Improved Bounds for the
Token Distribution Problem

Kieran T. Herley*

TR 89-1051
October 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*The work of this author was supported in part by the Joint Services Electronics

Program under contract F49620-87-C-0044.

Improved Bounds
for the Token Distribution Problem

Kieran T. Herley *
Department of Computer Science
Cornell University
Ithaca, NY14853

Abstract

The problem of packet routing on bounded degree networks is considered. An algorithm is
presented that can route n packets in O(log n + K') time on a particular n-node expander-based
network provided that no more than K packets share the same source or destination.

Kewords: parallel algorithms, routing, expander graphs

1 Introduction

The (n, K1, K,)-routing problem, involves routing n packets in a network of proces-
sors subject to the constraint that no node is the source of more than K, packets,
or the destination of more than K, packets. Peleg and Upfal [PU89] formulated this
problem and developed a network and a routing algorithm with an optimal number
of communication steps. In this note, an improved algorithm is presented that is
optimal on a model in which both communication and local computation steps are
counted.

Routing is a fundamental operation for computation on bounded degree net-
works. For example, the optimal simulations of the shared memory PRAM of
[HB88] rely on a form of (n, i, Ky)-routing.

A Bounded Degree Network(BDN) is a synchronous collection of n processors;
each with its own private local memory, and each connected to a constant number
of others by means of bidirectional channels. At each time step a processor may
either perform a local operation, or send (receive) a single value to (from) one of

its neighbours.

*The work of this author was supported in part by the Joint Services Electronics Program under contract F49620-
87-C-0044.

In the BDN model the algorithm of [PU89] has a running time of O(log n + K; +
K; +1og(K; + K3)log n). This note presents an interconnection and an (n, K1, Ks)-
routing algorithm with a running time of O(logn + K, + K3), which is optimal
according to a lower bound of [PUS89].

When generalized to handle sets of size N larger than n, our main result may be

stated as follows.

Theorem 1 There is an n-node BDN and a deterministic algorithm that routes any

instance of the (N, K1, K)-routing problem in O([N/n]logn + K, + K,) time.

In essence, the algorithm of [PU89] reduces an instance of the generalized routing
problem to a partial permutation routing problem by means of balancing (referred
to as token distribution in [PU89]). Balancing involves redistributing a set of packets
initially scattered unevenly among the nodes of a BDN so that each node has the
same number. Formally, a distributed set S = (S, f) is a set S of packets distributed
among the nodes of the BDN with packet s € S at node f(s). The profile (3)
of S is an n-tuple (ki,ka,. .., k,), where k; represents the number of packets of S
mapped to node i by f. The degree A(S) of S is the maximum number of packets
assigned by f to any one node. The set $ is balanced if it has degree [|S| /n], and
approzimately balanced if it has degree O([|S|/n]). A distributed set § = (S, f)
of packets, labelled with integer values, is said to be balancesorted if it is balanced
and the packets with the [|S|/n] smallest keys lie in node 1, the next [|S|/n] next

smallest lie in node 2 and so on.

Lemma 1 There ezists an n-node BDN and a deterministic algorithm that balance-

sorts any distributed set S = (S, f) in O([|S|/n]logn + A(S)) time.

The balancing of [PU89] is achieved in a sequence of diffusions, each of which
reduces the degree of the distribution by some fixed factor v < 1. Associated with
each diffusion is a directed subnetwork of the BDN called a flowdag. During a
diffusion, processors transmit packets only along the edges of the corresponding
flowdag. In some cases the overhead in constructing these flowdags dominates the

useful work required to physically move the packets. Our main idea is to decompose

9

the initial problem of balancing n packets on an n-node BDN into some number
s essentially identical problems of balancing n/s packets each on a subnetwork of
size n/s. It is easier to construct the flowdags for the smaller problem within the
stipulated time bounds.

In the next section the algorithm of [PU89] is sketched. In the subsequent section

the modifications necessary to achieve the stated time bounds are described.

2 The Method of Peleg and Upfal

This section paraphrases the results of [PU89].

Let G = (V, E) represent the structure of a bounded degree network. A directed
acyclic subgraph D = (V, Ep) of the graph G is a flowdag for a subset U C V if, for
some [depending only on G, (i) each v € V has indegree at most [in D, and (ii)
each u € U has outdegree at least [+1 in D.

Lemma 2 ([PU89]) There is BDN (V, Epy) such that for every U C V of size at
most B|V| (B a constant, independent of |V|), there is a flowdag Dy. Moreover there

is a deterministic algorithm that allows each node in U to determine its neighbours

in Dy in O(log |U|) time.

Let S = (S, f) be a distributed set with profile 7(3) = k = (ky, ko, ..., k).
Define U(S) 2 {vi € V|k; > (1/2)A(S)} and let D(S) represent the flowdag Dy -
Let Flow(S,t) denote the operation of moving ¢ packets from z to y for each directed
edge (z,y) in D(S).

Lemma 3 ([PU89]) There exist constants v < 1 and p < 1 such that for all dis-
tributed sets S of size at most n, the degree of the distributed set after Flow(S, pA(S’))
is at most YA(S).

Let an application of Flow(S, pA(S)) be referred to as a diffusion step. The above
lemma suggests the following straightforward balancing algorithm consisting of a
sequence of stages. The i*" stage is applied to the distributed set St resulting from
the first : — 1 stages. During each stage a flowdag D, = D(Szi)) is built, and then

a diffusion Flow(S’z"),pA(SA(i))) is performed. The 7** diffusion runs in O(~'A(S)),
but the corresponding flowdag requires O(logn) time to build, so the algorithm
spends O(7'A(S)) = O(A(S)) time actually moving packets during flowphases,
but spends O(log A(S)log n) time building flowdags. When balancing distributed
sets of small degree the overhead due to flowdag construction dominates and so this
algorithm does not meet the time bounds stipulated in Lemma 1.

The next section shows how this overhead can be reduced so that it is always
subsumed by the work required for the movement of packets. A key element is
the following lemma due to Peleg and Upfal that shows that it is possible to con-
struct a sequence of subsets U], Uj, ... efficiently that approximates the sequence
U(Szz), U(Szz)), ... in the sense that the corresponding set of flowdags D}, D), ...

can be used in place of Dy, D,, ... during balancing.

Lemma 4 ([PU89]) for each S = (S,f) there is a sequence of subsets of V
Ui, Us,...,Uly, where (i) U = U(SW), (i) U; C U’ for each 1 < i < H,
(i) YA A(S) = 0(1), (iv) Uil < BIV| for 1 <@ < H, and (v) each U], can be
computed from U in O(loglogn) time.

3 An Optimal Balancing Algorithm

The BDN underlying the algorithm presented here has the structure
(V, Eeap U Eaksr U Etree). The nodes of V' are arranged in the pattern of a N; x N,
array where N 2 loglogn and N, 2 n/N;. All the rows of V' has the same
structure, that of a square root expander[LPS86] with N, nodes. Similarly all the
columns have the structure of a square-root expander on N; nodes. All of the edges
in the row and column expanders together constitute the set E.,,. The edges of
E kst give the nodes the structure of the n-node sorting network of [AKS83,Lei85]
that can sort n integers in O(log n) time; those of E;,.. are the edges of a complete
binary tree with n nodes.

First a balancesorting algorithm is outlined, the solution of the more general

(n, K1, K;)-routing problem will follow from the results of [PU89].

Let $ = (S, f) be a be a distributed set of size at most n. The overall structure
of the algorithm is shown below.

BalanceSort

I Approximately balance the packets in each column.
IT Approximately balance the packets in each row.
IIT Sort the packets.

Let k;; represent the number of packets initially held by node (z,7), and let
m; denote the maximum number of packets held by any node in the j** column
following Step I. After column balancing, m; can be at most (A/N,) SN, k; ; for
some constant A. Immediately prior to Step II no row can contain more than
Z?;‘"l m; = O(N;) packets. Thus Step II involves balancing O(N,) packets in each
row. The distribution k@ = (&{V k{) ..., kg\g) of packets row i is dominated by
m 2 (my,ma,...,mp,), in the sense that ky) <mjforl <5 <N, In a sense
Step I has decomposed the initial balancing problem into N, essentially identical
subproblems.

Following the approximate balancing of each row during Step II each node holds
at most O(1) packets. A constant number of sorting steps suffices to complete the
balancesorting in Step III.

The processors of the BDN can compute the value of A(S) in O(A(S) + logn)
time. The straightforward balancing method mentioned in the previous section
is used to perform Step I in O(log(A(S))log Ny + A(S)) time. This quantity is
bounded by O(A(S) + log n) since N; = loglog n. Step III can be accomplished in
O(log n) time, applying the sorting techniques of [AKS83,Lei85].

If A(S) = Q(lognlog logn) then the same method as Step I is employed for
Step II, otherwise the method outlined below is adopted. For the remainder of this
section it will be assumed that A(S) = o(log nloglogn).

The distribution m dominates the distribution of packets in each row after Step I.
The key point is that same set of flowdags will suffice for all rows during Step II,

and the overhead of constructing the flowdags may be shared among the rows.

Step 11
1 Compute m; for each column j. Let U] = U(m).

2 Compute the sequence of sets U],Uj}, ..., Uy in the first row.
3 Distribute the U] evenly among the rows.

4 For each U] assigned to row : compute the corresponding flowdag
D’ in row 1.
5 Let the processors within each column j pool adjacency informa-

tion so that each processor in the column knows the neighbours of
the j** vertex in each of flowdags D}, ..., D},.

6 Execute the flowphases in sequence. (Do this concurrently in each
row.)

Each column has a bounded degree tree of O(log N;) depth as a subgraph, since
each column expander has diameter O(log N;), and so Substep 1 can easily be exe-
cuted in O(A(S)+log Vy) time in each column using these column trees. Substep 2
involves the computation of sequence of H sets, each of which can be computed
from the previous one in the sequence in O(loglog N;) time by Lemma 4. Since
A(S) = o(log nloglog) by assumption, H must be at most O(loglogn) = O(Ny).
In other words at most O(1) distributions are assigned to each row during Sub-
step 3. Thus Substeps 3 and 5 can be accomplished in O(log N;) time using the
column trees. The construction of the flowdags in Substep 4 can be completed in
O(log n) time by Lemma 2. By Lemma 3, Substep 6 can be completed in O(A(S))
time. Summing the contributions of all these substeps, and simplifying, the total
running time for Step II is seen to be O(log n + A(S)).

This establishes Lemma 2 in the case where |S| < n. Sets of larger size can be
handled by grouping packets into parcels of size |S|/n, approximately balancing the
parcels (treating each parcel as a unit) with the method just described. Since there
are O(n) such parcels, and each flowstep requires O([|S|/n]) time, balancing can
be accomplished in O([|S|/n]logn + A(S)) time. The individual packets can be
sorted using the techniques of [AKS83,Lei85,BS78].

Acknowledgement: I would like to thank Gianfranco Bilardi for several helpful

discussions in relation to this work.

References

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. An O(log n) sorting network. In

[BS78]

[HBS3)

[Lei85]

[LPS86]

[PU89

Proceedings of the 15" Annual Symposium on the Theory of Computing,
Boston, Massachusetts, pages 1-9, Apr 1983.

G. Baudet and D. Stevenson. Optimal sorting algorithms for parallel
computers. IEEE Transactions on Computers, c-27(1):84-87, Jan 1978.

K. T. Herley and G. Bilardi. Deterministic simulations of PRAMs on
bounded-degree networks. In Proceedings of the 26" Annual Allerton Con-
ference on Communication, Control and Computation, Monticello, Illinois.,

Sept 1988.

F. T. Leighton. Tight bounds on the complexity of parallel sorting. [EEE
Transactions on Computers, c-34(4):344-354, April 1985.

A. Lubotzky, R. Phillips, and P. Sarnak. Explicit expanders and the
Ramanujan conjectures. In Proceedings of the 18" Annual Symposium on
the Theory of Computing, Berkeley, California, pages 240-246, May 1986.

D. Peleg and E. Upfal. The token distribution problem. SIAM Journal on
Computing, 18(2):229-243, April 1989.

~1

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif

