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Summary 

A number of now-famous conditions for dominance in the subject of Stein estimation 

have roots in the work of Stein. ·Unfortunately, the origination of these conditions are 

not often easily understood. We show here that a straightforward approach, using Taylor 

series, leads to the derivation of a number of these conditions. While our derivations are 

not rigorous in terms of giving explicit conditions for domination, they are suggestive of 

estimators that have been shown to dominate the usual estimators for spherically symmet­

ric distributions. They further suggest that such estimators can be expected to perform 

well in the general location parameter case. 
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1. Introduction 

It is well known that the sample mean is an inadmissible estimator of the population 

mean in a wide variety of circumstances. Furthermore, this fact has spawned an incredible 

amount of research, ranging from theoretical investigations of differential inequalities to 

applications of empirical Bayes data analysis. The question we ask here goes back to the 

roots of this subject, to the first paper on Stein estimation, Stein (1956). In that paper, a 

first form of the now famous James-Stein estimator is given, using arguments (summarized 

below) that are somewhat esoteric. Our purpose is to see if we could use a more mundane 

approach, using Taylor series approximations, to arrive at the same result. 

Suppose we have one observations, :c, on a p-variate random vector X with E9X = 8 

and CovX =I. We want to estimate 8 with an estimator c5(X) using squared error loss 

p 

(1.1) L(o, c5(X)) = 110- c5(X)II 2 = :Lcei- c5i(x)? 
i=l 

and associated risk function R( 0, c5) = E9L( 0, c5(X))2 • 

In the normal case, it had been established in 1951 (Hodges and Lehmann (1951)), 

that X is admissible if p = 1, but the cases p > 2 were not answered. Assuming that X 

was inadmissible, how might an alternative estimator X+ g(X), which might dominate 

X, be derived? The derivation given by Stein (1956), in that first landmark paper, asserts 

that in the normal case we can write 

(1.2) 

where Z = O'(X -·O)J.Jii8ii2 is univariate normal. Then, for large p, we have from (1.2) 

(1.3) 

showing that 11011 2 ~ IIXII 2 - p, and the estimator X should be cut down by a factor of at 

least [(IIXII 2 - p)/IIXII 2]112 , which Stein then modifies to (IIXII 2 - p)/IIXII2 • 

This reasoning seems quite deep to us and, no doubt, there are subtleties that are not 

explained in Stein's arguments. We wanted to know if, starting from the estimator X+ 

g(X), we could use self-evident arguments to deduce the James-Stein estimator. The self­

evident argument is Taylor series approximations, and we will see that this argument leads 
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to many well-known dominance conditions. While our derivations are only approximations 

and do not give rigorous conditions for domination of X by X+ g(X), they are suggestive 

of estimators that have been shown to dominate in the spherically symmetric case by 

Brandwein and Strawderman (1991 ). The results suggest that such estimators can be 

expected to perform well in the general case. 

There are many derivations of Stein-type estimators. In particular, there is the em­

pirical Bayes derivation of Efron and Morris (1973), and the tail-minimaxity conditions of 

Berger (1976). Although these derivations are reasonably straightforward, they are not as 

self-evident as the Taylor series approach. 

In Section 2, we describe the approximation in the simplest case (p = 1), and then 

apply it in Section 3 to the multivariate case. Section 4 comments on the relationship of 

the approximations with known exact results. 

2. Univariate Taylor Series Approximations 

For simplicity, first look at the (futile) case p = 1. An estimator X+ g(X) has loss 

(2.1) 

Now consider the first-order Taylor expansions of g(:c) and g2(:c) around 0. We have 

(2.2) 
g(:c) ~ g(O) + g'(O)(:c- 0), 

g2( :1:) ~ g2( 0) + g2' ( 0)( :1: - 0). 

Substituting (2.2) into (2.1) yields 

10- (:c + g(:c))l2 ~ 10- :~:1 2 + 2g'(O)(x- 0)2 + g2(0) 
(2.3) 

+ [2g( 0) + g21 ( 0)]( X - 0), 

and taking expectations shows that the estimator X+ g(X) improves on X (to this order 

of approximation) if g( ·) satisfies 

{2.4) for all 0. 

Here we have used the facts that E(X- 0)2 = 1 and the expectation of the last term in 

(2.3) is zero. 
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The differential inequality of (2.4), and its generalization, as in (3.4), have been the 

focus of much research (see, for example, Stein (1981) and references in Brandwein and 

Strawderman (1990)). Continuing in our naive mode, we will search among simple func­

tions for a solution. A simple class of functions are of the form 

(2.5) g(t) = atk, 

for some constant a and integer k. Substituting.in (2.4), we need 

(2.6) 

Inspection of (2.6) shows that the inequality can only be satisfied if ka < 0. Furthermore, 

to satisfy the inequality at both t = 0 and t = oo, we need k- 1 = 2k, or k = -1. Thus, 

our only chance to satisfy (2.4) with a function of the form (2.5) is to have k = -1 and 

the constant a satisfy -2a + a2 :5 0. Although this is a dead end for p = 1, it suggests 

that estimators of the form 

(2.7) 

might be reasonable alternatives to the sample mean. Unfortunately, all such estima­

tors have infinite risk, although modifications such as positive part versions of (2. 7) have 

reasonable risk behavior. Of course, none beat X since X is admissible. 

3. Multivariate First Order Taylor Series Approximations 

The univariate expansions in the previous section can be easily extended to the multi­

variate case, with constructive results. The loss of estimating the p-vector () with X+ g(X) 

is 

(3.1) 

We now use the multivariate Taylor expansions of g(z) and llg(z)ll2 to obtain 

g(x) ~ g(IJ) + D9 (z- 8), 

(3.2) 
IIY(" lll' "' IWl II' + t, [ 8~, IWl 11'] < "' - e, ), 
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where D9 is the Jacobian matrix with (i,j) element {-/1ii9j(O)}. Substituting (3.2) into 

(3.1) and taking expectations yields 

(3.3) 

where V · g(O) = .Ef=1 8~,9i(O). Analogous to (2.4), we need 

(3.4) 2V · g(O) + llg(O)II 2 ~ o for all o, 

in order for X+ g(X) to dominate X (to this order of approximation). Taking the multi­

variate analog of (2.7), we might try g(t) = atf11tll 2 • This yields 

a(p- 2) 2 a2 

(3.5) v. g(t) = 11t112 ' llg(t)ll = 11t112, 

and (3.4) is satisfied if -2(p- 2) :5 a :50, yielding the James-Stein estimator. Condition 

(3.4) of course is the now well-known condition for domination of X by X+ g(X) in the 

normal case given in Stein (1981). 

Chou and Strawderman (1990) established minimaxity of estimators of the form 

X+ ag(X) where g(X) satisfies (3.4) for distributions which are mixtures of normal dis­

tributions of the form f(IIX- 811 2 ) = J N(O, u 2 I)dG(u2 ). 

4. Relationship with Exact Conditions 

If X has a multivariate normal distribution, that is, X "' Np(O,I), then the esti­

mator X+ g(X) is minimax if condition {3.4) is satisfied. Thus, the first-order Taylor 

series approxi~ations agree with the exact results under normality. This correspondence 

might be anticipated, as results of the normal distribution are often related to linearity 

considerations. 

The first-order approximation is not good enough for other distributions, so we might 

try a second-order approximation for llg( z) 11 2 •. (Note that the first-order expansion for 

g(z) in (3.2) yields a second-order expansion on g(x)'(x- 0) in (3.1).) The second-order 

expansion for llg(x)ll 2 is 

( 4.1) 

119( z )11 2 = 119( 0) 11 2 + t, [ &~; 119( 0)112 ] ( z; - 0;) 
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yielding the risk approximation. 

where V 2 1lg(O)II2 = Ef=1 ::? llg(O)II 2 • From (4.2), we can see that approximate risk dom-
• 

inance will obtain if (3.4) is satisfied and, in addition, 

(4.3) 

Condition (4.3), that 119(0)112 is &uperharmonic, is thus see~ to be a suggested condition 

for minimaxity in addition to the Stein differential inequality (3.4). 

Stein (1981) showed that superharmonicity of the prior distribution in the normal 

case implied minimaxity of the corresponding generalized Bayes estimator. George (1986) 

used this condition to obtain minimax multiple shrinkage estimators. 

That superharmonicity of 11911 2 itself is a useful condition in establishing minimax­

ity of X + 9(X) has been shown by Brandwein and Strawderman (1991). They show, 

for X distributed spherically symmetrically, that a sufficient condition for dominance 

of X by X + 9(X) is that 11911 2 be superharmonic, 9(X) satisfy the Stein differential 

inequality and 0 < a < pEo(lfuXII2) plus a technical condition on the monotonicity of 

E(IIX- OII 29(X)!!IX - 011 2 = R). Note that the ordinary James-Stein estimator, which 

uses 9( ·) of (3.5), is super harmonic if and only if p > 4. 

Our approximation indicates that such conditions are likely to be helpful in establish­

ing dominance under milder conditions on the distribution of X. 
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