working with ESCOE

To use ESCOE to model a particular supply chain system, a large number of

user inputs are required. These data are entered in a series of worksheets. At

the beginning of each section below we provide a checklist that identifies what

you will need to complete the relevant steps of the model.

B.3.1 Getting Started

You will need:

1. Microsoft Excel and Access, versions 2007 or later
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2. The files “SNS-CapacitiesModel.mdb” and “ESCOE.xlsm”

Copy both files, “SNS-CapacitiesModel.mdb” and “ESCOE.xlsm,” from the

CD and store them in the same directory folder; otherwise ESCOE will not run.

No other files should be placed in the ESCOE folder because they may cause

errors to arise while running the program. If you try to run the simulation and

get an error that stops the simulation from completing, you should go to the

directory where these folders are stored and delete all files except these two.

To get started, open the Excel file “ESCOE.xlsm.” A “Security Warning” mes-

sage box may prompt you to set appropriate security settings; if this happens,

select the button to “Enable Macros.” Once the file is open, go to Developer→

Visual Basic. From the Visual Basic Editor window, go to Tools → References.

Find the following references and mark the corresponding checkboxes.

1. Visual Basic For Applications

2. Microsoft Excel 12.0 Object Library

3. OLE Automation

4. Microsoft Office 12.0 Object Library

5. Microsoft ActiveX Data Objects 6.0 Library

6. Microsoft Forms 2.0 Object Library

Then click “Okay” and return to the Excel - ESCOE window. You should

only have to do this the first time you run ESCOE; the References should remain

selected after that. However, if the ESCOE ever fails and you cannot understand

why, make sure that these references are still selected.
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Now you are ready to begin entering information in ESCOE. In the Excel -

ESCOE window click on the ESCOE tab at the bottom of the page if it is not

already selected.

B.3.2 Selecting an EXCOE Case

The file opens to a cover page. If you cannot see the “Begin Model” button in

the lower right-hand corner of the screen, zoom out until the button becomes

visible. Click the Begin Model button, and then the Case Selection page will

appear, as shown in Figure B.2. A “case” is a complete set of ESCOE inputs.

This page lets you choose to load the inputs from a previously defined case or

to create a new case.

Figure B.2: Case Selection screen shot.

If you select the Create New option, a message box will pop up to ask if you

would like to continue. If you answer Yes, you are taken to the ESCOE Menu

page. If you answer No, then the program remains on the Case Selection page

and awaits your next decision.

If you select the Existing Case button, a user form will pop up to show a list
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of all cases currently in the database; this is shown in Figure B.3. Adding new

cases to this list is easy; we will explain how to do this later.

Figure B.3: Load Case Data screen shot.

After selecting your desired case, you can choose to Analyze Output Data

or Edit/Review Input Data. Both buttons will load the inputs of the case that

you chose. Clicking Edit/Review Input Data will bring you to the ESCOE Menu

page where you can go to different sheets and edit the input values. Clicking the

Analyze Output Data button automatically runs the simulation after loading the

inputs. Be aware that some cases may take a long time to run, so if you are not

familiar with a particular case, it is a good idea to choose the Edit/Review Input

Data option so that you can check the case inputs before running the simulation.

However, no matter which of these two options you select, you will be able to

modify the inputs and re-run the simulation.
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B.3.3 ESCOE Menu and Step 1

You will need to define:

1. The start time of the period that you wish to simulate;

2. The time period length that you want to use in your model; and

3. The total length of time that you want to simulate.

The ESCOE Menu, displayed in Figure B.4, shows all of steps that are neces-

sary to describe the model inputs, run the simulation, and explore the output.

To avoid errors, it is important to work through steps 1 - 9 in order, since the

information entered in many steps depends on inputs from previous steps.

Step 1 is completed on the Menu page. First, you may enter the time at

which you want to start your simulation. This time should be the earliest time

at which any location in your distribution network will begin operating, but not

all of the locations in the network will be required to begin operating at that

time; we discuss each location type in greater detail later. Next, you give the

length of each time period and the total number of time periods that you want

to simulate. See the Model Assumptions section for a more detailed discussion

of time periods. The end time of your simulation is displayed below the dark

grey area in which you enter these values,

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

To complete steps 2 through 9, you must click on their respective buttons and

fill in the information on the worksheets that appear. You can return to earlier
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Figure B.4: ESCOE Menu screen shot.

227



steps to check your entries at any time, but if you modify any inputs, you need

to work through all subsequent steps in order.

Step 10 runs the simulation. Step 11 takes you to various sheets that display

the simulation output. After either of these steps, you can return to the earlier

steps to check or change your inputs, but as before, if you make any changes,

you must complete all of the higher numbered steps in order.

In the Other Options section below, you can work with the database file or to

restart the program. If you click the Existing Case button, you will be prompted

with the same user form as on the Case Selection page. You can then select a

different case to study.

Figure B.5: Manage cases screen shot.

If you click the Case List button, you will be prompted by a user form, shown

in Figure B.5, that is very similar to the one shown when Existing Case is clicked.

The difference is that this button allows you to delete cases. This allows you to

manage the size of the database and to clean out old data that are no longer of

interest. The Start Over button will bring you back to the cover page and will
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allow you to start the program from scratch.

B.3.4 Step 2: Constructing the Network

You will need to define:

1. The number of FDSs in your network;

2. The number of RSSs in your network;

3. The number of POD Types in your network;

4. The number of PODs of each POD Type that are in your network;

5. Which FDSs serve which RSSs; and

6. The number of PODs of each POD Type that are served by each RSS.

When you click the Network button on the ESCOE Menu, the Construct the

Network worksheet, shown in Figure B.6, will appear. On this sheet you must

complete Steps A, B, C and D in order. In Step A, specify the number of FDSs

that you want to include in your network. Then click on the FDS names button.

The FDS Names Table will appear on the right side of the screen. Fill out the

table by entering a name for each FDS.

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

In Step B, specify the number of RSSs in your network. Then click on the RSS

names button. The RSS Names Table will appear on the right side of the screen.

Fill out the table, entering a name for each RSS.

229



Figure B.6: Step 2 screen shot.

In Step C, specify the number of POD Types that you want to model. Recall

that all pods of the same “type” must share the same parameters, including

expected patient demand patterns and service rates. Then click on the POD

Types button. The POD Type Names Table will appear on the right side of the

screen. Input a name for each POD Type and the number of PODs of that type

in your network.

In Step D, click on the Tables button. If there is at least one FDS in your net-

work, the FDS/RSS Relationships Table and the RSS/POD Relationships Table

will both appear at the bottom of the screen; if there are no FDSs in your net-

work, only the latter table will appear. Fill in the FDS/RSS Relationships Table

first. For each FDS, enter 1’s for in the columns for RSSs served by that FDS

and 0’s for the RSSs not served by that FDS. An FDS may serve any number of

RSSs, but each RSS may be served by at most one FDS. Also, remember that all
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RSSs are served by the SNS, which is indicated by the row of grey cells at the

bottom of the table. Continue down to the RSS/POD Relationship Table, which

is displayed below in Figure B.7.

Figure B.7: RSS/POD Type Relationship Table Shot.

In each cell of the RSS/POD Relationship Table, indicate how many PODs of

each POD Type are served by each RSS. For example, if RSS A serves 5 PODs of

POD Type B, you would enter a 5 in the cell corresponding to RSS A, POD Type

B. You must make sure that the total numbers of each POD type correspond to

the numbers entered in the POD Type Names Table. That is, if you declared that

the total number of PODs of type E would be 10, make sure that the numbers in

the POD type E column of the RSS/POD Relationship Table add up to 10.

Once Steps A - D are complete, proceed to Define the Lead Times. There

are two ways to do this. One option is to return to the ESCOE Menu page

by clicking the Return button in Step E and then clicking the highlighted Lead

Times button on the menu page. The other option is to click the Define Lead

Times button on the left side of the screen.
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B.3.5 Step 3: Define Lead Times

You will need to define:

1. The Lead Time from the SNS to each RSS.

2. The Lead Time from each FDS to each RSS that it serves.

3. The Lead Time from each RSS to each POD Type that it serves.

In the third input step, you will describe lead times to and from each loca-

tion. Figure B.8 displays the Define Lead Times worksheet. In Step A, input

the lead time (in time periods) from the external supplier to the SNS. In Step B,

input the lead time (in time periods) from the SNS to each RSS in the first table.

In Step C, enter the lead time (in periods) from each FDS to each RSS. Finally,

in Step D, input the lead time (in periods) from each RSS to each POD Type. If

an FDS does not serve a particular RSS, the cell corresponding to that FDS-RSS

combination may be left blank, and similarly cells for RSSs that do not serve

particular POD types may remain blank.

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

Once Steps A - D are complete, proceed to Describe the Inventory. There

are two ways to do this. One option is to return to the ESCOE Menu page by

clicking the Return button in Step D and then clicking the highlighted Inventory

button on the menu page. The other option is to click the Describe Inventory

button on the left side of the screen.
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Figure B.8: Step 3 screen shot.

B.3.6 Step 4: Describe the Inventory

You will need to know:

1. The number of inventory types.(Only for future versions of ESCOE.)

2. Characteristics of each inventory type

3. The initial inventory at each location in the network for each inventory type.
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In the fourth input step, you will describe the inventory that will be moved

throughout your network. Figure B.9 displays a screen shot of the Step 4 work-

sheet. Future versions of ESCOE will allow you to enter the number of inven-

tory types you wish to consider in Step A. However, the current version of the

simulator only permits a single inventory type, so you should enter 1 for this

step.

Figure B.9: Step 4 screen shot.

If the inventory table showing below does not display the correct number of

inventory types as well as the current FDS and RSS names, you must click the

Inventory button in Step B to draw a new inventory type table. Clicking this

button may clear the current table, so be sure to copy these values to another
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location if you wish to save them. You can now fill out the inventory table.

Enter a name for the single inventory type and the number units required to

serve each patient. Next, you must enter the shipping characteristics for the

inventory: the number of units in each case and the number of cases in each

pallet.

The bottom part of the table allows you to define the initial inventory levels

in terms of pallets at the SNS, FDSs, and RSSs. The PODs have no inventory at

the beginning of the simulation.

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

Once Steps A - B are complete, proceed to Describe the SNS. There are two

ways to do this. One option is to return to the ESCOE Menu page by clicking

the Return button in Step C and then clicking the highlighted SNS button on the

menu page. The other option is to click the Describe SNS button on the left side

of the screen.

B.3.7 Step 5: Describe the SNS

You will need to define:

1. The amount of inventory storage space at the SNS;

2. The capacities of the trucks that carry inventory from the SNS to the RSSs;

3. The start and end time for the three time intervals;
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4. The rate at which trucks departing for RSSs can be loaded; and

5. The number of trucks available to send to RSSs in each period.

In the fifth input step, you will describe the workings of the SNS. Figure

B.10 displays a screen shot of the SNS sheet. Step A allows you to limit the

amount of space available for inventory storage at the SNS; this is measured

in terms of pallets of inventory. In Step B you can specify the capacity of the

trucks that carry inventory from the SNS to the RSSs; the model assumes that all

trucks used for SNS-to-RSS travel are the same size throughout the simulation.

However, ESCOE allows the rate at which trucks can be loaded and the numbers

of trucks available to change over the course of the simulation. The worksheet

allows three different response phases: Initial, Intermediate, and Final. The

truck loading rates and numbers of trucks available can vary between these

phases, but must remain constant within a single phase.

For each phase, you must enter the time periods in which the phase starts

and ends. ESCOE will show the time corresponding to these periods in the light

grey boxes next to each start and end time. Each phase must be at least one time

period long, and it starts at the beginning of some period, and finishes at the end

of the same or some subsequent time period. For example, in Figure B.10, the

Initial time interval lasts from the beginning of period 1 until the end of period

2. The Intermediate interval must start in period 3 or later; if the Intermediate

interval does not start at the beginning of period 3, the SNS is assumed to be

closed during the gap between the end of the Initial interval and the start of the

Intermediate interval.

The outbound truck loading rate is an upper bound on the number of pal-

lets of inventory that may be loaded onto trucks leaving the SNS in each hour.

236



Figure B.10: Step 5 screen shot.

When modeling a real system, this value would be determined by the number

of SNS workers and the availability of truck loading facilities and equipment.

Trucks are not modeled individually by ESCOE, but it assumed that a limited

number of vehicles are available to deliver inventory to RSSs in each period.

The total amount of inventory that may be sent out from the SNS to the RSSs

is constrained by number and capacity of the outbound trucks, as well as the

loading rates.
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When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

Once Steps A - E are complete, proceed to Describe the FDSs. There are two

ways to do this. One option is to return to the ESCOE Menu page by clicking

the Return button in Step F and then clicking the highlighted FDSs button on

the menu page. The other option is to click the Describe FDSs button on the left

side of the screen.

B.3.8 Step 6: Describe the FDSs

You will need to define:

1. The amount of inventory storage space at each FDS;

2. The capacities of the trucks that carry inventory from the FDSs to the RSSs;

3. The rate at which trucks departing for RSSs can be loaded; and

4. The number of trucks available to send to RSSs in each period.

In the sixth input step, you will describe the workings of the FDSs. Figure

B.11 displays a screen shot of the FDS sheet. You must describe each FDS indi-

vidually, starting with the first one. Step A requires you to set the amount of

space available for inventory storage (in pallets) at the FDS. Step B requires you

to specify the capacity of the trucks that move the inventory from the FDSs to

the RSSs. In Step C, you can enter the number of trucks that are available to

be sent out each hour, and in Step D you can enter the maximum rate at which
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pallets of inventory can be loaded onto these trucks. Notice that, unlike at the

SNS, ESCOE assumes that all of these values remain constant for the entire sim-

ulation; this assumption is made because FDSs are intended to operate only for

a short time at the beginning of the emergency response before initial shipments

arrive from the SNS.

Figure B.11: Step 6 screen shot.

Once you have completed Steps A through D for the first FDS, you can click

on the Next FDS button. Continue this process until you have entered the infor-

mation for each FDS in your network.

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

Once Steps A - D are complete, proceed to Describe the RSSs. There are two

ways to do this. One option is to return to the ESCOE Menu page by clicking
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the Return button in Step E and then clicking the highlighted RSSs button on

the menu page. The other option is to click the Describe RSSs button on the left

side of the screen.

B.3.9 Step 7: Describe the RSSs

You will need to define:

1. The amount of inventory storage space at each RSS;

2. The capacities of the trucks that carry inventory from the RSSs to the PODs;

3. The start and end time for the three time intervals;

4. The rate at which trucks arriving from the SNS or FDS can be unloaded;

5. The rate at which trucks departing for PODs can be loaded; and

6. The number of trucks available to send to PODs in each period.

In the seventh input step, you will describe the workings of the RSSs. Figure

B.12 displays a screen shot of the RSS sheet.

You will describe each RSS individually, starting with the first one. Step

A requires you to set the amount of space available for inventory storage at the

RSS. Step B requires you to specify the capacity of the trucks that carry inventory

to the PODs. Similar to the SNS, the simulation time at the RSSs is divided into

Initial, Intermediate, and Final time intervals. For each time interval, indicate

periods in which the interval starts and ends. The times corresponding to these

periods are shown in the light grey boxes next to each start and end time entry.
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Figure B.12: Step 7 screen shot.

You also must enter the rates at which trucks arriving from the SNS or FDSs

can be unloaded, the rates at which trucks going to the PODs can be loaded, and

the number of trucks available to send out to PODs in each time period. Once

you have completed this information for all three time intervals, you can move

on to the next RSS by clicking on the Next RSS button. Continue this process

until you have entered the information for each RSS.
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When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

Once Steps A - E are complete, proceed to Describe the POD Types. There

are two ways to do this. One option is to return to the ESCOE Menu page

by clicking the Return button in Step F and then clicking the highlighted POD

Types button on the menu page. The other option is to click the Describe POD

Types button on the left side of the screen.

B.3.10 Step 8: Describe the POD Types

For each POD type, you will need to define:

1. The number of relevant time intervals;

2. The start and end period for each time interval;

3. The rates at which inventory can be unloaded from trucks;

4. The average patient arrival rates over time; and

5. The average patient service rates over time.

In the eighth input step, you will describe the different POD Types. Figure

B.13 displays a screen shot of the RSS sheet.

You must describe each POD type individually, starting with the first one. In

Step A, you must declare the number of time intervals that you want to consider

for this POD type. The intervals need not be the same length, but all of the POD

type’s parameters must remain constant during each interval. So, if you want to
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Figure B.13: Step 8 screen shot.

simulate a POD type with few changes in inventory unloading rates, expected

patient arrival rates, and expected patient service rates, you can use a small

number of time intervals. If you want to model more dynamic rates, you will

need to include more time intervals.

Once you have decided on the number of time intervals, click on the Rates

button to generate a new table for the POD type if the currently displayed table

does not include the correct number of time intervals. All current entries in

the table will be deleted when you click this button, so be sure to copy these
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numbers to another location if you do not want to lose them. Step B requires

that you fill out this table for the current POD type. The right-most columns of

the table allow you to enter the start and end periods for each time interval in

the dark grey columns. The light grey columns show the actual start and end

times of each interval. As with the time intervals for the SNS and RSSs, each

interval starts at the beginning of a period and finishes at the end of the same

or some later period. If there is a gap between two time intervals, all PODs of

this POD type are assumed to be “closed” during this interim; no patients will

arrive or be served during this time, but any unserved patients will continue

waiting for service until the POD type re-opens.

Inventory is unloaded from trucks that arrive from the RSSs at a rate limited

by the numbers given in each table. These unloading rates would be determined

both by the number of POD staff and the availability of essential equipment

and facilities. The numbers of patients who arrive at PODs of this POD type

each hour are drawn from Poisson distributions with means equal to the values

that you enter in the Average Patient Arrival Rate column. Similarly, the POD

capacities for serving patients are drawn from Poisson distributions with means

given by the values in the Average Patient Service Rate column. The actual

number of patients served at a POD in each period is the minimum of the total

patient demand, the service capacity, and the inventory available. Once you

have completed this information for each time interval, you can move on to the

next POD Type by clicking on the Next POD Type button. Continue this process

until you have entered the information for each POD Type.

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able
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to click the buttons required to move on to the next steps.

Once Steps A - B are complete, proceed to Describe the Simulation Experi-

ment. There are two ways to do this. One option is to return to the ESCOE Menu

page by clicking the Return button in Step C and then clicking the highlighted

Simulation button on the menu page. The other option is to click the Describe

Simulation button on the left side of the screen.

B.3.11 Step 9: Describe the Simulation Experiment

You will need to define:

1. The number of simulation replications you wish to run;

2. A random seed value; and

3. A name for the current case you have created.

In the ninth input step, you will describe the simulation parameters. Fig-

ure B.14 displays a screen shot of the Simulation sheet. For Step A, indicate the

number of Simulation Replications that you wish to run. This value is the num-

ber of complete campaigns you would like to simulate. If, for example, you set

your campaign to be 3 days long and you declare that you want to run 100 repli-

cations, ESCOE will simulate the 3 day campaign 100 times. Note that the run

time is proportional to the simulation replications, so doubling the number of

replications will double the total time required to run the simulation. If you are

not sure how fast ESCOE will run on your computer, start off with only a few

replications. If your computer is fairly new and fast, you should have no trou-

ble running 10 to 20 or more replications of ESCOE at one time. The number of
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simulation replications should be a positive integer; if you enter a non-integer

value, it will be rounded.

Figure B.14: Step 9 screen shot.

In Step B, enter any Random Seed that you want to use. This number should

be a positive integer. It is used by the Visual Basic random number generator

to determine the random numbers used in the simulation. If you use the same

random seed with exactly the same set of inputs, you will get the same output.

However, if you use the same set of inputs but change the random seed, the

simulation output will be different (although the average values will likely be

quite similar) because different random numbers will be drawn for the patient

arrivals and service capacities. If you want to compare two different sets of

inputs and keep the comparison as “fair” as possible, then it is a good idea to

use the same random seed for both simulations. This helps eliminate random

error as a confounding factor in your comparison.

Step C lets you give your case a name; recall that this “case” is the set of all

inputs that you have entered in the previous eight steps. Giving your case a

name allows you to save these inputs and reopen this case in the future using
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the Select Existing Case dialog box. If you save your case to a name that already

exists in the database, the old version of that case will be deleted and the current

case will be saved to that case name.

When you are done entering information in each cell, be sure to press the

Enter key. If you are in information entry mode for any cell, you will not be able

to click the buttons required to move on to the next steps.

Once Steps A - C are complete, proceed to Run the Simulation. There are two

ways to do this. One option is to return to the ESCOE Menu page by clicking

the Return button in Step D and then clicking the highlighted Run Simulation

button on the menu page. The other option is to click the Run Simulation button

on the left side of the screen.

B.3.12 Step 10: Run the Simulation

The simulation run time is proportional to the number of simulation replica-

tions, the number of time periods, the number of locations in the distribution

network and the patient arrival rates. Large simulations may easily take up to

5 or 10 minutes to complete. If you think that the run time is too long, you can

stop the simulation by hitting the “Esc” key. Then click End in the error dialog

box that pops up. If you do this, you must go to the directory where you have

saved ESCOE and delete any new files that have been generated; there may be

one called “Simulation Output.txt.” If you do not delete this file, ESCOE may

not run in the future. You can then modify your simulation by decreasing one

or more of the parameters mentioned above to decrease the running time.
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You will know that the simulation is complete when the ESCOE Menu page

is displayed and the font on the output buttons for Step 11 is shown in red.

B.3.13 Step 11: View the Results

ESCOE produces a variety of output tables and graphs that you can use to ana-

lyze the performance of your simulated network. From the ESCOE menu, click

on either the Output Tables button or Output Graphs button to begin viewing

the results of your simulation. You can easily move between the two using the

buttons on the left side panel or by returning to the ESCOE menu.

Clicking the Output Tables button will bring you to the Output Tables work-

sheet, as displayed below in Figure B.15. There are three drop down boxes that

allow you to choose the type of data you would like to display. In the first drop-

down box, indicate which data you are interested in viewing. You can choose

from “Patient Queue at End of Period,” “Patient Demand in Period,” “Number

of Patients Served in a Period,” “Number of Patients Arrived in a Period” or

“End of Period Inventories.” Once you select which data you want to view, the

valid location options will appear in the second drop down box. End of period

inventories can be viewed at every location in the network, but the other choices

only apply to PODs. After you indicate the location in which you are interested,

you can select a single time period or “All Time Periods.” Once you have made

a selection for each one of the three drop-down menus, click on the View Table

button. The mean, standard deviation, minimum, and maximum values of your

chosen inputs will then appear in the table at the bottom of your screen.

Clicking on the Output Graphs button on either the left panel from the Out-
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Figure B.15: Output tables screen shot.

put Tables page or on the ESCOE Menu page brings you to the Output Graphs

page. A screen shot of this page is displayed below in Figure B.16.

As on the Output Tables page, there are three drop down boxes that allow

you to choose the type of data you would display. These drop down boxes are

identical to those on the previous page. Once you have made your selection in

all three boxes, click on the View Graphs button. Two graphs are displayed at

a time. The first graph shows the data for the particular location over all time

periods. The second graph shows a histogram of the values for the particular

time period you selected. An example of the graphs is displayed in Figure B.17.

The data shown in these plots are drawn from the Access database. In order

to plot the data in different ways or view the raw numbers, you must explore

the database directly. This is discussed in the next section.
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Figure B.16: Screen shot of output graphs page, before data to graph has
been selected.

B.4 Navigating the Access Database

When you click the Run button to start your simulation, ESCOE immediately

saves all input data to the database, called “SNS-CapacitiesModel.mdb” . The

data is stored in the tables titled “Case List,” “fds rss,” “fdsSimTable,” “fd-

sTable,” “fdsTimeTable,” “podSimTable,” “podTable,” “podTypeTable,” “pod-

TypeTimeTable,” “rss pod,” “rssSimTable,” “rssTable,” “rssTimeTable,” “Sin-

gleInputs,” “snsSimTable,” “snsTable” and “snsTimeTable.”

The “CaseList” table stores the case name specified on the “Describe the Sim-

ulation Experiment” page. This table also assigns the unique CaseListID to each

CaseName. Some tables refer to a Case by its CaseName and others refer to its

CaseListID.
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Figure B.17: Screen shot of output graphs of an patient demand at PODs
of a particular type that are served by one of the RSSs.

The “fds rss” table stores which FDSs serve which RSSs, according to their

ID’s. These relationships were specified on the “Construct the Network” page.

The “fdsSimTable” table stores the data about the FDSs that varies over time
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and simulation repetition. It stores the CaseName, FDS ID, simulation number,

time period, how much inventory is sent out and the amount of inventory left

at the FDS at the end of the time period.

The “fdsTable” table stores information about each FDS in each saved case,

including its ID, its name, and its maximum capacity. The FdsID is generated

by the simulator. The name of each FDS is acquired on the “Construct the Net-

work” page and the maximum capacity is an input on the “Describe the FDSs”

page.

The “fdsTimeTable” table stores whether each FDS is open during each time

period. It lists each fds by its case and ID. For each time period there is a box

that is checked if the FDS is open during that time period.

The “podSimTable” table stores the data about each POD that varies over

time and simulation repetition. It stores the CaseName, POD ID, simulation

number, time period, the number of patients who arrived, the number of pa-

tients served, the number of patients unserved and the patients demand. The

“Patient Demand” is the number of patients who arrived in this time period

and the number of patients unserved in the previous time period. It also stores

information about inventory, including how much inventory is received by the

POD, how much inventory is used on patients, and the amount of inventory left

at the POD at the end of the time period. The “podTable” table stores the PODs

ID and its Type ID. Each of these ID’s is generated by the simulator.

The “podTypeTable” table stores each POD Type by its ID and its name. The

ID is generated by the simulator and its name was an input on the “Construct

the Network” page. The “podTypeTimeTable” table stores the average patient
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arrival rate, the average patient service rate for each POD Type during each time

period. It also stores whether or not each POD Type is open during each time

period.

The “rss pod” table stores which RSSs serve which PODs, according to their

ID’s. These relationships were specified on the “Construct the Network” page.

The “rssSimTable” table stores the data about the RSSs that varies over time and

simulation repetition. It stores the CaseName, RSS ID, simulation number, time

period, how much inventory is received by the RSS, how much inventory is sent

out from the RSS, and the amount of inventory left at the RSS at the end of the

time period.

The “rssTable” table stores the RSS’s ID, its name and its maximum capac-

ity. The ID is generated by the simulator. The RSS’s name is specified on the

“Construct the Network” page, and its maximum capacity is determined from

the “Describe the RSSs” page.

The “rssTimeTable” table stores whether or not each RSS is open during each

time period. It lists each RSS by its case and ID. For each time period there is a

box that is checked if the RSS is open during that time period.

The “SingleInputs” table contains all input values that are entered through

ESCOE. The values are stored based on the CaseListID, the variable name (var-

Name), and the value the variable holds in the program (varValue). There is

also a boolean value, “SingleInput,” in the table. “SingleInput” = ’True’ if the

input value is not entered through a chart within ESCOE, such as the number

of simulation replications or the number of days in the prophylaxis campaign.

These inputs are stored into “SingleInputs” each time you run the simulation.
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The “snsSimTable” table stores the data about the SNS that varies over time

and simulation repetition. It stores the CaseName, SNS ID, simulation number,

time period, how much inventory is received by the SNS, how much inventory

is sent out from the SNS, and the amount of inventory left at the SNS at the end

of the time period.

The “snsTable” table stores the SNS’s ID, which is generated by the simula-

tor, and its maximum capacity, which was specified on the “Describe the SNS”

page. The “snsTimeTable” table stores whether or not the SNS is open during

each time period. It lists each SNS by its case and ID. For each time period there

is a box that is checked if the SNS is open during that time period
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