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ABSTRACT 

Many nonparametric test statistics for the location problem 

or mean slippage problem are based on extreme order statistics. 

Some new test statistics related to those of Rosenbaum (1954) and 

Mosteller (1948) are considered in this paper. Analytic formulae 

for the large sample power of these test statistics are derived 

for Lehmann alternatives and for pure-shift alternatives for 

various common population distributions. Under Lehmann alterna­

tives, the large sample power is independent of the population 

distributions and the limiting power is less than one, which 

implies that these test statistics are asymptotically poor. The 

large sample power under pure-shift alternatives depends greatly 

on the population distributions. For example, it tends asymptoti­

cally to one for uniform or normal distributions but converges 

to the significance level for lognormal or Cauchy distributions. 

KEY WORDS AND PHRASES: Lehmann alternatives; Order statistics; Negative 

binomial distribution; Asymptotic distribution; Tail behavior. 
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1 • INTRODUCTION 

Many nonparametric test statistics for the location problem or the 

mean slippage problem are based on extreme order statistics. For example, 

Rosenbaum (1954) for the location problem and Mosteller (1948) for the mean 

slippage problem, considered the statistic equal to the number of observa­

tions from one population greater than the largest observation from the 

other populations. Related work on the mean slippage problem has been done 

by Bofinger (1965), Conover (1965; 1968), Joshi and Sathe (1978; 1981), 

Neave (1966; 1972); 1973; 1975} and Neave and Granger (1968). Related work 

on the location problem has been done by Tukey (1959) and Rosenbaum (1965). 

In this paper we consider generalizations of the statistics of Mosteller 

and Rosenbaum. 

All of the referenced nonparametric procedures are simple to implement 

and distribution-free under the null hypothesis of no differences in loca­

tion or no slippage. However, the alternative hypotheses are usually not 

well specified so that the implications of rejecting the null hypothesis 

are not clear. Tests based on ranks will not necessarily distinguish in 

any obvious way the slippage of mean, tail or dispersion of the population 

distribution (Barnett and Lewis 1984). In all of the above studies simu-

lation was used to evaluate the power of the various test statistics. 

However, this approach cannot quantify large sample power. In this paper 

we show that the large sample power of the nonparametric tests considered 

are highly sensitive to the form of the alternative distribution. For 

distributions which are quite similar in practice, the large sample power 

can converge to one, to the significance level or to a constant in between. 
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To investigate the power behaviors of these nonparametric slippage 

tests, the problem primarily considered in this paper consists of k popula­

tions among which the k'th one is suspected to have slipped to the right. 

Section 2 proposes a new test procedure for which the distribution of the 

test statistics under the null hypothesis is derived and the critical 

region is determined. Then, two kinds of alternative hypotheses are 

considered to investigate their power behaviors, especially in cases of 

large sample sizes. In Section 3, we consider Lehmann alternatives. The 

distribution and power of the test statistics are derived and the effects 

on the large sample power behaviors due to different test statistics and 

alternatives are investigated. The limiting power against pure-shift 

alternatives is discussed in Section 4. Several common population distri­

butions are included to depict the dependence of power behavior on the 

tails of the population distributions. In Section 5 we relate our problem 

to the slippage problem and finally, some discussions and conclusions are 

presented in Section 6. 
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2. TEST STATISTICS FOR THE LOCATION PROBLEM 

The setting considered here will be random samples of size ni from 
k-1 

each of k populations (i=l,2,···,k). For simplicity we will use N = L n. 
i=l 1 

to denote the total sample size for the first k-1 populations and n=nk to 

denote the sample size for the population suspected to be to the right of 

the others. The first k-1 populations are identically distributed with 

cumulative distribution function (c.d.f.) F(x) and the c.d.f. for the 

k ··th population will be denoted Fk (x). The null hypothesis of no slippage 

is then given by 

(2.1) 

and the alternative hypothesis will be 

for all x . (2.2) 

Generalizing Mosteller's (Mosteller 1948) and Rosenbaum's· (Rosenbaum 

1954) test procedures, we consider test statistics T , which are defined 
r 

by counting the number of observations in the k'th population which are 

greater than the r'th largest observation in the remaining k-1 populations. 

In other words, let Xi . denote the j'th observation from the i'th popula­
. 'J 

tion and Y be the r' th maximum in the observations X .. (j=l 2 · · · n · 
r 1,J ' ' ' i' 

i=1,2,···,k-1); then 

T 
r 

n 

1 s . 
j =1 r 'J 

where S . is an indicator function defined as 
r' J 

i l if xk . ,J 
s 
r,j t 0 if xk . ,J 

( 2. 3) 

> y 
r 

(2.4) 

s y 
r 
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For example, T1 is the number of observations in the k'th population larger 

than the largest observation from the first k-1 populations. 

The distribution of the test statistics can be determined from the 

order statistics Y . 
r 

Since all the N observations from the first k-1 

populations are identically and independently distributed with c.d.f., 

F(x), the distribution of Y is given by Mood, Graybill, and Boes (1974), 
r 

( 2. 5) 

and the density function is 

fy (y) = r(=)[F(y)]N-r[1-F(y)Jr-lf(y) 
r 

(2.6) 

It is noted by inspecting (2.3) that the distribution ofT conditional on 
r 

Yr=y is binomial with parameters nand p=l-Fk(y). Hence, the mass function 

of T can be expressed by 
r 

P(Tr=t) == f P(T =tjY =y)fy (y)dy 
r r 

r 
-co 

-co 

for t=O,l,2,···,n. 

Under the null hypothesis (2.1), the mass function ofT can be found 
r 

explicitly from (2.7), i.e., 

P(T =t) 
r 

t=O,l ,2, ·· • ,n . (2.8) 

For the large sample case where N ~co and n/N ~ l, (2.8) can be simplified 

to 
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t+r-1 A. 1 X t r 

P(Tr=t) = ( t 1+A.) (l+A.) t=O, 1 , 2, • • • . 

This is a negative binomial distribution with parameters rand p=A./(1+>..). 

This simplifies to 

P(T =t) 
r 

for equal sample sizes. 

(2.9) 

Intuitively, the statistical inference is to reject H0 if the test 

statistic T is too large. 
r 

Since T is a discrete random variable, a 
r 

randomized test must be employed to exactly achieve most prescribed signifi-

cance levels a. Therefore, to achieve an a-level test we use the following 

procedure. Choose the integer Zc and probability pc such that 

a = P(T >Z ) + p P(T =Z ) 
r c c r c 

We then reject H0 if T >Z or, with probability p , if T =Z • 
r c c r c 
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3. POWER AGAINST LEIIKA.NN ALTERNATIVES 

Lehmann alternatives are mathematically natural nonparametric alterna-

tives since, for them, the distribution of ranks is independent of the 

population distribution (Lehman 1953). We therefore derive the power of 

the test statistics T against these alternatives, which are defined in 
r 

terms of a parameter m by 

[F(x) ]1/m 0 < m < 1 . (3.1) 

Obviously, (3.1) satisfies the relation (2.2). Also, the mean of the 

k'th population moves to the right as m gets smaller. However, the depen-

dence of the variance on m is complicated. For example, as m gets 

smaller, the variance gets smaller for uniform or normal distributions; 

gets larger for lognormal or Cauchy distributions; and stays approximately 

the same for exponential distributions. These arguments will be made clear 

in Section 4. 

Equation (2.7) can be applied to derive the distribution 

change of variable Fk(y) = g, i.e. , m 
F(y) = g and f(y)dy = 

of T . By a 
r 

m-1 
mg dg, as 

well as a binomial expansion for the term [l-F(y)]r-1 = (1-gm)r-1 , (2.7) 

can be integrated to be 

P(T =t) 
r 

r-1 
( nxN-1) h(r-1) N·m· t r- 1 h~0(-1) h ·B(t+1,n-t+mN-mr+mh+m) (3.2) 

where B(·,·) denotes the Beta function. 

Though (3.2) is valid for any finite sample size, the expression 

becomes much simpler in the limiting case. It is noted that the sequence 

of limit and integration in (2.7) can be interchanged according to the 

dominated convergence theorem (Folland 1984). By defining a new variable 

v = -n·log[Fk(y)], the limit of (2. 7) as N -1 co and (n/N) -1 ,1, can be ex-

pressed in terms of A = 1+m/A by 



P(T =t) 
r 

1 
t! 

1 
( r-1)! 
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CQ 

• (A-1) v e dv r f t+r-1 -Av 

0 

t=O, 1,2, · · · ( 3. 3) 

This is again a negative binomial distribution, but this time with parame-

ters r and p=l/A. 

It is noted by inspecting (3.3) and (2.9) that both are identical 

except that the group number kin (2.9) is replaced by A in (3.3). Hence, A 

can be called an equivalent group number which is equal to 1+m(k-1) for 

equal-sample-size cases or 1+m/A for unequal-sample-size cases. 

By employing (3.2) or (3.3), the power of T against the Lehmann 
r 

alternative can be calculated. Shown in Figure 1 is the large sample power 

of test statistics T with r=1,5,10,20 or 70 versus the parameter m when 
r 

the number of populations is k=10 and the significance level is a=0.1. 

Obviously, the power of the test statistic T1 , is very poor even though the 

population size tends to infinity. It seems that a better way to improve 

the power is to increase the order of the test, r, instead of the sample 

size n. 

The power of T for a fixed r gets poorer for a larger number of popu­
r 

lations, k. Hence, in Figure 2, the large sample power is plotted versus k 

for constant ratio of r/k = .1, .2, .5, 1, 2, 3 or 4 while choosing m=.5 

and a=.l. It is interesting to note that the large sample power is approxi-

mately the same for constant r/k, while the population number may change 

from 2 to 50 or even larger. This means that, at least in large sample 

size cases, given a population number k, we can choose a proportionate 

value of r to achieve the wanted power. For example, in testing against 

the Lehmann alternative with m=.5 given k=10, we can choose r ~ 40 to have 

a probability of type II error about .4 while keeping the significance 

level a=.1. 
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4. POWER AGAINST PURE-SHIFT ALTERNATIVES 

The most common alternative used in the mean slippage problems is the 

pure-shift alternative, which is defined as 

e > o . (4.1) 

The distribution of the k'th population here is uniformly shifted to the 

right of the first k-1 populations by a distance e. However, the distribu-

tion of ranks as well as the distribution of T is now dependent not only 
r 

on e but also on the c.d.f. F(x). It is thus very difficult to investi-

gate the power under a pure-shift alternative analytically for finite 

sample-size cases. Therefore, only the limiting distribution of T , which 
r 

is simpler but still illustrative, is emphasized here. 

To find the limiting distribution of T , it is necessary to use the 
r 

asymptotic distribution of order statistics. Let Y . 1 be the j'th 
n-J+ :n 

maximum in a random sample of size n drawn from the population. For most of 

the common population distributions, an asymptotic distribution for the 

extreme order statistic Y exists (Galambos 1978), i.e., there exist a 
n:n n 

and b such that 
n 

~im J{ yn:~ - an $ y) = G(y) . 
n-n> .. \ n 

Here, a and b can be treated roughly as a sequence of "means" and "stan-
n n 

dard deviations" of Y n:n The c.d.f. G(y) is the asymptotic distribution 

of the normalized extreme order statistic z1 = (Y - a )/b • 
n:n n n 

Table 1 

lists a , b , and G(y) for some typical distributions (uniform, normal, 
n n 

exponential, lognormal, and Cauchy). 
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If the asymptotic distribution G(y) for the normalized extreme order 

statistic z1 exists, the asymptotic distribution Gj(y) for the normalized 

j 'th maximum Z : (Y . -a )/b also exists and is related to G(y) by 
j n-J+1:n n n 

(Galambos 1978) 

G. (y) 
J 

,tim 
n-1oo 

{ 
y -a 
n-j+1:n n < 

b -
n 

. G(y<~: ~, [ 1og G~yS ( 4. 3) 

It is interesting to note that the distribution Fk(x) under the Lehmann 

alternative (3.1) with m=(l/n) is identical to the distribution of the 

extreme order statistic Y 
n:n 

This implies that to discuss the change of 

distribution as the Lehmann shift m tends to zero is no more than to 

discuss the behavior of extreme order statistics as n tends to infinity. 

Hence, the normalization constants a and b discussed here can give an 
n n 

indication of the mean and standard deviation of Fk(x) under the Lehmann 

alternative as discussed in Section 3. 

Using (4.3), it is easy to derive the asymptotic distribution of test 

statistics T under pure-shift alternatives. Obviously, the event T ~ t 
r r 

means equivalently that the r'th maximum in the first k-1 populations, 

denoted 

denoted 

(I) 
YN-r+1:N' 
y(II) 
n-t+l:n' 

is smaller than the t'th maximum in the k'th population, 

i.e. , 

P(T ~t) = .Jy(II) > Y(I) ) (4.4) 
r •\ n-t+l:n N-r+1:N 

Suppose that the normalization constants a , b and asymptotic distri­
n n 

bution G(y) for the distribution function F(x) exist. Since the distri-

bution of the k'th population, Fk(x), is identical to F(x) except for a 

shift by e, it is advantageous to define the following normalized order 

statistics 
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y(I) -
aN 

(y(II) e) - a 
/I) 

N-r+1:N z<rr> n-t+1:n n 
= (4.5) 

r bN t b 
n 

Th Z(I) d Z(II) h' h i d d f h h h i en, an , w 1c are n epen ent a eac at er, ave asymptot c 
r t 

distributions G (y) and G (y), respectively. 
r t 

Substituting (4.5) into (4.4), the asymptotic distribution ofT 
r 

satisfies 

where 

P(T 2:t) ,tim ~<II) -z0 >B > Ak-1 - 6/bn) r 
n~ 

r k-1 
(4.6) 

a - a bN 

~-1 J.,im 
N n 

Bk-1 b 
J.,im-

b 
n~ n n~ n 

(4. 7) 

By (4.6), the mass function and thus the power ofT can be expressed 
r 

in terms of the constants ~-1 , Bk_1 and bn. Among these, the constant b 
n 

is crucial since it governs the large sample power. Typically, the power 

tends to one no matter how small e is if b tends to zero, while it tends 
n 

to the significance level a no matter how large e is if b tends to 
n 

infinity. 

For distributions with finite upper range such as the uniform distri-

butions, it can be shown that b tends to zero as n tends to infinity. 
n 

Hence, the large sample power tends to one, i.e., the test statistics T 
r 

are asymptotically ideal. For distributions with infinite upper range, the 

situation becomes much more complicated since the constant b may tend to 
n 

zero, a nonzero constant, or infinity, as depicted in Table 1. It is inter-

esting to notice that the tail behavior of the c.d.f. F(x) reflects the 

limiting behavior of the constant b . In Figure 3 the density functions in 
n 

Jog scale of the normal, exponential, lognormal and Cauchy distributions 

are plotted. They can be categorized into light-, medium-and heavy-tailed 

[
-JoglO f( x) I 

distributions according as the term J.,im J is infinite, a nan-
n~ x 

zero constant or zero, respectively. 
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For light-tail distributions such as normal distributions, the "stan-

dard deviations" b of extreme order statistics tends to zero. Therefore, 
n 

T are ideal test statistics asymptotically, i.e., the large sample power 
r 

converges to one. However, the rate of convergence is much slower for 

normal distributions than for uniform distributions since the constant 

b = l/~2Lagn for normal(O,l) distributions tends to zero more slowly as 
n 

compared with the constant b = 1/n for uniform (0,1) distributions. 
n 

For medium-tail distributions such as exponential distributions, b 
n 

tends to a nonzero constant. Thus, the limiting power is some value 

strictly between the significance level and one. However, for heavy-tail 

distributions such as lognormal or Cauchy distributions, the "standard 

deviation" b of extreme order statistics tends to infinity as n tends to 
n 

infinity. The power of T decreases as n increases and finally becomes a in 
r 

the limiting case as N ~ oo and (n/N) ~ A. In other words, the test statis-

tics T are worse for larger sample sizes and finally become useless as n 
r 

tends to infinity. 
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5. RELATION TO SLIPPAGE TESTS 

We next indicate how the results described in this article apply to 

nonparametric slippage tests. The easiest case to analyze is Mosteller's 

test (Mosteller 1948). The null hypothesis for the slippage test is again 

given by (2.1) but the alternative is simply that one of the populations 

(unspecified) has slipped to the right of the others. Mosteller selects as 

the population which is suspected to have slipped to the right as the one 

with the largest observation. The test statistic is then the number of 

observations in the suspected population larger than all the observations 

in the remaining populations. We will denote this test statistic Tf. 

First, we will argue that the probability of a correct decision for 

the slippage test is less than the test proposed in Section 2 (which 

''knows" which population is largest if any of them are). It is clear that 

Ty ~ T1, since if the kch population (assumed without loss of generality 

to be the one with the largest population mean) has the largest observa­

tion, then T1 = T 1 , otherwise T 1 = 0. Thus the critical values forT! 

must be larger than the ones derived for T1 . Since a correct decision as 

to the slipped population is only made in the case when the kch population 

gives the largest observation and since, for that case, T! = T1 , the 

power of the test in Section 2 is larger than the probability of a correct 

decision using Mosteller's test. Thus, for heavy-tailed distributions like 

the lognormal, the probability of a correct decision will decrease to the 

significance level as the sample size increases. 

Second, we argue that if the power of the test converges to one, then 

the probability of a correct decision in Mosteller's test also converges to 

one. If the power of the test based on T1 converges to one then the larg-

est observation comes from the kch population with probability approaching 
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one. Thus Tf • T1 with probability approaching one. Investigation of 

equation (4.6) shows that the critical value, t, has no bearing on the 

limiting result if b converges to zero (the light-tailed case). Thus, 
n 

T~ and T1 will behave similarly in the limit and both have limiting proba-

bility one. 

The above discussions show that the nonparametric slippage tests will 

exhibit the same qualitative behavior as the location test. That is, they 

will have limiting probability of correct decision equal to one in some 

cases and equal to the ·significance level in other cases. This will be 

true even with distributions which, in practice, can look very similar, 

like the normal and lognormal distributions. 
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6. CONCLUSIONS AND DISCUSSIONS 

By generalizing Mosteller's and Rosenbaum's methods, nonparametric 

test statistics, T , based on the r'th maximum, are proposed in this paper. 
r 

We use T as a typical example of a statistic used for nonparametric tests. 
r 

The distribution of T has been derived analytically and it tends to a 
r 

negative binomial distribution for large sample sizes. Two kinds of alter-

native hypotheses, Lehmann alternatives and pure-shift alternatives are 

included to investigate the power of T . Characterized in this paper is 
r 

the analytical analysis of large sample power which is simple and 

illustrative. 

Under Lehmann alternatives, the large sample power of T is indepen­
r 

dent of the population distributions but depends greatly on the order of 

the test statistic, r. Though the test T with r=l is very quick and 
r 

simple in operation, its power is rather small and can be improved by a 

choice of larger r. In the large sample-size cases, the power of 

T improves monotonically as r increases. However, in practical cases with 
r 

finite sample sizes, intuitively, there exists an optimal choice of r to 

achieve the maximal power. The optimal r, which may be a function of 

sample size n, Lehmann shift m, and population number k, deserves future 

investigation, perhaps by simulation. 

Under pure shift alternatives, the large sample power ofT depends 
r 

greatly on the tail behavior of the population distribution. For distribu-

tions which have finite upper range (no tails) such as uniform distribu-

tions, the large sample power tends to one no matter how small the shift 

is. For light-tail distributions such as normal distributions, the large 

sample power also tends to one but at a much slower rate. However, for 
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medium-tail distributions such as exponential distributions, the increase 

in sample size does not contribute much in improving the power. The worst 

case is with heavy-tail distributions such as lognormal and Cauchy distri-

butions for which increasing the sample size only decreases the power and 

ultimately makes the test based on T useless. 
r 

Many nonparametric mean-slippage tests, such as those proposed by 

Mosteller (1948), Conover (1965; 1968), Joshi and Sathe (1978), and others, 

are based on the comparison of maximum or minimum among the populations. It 

is reasonable to infer that they will exhibit properties similar to Tf-

From the limiting behaviors of T , it is concluded that one should examine 
r 

their data a little bit before jumping into nonparametric methods. Though 

the nonparametric test statistics are distribution-free under the null 

hypothesis, their power depends tremendously on the alternative and the 

population distributions. To sum up, without any idea of the population 

distributions, these nonparametric methods can be as unreliable as, or 

sometimes less reliable than, parametric methods. 

Also, it should be noted that, in the limiting case, the proposed test 

T with any finite r discriminates the pure-shift populations based only on 
r 

the tail portion of the distributions. This may be the reason why the test 

is asymptotically satisfactory for no- or light-tailed distributions, but 

not for medium- or heavy-tailed distributions. This argument also suggests 

that T with different ratios of order r to sample size n may emphasize 
r 

different portions of the distributions for testing pure-shift alternatives. 

It thus will be interesting to evaluate the effect of different r's on 

the finite sample-size power of T for different kinds of population 
r 

distributions. ·The investigation is in progress and will be presented in 

the near future. 



-16-

REFERENCES 

Barnett, V., and Lewis, T. ( 1984), Out:Iiers .in St:at:1"st:.ica.l ./)at:a, New York: 

Wiley. 

Bofinger, V. J. ( 1965), "The k-sample slippage problem," Aust:ra.l1"an Journa.l 

of St:at:.ist:.ics, 7, 20-31. 

Conover, W. J. (1965), "Several k-sample Kolmogorov-Smirnov tests," Anna.ls 

of Hat:hemal:.ica.l St:at:.ist:.ics, 36, 1019-1026. 

Conover, W. J. (1968), "Two k-sample slippage tests," Journa.l of t:he Amer.i­

can Sl:al:.ist:.ica.l Assoc.iat:.ion, 63, 614-626. 

Folland, G. B. (1984), Rea.l Ana.lys.is, New York: Wiley. 

Galambos, J. (1978), 

New York: Wiley. 

The Asympl:ot:.ic Theory of Ext:reme Order Sl:at:.ist:.ics, 

Joshi, S., and Sathe, Y. S. (1978), "A generalization of Mosteller's test," 

Commun1"cat::lons ..in St:al:.i.~t:..ica.l Theory and Het:hods, 7, 709-715. 

Joshi, S., and Sathe, Y. S. (1981), "A k-sample slippage test for location 

parameter," Journa.l of St:at:.ist:.ica.l P.lann.ing and Inference, 5, 93-98. 

Lehmann, E. L. ( 1953), "The power of rank tests," Anna.ls of Hat:hemat:.ica.l 

St:al::lst:.ics, 24, 23-43. 

Mood, A. M., Graybill, F. A., and Boes, D. C. (1974), Int:roduct:.ion t:o t:he 

Theory of St:at:.ist:..ics, 3rd ed., New York: McGraw-Hill. 

Mosteller, F. (1948), "A k-sample slippage test for an extreme population," 

Anna.ls of Hat:hemal:.ica.l St:at:.ist:.ics, 19, 58-65. 

Mosteller, F., and Tukey, J. W. (1950), "Significance levels for a k-sample 

slippage test," Anna.ls of Hat:hemat:.ica.l St:at:.ist:.ics, 21, 120-123. 

Neave, H. R. (1966). "A development of Tukey's quick test of location," 

Journa.l of t:he Amer.ican St:at:.ist:.ica.l Assoc.iat:1"on 61, 949-964. 



-17-

Neave, H. R. {1972). "Some quick tests for slippage," The St:at::ist::ic:ian 21, 

197-208. 

Neave, H. R. (1973). "A power study of some tests for slippage," The 

St:at:.ist:1'c.ian 22, 269-280. 

Neave, H. R. (1975). "A quick and simple technique for general slippage 

problems," JournaJ of t:he Amer.ican St:at:.ist:.icaJ Assoc.iat:.ion 70, 

721-716. 

Neave, H. R. and C. W. Granger (1968). "A Monte Carlo study comparing 

various two-sample tests for differences in means," Technomet:r.ics 10, 

509-522. 

Rosenbaum, S. (1954). "Tables for a nonparametric test of location," 

AnnaJs of Hat:hemat:.icaJ St:at:.ist:.ics 25, 146-150. 

Rosenbaum, S. (1965). "On some two-sample nonparametric tests," JournaJ of 

t:he Amer1'can St:at:.ist:1'cal Assoc1'at:.ion 60, 1118-1126. 

Tukey, J. W. (1959). "A quick, compact, two-sample test to Duckworth's 

specifications," .J'echnomet:r.ics 1, 31-48. 



-18-

Table 1. Normalizing constants a , b and asymptotic distribution 
n n 

G(y) for several different distributions. Also listed is the limiting 

Tail 

No 

Light 

Medium 

Heavy 

NOTE: 

power of T under pure-shift alternatives. 
r 

Example 

U(0,1) 

N( 0, 1) 

Exp(l) 

Log­
normal 
( 0' l) 

Cauchy 
( 0, 1) 

a , b , and G(y) 
n n 

a =l, b =1/n 
n n 

{ey y < 0 
G(y)= 1 

y ~ 0 

a =121ogn -
Jog{47r·logn) 

n 
2·121ogn 

b =l/121ogn 
n 
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(a,l)* means the power is some value strictly between a and 1. 

Here, a is the significance level. 
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Fig. 1 Power versus m while keeping k=10, a=0.1 and r=1, 5, 10, 20 or 70. 
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Power versus k with m=O.S and a=OO.l for r/k=O.l, 0.2, 0.5, l, 2, 

3 or 4. 
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List of captions 

Normalizing constants a , b and asymptotic distribution G(y) 
n n 

for several different distributions. Also listed is the limit-

ing power of T under the pure-shift alternatives. 
r 

Power versus m while keeping k=lO, a=O.l and r=l, 5, 10, 20 or 70. 

Power versus k with m=O.S and a=OO.l for r/k=O.l, 0.2, 0.5, 1, 

2, 3 or 4. 

Tail behaviors of several distributions. 


