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Abstract

We study the primal-dual affine scaling algorithms for linear programs. Using an
idea of Mizuno and Nagasawa and a new potential function we achieve the same com-
plezity bounds they give. Qur proofs are simpler and shorter. Qur potential function
seems to be more natural for this algorithm than the Tanabe-Todd-Ye potential function
used by Mizuno and Nagasawa.
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1 Introduction

In this paper, we study the primal-dual affine scaling algorithms for linear programs
(see Monteiro, Adler and Resende [MAR90], Kojima, Megiddo, Noma and Yoshise
[KMNY91]). We follow up on the recent algorithm by Mizuno and Nagasawa [MN92].
They suggest starting from an interior primal-dual solution that lies in a one-sided
infinity neighborhood of the central path and determine the next iterate based on the
potential function (Tanabe [Ta87], Todd and Ye[TY90])

T
gz, ) := (¢ + n)log(z"s) — D log(z;s;),
j=1
where q is a positive constant. Given the affine scaling direction at the current iterate,
Mizuno and Nagasawa propose choosing the next iterate such that the value of this
potential function does not increase (rather than finding the point which minimizes the
potential function along the given search direction). Here we use the same idea with a
potential function proposed by Tungel [Tu92] for ¢ > 0:

ala,9) 1= (g + log(52) - loglmin{z;s;1).

We show that one can achieve the same complexity bounds achieved by Mizuno and
Nagasawa [MN92] by keeping the potential function 1, constant. Since the potential
function %, has very nice properties related to the infinity-norm neighborhoods of
the central path (see Tungel [Tu92]), using the contours of ¥, we can find a simple
expression relating the decrease in the duality gap to the distance of the next iterate
from the boundary of the feasible region. As a result our proofs are shorter and simpler.

2 Primal-Dual Affine Scaling Algorithm

We consider linear programming problems in the following primal (P) and dual (D)
forms:
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where A € R™*", b € IR™, and ¢ € IR". Without loss of generality, we will assume A
has full row rank and that there exist interior solutions for both problems, i.e.,

Foi={(z,8)>0:z € F(P),s€ F(D)} # 0,

where F(P) and F(D) denote the set of feasible solutions for the primal and dual
problems respectively. Most of the time we will deal only with s as a dual feasible
solution. So, whenever we say s € F(D), we mean that s > 0 and there exists a
y € IR™ such that ATy + s = ¢. Given a vector z, X will denote the diagonal matrix
whose entries are the components of z, and e will denote the vector of ones. We will
denote the components of a vector using subscripts and the iterate numbers using
superscripts. Whenever we ignore the iterate numbers it will be clear from the context
what the iterate number is.

The central path is given by the set of solutions to the following system of equalities
for p > 0 (see for instance Megiddo [Me88]):

Az = b, 220 (1)
ATy4+s = ¢, 520 (2)
Xs = pe (3)

Given 7 € (0,1) a one-sided infinity-norm neighborhood of the central path is
defined (see for instance Mizuno, Todd and Ye [MTY90]) as:

N(n):={(z,8) € Fp: || Xs—pe|lz <(1-7)}.

Here, for v € R", ||v]|Z, := — min{0, min{v;}}. Note that A(7) is a level set of ¥,:

N(x) = {(2.5) € F, : oz, 5) < log(2)}.

Suppose we have an initial interior point solution (z,s) € F,. Then the affine scaling
direction (dz,ds) can be generated by solving the following set of equalities (see Kojima,
Mizuno and Yoshise [KMY88]):



Ader = 0 (4)

ATdy+ds = 0 (5)

Sdr+ Xds = -Xs (6)
which is equivalent to solving

Adz = 0 (M

Aldy+ds = 0 (8)

dz+ds = —X12§12% (9)

where A := AXY25§-1/2. The equivalence of the above two systems can be easily

checked by substituting doz = X ~1/251/2dz, ds = X1/25-1/2ds. The solution of (7)-(9)
is

dz —Py(X1/251/2¢)
ds = —(I— Pg)(XV%5Y%)

where Pg := I — AT(AAT)~14, the projection matrix into the null space of A. Now,
we describe a primal-dual affine scaling algorithm based on the potential function t,:

Algorithm:
Given (2°,5°) € N(mo) with (z°)Ts° < 2¢, set k := 0.

While ((zF)Ts* > 2-t) do
(z,8) 1= (¥, %)
compute (dz,ds) from (4)-(6)

choose step size aj € (0,1) such that 1,(z + axdz, s + ards) = ¢y(z, s)



($k+1’sk+1) = (z + ardz, s + aids)
k:=k+1

end

3 Analysis and Convergence Results

We define
()T
HEe = T
H k .k
min{z*s*
T = ———-————{ 1.,
223

We assume that mg € (0,1) is a constant independent of n and t. Let (z,s) be the
current iterate with (z,s) € N(r), and let (z(a), s(a)) denote the next iterate for a
given step size a € [0, 1], so that

z(a) = z—aXV2§ 2Py (10)
s(a) = s—aX V2§V — Py, (11)

where v := X1/25§1/2¢, We will denote v, := Pgv. From (10)-(11) we obtain

(w(a))Ts(o:) = zTs- aeTX1/25'1/2[vp + (v —vp)] + azv;f('v — Up) (12)
= zls—azTs (13)
= (1-a)2Ts. (14)

We also have

p(@)js(a); = ;85— ay@;5;((vp); + (v — vp);] + @2(vp);(v — vp); (15)
= js; — af2js8;) + 0 (vp);(v — vp); (16)
= (1-a)z;s; + a*(v,)j(v—vp); (17)
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We define

z(a)Ts(a
e = 2]
L mines(@)s(a)}
(@): ple)
Then from (14) and (17) we have
— ming ZiSi a® (vp);(v —vp)j
7(a) = min{ . + T o " } (18)

Proposition 3.1. Let (z,s), (z(a),s(a)), 7, () be defined as above. Then

Yala(a), s(@)) = $(z,8) = (1— )t = T (19)

™

Proof:
Pe(2(@), (@) = ¢q(z, )

= atoa(u(e) - tog AEAERD) - gog() - og M)
<= qlog((1-a)p) - log(m(a)) = qlog(p) — log(7)
&= qlog(l —a)= log(f_(ﬂ_ﬁ)-)

== (1—a)q=ﬂ§2.

Corollary 3.1. After k iterations of the affine scaling algorithm described in section
2, we have,

(st = (ZE)/o(a) 5" (20)

Proof: Follows from (14) and (19). o



Corollary 3.1 provides a very compact description of the contours of the potential
function 9, and it relates the distance between the current iterate and the boundary
of the feasible region to the duality gap directly. If 7 is very small relative to 7, (i.e.
(zx, k) is close to the boundary of the feasible region) then the duality gap must also
be relatively small.

Lemma 3.1. )

() a® n
2
Proof: Using (18) we get
min{z;s;} e max{|(vp);(v — vp)il}
") > mEsl o ; (21)
_ a?  max{|(vp);(v — vp);l}
= - (1 — a) . (22)

Note that ||v||z = (2Ts)1/2, and for any v € IR™ we have ||oplleo < J|vpllz < [|7]l2
and [[v — vpllee < [lv = wpllz < |lo]l2-
So, max{|(vp);(v — vp)j|} < &Ts. Hence, from (21)-(22) we get
m(a) a? .n
Y > (E)2.
T ! (1 - a)7r
0

Now, we settle a technical point showing that the contours of the potential function
are well-defined.

Lemma 3.2. Unless (z(a),s(a)) is feasible for a = 1, (19) has exactly one root for
a€(0,1).

Proof: We define
g(a):= (1 - a)™*,

T;$8; 0 )i (v — 1)
hj(a) := ——;—j‘(l-— a)-}-azg__&)J_(;_r____P_)_J.’

M
f(a) := g(e) — min{h;(a)}.
Using (18) we have
(1-a)= E%?)- < f(a)=0.



We partition the indices as follows: J= := {j : (vp)j(v — vp); < 0}, J® := {j :
(vp)j(v = vp)j = 0}, J* := {j : (vp)j(v —vp); > 0}. Note that J= and J* are non-
empty, because if they both are empty then (z(a),s(a)) is feasible for & = 1 and we
have the optimal solution. Since };(v,);(v — vp); = 0, if one of them is non-empty
then they both are.

Clearly, there exists a small enough ¢ > 0 such that f(a) < 0 for o € (0,¢) (e.g.
€ = 22). It is also clear that if (z(a),s(«)) is not feasible for a = 1, then f(1) > 0.
By the continuity of f we conclude that there exists at least one root in (0,1). For
j € JOU Jt we have

hi(a) > %(1 —a)> (1-a)> (1L—a)tl,

Hence, for j € J®U J*, hj(a) does not intersect g(a) in (0,1). For j € J~ we have h;
as a concave function, so min;¢ ;- {h;(@)} is concave. Since g(a) is convex, the solution
to (19) is unique. o

Lemma 3.3. If a* solves (19) for 5; < ¢ < y/n (n > 4) then o* > 7L

Proof: We want qlog(l — o) = log(ﬂfl). Note that if for @ € (0,1) we have

glog(1 - &) < log("Y) (23)

then * > & (from Lemma 3.2). We will show that @ = FL satisfies (23) which will
prove the lemma.
Using the linear approximation to the logarithm we have

qlog(l — &) < —ga for a € (0,1) (24)
By Lemma 3.1 we have

a

~(a) (2
log(——) 2 log[1 — (;—=)(-)}-

Note that for & = 2% and 5; < ¢ < /n, from which

a? )ﬁ_ Tq*/4n

(1—-& T 1-mg/2n

2
<m L
- 2n 2



Using the approximation log(1+ A) > A — -m—}‘_—?m for |A] < 1, we get

a‘n?/r?

(&
log( ——2 - 25
°8 - a [o* + 2(1—a—a2n/7r)] (25)
From (24) and (25) we conclude that if
=402 (2
P e L a*n?/n 26
R N (=Y (26)
then (23) holds. Letting & = 3% and dividing both sides by ¢ga in (26) we get
nq 1 Tq?/8n
B IR R g, 27
+ 2n = 2 2(1 —wq/2n— mwq?/4n) (27)
For given values of ¢ and n > 4, the right hand side of (27) is at least —§ — F&- > > —5/8.
The left hand side of (27) is at most —1 + 1/4 = —6/8. Therefore, (23) holds O

Now, we can state a theorem about the complexity of the algorithm.

Theorem 3.1. The primal-dual affine scaling algorithm as stated in section 2 con-
verges in O(ﬁz—ztﬂ) iterations.

Proof: From corollary 3.1 we have (z¥)T sk = (—’i)l/q(a:")T . Since (z°)Ts° < 2¢, if at
the Kt iteration ZK < 2-2%¢ then we must have (2)Ts¥ < 27 and the algorithm
will stop. Otherw1se we get a uniform bound on the distances of the iterates from the
boundary:

T > Te2"%, for all k< K.

By lemma 3.3, this uniform bound yields

% 7rq qu
&> 3n 2 martedT (28)

From equality (14) and inequality (28) we conclude that we must have (zF)Tsk < 21
in O(-@:—E—?) iterations. a

Using the above theorem, for ¢ = 1/2t, ¢ = 1, and ¢ = \/n we get the bounds
O(nt?), 0(n22tt) and O(y/n 22V7 t) respectively.
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4 Conclusion

Using a different potential function we provided the same complexity bounds as those
obtained by Mizuno and Nagasawa [MN92]. Since the potential function used by our
algorithm fits in nicely with the one-sided infinity-norm neighborhoods, we could get a
compact and useful description of the contours of the potential function for the affine
scaling direction (one may also speculate that for the same reason potential function 1,
can be more effective for the infinity neighborhoods than the Tanabe-Todd-Ye potential
function). The contours of the potential function provide very useful information about
the relation between the duality gap and the distance to the boundary which makes
the convergence proof arguments simpler.

Acknowledgment: The author wishes to thank Shinji Mizuno and Mike Todd for
very valuable discussions.
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