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ABSTRACT 
This paper presents three papers on the topic of weather index insurance, the 

practice of mitigating risk according to objective measurements of weather conditions.  

The topic has a simple premise, but the implementation is anything but.  The 

weather/crop yield relationship, and therefore risk, is not a straightforward function, 

and weather observations seldom align themselves for easy analysis.  Being a 

relatively new technology, there are of course problems with implementation and rich 

opportunities for research and analysis. 

The first topic is to present the internet site that enabled access to the weather 

data.  It is groundbreaking and among the first of its kind.  The second topic regards 

plant disease risks when faced with risks in combination, specifically regards to heat 

and drought risk occurring simultaneously, and the last topic is an algorithmic 

approach to the problem of geographical basis risk.
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Chapter 1 - Introduction 
 

This document is the culmination of two years of work on the topic of weather 

index insurance, the practice of mitigating risk according to objective measurements 

of weather conditions.  The topic has a simple premise, but the implementation is 

anything but.  The weather/crop yield relationship, and therefore risk, is not a 

straightforward function, and weather observations seldom align themselves for easy 

analysis.  Being a relatively new technology, there are of course problems with 

implementation and rich opportunities for research and analysis.   

Although there is an established market for weather derivatives on the Chicago 

Mercantile Exchange (CME) for hedging weather-based risk, the products might be 

considered to be more useful for industries like energy which primarily operate in the 

cities in which the indexes are collated and have a more definitive relationship to 

marginal gradations in temperature.  It is still not understood how to define what 

weather conditions create risk for agricultural producers and how precisely to model 

those risk conditions at diverse locations, problems that will need to be overcome 

before widespread adoption of weather index insurance can commence.  What follows 

is a series of three papers, prepared or intended for publication, that attempt to 

ameliorate those problems. 

 

The History of Weather Index Insurance 

The energy industry has long been observed to be sensitive to variations in 

weather conditions. Energy suppliers will prosper in a cold winter through a high 

volume of energy sold, but is stifled in an abnormally temperate winter.  The 

benchmark is generally considered to be 65° F, a temperature above which people 
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demand electricity to cool buildings and below which demand energy (coal, natural 

gas, electricity) for heating purposes.   These revenue streams are highly variable and 

highly dependent on the severity of a season.  Traditionally, this wasn’t a problem 

because suppliers faced no competition in a market and received government price 

guarantees.  With the advent of deregulated energy markets in the 1990s, energy firms 

found the need to hedge against weather risk, and thus the weather derivatives market 

was born.  An early pioneer in the weather derivatives market was Enron, through its 

Enron Online unit. 

In its current form, the market at the CME will allow an energy supplier to 

purchase a non-asset based futures contract pegged to a weather index.  For example, 

an energy supplier may wish to write an option contract that will pay off if a summer 

is sufficiently hot, reasoning that in such conditions revenues will be healthy enough 

so that they will happily cover the cost of the option payout.  If the summer is cool, the 

energy company would generate less revenue from the sale of electricity, but will 

pocket the premium for writing the contract and thus smooth their revenue stream.  

The CME now includes 645 weather products for 35 cities worldwide, as well as 

hurricane indices for the East and Gulf Coasts.  In addition to the futures and options 

traded on the CME, third-party vendors also sell customizable over-the-counter 

contracts for virtually any combination of temperature event imaginable.  As of 2005, 

Turvey reports that 4000 transactions occurred that were worth $8 bn (Lyon 2004). 

Organizations like the Weather Risk Management Association (WRMA) now 

exist which bring together principals from the meteorology, insurance and finance 

industries to accomplish such goals as establishing standards for credit and expanding 

the weather market geographically.  The concepts developed for the energy industry 

also apply to other fields, and much of the current research involves applying the 
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successful strategies developed for the energy industry for other weather-sensitive 

industries. 

The successful development of methods for pricing weather index insurance 

contracts will likely have profound impacts on developing countries, which are highly 

dependent on agriculture.  The sheer number of smallholder farms in these countries 

precludes the dissemination of traditional adjustment-based insurance policies even 

though impoverished farmers bear the full brunt of climatic variability.  A successful 

implementation of a weather index insurance program would likely have profound 

implications for improving the livelihood of farmers in these countries by preventing 

them from falling into a “poverty trap” when faced with crop losses due to adverse 

weather conditions. (Skees 2008) 

 

Objectives 

The purpose of this research is to refine and develop methods for pricing 

weather index insurance by taking observations of a stochastic process.   The markets 

described above for the CME and any over-the-counter (OTC) represent the 

foundations of weather index insurance or any weather derivative product.  However, 

they require strict assumptions.  First, risk events are only considered as separate 

entities, even though stress events often have more profound negative impacts on 

crops when happening simultaneously.  Often, calculating risk on single events is 

incomplete, especially in regard to plant pathogens like fungi, molds, and insects that 

require specific meteorological criteria for their presence.  Developing a method for 

pricing insurance for joint probabilities is necessary for the successful wide scale 

adoption of weather index insurance.   

Second, these products price their products at a single location and assume that 

weather patterns at that fixed location are adequate to describe weather conditions at 
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the site of the insured event.  This is not always the case and an understanding of 

conditions at the insured location is often required.  The difference in risk profile 

between the measured location and the insured location is known as geographic basis 

risk, and it is a problem which to this date has not been adequately resolved. 

Third, the process to model single, joint, or geographic risk profiles is 

computationally intense and requires the manipulation of large amounts of weather 

data.  The computational intensity is unto itself a problem and the pursuit of an 

algorithmic, generally applicable, and flexible tool to assist in computation and 

analyses is unto itself a worthwhile pursuit. Thus, in order to design and price weather 

insurance for multiple or single events with independent or joint risks, while taking 

into consideration basis risk, a major contribution of this research is the design and 

web placement of a computer program which we refer to as Weather Wizard. 

This thesis extends the existing literature in three ways: by introducing an 

interactive web tool for further analysis, by providing a measure of joint weather 

events in regard to pest risks, and beginning analysis of geographic spread of risk. 

 

Internet Tool 

The first contribution of this thesis is the development of an internet tool to 

facilitate analysis of weather observations.  Given the virtually limitless number of 

possibilities for contract design, a flexible and accessible tool was needed to facilitate 

understanding of the nuances thereof.  Thus, through a grant from the Risk 

Management Agency (RMA) of the U.S. Department of Agriculture (USDA), the 

Weather Wizard website was born. 

Weather Wizard contains data from the (NOAA) for over 25,000 stations 

across the U.S., with observations stretching back more than 100 years in some cases.  
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It contains information on four different weather indexes – rainfall, high temperatures, 

low temperatures, and mean temperatures.   

The advantage of offering the functions of Weather Wizard in a web format is 

the absolute transparency it offers.  Although not allowed to display individual 

weather observations, it does allow any argument made in an academic context to be 

instantly verified by anyone with an internet connection.  All of the functionality 

presented in this thesis has been programmed into Weather Wizard, and it is possible 

to retrace the exact steps taken in analysis. 

Furthermore, Weather Wizard not only allows accessibility but allows the user 

absolute flexibility to select the parameters for analysis.  Too often weather 

management tools – like the MSI Guaranteed Weather website – only offer 

observations from the most recent years (starting 1950) and in certain weather stations.  

Some of the major variations we have seen occurred in periods like the Dust Bowl of 

the 1930s, and to censor data before a certain date is to remove a major source of 

information.  Likewise, Weather Wizard allows for the selection of any weather 

station for which the NOAA provides data, no matter how few years of data exist (a 

decision that will have important implications for the discussion on geographic basis 

risk.) 

Although Weather Wizard has until now been used mainly by researchers in-

house at Cornell University, it has the potential to be used by not only researchers at 

outside institutions but the principals in the contract themselves.  Weather Wizard is 

not intended to be a commercial enterprise, but the concepts used are of undoubted 

interest to the insurance and financial industries. 
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Joint Risk 

 As valuable as a weather index might be, it does not include all of the 

potentially valuable information that we may have about growing conditions at a 

specific station.  Any attempt to mitigate local basis risk by examining the 

weather/crop yield relationship is necessarily incomplete without considering the 

interaction between heat and precipitation stress events, as the presence of one often 

compounds the negative effects to crop yields.  Indeed, Mittler (2006) states that 

plants subject to a combination of weather risks will have a “molecular and metabolic 

response … [that] is unique and cannot be extrapolated from the response of plants to 

each of these different stresses applied individually.” 

 In addition, risk criteria for weather index insurance are often ill-defined and 

therefore subject to imperfect hedge ratios.  By taking our risk parameters directly 

from the scientific literature and basing our yield loss estimates on crop damage rather 

than a production function we may avoid some of the more serious problems with 

weather index insurance.   

 

Geographic Basis Risk 

Berg and Schmitz (2008) state that “geographical basis risk could probably be 

reduced substantially by utilizing the information of several surrounding weather 

stations instead of only the nearest one.”  With the wealth of data available via 

Weather Wizard, it is possible to begin analysis of geographic basis risk. 

Currently, farmers in rural locations would be expected to purchase weather 

index insurance indexed to a certain weather station in close proximity to their farm.  

This station would need to have similar weather patterns and be well-established with 

many years of data to accurately price historical frequencies.  Unfortunately, the 



 7 

choice is not always clear as to which station would properly mimic the risk 

conditions present at the farm, or if a distant location will even be able to properly 

mimic risk at the farm site in question. 
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Figure 1: Daily maximum temperature observations for Ithaca, NY and three closest 

weather stations for June-August, 1998. 
 

For illustration, Figure 1and Figure 2 use the exact same data on different 

scales.  Figure 1 shows daily temperatures moving in virtual lockstep for Ithaca, NY 

and the three closest stations from the period June 1st – August 31st.  However, when 

we censor that data to consider a risk event (temperatures in excess of 85° F), the 

distribution becomes very different, and the differential in risk events become more 

apparent.  A farmer in close proximity to the Cortland weather station received far 

more exposure to high temperatures than a farmer in Ithaca, revealing an ambiguity 

for any farmers located in between the two stations (which are 20 miles apart.)  But 
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this example is just in a small geographic area for a single growing season, and an 

effort needs to be made to look at the problem of geographic basis risk in a more 

systematic fashion. 
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Figure 2: Daily temperature observations censored to display potential risk events. 

 

Organization 

Chapter 2 provides a background of conceptual issues in weather index 

insurance, provides a technical definition for weather index insurance contracts, and 

outlines the current state of research. 

A full treatment of the Weather Wizard website is presented in Chapter 3, 

which was published in the April 2008 issue of the Agricultural and Resource 

Economics Review. 
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Chapter 4 considers the simultaneous occurrence of risk events with regard to 

specific plant disease risks: Karnal bunt of wheat, Stewart’s disease and silk cut in 

corn.  In each case, risk parameters are derived from the plant disease literature and 

adapted to price insurance premiums based on the historical incidence of weather 

patterns and disease infection rates. 

Our task in Chapter 5 was to uncover a systematic relationship in the spatial 

relationships between stations and begin to price contracts for locations where no 

weather station exists, and whether or not risk premiums can be correlated to simple 

geographic variables. 

Finally, a summary of major points and concepts is presented with conclusions 

in Chapter 6. 

For reference, two appendixes are included after Chapter 7, one with code 

samples of Weather Wizard, and one with technical specifications used in the creation 

of the website. 
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Chapter 2 – Conceptual Issues In Weather Index Insurance 
 

Although we refer to weather index insurance as a single concept, to do so 

glosses over the complexity therein.  There are a great many options for writing 

contracts based on a few simple weather indexes, and that is in part because of the 

vastly different natures of the indexes.  The raw data for temperatures and 

precipitation is distributed in very different fashions and any contract written must do 

so within the parameters of the variability of the index while also keeping in mind the 

specific risk requirements of the insuree. 

For illustration, the following two figures – Figure 3 and Figure 4 – illustrate 

temperature and rainfall, respectively. 
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Figure 3: Daily maximum temperature observations for two year period (Jan 1st 2000 

– Dec 31st 2001) at Ithaca, NY station (with confidence  intervals.) 
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Figure 4: Daily precipitation observations for two year period (Jan 1st 2000 – Dec 31st 

2001) at Ithaca, NY (with confidence intervals.) 

 

Daily maximum temperature observations are cyclical throughout the year, 

peaking in July and reaching a nadir in January and February.  The gray confidence 

intervals do not reflect a constant variance as the variance in summer temperatures is 

much less than winter, but is somewhat contiguous.  It may differ from season to 

season but does not contain any obvious spikes during which individual days are 

considerably more variable than others. 

Rainfall measurements, by contrast, reveal a fairly constant mean throughout 

the year.  The variability decreases in the winter months, which is probably due to the 

fact that precipitation in Ithaca will often instead be counted in the snowfall data for 

those months.  Certainly we can say that the variability is not as contiguous as 

individual days will often have abnormal levels of variance, probably due to the 

effects of a few large observations.  (We can see one here in the second year of study – 

Ithaca recorded 3.9” of precipitation on September 25th, 2001)  The presence of rain is 
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episodic and unpredictably random in its invocation, and the variability includes the 

zero value in all instances because of the large number of observations in which there 

was no daily rainfall. 

We want to properly design insurance products to cover a rare event.  The 

rarity itself is variable, whether it be a 1 in 10 year event or a 1 in 20 year event, all 

monies paid out by the policy must also be paid in.  A properly designed insurance 

product will not only provide an accurate measure of risk but also consider the 

requirements of the policy holder.  This becomes difficult when we consider all of the 

potential parameters in a weather contract, frequency, intensity, location, and duration. 

It is the variable distribution of these risk events that we want to insure against, 

and they may be designed in several ways.  One example comes from the World Bank 

project underway in Malawi, which offers drought insurance to subsistence farmers.  

For rainfall amounts under a certain threshold (120 mm), the policy pays a variable 

amount until a lower threshold (50 mm) of rainfall is reached, at which point it is 

considered that the crop was a total loss and further compensation in unnecessary. 

 
Figure 5: Payoff schedule for precipitation risk event (from Shirley 2008) 
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Contract Design – Temperature Contracts 

We design contracts to insure against specific risks that are known to have an 

adverse effect on crop yields using a burn-rate historical frequency model.  For 

temperatures, these take two forms - degree-day contracts and daily temperatures - and 

likewise for precipitation we may write contracts for both daily and cumulative 

precipitation. 

The degree-day contracts are based on the models established for the energy 

industry and are designed to accumulate for any temperatures above or below a 

benchmark value.  As mentioned above, the energy industry considered 65° F to be a 

useful benchmark value, above which Cooling Degree Days (CDD) are accumulated, 

and below which Heating Degree Days (HDD) are accumulated even though common 

sense might dictate that “Cooling” Degree Days be observed in cooler temperatures 

below 65° F.  This distinction originated because temperatures above 65° F are 

considered to require energy for cooling and below which require energy for heating.  

In agriculture we define an additional degree day index, the Growing Degree Day 

index, which accumulates for temperatures above 50° F, although given the flexibility 

of the methods presented in this paper any benchmark value may be entered. 

The mathematical definition of degree day indexes is thus: 





T

t
tDMaxCDD

1
]0,65[  





T

t
tDMaxHDD

1
]0,65[  





T

t
tDMaxGDD

1
]0,50[  

Where Dt is the temperature on day t and T is the total number of days in the 

event in question.  The cumulative degree-day index is then compared against a strike 
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value, which operates similar to an option contract as both calls and puts may be 

written. 

 

The generalized payout functions are similar and differ only in terms of the 

benchmark value and direction of accumulation.  The payout function for CDD is 

given by: 

dDDDDfDDMaxCDDPayout T )()0,65(][    

Where   is the payout multiplication parameter and f(DD) is the density 

function of the statistical distribution of degree days.  (Full discussion on   is in the 

Payout Options section.)  For f(DD) we may insert several different types of function.  

For this thesis, we use a burn rate analysis based on historical frequencies, but other 

researchers have used a log-normal distribution (Cao and Wei 1999) or (). 

For historical burn-rate analysis we may rewrite this payout function not as an 

integral but as two nested addition functions. 


 


N

n

T

t
ntDMax

N
CDDPayout

1 1
, ]0,65[1][  

Where N is the number of years for which we have data, and Dt,n is the daily 

temperature value for day t in year n.  This will give us the average number of degree 

days for the given date and year range at a particular station.   

For daily temperature contracts, instead of an accumulation of degree days we 

define a specific event risk each period for which the temperature observation is above 

or below a certain threshold.  For example, we might consider a heat risk event as 

temperatures above X degrees for Y days, where X is a relatively high temperature 

like 85° F and Y is a period which is determined to result in crop damage for heat.  We 

calculate the number of non-overlapping events within the date range for which these 

criteria are met and multiply the payout amount by that number, up until a maximum 
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set by the user.  The final payout is determined by the average number of observed 

risk events across the entire range of years. 

For example, if we are looking at 14-day heat waves, only two events are 

possible in the month of June, since the events are non-overlapping.  Each year will 

have either 0, 1, or 2 observed events, and the average of this number will determine 

the actuarially fair premium when multiplied by the payout parameter  . 

 

Contract Design – Precipitation Contracts 

Daily rainfall contracts are identical to the daily temperature payouts in that 

specific events are defined by a comparison of daily values.  The difference is one of 

scale, in that the index is not in degrees but inches. 

For example, a drought might not be defined as a period without any 

precipitation at all, but under a small threshold amount for each day.  Using a daily 

rainfall contract, we might define a drought as X consecutive days with rainfall below 

Y inches, where Y is a value like 0.05” and X is a value assigned to reflect the number 

of days beyond which crops would suffer from an absence of moisture.   

Cumulative rainfall contracts share some similarities with the degree-day 

contracts, in that they are both accumulating values across a date range.  However, 

cumulative rainfall differs in that multiple events may be selected, just as in the daily-

type contracts, whereas the degree-day contracts are by default across the entire date 

range.  If the insuree desired a contract in the cumulative rainfall mode similar to the 

daily rainfall mentioned previously, the X entered would be the total rainfall across a 

date range, regardless of the daily values.  Just as in the daily measurements, these 

events are non-overlapping and only a certain number could happen in any given year.   

For example, we might define a drought as less than X” total across Y days. 
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Payout Options 

The contract options allow for some flexibility in payout amounts.  For the 

daily temperature and rainfall contracts, the payoff is calculated for each observed 

event, and some differentiation in the pricing is achieved by allowing for multiple 

events.  In other words, the severity of a year can be assessed by the number of risk 

events occurring and insurance premiums can be adjusted accordingly.   

However, for the degree-day, and to a lesser extent the cumulative rainfall, we 

cannot use this method because the index accumulates across the entire date range.  To 

price the premium using this method would result in a series of binary payments in 

which the criteria was either fulfilled or wasn’t.  The solution to this is to offer a 

“Unit” payout which pays out based on the severity of the season in question.  For 

severe results 

For example, let’s say we set the strike value in a CDD contract to be 100, but 

observe 150 degree days in a given period.  Under the “Lump Sum” option, the payout 

would be a straight sum, but for the “Unit” payout it would be multiplied by 150/100 

= 1.5 to arrive at the final value.  In this way we may adjust the payout amounts to 

reflect the severity of a season.  An illustration of this may be found in Figure 5 above, 

which also has a ceiling above which the payout does not vary, as it is assumed that 

any rainfall below 50 mm will result in total crop failure. 

 

Commercial Purveyors 

For real-world examples, MSI Guaranteed Weather LLC 

(http://www.guaranteedweather.com/), a commercial purveyor of weather index 

insurance, provides functionality similar to Weather Wizard, but offers many 

examples for heat and precipitation products for industries including agriculture, 

construction, energy, health, and leisure.  Some sample weather products include: 
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 Insurance for barley growers for excessive precipitation with payoffs 

for each three consecutive days with total precipitation >= 0.35 inches, 

for up to nine events. 

 A policy designed to insure against excessively cold days which 

interrupt construction projects.  Payoff of $50,000 for each day in 

which the low temperature is <= 10° F in excess of 10 days in any 

given year. 

 A policy for a theme park that wanted to insure against lost revenue for 

rainy days.  For any day in excess of 8 days in which the rainfall was 

more than 3mm, the park was paid $25,000. 

 

If risk conditions may be precisely defined, it is very easy to price these 

insurance contracts from the data, but therein lies the difficulty, as it may not always 

be said with certainty that the observed historical frequency of any given event will 

allow for accurate pricing of an insurance policy. 

Indeed, the underlying weather index is not a simple reflection of downside 

risk.  The difference between the payoff of the insurance contract and the underlying 

risk is known as basis risk, and is a fundamental problem.  Weather index insurance 

substitutes the problems of adverse selection and moral hazard with the problem of 

basis risk, and any effort to implement weather index insurance is an effort to 

systematically reduce basis risk.   

Basis risk may take two basic forms in the context of weather index insurance.  

First, “local” basis risk refers to the phenomenon by which observed weather variables 

do not correspond strongly with yield losses.  We must recognize that weather is 

undoubtedly a factor in crop production, but must be considered simultaneously with 
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other, often undetectable factors.  Furthermore, stations with a dearth of useable data 

will experience difficulties in accurate pricing. 

The second type of basis risk is referred to as “geographical” basis risk, and 

refers to the spatial relationships of risk in a geographic area and the variance 

introduced at increasing distances from locations where the weather observations are 

known quantities. 

 

Adjusting the Specific Event Paradigm for Joint Risk Events 

As valuable as the study of single event risks is, we also want to consider risks 

that happen simultaneously, especially if they have effects above and beyond those 

caused by their solitary presence – a classic example of a joint risk scenario is a 

combined heat/drought event.  It is easy to tabulate the number of years for each 

individual risk event (e.g. both heat and drought) and arrive at two separate premiums, 

but to do so would ignore the years with combined effects.   

To calculate the joint risk premium for a given event, the risk event is only 

considered to be present in years in which all risk events occurred, regardless of the 

number of times they occurred.  This is because it is impossible, as a general rule, to 

compare risk events of different types without further inquiry into the nature of joint 

risk.  This is especially true when considering that the date ranges are variable for each 

event. 

Weather Wizard has been programmed to do just this, and will tabulate the risk 

but the final output is a percentage of the years in which all risk conditions were 

present.  It is that percentage that we use to calculate the insurance premiums in 

Chapter 4. 
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Chapter 3 - An Internet Based Tool for Weather Risk 
Management 

 

Introduction 

The pricing of weather insurance, and more generally the enumeration of 

weather risk, is not an easy task. Data are not so easily accessible, and assessing the 

data in terms of all of the possibilities of risk is burdensome (Campbell and Diebold 

2003, Changnon and Changnon 1990). Furthermore the numbers of possibilities are 

virtually endless, and what might be an insurable weather risk at one location may not 

be insurable at another. It is for this reason that academic research has focused so 

heavily on the general rules of probability that govern loss and weather 

insurance/derivative premiums rather than making broad generalized statements about 

application (Turvey 2005). 

There are two gaps in the literature. The first is rudimentary.  The literature on 

weather risk management as cited above focuses more on insurability than on how 

weather interacts with agricultural production and farm households as a source of risk. 

The idea that weather and crop yields represent covariate risks is taken as given and 

the effects of climate and weather variance on crop production has long been 

understood (Bardsley, Abey, and Davenport, 1984; Changnon, 2005 ; Huff and Neill, 

1982; Runge, 1968).  A more complete understanding of how covariate risks evolve in 

a production system, even at the conceptual level, can provide invaluable insights to 

the practitioner and theorist.  In this paper we present such a model.  It is not a precise 

model, nor are we in a position to empirically validate the model, but it does provide 

the requisite insight to understanding covariate risk and how covariate risks interact 

with farm livelihoods to create an insurable condition. 
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The second gap, and the focal point of this paper, is the measurement of 

weather risk and the insurability of weather risk. Despite recent interest in weather 

insurance, the idea of insuring weather risk as an alternative to crop insurance is not 

new (several articles predating 2000 that made such propositions include Changnon 

and Changnon, 1990; Gautman, Hazell, and Alderman, 1994; Quiggin, 1986; Patrick, 

1998 ; Sakurai and Reardon, 1997). Since 2000, a variety of  weather insurance 

models, propositions, theorems, and structures have been proposed, but there is little 

agreement on how weather risk should be defined or how weather insurance should be 

priced [Alaton, Djehiche and Stillberger, 2002, Alderman and Haque, 2006, Cao  and 

Wei, 2004, Considine, (undated), Davis, 2001, Dischel, 2002, Geman, 1999, Jewson 

and Brix, 2005, Leggio, and Lien, 2002, Muller and Grandi, 2000; Nelken, 1999,  

Richards, Manfredo, and Sanders, 2004, Turvey 2001, 2005, Zeng, 2000]. 

Applications of weather insurance in North America, Europe and developing 

economies are varied and include numerous important contributions to a range of 

issues including agricultural production risk, food security, poverty alleviation, 

irrigation insurance, intertemporal risks and so on (Alderman and Haque 2006, Hao 

and Skees 2003, Hazell, Oram and Chaherli 2001, Hazell and Skees 2006, Hess, 

Richter and Stoppa 2002, Lacoursiere 2002; Leiva and Skees 2005; Mafoua and 

Turvey 2003, Martin, Barnett and Coble 2001, Muller and Grandi 2000, Skees, Hartell 

and Hao 2006, Skees, Gober, Varangis et al 2001, Stoppa and  Hess 2003, Turvey, 

Weersink, and Chiang 2006, Vedenov and Barnett 2003, Veeramani, Maynard and 

Skees 2004). 

Part of the problem is that use of the term ‘weather risk’ is far too ubiquitous 

and agricultural economists seeking agreement on a definition of weather risk will 

ultimately be disappointed. As will be discussed presently, the term implicitly includes 

considerations of frequency, intensity, and duration. The gap extends when one asks 
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“what risk?” and expands even further when one tries to determine, evaluate or 

measure the risk. It is no easy task and perhaps too much of the academics’ energy is 

used on measuring the risk rather than defining the risk and applying the risk. This is 

at the core of this paper. In this paper we describe a web-based application program 

called Weather Wizard (www.weatherwizard.us) that was developed along the lines of 

Turvey (2001) for specific event temperature and precipitation risks and Turvey 

(2005) for degree-day temperature risk. The program accesses heat and precipitation 

data for all NOAA weather stations (currently available to 2001) in the United States 

and can be used to investigate weather related risk and calculate insurance for virtually 

all possible single and multiple specific events. 

The main contribution of this research is the outreach tool itself. Weather 

Wizard can be accessed by researchers, crop insurance specialists, educators and 

practitioners. In a very short period of time measured in minutes rather than days or 

weeks, the user can select any location, define a specific event, and enumerate that 

risk. Furthermore, users can evaluate up to five joint precipitation and temperature 

risks as well as basis risk for a specific weather event for all weather stations within 50 

miles of a specific location. 

The paper proceeds as follows. First, we provide a conceptual overview of 

weather risk in the theory of production. Second, we focus on the meaning of “weather 

risk” and then we describe in general terms the underlying philosophy of the computer 

program and the meaning of specific event risk. In the Appendix, the program is 

illustrated in terms of screen displays and application. 
 

Economics and Weather Risk 

The central focus of this paper is the presentation of a web-based computer 

program designed for the measurement of weather risk. To motivate the need for such 
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a program, this section outlines the relationships between production economics, 

weather risk and farm livelihoods to show how specific weather events interact as a 

source of risk and how these risks can be mitigated using weather insurance. We make 

two assumptions. First we assume that the specific weather event is treated as a 

stochastic input into the production function and second, livelihood is measured in the 

context of a whole farm or household production function.  We do not assume a 

stochastic production function that simply adds randomness to a deterministic 

function. Rather, we assume that the weather event creates randomness in the 

production coefficients themselves so that marginal productivity is endogenously 

random. Keeping in mind that any production function will do, we start with a 

classical form of production: 

(1)         2
1 2 3,ω =α ω +α ω -α ωY x x x  

where x  is an ordinary input (e.g., fertilizer) , and  iα   are random 

coefficients of the production function. If one were to assume that 

 ω ωi i i i       is a function of some specific weather event ω  defined over 

some (known or unknown) probability distribution function that describes the specific 

event risk, then the stochastic production function is 

(2)       2 2
1 1 2 2 3 3 1 2 2,ω α +β α +β α +β ε ε εY x x x x x        , 

with expected production being 

(3) 2
332211 )()()],(,[ xxxYE    

Under the independence assumption, yield variance, conditional on weather 

risk, is defined by 

(4)      1
2 31 2 3

2 2 2 2 2 2 2 2 2 2 2 4
ε ω ε ω εσ β σ σ β σ +σ β σ +σY x x    . 

In words, the standard errors of the production coefficients comprise two 

influences. The first, we argue is the influence of weather risk, and the second is an 

unrelated risk. It is of course assumed that if weather insurance is to be viable as a risk 
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management tool then the portion of the standard error attributable to weather must be 

significantly and proportionately higher than the non-systematic risk component. In 

any case, weather risk influences the production of agricultural products  by causing a 

shift in the location of the production function as well as its slope and shape, and the 

nature of these risks are contingent on the ex ante choice of x . This choice will be 

based upon average or expected evolution of crop-specific weather events throughout 

the growing season. The interaction of ideal weather events with optimum input levels 

can lead, ex post, to higher yields and marginal productivity, while poor weather 

interacts to reduce marginal productivity and yields. In other words the production 

function coefficients are random, and the final yield depends on the specific weather 

event conditional on the initial deterministic choice of x . 

 
The effect on total productivity due to a change in  from its mean is  

(5)        1 1 1 2, α α αY x
x x

   
   

   
  

   
. 

Because   is a random variable the ex post distribution of crop yields would 

appear as: 

(6)      |
l

u
Y x Y f d     . 

The marginal product function of  ,Y x   is given by 

(7)      2 3

,
α 2α

Y x
x

x


 


 


 

and basing ex ante input choice on the expected value of  , the expected yield 

maximizing choice of input is  
 

2*

3

α
2α

x



 . In reality the actual marginal productivity 

of x  is a stochastic function.  
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(8)      2
2 3, α α

2
Y x

x
x

  
  

  
 

   
, 

which can also be expressed as a conditional marginal product function 

(9)      
*

l*

u

|
MPP |

Y x
x f d


  






 . 

In other words, weather is not simply a passive actor in agricultural 

productivity, but can change not even the total productivity by shifting the production 

function up or down, but also the marginal productivity. Nor is it a simple distribution 

about some level of expected yields, but a factor that can change the shape of the 

production function throughout the range of x . The efficiency of production is also at 

risk. Given a prior choice of x  and no bounds on  i  ,  2 ,
0

Y x
x







 
 such that 

ex post production relative to input choice can exhibit increasing, constant or 

diminishing returns to scale, even though in the deterministic model, only diminishing 

marginal productivity would be observed. 

We now define a weather contingent livelihood function that can be thought of 

as a stochastic household production function. Its general form is given by 

(10)        , ,
u

l
H Y h Y f d       . 

Weather risk enters the livelihood function in two ways. First, as discussed 

above, agricultural productivity is affected directly by weather risk, but other aspects 

of livelihood can also be affected. For example, if the farm is financially leveraged, 

short on working capital or requires investment, liquidity shortfalls from adverse 

weather events can have economic impacts beyond production. Thus the more flexible 

form of weather risk management is not necessarily tied to agricultural productivity, 
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but household livelihood. From this we can extract the coverage for specific event 

weather by extracting from  H   the value for   that satisfies a minimal livelihood 

level  *H 


,  * -1H 


. Therefore, a downside weather risk policy will be 

established according to 

(11)    *E Max ,0 E Max ,0H H          


, 

where   converts units of weather into units of currency. A convenient 

measure is *

H







. 

It is this interaction between production and farm household well-being that 

motivates weather risk as an area of study and makes weather insurance useful. 

However, the actual measurement of weather risk is not easily accomplished. The 

characteristics of weather risk are discussed in the next section and the tool developed 

to measure weather risk and weather risk insurance follows. 

 

Frequency, Duration and Intensity of Specific Weather Events 

The preceding discussion uses the term “weather risk” in a very general way. It 

is in fact more complex than a simple definition of a random variable as described. 

The intent above was to provide a conceptual basis for the measurement of risks that 

follow. For purposes of this paper and the description of Weather Wizard, we will use 

for determining the expectation of loss the working definition that a specific event risk 

is uniquely defined at any location by the functional relationship between duration, 

frequency, and intensity. Duration is a definition in time ranging from a day, week, 

month, year or more or less. The model additionally uses the concept of multiple 

events, which infers a second dimension of time. The first dimension therefore 

measures the period over which the weather event is to be investigated while the 

second dimension is a time frame within that period. For example, duration could be 

measured by any non-overlapping 21 day period between June 1 and August 31. There 
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is a possibility of four non-overlapping events. If it were measured on a 7-day basis, 

there could be as many as 12 non-overlapping events. 

Frequency measures the probability scale defined in terms of the frequency 

that the event occurs over the specified duration.  Frequency here can be based on 

historical fact (often referred to as the burn rate) or by a defined distribution (e.g., an 

assumption of log normality). 

Intensity is a measure of scale and refers to the quality or condition under 

investigation and thus requires a point of reference from which quality can be 

measured and a directional indicator by which condition can be measured. The former 

will usually be measured by a quantitative criterion such as rainfall or temperature, 

and the condition is normally defined by whether the actual quantity is above or below 

the point of reference. 

But the terms in their totality must remain flexible. For example a degree-day 

derivative product is normally defined for a single event in which the event length 

equals the period over which the product is being measured. Extreme heat or heat 

waves regarded as a sequential number of days over which daily temperatures exceed 

a criterion can be defined as multiple events. Likewise, precipitation events based on 

daily or cumulative precipitation can be multiple or single events and so on. 

Care must also be taken in establishing the criteria. Specificity is important. 

For example we do not in any of our models facilitate insurance or risk management in 

terms of averages because averages, unto themselves are meaningless. Specific events 

as we have defined them are based wholly on the sequencing and timing of weather 

patterns for which full information on the frequency, duration and intensity is 

required. 

The final element is loss value. Unlike crop insurance for which a measured 

loss can be ascertained by the actual weight of crop harvested times a price, the loss 
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value from yield-independent weather risk is less obvious. By “yield-independent” we 

mean that any payout from weather insurance is provided based on recognized 

weather measurements at specific weather stations rather than yield loss. It is of course 

assumed that there is some a priori recognition that the weather event will be highly 

correlated with yield loss and that the loss value can be estimated or approximated so 

that volumetric loss is approximated more or less. This might allow for some 

speculation on the part of the insured but such speculation does not constitute moral 

hazard or adverse selection as it is normally construed in the insurance literature, since 

the premium calculated is actuarially consistent with the weather event. Nonetheless, it 

serves little purpose to even consider specific events near the average since such 

insurance will ultimately be expensive and largely uncorrelated with yield loss. 

Rather, weather insurance should focus on events of the extreme for which, at least 

within the realm of memoried probability, would most surely result in volumetric and 

economic loss. For example, it makes little sense for an insured to select a contract 

insuring against a heat wave based on daily high temperatures in excess of 75° F when 

loss does not occur until temperatures exceed 90° F; or insuring against less than 1” of 

cumulative rain over 7 days when it is known that the crop can withstand 21 days with 

no or little rain. 

On this basis we use two dollar-valued measurements. The first is a lump sum 

or binary payout which simply pays an agreed sum if the event occurs (regardless of 

intensity) and zero otherwise. The second is a unit payout, similar to options payouts 

or crop insurance payments in which the payout for each event increases linearly with 

intensity. The binary option is simple and convenient and is most applicable when the 

event itself, rather than the intensity of the event is what causes risk. For example, it 

matters not whether a frost event is measured at 31° F or 20° F, the damage is still 

done, or if it rains less than 2” in 21 days, irrigation costs will still be incurred whether 
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rainfall is 0.5” or 1.99”. The unit payout is most useful when volumetric losses are 

known to increase with intensity - for example, if crop losses increase proportionately 

(or approximately so) as crop heat units fall below or rise above the boundaries of 

normal crop heat units; or losses increase as cumulative rain falls below a stated 

quantity, and so on. 

 

Assessing Weather Risk and Weather Risk Insurance with Weather 
Wizard 

We provide in the Appendix screen shots of the Weather Wizard program.  In 

this section we provide, as a matter of illustration, heat and precipitation insurance 

results obtained entirely from Weather Wizard. We use for our example the city of 

Ardmore, Oklahoma (Carter County), which has continuous daily heat and 

precipitation data from 1902 to 2001. Perhaps more than this is its location between 

Oklahoma City and Dallas, Texas, which places it centrally in the areas affected by the 

Dust Bowl activity of the 1930s, providing thus a historical perspective on extreme 

weather events that is represented by the data and which will be familiar to most 

readers. We compare to this weather risk recorded at Cornell University at Ithaca in 

central New York. 

 

Heat Insurance 

Insurance based on heat is far more common in the energy industry than found 

in agriculture, but for many agricultural commodities extreme heat can cause 

volumetric decline in yield, quality loss, energy consumption, and livestock death. The 

events we speak of are not ordinary events but as indicated above, extreme events that 

persist for extended periods of time.   
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Table 1 provides a summary of degree-days for Ardmore and Ithaca. Recall 

that degree-days in the energy industry are measured relative to 65° F and corn heat 

units relative to 50° F, but this need not be viewed as a meaningful economic standard. 

Heat stress in agriculture does not in most cases occur until temperatures are well in 

excess of 80° F, so it makes little sense to include temperatures below the stress levels. 

But stress must also be measured relative to climate. The degree-days measured in 

Table 1 are obtained by adding together the difference between the (91) daily high 

temperatures in excess of the degrees identified in the first column. The mean degree-

days are provided in column 2, the standard deviation across years in column 3, and 

the historical maximum and minimums in columns 4 and 5.  For the same temperature 

measures the degree-days are strikingly different between Ardmore and Ithaca. In 

Ardmore, a southern location, for example the average degree-days based on 90° F is 

458 with a standard deviation of 201, but for Ithaca it is only 13 with a standard 

Degree-Day Based On
Degrees Fahrenheit (F)    

80° F 1269 246 1909 520
85° F 837 233 1454 344
90° F 458 201 1007 84
95° F 184 137 595 0

100° F 48 57 247 0

80° F 218 111 508 26
85° F 67 58 235 2
90° F 13 19 83 0
95° F 1.4 4.23 27 0

100° F 0.14 0.76 6 0

Ardmore, OK

Ithaca, NY

Degree Days Std. Dev. Maximum Minimum 

Table 1: Historical Degree-Day Comparison for Ardmore, OK and Ithaca, NY, June 1- 
August 31. Degree-Day measures based on temperatures above daily high temperatures 

ranging from 80° F to 100° F. 



 30 

deviation of 19.  Clearly any heat insurance policy designed for Ithaca is not 

applicable to Ardmore. 

 
 

Table 2: Degree-Day Heat Insurance Premiums based on 85° F Degree-Days 
($1,000/degree) 

Strike Premium Strike Premium
850 89,520 50 30,041
900 70,270 75 20,054
950 53,739 100 13,514
1000 40,307 125 8,518
1050 29,818 150 4,730
1100 21,473 175 2,108
1150 15,224 200 797
1200 9,974 225 135
1250 5,943
1300 3,339
1350 1,615
1400 573

Ardmore, OK Ithaca, NY

 

  

Weather Wizard in fact was designed with such differences in mind. Weather 

insurance cannot be applied in an ad hoc fashion, but must be computed at each 

individual location. The effect is seen in Table 2 which provides premiums for an 85° 

F degree-day excess heat contract for June 1-August 31 for Ardmore and Ithaca. Not 

only are insurance strike or coverage levels evaluated at Ithaca irrelevant to the 

climatic conditions at Ardmore, but the cost differences are also significant. Given the 

range of degree-days in Table 2 for 85° F it makes little sense to consider insurance 

that is close to the mean for it is unlikely that economic damage would be significant 

at that level. In addition to choose a strike of say 1,000 for Ardmore or 100 for Ithaca 

comes at such a high cost because at these levels some amount of payment will appear 

in almost every year. It is the extreme events with low probability but high economic 

loss that matters. In Ardmore considering such insurance at a strike of 1,350 or higher, 
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or in Ithaca 200 or higher, would probably be more sensible.   This discussion also 

raises the issue of what is an extreme event. Is it a 1 in 100 year event, 1 in 50 year 

event, or 1 in 10 year event? There is no set answer but Weather Wizard can be used 

to identify the risks. 

 

 

 

The use of degree-days as a measure of risk represents a broad seasonal 

measure of risk. It is only specific to the time frame in question (e.g., June 1-August 

31) and represents more or less the intensity of broad temperature risks such as a 

summer that is hotter than usual or cooler than usual. An alternative approach is to 

examine specific events. Table 3 presents results for the specific event of a heat wave 

in which the daily high temperature exceeds 90° F for N consecutive days (the event 

length).  Weather Wizard can also compute risks of multiple events. For example for a 

7-day heat wave there are 13 possible non-overlapping 7-day events, and for a 35-day 

Event length 
(days)

Premium 0 Events 1 Event 2 Events 3 Events 4 or More events

Ardmore, OK
7 7,469 0.00% 1.04% 2.08% 4.17% 92.71%
14 2,729 6.25% 10.42% 26.04% 27.08% 30.21%
21 1,427 16.67% 39.58% 29.17% 13.54% 1.04%
28 823 37.50% 43.55% 17.71% 1.04% 0.00%
35 510 55.21% 38.54% 6.25% 0.00% 0.00%

Ithaca, NY
2 1,865 40.50% 16.20% 17.60% 5.40% 20.30%
3 757 60.80% 18.90% 12.20% 1.40% 6.70%
4 324 77.00% 16.20% 4.10% 2.70% 0.00%
5 95 92.00% 6.80% 1.40% 0.00% 0.00%
6 68 93.00% 7.00% 0.00% 0.00% 0.00%
7 27 97.00% 3.00% 0.00% 0.00% 0.00%
8 14 99.00% 1.00% 0.00% 0.00% 0.00%

Table 3: Multiple event heat-wave frequencies (events per 100 years) based on Daily High 
Temperatures exceeding 90° F for N Consecutive Days and showing risk differences 

between Ardmore and Ithaca. 
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heat wave there are only 2. The results in Table 3 are based on the maximum possible 

events. Again, one must rethink what constitutes a heat wave. A 7-day event will 

occur at least once a year in Ardmore, Oklahoma and in fact there is a 92.71% chance 

of four or more such events, but a 7-day event in Ithaca NY is extremely rare 

occurring only 3 of every 100 years. Likewise a 9-day heat wave has never occurred in 

Ithaca (given the data available) but in Ardmore in 38 of every 100 years there is a 

possibility that daily high temperatures will exceed 90° F for 35 straight days and in 6 

of every 100 years this could occur twice.  

When considering weather insurance one must also consider how agriculture 

has adapted to the climates in each region. Irrigated cotton and wheat in southern 

Oklahoma is an agricultural adaptation to that region’s climate as much as dairy, 

orchards, grapes for vines, corn and soybeans are an adaptive response to the climate 

of the northeast. Furthermore, grain and oilseed hybrids have been developed for 

specific heat units that are adaptive to a region’s climate. It is when climate exceeds 

the bounds of adaptation that weather insurance is most valuable. 
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Ithaca, NY

Average 9.08" 10.74"
Std Dev 4.57" 2.77"

Less Than Lump 
Sum

Unit Payout Frequency Lump Sum Unit Payout Frequency

2" 10.1 0.3 0.0101 0 0 0
3" 50.51 26.26 0.0505 0 0 0
4" 101.01 97.37 0.101 0 0 0
5" 212.12 246.77 0.2121 0 0 0
6" 303.03 487.78 0.303 13.51 2.97 0.0135
7" 383.84 838.48 0.3838 81.08 50.81 0.0811
8" 474.75 1276.06 0.4747 162.16 167.3 0.1622
9" 575.76 1798.28 0.5758 310.81 408.51 0.3108

Ardmore, OK

 

Precipitation Insurance 
 
 

Weather Wizard also calculates an array of specific-event risks based on 

precipitation. Again regional adaptability and differences need to be considered.  

Table 4 illustrates premiums and risk for cumulative rainfall between June 1 and 

August 31. This is a 91-day event and is the most basic of precipitation insurance 

contracts. There are two insurance calculations in Table 4. The first is that if the event 

happens then a $1,000 payment would be made. The second is based on a unit payout 

which means that a payment is made on the positive difference between the coverage 

level and actual cumulative rainfall only. For this reason the lump-sum insurance is 

more expensive at lower precipitation levels and less expensive at higher precipitation 

levels.  

 In Ardmore the cumulative rainfall is 9.08” with a standard deviation of 4.57”, 

while in Ithaca the average cumulative rainfall is 10.74” with a standard deviation of 

2.77”. Clearly rainfall is less prevalent and more variable in southern Oklahoma than 

central New York.  Furthermore, southern Oklahoma is far more drought prone than 

Table 4: Seasonal Cumulative Precipitation Insurance Premiums, 91 Days June 1 
and August 31, for Lump-Sum and Unit Payouts ($1,000/inch) 
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Central New York with a 1 in 100 year event of less than 2” of rain over the 91-day 

period, and 30.3% chance of cumulative rain falling below 5”. In contrast the data 

available for Ithaca indicates that in no year did cumulative rainfall in Ithaca fall 

below 5”. In Ardmore there is a 57.58% chance of less than 9” of rainfall but in Ithaca 

the chance is only 31.08%. For this reason the insurance costs for drought insurance is 

much higher in Ardmore than Ithaca, and again one must consider the practicality of 

offering drought insurance in an area prone to drought. 

 

 

 
 

Table 5: Multiple Event Cumulative Rainfall Insurance ($1,000 lump sum or 
$1,000/inch 

Event Length (Days) 0.25" 0.50" 0.75" 1.00" 1.50" 2.0"

7 1584 3369 5341 7380 11809 16505
14 504 1141 1824 2626 4430 6361
21 224 521 876 1200 2162 3071
28 104 239 418 609 1064 1588
35 63 150 247 362 633 952
42 23 57 96 186 346 589

7 7828 8565 9182 9626 10111 10424
14 2798 3293 3747 4162 4566 4949
21 1354 1687 1990 2222 2566 2828
28 636 869 1080 1313 1485 1808
35 384 525 687 798 1050 1253
42 162 232 354 475 707 879

7 784 2061 3718 5712 10501 16124
14 101 319 713 1051 2391 4153
21 19.5 64 158 245 663 1304
28 7.3 16 43 67 202 416
35 2.03 6 13 15 57 157
42 2.03 5 9 0.41 22 53

7 5635 7919 9365 10351 11675 12351
14 838 1675 2581 3243 4473 5257
21 162 432 676 1000 1932 2541
28 54 81 203 324 730 1203
35 14 27 54 81 230 486
42 14 14 14 27 95 189

Cumulative Rainfall

Ardmore, OK / Unit Payout

Ardmore, OK / Lump Sum Payment 

Ithaca, NY / Unit Payout

Ithaca, NY / Lump Sum Payout
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Table 5 provides examples of specific event risks for different risk criteria. The 

values are premiums based on lump sum and unit payouts as well as the maximum 

number of possible events. Here the specific event risk is defined by event lengths 

from 7 to 42 days.  Close examination of the results indicate the significance of the 

timing and sequencing of rainfall in determining insurance premiums for specific 

event risks. Reading across the rows it is clear that the cost of precipitation insurance 

will increase as the event criteria increases. Insuring against receiving less than 0.25” 

in any 21-day period will cost only $104, $636, $19.50, and $162, in comparison to a 

policy with a 2” requirement costing $3,071, $2,828, $416, and $2,541. This is simply 

reflecting the fact that it is far less likely that cumulative rainfall will be less than 

0.25” than less than 2.0”.  Looking down each column reflects the temporal risk. It is 

far more likely that rainfall in any 7-day period will be less than 0.25” than in any 42-

day period. 

 

Summary 

Space constrains all the possible considerations for weather insurance and 

weather risk management with Weather Wizard. The degree-day derivative worksheet, 

for example, was not even presented, but a word on the pricing of degree-day 

insurance using the Black-Scholes model is warranted. The algorithm underlying the 

degree-day ‘derivative’ approach is outlined in Turvey (2005), and in that paper 

considerable space is dedicated to a reasoned comparison of a number of methods 

including that proposed by Richards, Manfredo, and Sanders (2004). It is not the final 

word for sure, for there is still considerable debate on the role of the market price of 

risk [assumed zero in Turvey (2005)] and the use of equilibrium pricing models in 

general.  
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Having said that, the intent of this paper was not to provide the mathematical 

or structure of weather insurance or derivative pricing but to present a tool that can be 

used to investigate specific event weather risks and to price the value of mitigating 

such risk. Not presented in this paper are newer developments to the program that 

include two new algorithms. The first follows through on the definition of risk. In 

many circumstances yield loss may not be due to a single event but to joint events. 

Rust, nematodes, molds, and insect infestations often arise from combined events such 

as a wet spring followed by a cool summer, or a dry spring followed by a hot summer 

and so on. Again the risk combinations are specific. As at the time of this writing up to 

five separate events can be defined and the joint probabilities assessed. We believe 

that measuring intertemporal covariate risks such as excess heat jointly with rainfall 

shortfalls by season or event is clearly the next step in designing insurance instruments 

to manage weather risks. 

The second innovation not presented in this paper is the evaluation of basis 

risk. At the time of writing this particular algorithm is near completion. It too is 

important. One of the major concerns with weather insurance is the problem of basis 

risk which refers to the risk differential between a defined location such as a farm, and 

the point of measurement or weather station. If there is too much variability across 

space and time then weather insurance may not capture the true intended covariate 

risk. The Weather Wizard algorithm defines a radius of up to 50 miles around a given 

location (zip code) and identifies all weather stations within the defined circle. The 

weather station locations can be viewed using Google Earth. Risk contours emanating 

from the central location will provide a mapping of the risk. Furthermore, a regression 

algorithm using the basis difference between the central location and the weather 

stations as the dependent variable and distance, altitude difference and directional 

indicators (e.g. NW, NE etc) is included to provide an explanation for the basis risks. 



 37 

Finally, the emergence of weather risk management through insurance or 

derivative instruments has given rise to a different perspective on risk and risk 

management. In production economics the measurement of yield risk defined by mean 

and variance is no longer standard practice. The impact of risks in the extreme and 

covariate risk should now be defined by specific events and this is no trivial matter. As 

illustrated in the heat and precipitation examples at Ardmore, Oklahoma and Ithaca, 

New York specific event risks are such that between any two locations comparison is 

useful for academic and policy purposes only. As a practical matter, no common 

statement of risk between the two locations can reasonably be asserted; the timing and 

sequencing and frequency of specific weather event risks in Ardmore will have a 

totally different effect on the production economy than the timing and sequencing and 

probability of the same specific event risk defined at Ithaca. This new frontier in risk 

management demands specificity over generalization in order to be meaningful. It is 

with this in mind that Weather Wizard was developed. 
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Chapter 4 - The Measurement and Insurability of Plant 
Disease Risks 

Traditional crop insurance is an ex post prospect, which is to say that contracts 

are designed to reimburse agricultural producers for losses incurred.  However, 

traditional insurance products are subject to problems of adverse selection, moral 

hazard, and prohibitive administrative costs, the majority of which are borne by 

taxpayers. (Skees 2008)  There exists a growing body of literature devoted to the study 

and analysis of weather derivatives, sometimes called weather index insurance, as it 

applies to agricultural producers because of the inherent advantages of the pricing 

model.  Not insurance in the strictest sense, hedging risk using an objective measure 

like weather conditions as a proxy for losses removes subjective judgments in 

assessing losses, removes the burden of proving losses, and all but eliminates the risk 

of moral hazard. (Richards et al, 2004; Turvey, 2001, 2005, 2008; Odening et al 2007) 

However, previous studies of weather derivatives focus on a single risk event, 

even though stress events that happen in combination often have negative effects more 

onerous than stress events happening independently. Some stress events may be 

considered jointly for accurate compensation of losses, such as heat stress and 

drought, which have a strong negative effect in correlation (Mittler 2006).  One 

application of this “joint risk” analysis is the pricing of insurance premiums for 

specific crop disease risks which flourish in observed combinations of temperature 

and/or rainfall.  By deriving the historical frequency of these specific events which are 

conducive to plant disease infections and growth, we may price premiums for 

insurance products dependent solely on an objective weather index.  It may be 

possible to insure for joint risk events directly by insuring the underlying weather 

events that bring about the determinable loss.   
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Furthermore, because payoffs in the form of weather derivatives are predictive 

rather than reactive, they may be able to provide a mechanism for additional 

protection by paying off before the problem has reached a critical stage.  For example, 

risk of Stewart’s disease incidence for the growing season is increased by temperate 

conditions over the winter months preceding it.  By carefully studying this risk and 

providing timely payoffs designed to provide capital for prophylactic insecticide 

treatments, losses may be mitigated instead of merely insured. 

What follows is an attempt to extend existing methodology and pricing of 

weather derivatives in respect to joint risk events, with examples derived from the 

literature on plant disease pathologies.  We will provide analysis for three plant 

pathologies (Karnal bunt, silk cut and Stewart’s disease), which includes an 

enumeration for each disease of requisite weather conditions, infection risk, and 

insurance premium.  The weather conditions are gleaned from existing literature in 

plant pathology and are subject to analysis by the interactive web-based risk 

management tool first introduced in Turvey and Norton (2008), Weather Wizard, 

which is used to quantify climatic risk for agricultural producers.  Weather Wizard is 

designed to study the historical frequency of user-entered weather events through 

exhaustive scrutiny of four weather indexes (three temperature, one precipitation) 

from 25,000 NOAA weather stations representing all 50 states – an estimated 500 

million daily observations in all.  It has been designed with the goal of providing the 

utmost flexibility, so that any weather index may be used at any station where data is 

available.  All of the results presented in this paper may be duplicated by the reader in 

the “Joint Risk” section of the Weather Wizard website at 

http://www.weatherwizard.us. 
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Insurability 

If we define p as the price per bushel of the crop in question, Y as the normal 

yield, and Y* as the yield under stress, the equation for loss is: 

 

Loss = p Max[(Y-Y*), 0] 

 

Calculation of insurance premiums for disease risks must include the following 

parameters: 

 

f (R,T,t): The frequency of a given weather event with respect to rainfall (R), 

temperature (T), and time (t). 

g(Θ): The probability of infection given favorable weather conditions. 

  

From these elements, we arrive at a calculation of our premium: 

 

Premium = g(Θ) f(R,T,t) p Max[(Y-Y*), 0] 

 

The probability f (R,T,t) will be calculated by Weather Wizard from historical 

weather data .  Of paramount importance is the assignment of appropriate parameters 

for analysis.  Unfortunately, we can not always assume that the scientific literature 

will provide the financial context that we need.  Of most concern is developing a 

meaningful date range at which the crop is vulnerable to disease risk; plant 

germination and growth vary from year to year and well-defined date ranges can be 

difficult to come by and by necessity approximations themselves.   

Of secondary concern is accurate modeling of the weather criteria presented in 

the scientific literature.  Ideally, scientific literature would use precise financial 



 41 

measurements like degree days or cumulative rainfall; in reality, we often have to 

“make do” with more imprecise measurements like mean temperatures.   Future 

synergy with plant pathologists on this matter would reap dividends for insurance 

analysis. 

However, in practice the g(Θ) probability function is most difficult to estimate.  

Infection rates vary by the hybrid in question and are affected by the weather in 

natural studies and an artificial rate of inoculation in controlled laboratory studies.  

Furthermore, a large portion of risk is the existing geographic distribution of the 

disease, a variable difficult to model at distributed locations without localized 

knowledge. 
 

Karnal Bunt 

Karnal bunt is a disease caused by the fungus Tilletia indica, which affects 

wheat and wheat hybrids.  First reported in the Indian state of Karnal in 1931 (from 

which it borrows its name), Karnal bunt is now found in many countries in Asia and 

North America, including the United States, in which it was first discovered in 1996.  

Infection will entail the darkening of the seed, with heavy infection resembling a 

“canoe or row boat, dark and sunken along the suture line” with accompanying “foul 

or fishy” odor. (USDA APHIS, 2004)  Wheat is only susceptible to Karnal bunt for 2 

to 3 weeks of its development period, during which cool, damp conditions must 

prevail for infection to occur.  
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Table 6: (After Workneh et al 2008) 
Karnal bunt Variable Mean Standard Deviation
Negative (n = 23) Maximum temperature (° C) 27.17 1.01

Rainfall amount (mm) 0.29 0.35
Positive (n = 30) Maximum temperature (° C) 24.22 0.56

Rainfall amount (mm) 2.34 0.77  
 

Karnal bunt is a disease caused by the fungus Tilletia indica, which affects 

wheat and wheat hybrids.  First reported in the Indian state of Karnal in 1931 (from 

which it borrows its name), Karnal bunt is now found in many countries in Asia and 

North America, including the United States, in which it was first discovered in 1996.  

Infection will entail the darkening of the seed, with heavy infection resembling a 

“canoe or row boat, dark and sunken along the suture line” with accompanying “foul 

or fishy” odor. (USDA APHIS, 2004)  Wheat is only susceptible to Karnal bunt for 2 

to 3 weeks of its development period, during which cool, damp conditions must 

prevail for infection to occur.  

Workneh et al (2008) provide us with our environmental parameters for Karnal 

bunt infection in Olney and San Saba, Texas. Although the 2-3 week period is 

contingent on plant maturity and therefore varies from year to year, the researchers 

provide a series of observations from April 8th to April 25th reproduced in Table 6.  

The observations are aggregated by Karnal bunt positive and negative years, with a 

clear pattern shown of cool, damp conditions in the Karnal bunt positive years.  To 

choose environmental parameters for our study, we will consider the statistical 

distributions of the temperature and rainfall observations.  Karnal bunt negative years 

had a temperature distribution of (25.15° C, 29.19° C) and the relatively cooler Karnal 

bunt positive years from (23.10° C, 25.34° C); a mean temperature for the period less 

than 25° C (77° F) can be inferred as high risk.  Similarly, the rainfall distribution (in 

millimeters) for negative years is (-0.41 mm, 0.99 mm) and for positive years (0.80 

mm, 3.88 mm); rainfall amounts in excess of 1.00 mm/day (1.8 cm or 0.71” in for the 
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entire period) can be inferred to be high risk.  Table 7 provides historical frequency of 

these environmental conditions: 45.2% of years in Olney and 53.8% of years in San 

Saba fulfilled these criteria with both mean temperatures below 77° F and rainfall 

above 0.71”. 

 
Table 7: Frequency of high risk years for Karnal bunt in Olney and San Saba, TX 

 

 

 

A few facts about Karnal bunt allow us to price an insurance premium.  First of 

all, Karnal bunt infection does not have a significant effect on yields or kernel size but 

infected kernels in excess of 3% of yield are said to produce an unpalatable, “fishy” 

odor in the finished product. (USDA APHIS, 2004)  The insurance risk presents itself 

in the strict federal quarantine that will occur upon positive identification of Karnal 

bunt in a wheat crop, a condition which will result in total yield loss (Y* = 0).  Second, 

Karnal bunt is primarily spread through infected seed. (USDA APHIS, 2004)  Rush et 

al (2005) provide us with an assessment of infected fields, and the vast majority of the 

fields surveyed showed a kernel infection rate of less than 0.02%.  (Rush 2005)  If we 

consider 0.02% of seed stock as infected and may potentially transmit the pathogen to 

future generations, we can assign g(Θ) = 0.02, even though the percentage may be 

even lower than this.  If we estimate a normal yield to be 35 bu/acre, and the price of 

wheat to be $9/bu, calculating the insurance premiums for Olney and San Saba, TX, is 

now simple arithmetic and is presented in Table 8. 

 
Table 8: Estimated insurance premiums for Olney and San Saba, TX 

  g(Θ)  f(R,T,t) bu/acre $/bu Y Y* Premium 
Olney 0.02 45.2% 35 $9  $315  0 $2.85  
San Saba 0.02 53.8% 35 $9  $315  0 $3.39  

Years Pos. Total Years Frequency
Olney 19 42 45.20%
San Saba 28 52 53.80%
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The Olney weather station is 243 km (152 miles) due north of the San Saba 

station, at a virtually identical altitude (360m vs. 363m), and yet insurance premiums 

for Olney are considerably lower because of the observed incidence of joint risk 

events.  Indeed, analysis reveals a counterintuitive result for those expecting higher 

temperatures closer to the equator, as mean temperatures in San Saba are 

approximately 3° C (5° F) cooler than in Olney, which (combined with rainfall) would 

entail conditions more conducive to Karnal bunt infection.  As such, underwriters 

insuring against a Karnal bunt quarantine in Texas wheat fields would need to adjust 

premiums accordingly. 
 

Silk cut (And The Need For Clarity) 

Fusarium moniliforme is a fungal pathogen which causes a condition called 

“silk cut” in affected maize ears and is has also been observed infecting other small 

grain cereals such as wheat, sorghum, and pearl millet.  It is known to fill the gaps 

between kernels on the maize ear, and presents itself with lateral splits around the 

embryo of the infected kernel, leading to discoloration and a loss of kernel integrity. 

(Odvody et al 1997)  A Fusarium strain was responsible for direct yield losses of over 

30 percent in Minnesota in 1993. (Ruckenbauer et al 2001)  More seriously, some 

strains of Fusarium moniliforme produce a mycotoxin which has been linked to cancer 

and can cause fatal diseases in livestock. (Munkvold and Carlton, 1997) 

Odvody et al (1997) state the following: 

“High air temperatures, usually with attendant low soil moisture and high soil 

temperatures, were common during crop maturation in 1993, as they were in previous 

years when silk cut incidence was readily detected in vulnerable hybrids. 

Beginning at silking in 1993 (23 May) the occurrence of air temperatures of 

30°C or higher at both sites abruptly increased from <10 h per week to >40 h per 
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week (4 weeks) and again abruptly increased to >70 h per week (6 weeks) until 

maturity in most hybrids at both sites (1 August, kernel moistures <=14%). Air 

temperatures>=35°C occurred for over 20 h per week during the last 2 weeks prior to 

maturity.” 1 

 
Table 9: Prevailing weather conditions for Corpus Christi, TX 

  
CDD (Benchmark = 70 

F) 
Rainfall 

(in.) 
Mean 1,539.08 6.17 

Std Dev 104.66 4.35 
Maximum 1,808.00 17.39 
Minimum 1,254.00 0.19 

     
1993 1,340.00 16.47 

Std Dev from 
Mean   2.37 

 

This example highlights a common problem of disease inference: the language 

of science does not always readily translate into the language of economics and 

finance.  In other words, the specifications are very precise, but not of the nature that 

we can use.  Large-scale analysis of hourly observations is impractical: data from the 

NOAA does contain information on the hour in which it was collected, but precise 

hourly measurements across a growing season are currently not available.  Even if 

they were, the costs of computer memory and processing power of hourly observations 

for 25,000 stations over the last 50-100 years would render any analysis unwieldy, to 

say the least.  Also mentioned are two metrics that are no doubt very important for 

                                                
1 However, this is directly contradicted by the weather data that we have on record for the Corpus 
Christi Airport.  Table 4 indicates that heat events (measured in Cooling Degree Days) were at the far 
end of normalcy at 1.90 standard deviations below the mean, while rainfall measured in cumulative 
inches for the period is 2.37 standard deviations above the mean.  In any case, the year of 1993 could 
only be considered cool and damp compared to other years on record, not hot and dry. 
The most plausible explanation is that some sort of simple error was made in transcribing which year 
was in question, but whatever the reason, it is impossible to model environmental conditions for this 
disease risk given recorded weather conditions in 1993.   
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ecological study, kernel moisture and soil temperatures, but which are useless to us 

without a reliable conversion method or different approach (such as the biological 

models of insect population presented as “bug options” by Richards et al (2005)).  

This paper was written for an audience with different goals than ours and is very 

typical of the scientific literature. 

Given these difficulties, we model for risks as closely as we possibly can.  If 

we know that silk cut is most prevalent in years with high temperatures and low soil 

moisture, we can construct a simple model based on historical weather conditions.  

The Odvody study quoted above describes weather conditions between May 23rd and 

August 1st; for this period, mean Cooling Degree Days (benchmark 70° F) are 1539.08 

and mean cumulative rainfall is 6.17”.  Of course, we are analyzing extreme heat and 

precipitation events, which for the purposes of this example we can consider to be an 

excess of one standard deviation in the appropriate direction – a joint risk event with 

CDD in excess of 1643.74 for heat stress and cumulative rainfall below 1.82” for 

precipitation stress.  When they happen jointly, we might consider that a growing 

season to be high risk for silk cut infection, which happened in 5 of 52 years (9.6%) in 

Corpus Christi, TX.  

If we accept a figure mentioned previously for a yield loss of 30%, the only 

parameter left to estimate is the g(Θ) infection probability function.  Munkvold and 

Desjardins (1997) note that in maize samples in the U.S. from 1988-1995 between 

11% and 96% of kernels were infected with Fusarium moniliforme.  Presumably, the 

only major variation from year to year was weather conditions, and that in favorable 

conditions Fusarium colonization approaches 100 percent.  (g(Θ)= 1) 

Using figures of $7/bu for the market price of maize and 140 bu/acre for 

normal yield, we arrive at a Y of $980/acre.  Potential yield loss due to silk cut is 30% 
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of that, or $294/acre. Favorable conditions were recorded in 9.6% of years, so we 

arrive at a premium of $28.22/acre for silk cut disease. 
 

Stewart’s disease 

Stewart’s disease (Panotea stewartii), also called Stewart’s wilt, is a bacterial 

disease that affects maize and maize hybrids.  The primary disease vector for the 

pathogen is the corn flea beetle, which provides a habitat suitable to survive harsh 

winters in its digestive tract.  Winters that are warm enough to allow large numbers of 

beetles to survive provide high risk for Stewart’s disease in the following growing 

season. 

 

 

The idea of insuring insect risk using derivative products was first presented by 

the “bug options” of Richards et al (2005).  Here, the authors use pest population 

Figure 6: Sites in Iowa selected for study. 
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modeling with a payout on the population density directly.  However, they suggest in 

concluding that weather insurance could be used to offset economic losses from pest 

infestations.  Stewart’s disease is a prime example of how such insurance can work. 

The traditional model for predicting Stewart’s disease is the Stevens-Boewe 

model proposed in 1934, which assigns risk based on the number of winter months 

(December to February) that have a mean temperature above 27° F.   However, a 

model proposed by Nutter Jr. et al (2002) and critiqued by Esker et al (2006), notes 

that the model is more accurate when using temperatures of 24° F instead of 27° F.   

We model this in Weather Wizard with a joint risk study with three criteria: 

one for each month December-February, set to true when mean monthly temperatures 

are above 24° F.  Although the literature provides a sliding scale of risk based on the 

number of months above that temperature, we are merely concerned with the years 

labeled “high risk” in which all three criteria are fulfilled (i.e. all three months had 

mean temperatures above 24° F). 

 

Because Nutter Jr. et al (2002) provides a statewide survey in Iowa instead of a 

locally focused study, sites were chosen across the state to simulate insurance 

premiums in those areas.  Six sites were chosen in Iowa in distributed locations around 

the state, as illustrated in Figure 6.  Sites with the most data were chosen, with 

observations going back to 1902 in some cases.  The results of the joint risk analysis 

are presented in Table 10, with criteria successfully fulfilled anywhere from 4.1% to 

36.1% of the years studied.  Risk for Stewart’s disease is shown to be greater in the 

southern part of the state where warmer temperatures predominate. 
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Table 10: Frequency of high risk years at selected sites in Iowa 

Station Positive Years 
Total 
Years Frequency 

Washington  31 98 31.60% 
Atlantic 18 93 19.40% 
Le Mars 13 97 13.40% 
Grinnell 11 83 13.30% 
Algona 5 95 5.30% 
New Hampton 4 97 4.10% 

 

These results are somewhat contradictory to the Illinois study of Woodward 

and Garcia (2008) who find that basis risk for heat is insignificant when measured 

against yield loss.  As can be seen in the Figure 6, one should be careful not to 

generalize on the specifics of disease risk.  Basis variability, is, or at least can be, very 

significant when it comes to specific disease risks or as Berg and Schmitz (2008) note 

when there is an imperfect relationship between the weather index and the biological 

production process. 

Table 11 contains a list of premiums calculated for the chosen sites from Iowa.  

Four examples for each site were done with an estimated bushel price of $7 and 140 

bu/acre to arrive at Y = $980/acre.  The yield loss due to Stewart’s disease was 

estimated at 10% (Y* = $882) for sweet corn and 100% (Y* = $0) for seed corn (which 

cannot be sold on the export market ).  (Esker 2001)  Two infection probabilities 

(g(Θ)) of 17.4% (“low”) and 79.5% (“high”) were used to illustrate the economic 

impact of using hybrids with varying degrees of resistance (from 1999 data of 

Michener et al 2003). 



 50 

 
Table 11: Estimated premiums for different breeds of corn 

  Risk Sweet/Low Sweet/High Seed/Low Seed/High 
Washington  31.60% $5.39  $24.62  $53.88  $246.20  
Atlantic 19.40% $3.31  $15.11  $33.08  $151.15  
Le Mars 13.40% $2.28  $10.44  $22.85  $104.40  
Grinnell 13.30% $2.27  $10.36  $22.68  $103.62  
Algona 5.30% $0.90  $4.13  $9.04  $41.29  
New 
Hampton 4.10% $0.70  $3.19  $6.99  $31.94  

 

Conclusions 

The majority of crop diseases, pest infestations, and stress originate with 

specific weather events, alone or in combination.  We have presented here a 

prescription for insuring specific disease risks given characteristics of infection 

probability, yield loss, and the historical frequency of the necessary combination of 

environmental conditions needed for pathogen growth.  The ideas presented in this 

paper are sufficiently general, and the analytical tool (Weather Wizard) is sufficiently 

flexible to enable a more thorough analysis of weather risks in combination by future 

researchers.  There are many hurdles to clear before we can fully harness the power of 

the concepts presented in this paper, but the many advantages of weather index 

insurance as a proxy for losses should reward those with the dedication to making 

them a financial reality.  At the very least, this paper serves to demonstrate just one 

facet of the vast potential of weather index insurance as a risk management tool. 

Finally, would farmers be willing to pay for insurance with such specificity as 

presented here?  Musshoff et al (2008) conclude, but in a somewhat different context, 

that farmers do/will show a willingness to pay for weather insurance and add that the 

willingness to pay goes beyond the actuarial price as presented here.  Thus farmers 

would not only pay the fair price for loss, but also any loading that might be added by 
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the insurer.  Additionally we might also consider the role of the risk measures here in 

terms of risk identification by insurers and reinsurers.  These institutions do not face 

single risk as do farmers but a portfolio of risk with sources pooled from many diverse 

areas.  (see Roth et al 2008, Turvey 2005, Miranda et al)  Nonetheless, by pinpointing 

the scientific relationship between weather and plant diseases or insect infestations and 

identifying spatial risk profiling in terms of joint and conditional probabilities, much 

of the ‘moral hazard’ problems in agricultural insurance can be alleviated. 
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Chapter 5 – Weather Index Insurance and the Geographic 
Variability of Risk 
 

While a comparatively large amount of analysis has been expended on the 

local effects of basis risk, or more precisely the weather/yield relationship, very little 

analysis has been done about the geographic nature of basis risk, otherwise known as 

the uncertainty that develops as we increase distance from a known location.  To avoid 

this problem, researchers sometimes base research at sites with constant elevation 

(Richards, Manfredo, and Sanders 2004) and conduct projects only within a small 

geographic radius (such as the World Bank project in Malawi.)  Some researchers 

have even suggested that farmers could hedge risk by purchasing a portfolio of 

weather derivatives for established cities the CME exchange (Woodward and Garcia 

2008). 

Even if we had perfect understanding of how to price insurance premiums at a 

given location, we would not be able to say with certainty how that risk changes 

through space or how to price premiums at geographically varied locations.  A more 

fundamental approach is needed and this paper describes the search for a general 

principle whereby risk could be accurately predicted by simple, widely available 

geographic variables.  By understanding the nature of how risk changes through space, 

we may assess the accuracy of insurance policies written at discrete locations and 

arrive at strategies for wider use of weather index insurance. 

Traditional GIS methods of spatial interpolation like inverse distance 

weighting are ill-fitting for several reasons.  The insurance payout is a function of 

temperature, but spatial interpolation methods bias the variability, and it is the 

variability that as insurers we are most concerned with.  Second, it is not so much the 

geographic or spatial relationships that are of interest, but the geographic or spatial 
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relationships given certain weather conditions.  In other words, the mean for a known 

location is only of value at that location, but we need to analyze the spread of risk in a 

distributed geographic area as different weather conditions prevailed on a year by year 

basis.  The spatial interpolation method for solving this would presumably be to 

interpolate a map for each individual year of study and combine them to make a 

composite.  This would provide a measure of risk at each location, but this would not, 

however, allow us to price payouts for unknown locations given a series of 

observations in future years. 

 
Table 12: Correlation of average of nearby stations of cumulative weather indexes 

Heat 
Base 

Station 

Avg. of 
Surrounding 

Stations Difference Correlation 
CDD Index (85° F): 68.41 71.51 -4.5% 0.8849 
Heat Risk Event (Payout): $22.37 $27.31 -22.1% 0.7751 
      
Rainfall     
Cumulative Rainfall (in.): 10.65 10.36 2.6% 0.7457 
Drought Risk Event 
(Payout): $20.95 $22.61 -7.9% 0.6897 

 

For illustration, some summary statistics are presented in Table 12.  Listed are 

the aggregate temperature and rainfall observations for Ithaca, NY for June 1st – 

August 31st along with the average observation for all stations within a proscribed 

radius (100 miles for temperatures and 67 miles for rainfall.)  The overall averages are 

similar but of course mean values are of little interest.  When we examine the yearly 

variation as measured by the average correlation between the base station (Ithaca) and 

every other station, we find that heat is highly correlated but rainfall less so.  A 

familiar pattern is that when we introduce risk events (defined later), the variability 

increases, not only in the averages but also in the correlation.  The information 
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presented here is also for relatively common events over long date ranges; presumably 

these numbers would weaken if a more specific time frame or risk event were used.   

The challenge presented is to improve the accuracy of the yearly correlation.  

Although it is tempting to view this data as a sterile set of statistics, insurance policies 

would have profound real-world implications for farmers holding a policy.  It is 

crucial to accurately reimburse them in a year when they face actual losses.  By taking 

the payout schedule for all stations and adjusting for geographic variables, we can 

potentially price insurance contracts for any given point on the map.  Because of the 

vast number of stations located around the country, our hopeful result is a simple 

equation in which we can build upon this simple methodology and adjust for the 

differences in distance, altitude, and polar coordinates to arrive at a payout for any 

unknown location. 

 

Defining the geographic area 

Weather Wizard is flexible as to the distance of the radius extending from the 

base station, but there are a few requirements that must be considered for a successful 

trial.  A number of stations are needed to provide contrast, but there are few stations 

within a short distance (10 miles) of each other. 

However, as we increase the radius of the circle, the area of the circle increases 

exponentially.  Barring any obstacles like oceans, as the radius of the circle increases, 

the number of stations increases exponentially.  Because we compare each station 

against each other in each year, this also dramatically increases the number of 

comparisons that are made, as given by the following formula: 

yearsnnscomparison *
2

)1(* 
  
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Where n is the number of stations within the selected geographic radius.  The 

total is subject to missing and incomplete data; many stations have only limited data, 

and with longer time horizons the potential of missing data within years becomes 

greater.   

 
Table 13: Number of comparisons in Ithaca, NY for a given number of miles 

    Rainfall     

Miles Stations 

Potential 

Comparisons 

Actual 

Comparisons   

10 2 225 93 41.33% 

15 4 750 223 29.73% 

20 12 5850 801 13.69% 

25 17 11,475 1628 14.19% 

30 25 24,375 3,304 13.55% 

35 35 47,250 6,921 14.65% 

       

   Heat    

Miles Stations 

Potential 

Comparisons 

Actual 

Comparisons   

10 2  225 23 10.22% 

15 2  225 23 10.22% 

20 4 750 105 14.00% 

25 6 1575 220 13.97% 

30 10 4125 525 12.73% 

35 16 10,200 1,366 13.39% 

 

Perhaps in acknowledgement of the periodic, unpredictable nature of rainfall, 

observation stations are more densely placed and often contain more years of data.  It 

is very likely that temperature observations are placed more sparsely to reflect that 

temperatures are considered to vary continuously over a geographic area. 

The discrepancy in data for the different weather types is very pronounced, but 

such factors as length of contract and number years selected will also affect the 
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percentages in Table 13.  These percentages are somewhat low because of a relatively 

long date range.  A 92-day window is not unreasonable but offers more opportunities 

for data to be missing.  Also, more importantly, very few stations have data 

continuously to 1926; most stations date to the late 1940s, and it’s not uncommon for 

a station to have as little as one or two years of data for the entire 75 year period.  If 

we selected a shorter contract length (say, 15 days instead of 92) fewer stations would 

be disqualified for missing data; likewise, if we only considered years after 1949, the 

percentage of actual comparisons would improve markedly.  This discussion is 

intended to underscore the fact that even though we might define an identical 

geographic area, there is often a very different spatial distribution of data within that 

area depending on the parameters we select. 

The advantage of this comparison-based model is that it treats all weather 

stations equally and is able to include otherwise useless data.  In this model the data 

will be compared on a year by year basis, regardless of how many years of data are at 

a particular station.  The weather stations that only have a few years of data help 

provide contrast for spatial distributions of risk even though it is impossible to 

accurately price a contract for that station individually. 

Also of pertinent interest is what these details entail for selecting a radius to 

study.  As the radius increases, the area of study increases exponentially (according to 

the area of a circle – πr2), increasing the number of stations accordingly, which has 

vast ramifications for the number of potential comparisons according to the equation 

above.  Since Weather Wizard is hosted on a web platform, there are limitations to the 

amount of data that it can process in a single iteration - selecting a radius requires the 

user to select a value large enough to offer meaningful results that will also fit within 

the technical possibilities. For this paper, we are using a radius of 50 miles, which is 
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large enough to allow the inclusion of sufficient stations for both heat and 

precipitation, but small enough to run properly on the Weather Wizard website. 
 

The Regression Equation 

The goal when formulating this regression equation was to try and predict the 

difference in payouts in any given year between any two locations using simple 

geographic variables.   

 

(P1 – P2) =  ß1 φ  + ß2 (α1 – α2) + ß3 (ω1 – ω2) +  ß4 (λ 1 – λ 2) + ß0 +  ε 

 

Where Px are payouts, φ is the distance between the two stations, αx is the 

altitude at each station, ωx is the latitude at each station, and λx is the absolute value of 

the longitude of each station (as longitudes in the western hemisphere are traditionally 

negative.) 

This equation is primarily a difference equation, where we are attempting to 

explain the difference in payouts by the difference in altitude and geographic 

coordinates.  At first blush, it seems as if the φ variable, distance, is ill-suited for 

inclusion.  However, by imposing a condition of P1 >= P2 we may ensure symmetry 

between the left and right sides of the equation; only if (P1 – P2) is strictly positive will 

it reflect a potential linear relationship with φ.  Furthermore, distance is a 

trigonometric function of the individual latitude and longitude variables but is highly 

correlated to neither. This is because it is a joint function of latitude and longitude, and 

a degree of longitude is not a constant surface measurement.  It is more useful to think 

of the latitude/longitude coordinates as reflecting directionality, and distance as an 

adjustment for increasing variability at increased distances. 
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The equation for distance is given thusly: 

 

φ  =  R * Cos-1(Sin(ω1) * Sin(ω2) + Cos(ω1) * Cos(ω2) * Cos(λ 2 – λ 1)) 

 

Where R is a constant reflecting the radius of the sphere we can use to 

normalize to standard units; the constant for miles is 3963.1. 

What we are left with is a description of how each station compares to each 

other in three-dimensional space, not only in distance (φ ) but with x and y coordinates 

given by the latitude (ωx) and longitude (λ x), and z coordinate given by altitude (αx).  

The initial hypothesis of these coefficients follows along the lines of common sense.  

Distance (φ) should be positively correlated in both heat and precipitation, meaning 

that as distance increases, so do the differences in premiums.  For rainfall, the rest of 

the geographic variables are indeterminate, given that coordinates and/or altitude 

would seemingly have no effect on the sporadic nature of rainfall.  For heat, however, 

we might expect that altitude and latitude have a negative effect on risk; or, in other 

words, heat risk is decreased by either an increase in elevation or more northerly 

locations. 

 

Defining the Risk Events 

Choosing an event that is sufficiently general yet meaningful for all sites is 

difficult, because there is no such thing as generality, as Chapter 3 tells us.  A heat 

event in upstate New York is incomparable to a heat event in a warmer climate.  The 

sheer variation of climates in America requires us to tailor our heat risk events for 

each station. 
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To start, evidence indicates that temperatures above 85° F correlate with crop 

yield losses.  (Schlenker and Roberts 2006) Using this as a benchmark, we accumulate 

a CDD index above 85° F with the mean CDD at the base station serving as the strike 

value and a sliding payout for values above that.  Payouts are calculated at each station 

for every year data is available.  Figure 7 shows the payout schedule for Ithaca, NY, 

where mean CDD is 68.41. 
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Figure 7: Schedule of payouts for heat risk event 

 

Six weather stations were selected at sites across the country according to 

quality of data and the absence of major geographic obstacles within 50 miles, such as 

large bodies of water or international borders.  Mean CDD for those six stations vary 

from 68.41 at Ithaca, NY to 720.63 in Davis, CA and are listed in Table 14. 

 

Table 14: Mean CDD (85° F) at each location 

Station 

Bridgeport, 
NE  Bethany, MO  

Greenville, 
AL  Davis, CA  Ithaca, NY  

Mosquero, 
NM  

Mean CDD 
(85 F) 442.13 350.74 603.18 720.63 68.41 282.05 
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For precipitation, the contract is identical for all sites.  We use a drought event 

of less than .1” of precipitation over any 14 day period.  The payoff will occur on a 

sliding scale with $10 accumulating for each hundredth of an inch less that .1”, to a 

maximum of $100 per event if no rainfall was recorded.  Up to three non-overlapping 

events are possible, and if more events occur, the variable payoffs are averaged to 

normalize the payoffs to three events.  Figure 8 shows the payoff schedule due to the 

observed rainfall in any 14-day period, but yearly payoff amounts range from $0 to 

$300 because of the possibility of multiple events. 
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Figure 8: Schedule of payouts for drought risk event 
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Regression Results 

Table 15: Regression results for heat risk event 

Station 
Bridgeport, 

NE Bethany, MO 
Greenville, 

AL Davis, CA Ithaca, NY 
Mosquero, 

NM 

# of 
Years 104 75 66 83 74 71 

Mean 
CDD 442.13 350.74 603.18 720.63 68.41 282.05 

       

Stations 
within 50 

miles 19 25 21 44 35 16 

N 4300 4417 3052 7255 5953 1831 

        

R² 0.0103 0.0419 0.0010 0.0157 0.0525 0.4921 

Distance -.215 (-2.22)** .118 (1.46) .094 (0.64) .285 (1.99)** .035 (1.32) .394 (1.86)* 

Alt. Diff. -.011 (-2.45)** -.138 (-8.86)** -.020 (-1.03) -.020 (-6.86)** -.008 (-4.67)** 

-.210  

(-23.79)** 

Lat. Diff. .428 (0.13) 

14.897 

(3.03)** -7.660 (-1.42) 

31.278 

(5.28)** 

-15.926  

(-14.41)** 

60.886 

(3.90)** 

Long. 

Diff. 

-9.286  

(-2.59)** 

15.125 

(3.52)** -2.933 (-0.49) 

18.269 

(4.33)** 7.852 (9.88)** 

84.168 

(9.84)** 

Constant 
52.298 

(11.42)** 

35.226 

(9.48)** 

66.999 

(8.74)** 

80.507 

(11.99)** 

20.724 

(15.17)** 

69.946 

(8.27)** 

 

The first thing we see when looking at these numbers is that with one 

exception the R² values are abysmal, which is to say that these geographic variables 

provide a very poor fit for payoff differences.  Most of the difference in payoffs is 

collected in the constant, even though the coefficients are quite often significant, and 

unpredictably so.  Localized conditions can be expected to have effects on the 

latitude/longitude coefficients, as directionality within different locations might reflect 

different geographic characteristics.   
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Table 16: Regression results for precipitation risk event 

Station 
Bridgeport, 

NE Bethany, MO 
Greenville, 

AL Davis, CA Ithaca, NY 
Mosquero, 

NM 

# of 

Years 104 75 66 83 74 71 

       

Stations 
within 50 

miles 27 33 41 70 79 35 

N 7515 8693 10895 22393 34846 5770 

        

R² 0.0104 0.0082 0.0131 0.0236 0.0074 0.028 

Distance .074 (2.34)** .177 (4.94)** .0001 (0.00) .049 (8.66)** .127 (8.91)** .216 (5.12)** 

Alt. Diff. -.014 (-7.23)** -.027 (-3.63)** .017 (4.13)** 

-.003  

(-18.51)** .009 (13.36)** .002 (0.86) 

Lat. Diff. .308 (0.25) 1.821 (0.77) 2.345 (1.84)* 

-1.616  

(-6.58)** 3.090 (5.26)** 

-16.058  

(-4.73)** 

Long. 

Diff. 

10.054 

(7.99)** 

10.929 

(6.03)** 

13.975 

(11.21)** 

-1.234  

(-6.74)** -.741 (-1.68)* 9.48 (4.26)** 

Constant 
57.898 

(34.48)** 

54.71 

(31.94)** 

63.995 

(41.25)** 

14.614 

(48.68)** 

32.353 

(43.74)** 

66.293 

(30.71)** 

 

The two enduring relationships that can be deduced are the effect of altitude on 

heat risk and the effect of distance on rainfall payoff differences.  The coefficient for 

altitude for the heat risk regressions is consistently negative and significant, which 

makes sense – we would expect heat risk to decrease as elevation increases. The effect 

of altitude on rainfall payoffs is unclear, as one might expect – rain perhaps doesn’t 

consider the altitude of the land it’s falling onto.   The coefficient attached to distance 

for rainfall is, with one exception, significant and positive, meaning that as distance 

increases the difference in the payoffs does too.  Or, as distance increases, the payoffs 

become less accurate.   We might expect a similar result for heat, as stations further 

apart produce more differentiated results, but it seems that temperatures vary 
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continuously throughout a geographic region and the directionality measures are often 

of more interest. 

These results may seem to be providing little beyond the very obvious – heat 

risk decreases with altitude because of lower temperatures at higher elevations; 

likewise, rainfall correlations decrease with distance because of the unpredictable, 

periodic nature of rainfall.  However, there is little evidence for other seemingly 

obvious implications, like the relationship between latitude and heat risk – we would 

expect that heat risk would decrease with increased latitudes, but in fact only one of 

the six coefficients is negative and significant.  In fact, it is somewhat remarkable how 

little we can say about the relationship between simple geographic variables and 

differences in downside risk.  It has been assumed by many researchers that it would 

be possible to provide a statistical solution to the problem of geographic basis risk; 

these results belie the fact that weather may indeed defeat the ability of statistical 

methods to predict. 
 

Improving the Fit 

There are a few transformations that we can do to improve the fit, which is not 

purely an academic exercise if our goal is to make out-of-sample predictions for 

unknown locations.  The easiest way to improve the fit of the regression is to include 

dummy variables for the weather stations and years.   

The justification for including dummy variables is thus: it is easy to postulate 

that each station is to some degree idiosyncratic; these dummy variables are intended 

to catch the effects of nearby lakes or valleys, or anything else that can’t be captured 

by the simple geographic variables that we use.  The dummy variables for each year 

isolate the amount of variability in any given year because the dependent variable is 
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strictly positive.  This will account for any years in which payout differences were 

more pronounced.  Both of these dummy variable types may also be included in a 

pricing algorithm as well, although if we are pricing a premium for an unknown 

location for which there have never been weather observations, we cannot use the 

variables which account for station idiosyncrasies. 

In addition, the geographic variables don’t explain the difference in payouts 

very well, but there is some evidence that the problem is one of scale.  The difference 

equation presented earlier in this paper used (P1 - P2) as the dependent variable, which 

means that it is only very easy algebra to move the P2 variable to the right side of the 

equation, where we can fit it with a coefficient.  This improves the regression fit 

markedly but necessitates difficult interpretations of the equation.  First, if the 

coefficient attached to the P2 variable is significantly different than one, it is difficult 

to interpret what that means, because P1 and P2 are identical in nature and the matter 

of which one is written first depends only on the (P1 >= P2) condition.  Second, if 

we’re trying to make an out of sample prediction, we can’t assume that the P1 variable 

will be larger than P2, which may bias the results. 

However, trying to model these effects for predictions at unknown locations 

becomes problematic.  Of course we cannot provide an adjustment for a station 

idiosyncrasy at an unknown location.  Most seriously, if attempting to make a 

prediction with P1 on the right side of the equation we cannot guarantee the strict (P1 

>= P2) condition.  These methods may have promise, but it is still undetermined 

whether or not they are statistically viable. 
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Table 17: Results of transformations in the regression equation 

 

Out of Sample Predictions 

 
Table 18: Out-of-sample predictions 

Table 18 shows the results of out-of-sample predictions of payoffs in Ithaca, 

NY for heat and rainfall including several different types of effects – first with the 

simple geographic variables, then including the station and year dummy variables, and 

finally when moving P2 to the right side of the equation.  The predictions with 

geographic variables are quite bad, but improve with the addition of the station and 

year effects.  The strongest effect is obtained by moving P2 to the right side of the 

equations, which may make sense in some ways – the weather observations are the 

strongest piece of information we have about prevailing conditions in any given year 

and by taking the difference we often censor that important piece of information.  In 

Heat Prediction Obs. Average Difference Correlation 
Geo. Variables Only $25.27 $64.39 -154.8% -0.4422 
With Station & Year Effects $32.20 $64.39 -100.0% 0.4623 
And moving P2 to right side $67.30 $64.39 4.3% 0.8956 
       
Rainfall      
Geo. Variables Only $37.34 $64.17 -71.8% 0.4294 
With Station & Year Effects $51.33 $64.17 -25.0% 0.5217 
And moving P2 to right side $66.81 $64.17 4.0% 0.6201 

Original Incl. Station Incl. Year Incl. Station & Year P1 as Y All Effects

Rainfall 
DF 34841 34690 34768 34617 34840 34616
R² 0.0074 0.1788 0.1056 0.2412 0.2644 0.4435
Distance .127 (8.91)** .104 (7.05)** .122 (9.02)** .102 (7.13)** .133 (9.37)** .088 (6.22)**
Alt. Diff. .009 (13.36)** -.027 (-4.35)** .007 (10.50)** -.0243 (-3.98)** .009 (12.87)** -.028 (-4.56)**
Lat. Diff. 3.090 (5.26)** 8.155 (0.81) 3.049 (5.37)** 10.343 (1.06) 2.999 (5.12)** 17.119 (1.76)*
Long. Diff. -.741 (-1.68)* 12.824 (1.73)* -.534 (-1.26) 19.805 (2.75)** -.607 (-1.38) 17.933 (2.50)**
Constant 32.353 (43.74)** 23.671 (8.27)** 25.335 (2.50)** 10.075 (1.03) 30.445 (40.35)** 10.707 (1.11)
P2 -- -- -- -- 1.413 (110.38)** .419 (26.27)**

Heat
DF 5948 5889 5875 5816 5947 5815
R² 0.0525 0.2294 0.5404 0.6134 0.6771 0.8720
Distance .035 (1.32) .064 (2.21)** .008 (0.46) .086 (4.11)** .037 (1.53) .070 (3.69)**
Alt. Diff. -.008 (-4.67)** -.028 (-3.35)** -.008 (-6.60)** .022 (3.59)** -.0122 (-8.14)** .035 (6.14)**
Lat. Diff. -15.926 (-14.41)** -7.074 (-0.65) -11.570 (-14.69)** 35.801 (4.55)** -17.146 (-16.81)** 35.523 (4.97)**
Long. Diff. 7.852 (9.88)** -24.862 (-2.52)** 5.436 (9.62)** 5.653 (0.78) 7.853 (10.71)** 12.452 (1.88)*
Constant 20.724 (15.17)** 22.048 (5.34)** 8.27 (1.51) -28.215 (-4.82)** 13.025 (10.16)** -37.615 (-7.06)**
P2 -- -- -- -- 1.124 (110.29)** .717 (57.20)**
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any case, it must be said that the geographic variables seem to be useful only in the 

optimization of an already robust distribution – in any successful prediction presented 

herein, the “heavy lifting” is done by the station, year, and P2 effects.  And in the case 

of rainfall, this entire exercise has resulted in payouts that are in fact slightly worse 

than the very simplistic approach taken in Table 12 of simply averaging payouts for 

each station within 67 miles of Ithaca. 

Of course, there are a few caveats that must be mentioned, the first being the 

difficult mathematical interpretation of moving the P2 variable to the right side of the 

equation.  Also of note is that this prediction was only performed when Ithaca was the 

station listed first (i.e. the P1 variable), the consequence of which is that the payouts 

are significantly higher ($64.39 and $64.17) than the long-term averages as presented 

in Table 18 ($20.76 and $20.87).  Whether this has implications for the end results is 

an important consideration. 
 

Summary 

There are two important implications of this paper.  The first is that geographic 

basis risk is a fundamental and persistent problem. Efforts to mitigate risk at diverse 

locations, even using a portfolio method, will introduce too much variability and best 

practice is to place a weather station in close proximity to the location of interest.  This 

result is somewhat surprising, in that many researchers have written papers assuming 

that a solution to the problem of geographic basis risk was eventually forthcoming.  

However, the search for a general principle failed, which is of interest in and of itself. 

The second implication is what this entails for modeling, which is often 

dependent on spatial variables for interpolating unknown values on a map.  What these 

results show is that traditional spatial interpolation methods that depend on spatial 
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relationships, like inverse distance weighting or kriging, may not be accurate in a local 

context.   

 Some researchers are interested in macro-level relationships using satellite 

imagery or radar data, especially in countries which have little historical data to rely 

on.  What these results show is that even if rainfall can be accurately quantified at one 

location, the geographic distribution of risk cannot be accurately described and will be 

prone to error.  This is especially true for rainfall, which has the statistically 

significant, positive coefficient with respect to distance.  Further research into 

predicting risk given known quantities must occur before spatial interpolation methods 

are used.  
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Chapter 6 – Conclusions 
The study of weather index insurance is still in its formative stages and many 

technical and theoretical hurdles are yet to be overcome.  This thesis starts with 

weather index insurance at its most basic level and extends the existing literature 

through the examination of sophisticated pricing methods including joint risk and 

geographical basis risk.   

My goals in writing this thesis were to extend the methodology available for 

researchers and practitioners of weather index insurance, not only by introducing a 

publicly available empirical tool like Weather Wizard but also in the methodologies 

presented in the “joint risk” and “geographic basis risk” chapters.  Hopefully the 

results and methods exhibited in this thesis will be a boon for progress in the area of 

weather index insurance, which has promising applications in improving the 

livelihoods of people in poor developing countries. 

Prior to this thesis, it was assumed that there would be a computational answer 

to the problem of geographic basis risk, but based on the results presented here that 

notion has been challenged if not completely dispelled.  It is a noteworthy result that 

no statistical correlation could be found within small geographic areas and that best 

practice is to place a weather station at each insurable site.  The problem of geographic 

basis risk is shown here to be a persistent and fundamental problem of weather index 

insurance. 

Similarly, existing literature on the topic of weather index insurance has 

neglected to consider the presence of simultaneous risk events and their possible 

insurability.  While the methods presented in this thesis are necessarily an outline that 

would need to be modified by insurers, the concepts are of undeniable value for risk 

management purposes.  Deciphering weather criteria for the seemingly limitless 
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number of crop pathogens, for instance, would be of immense value for both scientific 

and insurance purposes. 

However, because of the amount of data available via Weather Wizard, this 

thesis relies heavily on computational methods that might not be available in places 

that have poor records, like developing countries.  The methods presented in this 

document provide a theoretical background to fundamental problems (such as the 

confirmation of the influence of distance on rainfall correlation), but have more value 

in guidance than practical use.  Although the methods presented in this paper represent 

a genuine step forward for the study of weather index insurance, there is still much 

work to be done. 

 

Future Research 

The development of the Weather Wizard website is likely a continuous process 

and will need to adapt and grow as the theoretical basis behind weather index 

insurance strengthens.  It will be a challenge, to say the least, to maintain current 

technology and data without a major contribution from a future graduate student.  

However, Weather Wizard will likely be instrumental in processing the large amounts 

of data necessary for further research into pricing weather index insurance using the 

historical frequencies of the burn rate model, of which there are numerous 

possibilities, especially in the area of basis risk (both local and geographic.) 

In addition, another look at the problem of geographic basis risk using more 

sophisticated spatial econometrics might prove fruitful.  The findings of this paper 

point the way forward but it is possible the relationship between simple geographic 

variables and correlation might be improved using more sophisticated models than 

ordinary least squares (OLS) regression. 
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Chapter 7  - Technical Specifications  
 

Software Vendors 

Weather Wizard is written in ASP.NET using Microsoft Visual Studio 2005.  

The database platform used is Microsoft SQL Server 2003.  On certain pages, data 

may be exported to Microsoft Excel format for graphing functions and more in-depth 

data manipulation.  Third-party software includes NMath Core 2.2 and NMath Stats 

2.1 by Centerspace Software for advanced regression statistics.  Weather Wizard 

incorporates Zip Code data for weather station selection supplied by Datasheer L.L.C. 

through their website http://www.zip-codes.com. 

On the state selection screen and again in the Basis Risk pages, the user may 

also click to display geographic data in Google Earth.  This feature uses KML 

(Keyhole Markup Language), and requires Google Earth 4.1 to function correctly. 
 

Data Summary 

The data for this project is provided by the National Oceanic and Atmospheric 

Administration (NOAA), and includes weather data from nearly 25,000 weather 

stations over the years 1892 (at some stations) to 2001.   Efforts are underway as of 

the date of this writing (May 22, 2008) to update the database to include data up until 

2006. 

Many similar studies or products only use a fraction of the data available 

because of concerns about the reliability of data more than 30 to 50 years old.  For 

Weather Wizard, a conscious decision was made to include the most data possible, 

even if those data are incomplete.  Metrics are in place to clean and replace data that is 

missing.  Appendix 1 is a summary table of the data grouped at the state level.  (Data 
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is aggregated at the monthly level in this table not only because of the structure of the 

database but because it may be the most reliable indicator of content.)  This table 

reveals for each state the amount of data available for each weather type as well as the 

total number of weather stations and the average months of data for each weather 

station.   

Also of note in this table is that the most robust data set is precipitation data.  

Daily High and Low temperatures are on average about 70% as large, and Daily Mean 

temperatures 60%. 
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APPENDIX 

Appendix A – Weather Wizard Screen Shots  
 

 

 
Figure 9: Weather Wizard Main Screen 
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Figure 10: Date Selection Screen for Specific Event Risk 
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Figure 11: Temperature Insurance Worksheet 
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Figure 12: Temperature Insurance Worksheet illustrating excess heat risk 
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Figure 13: Precipitation Insurance Worksheet 
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Appendix B – Site Map for Weather Wizard 

 
Figure 14: Flow Chart for Weather Wizard 
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Appendix C – State by State Data Summary  
 

State Daily High Daily Mean Daily Low Rainfall Total Obs. # Stations Avg./Station 

Texas     277,051  
              
225,519      276,792    500,717  

       
1,280,079  1671      766.06  

Montana     169,727  
              
146,977      169,584    204,062  

          
690,350  716      964.18  

California     140,584  
              
113,741      140,464    229,878  

          
624,667  1760      354.92  

Arizona     138,690  
              
121,209      138,519    178,467  

          
576,885  569   1,013.86  

Oregon     125,166  
              
108,350      125,076    150,545  

          
509,137  775      656.95  

Kansas       98,506  
                
76,660        98,508    191,682  

          
465,356  778      598.14  

New 
Mexico     111,857  

                
96,661      111,779    142,713  

          
463,010  617      750.42  

Colorado     112,026  
                
90,019      112,027    144,542  

          
458,614  631      726.81  

Washington     111,442  
                
96,309      111,415    129,734  

          
448,900  635      706.93  

Nebraska       95,989  
                
83,832        95,984    161,588  

          
437,393  576      759.36  

Utah     106,211  
                
94,935      106,177    119,714  

          
427,037  582      733.74  

Missouri       96,476  
                
88,826        96,555    143,072  

          
424,929  512      829.94  

Iowa     101,055  
                
90,052      101,035    127,594  

          
419,736  505      831.16  

Illinois     101,055  
                
90,052      101,035    127,594  

          
419,736  550      763.16  

Oklahoma       93,145  
                
84,726        93,037    145,056  

          
415,964  472      881.28  

Pennsylvani
a       86,062  

                
72,918        85,983    155,876  

          
400,839  678      591.21  

Wisconsin       94,756  
                
88,907        94,715    120,419  

          
398,797  343   1,162.67  

North 
Carolina       88,109  

                
76,757        88,071    131,387  

          
384,324  480      800.68  

Minnesota       90,629  
                
78,878        90,753    118,539  

          
378,799  388      976.29  

New York       79,697  
                
66,695        79,701    146,728  

          
372,821  688      541.89  

Idaho       93,713  
                
82,464        93,660      95,953  

          
365,790  482      758.90  

South 
Dakota       87,517  

                
77,214        87,420    112,787  

          
364,938  370      986.32  

Wyoming       90,005  
                
71,801        89,932    104,242  

          
355,980  513      693.92  

Ohio       83,549  
                
61,533        83,474    126,596  

          
355,152  478      743.00  

Michigan       85,134  
                
70,452        85,077    104,863  

          
345,526  575      600.91  

North 
Dakota       81,607  

                
72,005        81,567    106,126  

          
341,305  347      983.59  

Alaska       89,023  
                
63,853        88,993      88,843  

          
330,712  677      488.50  

Arkansas       69,082  
                
61,748        69,008    114,186  

          
314,024  419      749.46  

Georgia       71,383  
                
58,147        71,244    111,718  

          
312,492  376      831.10  

Indiana       71,350  
                
65,993        71,338      95,776  

          
304,457  459      663.31  
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Florida       75,827  
                
75,741        61,165      85,101  

          
297,834  353      843.72  

Tennessee       61,616  
                
53,218        61,581    108,108  

          
284,523  503      565.65  

Virginia       63,179  
                
55,368        63,080    101,592  

          
283,219  424      667.97  

Alabama       58,399  
                
51,614        58,378    107,931  

          
276,322  363      761.22  

Mississippi       56,593  
                
52,181        56,547      99,791  

          
265,112  355      746.79  

Louisiana       55,719  
                
48,084        55,716    100,905  

          
260,424  491      530.40  

Kentucky       48,818  
                
43,489        48,737    103,875  

          
244,919  490      499.83  

West 
Virginia       56,626  

                
49,258        56,631      81,133  

          
243,648  392      621.55  

Nevada       62,845  
                
49,379        62,745      64,295  

          
239,264  365      655.52  

Hawaii       32,058  
                
14,518        31,988    153,142  

          
231,706  675      343.27  

South 
Carolina       48,201  

                
42,563        48,164      66,623  

          
205,551  219      938.59  

Maryland       41,241  
                
35,943        41,211      45,420  

          
163,815  227      721.65  

Massachuse
tts       30,698  

                
24,983        30,705      53,791  

          
140,177  208      673.93  

New Jersey       31,199  
                
26,459        31,202      46,505  

          
135,365  176      769.12  

Maine       33,113  
                
25,762        33,108      41,109  

          
133,092  202      658.87  

New 
Hampshire       21,668  

                
18,105        21,659      36,851  

            
98,283  183      537.07  

Vermont       17,610  
                
15,340        17,597      30,647  

            
81,194  152      534.17  

Connecticut       16,526  
                
12,802        16,525      32,717  

            
78,570  142      553.31  

Delaware         5,695  
                  
4,710          5,694        5,825  

            
21,924  26      843.23  

Rhode 
Island         3,435  

                  
1,759          3,439        4,178  

            
12,811  20      640.55  
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Appendix D – Code Samples 

Sample 1: Dat a Cleaning Algorithm 
  While myReader.Read() And bSameStation 
      itblWeatherStationCode = myReader.Item("WeatherStnCode") 
      itblYear = myReader.Item("Year") 
      itblMonth = myReader.Item("Month") 
      PrcrSnowChanges = 0 
      If bstart And sqlstart <> itblYear Then LastYear = itblYear 
      End If 
      bstart = False 
      'SKIP if year omitted 
      For i = 0 To yearOmit.Count - 1 
          If itblYear = yearOmit.Item(i) Then GoTo skip 
      Next 
 
      'Change all 99999s to 0s on rainfall 
      For i = 1 To DaysInMonth(itblMonth, 2006) 
          Dim strDayCol As String = "Day" & Format(i) 
          inin(gh, 0) = i & "/" & myReader.Item("Month") & "/" & myReader.Item("Year") 
                    inin(gh, 1) = myReader.Item(strDayCol).ToString 
                    gh += 1 
                    If gh > (old_Year + 1) * (DayCount + 1) Then gh = (old_Year + 1) * 
(DayCount + 1) 
                    If myReader.Item(strDayCol).ToString = "99999" And (nature = 4) 
Then 
           itblDay(i - 1) = 0 
           PrcrSnowChanges = PrcrSnowChanges + 1 
       Else 
           itblDay(i - 1) = myReader.Item(strDayCol) 
       End If 
       If nature = 4 Then 
           itblDay(i - 1) = itblDay(i - 1) / 100 
       End If 
   Next 
    
   'Get starting and ending days 
   xMonth = itblMonth 
   xYear = itblYear 
   xDays = DaysInMonth(xMonth, 2006) 
   If Not switched Then 
       If xMonth = monstart Then 
           iStartDate = daystart 
       Else 
           iStartDate = 1 
       End If 
       If xMonth = monend Then 
           iEndDate = dayend 
       Else 
           iEndDate = xDays 
       End If 
   Else 
       If xMonth = monend Then 
           iStartDate = dayend 
       Else 
           iStartDate = 1 
       End If 
       If xMonth = monstart Then 
           iEndDate = daystart 
       Else 
           iEndDate = xDays 
       End If 
   End If 
 
y: 
                For j = iStartDate To iEndDate 
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GetNumbers = 1 
GetLastValue = 0 
avgValue = 0.0 
 
If itblDay(j - 1) = "99999" Then 
    If j = iStartDate Then 
        iStartDate = iStartDate + 1 
 
        GoTo y ' Start over with one less day... Kind of a cheater... 
    ElseIf j = iEndDate Then 
     itblDay(j - 1) = itblDay(j - 2) ' Last data point, again: kind of a cheater 
   Else 
       For ik = (j - 1) To iEndDate - 1 
 
           If itblDay(ik) <> 99999 Then 
               GetLastValue = ik 
               GoTo exitInnerLoop 
           Else 
               GetNumbers = GetNumbers + 1 
           End If 
       Next 
exitInnerLoop: 
              If itblDay(GetLastValue) > itblDay(j - 2) Then 
                  avgValue = (itblDay(GetLastValue) - itblDay(j - 2)) / GetNumbers 
              ElseIf itblDay(GetLastValue) < itblDay(j - 2) Then 
                  avgValue = (itblDay(j - 2) - itblDay(GetLastValue)) / GetNumbers 
            ElseIf itblDay(GetLastValue) = itblDay(j - 2) Then 
                avgValue = 0 
            End If 
 
            If itblDay(GetLastValue) > itblDay(j - 2) Then 
                For ik = (j - 1) To (GetLastValue - 1) 
                    itblDay(ik) = itblDay(ik - 1) + avgValue 
                Next 
            ElseIf itblDay(GetLastValue) < itblDay(j - 2) Then 
                For ik = (j - 1) To (GetLastValue - 1) 
                    itblDay(ik) = itblDay(ik - 1) - avgValue 
                Next 
            ElseIf itblDay(GetLastValue) = itblDay(j - 2) Then 
                For ik = (j - 1) To (GetLastValue - 1) 
                    itblDay(ik) = itblDay(ik - 1) 
                Next 
            End If ' setting averages 
        End If ' j not start or end date 
    End If ' not a 999999 
 
    k = k + 1 
    If LastYear = xYear And DayInYear <= DayCount + 1 Then 
        If k = 1 Then 
            DayInYear = 1 
            YearCount = 0 
        Else 
            DayInYear = DayInYear + 1 
        End If 
    Else 
        DayInYear = 1 
        YearCount = YearCount + 1 
    End If 
    a_Setup(k - 1, 0) = k 
    a_Setup(k - 1, 1) = xYear 
    a_Setup(k - 1, 2) = xMonth 
    a_Setup(k - 1, 3) = j 
    a_Setup(k - 1, 4) = DayInYear 
    a_Setup(k - 1, 5) = itblDay(j - 1) 
    a_CrossRef(YearCount, DayInYear - 1) = itblDay(j - 1) 
    a_Year(YearCount) = xYear 
    LastYear = xYear 
Next 
skip:           i = i + 1 
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Sample 2: Degree Day payout algorithm 
For j = 0 To DayCount - 1 
   If dd_type = 2 Then   ''for heating degree days 
      yevent = IIf(target - yearvalues(j) > 0, target - yearvalues(j), 0) 
          cdd = cdd + yevent 
      End If 
      If dd_type = 1 Then ''for cooling or growing degree days 
        yevent = IIf(yearvalues(j) - target > 0, yearvalues(j) - target, 0) 
        cdd = cdd + yevent 
    End If 
Next 
cdd = Format(cdd, "##,##0.00")  'this is CDD for each year 
 
If LorG = 0 Then 
    If cdd <= criteria Then 
        If Session.Item("br_payouttype") = 0 Then Return 1000 
        Return (criteria - cdd) * Payout 
    Else 
        Return 0 
    End If 
End If 
If LorG = 1 Then 
    If cdd >= criteria Then 
        If Session.Item("br_payouttype") = 0 Then Return 1000 
        Return (cdd - criteria) * Payout 
    Else 
        Return 0 
    End If 
End If 

Sample 3: Multiple Event Contract algorithm 
 
For j = 0 To daycount - 1 
    If LorG = 0 Then 
        If yearvalues(j) <= criteria Then 
            icount = icount + 1 
            If icount = eventlength Then 
                eventcount = eventcount + 1 
                icount = 0 
            End If 
        Else 
            icount = 0 
        End If 
    End If 
    If LorG = 1 Then 
        If yearvalues(j) >= criteria Then 
            icount = icount + 1 
            If icount = eventlength Then 
                eventcount = eventcount + 1 
                icount = 0 
            End If 
        Else 
            icount = 0 
        End If 
    End If 
Next 
If eventcount > Session.Item("br_NumEvents") Then eventcount = 
Session.Item("br_NumEvents") 
Return eventcount * Payout 
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Sample 4 : Cumulative Rainfall Payout algorithm 
For j = 0 To DayCount + 1 
    '*************************************************************** 
    If j > overlap - 1 Then 
        cumrain = 0 
        For k = 1 To eventlength   'sum up previous days 
             cumrain = cumrain + yearvalues(j - k) 'xMatrix(i, j + 1 - k) 
        Next k 
        If LorG = 0 Then 
            If cumrain <= criteria Then 
                eventcount = eventcount + 1 
                unitpayout = unitpayout + (criteria - cumrain) * 1000    'cgt 21/05/07  
                cumrain = 0          
                overlap = j + eventlength  
            End If 
        Else 
        If cumrain >= criteria Then 
             eventcount = eventcount + 1 
             unitpayout = unitpayout + (cumrain - criteria) * 1000                                              
             cumrain = 0          
             overlap = j + eventlength  
        End If 
     End If 
End If 
 
Next 
'*********************************************************************** 
If Session.Item("br_payouttype") = 0 Then 
    If eventcount > Session.Item("br_NumEvents") Then eventcount = 
Session.Item("br_NumEvents") 
    results = eventcount * Payout 
Else 
    If eventcount > Session.Item("br_NumEvents") Then 
        results = unitpayout * Session.Item("br_NumEvents") / eventcount 
    Else : results = unitpayout 
    End If 
End If 
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