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Triterpene saponins are a class of structurally diverse plant natural products with a wide range of 

demonstrated bioactivities. Individual triterpene saponins have been demonstrated to possess 

allelopathic, anti-fungal, anti-bacterial, anti-insect, anti-feedant, and anti-cancer activities. The 

biosynthesis of triterpene saponins is poorly characterized. The model legume Medicago truncatula is 

known to accumulate a large variety of triterpene saponin compounds, resulting from the differential 

glycosylation of at least seven triterpene aglycone structures. In this project, UPLC-ESI-qTOF-MS 

analysis was used to profile the accumulation of triterpene saponin metabolites in a collection of 100 

M. truncatula ecotypes (germplasm accessions).  Analyses of both aerial and root organs were 

performed.  These metabolomics analyses revealed interesting trends in differential spatial and 

structural accumulation patterns between the various ecotypes, and between the organs.  The high-

resolution “biochemical phenotyping" data for the whole ecotype collection enabled an informed 

selection of hypo- and hyper- accumulating ecotypes for subsequent transcriptomic analyses via 

Affymetrix Medicago GeneChips®. Integrated analyses of saponin accumulation phenotypes with 

transcript expression data led to the identification of a number of biosynthetic and regulatory gene 

candidates. Seven cytochrome P450 gene candidates were cloned and introduced to Wat11 yeast 

cells, enabling microsomal isolation and detailed in vitro characterization of enzyme function. The 

cytochrome P450 enzyme CYP72A68 showed sequential oxidase activity for carbon 23 of oleanolic 



 
 
acid and several structurally related compounds in the triterpene sapogenin biosynthesis pathway. 

CYP72A67 showed monooxygenase activity at carbon 2 of oleanolic acid and hederagenin, yielding 

2-hydroxyoleanolic acid and bayogenin.



iii 
 
Biographical Sketch 

John Hugh Snyder is currently a Ph.D. candidate in the Field of Plant Biology at 

Cornell University. He began his undergraduate career at Reed College, where he 

studied Mandarin. He went on to graduate with Honors and Distinction from The 

Schreyer Honors College at Pennsylvania State University with a B.S. in 

Agroecology/Plant Science. During his studies at Cornell, he worked as a visiting 

student at the Samuel Roberts Noble Foundation for three years. John’s work has 

been presented at several conferences. He won the NIH Competitive Travel grant for 

an oral presentation delivered at the Metabolomics 2010 conference as well as Cornell 

University’s Department of Plant Biology’s “Outstanding Teaching Assistant Award”. 

In addition, he has secured a number of fellowships and scholarships.  

 Currently he lives with his wife and daughter in Beijing, where he is slated to 

begin postdoctoral work related to his dissertation. 

  



iv 
 
Dedication 
 
 
 
 
 
 
 
 
 
 

 
To Ni  



v 
 
Acknowledgments 

I would like to thank the members of my degree committee for their encouragement 

and support of my professional development. I am grateful to Peter Davies for all his 

support. He mentored me during my teaching assistantship for introductory plant 

physiology, provided a thorough introduction to the field of plant hormone 

physiology, and generally supported my various efforts throughout my degree 

program. Klaas van Wijk provided stalwart support and administration of my 

unorthodox graduate fellowship program. Robert Raguso gave me extremely helpful 

suggestions for rhetorical and statistical methods. Frank Schoeder helped me with 

opinions/admonishments regarding the intellectual danger of an overemphasis on 

chemical structures (as their own justification) in the field of metabolomics. Finally, 

I’d like to thank Lloyd Sumner for agreeing to support me as a student, for providing 

an introduction to traditional phytochemistry methods through pairing me to work 

with Wensheng Li on the prenylated isoflavonoid project, and for providing an 

introduction to modern metabolomics methods. 

 At Cornell, my discussion with Yi Yi regarding the development and 

commercial release of GM crops were consistently enlightening. Tom Owens 

provided a thorough introduction to Plant Physiology and Plant Biochemistry, while 



vi 
 
my conversations with Robert Turgeon improved my appreciation for the importance 

of temporal dynamics in biochemical studies. Finally, Steven Tanksley strongly 

encouraged me to follow my focused goals and obtain research funding to an off-

campus site. 

 At the Noble Foundation, a number of people helped make my transition and 

work there a pleasant experience. Richard Dixon provided interesting information on 

the plant natural product research community and the cost of deployment of GM 

crops. EwaUrbanczyk-Wochniak helped prepare me for the sorts of GC-MS work I 

would be doing and gave me some much welcomed encouragement in my professional 

development. Li Wensheng furthered my education by training me in traditional 

phytochemical protocols, as did Pang Yongzhen with our discussions discussions 

regarding use of the Affymetrix transcriptomics data. 

 Throughout my project, there were many others at Noble who were 

instrumental. In the troubleshooting department, ShenGuoan helped with 

troubleshooting protocols in molecular biology and enzymology (along with the 

estimable Changjun Liu). Loachine Achnine gave me several useful suggestions about 

genomics resources for Medicago truncatula. Wang Guodong and Zhou Rui were 

quite forthcoming with information regarding cloning and sub-cloning protocols. 



vii 
 
Bennie Bench, David Human, and Mohamed Bedair all provided help and 

encouragement for all things analytical chemistry and metabolomics. Bonnie Watson 

was also useful with regard to plant and plant cell protocols, but perhaps even more 

edifying was her comments and advice regarding graduate education. Jiangqi Wen and 

Xiaofei Cheng both helped with identification of TNT1 insertion mutants, with 

Jiangqi providing additional information regarding genotyping and Xiaofei filling in 

the gaps in my knowledge regarding troubleshooting PCR protocols. Finally, Carla 

Welch provided exemplary care for the plants used in my work and gave me a useful 

window into the broader culture of Oklahoma. 

 Several people outside of those two institutions were invaluable throughout the 

years of my project. Anne Osbourn and I engaged in several useful discussions 

regarding metabolic clusters and the importance of allelic diversity among ecotypes. 

Ning Zheng’s discussion and correspondence regarding the inadequacy of the "lock 

and key" model to accurately describe biomolecular interactions steered me away from 

some theoretical problems. I would also like to thank Jeanne Rasberry for protocols 

and advice for the recombinant expression of cytochrome P450 enzymes. Joe 

Chappelle provided Wat 11 yeast cultures and general encouragement throughout my 



viii 
 
degree program. Kazuki Saito also gave me general encouragement as well as helpful 

information through several discussions regarding lethal mutations. 

 In the same category of valued outside advisors, David Liscombe and I had 

interesting discussions regarding both graduate education and the position of plant 

natural products within the larger plant biology community. Talking with Joerg 

Bohlmann about the screening hypothesis and methods for cytochrome P450 

enzymology research also proved very helpful. Daneel Ferreira gave me some 

important information on the mechanism of cytochrome P450 mediated bio-

oxidation reactions. Qi Xiaoquan’s discussions regarding evolutionary implications of 

the broad substrate tolerance of certain cytochrome P450 enzymes were helpful, and I 

look forward to working with him in the coming years. 

 Finally, at my alma mater, Penn State University, Surinder Chopra provided 

my introduction to professional research. Michael Saunders, Mark Shriver and James 

Frazier all provided helpful encouragement for my professional and academic 

development. I am glad to have been able to have a series of enriching discussions 

regarding the interface of ecology and biochemistry, and thoughts about graduate 

education with David Mortenson. Mark Mescher shared his insights regarding the 

nature of undergraduate science education with me, which helped me better 



ix 
 
understand that stage of my education. Richard Doyle provided consistent 

encouragement and enlightening discussions regarding graduate education. 

  



x 
 

Table of Contents (vi) 
 

Exploiting Germplasm Diversity For Triterpene Saponin Biosynthetic Gene 
Discovery Using Integrated Metabolomics And Transcriptomics .................................i 

Biographical Sketch ............................................................................................. iii 

Dedication ........................................................................................................... iv 

Acknowledgments ................................................................................................. v 

Table of Contents ....................................................................................................... x 

List of Figures, Tables, and Equations ...................................................................... xiii 

Main Text ................................................................................................................... 1 

Chapter I - A Metabolomics-Based Platform for the Assessment of Triterpene 
Saponin Biochemical Variation in a Medicago truncatula Germplasm Diversity 
Collection ................................................................................................................ 1 

Authors: John H. Snyder, David V. Huhman, Stacey Allen,and Lloyd W. Sumner
.............................................................................................................................. 1 

Summary .............................................................................................................. 1 

Abstract ................................................................................................................. 1 

Abbreviations ........................................................................................................ 2 

Introduction ......................................................................................................... 4 

Methods ................................................................................................................ 9 

Results and Discussion ........................................................................................13 

Additional Information .......................................................................................28 

Sources ................................................................................................................28 

Chapter II - Identification of Candidate Biosynthetic Genes in Triterpene Saponin 
Metabolism Through Integrated Analysis of Metabolome And Transcriptome 
Datasets from Medicago truncatula Ecotypes with Differential Triterpene Saponin 
Accumulation Phenotypes ......................................................................................36 

Authors: John H. Snyder, David V. Huhman, Yuhong Tang, and Lloyd W. 
Sumner ...............................................................................................................36 



xi 
 

Summary ............................................................................................................36 

Abstract ...............................................................................................................37 

Glossary ..............................................................................................................38 

Introduction .......................................................................................................38 

Results ................................................................................................................44 

Discussion ...........................................................................................................56 

Methods ..............................................................................................................64 

Additional Information .......................................................................................73 

Sources ................................................................................................................77 

Chapter III - Enzymatic Characterization of CYP72A67 and CYP72A68, Two 
Cytochrome P450 enzymes in the Triterpene Sapogenin Biosynthetic Pathway of 
Medicago truncatula. ...............................................................................................85 

Authors: John H. Snyder, David V. Huhman, Bennie J. Bench, and Lloyd W. 
Sumner. ..............................................................................................................85 

Summary: ...........................................................................................................85 

Abstract: ..............................................................................................................85 

Introduction .......................................................................................................87 

Results ................................................................................................................91 

Discussion .........................................................................................................107 

Methods ............................................................................................................117 

Additional Information .....................................................................................123 

Sources ..............................................................................................................124 

Chapter IV - Loci from the cyp88d Subfamily of Cytochrome P450s are 
Immediately Adjacent to Oxidosqualene Synthase Loci in the Genomes of Medicago 
truncatula and Lotus japonicus. .............................................................................132 

Authors: John H. Snyder, David V. Huhman, Lloyd W. Sumner .....................132 

Summary: .........................................................................................................132 

Abstract .............................................................................................................132 



xii 
 

Introduction .....................................................................................................134 

Results ..............................................................................................................136 

Discussion .........................................................................................................145 

Methods ............................................................................................................148 

Additional Information .....................................................................................158 

Sources ..............................................................................................................159 

Conclusion ...........................................................................................................168 

Expanded Repertoire of Reaction Pairs .............................................................171 

Physiology of Seed Development in M. truncatula (Lethality and Organ-Specific 
Expression) .......................................................................................................172 

Matrix Pathways ...............................................................................................172 

Appendices ...........................................................................................................174 

Appendix RII – Gross Phenotype Comparisons ................................................174 

Appendix RII – Hidden Markoff Models .............................................................175 

Cytochrome P450 Models ................................................................................175 

Glycosyltransferase Models ...............................................................................175 

Appendix RII– Targeted Ion List ......................................................................177 

Appendix RII – Primers ....................................................................................188 

Appendix RIII – Primers ...................................................................................190 

Appendix RIII – Cloned Sequence ....................................................................191 

Appendix RIV – Primers ...................................................................................195 

Primers Used in Reverse Screen ........................................................................197 

Appendix RIV – Targeted Ions .........................................................................197 

Bibliography ............................................................................................................202 

Chapter I References ............................................................................................202 

Chapter II References ...........................................................................................204 

Chapter III References .........................................................................................208 

Chapter IV References .........................................................................................212 



xiii 
 

List of Figures, Tables, and Equations 
Figure 1_R.I Structures of known and probable sapogenin compounds in M. 
truncatula. ................................................................................................................... 7 

Figure 2_R.I. Labeled photographs of aerial organs of nine different ecotypes. Note 
the diversity of anthocyanin speckling. ......................................................................14 

Figure 3_R.I.  Comparative base peak intensity chromatograms of M. truncatula 
ecotypes illustrating dramatic differential accumulation of triterpene saponins eluting 
in the 9 to 21 minutes region. ...................................................................................16 

Table 1_R.I. Summary of descriptive statistics for the total saponin accumulation 
phenotypes for the aerial and root organs. .................................................................17 

Figure 4_R.I Scatterplot of z scores for the total accumulation phenotypes of all 
ecotypes from both root (circles) and aerial (triangles) organ samples.. ......................19 

Figure 5A_R.I shows total ion current chromatograms for aerial organ extracts of A17 
and ESP_105 samples for both the initial profiling and the replant confirmation 
experiments. ..............................................................................................................22 

Table 2_R.I presents the top ten and bottom ten accumulator ecotypes for saponins of 
medicagenic acid in aerial organs along with the ranks for total saponin accumulation.
 ..................................................................................................................................23 

Table 3_R.I presents the top ten and bottom ten accumulator ecotypes for saponins of 
soyasapogenol B and soyasapogenol E in root organs.. ..............................................23 

Table 3_R.I presents the top ten and bottom ten accumulator ecotypes for saponins of 
soyasapogenol B and soyasapogenol E in root organs along with the ranks for total 
saponin accumulation. ...............................................................................................25 

Table 4_R.I details the accumulation values for the top 5 ecotypes, in both root and 
aerial organs, for zanhic acid saponins and soyasapogenol B and E saponins. ............27 

Table 5_R.I details the accumulation values for the top 5 ecotypes, in both root and 
aerial organs, for saponins of bayogenin, hederagenin, and medicagenic acid. ...........28 

Supplemental Figure 1_R.I A visualization of the metabolomics data analysis 
workflow employed in this project.. ..........................................................................34 

Supplemental Figure 2_R.I Shows total ion current chromatograms for root organ 
extracts of A17 and GRC_105 samples for both the initial profiling and the replant 
confirmation experiments. .........................................................................................35 

FIGURE 1_RII. Explanation of the Ecotype/Organ Experimental Matrix. ...............43 

TABLE 1_RII. Cytochrome P450 and Glycosyltransferase Concatenated Annotation 
List Summary. ...........................................................................................................45 



xiv 
 
Equation 1_RII. Gross Phenotype Comparison Ranking Statistic “f”. .......................71 

Equation 2_RII. Inverse Case for Regulatory Element Probesets of the Gross 
Phenotype Comparison Ranking Statistic “g”. ...........................................................72 

 ..................................................................................................................................72 

TABLE 2_RII. Top 15 Cytochrome P450 Probesets from the Gross Phenotype 
Comparison Ranking Process for the Inter-Genotype, Intra-Aerial-Organ Comparison.
 ..................................................................................................................................46 

TABLE 3_RII. Top 15 Glycosyltransferase Probesets from the Gross Phenotype 
Comparison Ranking Process for the Inter-Genotype, Intra-Root-Organ Comparison.
 ..................................................................................................................................47 

TABLE 4_RII. Pearson Correlation Coefficient Analysis of High Priority Cytochrome 
P450 Probesets. .........................................................................................................49 

FIGURE 2_RII. Graphical and Tabulated Summary of Results for the Selection of 
cyp72a68 as a High Priority Gene Candidate. ...........................................................51 

FIGURE 3_RII. Graphical and Tabulated Summary of Results for the Selection of 
cyp88d3 as a High Priority Gene Candidate. ............................................................52 

FIGURE 4_RII. Ecotype Matrix Expression Dynamics for Known Triterpenoid 
Biosynthetic Pathway Genes Preceding Triterpene Sapogenin Bio-Oxidation. ..........54 

Graphs showing the transcript expression dynamics in both organ types of all 
genotypes for squalene synthase, squalene epoxidase 1, squalene epoxidase 2, 
cycloartenol synthase, and β-amyrin synthase. Error bars represent 1 standard error. 
The squalene synthase accumulation data is from the microarray experiment. Data for 
the other genes is from qRT-PCR analysis of the same samples, as cycloartenol 
synthase and β-amyrin synthase are known to co-hybridize to the same microarray 
probesets (i. e. “shared probeset”). Similarly squalene epoxidase 1 and squalene 
epoxidase 2 co-hybridize with a number of probesets. ...............................................54 

FIGURE 5_RII. Ecotype Matrix Expression Dynamics for Known 
Glycosyltransferases of the Triterpene Saponin Biosynthetic Pathway. ......................55 

FIGURE 1_RIII. CYP72A67-Mediated Biosynthesis of 2-OH Oleanolic Acid from 
Oleanolic Acid...........................................................................................................92 

FIGURE 2_RIII. CYP72A67-Mediated Biosynthesis of Bayogenin from Hederagenin.
 ..................................................................................................................................93 

TABLE 1_RIII. CYP72A67-Mediated Production and Consumption of Diverse 
OleanateSapogenins from the Aglycone Mixture. ......................................................95 
 



xv 
 
FIGURE 3_RIII. CYP72A68-Mediated Biosynthesis of Hederagenin from Oleanolic 
Acid. ..........................................................................................................................96 

FIGURE 4_RIII. CYP72A68-Mediated Biosynthesis of Putative Gypsogenin and 
Putative Gypsogenic Acid from Hederagenin. ...........................................................97 

FIGURE 5_RIII. CYP72A68-Mediated Biosynthesis of Medicagenic Acid and 
Putative Polygalagenin from Bayogenin. ...................................................................98 

TABLE 2_RIII. Necessity of NADPH for CYP72A68 Catalytic Function. ..............99 

TABLE 3_RIII. CYP72A68-Mediated Production and Consumption of Diverse 
OleanateSapogenins from the Aglycone Mixture. ....................................................100 

FIGURE 6_RIII. Accumulation of an Unknown Compound in CYP72A68 
Expanded Time Series Oleanolic Acid Substrate Assay with NADPH Regeneration 
System. ....................................................................................................................102 

TABLE 4_RIII. In Silico and Reverse Genetic Screening Results for Tnt-1 Insertion 
Mutants for All Candidate Loci. ..............................................................................105 

FIGURE 7_RIII. Expression Dynamics for Transcripts of Candidate Genes in 
Diverse Plant Organs. ..............................................................................................106 

FIGURE 8_RIII. Summary Matrix of CYP72A67 and CYP72A68-Mediated 
Biosynthetic Reactions in the Oleanate Branch of the M. truncatula Sapogenin 
Biosynthesis Pathway...............................................................................................108 

FIGURE 1_RIV. - β-amyrin synthase and cyp88d1 Loci are Adjacent in the Genome 
of M. truncatula. ......................................................................................................137 

FIGURE 2_RIV. - β-amyrin synthase and cyp88d4 and cyp88d5 Loci are Adjacent in 
the Genome of Lotus japonicus. ..............................................................................138 

FIGURE 3_RIV. - Correlation of Transcript and Total Saponin Metabolite 
Accumulation for cyp88d2 from Various Ecotypes. ................................................140 

FIGURE 4_RIV. - Correlation of Transcript and Total Saponin Metabolite 
Accumulation for cyp88d3 from Various Ecotypes. ................................................141 

FIGURE 5_RIV. - Expression values for Transcripts of cyp88d Genes in Diverse 
Plant Organs and Biological Treatments from the Medicago Gene Atlas. ...............143 

TABLE 1_RIV. - Reverse Genetic Screening Results for Tnt-1Insertion Mutants for 
the cyp88d2 Locus. .................................................................................................144 
 

 
 
  



1 
 

Main Text 

Chapter I - A Metabolomics-Based Platform for the Assessment of 

Triterpene Saponin Biochemical Variation in a Medicago truncatula 

Germplasm Diversity Collection 

Authors: John H. Snyder, David V. Huhman, Stacey Allen,and Lloyd W. 

Sumner 

Summary 

This chapter details the metabolomics analyses of a large Medicago truncatula ecotype 

collection. Key results include the differences in observed spatial accumulation of both 

total and individual saponin classes and structures within the ecotype collection. 

Biochemical and ecological implications of the metabolomics profiling results are 

considered. 

Abstract 

The model legume Medicago truncatula is known to accumulate a large variety of 

triterpene saponin compounds, resulting from the differential glycosylation of at least 

six triterpeneaglycone structures. Previous chemical analyses (using FT-ICR-MS) 

analyses indicate that there may be several hundred saponin compounds in Medicago 
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sp. In this project, UPLC-ESI-qTOF-MS analysis was used to profile the 

accumulation of triterpene saponin metabolites in a collection of 110 M. truncatula 

ecotypes (germplasm accessions), which possess substantial metabolic diversity in 

saponin accumulation. Numerous accessions displayed highly differential total 

saponin accumulation in both aerial and root organs . Differential accumulation of 

specific saponin structures was also observed. Zanhic acid saponins were detected 

exclusively in aerial organs, while soyasapogenol B and soyasapogenol E saponins were 

detected exclusively in root organs. Additionally, medicagenic acid saponins were 

relatively more abundant in aerial tissues, while bayogenin saponins were more 

abundant in root tissue suggesting that the oxidation of carbon 23 of ß-amyrin from a 

hydroxyl (bayogenin) to a carboxylic acid (medicagenic acid) is more likely to occur in 

aerial tissues. The differential accumulation of saponins in the root and aerial tissues 

strongly suggests the presence of differentially regulated or biosynthetically distinct 

branches of the triterpene saponin pathway. Ecotypes of particular interest for 

subsequent molecular genetics analysis were identified as genetic resources and tested 

to ensure reproducibility of the observed biochemical phenotypes. 

Abbreviations 

FT-ICR-MS: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 
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UPLC-ESI-qTOF-MS: Ultra High Performance Liquid Chromatography 

Electrospray Ionization quadropole Time-of-Flight Mass spectrometry 

HPLC-ESI-ion trap-MS: High Performance Liquid Chromatography 

PCA: Principal Component Analysis 

HCA: Hierarchical Cluster Analysis. 

m/z: Mass to charge ratio 

N.B. for JHS Dissertation  

Development of the single seed descent lines was performed by Stacy Allen under the 

direction of Greg May and Lloyd Sumner several years prior to JHS arrival at The 

Noble Foundation. Growth, harvest, sample extraction/preparation, and instrumental 

analysis of the initial 110 ecotypes was performed by David Huhman prior to JHS 

arrival at Noble Foundation. Post –acquisition data analysis of raw data and statistical 

analyses for all samples was performed by JHS. Targeted ion list analyses (see 

Supplemental Figure 1_R.I) performed by JHS employed ion annotation information 

developed previously by David Huhman and others in the Sumner group. Subsequent  

regrowth, harvest, sample extraction/preparation, and post-acquisition analysis for 

confirmation of results and generation of additional sample materials of selected 

ecotypes was performed by JHS.  
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Introduction 

Triterpene saponins are a structurally diverse class of compounds with a wide 

taxonomic distribution. Although primarily found in Eudicots and especially legumes, 

triterpene saponins have also been isolated from selected Monocotyledonae plants 

such as oat and barley (Anne E. Osbourn, 2003; Papadopoulou et al., 1999). 

Triterpene saponins possess a broad range of biological activities. Particular triterpene 

saponins have shown deleterious bioactivity against a broad spectrum of organisms 

such as lepidoptera larvae, aphids, gram-positive bacteria, yeasts, phytopathogenic 

fungi, human dermatophytic fungi, and other plants (Meesapyodsuk et al., 2007; P. 

Houghton, 2006; Pedersen et al., 1976). Saponins have also been recently reported to 

influence nodulation (Confalonieri et al., 2009). Recent studies have reported 

beneficial pharmacological bioactivities of specific triterpene saponins including anti-

inflammatory, anticancer (through induction of apoptosis following mitochondrial 

perturbation), and cholesterol-lowering properties (Haridas et al., 2001; 

Kuljanabhagavad et al., 2008). There has been further interest in using triterpene 

saponins as adjuvants for plant produced vaccines (Kirk et al., 2004). While the above 

bioactivities are favorable for potential ecological, agrochemical, and pharmacological 

applications, triterpene saponins also represent the primary antinutritive compounds 
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in livestock fodder (Lu and Jorgensen, 1987; Lu et al., 1987; Sen et al., 1998). These 

antinutritive properties restrict the optimum utility of high-protein legumes as 

livestock feed and limit the ultimate economic potential of forage legumes. High 

concentrations of triterpene saponins in forages cause a serious reduction in ruminal 

and total tract forage digestibility through decreased ruminal protozoan populations 

and increased duodenal N, ultimately resulting in reduced weight gain (Dixon and 

Sumner, 2003; Lu and Jorgensen, 1987). A sophisticated molecular and biochemical 

understanding of saponin biosynthesis would enable the metabolic engineering of 

triterpenoid biosynthesis. For example, specific antimicrobial saponins could be 

engineered in roots to provide antimicrobial properties. Additionally, engineering a 

reduction of saponin content in aerial organs would improve nutritional content. 

 Structurally, triterpene saponins are composed of a lipid-soluble tritepenoid 

aglycone conjugated with various water soluble sugar residues. Sterol and triterpenoid 

sapogenin (saponin aglycones) biosyntheses in legumes begin with a common 

isopentenyl pyrophosphate (IPP) precursor synthesized via the cytosolic mevalonic 

acid (MVA) and/or plastid localized methylerythritol (MEP) pathways. The 

progressive condensation of isoprene units leads to various mono, sesqui, di, and 

triterpenoids. The triterpene oxidosqualene is cyclized by two enzymes resulting in 
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two branched pathways . Cycloartenol synthase is the first committed step in sterol 

biosynthesis, whereas ß-amryin synthase is the first committed step in triterpene 

saponin biosynthesis(Augustin et al., 2011; Pollier et al., 2011). Squalene synthase and 

squalene epoxidase have been previously characterized in M. truncatula(Iturbe-

Ormaetxe et al., 2003; Suzuki et al., 2002).  

 The structural diversity of the triterpene sapogenins in legumes, including the 

model legume Medicago truncatula, has been an active area of phytochemical research 

for some time(Augustin et al., 2011). Previous FT-ICR-MS studies (unpublished 

results) indicate that there may be several hundred diverse saponin compounds in 

Medicago sp., but saponins of only six sapogenins are reported in the phytochemical 

literature for M. truncatula to date (Augustin et al., 2011; Pollier et al., 2011). A 

straightforward understanding of the diverse structures of the sapogenins of M. 

truncatula can be achieved by examining the sequential oxidation of six different 

carbons located within the ß-amarin structure. A relatively small number of carbon 

positions and various degrees of sequential oxidation at those carbon positions 

describe a very large diversity of chemical structures in this pathway as shown in 

Figure 1_R.I. 
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Figure 1_R.I Structures of known and probable sapogenin compounds in M. truncatula. 

Recent progress in the development of robust metabolomics data acquisition and 

analysis methodologies has enabled novel experimental approaches for high resolution 

biochemical phenotyping in plant science (Bino et al., 2004; Chan et al., 2010). 

Several studies have used metabolomics methodologies for high resolution 

biochemical phenotyping of mutant collections and germplasm diversity panels for 

gene discovery or QTL analysis (Harjes et al., 2008; Schilmiller et al., 2010). Curated 

collections of germplasm accessions (ecotypes, natural genetic variants/mutants of a 
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particular species) are a powerful resource for exploring the natural variation for any 

number of phenotypes (Ronfort et al., 2006). In this study, high resolution 

biochemical phenotyping was used to characterize the variation in triterpene saponin 

content within a large and diverse germplasm collection, i.e. 110 ecotypes. 

Characterization of the biochemical variation within the collection has enabled the 

informed selection/identification of particular ecotypes as genetic resources for 

subsequent molecular genetic analyses. Differences in triterpene saponin accumulation 

between the ecotypes can ostensibly be explained by either differential gene expression 

dynamics, or polymorphic alleles for genes that are involved in the biosynthesis, 

transport, sequestration, catabolism, signaling, or transcriptional activation (among 

others) for triterpene saponin biosynthesis. The degree of phenotypic differences 

among the natural variants such as ecotypes are extreme in some cases, but ecotypes 

are likely to have more complicated genotypic/phenotypic interactions than more 

traditional mutant collections derived from single genotypes or crosses of controlled 

and limited pedigree. Nevertheless, identification of ecotypes with extreme 

enrichments or deficiencies in triterpene saponin accumulation could therefore prove 

to be valuable as a form of "natural mutants" for studies into the molecular basis of 

triterpene saponin biosynthsis. This article details the metabolomics analyses of a large 
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Medicago truncatula ecotype collection. Key results include the differences in observed 

spatial accumulation of both total and individual saponin classes and structures within 

the ecotype collection. Biochemical and ecological implications of the metabolomics 

profiling results are considered. 

Methods 

Plant Materials 

Seeds for the Medicago truncatula ecotype collection were obtained from Institut 

National de la Recherche Agronomique (INRA, http://www.montpellier.inra.fr/ 

INRA, Montpellier, France). Single seed descent lines for all of the INRA ecotypes 

were developed on site at The Noble Foundation prior to the plantings for the 

metabolomics profiling experiments described here.  

Plant Growth Conditions 

Plants were grown using the D40 H root cone system (Stuewe and Sons, 

http://www.stuewe.com, Tangent, OR), with Turface MVP medium (Profile 

Products, Buffalo Grove, IL), in a Conviron TCR180 walk-in growth chamber 

(http://www.conviron.com/, Winnipeg, Manitoba, Canada) maintained at 90% 

humidity and at an average temperature of 24 °C day (16 h) and 20 °C night (8 h). 

Plants were fertilized with 15 ppm nitrogen (Scotts' 20 10 20 Peat-Lite Special, 
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http://www.scotts.com, Marysville, Ohio) daily in the morning and watered with 

distilled water in the evening.  

Metabolomics Analysis 

Plants were harvested at 6 weeks post-germination and dissected into aerial and root 

organs. Dissected organs from two plants were combined as a single biological 

replicate, frozen immediately in liquid nitrogen, and lyophilized prior to metabolic 

profiling. In subsequent experiments, aerial tissues from the youngest 6 metamers 

(Bucciarelli et al., 2006) of individual plants and whole root organ samples from 

individual plants were prepared as single biological replicates. Three aerial and root 

replicates were prepared for all of the ecotypes. Lyophilized tissues were ground into a 

fine powder using a mortar and pestle. 10.00 ± 0.06 mg of powder was extracted with 

1 ml of 80% methanol (containing 0.018 mg/ml umbelliferone as an internal 

standard) in a dram vial for 2 hours on an orbital shaker. The samples and vials were 

centrifuged for 30 minutes at 2900g at 4°C. Supernatants were transferred to LC-MS 

autosampler vials (Agilent, http://www.agilent.com, Santa Clara, CA) and stored at -

20°C until analyzed with a Waters Acquity UPLC system coupled to a hybrid 

quadrupole time-of-flight (QTOF) mass spectrometer (Waters QTofMS Premiere, 

http://www.waters.com/, Milford, MA). A Waters reverse-phase UPLC BEH, C18, 
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2.1 x 150 mm column with 1.7-µm particles was used for separations. The mobile 

phases consisted of eluent A (0.1% [v/v] acetic acid/HPLC grade water) and eluent B 

(HPLC-grade acetonitrile), and separations were achieved using a linear gradient of 

95% to 30% A over 30 min, The flow rate was 0.56 mL/min, and the column 

temperature was maintained at 60°C. Separated compounds were detected in the 

negative ESI mode from 50 to 2,000 mass-to-charge ratio. The QTOF Premier mass 

spectrometer was operated using the following instrumental parameters: desolvation 

temperature of 400°C, desolvation nitrogen gas flow of 850 L/h, capillary voltage of 

2.9 kV, cone voltage of 48 eV, and collision energy of 10 eV. The MS system was 

calibrated using sodium formate, and raffinose was used as the lockmass compound. 

Targeted ion list and Data Processing 

Raw data files were converted to .cdf file format, followed by metabolite data 

extraction, alignment, and export using MET-IDEA software (Broeckling et al., 

2006a). An ion list containing 153 retention time/ion pairs was used for the saponin-

targeted metabolomics data analysis of the Ecotype UPLC-ESI(-)-qTOF-MS saponin 

biochemical phenotypes (Appendix_RI_ion_list). Seventeen of these pairs were 

determined using validated authentic standards (e.g. 3-Glc-28-Glc-Medicagenic Acid 

standard), 53 of these pairs were tentatively identified based upon spectral information 
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(source fragmentation and MS/MS in some cases) as an Aglycone and some 

combination of sugars(e.g. Hex-Rha-Hex-Hex-Hederagenin), 28 of these pairs have 

minimal annotation based spectral features resulting from probable source 

fragmentation (e.g. possibly bayogenin, GlcGlc?), and the remainder are unknowns. 

The unknown pairs in the ion list were identified with non-targeted MARKERLYNX 

analysis, and had m/z values and retention times in the same regions as the known and 

putative pairs and additionally showed statistically significant differential 

accumulation values among the ecotypes in the collection. In addition to the targeted 

analysis of saponin content, non-targeted analyses of all samples were performed using 

Waters MARKERLYNX software. The spectral abundance signals for all metabolites 

in a separation were normalized to the internal standard (0.018 mg/ml umbelliferone). 

Descriptive statistics were performed in MS Excel. One-way ANOVA was performed 

using a custom MATLAB script. Multivariate analyses including principal component 

analysis (with standardized, z-score values for peak area) and hierarchical clustering 

were performed using JMP 5.0 software (SAS, http://www.sas.com/). Supplemental 

Figure 1_R.I presents a visualization of the metabolomics data analysis workflow 

employed in this project. 
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Results and Discussion 

Morphological Diversity 

During the propagation and development of the single seed descent lines of the INRA 

ecotype collection, an obvious diversity of aerial and reproductive organ morphology 

among the ecotypes was noted. Photos of all of the ecotypes in the collection can be 

found at: (http://www.noble.org/medicago/ecotypes.html). The various ecotypes also 

showed obvious biochemical diversity in the form of varied anthocyanin speckling 

(Figure 2_R.I) on leaves. 
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Figure 2_R.I. Labeled photographs of aerial organs of nine different ecotypes. Note the diversity of 
anthocyanin speckling. 
 

Metabolic profiling 

Metabolic profiling was used to determine the saponin content within the 110 M. 

truncatula accessions obtained from INRA. Analyses were performed using a UPLC-

ESI-qTOF-MS platform and representative base peak intensity (BPI) chromatograms 

are presented in Figure 3. Single factor ANOVA of the accumulation of the 
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normalized peak areas of various ions revealed that 145/153 detected ions were 

significantly differentially accumulated (p<0.05) in root organs among the ecotypes, 

and that 144/153 detected ions were significantly differentially accumulated (p<0.05) 

in the aerial organ data set (Appendix_RI_ion_list). The metabolic profiling results 

will be considered at two level of phytochemical resolution: 1.) differences in total 

saponin accumulation, and 2.) diveristy of saponin structure, as observed between the 

two organs types and as observed within a particular organ among the various ecotypes.  
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Figure 3_R.I.  Comparative base peak intensity chromatograms of M. truncatula ecotypes 
illustrating dramatic differential accumulation of triterpene saponins eluting in the 9 to 21 minutes 
region (red highlighted box).  I.S. indicates umbelliferone internal standard. 
 

  

I.S
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Total Saponin Accumulation 

Total saponin accumulation phenotype values were obtained for each of the ecotypes 

by summing the individual accumulation values for each of ion/Rt pairs 

(Appendix_RI_ion_list). Table 1_R.I presents a summary of descriptive statistics for 

the total saponin accumulation phenotypes for the aerial and root organs.  

A. 
  

B. 
 Statistic Normalized Peak Area 

 
Statistic Normalized Peak Area 

Aerial_Mean 9049 
 

Root_Mean 29787 
Aerial_Standard 

Deviation 
5397 

 
Root_Standard 

Deviation 
9329 

Aerial_Max 32538 
 

Root_Max 52032 
Aerial_Min 346 

 
Root_Min 7136 

Aerial_Range 32192 
 

Root_Range 44896 

     
C.   D.  

 
% of ecotypes 

  
% of ecotypes 

Aerial within 1 st dev 69 
 

Root within 1 st dev 60 
Aerial within 2 st dev 95 

 
Root within 2 st dev 96 

Aerial within 3 st dev 99 
 

Root within 3 st dev 100 
Aerial within 4 st dev 100 

   
Table 1_R.I. Summary of descriptive statistics for the total saponin accumulation phenotypes for the 

aerial and root organs. 

Root organs accumulated higher quantities of total saponins than aerial organs. This is 

consistent with a previous study (Huhman et al., 2005), but the ratio of root to aerial 

saponins (3.3) is lower than the comparisons reported for root to leaf (approximately 

5) and root to stem (approximately 10). This difference may be due to several factors, 
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including but not limited to the increased depth of coverage in the analytical platform 

(HPLC-ESI-ion trap-MS compared to UPLC-ESI-qTOF-MS) and additional 

structural annotations available in the metabolomics informatics workflow, or simply 

as a consequence of the increased biological variation in the saponin accumulation 

represented by the much larger (one ecotype vs. 110) representation of germplasm 

diversity in this study.  Indeed, the desire to examine the likely increased biological 

variation for both total saponin accumulation (as well as variation in saponin 

structural diversity) within the large ecotype collection was the primary motivation for 

this study. The variation of total saponin accumulation between the various ecotypes 

is presented in Figure 4.  
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Figure 4_R.I Scatterplot of z scores for the total accumulation phenotypes of all ecotypes from both 

root (circles) and aerial (triangles) organ samples. ESP_105 samples are labeled and shown enlarged 

and in red color. GRC_43 samples are labeled and shown enlarged and in blue color.  

Outliers in total saponin accumulation values were more pronounced in aerial organs 

than in root organs as evidenced by the magnitude of the range in the z-score 

distribution. Perhaps the most interesting aspect of the total saponin accumulation 

analysis was the observation that a low accumulator in aerial organs may be a high 

accumulator in root organs and vice versa. For example, the ecotype ESP_105 is the 
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lowest total saponin accumulator in aerial organs but a very high (top 20) total 

accumulator in root organs. Likewise, the ecotype GRC_43 is the lowest total 

accumulator in root organs but a very high (top 10) total accumulator in aerial organs. 

Specific ecotypes were identified as genetic resources for potential use in 

subsequent molecular genetics analyses based on UPLC-ESI(-)-qTOF-MS profiling 

and metabolomics data analyses. Ecotypes that demonstrated extremes of either hypo- 

or hyper-total saponin accumulation were considered to be of primary importance. 

Ecotypes with differential accumulation of saponins of particular sapogenin structures 

were not prioritized for immediate exploitation. As highlighted previously, a low 

accumulator in aerial organs may be a high accumulator in root organs and vice versa. 

This observation was exploited in the experimental design of the molecular genetics 

analyses that eventually followed from the metabolomics profiling (see 

JHS_Research_Chapter_II). The ecotype ESP_105 was selected as the lowest total 

saponin accumulator in aerial organs, but it had potential additional value as a 

resource because it was also very high (top 20) total accumulator in root organs. 

Likewise, the ecotype GRC_43 was selected as the lowest total accumulator in root 

organs but was also an extremely high (top 10) total accumulator in aerial organs. 

ESP_104 was selected as an additional low total saponin accumulator for aerial organs, 
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and DZA_242 was selected as an additional low total saponin accumulator for root 

organs. The popular isolines A17 and R108 were selected as reference ecotypes with 

relatively high total saponin accumulation in both aerial and root organs, due 

primarily to their role in the development of genomics and mutant population 

resources for research in M. truncatula. Reproducibility of highly-dimensional 

metabolomics phenotypes is often difficult to achieve. In order to assure that the 

saponin phenotypes observed in the initial profiling experiment were reproducible, the 

selected ecotypes were re-grown, harvested, extracted/processed, and analyzed in the 

same manner as the initial profiling experiment . Figure 5A_R.I and Supplemental 

Figure 2_R.I indicate that the low total saponin accumulation phenotypes for 

ESP_105 aerial organs and GRC_43 root organs compared to A17 are broadly 

reproducible between experiments, thereby enabling reliable generation of plant 

material for subsequent phytochemical and molecular genetic studies. 
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Figure 5A_R.I shows total ion current chromatograms for aerial organ extracts of A17 and ESP_105 

samples for both the initial profiling and the replant confirmation experiments. 

Diversity of Saponin Structure Observed Between the Two Organ Types 

3.) Diversity of saponin structures observed within a particular organ among the various ecotypes.  
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TOP TEN     

Ecotype Normalized Peak 
Area 

Rank 
(medicagenic acid) Rank (total) 

F20_89_aerial 3881.7 1 2 
GRC_33_aerial 3351.7 2 3 
ESP_48_aerial 3232.5 3 24 
ESP_50_aerial 2916.8 4 14 
DZA_55_aerial 2548.8 5 35 
DZA_246_aerial 2484.7 6 11 
F20_81_aerial 2403.9 7 19 
DZA_45_aerial 2349.0 8 13 
F20_58_aerial 2297.3 9 59 
DZA_59_aerial 2208.6 10 16 

     
BOTTOM TEN    

Ecotype Normalized Peak 
Area 

Rank 
(medicagenic acid) Rank (total) 

ESP_162_aerial 47.2 99 106 
CALIPH__aerial 46.8 100 78 
DZA_58_aerial 45.6 101 104 
DZA_61_aerial 42.4 102 94 
F34_42_aerial 41.3 103 20 
DZA_46_aerial 36.8 104 92 
ESP_140_aerial 22.6 105 101 

MOGUL__aerial 20.9 106 80 
ESP_105_aerial 18.6 107 109 

F11_7_aerial 13.0 108 77 
HARBINGER__aerial 5.9 109 105 
Table 2_R.I presents the top ten and bottom ten accumulator ecotypes for saponins of medicagenic 

acid in aerial organs along with the ranks for total saponin accumulation. 

Table 3_R.I presents the top ten and bottom ten accumulator ecotypes for saponins of 

soyasapogenol B and soyasapogenol E in root organs. It is worth noting that root organs of the 

ecotype DZA_46 rank 6th overall for saponins of soyasapogenols B and E but rank 50th in terms of 



24 
 
total saponin accumulation. Root organs of the ecotype GRC_65 rank 102nd for accumulation for 

saponins of soyasapogenols B and E, while ranking 13th in total saponin accumulation. 
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TOP TEN    

Ecotype Normalized Peak 
Area 

Rank (combined 
soy-E & soy-B) Rank (total) 

ESP_105_root 4456.8 1 18 
DZA_45_root 4370.0 2 41 
ESP_39_root 4209.0 3 17 
ESP_104_root 4153.9 4 9 
ESP_155_root 3916.2 5 14 
DZA_46_root 3894.1 6 50 
ESP_96_root 3794.4 7 2 
ESP_165_root 3670.6 8 1 
ESP_50_root 3592.6 9 22 
ESP_74_root 3376.4 10 16 

    
BOTTOM TEN    

Ecotype Normalized Peak 
Area 

Rank (combined 
soy-E & soy-B) Rank (total) 

GRC_64_root 1383.0 95 98 
SALERNES__root 1330.1 96 88 

CRE_9_root 1288.9 97 65 
DZA_309_root 1272.0 98 96 
DZA_242_root 1207.1 99 104 
ESP_161_root 1139.9 100 103 
CRE_5_root 1092.4 101 90 

GRC_65_root 939.9 102 13 
HARBINGER__root 926.4 103 31 

DZA_221_root 273.4 104 89 
GRC_043B_root 116.5 105 105 

Table 3_R.I presents the top ten and bottom ten accumulator ecotypes for saponins of 

soyasapogenol B and soyasapogenol E in root organs along with the ranks for total saponin 

accumulation.  
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Zanhic Acid Saponins Normalized Peak Area 
HARBINGER_Root 25 

DZA_055_Root 9 
DZA_327_Root 9 
PRT_180_Root 9 
DZA_323_Root 9 

  
F11_012_Aerial 6915 
CALIPH_Aerial 3393 
F11_007_Aerial 3241 
PRT_176_Aerial 3226 

SALERNES_Aerial 2600 
 
Soyasapogenol B Saponins Normalized Peak Area 

ESP_104_Root 1919 
ESP_165_Root 1821 
ESP_162_Root 1547 
ESP_171_Root 1087 
GRC_052_Root 1001 

  
F11_007_Aerial 29 
CRE_009_Aerial 17 
MOGUL_Aerial 14 
DZA_033_Aerial 12 
F11_012_Aerial 12 

 
Soyasapogenol E Saponins Normalized Peak Area 

ESP_105_Root 3916 
ESP_039_Root 3731 
DZA_046_Root 3721 
DZA_045_Root 3594 
ESP_155_Root 3351 

  
ESP_096_Aerial 19 
ESP_031_Aerial 13 

ESP_098A_Aerial 12 
ESP_074_Aerial 10 
ESP_040_Aerial 9 
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Table 4_R.I details the accumulation values for the top 5 ecotypes, in both root and aerial organs, 

for zanhic acid saponins and soyasapogenol B and E saponins. 

Bayogenin Saponins Normalized Peak Area 
ESP_155_Root 15990 
ESP_096_Root 14777 
ESP_159_Root 14705 
ESP_100_Root 14488 
DZA_323_Root 14486 

  
F11_012_Aerial 162 
PRT_178_Aerial 148 
PRT_176_Aerial 121 
PRT_179_Aerial 116 
CRE_009_Aerial 89 

 
Hederagenin Saponins Normalized Peak Area 

MOGUL_Root 16079 
ESP_162_Root 15639 
F20_025_Root 14731 
ESP_105_Root 12666 
DZA_105_Root 12275 

  
MOGUL_Aerial 1648 
DZA_241_Aerial 1157 

JEMALONG_3_Aerial 1058 
A17_Aerial 1032 

CALIPH_Aerial 800 
 
Medicagenic Acid Saponins Normalized Peak Area 

ESP_041_Root 19776 
ESP_165_Root 18597 
ESP_074_Root 16373 

JEMALONG_Root 16315 
ESP_096_Root 14473 

  
F20_089_Aerial 3882 

GRC_033_Aerial 3353 
ESP_048_Aerial 3233 
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ESP_050_Aerial 2919 
DZA_055_Aerial 2549 

Table 5_R.I details the accumulation values for the top 5 ecotypes, in both root and aerial organs, 

for saponins of bayogenin, hederagenin, and medicagenic acid. 

Additional Information 

Appendices 

Appendix_RI_ion_list 

Supplemental Figure 1_R.I  

Supplemental Figure 2_R.I 
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Supplemental Figure 1_R.I A visualization of the metabolomics data analysis workflow employed in 
this project. PCA: Principal Component Analysis, HCA: Hierarchical Cluster Analysis. 
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INITIAL  A17 ROOT

REPLANT A17 ROOT

INITIAL GRC43 
ROOT

REPLANT GRC43 
ROOT

Supplemental Figure 2_R.I Shows total ion current chromatograms for root organ extracts of A17 
and GRC_105 samples for both the initial profiling and the replant confirmation experiments. 
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Chapter II - Identification of Candidate Biosynthetic Genes in 

Triterpene Saponin Metabolism Through Integrated Analysis of 

Metabolome And Transcriptome Datasets from Medicago truncatula 

Ecotypes with Differential Triterpene Saponin Accumulation 

Phenotypes 

Authors: John H. Snyder, David V. Huhman, Yuhong Tang, and Lloyd W. 

Sumner 

Summary 

This chapter will detail the large-scale transcriptomics experiment performed with the 

ecotypes/organs selected in JHS_Research_CHAPTER_I. The focus of this chapter is 

the process of identification of candidate genes (particularly cytochrome P450, 

glycosyltransferase, and regulatory element genes) for triterpene saponin biosynthesis. 

This process is accomplished through the integrated analysis of these separate “omics” 

datasets through two approaches (gross phenotype comparisons and Pearson 

correlation coefficient analysis). Additionally, this chapter contains the results of a de 

novo profile hidden Markov model annotation of the tentative consensus sequences 

used to design the probesets of the Affymetrix Medicago Gene Chip  
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Abstract 

Based on the metabolomics profiling of a large germplasm diversity collection, 

an experimental matrix of grouped hypo- and hyper-triterpene saponin 

accumulating ecotypes and organs were selected for transcriptomics analysis. The 

dramatic differences in total saponin accumulation between the various ecotypes 

and organs selected for the matrix enabled several approaches for the integration 

of the metabolomics and transcriptomics datasets for the identification of likely 

candidate genes for the as yet uncharacterized biosynthetic steps of the triterpene 

saponin pathway of M. truncatula. Identification of likely regulatory element 

candidate genes which may control saponin biosynthesis was also a goal of the 

study. A predictive model was developed for the ranking of transcripts which 

matched the gross saponin accumulation phenotypes from the various ecotypes 

and organs from the experimental matrix. Pearson correlation coefficient analysis 

was also performed for a large number of [transcript] vs. [metabolite] and 

[ecotype] vs. [organ] permutations from the experimental matrix. As the 

annotations for the tentative consensus sequences used to design the probesets of 

the Affymetrix Medicago Gene Chip™ showed poor representation for known 

cytochrome P450 and glycosyltransferase genes, a de novo profile hidden Markov 
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model (HMM) protein domain annotation was performed. This annotation 

enabled more comprehensive analysis of the transcripts from these protein 

families. Results from the various integrated analyses of transcriptomics and 

metabolomics datasets motivated the selection of five cytochrome P450 genes 

(cyp72a68, cyp72a67, cyp716a12, cyp83g1, and cyp88d3) as likely candidates 

involved in the bio-oxidation of triterpene sapogenins in the triterpene saponin 

biosynthesis pathway of M. truncatula.  

Glossary 

Hidden Markov Model (HMM): A statistical model used for analyzing unknown 

(but probabilistically defined) sequences when useful outputs from those sequences are 

available. 

Probeset: A term for a proprietary technology consisting of “a collection of probes 

designed to interrogate a given sequence” (Affymetrix, 

http://www.affymetrix.com/support/help/faqs/mouse_430/faq_8.jsp). 

Introduction 

Metabolomics methodologies enable researchers to obtain extremely high resolution 

biochemical phenotypic datafor biological samples (Fiehn 2002). Metabolomics is 
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now established as an important tool in broader functional genomics (Bino, Hall et al. 

2004), and has become a critical component of Systems Biology (Sulpice, Trenkamp 

et al. in press). Metabolomics biochemical phenotypic data can be seen as a 

particularly useful in plant functional genomics, as the largely uncharacterized 

genes/enzymes for the synthesis, modification, degradation and/or transport of exotic 

metabolites ultimately yield the awesome phytochemical diversity observed in plants 

(Dixon and Sumner 2003). A number of studies in plants have explored the 

associations between transcriptomics and metabolomics datasets. Many of these 

studies have used a single reference genotype, and focused on developmental stages 

and spatially-resolved tissue types (Krueger, Giavalisco et al. 2011 ; Matsuda, Hirai et 

al. 2010) or discreet perturbations such as diverse growth conditions (e. g. temperature, 

day length) or nutritional status (Hirai, Yano et al. 2004; Hannah, Caldana et al. 

2010). Other integrated studies have focused on the differential transcript and 

metabolite accumulation dynamics between transgenic and wild-type plants (Tohge, 

Nishiyama et al. 2005). Studies which integrate transcriptomics and metabolomics 

datasets among germplasm diversity panels (“natural mutant collections”) have 

become a more recent focus for plant metabolomics (Tohge and Fernie 2010). These 

germplasm diversity based studies have focused their integrated transcript and 
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metabolite models on “major”(i. e. not expressly “biochemical”) phenotypes, such as 

total biomass (Sulpice, Trenkamp et al. in press), or tomato fruit color (Ballester, 

Molthoff et al. 2011).  

Triterpene saponins are a structurally diverse class of compounds with a wide 

taxonomic distribution and a broad range of biological activities (Augustin, Kuzina et 

al. 2011). Although primarily found in dicots and especially legumes, triterpene 

saponins have also been isolated from selected monocots such as oat and barley 

(Papadopoulou, Melton et al. 1999; Anne E. Osbourn 2003). Triterpene saponins 

represent the primary antinutritive compounds in livestock fodder (Lu and Jorgensen 

1987; Lu, Tsai et al. 1987). Structurally, triterpene saponins are composed of a lipid-

soluble triterpenoid aglycone conjugated with various water soluble sugar residues. 

Sterol and triterpenoid sapogenin (saponin aglycones) biosyntheses in legumes begin 

with a common isopentenyl pyrophosphate (IPP) precursor synthesized via the 

cytosolic mevalonic acid (MVA) and/or plastid localized methylerythritol (MEP) 

pathways. The progressive condensation of isoprene units leads to various mono, 

sesqui, di, and triterpenoids. The triterpene oxidosqualene is cyclized by two enzymes 

resulting in two branched pathways. Cycloartenol synthase is the first committed step 

in sterol biosynthesis, whereas ß-amryin synthase is the first committed step in 
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triterpene saponin biosynthesis (Augustin, Kuzina et al. 2011). Squalene synthase and 

squalene epoxidase have been previously characterized in M. truncatula (Suzuki, 

Achnine et al. 2002; Iturbe-Ormaetxe, Haralampidis et al. 2003). Very little is known 

about the remaining enzymatic (bio-oxidation by cytochrome P450 enzymes and 

gylcosylation) steps following ß-amyrin synthase in triterpene saponin biosynthesis, 

although UGT73K1, UGT71G1, UGT73F3 have recently been characterized as GTs 

in the triterpene saponin biosynthesis pathway of M. truncatula. (Lahoucine Achnine 

2005; Naoumkina, Modolo et al. 2010). None of the enzymes which catalyze the bio-

oxidation of ß-amyrin in M. truncatula have been characterized, and the mechanisms 

of additional glycosylation steps remain uncharacterized.  

It has been observed that the ‘guilt by association’ phenomenon (co-

accumulation dynamics for genes which are co-regulated and thus co-expressed under 

the control of a shared regulatory system)is particularly pronounced in the case of 

plant secondary metabolism(Saito, Hirai et al. 2008). The aim of this study was to 

exploit this strong ‘guilt by association’ phenomenon by performing transcriptomics 

analysis of a matrix (Figure 1_RII) of germplasm accessions (ecotypes) with extreme 

phenotypes for differential triterpene saponin accumulation. In combination with the 

extreme saponin accumulation phenotypes, the transcript expression data could 
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potentially identify genes of unknown function that had strong ‘guilt by association’ 

with the saponin biosynthetic pathway. As no enzymes which catalyze the bio-

oxidation (putatively cytochrome P450s) have been characterized in the saponin 

biosynthesis pathway of M. truncatula, particular emphasis was placed on ‘guilt by 

association’ relationships between the phenotypes and expression dynamics for 

unknown cytochrome P450 genes.  

Metabolomics analysis of a large germplasm diversity (ecotype) collection 

revealed substantial metabolic diversity in triterpene saponin accumulation both 

within the various ecotypes, and between the root and aerial organs of individual 

ecotypes (JHS_RESEARCH_CHAPTER_I). The metabolomics phenotyping results 

enabled the informed selection of specific ecotypes for an experimental matrix of 

hypo- and hyper- saponin accumulating ecotypes and organs (Figure 1_RII). The 

ecotype ESP_105 was selected as the lowest total saponin accumulator in aerial organs, 

but it had potential additional value as a resource because it was also very high (top 

20) total accumulator in root organs. Likewise, the ecotype GRC_43 was selected as 

the lowest total accumulator in root organs but was also an extremely high (top 10) 

total accumulator in aerial organs. The popular isolines A17 and R108 were selected 

as reference ecotypes with relatively high total saponin accumulation in both aerial 
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and root organs, due primarily to their role in the development of genomics and 

mutant population resources for research in M. truncatula. An evaluation of the 

several possible permutations of comparisons enabled by the experimental matrix is 

critical for understanding the results of the integrated transcriptomics and 

metabolomics datasets.  

A17

ESP105

GRC43 

R108 

ESP105 Aerial

ESP105 Root

A.

B.

C.

D.IV. Intra-Genotype (ESP105) , Inter-Organ (n=6) ESP105 
AERIAL ORGAN Gross Saponin Phenotype: L
ROOT ORGAN Gross Saponin Phenotype: H

V. Intra-Genotype (GRC43) , Inter-Organ (n=6) GRC43 
AERIAL ORGAN Gross Saponin Phenotype: H
ROOT ORGAN Gross Saponin Phenotype: L

I. Inter-Genotype, Inter-Organ (n = 24)
Genotype: A17 ESP105 GRC43 R108 

AERIAL ORGAN Gross Saponin Phenotype: H L H H 
ROOT ORGAN Gross Saponin Phenotype: H H L H 

II. Inter-Genotype, Intra-Organ (Aerial) (n=12)
Genotype: ESP105 A17 GRC43 R108 

AERIAL ORGAN Gross Saponin Phenotype: L H H H 

III. Inter-Genotype, Intra-Organ (Root) (n=12)
Genotype: GRC43 A17 ESP105 R108 

ROOT ORGAN Gross Saponin Phenotype: L H H H 

Ecotype: A17 ESP105  GRC43 R108  
AERIAL ORGAN HIGH LOWEST VERY HIGH  HIGH  

ROOT ORGAN HIGH VERY HIGH LOWEST  MODERATE  

L

H

H

H

L

H

 

FIGURE 1_RII. Explanation of the Ecotype/Organ Experimental Matrix.  

(A) Summary table showing the complete Ecotype/Organ Experimental Matrix. The terms “High,” 

“Lowest” etc. presented in the table refer to the total triterpene saponin accumulation phenotypes for 
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each of these ecotypes from the large scale biochemical phenotyping (metabolomics) analysis of the 

110 ecotypes in the germplasm diversity panel presented in JHS_Research_CHAPTER_I.  

(B) Tables presenting the various permutations of comparisons between the samples in the 

Ecotype/Organ Experimental Matrix. The notation refers to either the “High” or “Low” gross 

phenotypic state for each of the samples (see Equation 1_RII for detail). The number of samples 

used for each of the permutations is noted (e. g. “n=24” in table I).  

(C) Base peak intensity chromatograms (8 to 18 min of 39 min UPLC-ESI-qTOF-MS analysis) for 

the aerial organs of the 4 genotypes of the experimental matrix. This panel offers a visual 

representation of the inter-genotype, intra-aerial-organ (B. table II) comparison permutation. The 

gross phenotypic state (e. g. “L”) is indicated for each of the samples. Saponins from aerial organs 

primarily elute in the 8 to 18 min window of the UPLC separation.  

(D) Base peak intensity chromatograms (9 to 23 min of 39 min UPLC-ESI-qTOF-MS analysis) for 

the aerial and root organs of the genotype ESP105 from experimental matrix. This panel offers a 

visual representation of the intra-genotype, inter-organ (B. table IV) comparison permutation.  

Results 

Probeset Annotation  

Table 1_RII presents the combined results of the profile HMM annotation of the 

tentative consensus sequences of the 61,278 probes of the Affymetrix Medicago Gene 

Chip™ and the BLAST-based annotation of the tentative consensus sequences which 

map to the current draft of the M. truncatula genome ||unpublished, ZHAO||. 672 of 
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the 1349 probesets annotated as likely regulatory elements (Udvardi, Kakar et al. 

2007)were found to differ significantly(p < 0. 05) between the ecotypes, based on the 

associative t-test of the Affymetrix Medicago Gene Chip™ data.  

TABLE 1_RII. Cytochrome P450 and Glycosyltransferase Concatenated Annotation List Summary.  

A table summarizing the number of hits (i. e. probeset annotated as P450 or GT) of the de novo 

profile HMM analysis of the tentative consensus sequences used to design the probesets of the 

Affymetrix Medicago Gene Chip™, and the BLAST-basedre-annotation of the probesets which 

mapped to the M. truncatula genome sequence.  

Gross Phenotype Comparisons for Selection of Candidate Genes of Interest 

The differences in total saponin accumulation between the various ecotypes and 

organs selected for the experimental matrix enabled a relatively simple process of 

candidate gene identification- here termed “gross phenotype comparisons” (see 

Methods).  

The state filter of the gross phenotype comparison for aerial organs isolated 93 of the 

344 cytochrome P450 probesets. These 93 probesets were then ranked based on the f 

values obtained from application of EQUATION 1_RII. Table 2_RII presents the 

top 15 probesets resulting from the complete gross phenotype comparison selection 

Concatenated Tota l Unique to HMM Unique to Genome BLAST

Cytochrome P450 344 103 25

Glycosyl transferase 550 405 66
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process. Recall that the intra-ecotype (see Figure 1_RII), inter-organ comparisons are 

also critically useful for selection of candidate genes. As such, the expression values for 

root organs for ecotype ESP105 are included in Table 2_RII.  

TABLE 2_RII. Top 15 Cytochrome P450 Probesets from the Gross Phenotype Comparison 

Ranking Process for the Inter-Genotype, Intra-Aerial-Organ Comparison.  

Values in the table represent the mean (n = 3) expression (hybridization) level for the probesets 

indentified via the gross phenotype comparison ranking (equation 1) process for the inter-genotype, 

intra-aerial-organ (state filter) comparison. The values shaded in gray are for from the ecotype which 

represents the “Low” state for this comparison (ESP105 Aerial). The expression level for “High” 

state from the intra-genotype (ESP105 Root), inter-organ comparison is also included. BLAST IDs 

are from tBLASTn analysis; using a given probeset design sequence as the query against the M. 

truncatula records in the NCBI Nucleotide Collection (nr/nt) database. The annotations presented 

represent the record with the most significant E value, except in the cases when records with some 

form of functional annotation beyond simple BAC clone ID or genome records were available.  

 Rank Probeset BLAST ID (M.truncatula ) f value
ESP105 
Aeria l  

A17 
Aeria l  

GRC43 
Aeria l

R108 
Aeria l

ESP105 
Root

1 Mtr.37298.1.S1_at M.t_ cyp72a68 1629 88 2515 3154 1902 3153
2 Mtr.43018.1.S1_at M.t_ cyp716a12 1275 17 1788 5602 3002 6768
3 Msa.1808.1.S1_at M.t_ cyp716a12 560 16 861 2990 1544 3418
4 Mtr.37299.1.S1_at M.t_ cyp72a67 424 28 1225 1332 200 1681
5 Mtr.31199.1.S1_s_at M.t_ cyp716a12 337 9 577 1830 884 2821
6 Mtr.2065.1.S1_at M.t_ cyp88d3 104 63 351 265 355 11
7 Mtr.37358.1.S1_s_at M.t_ cyp83g1 90 71 640 210 791 2790
8 Mtr.37356.1.S1_at M.t_ cyp83g1 75 73 718 238 1026 3538
9 Mtr.42226.1.S1_at M.t_ cyp88d3 24 43 222 144 198 13

10 Mtr.12672.1.S1_at No s ig s imi lari ty found -9 47 138 234 177 869
11 Mtr.49920.1.S1_x_at AC233070.6 (genome seq) -11 6 7 8 10 47
12 Mtr.17322.1.S1_x_at M.t_ cyp71d64 -12 6 8 7 8 41
13 Mtr.4753.1.S1_at M.t_ cyp88d2 -13 11 46 42 14 11
14 Mtr.23217.1.S1_at AC145061.27 (genome seq) -13 7 8 11 10 45
15 Mtr.5109.1.S1_at AC152936.21 (genome seq) -14 7 7 7 9 514
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The second illustrative example of the gross phenotype comparison selection process is 

from the GT probesets from root organs. The state filter of the gross phenotype 

comparison for root organs isolated 120 of the 550 GT probesets. These 120 

probesets were then ranked (Table 3_RII) based on the f values obtained from 

application of EQUATION 1_RII. Appendix_RII_Gross_Phenotype_ Inverse 

_Examples presents a similar illustrative example for the inverse state of regulatory 

probesets from root organs ranked according to g values from the application of 

EQUATION 2_RII, and includes probesets annotated as transcription factors (Chen, 

Yu et al. ; Kalo, Gleason et al. 2005).  

TABLE 3_RII. Top 15 Glycosyltransferase Probesets from the Gross Phenotype Comparison 

Ranking Process for the Inter-Genotype, Intra-Root-Organ Comparison.  

 Rank Probeset BLAST ID (M.truncatula ) f value
GRC43 
Root

A17 
Root

ESP105 
Root

R108 
Root

GRC43 
Aeria l

1 Mtr.22118.1.S1_s_at AC119419.11 1844 277 3264 2515 3532 212

2 Mtr.37250.1.S1_at No s ig s imi lari ty found 817 52 946 1309 1588 22

3 Mtr.12473.1.S1_at M.t_ UGT73F3 666 260 1506 1662 2001 16

4 Mtr.1550.1.S1_at No s ig s imi lari ty found 444 17 1244 2404 701 21

5 Mtr.41983.1.S1_at AC142095.11 442 349 2214 2172 1169 75

6 Mtr.9221.1.S1_at M.t_ GT63G 372 214 1323 1436 917 78

7 Mtr.4547.1.S1_at M.t_ UGT73K1 252 32 485 460 305 16

8 Mtr.11212.1.S1_s_at No s ig s imi lari ty found 162 9 1092 2180 282 8

9 Mtr.28421.1.S1_x_at M.t_ UGT73K1 42 10 235 483 113 9

10 Mtr.28421.1.S1_at No s ig s imi lari ty found 29 9 135 197 46 9

11 Mtr.25168.1.S1_at CR932040.2 -5 16 20 155 122 16

12 Mtr.50388.1.S1_at AC140034.14 -6 9 26 81 46 6

13 Mtr.27374.1.S1_at M.t _UGT73K1 -10 35 190 367 136 8

14 Mtr.46668.1.S1_at BT051872.1 -12 7 13 17 7 6

15 Mtr.37105.1.S1_at AC136472.40 -13 7 9 9 10 15



48 
 
Values in the table represent the mean (n = 3) expression (hybridization) level for the probesets 

identified via the gross phenotype comparison ranking (equation 1) process for the inter-genotype, 

intra-root-organ (state filter) comparison. The values shaded in gray are for the ecotype which 

represents the “Low” state for this comparison (GRC43 Root). The expression level for “High” state 

from the intra-genotype (Aerial), inter-organ comparison is also included. BLAST IDs are from 

tBLASTn analysis; using a given probeset design sequence as the query against the M. truncatula 

records in the NCBI Nucleotide Collection (nr/nt) database. The annotations presented represent 

the record with the most significant E value, except in the cases when records with some form of 

functional annotation beyond simple BAC clone ID or genome records were available. Annotations 

in bold are for probesets which likely represent genes that have been functionally characterized and 

established as GTs in the M. truncatula triterpene saponin biosynthetic pathway.  

Pearson Correlation Coefficients for Transcripts vs. Metabolites  

Pearson correlation coefficients for high-priority candidate (from the gross phenotype 

comparisons) probesets in four different [genotype] vs. [organ] permutations (using 

the total saponin accumulation values) are presented in Table 4_RII.  
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TABLE 4_RII. Pearson Correlation Coefficient Analysis of High Priority Cytochrome P450 

Probesets.  

Pearson correlation coefficient (Pearson’s r) values from 4 sample permutations from the 

experimental matrix for [transcript] vs. [total saponin accumulation]. The table also includes: 

Bootstrapped (5000 iteration) 90% confidence intervals of r, bootstrapped standard errors of r, and 

the rank of the r value (high to low) within a given permutation among all cytochrome P450 

probesets.  

Intra-Genotype ESP105, Inter-Organ

Gene of interest
Representative 

Probeset

Pearson's  r (Intra-
Genotype 

ESP105)(n=6)

 90 % bootstrap 
confidence interva l  (r)

bootstrap s tandard 
error of  (r)

rank (Intra-
Genotype ESP105)

M.t_ cyp72a68 Mtr.37298.1.S1_at 0.882 0.73 - 1.00 0.165 66
M.t_ cyp716a12 Mtr.43018.1.S1_at 0.887 0.71 - 1.00 0.202 64
M.t_ cyp72a67 Mtr.37299.1.S1_at 0.870 0.68 - 1.00 0.188 71
M.t_ cyp88d3 Mtr.2065.1.S1_at -0.547  -1.00 - 0.33 0.313 240
M.t_ cyp83g1 Mtr.37356.1.S1_at 0.893 0.72 - 1.00 0.287 60

Inter-Genotype & Inter-Organ

Gene of interest
Representative 

Probeset

Pearson's  r (Inter-
Genotype & Inter-

Organ)(n=24)

 90 % bootstrap 
confidence interva l  (r)

bootstrap s tandard 
error of  (r)

rank (Inter-
Genotype & Inter-

Organ)

M.t_ cyp72a68 Mtr.37298.1.S1_at 0.575  0.28 - 0.76 0.153 4
M.t_ cyp716a12 Mtr.43018.1.S1_at 0.370 0.06 - 0.61 0.170 90
M.t_ cyp72a67 Mtr.37299.1.S1_at 0.233  -0.10 - 0.50 0.184 68
M.t_ cyp88d3 Mtr.2065.1.S1_at 0.236 0.06 - 0.45 0.121 63
M.t_ cyp83g1 Mtr.37356.1.S1_at 0.091  -0.30 - 0.35 0.200 120

Inter-Genotype,  Intra-Aeria l -Organ

Gene of interest
Representative 

Probeset

Pearson's  r (Inter-
Genotype 

Aeria l )(n=12)

 90 % bootstrap 
confidence interva l  (r)

bootstrap s tandard 
error of  (r)

rank (Inter-
Genotype, Intra-

Aeria l -Organ)
M.t_ cyp72a68 Mtr.37298.1.S1_at 0.668 0.23 - 0.89 0.307 9

M.t_ cyp716a12 Mtr.43018.1.S1_at 0.501 0.10 - 0.80 0.262 54
M.t_ cyp72a67 Mtr.37299.1.S1_at 0.357  -0.09- 0.68 0.300 94
M.t_ cyp88d3 Mtr.2065.1.S1_at 0.370 0.07 - 0.67 0.197 88
M.t_ cyp83g1 Mtr.37356.1.S1_at 0.572 0.36 - 0.78 0.134 33

Inter-Genotype,  Intra-Root-Organ

Gene of interest
Representative 

Probeset
Pearson's  r (Inter-

Genotype Root)(n=12)
 90 % bootstrap 

confidence interva l  (r)
bootstrap s tandard 

error of  (r)

rank (Inter-
Genotype, Intra-

Root-organ)
M.t_ cyp72a68 Mtr.37298.1.S1_at 0.569  -0.22 - 0.84 0.312 33

M.t_ cyp716a12 Mtr.43018.1.S1_at 0.243  -0.23  - 0.73 0.278 25
M.t_ cyp72a67 Mtr.37299.1.S1_at -0.012  -0.42 - 0.56 0.283 155
M.t_ cyp88d3 Mtr.2065.1.S1_at -0.276  -0.64 - 0.20 0.249 247
M.t_ cyp83g1 Mtr.37356.1.S1_at -0.262  -0.58 - 0.27 0.253 242
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Example of Selected Candidate Genes 

Figure 2_RII and Figure 3_RII present the combined gross phenotype comparison 

and Pearson correlation coefficient analyses for two (cyp72a68 and cyp88d3) of the 

five cytochrome P450 genes selected as high priority candidates. Graphs of both 

transcript and saponin accumulation are presented in order to visually emphasize the 

obvious relationships between the two data sets for these candidate genes. The 

probeset and total saponin accumulation values for cyp72a68 are characteristic of the 

probeset/metabolite relationships (inter-genotype, intra-aerial-organ, and the intra-

genotype, inter-organ comparisons) used in the selection of candidates cyp72a68, 

cyp72a67, cyp716a12, and cyp83g1. The selection of cyp88d3 as a candidate is based 

on the relationship of the probeset and metabolite values from both the inter-genotype, 

intra-aerial-organ and the inter-genotype, inter-organ comparisons. Note the relative 

lack of cyp88d3 expression in root organs.  
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FIGURE 2_RII. Graphical and Tabulated Summary of Results for the Selection of cyp72a68 as a 

High Priority Gene Candidate.  

(A) Graphs showing the transcript expression dynamics (in blue, on left side) for the cyp72a68 

probeset “Mtr. 37298. 1. S1_at” shown for the inter-genotype, intra-aerial-organ (top), and intra-

ESP105-genotype, intra-organ (bottom) comparative permutations. Total saponin accumulation 

values are presented for the same comparative permutations (in red, at right).  

(B) Summary table of the rankings for the cyp72a68 probeset “Mtr. 37298. 1. S1_at” from both the 

gross phenotype comparison rankings and the Pearson correlation (r values are included in 
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parentheses) analysis of total saponin accumulation values with 4 permutations of samples from the 

experimental matrix.  

FIGURE 3_RII. Graphical and Tabulated Summary of Results for the Selection of cyp88d3 as a 

High Priority Gene Candidate.  

(A) Graph showing the transcript expression dynamics (in blue, at left) of the cyp88d3 probeset 

“Mtr. 2065. 1. S1_at” shown for the inter-genotype, inter -organ (in blue at top left) comparative 

permutation. A graph of the summed accumulation values of all saponin compounds annotated with 

zhanic acid as the sapogenin aglycone in inter-genotype, inter -organ (in orange at top right) 
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permutation. Total saponin accumulation values are presented for the inter-genotype, intra-aerial-

organ permutation (in red, at bottom).  

 (B) Summary table of the rankings for the cyp88d3 probeset “Mtr. 2065. 1. S1_at” from both the 

gross phenotype comparison rankings and the Pearson correlation (r values are included in 

parentheses) analysis of transcript vs. total saponin accumulation values with 4 permutations of 

samples from the experimental matrix.  

Expression Dynamics for Known Triterpenoid Biosynthetic Genes in M. 

truncatula.  

Figure 4_RII presents expression data for previously characterized biosynthetic genes 

from triterpene metabolism of M. truncatula. Figure 5_RII presents expression data 

for previously characterized glycosyltransferase genes from triterpene saponin 

metabolism of M. truncatula.  
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FIGURE 4_RII. Ecotype Matrix Expression Dynamics for Known Triterpenoid Biosynthetic 

Pathway Genes Preceding Triterpene Sapogenin Bio-Oxidation.  

Graphs showing the transcript expression dynamics in both organ types of all genotypes for squalene 

synthase, squalene epoxidase 1, squalene epoxidase 2, cycloartenol synthase, and β-amyrin synthase. 

Error bars represent 1 standard error. The squalene synthase accumulation data is from the 

microarray experiment. Data for the other genes is from qRT-PCR analysis of the same samples, as 

cycloartenol synthase and β-amyrin synthase are known to co-hybridize to the same microarray 

probesets (i. e. “shared probeset”). Similarly squalene epoxidase 1 and squalene epoxidase 2 co-

hybridize with a number of probesets.  
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FIGURE 5_RII. Ecotype Matrix Expression Dynamics for Known Glycosyltransferases of the 

Triterpene Saponin Biosynthetic Pathway.  

Graphs showing the transcript expression dynamics in both organ types of all genotypes for ugt73f3, 

ugt71g1, and ugt73k1. Error bars represent 1 standard error. The ugt73f3 accumulation data is from 

the microarray experiment. Data for ugt71g1 and ugt73k1 is from qRT-PCR analysis of the same 

samples, as these transcripts are known to co-hybridize to the same microarray probesets (i.e. “shared 

probeset”).  
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Discussion 

Probeset Annotation 

The most comprehensive analysis of the cytochrome P450 gene superfamily in M. 

truncatula(Li, Cheng et al. 2007)identified 151 putative P450 genes, including 135 

novel sequences not present in NCBI Genbank (NCBI, http://www.ncbi. nlm. nih. 

gov/genbank/ , Bethesda, MD) at the time of the analysis. These putative P450 genes 

were classified into 9 clans and 44 families. Four of the clans and 21 of the families 

had not been reported previously in legumes. The annotations for the tentative 

consensus sequences of the 61,278 Affymetrix Medicago Gene Chip™ probe sequences 

available at the time of the ecotype experiment showed poor coverage for known 

cytochrome P450 and glycosyltransferase genes (Lahoucine Achnine 2005). Further, 

the anarchic gene descriptions (Blast results against various plant genomes) made 

comprehensive analysis of these gene families impossible, as they lacked a consistent 

signifier. Some probesets had function-based annotations, while others had protein 

family-based annotations. For example, the probeset (“Mtr. 2065. 1. S1_at”) 

representing cyp88d3 was annotated as “Similar to Ent-kaurenoic acid oxidase,” while 

the probeset (“Mtr. 37298. 1. S1_at”) representing cyp72a68 was annotated as 

“Cytochrome P450.” Ent-kaurenoic acid oxidase happens to be a cytochrome P450 



57 
 
enzyme known to function in the gibberellin biosynthetic pathway (Helliwell, 

Chandler et al. 2001), but this function-based annotation highlights the inability to 

systematically isolate all of the probesets representing cytochrome P450 genes. 

Subsequent efforts to ameliorate this problematic dual (function-based and protein 

family-based) annotation schema have focused exclusively on tentative consensus 

sequences which map to the M. truncatula genome (unpublished, personal 

communication with Yuhong Tang and Patrick Zhao).  

As the tentative consensus sequences used for the design of the Affymetrix 

Medicago Gene Chip™ were based not on the genome sequence but rather on EST 

library sequences, the possibility exists that the recent efforts at re-annotation will not 

comprehensively represent the probesets for a given gene family. Indeed, the de novo 

profile HMM results of the tentative consensus sequences show this to be the case. 

103 putative P450 probesets and 405 putative GT probesets were identified in the 

HMM analysis but not the genome BLAST analysis. Critically, four of the five high 

priority cytochrome P450 candidate genes identified in this study (cyp72a67, 

cyp72a68, cyp716a12, and cyp88d3) were correctly annotated in the HMM results 

but not found in the genome BLAST analysis. Similarly, a probeset representing 

cyp88d2 (studied in JHS_RESEARCH_CHAPTER_IV) was correctly annotated in 
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the HMM results but not in the genome BLAST results. Inversely, 25 putative P450 

and 66 putative GT probesets were uniquely identified in the genome BLAST analysis. 

As the primary goal of the HMM annotation was to enable the systematic isolation of 

P450 and GT probesets, the actual scores of the HMM or genome BLAST results are 

not critically important. It is possible that some of the probesets included in the 

concatenated HMM/BLAST P450 and GT lists are not actually members of these 

families, but the list dramatically improves the comprehensiveness of gene family 

representation. Obviously, more detailed analysis of the design sequence for particular 

candidate probesets of interest can identify inaccurate annotations from the list as 

needed.  

Integrated Analysis of Transcriptomics and Metabolomics Datasets 

The f statistic was developed empirically through successive iterations of simple 

arithmetic manipulations of the state filtered probeset list for cytochrome P450 

probesets from the inter-genotype, intra-aerial-organ comparison, where a 

“correspondence” or “match” between the probeset values and total saponin 

phenotypes was starkly obvious to someone familiar with the design of the 

experimental matrix. In Figure 2_RII A and Figure3_RII A, this is made clear by the 

fact that the values of the transcripts for expression levels and the values for total 
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saponin content between the ecotypes are extremely similar, particularly with regard 

to the large absolute difference between the lowest ecotype and the next lowest. 

Likewise, in the intra-ecotype comparison, the differences between the organs are 

extremely similar between expression levels and total saponin content, and the stark 

absolute magnitude of the difference is apparent. 

The first term of Equation 1_RII simply represents the sum of the differences 

for a probeset’s expression value for the three high state ectypes minus the expression 

value for the probeset from the low state ecotype. The second term of Equation 1_RII 

(average value the probeset of the three high states minus the value of the probeset 

from the low state) acts to emphasize the proximity to zero (no expression) of the 

probeset value from the low state ecotype. This is critical because of the extremes of 

the saponin accumulation phenotypes among the ecotypes selected for the matrix, and 

is motivated by the strong ‘guilt by association’ phenomenon observed in genes of 

plant secondary metabolism (Saito, Hirai et al. 2008). The final term of Equation 

1_RII (subtraction of the maximum value) is included to remove influence of extreme 

outlier probeset values from any of the three high state ecotypes.  

While the f statistic was obtained through “training” from the cytochrome 

P450 probeset data from the inter-genotype, intra-aerial-organ comparison, it was 
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found to generalize to the other comparative permutations of the experimental matrix. 

Non-rigorous validation evidence for the generalization of the f statistic to other 

permutations of the matrix is provided by the inclusion in the top 15 GT list (Table 

3_RII) from the inter-genotype, intra-root-organ permutation comparison of several 

probesets with annotations for previously characterized GTs known to function in the 

M. truncatula triterpene saponin biosynthetic pathway (Lahoucine Achnine 2005; 

Naoumkina, Modolo et al. 2010). As highlighted in the introduction, most of the 

models used to link transcript and metabolite information from germplasm diversity 

samples have focused on a “major” phenotype such as biomass or fruit color. Focus on 

a value external to the transcript or metabolite accumulation values enables 

considerable flexibility to modelers seeking to elucidate the transcript/metabolite 

relationships, and development of such models is an active area of research with 

obvious applications in fields such as plant breeding (Goodacre, Roberts et al. 2007).  

The gross phenotype comparisons (state filter plus f or gstatistic) ultimately 

proved to be a more useful analytical model than Pearson correlation coefficient 

analysis for selection of high priority candidate genes. Evidence for this conclusion is 

evident in the summary tables for the example selected candidate genes (Figure 2_RII 

B., Figure3_RII B.). It is important to note that the initial selection of candidate genes 
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aimed to identify early genes in the pathway, and that the high resolution of 

individual compounds from the metabolomics dataset was not exploited to any large 

degree in this study. Indeed, the high sensitivity of Pearson correlation coefficient 

analysis to differences among intra-state probeset or saponin accumulation values (e. g. 

H1, H2, and H3 from inter-genotype, intra-aerial-organ comparison) likely masked 

the grosser trends that were the primary focus of the integrated transcriptomics and 

metabolomics dataset analysis. The bootstrapped confidence intervals obtained for the 

Pearson’s r (Table 4_RII) are quite large in many cases, reinforcing the notion that 

Pearson correlation coefficient analysis is not a strong model for representation of 

useful trends of transcript/metabolite accumulation, at least for the particular 

comparative permutations employed in this study to date.  

As more information about the of the molecular basis of sapogenin and saponin 

biosynthesis is obtained, it is likely that Pearson correlation coefficient analysis of 

probesets vs. precisely selected groups of compounds or organ/ecotype pairings will 

become more powerful (offer finer resolution) for subsequent identification of 

candidate genes. For example the significantly higher expression of cyp88d3 in aerial 

organs suggests that it may be important in the bio-oxidation of carbon 16 of 

triterpene sapogenins (see JHS_RESEARCH_CHAPTER_I). The structural diversity 
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of saponins between the ecotypes or organs such as the absence of zhanic acid saponins 

detected in R108 aerial organs (see Figure 4_RII A.) or the lack of strong cyp88d3 

expression in root organs will offer a huge combinatorial space of “sub-matrices” to 

explore with Pearson correlation coefficient analysis or other more sophisticated 

comparative transcript/metabolite models.  

The UPLC-ESI-qTOF-MS analytical method used for the metabolomics 

analysis was not optimized for separation and detection of triterpene saponins, but 

developed to enable simultaneous detection of compounds from several classes of 

plant secondary metabolites (e. g. flavonoids, isoflavonoids). Thus, the targeted 

flavonoid accumulation data and non-targeted MARKERLYNX analysis should prove 

useful to researchers interested in exploring the ‘guilt by association’ relationship of a 

very large number of probeset/metabolite combinations from the experimental matrix.  

Other Triterpenoid Pathway Genes 

Examination of the expression dynamics for known genes preceding the bio-oxidation 

of β-amyrin from M. truncatula triterpenoid metabolism reveals several interesting 

trends (Figure 4_RII). Expression levels of triterpene biosynthetic genes (squalene 

synthase and squalene epoxidases) which precede the critical branch point for 

sapogenin or sterol biosynthesis (cyclization of squalene to β-amyrin or cycloartenol, 
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respectively) do not share the same patterns of extreme highs and lows for transcript 

accumulation in the experimental matrix as those observed for the candidate 

cytochrome P450 genes. Further, the expression of the sterol biosynthesis entry point 

enzyme (cycloartenol synthase) is highest in the ecotype and organ (ESP105 aerial 

organ) with the lowest total saponin accumulation value, suggesting that the sink for 

sterols is most pronounced in this aerial organs of this ecotype. The lowest expression 

value for β-amyrin synthase is also found in ESP105 aerial organs, which is consistent 

with the notion that triterpenoid skeletons are preferentially shuttled into sterol rather 

than triterpene sapogenin biosynthesis in ESP105 aerial organs. However, it is 

important to note that the transcriptomics and metabolomics datasets from this study 

are for steady state conditions, so such inferences about biosynthetic flux are 

ultimately speculative/hypothetical.  

Examination of the expression dynamics for known glycosyltransferase genes 

from the M. truncatula biosynthetic pathway also revealed several interesting trends 

(Figure 5_RII). First and foremost, the expression levels of these previously 

functionally characterized GTs served a form of validation for the predictive qualities 

of the f statistic from the gross phenotype comparison process. The higher expression 

levels of ugt73f3 in root organs compared to aerial organs suggests that the 
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glycosylation products of the UGT73F3 activity may be detected in higher levels in 

root organs, which could offer useful structural information for the chemical 

characterization of unknown saponin compounds. Further, the low relative expression 

of ugt71g1 in the aerial organs of GRC43 aerial organs may offer a “key” for the 

structural elucidation of unknown saponin compounds which are uniquely present or 

absent in GRC43 aerial organs when compared to the saponins from aerial organs of 

A17, ESP105, and R108 (see JHS_RESEARCH_CHAPTER_1). Finally, the 

expression data for these known GTs should enable the development of more 

sophisticated predictive models to explore transcript/metabolite relationships that 

could more effectively identify likely candidate GTs from the datasets from the 

experimental matrix.  

Methods 

Plant Growth and Harvest 

ESP_105 and GRC_43 seeds used in this study were of the same single seed descent 

lines developed in [chapter R. I]. A17 and R108 isoline seeds were obtained from the 

greenhouse manager (David McSweeny) at the Samuel Roberts Noble Foundation. 

Plants were grown in a root cone system (Stuewe and Sons, http://www.stuewe.com, 

Tangent, OR) with Turface MVP medium (Profile Products, Buffalo Grove, IL) in a 

http://www.stuewe.com/
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Conviron TCR180 walk-in growth chamber (http://www.conviron.com/, Winnipeg, 

Manitoba, Canada) maintained at 90% humidity and at an average temperature of 

24 °C day (16 h) and 20 °C night (8 h). Plants were fertilized with 15 ppm nitrogen 

(Scotts' 20 10 20 Peat-Lite Special, http://www.scotts.com, Marysville, Ohio) daily in 

the morning and watered with distilled water in the evening. Plants were harvested at 

6 weeks post-germination and dissected into aerial and root organs. Aerial tissues from 

the youngest 6 metamers of individual plants and whole root organ samples from 

individual plants were prepared as single biological replicates. For both aerial and root 

samples, three biological replicates were prepared for all of the ecotypes. Samples were 

frozen immediately in liquid nitrogen, ground using a mortar and pestle, and stored at 

–80C. The same sample material was used for the metabolomics, microarray, and 

qRT-PCR analyses.  

DNA Preparations, mRNA Isolation, Microarray Analysis 

Total RNA was extracted using TRIZOL reagent (Invitrogen, 

http://www.invitrogen.com/), treated with DNaseI (Ambion, 

http://www.ambion.com/), and column purified with an RNeasyMinEluteCleanUp 

Kit (Qiagen, http://www.qiagen.com/). RNA was quantified using a Nanodrop 

Spectrophotometer ND-100 (NanoDrop Technologies, http://www.nanodrop.com/) 

http://www.conviron.com/
http://www.scotts.com/
http://www.invitrogen.com/
http://www.ambion.com/
http://www.qiagen.com/
http://www.nanodrop.com/
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and evaluated for quality with a Bioanalyzer 2100 (Agilent, 

http://www.home.agilent.com/). The Affymetrix Medicago Gene Chip™ (Affymetrix, 

http://www.affymetrix.com/) was used for expression analysis. The RNA from three 

independent biological replicates was analyzed for both root and aerial organs for each 

of the four ecotypes (a total of 24 chips). Probe labeling using 10 µg RNA, array 

hybridization, and scanning were performed according to the manufacturer’s 

instructions for eukaryotic RNA, using a one-cycle protocol for cDNA synthesis. For 

each Affymetrix array hybridized, the resulting . cel file was exported from GeneChip 

Operating Software Version 1.4 (Affymetrix) and imported into Robust Multiarray 

Average (Irizarry, Bolstad et al. 2003) for global normalization. Presence/absence call 

for each probe set was obtained using dCHIP(Parmigiani, Garrett et al. 2003). Gene 

selections based on an associative t-test (Dozmorov and Centola 2003)were made 

using Matlab (MathWorks, http://www.mathworks.com/). The complete Affymetrix 

data set (ID# E-MEXP-2984) is publicly available at ArrayExpress (http://www.ebi. ac. 

uk/arrayexpress).  

cDNA Synthesis and qRT-PCR Analysis 

For cDNA synthesis preceding qRT-PCR analysis, 10µg of total RNA (prepared and 

assessed for quality as above) was primed with oligo(dT)20 and synthesized with 

http://www.affymetrix.com/
http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
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Super Script III according to manufacturer’s instructions. qRT-PCR reactions were 

performed in an optical 384-well plate with an ABI PRISM 7900 HTsequence 

detection system (Applied Biosystems), using SYBR Green to monitor dsDNA 

synthesis. Reactions contained 2µl of primer pair (1 µM), 2µl of 1:20 dilution of 

cDNA, 5µl of 2x power SYBR Green MASTER MIX, and 1µl water. The following 

standard thermal profile was used for all PCR reactions: 50°C for 2 min, 95°C for 10 

min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. Amplicon dissociation curves 

were recorded after cycle 40 by heating from 60°C to 95°C with a ramp speed of 1. 

9°C/min. Primers (Appendix_RII_Primers) were designed using Primer Express® 

Software (Applied Biosystems). All reactions were performed with 3 technical 

replicates for each of 3 biological replicates. Data were analyzed using SDS 2. 2. 1 

software (Applied Biosystems). PCR reaction efficiencies were determined using 

LinReg PCR software(Ruijter, Ramakers et al. 2009). Transcript expression levels 

were determined relative to two housekeeping genes (ubiquitin and actin), based on 

modifications (equation below) of formulae presented in (Pfaffl 2001; Czechowski, 

Stitt et al. 2005). Briefly, the ΔCt terms for the target and reference genes were 

calculated as the mean Ct of all samples minus the Ct of a given sample, rather than 

“control” minus “treatment” Ct values.  
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Extractions and Metabolomics Analysis 

Harvested sample material was lyophilized prior to extraction. 10.00 ± 0.06 mg of 

powder was extracted with 1 ml of 80% Methanol (containing 0.018 mg/ml 

umbelliferone as an internal standard) in a dram vial for 2 hours on an orbital shaker. 

Extracted samples were centrifuged for 30 minutes at 2900g at 4°C, and supernatants 

were transferred to LC-MS sample vials (Agilent, http://www.agilent.com, Santa Clara, 

CA) and stored at -20°C. They were then analyzed with a Waters Acquity UPLC 

system coupled to a hybrid quadropole time-of-flight (QTOF) Premier mass 

spectrometer (Waters, http://www.waters.com/, Milford, MA). A reverse-phase, 1.7-

mm UPLC BEH C18, 2.1 3 150 mm column (Waters) was used for separations. The 

mobile phase consisted of eluent A (0.1% [v/v] acetic acid/water) and eluent B 

(acetonitrile), and separations were achieved using a linear gradient of 95% to 30% A 

over 30 min, 30% to 5% A over 3.0 min, and 5% to 95% A over 3.0 min. The flow 

rate was 0.56 mL min21, and the column temperature was maintained at 60°C. 

Masses of the eluted compounds were detected in the negative ESI mode from 50 to 

2,000 mass-to-charge ratio. The QTOF Premier was operated under the following 

http://www.agilent.com/
http://www.waters.com/
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instrument parameters: desolvation temperature of 400°C, desolvation nitrogen gas 

flow of 850 L h21, capillary voltage of 2.9 kV, cone voltage of 48 eV, and collision 

energy of 10 eV. The MS system was calibrated using sodium formate, and raffinose 

was used as the lockmass compound.  

Ion List and Metabolomics Data Processing 

Waters .raw data files were converted to .cdf file format, followed by metabolite data 

extraction, alignment, and exported using MET-IDEA software (Broeckling, Reddy et 

al. 2006). An ion list containing 463 ion/retention time pairs was used for the targeted 

metabolomics data analysis of the ecotype UPLC-ESI (-)-qTOF-MS biochemical 

phenotypes (Appendix_RII_Targeted_Ion_List). 133 of these ion/retention time pairs 

were annotated as sapogenin or saponin compounds. Annotations were based on 

authentic reference standards or spectral information from either source fragmentation 

or MS/MS (ESI-q-CID-TOF-MS) experimentation. The unknown pairs included in 

the ion list were identified with non-targeted MARKERLYNX analysis, and had m/z 

values and retention times in the same regions as the known and putative pairs and 

additionally showed statistically significant differential accumulation values among the 

ecotypes. In addition to the targeted analysis, de novo non-targeted analysis of all 

samples was performed using Waters MARKERLYNX software. Spectral abundance 
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signals for all metabolites in a separation were normalized to the internal standard (0. 

018 mg/ml umbelliferone). Descriptive statistics were performed in Excel. One-way 

ANOVA was performed using a custom MATLAB script (MathWorks, 

http://www.mathworks.com/). Multivariate analyses including principal component 

analysis and hierarchical clustering were performed using JMP 5. 0 software (SAS, 

http://www.sas.com/).  

Gross Phenotype Comparisons for Selection of Candidate Genes of Interest 

These gross phenotype comparisons consisted of two separate steps. The first step was 

the application of a simple “state filter” to identify all probesets with expression values 

that corresponded to the phenotypic “states” from the experimental matrix. Recall 

that the matrix had three high “states” (high total saponin accumulator ecotypes) and 

one low “state” (low total saponin accumulator) for each of the organ types (see Figure 

1_RII). For aerial organs, A17, GRC43, and R108 represented the high states, while 

ESP105 represented the low state. Thus, the state filter for aerial organs was simply 

the selection of all probesets for which ESP105 had the lowest expression 

(hybridization) value. In root organs, A17, ESP105, and R108 represented the high 

states while GRC43 represented the low state. The root organ state filter was therefore 

the selection of all probesets for which GRC43 had the lowest expression 

http://www.mathworks.com/
http://www.sas.com/
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(hybridization) value. In order to account for the possibility of negative regulation 

mechanisms of regulatory elements, the inverse of the filter was also applied to the 

regulatory element probesets for both organs(ESP105 as the high state in aerial organs 

and GRC43 as the high state in root organs). The second step used in the gross 

phenotype comparisons is less intuitive than the initial state filter. Briefly, 

EQUATION 1_RII was used to calculate a Phenotype Comparison Ranking Statistic 

“f” value which was used for the ranking of all state filtered probesets (see Discussion 

section for details). EQUATION 2_RII was used to calculate the Inverse Case 

Regulatory Element Gross Phenotype Comparison Ranking Statistic “g” for the 

inversely filtered regulatory element probesets. In addition to preparation of a master 

list of gross phenotype comparisons for all probesets for each of the organs types, 

probesets for GT, P450, and regulatory element probesets were isolated and prepared 

as separate lists. The list representing the inverse state for regulatory element probesets 

was also prepared as a separate sheet. 

 

Equation 1_RII. Gross Phenotype Comparison Ranking Statistic “f”.  
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Given the three expression values for a probeset (H1, H2, and H3) from the three different “high” 

state ecotype samples and one expression value for the probeset (L) from the “low” state ecotype 

from the experimental matrix, Equation 1_RII yields f.  

 

Equation 2_RII. Inverse Case for Regulatory Element Probesets of the Gross Phenotype 

Comparison Ranking Statistic “g”.  

Given the three expression values for a probeset (H1, H2, and H3) from the three different “high” 

state ecotype samples and one expression value for the probeset (L) from the “low” state ecotype 

from the experimental matrix, Equation 2_RII yields “g”. Recall that the inverse of the “state filter” 

was applied to regulatory element probesets in order to account for the possibility of negative 

regulation mechanisms, and that the “high” and “low” state designations refer to the original 

application of the state filter.  

Hidden Markov Model Annotation  

24 profile HMM models for cytochrome P450 proteins and 24 profile HMM models 

for glycosyltransferase proteins (Appendix_RII_HMM_models) were used to analyze 

the 61,278 tentative consensus sequences of the Affymetrix Medicago Gene Chip™ 

(Affymetrix, http://www.affymetrix.com/) with HMMER software (http://hmmer. 

janelia. org/). Profile models were obtained from SUPERFAMILY (http://supfam. 

http://www.affymetrix.com/
http://supfam.org/SUPERFAMILY/index.html
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org/SUPERFAMILY/index. html). These de novo HMM results were concatenated 

with the cytochrome P450 and GT annotation results of an M. truncatula genomic 

sequence based BLAST annotation ||unpublished, ZHAO||.  

Pearson Correlation Coefficients for Transcripts vs. for Metabolites Selection of  

Candidate Genes of Interest 

Pearson correlation coefficient analysis was performed on a series of ([probeset] vs. 

[metabolite]) and ([genotype] vs. [organ]) permutations. 

Bootstrap Analysis of Pearson Correlation Coefficients 

A custom MATLAB (MathWorks, http://www.mathworks.com/) script was used to 

generate 90% bootstrapped confidence intervals and bootstrapped standard errors for 

Pearson’s r for transcript vs. total saponin content correlations for high priority 

probesets (using 5000 iterations). The bootstrapping algorithm in the script was the 

“bbcorr” function (http://www.mathworks.com/matlabcentral/), which computes 

double block bootstrap (Lee and Lai 2009) percentile confidence intervals and 

bootstrap standard errors.  

Additional Information 

Accession Numbers 

Currently found in Appendix_RII_Primers 

http://supfam.org/SUPERFAMILY/index.html
http://www.mathworks.com/matlabcentral/
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Appendices 

Appendix_RII_HMM_models - A list of the all P450 and GT profile models used in 

the HMM analysis of the tentative consensus sequences used to design the probesets 

of the Affymetrix Medicago Gene Chip.  

Appendix_RII_Primers - Primer sequence information for all of the primers used in 

the qRT-PCR analysis of gene expression.  

Appendix_RII_Targeted_Ion_List- The 463 Ion/Retention Time pairs used for the 

targeted metabolomics data analysis of the ecotype UPLC-ESI (-)-qTOF-MS data.  

Appendix_RII_Gross_Phenotype_ Inverse _Examples- A list of the top 15 probesets 

resulting from the complete gross phenotype comparison selection process using the 

inverse state filter and EQUATION 2_RII for regulatory element probesets from root 

organs.  

Supplemental Data 

SUPP 1_RII - Results of de novo profile HMM analysis of the tentative consensus 

sequences used to design the probesets of the 61,278 Affymetrix Medicago Gene 

Chip™ (including scores, E-values, model IDs, and translation frame of tentative 

consensus sequence for all hits). This file also contains the “comprehensive” 
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annotation lists for both P450 and GT gene families from the concatenation of HMM 

and genome BLAST annotation results.  

SUPP 2_RII - Data from the microarray analysis, including separated worksheets for 

1.)all probes, 2.) probes selected as significantly (p < 0. 05) different based on the 

associative t-test analysis of thediverse combinations of ecotypes, 3.) probes annotated 

as regulatory elements, 4.) GT probes from the concatenated annotation list, and 5.) 

P450 probes from the concatenated annotation list.  

SUPP 3_RII- Data from the metabolomics analysis of the same samples used in the 

microarray analysis. It includes separated worksheets for 1.) aerial organ non-targeted 

MARKERLYNX results, 2.)root organ non-targeted MARKERLYNX results, 3.) 

aerial organ targeted MET-IDEA results with the full ion/retention time pair list, 4.) 

root organ targeted MET-IDEA results with the full ion/retention time pair list, 5.) 

aerial organ targeted MET-IDEA results with the saponin-only ion/retention time 

pairs, and 6.) root organ targeted MET-IDEA results with the saponin-only 

ion/retention time pairs.  

SUPP 4_RII - Ranked results of the gross phenotype comparison selection process 

applied to aerial organ samples, presented in separate worksheets for 1.) All probesets, 

2.)GTs, 3.)P450s, 4.) Regulatory Elements and 5.) inverse Regulatory Elements.  
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SUPP 5_RII - ranked results of the gross phenotype comparison selection process 

applied to root organ samples, separated as in SUPP 4_RII.  

SUPP 6_RII - Pearson correlation coefficients for [all probesets] vs. [Each of the 462 

ion/rt pairs, excluding internal standard] for both the A.) individual case (n = 24), and 

B.) averaged sample case (n = 8).  

SUPP 7_RII - Pearson correlation coefficients for [all probesets] vs. [totaled saponin 

content] for the individual sample case (n = 24). Correlation coefficients are presented 

for three [ecotype] vs. [organ] combinations; 1.) [inter-ecotype, inter-organ], 2.)[inter-

ecotype, aerial intra-organ], and 3.)[inter-ecotype, root intra-organ]. This file also 

contains separate worksheets which contain the above information for the 

“comprehensive” lists of A.) GT probesets, B.)P450 probesets, and C.)regulatory 

element probesets.  

SUPP 8_RII - Pearson correlation coefficients for [all probesets] vs. [totaled saponin 

content] for the averaged sample case (n = 8), presented as in SUPP 7_RII.  

SUPP 9_RII - Pearson correlation coefficients for [all probesets] vs. [the summed 

value of ion/rt pairs representing a particular sapogenin aglycone] for the individual 

sample case (n = 24). Summed accumulation values for particular sapogeninaglycones 

were prepared for hederagenin, bayogenin, zhanic acid, medicagenic acid, 



77 
 
putative_gypsogenin (“new aglycone”), and a combination of soyasapogenols B and E. 

Correlation coefficients are presented for three [ecotype] vs. [organ] combinations; 1.) 

[inter-ecotype, inter-organ], 2.)[inter-ecotype, aerial intra-organ], and 3.)[inter-

ecotype, root intra-organ].  

SUPP 10_RII - Pearson correlation coefficients for [all probesets] vs. [the summed 

value of ion/rt pairs representing a particular sapogenin aglycone] for the averaged 

sample case (n = 8), presented as in SUPP 9_RII.  

SUPP 11_RII - Results from qRT-PCR analysis of the same samples used in the 

microarray and metabolomics analyses, presented with standard errors. 
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Chapter III - Enzymatic Characterization of CYP72A67 and 

CYP72A68, Two Cytochrome P450 enzymes in the Triterpene 

Sapogenin Biosynthetic Pathway of Medicago truncatula.  

 

Authors: John H. Snyder, David V. Huhman, Bennie J. Bench, and Lloyd 

W. Sumner.  

Summary: 

This chapter will detail characterization experiments for 5 cytochrome P450 gene 

candidates that emerged from chapters I and II. In vitro enzymology and mutant 

genetics experimental avenues will be covered. Particular emphasis will be placed on 

the functions of CYP72A67 and CYP72A68, with demonstrated broad substrate 

tolerance. The content presented in this chapter will be the primary focus of the main 

publication of my degree project.  

Abstract: 

The model legume Medicago truncatula is known to accumulate a large variety of 

triterpene saponin compounds, resulting from the differential glycosylation of at least 

seven triterpene aglycone structures. Previous metabolomics analyses of a large 
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germplasm diversity (ecotype) collection revealed substantial metabolic diversity in 

triterpene saponin accumulation both within the various ecotypes and between the 

root and aerial organs of individual ecotypes. The metabolomics phenotyping results 

enabled the informed selection of specific ecotypes for an experimental matrix of 

hypo- and hyper- saponin accumulating ecotypes and organs. The global transcript 

expression dynamics of the ecotypes and organs in the matrix were profiled with 

microarrays, and candidate genes for triterpene saponin biosynthesis were chosen 

based on obvious relationships between saponin content and transcript accumulation. 

In particular five high priority cytochrome P450 genes (cyp72a67, cyp72a68, cyp83g1, 

cyp88d3, and cyp716a12) were selected for detailed characterization. Multiple Tnt-

1 insertion mutagenesis lines for each of the five loci were identified. These five genes 

were cloned and introduced to the Wat11 yeast strain for recombinant expression and 

in vitro enzymatic analysis. Results from a series of microsomal assays with a variety of 

potential substrates demonstrate that CYP72A67 is a multisubstrate oleanate 

sapogenin carbon 2 oxidase enzyme, and CYP72A68 is a multifunction, 

multisubstrate oleanate sapogenin carbon 23 sequential oxidase enzyme.  
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Introduction 

Triterpene saponins are a structurally diverse class of compounds with a wide 

taxonomic distribution and a broad range of biological activities (Augustin, Kuzina et 

al. 2011). Although primarily found in dicots and especially legumes, triterpene 

saponins have also been isolated from selected monocots such as oat and barley 

(Papadopoulou, Melton et al. 1999; Anne E. Osbourn 2003). Triterpene saponins 

represent the primary antinutritive compounds in livestock fodder (Lu and Jorgensen 

1987; Lu, Tsai et al. 1987). These antinutritive properties restrict the optimum utility 

of high-protein legumes as livestock feed and limit the ultimate economic potential of 

forage legumes. A sophisticated molecular and biochemical understanding of saponin 

biosynthesis would enable the metabolic engineering of triterpenoid biosynthesis. For 

example, specific antimicrobial saponins could be engineered in roots to provide 

antimicrobial properties while simultaneously reducing saponin content in aerial 

tissues would improve nutritional content (Dixon and Sumner 2003).  

 Structurally, triterpene saponins are composed of a lipid-soluble triterpenoid 

aglycone conjugated with various water soluble sugar residues. Sterol and triterpenoid 

sapogenin (saponin aglycones) biosyntheses in legumes begin with a common 

isopentenyl pyrophosphate (IPP) precursor synthesized via the cytosolic mevalonic 
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acid (MVA) and/or plastid localized methylerythritol (MEP) pathways. The 

progressive condensation of isoprene units leads to various mono, sesqui, di, and 

triterpenoids. The triterpene oxidosqualene is cyclized by two enzymes resulting in 

two branched pathways. Cycloartenol synthase is the first committed step in sterol 

biosynthesis, whereas, ß-amryin synthase is the first committed step in triterpene 

saponin biosynthesis (Augustin, Kuzina et al. 2011). Squalene synthase and squalene 

epoxidase have been previously characterized in M. truncatula (Suzuki, Achnine et al. 

2002; Iturbe-Ormaetxe, Haralampidis et al. 2003). Very little is known about the 

remaining enzymatic steps following ß-amyrin synthase in triterpene saponin 

biosynthesis. Oxidation of six different alkyl carbons (2,16,22,23,24,28) of ß-amyrin 

yield at least seven empirically determined aglycone structures found in Medicago sp. 

(Augustin, Kuzina et al. 2011). These oxidative reactions are likely catalyzed by 

cytochrome P450 enzymes. Elucidation of the molecular and biochemical 

mechanisms for these enzymatic oxdations of sapogenin compounds is the primary 

focus of this study, as enzymes responsible for these oxidations have not been 

characterized in M. truncatula to date. Oxidation of alkyl carbon 24 and carbon 11 of 

ß-amyrin have been demonstrated for CYP93E1 from Glycine max(Shibuya, Hoshino 

et al. 2006)and CYP88D6 from Glycyrrhiza uralensis(Seki, Ohyama et al. 2008), 
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respectively. In addition to the oxidation of alkyl carbons of ß-amyrin, a series of 

glycosyltransferases (GTs) are also necessary to conjugate the diversity of aglycone 

structures for saponin biosynthesis. Recently, GTs have been characterized in 

Medicago: UGT73K1 with specificity for hederagenin and soyasapogenols B and E, 

and UGT71G1 with specificity for medicagenic acid (Lahoucine Achnine 2005; 

Naoumkina, Modolo et al. 2010). A large number of additional GTs still remain 

uncharacterized.  

Ecotype Metabolomics  

Metabolomics analysis of a large germplasm diversity (ecotype) collection revealed 

substantial metabolic diversity in triterpene saponin accumulation both within the 

various ecotypes, and between the root and aerial organs of individual ecotypes. The 

metabolomics phenotyping results enabled the informed selection of specific ecotypes 

for an experimental matrix of hypo- and hyper- saponin accumulating ecotypes and 

organs. The ecotype ESP_105 was selected as the lowest total saponin accumulator in 

aerial organs, but it had potential additional value as a resource because it was also 

very high (top 20) total accumulator in root organs. Likewise, the ecotype GRC_43 

was selected as the lowest total accumulator in root organs but was also an extremely 

high (top 10) total accumulator in aerial organs. The popular isolines A17 and R108 
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were selected as reference ecotypes with relatively high total saponin accumulation in 

both aerial and root organs, due to primarily to their role in the development of 

genomics and mutant population resources for research in M. truncatula.  

Ecotype Microarray 

The global transcript expression dynamics of the ecotypes and organs in the matrix 

were profiled with microarrays, and candidate genes for triterpene saponin 

biosynthesis based on obvious relationships between saponin content and transcript 

accumulation. In particular five high priority cytochrome P450 genes (cyp72a67, 

cyp72a68, cyp83g1, cyp88d3, and cyp716a12) were selected for detailed 

characterization. As an example, the expression level of the transcript for cyp72a68 in 

ecotype ESP105 aerial organ samples was 36-fold less than GRC43 aerial, 29-fold less 

than A17 aerial, and 22-fold less than R108 aerial, which is extremely similar to the 

total saponin accumulation phenotypes for aerial organs in these ecotypes. 

Additionally, the expression level of this transcript in ESP105 root organ samples was 

second highest of all ecotypes, consistent with the observation that ESP105 root 

organs accumulate very high levels of total saponins. As a second example, the 

expression level of the transcript for cyp72a67 in ecotype ESP105 aerial organ samples 

was 47-fold less than GRC43 aerial, 42-fold less than A17 aerial, and 7-fold less than 
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R108 aerial. The highest expression level of this transcript was found in ESP105 root 

organ samples. Transcripts for cyp83g1, cyp88d3, and cyp716a12 showed similar 

expression dynamics, and were therefore prioritized for further molecular and 

biochemical functional analyses.  

Results 

In Vitro Enzymatic Assays of CYP72A67 with Standards asSubstrates 

When oleanolic acid was used as a substrate (FIGURE 1_RIII), 2-OH oleanolic acid 

was detected a product in the (+)CYP72A67 microsomal samples and not detected in 

the empty vector control samples. Additionally, the amount of oleanolic acid detected 

was higher in the empty vector control samples.  



92 
 

Oleanolic Acid

Ion/Retention Time Pair CYP72A67 (+) NADPH EMPTY Vector CYP72A67 (-) NADPH

Oleanolic Acid (455.35 m/z,28.63 min) 44867 ± 2321 49567 ± 1027 53900 ± 379

2-OH Oleanolic Acid (471.35 m/z, 26.36 min) 
97000 ± 3507 67 ± 10 328 ± 90

2OH-Oleanolic Acid

Oleanolic Acid 

CYP72A67 (+) NADPH

CYP72A67 (-)NADPH

EMPTY VECTOR (+)NADPH

 

FIGURE 1_RIII. CYP72A67-Mediated Biosynthesis of 2-OH Oleanolic Acid from Oleanolic Acid.  

(A) Representative UPLC-ESI-qTOF-MS base peak intensity chromatograms for CYP72A67 (+) 

NADPH, Empty Vector (+) NADPH, and CYP72A67 (-)NADPH samples, with structures for the 

substrate and product.  

(B) Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates per assay condition. Ion/Retention Time 

Pairs in bold represent compounds identified via comparison with authenticated reference standards.  

When hederagenin was used as a substrate (FIGURE 2_RIII), bayogenin was detected 

a product in the (+)CYP72A67 samples and not detected in the empty vector control 

(A) 

(B) 
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samples. The amount of hederagenin detected was higher in the empty vector control 

samples.  

FIGURE 2_RIII. CYP72A67-Mediated Biosynthesis of Bayogenin from Hederagenin.  

(A) Representative UPLC-ESI-qTOF-MS base peak intensity chromatograms for CYP72A67 (+) 

NADPH, Empty Vector (+)NADPH, and CYP72A67 (-)NADPH samples, with structures for the 

substrate and product.  

(B) Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates per assay condition. Ion/Retention Time 

Pairs in bold represent compounds identified via comparison with authenticated reference standards.  

Hederagenin

Ion/Retention Time Pair CYP72A67 (+) NADPH EMPTY Vector CYP72A67 (-) NADPH

Hederagenin (471.35 m/z, 22.76 min) 42033 ± 1299 47967± 1027 47266 ± 1168

Bayogenin (487.34 m/z, 20.28 min) 45433 ± 448 326 ± 4 326 ± 9

Bayogenin

Hederagenin

CYP72A67 (+) NADPH

CYP72A67 (-)NADPH

EMPTY VECTOR (+)NADPH

(A) 

(B) 
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When β-amyrin or erythrodiol were used as substrates in CYP72A67 assays, no 

products were detected (data not shown).  

CYP72A67 (+/-) NADPH Assays 

Oleanolic acid substrate assays of CYP72A67 microsomes both with and without 

NADPH showed accumulation of2-OH oleanolic acid in the (+)NADPH samples, 

but not the (-)NADPH control samples(FIGURE 1_RIII). Hederagenin substrate 

assaysof CYP72A67 microsomes both with and without NADPH showed 

accumulation of bayogenin in the (+)NADPH samples, but not in the (-)NADPH 

control samples (FIGURE 2_RIII).  

CYP72A67 Assays withAglycone Mix as Substrate  

A solution of partially purified aglycones obtained through acid hydrolysis of saponin 

extracts obtained from M. truncatula root tissues was also tested as a 

substrate(mixture) with (+)CYP72A67 and (-)CYP72A67 (empty vector control) 

assays (TABLE 1_RIII). 2-OH oleanolic acid, bayogenin, putative polygalagenin, and 

medicagenic acid were detected in higher amounts in the (+)CYP72A67 samples than 

in the empty vector controls. Oleanolic acid, hederagenin, putative gypsogenin, and 

putative gypsogenic acid were detected in higher amounts in the empty vector control 

samples than in the (+)CYP72A67 samples.  
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TABLE 1_RIII. CYP72A67-Mediated Production and Consumption of Diverse 

OleanateSapogenins from the Aglycone Mixture.  

Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates per assay condition. Ion/Retention Time 

Pairs in bold represent compounds identified via comparison with authenticated reference standards. 

Shaded values highlight the assay condition with the higher detection value for each of the 

Ion/Retention Time Pairs.  

In Vitro Enzymatic Assays of CYP72A68 with Standards as Substrates 

When oleanolic acid was used as a substrate (FIGURE 3_RIII), hederagenin, putative 

gypsogenin, and putative gypsogenic acid were detected as products in the CYP72A68 

assays and not detected in the empty vector control samples. Additionally, the amount 

of oleanolic acid detected was higher in the empty vector control samples.  

Ion/Retention Time Pair CYP72A67 Empty vector
Oleanolic Acid (455.35 m/z, 28.47 min) 5977 ± 521 10524 ± 1269
Hederagenin (471.34 m/z,22.68 min) 5182 ± 533 19988 ± 2035
putative_Gypsogenin (469.33 m/z, 24.60 min) 269 ± 20 903 ± 146
putative_Gypsogenic Acid (485.33 m/z, 21.60 min) 287 ± 30 521 ± 222
2OH-Oleanolic Acid (471.34 m/z, 26.22 min) 14268 ± 1513 6326 ± 657
Bayogenin (487.35 m/z, 20.22 min) 30160 ± 3780 18794 ± 2354
putative_Polygalagenin (485.33 m/z, 22.42 min) 11565 ± 1307 9841 ± 1317
Medicagenic Acid (501.32 m/z, 19.43 min) 26816 ± 2737 23665 ± 2685

Aglycone Mixture
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 When hederagenin was used as a substrate (FIGURE 4_RIII), putative 

gypsogenin, and putative gypsogenic acid were detected as products in the CYP72A68 

assays. They were not detected in the empty vector control samples. The amount of 

hederagenin detected was higher in the empty vector control samples.  

 

Ion/Retention Time Pair CYP72A68 Empty Vector
Oleanolic Acid (455.35 m/z, 28.8 min) 19457 ± 465 28716 ± 381
Hederagenin (471.35m/z, 22.94 min) 15509 ± 480 n.d.

putative_Gypsogenin (469.332 m/z, 24.91 min) 22753 ± 783 n.d.

putative_Gypsogenic Acid (485.327 m/z, 21.88 min) 11156 ± 610 n.d.

CYP72A68 (+) NADPH

EMPTY VECTOR (+) NADPH

Hederagenin

Oleanolic Acid 

FIGURE 3_RIII. CYP72A68-Mediated Biosynthesis of Hederagenin from Oleanolic Acid.  
(A) Representative UPLC-ESI-qTOF-MS base peak intensity chromatograms for CYP72A68 and 
Empty Vector samples, with structures for the substrate and product.  
(B) Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 
Ion/Retention Time pairs, from three biological replicates per assay condition. Ion/Retention Time 
Pairs in bold represent compounds identified via comparison with authenticated reference standards.  
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Assays using bayogenin as a substrate (FIGURE 5_RIII) showed accumulation of 

medicagenic acid and putativepolygalagenin as products.  

  

Hederagenin 
Ion/Retention Time Pair

CYP72A68 Empty Vector

Hederagenin (471.35 m/z, 22.92 min) 19789 ± 538 21530 ± 271

putative_Gypsogenin (469.33 m/z, 24.91 min) 10624 ± 662 n.d.

putative_Gypsogenic Acid (485.33 m/z, 21.89 min) 16247 ± 406 n.d.

EMPTY VECTOR (+) NADPH

CYP72A68 (+) NADPH

Hederagenin

Gypsogenin
Gypsogenic Acid

FIGURE 4_RIII. CYP72A68-Mediated Biosynthesis of Putative Gypsogenin and Putative 
Gypsogenic Acid from Hederagenin.  
(A) Representative UPLC-ESI-qTOF-MS base peak intensity chromatograms for CYP72A68 and 
Empty Vector samples with structures for the substrate and products.  
(B) Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 
Ion/Retention Time pairs, from three biological replicates per assay condition. Ion/Retention Time 
Pairs in bold represent compounds identified via comparison with authenticated reference standards.  

(A) 

(B) 
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CYP72A68 (+) NADPH

Bayogenin Standard

Bayogenin

Polygalagenin
Medicagenic acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5_RIII. CYP72A68-Mediated Biosynthesis of Medicagenic Acid and Putative 

Polygalagenin from Bayogenin.  

Representative UPLC-ESI-qTOF-MS base peak intensity chromatograms for a CYP72A68 sample 

and an analysis of thebayogenin authentic reference standard , with structures for the substrate and 

products.  
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 When β-amyrin, cycloartenol, or erythrodiol were used as substrates in 

CYP72A68 assays, no products were detected. Additionally, genistein, daidzein, 

formononetin, and 7,4’-Dihydroxyflavone were tested as substrates in CYP72A68 

assays, and no products were detected. 

 

CYP72A68 (+/-) NADPH Assays 

Oleanolic acid substrate assays of CYP72A68 microsomes with and without NADPH 

showed accumulation of hederagenin, putative gypsogenin, and putative gypsogenic 

acid in the (+)NADPH samples but not the (-)NADPH control samples (TABLE 

2_RIII).  

 

TABLE 2_RIII. Necessity of NADPH for CYP72A68 Catalytic Function.  

Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates of CYP72A68 (+) NADPH or CYP72A68 

(-) NADPH assay conditions.  

Ion/Retention Time Pair CYP72A68 (+) NADPH CYP72A68 (-) NADPH
Oleanolic Acid (455.35 m/z, 28.42 min) 9681 ± 1047 13256 ± 113

Hederagenin (471.35 m/z, 22.63min) 10783 ± 492 n.d.
 putative_Gypsogenin (469.33 m/z, 24.53 min) 13413 ± 525 n.d.

putative_Gypsogenic Acid (485.33 m/z, 21.88 min) 6822 ± 891 n.d.

Oleanolic Acid   (+) & (-) NADPH
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CYP72A68Assays with Aglycone Mix as Substrate  

(+)CYP72A68 and empty vector control samples were also assayed with the solution 

of partially purified aglycones from M. truncatula roots (TABLE 3_RIII). 

Putativegypsogenin, putativegypsogenic acid, and medicagenic acid were detected in 

higher levels in the (+)CYP72A68 samples than in the empty vector controls. 

Oleanolic acid, 2-OH oleanolic acid, hederagenin, bayogenin, and putative 

polygalagenin were detected at higher levels in the empty vector control samples than 

in the (+)CYP72A68 samples.  

 

TABLE 3_RIII. CYP72A68-Mediated Production and Consumption of Diverse 

OleanateSapogenins from the Aglycone Mixture.  

Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates per assay condition. Ion/Retention Time 

Pairs in bold represent compounds identified via comparison with authenticated reference standards. 

Ion/Retention Time Pair CYP72A68 Empty vector 
Oleanolic Acid (455.35 m/z, 28.79 min) 4957  ±  120 6448  ±  383
2OH-Oleanolic Acid (471.34 m/z, 26.54 min) 1386  ±  44 3303  ±  314
Hederagenin (471.34 m/z,22.95 min) 7680  ±  112 8155  ±  350
Bayogenin (487.35 m/z, 20.49 min) 2699  ±  43 7489  ±  257
putative_Polygalagenin (485.33 m/z, 22.70 min) 1660  ±  170 4273  ±  408
putative_Gypsogenic Acid (485.33 m/z, 21.85 min) 731  ±  65 50  ±  50
putative_Gypsogenin (469.33 m/z, 24.89 min) 3417  ±  191 352  ±  21
Medicagenic Acid (501.32 m/z, 19.69 min) 8477  ±  318 6989  ±  286

Aglycone Mixture
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Shaded values highlight the assay condition with the higher detection value for each of the 

Ion/Retention Time Pairs.  

CYP72A68 Time Series with NADPH Regeneration System 

Oleanolic acid (+) CYP72A68 and empty vector assays with an expanded time domain 

and an NADPH regeneration system. Microsomal preparations of (+) CYP72A68 and 

emptyvector control samples were assayed with an expanded time domain and an 

NADPH regeneration system using oleanolic acid as a substrate (FIGURE 6_RIII). 

Accumulation of hederagenin, putative gypsogenin, and putative gypsogenic acid were 

similar to the initial oleanolic acid assays. However, a new product (unknown 1) 

accumulated in the 48 hour (+)CYP72A68 samples, but not in the 8 hour 

(+)CYP72A68 or empty vector control samples. An additional compound (unknown 

2) was detected in higher amounts in the 8 hour (+)CYP72A68 andempty vector 

control samples.  
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FIGURE 6_RIII. Accumulation of an Unknown Compound in CYP72A68 Expanded Time Series 

Oleanolic Acid Substrate Assay with NADPH Regeneration System.  

(A) Representative UPLC-ESI-qTOF-MS base peak intensity chromatograms for 48 hour 

CYP72A68 (+) NADPH Regeneration System, 8 hour CYP72A68 (+) NADPH Regeneration 

System, and 48 hour Empty Vector (+)NADPH Regeneration System samples, with arrows 

indicating the unknown peaks of interest.  

 (B) Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates for the 48 hour CYP72A68 and Empty 

48 hour CYP72A68 (+) NADPH Regeneration System

48 hour Empty vector  (+) NADPH Regeneration System

8 hour CYP72A68 (+) NADPH Regeneration System

48 Hour Oleanolic Acid Assay with 
NADPH regeneragtion system

Ion/Retention Time Pair 48 hour CYP72A68 
48 hour Empty 

vector  
Oleanolic Acid (455.35 m/z, 28.47 min) 30798 ± 5171 39453 ± 8259
Hederagenin (471.34 m/z, 22.68 min) 25352 ± 3772 105 ± 45

putative_Gypsogenin (469.33 m/z, 24.59 
min) 5659 ± 1629 17 ± 4

putative_Gypsogenic Acid (485.33 m/z, 
21.6min) 18731 ± 3303 142 ± 31

Unknown 1 (469.33 m/z, 23.42 min) 10994 ± 1253 25 ± 4
Unknown 2 (471.34 m/z, 23.12 min) 266 ± 58 832 ± 185

8 and 48  Hour Oleanolic Acid Assay 
with NADPH regeneragtion system

Ion/Retention Time Pair 48 hour CYP72A68 
8 hour 

CYP72A68 

Unknown 1 (469.33 m/z, 23.42 min) 10994 ± 1253 307 ± 89 

Unknown 2 (471.34 m/z, 23.12 min) 266 ± 58 798 ± 285

Unknown 1 

Unknown 2 

Unknown 2 

(C) 

(B) 

(A) 
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Vector samples. Ion/Retention Time Pairs in bold represent compounds identified via comparison 

with authenticated reference standards.  

(C) Values in the table represent the mean of normalized areas (and 1 standard error) for each of the 

Ion/Retention Time pairs, from three biological replicates for the 48 hour and 8 hour CYP72A68 

samples.  

In Vitro Enzymatic Assays of CYP83G1, CYP88D3, and CYP716A12  

When β-amyrin, erythrodiol, oleanolic acid, hederagenin, or the partially purified 

aglycone solution from M. truncatularoots were assayed as substrates for CYP83G1, 

CYP88D3, or CYP716A12,no products were detected (data not shown).  

Genomics 

Of the five loci investigated in this study, only cyp83g1 (Medtr5g072930. 1,1786 bp) 

was included in the genome sequence of M. truncatula (http://www.medicagohapmap. 

org/?genome). Amplification of cyp72a68 and cyp72a67, and cyp88d3 from genomic 

DNA showed loci size of approximately 2. 5, 3, and 1. 5 kb, respectively (data not 

shown).  

Tnt-1 Mutant Collection Screening 

Results of both the Tnt-1 flanking sequence database BLAST screen and the reverse 

screen of the pooled Tnt-1germplasm are presented in TABLE 4_RIII. 138 individual 

plants for Tnt-1-insertion lineNF1698 and 6 individuals of NF12169 (both 

http://www.medicagohapmap.org/?genome
http://www.medicagohapmap.org/?genome
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representing the cyp72a68 locus) were genotyped, and no homozygous insertion Tnt-

1_cyp72a68 plants were identified. Genomic DNA from a heterozygous 

cyp72a68/Tnt-1_cyp72a68 NF1698 plant was used as a template for 

cloning/confirmation of the insertion. Ten individual plants for Tnt-1-insertion line 

NF5264 and 6 individuals of NF13243 (both representing the cyp72a67 locus) were 

genotyped, and no homozygous insertion Tnt-1_cyp72a67 plants were identified. 

Seven individual plants for Tnt-1-insertion lineNF14380 (representing the cyp83g1 

locus) were genotyped, and a confirmed homozygous insertion Tnt-1_cyp83g1 plant 

was identified. Metabomolics analysis of R108 (wild type) and NF1698 heterozygous 

cyp72a68/Tnt-1_cyp72a68 plants did not reveal differences in triterpene saponin 

accumulation (data not shown).  

FST BLAST    

Target Locus Database Hit 
NF Tnt-1 Insertion Line ID  

cyp72a67 >NF5264-Insertion-2 NF5264 NF5264  

cyp72a68 >NF1698-Insertion-4 NF1698 NF1698  

    

REVERSE SCREEN 
   

Target Locus 
Primer Combination Insertion Site in Locus NF Tnt-1 Insertion Line ID 

(B) 
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cyp72a67 A67-F + Tnt1-F at ~ 0. 8 kb NF13243 

cyp72a68 A68-F + Tnt1-F at ~1. 2kb at intron NF12169 

cyp83g1 CYP83-F + Tnt1-F at 400 bp NF10345 

  CYP83-F + Tnt1-F at 467 bp NF14380 

cyp88d3 CYP88-F + Tnt1-R at 990 bp reverse NF10938 

  CYP88-F + Tnt1-R at 1090 bp reverse NF12871 

  CYP88-F + Tnt1-R at ~1170 bp reverse NF10044 

cyp716a12 CYPA12-F + Tnt1-R at 1340 bp reverse NF11197 

  CYPA12-F + Tnt1-R at 405 bp NF3726 

TABLE 4_RIII. In Silico and Reverse Genetic Screening Results for Tnt-1 Insertion Mutants for All 

Candidate Loci.  

(A) In silico screening results (hits) and Tnt-1 insertion line identification numbers from the BLAST 

analysis of candidate gene sequences as a query against the Tnt-1 flanking sequence tag database.  

(B) Successful primer combinations, insertion site in target loci, and Tnt-1 insertion line 

identification numbers for the reverse genetic screen of the Tnt-1 mutant collection.  

Molecular Genetics 

The expression data forcyp72a67, cyp72a68, cyp83g1,cyp716a12, and cyp88d3 

transcripts in a variety of plant organs and developmental stages (FIGURE 7_RIII) 

were obtained from The Medicago Gene Expression Atlas web server (Benedito, 

Torres-Jerez et al. 2008; He, Benedito et al. 2009). Note that the highest transcript 

accumulation for probesets representing cyp72a67, cyp72a68, and cyp716a12 were in 
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late developing (24 days after pollination) seed organs. Also note that the expression 

level for these transcripts is approximately 3 fold higher in the 24 days after 

pollination organ sample compared to the next highest organ sample.  

 

FIGURE 7_RIII. Expression Dynamics for Transcripts of Candidate Genes in Diverse Plant 

Organs.  

Medicago Gene Expression Atlas accumulation data for transcripts of cyp72a68 (blue), cyp72a67 

(red), cyp716a12 (black), cyp83g1 (pink), and cyp88d3 (orange), in root, stem, leaf, petiole, 

cyp72a68 cyp72a67 cyp716a12        cyp83g1 cyp88d3Transcript Accum
ulation (probesethybridization values)
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vegetative bud, flower, pod, and seed coat organs, and seed developmental stages of 10, 12, 16, 20, 

24, and 36 days following pollination.  

Discussion 

CYP72A67 Activity 

Microsomal assays with reference standards as substrates demonstrate that CYP72A67 

catalyzes the oxidation of carbon 2 of both oleanolic acid and hederagenin, yielding 

the products 2-OH oleanolic acid and bayogenin, respectively. In each of these 

reactions the abstracted hydrogen atom from oxidized carbon 2 is replaced with a 

hydroxyl group, and both products show the requisite mass increase of 16 Daltons. 

Microsomal assays with the partially purified aglycone mix as substrates demonstrate 

broader substrate tolerance/additional enzymatic activity for CYP72A67. Compounds 

lacking hydroxyl groups at carbon 2 (oleanolic acid, hederagenin, putative gypsogenin, 

and putative gypsogenic acid) were all detected in higher amounts in the empty vector 

control samples, indicating their consumption as substrates. Products with the 

characteristic 16 Dalton mass increase (2-OH oleanolic acid, bayogenin, putative 

polygalagenin, and medicagenic acid) were detected in higher amounts in the 

(+)CYP72A67 samples. These results indicate that compounds with carbon 23 methyl, 
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carbon 23 hydroxyl, carbon 23 carbonyl, and carbon 23 carboxylic acid substitutions 

are substrates for CYP72A67-mediated carbon 2 oxidation (See FIGURE 8_RIII).  

 

FIGURE 8_RIII. Summary Matrix of CYP72A67 and CYP72A68-Mediated Biosynthetic 

Reactions in the Oleanate Branch of the M. truncatula Sapogenin Biosynthesis Pathway.  

Orange arrows pointing from left to right indicate the CYP72A67-Mediated oxidation of carbon 2 

of the four substrates on the left hand side.  

Blue arrows pointing from top to bottom indicate the multistep CYP72A68-Mediated sequential 

oxidation of carbon 23 of the various substrates.  
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 Additional support for demonstration of CYP72A67-mediated carbon 2 

oxidation activity in these assays is shown by the lack of product accumulation in 

assays lacking NADPH. Lack of product accumulation in these assays indicates that 

the CYTOCHROME P450 REDUCTASE/CYP72A67 complex require NADPH as 

an electron donor for activity (Chang-Jun Liu 2003; Seki, Ohyama et al. 2008).  

No products were detected when CYP72A67 was assayed with ß-amyrin or 

erythrodiol. This implies that compounds with a methyl carbon 28(ß-amyrin) or 

carbon 28 hydroxyl group (erythrodiol) are not substrates for CYP72A67-mediated 

carbon 2 oxidation as tested in this experimental system.  

CYP72A68 Activity 

Previous studies have shown that an individual cytochrome p450 enzyme can catalyze 

the sequential/consecutive oxidation of a given carbon,yielding the hydroxyl(16 

Dalton increase), carbonyl (14 Dalton increase), carboxylic acid (30 Dalton increase) 

products (Helliwell, Poole et al. 1999; Ro, Arimura et al. 2005).  

CYP72A68 demonstrates this type of multifunctional activity. Similar to 

CYP72A67, CYP72A68 also demonstrates an expanded substrate tolerance for 

oleanate-type sapogenin compounds with and without hydroxyl groups at carbon 2.  
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Microsomal assays with oleanolic acid as a substrate demonstrate that CYP72A68 

catalyzes the initial oxidation of carbon 23 of oleanolic acid, yielding the carbon 23 

hydroxyl product, hederagenin. Two additional products were detected in the 

CYP72A68/oleanolic acid assays. The mass of the first additional product corresponds 

to oleanolic acid plus 14 Daltons, likely representing a product with carbonyl group. 

The mass of the second additional product corresponds to oleanolic acid plus 30 

Daltons, likely representing a product with a carboxylic acid group. The 

CYP72A68/hederagenin assays also showed production of the likely carbonyl and 

carboxylic acid products. The decrease in hederagenin content in the (+)CYP72A68 

samples indicates that hederagenin is consumed as a substrate. Taken together, these 

assay results indicate that CYP72A68 catalyzes the sequential oxidation of carbon 23 

of oleanate-type sapogenins, yielding the alcohol (hederagenin), the aldehyde (putative 

gypsogenin), and the carboxylic acid (putative gypsogenic acid).  

Bayogenin and hederagenin both have a hydroxyl group at carbon 23, but 

bayogenin also has a hydroxyl group at carbon 2. The CYP72A68/bayogenin assays 

showed accumulation of medicagenic acid (carbon 23 carboxylic acid) and 

accumulation of a product with a mass characteristic of a hydroxyl to carbonyl 

oxidation (decrease of 2 Daltons). This second additional product is likely putative 
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polygalagenin. The elution of the carbon 23 carbonyl products (putative gypsogenin 

and putative polygalagenin) is consistent, in that they both elute after the carbon 23 

carboxylic acid products (putative gypsogenic acid and medicagenic acid) and the 

carbon 23 hydroxyl products (hederagenin and bayogenin).  

The assays with the partially purified aglycone mix as substrates reinforce the 

conclusions drawn from the assays with reference standards. It is important to note 

that aglycone mix contained multiple demonstrated CYP72A68 substrates. Because of 

the presence of multiple substrates and products in the mixture, one would 

expectdynamic accumulation results that account for the simultaneous production and 

consumption of compounds such as hederagenin. Briefly, hederagenin is a product in 

the CYP72A68 catalyzed oxidation of carbon 23 of oleanolic acid, but a substrate in 

the CYP72A68 catalyzed sequential oxidation of carbon 23 to putative gypsogenin 

and putative gypsogenic acid. The compounds with carbon 23 methyl groups 

(oleanolic acid, 2-OH oleanolic acid) were detected in higher levels in the empty 

vector control samples, indicating their consumption as substrates in the 

(+)CYP72A68 samples. Compounds with carbon 23 hydroxyl groups (hederagenin 

and bayogenin) were likewise detected in higher levels in the empty vector control 
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samples. The (+)CYP72A68 samples showed accumulation of the products with 

carbon 23 carboxylic acid groups (putative gypsogenic acid and medicagenic acid).  

As with CYP72A67, the lack of product accumulation in the (+)CYP72A68 assays 

lacking NADPH provides support for the carbon 23 sequential oxidation activity of 

CYP72A68.  

The results of the (+)CYP72A68 and empty vector control samples assayed 

with the expanded time domain and an NADPH regeneration system using oleanolic 

acid as a substrate indicate that CYP72A68 has catalytic capabilities beyond the scope 

of the defined sapogenin structures and reactions detailed above. The compound 

unknown 1 (469.33 m/z) is likely the product of a hydroxyl to carbonyl (decrease of 2 

Daltons) oxidation of an unknown carbon of compound unknown 2 (471.34 m/z) 

which is most probably an impurity in the oleanolic acid reference standard. The 

elution of unknowns 1 and 2 is consistent with the observations for the other alcohol 

and aldehydes investigated, in that unknown 1 elutes after unknown 2.  

 No products were detected when CYP72A68 was assayed with ß-amyrin or 

erythrodiol. This implies that compounds with a methyl carbon 28(ß-amyrin) or 

carbon 28 hydroxyl group (erythrodiol) are not substrates for CYP72A68-mediated 

carbon 23 sequential oxidation as tested in this experimental system.  
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Combined CYP72A67 and CYP72A68 Reactions 

FIGURE 8_RIII presents the demonstrated in vitro activities for CYP72A67 and 

CYP72A68 in the context of the oleanate branch(Augustin, Kuzina et al. 2011)of the 

M. truncatula triterpene sapogenin biosynthetic pathway. CYP72A67 and CYP72A68 

are the first two demonstrated enzymes in the M. truncatula sapogenin biosynthetic 

pathway. CYP72A67 is a multisubstrate oleanate sapogenin carbon 2 oxidase enzyme. 

CYP72A68 is a multifunction, multisubstrate oleanate sapogenin carbon 23 sequential 

oxidase enzyme. CYP93E1 (Shibuya, Hoshino et al. 2006) from the soyasapogenol 

pathway of Glycine max, CYP88D6 (Seki, Ohyama et al. 2008) CYP72A67 from the 

glycyrrhizin pathway of Glycyrrhiza uralensis, and now CYP72A67 and CYP72A68 of 

the oleanate sapogenin pathway of M. truncatularemain the only plant 

triterpenesapogenin oxidase enzymes demonstrate to date.  

Evidence for cytochrome P450 enzymes as multifunction, multisubstrate 

enzymes in biochemistry has been accumulating for some time (Siminszky, Corbin et 

al. 1999; Morant, Bak et al. 2003; Schmidt, Sunyaev et al. 2003). The phenomenon 

of broad substrate tolerance (multisubstrate) of cytochrome P450 enzymes in plant 

biochemistry lends support to the contention that exotic and structurally diverse 

natural product "pathways" in plant metabolism are better conceptualized as matrices 
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(Firn and Jones 2003; Peñuelas and Llusià 2004; Owen and Peñuelas 2005). The 

phenomenon of multifunctionality (here, sequential oxidation of alkyl carbons) by a 

single cytochrome p450 enzyme is helpful in thinking about generation of the 

awesome chemical diversity in the plant kingdom (Dixon 2001), as fewer proteins can 

catalyze a larger number of reactions. The case for a reasonably simple/parsimonious 

mechanism for the biosynthesis of extreme plant metabolic diversity is bolstered by 

the combined phenomena of multifunctionality and broad substrate tolerance by 

plant cytochrome P450 enzymes.  

CYP83G1, CYP88D3, CYP716A12 In Vitro 

The lack of detected product formation in the ß-amyrin, erythrodiol, oleanolic acid, 

hederagenin, or the partially purified aglycone assays for CYP83G1, CYP88D3, or 

CYP716A12 does not preclude the possibility that these proteins may catalyze 

reactions in the M. truncatula sapogenin biosynthesis pathway. It is possible that the 

recombinant expression system and/or assay conditions employed in this study may 

have been inappropriate for proper protein folding/assembly/modification or catalytic 

function for these proteins. CYP716A12 in particular remains extremely tantalizing as 

a likely enzyme in the biosynthesis of sapogenins, owing to the similarities of 

cyp72a67, cyp72a68, and cyp716a12 transcript expression levels in both the ecotype 
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transcriptomics experiment from JHS_CHAPTER_RII and the expression data from 

the Medicago Gene Expression Atlas.  

Genomics 

As four of the 5 genes studied were not in current draft of the M. truncatula genome 

sequence, it is reasonable to raise concerns about the comprehensiveness the M. 

truncatula genome (unpublished). Lack of genomic loci was particularly frustrating as 

it prevented the type of genomic proximity/gene cluster analysis presented in 

JHS_Research_CHAPTER_IV. The 1.5 kb size of the cyp88d3 amplification product 

from a genomic DNA template indicates that the locus likely lacks introns of any 

significant length, and would be interesting to investigate in light of genomic locus 

size of homologs ((Seki, Ohyama et al. 2008) JHS_Research_CHAPTER_IV) and 

recent results that demonstrate the retroposition and neofunctionalization of a 

cytochrome P450 gene in a pollen-specific branch of phenylpropanoid metabolism in 

Arabidopsis thaliana (Matsuno, Compagnon et al. 2009).  

Mutant/Molecular Genetics 

The failure to identify homozygous intersertional mutant individuals in either of the 

two cyp72a67 or two cyp72a68Tnt-1 mutagenesis lines strongly suggests that these 

genes/gene products are critical for plant growth and function. It seems likely that 



116 
 
homozygous intersertional mutant individuals for either of these loci result in a lethal 

phenotype. The cyp72a67 and cyp72a68 transcript expression data for various plant 

organs obtained from the Medicago Gene Expression Atlas showed that these 

transcripts were accumulated in the highest levels in late developing seeds. It is 

reasonable to infer that high expression level of these transcripts in late developing 

seeds may be related to putative lethal phenotype of homozygous intersertional 

mutant individuals for these loci. Further, one could postulate that the accumulation 

of the functional gene products of these highly accumulated transcripts may be critical 

in the metabolism of seed development. Finally, as these gene products have been 

shown to function as biosynthetic enzymes in the M. truncatula triterpene sapogenin 

biosynthetic pathway, one could warrant that triterpene sapogenins function critically 

in the metabolism of M. truncatula seed developmental physiology.  

 The biotechnological limitations of reverse mutant screening methodologies for 

characterization of gene function is highlighted if in fact the homozygous 

intersertional mutant state for these loci does indeed result in a lethal phenotype. The 

use of germplasm diversity collections for dissection of gene function seems 

particularly suited as a means to avoid the limitations of reverse mutant screening 
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methodologies, as the less extreme yet significantly different phenotypes evinced in the 

ecotype collection enable experimentation with viable plants.  

The cyp72a67 and cyp72a68 transcript expression data from the Medicago Gene 

Expression Atlas showed that these transcripts were expressed in both root and various 

aerial and reproductive organs. When considered in combination with the 

demonstrated catalytic functions for these gene products, the spatially resolved 

expression data for the various organs suggests that sapogenin biosynthesis is likely to 

occur throughout the plant, and not through a mechanism of centralized biosynthesis 

and subsequent translocation.  

Methods 

Plant Material 

A17 and R108 isoline seeds were obtained from the greenhouse manager (David 

McSweeny) at the Samuel Roberts Noble Foundation. Seeds for the Tnt-1 insertion 

mutagenesis lines (Tadege, Wen et al. 2008)were obtained from the curator of 

biological materials (Dr. Jiangqi Wen)at the Samuel Roberts Noble Foundation.  

Plant Growth Conditions 

Plants were grown in a root cone system (Stuewe and Sons, http://www.stuewe.com, 

Tangent, OR) with Turface MVP medium (Profile Products, Buffalo Grove, IL) in a 
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Conviron TCR180 walk-in growth chamber (http://www.conviron.com/, Winnipeg, 

Manitoba, Canada) maintained at 90% humidity and at an average temperature of 

24 °C day (16 h) and 20 °C night (8 h). Plants were fertilized with 15 ppm nitrogen 

(Scotts' 20 10 20 Peat-Lite Special, http://www.scotts.com, Marysville, Ohio) daily in 

the morning and watered with distilled water in the evening.  

DNA preparations, RNA isolation, cDNA synthesis 

All genomic DNA isolations were performed as previously described (Sambrook, 

Russell et al. 2001). For all RNA isolations, harvested material was frozen immediately 

in liquid nitrogen and stored at -80°C prior to RNA isolation. Total RNA was 

extracted using TRIZOL reagent (Life Technologies, 

http://www.lifetechnologies.com/, Carlsbad, California), treated with DNaseI 

(Ambion, http://www.ambion.com/), and column purified with a 

RNeasyMinEluteCleanUp Kit (Qiagen, http://www.qiagen.com/). RNA was 

quantified using a Nanodrop Spectrophotometer ND-100 (NanoDrop Technologies, 

http://www.nanodrop.com/) and evaluated for quality with a Bioanalyzer 2100 

(Agilent, http://www.home. agilent.com/). For cDNA synthesis, 10µg of total RNA 

(prepared and assessed for quality as above) was primed with oligo(dT)20 and 

http://www.lifetechnologies.com/
http://www.ambion.com/
http://www.qiagen.com/
http://www.nanodrop.com/
http://www.home.agilent.com/
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synthesized with Super Script III according to manufacturer’s instructions (Life 

Technologies, http://www.lifetechnologies.com/, Carlsbad, California) 

 

Cloning 

 

All primer sequences and NCBI Genbank (NCBI, 

http://www.ncbi.nlm.nih.gov/genbank/, Bethesda, MD) accession numbers are 

presented in Appendix_R.III._Primers. Coding sequences for cyp72a67, cyp72a68, 

cyp83g1, cyp88d3, and cyp716a12 were obtained from NCBI Genbank. All cloning 

primers were designed using primer3 (Rozen and Skaletsky 1999). The forward 

primer for each target included both a BamHI restriction site and a kozak yeast 

translation initiation sequence, while each reverse primer included an EcoRI cut site. 

Targets were amplified from cDNA prepared from aerial organs from the isoline A17 

using Plantium Hi-Fi Taq polymerase (Life Technologies, 

http://www.lifetechnologies.com/home. html, Carlsbad, California). Amplified 

products were cloned into the pGEM-easy vector (Promega, 

http://www.promega.com/, Madison, WI) and sequenced using M13 forward and 

reverse primers. The targets were excised from the p-GEM easy vector via BamHI and 

http://www.lifetechnologies.com/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.promega.com/
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EcoRI restriction digest, sub-cloned into the pYeDP60 vector (Pompon, Louerat et al. 

1996; Urban, Mignotte et al. 1997) and sequenced using the gal10 promoter primer 

(Appendix_RIII_cloned_sequence). Wat11 yeast cells were transformed as previously 

reported (Greenhagen, Griggs et al. 2003). Transformation of yeast was confirmed via 

colony PCR with gene specific primers. cyp72a67 and cyp72a68 genomic loci were 

amplified from genomic DNA and cloned into the pGEM-easy vector. The Tnt-1-

_cyp72a68 allele was amplified from genomic DNA of the Tnt-1 insertion 

mutagenesis line NF 1698 and cloned into the pGEM-easy vector.  

Recombinant expression and microsomal preparations of CYP72A68 enzymatic 

assays 

The potential catalytic activities of CYP72A68, CYP72A67, CYP83G1, CYP88D3, 

and CYP716A12 were tested using in vitro assays with a variety of triterpene 

sapogenin substrates. Wat11 cells containingpYeDP60+target or empty pYeDP60 were 

grown and microsomes were prepared as previously described (Greenhagen, Griggs et 

al. 2003). All assays were performed in triplicate. For assays with purified reference 

standards as substrates, 100µg of total microsomal protein (quantified via Bradford 

assay) (Seki, Ohyama et al. 2008) was assayed for 2 hours at 30°C in a 500µl reaction 

volume of 50mM potassium phosphate buffer (pH 7.25) containing 1mM NADPH, 
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and 40µM purified substrate. ß-amyrin, erythrodiol, and oleanolic acid were obtained 

from Sigma-Aldrich(Sigma-Aldrich, http://www.sigmaaldrich.com/, St. Louis, MO). 

Hederagenin and cycloartenol were obtained from Chromadex (Chromadex, 

http://www.chromadex.com, Irvine, CA). Bayogenin was obtained from PhytoLab 

(PhytoLab, http://www.phytolab.com, Vestenbergsgreuth, Germany). A mixture of 

partially purified aglycones obtained through acid hydrolysis of saponin extracts 

obtained from Medicago truncatula root tissues (Huhman and Sumner 2002) were at 

assayed at an approximate 80µM concentration. The expanded time-series (8 and 48 

hour) CYP72A68 aglycone mix substrate assays contained an NADPH generation 

system (3.3 mM glucose-6-phosphate, 1.3 mM of NADPH, 3.3 mM magnesium 

chloride, and 0.4 U/ml glucose-6-phosphate dehydrogenase) (Yu, Shin et al. 2003). 

Glucose-6-phosphate dehydrogenase was obtained from Sigma-Aldrich.  

Extraction and Instrumental Analysis 

Assay reaction mixtures were extracted 2 times with 500 µl of ethyl acetate, and dried 

under nitrogen gas. Oleanolic acid, hederagenin, bayogenin, and aglycone mix assay 

contents were resolubilized in 250µl of 80% Methanol (containing 0.018 mg/ml 

umbelliferone as an internal standard) and analyzed with a Waters Acquity UPLC 

system coupled to a hybrid quadrupole time-of-flight (QTOF) Premier mass 

http://www.sigmaaldrich.com/
http://www.chromadex.com/
http://www.phytolab.com/
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spectrometer (Waters, http://www.waters.com/, Milford, MA). A reverse-phase, 1.7-

mm UPLC BEH C18, 2.1 3 150 mm column (Waters) was used for separations. The 

mobile phase consisted of eluent A (0.1% [v/v] acetic acid/water) and eluent B 

(acetonitrile), and separations were achieved using a linear gradient of 95% to 30% A 

over 30 min, 30% to 5% A over 3.0 min, and 5% to 95% A over 3.0 min. The flow 

rate was 0.56 mL min 21, and the column temperature was maintained at 60°C. 

Masses of the eluted compounds were detected in the negative ESI mode from 50 to 

2,000 mass-to-charge ratio. The QTOF Premier was operated under the following 

instrument parameters: desolvation temperature of 400°C, desolvation nitrogen gas 

flow of 850 L h21, capillary voltage of 2.9 kV, cone voltage of 48 eV, and collision 

energy of 10 eV. The MS system was calibrated using sodium formate, and raffinose 

was used as the lockmass compound. ß-amyrin, erythrodiol, and cycloartenol assays 

were extracted 2 times with 500 µl of ethyl acetate, dried under nitrogen gas, dissolved 

in 100µl pyridine, MSTFA-derivitized, and analyzed by GC-MS as described 

previously (Broeckling, Huhman et al. 2005).  

Data Processing 

Raw data files were converted to .cdf file format, followed by metabolite data 

extraction, alignment, and export using MET-IDEA software (Broeckling, Reddy et al. 
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2006) or Waters MARKERLYNX software. The spectral abundance signals for all 

metabolites in a separation were normalized to the internal standard (0.018 mg/ml 

umbelliferone). Descriptive statistics were performed in Microsoft Excel.  

Screening the M. truncatula Tnt-1Retrotransposon Insertion Population for 

Identification transposon insertion mutants 

The M. truncatula R108 Tnt-1 population (Million Tadege 2008)was screened for 

insertions in cyp72a67, cyp72a68, cyp83g1, cyp716a12, cyp88d3 loci 

(APPENDIX_Tnt-1_PRIMERS) as previously described (Pang, Wenger et al. 2009). 

BLAST analysis (Altschul, Gish et al. 1990) was performed for all target loci against 

the Noble Foundation Tnt-1 flanking sequence database 

(http://bioinfo4.noble.org/mutant/).  

Additional Information 

Accession Numbers 

 Currently found in Appendix_RIII_Primers 

Supplemental Data 

Appendix_RIII_Primers-Cloning primers used in RIII 

Appendix_RIII_cloned_sequence-Nucleotide sequence of cloned target genes  

APPENDIX_Tnt-1_PRIMERS-Primers used in reverse screen R III 

http://bioinfo4.noble.org/mutant/
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Chapter IV - Loci from the cyp88d Subfamily of Cytochrome P450s are 

Immediately Adjacent to Oxidosqualene Synthase Loci in the Genomes 

of Medicago truncatula and Lotus japonicus.  

Authors: John H. Snyder, David V. Huhman, Lloyd W. Sumner 

Summary: 

This chapter will detail my attempts to test the hypothesis that there may be gene 

clusters of biosynthetically-related genes from triterpenoid metabolism in the 

Medicago truncatula genome. Promising early Ecotype qRT-PCR and M. truncatula 

genomics analysis will be contrasted with inconclusive results fromin vitro enzymology, 

cell culture, and mutant analysis for genes in the cyp88d subfamily.  

Abstract 

Five plant secondary metabolic gene clusters have been discovered to date. The 

oxidosqualene synthase enzyme β-amyrin synthase is the entry point enzyme in 

the triterpene saponin pathway of Medicago truncatula. The enzymes which 

catalyze the bio-oxidation of β-amyrin in the triterpene sapogenin biosynthetic 

pathway of M. truncatula have not been characterized, but CYP88D6 from 
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Glycyrrhiza uralensis has been shown bio-oxidation activity for carbon 11 of ß-

amyrin. In light of the recent discovery of secondary metabolic gene clusters in 

plant genomes, the genome of M. truncatula and L. japonicus were analyzed in 

this study in order to identify potential clusters which included oxidosqualene 

synthase genes. In M. truncatula, a cyp88d1 locus was identified immediately 

adjacent to a β-amyrin synthase locus. In L. japonicus, cyp88d4 and cyp88d5 

loci were immediately adjacent to a β-amyrin synthase locus. These exciting 

findings motivated our efforts to characterize the function of cyp88d1-3 from M. 

truncatula. Experimental approaches in the characterization effort included in 

vitro enzymatic assays, in planta integrated transcript/metabolomics analyses 

from a root cell suspension culture methyl jasmonate elicitation time series, in 

planta integrated transcript/metabolomics analyses from a collection of 

germplasm diversity accessions showing differential triterpene saponin 

accumulation dynamics, and metabolomics analyses of transposon insertion 

mutants. The in planta integrated transcript/metabolomics analyses from a 

collection of germlasm diversity accessions showed strong correlation values for 

cyp88d2 and cyp88d3 transcripts vs. total saponin accumulation. Recombinant 

expression and in vitro enzymatic assay analysis of these 3 proteins did not show 
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activity for any of the substrates tested (β-amyrin, oleanolic acid, hederagenin, or 

a mixture of M. truncatula sapogenin compounds. Analysis of saponin 

accumulation phenotypes of two independent cyp88d2 mutants did not reveal 

significant differences in the saponin phenotypes between the wild-type and 

cyp88d2 mutants.  

Introduction 

Five plant secondary metabolic gene clusters have been discovered in higher plants to 

date (Chu, Wegel et al. in press). These numerous intriguing examples of clusters of 

functionally related but non-homologous genes from plant defense compound 

pathways are proving useful in functional genomics efforts for the characterization of 

genes of unknown function. More broadly, the discovery of these clusters is enabling 

powerful new methodologies for the investigation of adaptive evolution and genome 

plasticity in plants (Osbourn 2010).  

The oxidosqualene synthase enzyme β-amyrin synthase is the entry point 

enzyme in the triterpene saponin pathway of Medicago truncatula (Suzuki, Achnine et 

al. 2002; Iturbe-Ormaetxe, Haralampidis et al. 2003). The enzymes which catalyze 

the bio-oxidation of β-amyrin in the triterpene sapogenin biosynthetic pathway of M. 

truncatula have not been characterized. Bio-oxidation of alkyl carbon 24 and carbon 
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11 of ß-amyrin have been demonstrated for CYP93E1 from Glycine max (Shibuya, 

Hoshino et al. 2006) and CYP88D6 from Glycyrrhiza uralensis (Seki, Ohyama et al. 

2008), respectively. The Seki et al. study which characterized CYP88D6 also 

contained full length coding sequence for other cyp88d family members from M. 

truncatula (cyp88d1-3) and L. japonicas (cyp88d4-5).  

In light of the recent discovery of secondary metabolic gene clusters in plant 

genomes, the genome of M. truncatula and L. japonicus were analyzed in this study in 

order to identify potential clusters which included oxidosqualene synthase genes. In M. 

truncatula, a cyp88d1 locus was identified immediately adjacent to a β-amyrin 

synthase locus. In L. japonicus, cyp88d4 and cyp88d5 loci were immediately adjacent 

to a β-amyrin synthase locus. These exciting findings motivated our efforts to 

characterize the function of cyp88d1-3 from M. truncatula. Experimental approaches 

in the characterization effort included in vitro enzymatic assays, in planta integrated 

transcript/metabolomics analyses from a root cell suspension culture methyl jasmonate 

elicitation time series, in planta integrated transcript/metabolomics analyses from a 

collection of germplasm diversity accessions showing differential triterpene saponin 

accumulation dynamics, and metabolomics analyses of transposon insertion mutants.  
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Results 

Genomics 

Medicago truncatula genome analysis was performed to identify cytochrome P450 and 

gylcosyltransferase loci in the immediate genomic vicinity of β-amyrin synthase and 

other oxidosquanlene cyclase loci in order to explore the possibility of “operon-like 

gene clusters” (Field and Osbourn 2008) related to triterpene metabolism. All genome 

regions of interest are presented in Supp 1_RIV. Figure 1_RIV shows a detail from 

chromosome 4 of M. truncatula where a β-amyrin synthase locus is adjacent to a 

cytochrome P450 locus from a subfamily which has been previously demonstrated to 

bio-oxidize β-amyrin (Seki, Ohyama et al. 2008).  
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FIGURE 1_RIV. - β-amyrin synthase and cyp88d1 Loci are Adjacent in the Genome of M. 

truncatula.  

Details of the terminal (centromeric) end of BAC 144538 showing the uninterrupted genomic 

proximity of predicted gene models for AC144538_31(β-amyrin synthase) and 

AC144538_36(cyp88d1), prepared using the Medicago genome browser program 

(http://bioinfo4.noble.org/cgi-bin/gbrowse/gbrowse/medicago). 

 

Full length coding sequence of two cyp88d family members (cyp88d4, cyp88d5) from 

Lotus japonicas were identified in a previous study (Seki, Ohyama et al. 2008). In 

order to assess the possibility of related cyp88d-β-amyrin synthase loci proximity, 

BLAST analysis was performed using cyp88d4 and cyp88d5 coding sequences as 

queries against the cDNA models mapped to the genome sequence of L. japonicus. 

Figure 2_RIV shows a detail from chromosome 3 of L. japonicus where a β-amyrin 

synthase locus is immediately adjacent to cDNA models for cyp88d4 and cyp88d5.  



138 
 

FIGURE 2_RIV. - β-amyrin synthase and cyp88d4 and cyp88d5 Loci are Adjacent in the Genome 

of Lotus japonicus.  

L. japonicus chromosome 3,bases 46441529 to 46761302, showing the uninterrupted genomic 

proximity of the cDNA gene models for β-amyrin synthase, cyp88d4, and cyp88d5,prepared using 

the genome browser tools available at http://www.plantgdb.org/LjGDB.  

Of the three loci investigated in this study, only cyp88d1 (AC144538_36, 6.78 kb) was 

included in the genome sequence of M. truncatula 

(http://www.medicagohapmap.org/?genome). Amplification of cyp88d2 and cyp88d3 

from genomic DNA of isoline A17 showed loci size of approximately 6kb and 1.5 kb, 

respectively (data not shown).  

http://www.medicagohapmap.org/?genome
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Integrated Analysis of Relative Transcript Expression and Metabolomics Datasets 

Complete data from the qRT-PCR and metabolomics analyses of the selected 

ecotypes/organs are presented in SUPP 2_RIV and SUPP 3_RIV. Complete data 

from the qRT-PCR and metabolomics analyses of the root cell suspension culture 

MeJA-elicitation time series experiment are presented in SUPP 4_RIV and SUPP 

5_RIV. Detailed descriptions of these files can be found in the Supplementary Data 

section of this manuscript. Figure 3_RIV(cyp88d2) and Figure 4_RIV(cyp88d3) 

present Pearson correlation values as well as transcript and total saponin accumulation 

results for the inter-ecotype, intra-aerial-organ comparison.  
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FIGURE 3_RIV. - Correlation of Transcript and Total Saponin Metabolite Accumulation for 

cyp88d2 from Various Ecotypes.  

(A) Graph showing the relative transcript expression levels of cyp88d2 (green) for an inter-genotype 

(A17, ESP105, ESP104, and GRC43), intra-aerial-organ comparison. Error bars represent 1 

standard error.  

(B) Graph showing the total saponin accumulation values from the metabolomics analysis of the 

inter-genotype (A17, ESP105, ESP104, and GRC43), intra-aerial-organ comparison. Error bars 

represent 1 standard error.  
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(C) Table of Pearson correlation coefficient (Pearson’s r) values for [cyp88d2 relative transcript 

expression] vs. [total saponin accumulation] in the inter-ecotype, intra-aerial-organ comparison 

permutation, for both the individual (n= 12) and averaged (n= 4) cases. The table also includes: 

Bootstrapped (5000 iteration) confidence intervals (90% for individual case, 95% for averaged case) 

of r, and bootstrapped standard errors of r.  

FIGURE 4_RIV. - Correlation of Transcript and Total Saponin Metabolite Accumulation for 

cyp88d3 from Various Ecotypes.  
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(A) Graph showing the relative transcript expression levels of cyp88d3 (green) for an inter-genotype 

(A17, ESP105, ESP104, and GRC43), intra-aerial-organ comparison. Error bars represent 1 

standard error.  

(B) Graph showing the total saponin accumulation values from the metabolomics analysis of the 

inter-genotype (A17, ESP105, ESP104, and GRC43), intra-aerial-organ comparison. Error bars 

represent 1 standard error.  

(C) Table of Pearson correlation coefficient (Pearson’s r) values for[cyp88d3 relative transcript 

expression] vs. [total saponin accumulation] in the inter-ecotype, intra-aerial-organ comparison 

permutation, for both the individual (n= 12) and averaged (n= 4) cases. The table also includes: 

Bootstrapped (5000 iteration) confidence intervals (90% for individual case, 85% for averaged case) 

of r, and bootstrapped standard errors of r.  

Molecular Genetics 

The expression data for cyp88d1, cypp88d2, and cyp88d3 transcripts in a variety of 

plant organs and developmental stages (Figure 5_RIV) were obtained from The 

MedicagoGene Expression Atlas web server (Benedito, Torres-Jerez et al. 2008; He, 

Benedito et al. 2009). Note that the highest transcript accumulation value for the 

probeset representing cyp88d1 was found in roots involved in mycorrhizal symbiosis.  
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FIGURE 5_RIV. - Expression values for Transcripts of cyp88d Genes in Diverse Plant Organs and 

Biological Treatments from the Medicago Gene Atlas.  

Medicago Gene Expression Atlas accumulation data for transcripts of cyp88d1 (red), cyp88d2 

(green), and cyp88d3 (blue), in root, stem, leaf, petiole, vegetative bud, flower, pod, and seed coat 

organs, seed developmental stages of 10, 12, 16, 20, 24, and 36 days following pollination, root at 

rhizobial inoculation (control), 4 days after rhizobial inoculation (lumps), 10 days after rhizobial 

inoculation (immature nodules), 14 days after rhizobial inoculation (N2 fixing), 16 days after 

rhizobial inoculation (2 days after NO3 treatment), 28 days after rhizobial inoculation (reference 

organ), 28 day-old denodulated roots, 6 week-old uninoculated roots (control for mycorrhization), 6 
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week-old (30dpi) mycorrhizal roots, 0 hour Phymatotrichum root rot infection (time-course), and 

72 hour Phymatotrichum root rot infection (time-course).  

Tnt-1 Mutant Collection Screening and Metabolomics Analysis 

Results of the reverse screen of the pooled Tnt-1 germplasm are presented in TABLE 

1_RIV. Results for the reverse screen for cyp88d3 are presented in 

JHS_RESEARCH_CHAPTER_III. Multiple homozygous Tnt-1_cyp88d2 plants 

were identified in the NF8050 and NF5409 lines. Metabolomics analysis of R108 

(wild type) and homozygous Tnt-1_cyp88d2 from NF8050 or NF5409 plants did not 

reveal differences in triterpene saponin accumulation (data not shown).  

Reverse Screen
Target Locus Primer Combination Insertion Site in Locus NF Tnt-1  Insertion Line ID

cyp88d2 cyp88d2 F + Tnt1-R at base 695 of coding sequence NF5409
cyp88d2 F2 + Tnt1-R intron NF8050

TABLE 1_RIV. - Reverse Genetic Screening Results for Tnt-1Insertion Mutants for the cyp88d2 

Locus.  

Successful primer combinations, insertion site in target loci, and Tnt-1 insertion line identification 

numbers for the reverse genetic screen of the Tnt-1 mutant collection.  

In Vitro Enzymatic Assays of CYP88D1, CYP88D2, and CYP88D3 

When β-amyrin, erythrodiol, oleanolic acid, hederagenin, or the partially purified 

aglycone solution from M. truncatula roots were assayed as substrates for CYP88D1, 

CYP88D2, and CYP88D3, no products were detected (data not shown).  
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Discussion 

Genomics 

In addition to the terpenoid synthases or tryptophan synthase homolog “signature” 

enzymes (Chu, Wegel et al. in press), Cytochrome P450 genes are included in the 

gene clusters for biosynthesis of the triterpenoid thalianol from Arabidopsis thaliana 

(Field and Osbourn 2008), biosynthesis of the triterpenoid avenacin from Avena 

strigosa (Qin, Eagles et al.; Qi, Bakht et al. 2004; Mylona, Owatworakit et al. 2008; 

Mugford, Qi et al. 2009), biosynthesis of the diterpenoidsmomilactone and 

phytocassane from Oryza sativa (Sakamoto, Miura et al. 2004; Wilderman, Xu et al. 

2004; Shimura, Okada et al. 2007; Swaminathan, Morrone et al. 2009), and 

biosynthesis of the benzoxazinoid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-

one(DIMBOA) from Zea mays (Frey, Schullehner et al.; Gierl and Frey 2001; Frey, 

Huber et al. 2003; Jonczyk, Schmidt et al. 2008). It is therefore extremely interesting 

that β-amyrin synthase lociare immediately adjacent tocytochrome P450 loci from a 

subfamily which contains a member with demonstrated β-amyrin bio-oxidation 

activity. Further, it is exceedingly unlikely that the co-occurrence of immediately 

adjacent β-amyrin synthase and cyp88d family loci in the genomes of M. truncatula 

and L. japonicus is an evolutionary coincidence. It is unfortunate that the BAC 
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sequence which contained the immediately adjacent β-amyrin synthase and cyp88d1 

loci was an “island” in the assembly of chromosome 3 of the M. truncatula genome, as 

additional cyp88d loci may be in the same vicinity. Several attempts to obtain 

additional sequence information (BAC end sequence, adjacent BACs etc.) were made 

in 2009 and 2010. 

Integrated Analysis of Relative Transcript Expression and Metabolomics Datasets 

The strong transcript vs. total saponin accumulation correlation values for cyp88d2 

and cyp88d3 in the selected ecotypes were initially perceived as very promising 

examples of a likely ‘guilt by association’ phenomenon. Indeed, the strong correlation 

values motivated the initial emphasis on Pearson correlation coefficient analysis of the 

microarray dataset (see JHS_RESEARCH_CHAPTER_II). The metabolomics results 

from the root cell culture MeJA elicitation time series experiment did not reproduce 

the previous findings (Naoumkina, Modolo et al. 2010) for strong MeJA-induction of 

triterpene saponin biosynthesis, so the integrated analysis of relative transcript 

expression and metabolomics datasets from the time series is fundamentally 

problematic. Difficulty in reproducing the results of plant cell suspension culture 

experiments is a frequent and serious problem (Miguel and Marum 2011, Richard 

Dixon, personal communication).  
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Tnt-1 Mutant Collection Screening 

Unlike the case for Tnt-1 mutants for cyp72a67 and cyp72a68 

(JHS_RESEARCH_CHPATER_III), homozygous Tnt-1_cyp88d2 insertion mutant 

plants were identified in the NF8050 and NF5409 lines Tnt-1 lines. If functional 

copies of cyp72a67 or cyp72a68 gene products are indeed required in seed 

developmental metabolism, the survival of viable Tnt-1_cyp88d2 insertion mutant 

seeds/plants may indicate that cyp88d2 does not function critically in this biological 

process. As metabolomics analysis of R108 (wild type) and homozygous Tnt-

1_cyp88d2 individuals from NF8050 or NF5409 plants did not reveal differences in 

triterpene saponin accumulation, it is likely that cyp88d2 either does not function in 

triterpene sapogenin biosynthesis, or that gene products from other loci can 

replace/substitute for CYP88D2 function.  

Molecular Genetics 

The probeset representing cyp88d1 was found to express above baseline (little or no 

expression) only in roots involved in mycorrhizal symbiosis. Researchers studying 

mycorrhizal symbiosis may benefit from additional characterization of CYP88D1 

enzymatic function, as there may be mycorrhizal symbiosis-specific triterpenoid 

compounds that are critical for establishment or physiological function in this 
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symbiotic relationship. The expression profiles for cyp88d2 and cyp88d3 are largely 

aerial and seed organ specific. The highest absolute expression values for these two 

transcripts is approximately 10-13 fold lower than the absolute expression values for 

cyp72a68, cyp72a68, and cyp716a12 in similar tissues 

(JHS_RESEARCH_CHAPTER_III).  

In Vitro Enzymatic Assays of CYP88D1, CYP88D2, and CYP88D3 

The lack of detected product formation in the ß-amyrin, erythrodiol, oleanolic acid, 

hederagenin, or the partially purified aglycone assays for CYP88D1, CYP88D2, or 

CYP88D3 does not preclude the possibility that these proteins may catalyze reactions 

in the M. truncatula sapogenin biosynthesis pathway. It is possible that the 

recombinant expression system and/or assay conditions employed in this study may 

have been inappropriate for proper protein folding/assembly/modification or catalytic 

function for these proteins.  

Methods 

Genomic Loci Proximity Analyses 

BLAST and genome browser analysis tools for the M. truncatula (http://medicago. 

org/genome/IMGAG/) and L. japonicas (http://www.plantgdb. org/LjGDB) were 

used for the genomic loci proximity analyses.  

http://medicago.org/genome/IMGAG/
http://medicago.org/genome/IMGAG/
http://www.plantgdb.org/LjGDB
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Growth and Harvest of Biological Materials  

ESP105, ESP104 and GRC_43 seeds used in this study were of the same single seed 

descent lines developed in JHS_REEARCH_CHAPTER_I. A17 and R108 isoline 

seeds were obtained from the greenhouse manager (David McSweeny) at the Samuel 

Roberts Noble Foundation. Plants were grown in a root cone system(Stuewe and Sons, 

http://www.stuewe.com, Tangent, OR) with Turface MVP medium(Profile Products, 

Buffalo Grove, IL) in a Conviron TCR180 walk-in growth chamber 

(http://www.conviron.com/, Winnipeg, Manitoba, Canada) maintained at 90% 

humidity and at an average temperature of 24°C day (16 h) and 20°C night (8 h). 

Plants were fertilized with 15 ppm nitrogen (Scotts' 20 10 20 Peat-Lite Special, 

http://www.scotts.com, Marysville, Ohio) daily in the morning and watered with 

distilled water in the evening. Plants were harvested at 6 weeks post-germination and 

dissected into aerial and root organs. Aerial tissues from the youngest 6 metamers of 

individual plants (Bucciarelli, Hanan et al. 2006) and whole root organ samples from 

individual plants were prepared as single biological replicates. For both aerial and root 

samples, three biological replicates were prepared for all of the ecotypes. Samples were 

frozen immediately in liquid nitrogen, ground using a mortar and pestle, and stored at 

http://www.stuewe.com/
http://www.conviron.com/
http://www.scotts.com/
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–80C. The same plant sample material was used for the metabolomics and qRT-PCR 

analyses.  

The M. truncatula cell culture line was the sub-cultured descendant of the cell 

line from previously reported experimentation (Broeckling, Huhman et al. 2005; 

Naoumkina, Modolo et al. 2010) at the Noble Foundation. The methyl jasmonate 

(MeJA) induced time series (0,24, and 48 hour) treatment was initiated 5 days after 

subculturing of the cell suspension cultures. For each sample, 2 X 40 ml of cells were 

added to 160ml SH medium (Schenk and Hildebrandt 1972) in a 500ml 

Ehrlenmeyer flask on to yield an approximate volume of 250ml culture. A 50mM 

MeJA stock solution (in ethanol) was used at a 1:100 dilution (2. 5ml) for a final 

concentration of 500uM. 2.5ml of ethanol was added to the control flasks. Samples 

were harvested at the 0,24, and 48 hour time points by vacuum filtration through a 

300u Nitex nylon membrane in a Büchnerfunnel using an Ehrlenmeyer side-arm flask 

and house vacuum. The cells were rinsed in the funnel under vacuum with 50ml of 

25% strength MS salts (GibcoBRL Murashige & Skoog salt mixture, Invitrogen, 

http://www.invitrogen.com). Three biological replicates were prepared for the both 

control and(+)MeJA groups for all of the time points. Samples were frozen 

http://www.invitrogen.com/
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immediately in liquid nitrogen, ground using a mortar and pestle, and stored at –80C. 

The same sample material was used for the metabolomics and qRT-PCR analyses.  

DNA Preparations, mRNA Isolation, cDNA synthesis, and qRT-PCR Analysis 

All genomic DNA isolations were performed as previously described (Sambrook, 

Russell et al. 2001). For mRNA isolation, total RNA was extracted using TRIZOL 

reagent (Invitrogen, http://www.invitrogen.com/), treated with DNaseI (Ambion, 

http://www.ambion.com/), and column purified with an RNeasyMinEluteCleanUp 

Kit (Qiagen, http://www.qiagen.com/). RNA was quantified using a Nanodrop 

Spectrophotometer ND-100 (NanoDrop Technologies, http://www.nanodrop.com/) 

and evaluated for quality with a Bioanalyzer 2100 (Agilent, http://www.home. 

agilent.com/). For cDNA synthesis preceding qRT-PCR analysis, 10µg of total RNA 

(prepared and assessed for quality as above) was primed with oligo(dT)20 and 

synthesized with Super Script III according to manufacturer’s instructions. qRT-PCR 

reactions were performed in an optical 384-well plate with an ABI PRISM 7900 

HTsequence detection system (Applied Biosystems), using SYBR Green to monitor 

dsDNA synthesis. Reactions contained 2µl of primer pair (1 µM), 2µl of 1:20 dilution 

of cDNA, 5µl of 2x power SYBR Green MASTER MIX, and 1µl water. The 

following standard thermal profile was used for all PCR reactions: 50°C for 2 min, 

http://www.invitrogen.com/
http://www.ambion.com/
http://www.qiagen.com/
http://www.nanodrop.com/
http://www.home.agilent.com/
http://www.home.agilent.com/
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95°C for 10 min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. Amplicon 

dissociation curves were recorded after cycle 40 by heating from 60°C to 95°C with a 

ramp speed of 1.9°C/min. Primers (Appendix_RIV_Primers) were designed using 

Primer Express® Software (Applied Biosystems). All reactions were performed with 3 

technical replicates for each of 3 biological replicates. Data were analyzed using SDS 2. 

2.1 software (Applied Biosystems). PCR reaction efficiencies were determined using 

LinReg PCR software (Ruijter, Ramakers et al. 2009). Transcript expression levels 

were determined relative to two housekeeping genes (ubiquitin and actin), based on 

modifications (equation below) of formulae presented in (Pfaffl 2001; Czechowski, 

Stitt et al. 2005). Briefly, the ΔCt terms for the target and reference genes were 

calculated as 41(cycle) minus the Ct vale of a given sample (“x”), rather than “control” 

minus “treatment” Ct values.  

 

Extractions and Metabolomics Analysis 

Harvested plant sample material was lyophilized prior to extraction. 10.00 ± 0.06 mg 

of powder was extracted with 1 ml of 80% Methanol (containing 0.018 mg/ml 

umbelliferone as an internal standard) in a dram vial for 2 hours on an orbital shaker. 
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Microsomal enzymatic assay reaction mixtures were extracted 2 times with 500 µl of 

ethyl acetate, and dried under nitrogen gas. Oleanolic acid, hederagenin, bayogenin, 

and aglycone mix assay contents were resolubilized in 250µl of 80% Methanol 

(containing 0. 018 mg/ml umbelliferone as an internal standard). Extracted samples 

were centrifuged for 30 minutes at 2900g at 4°C, and supernatants were transferred to 

LC-MS sample vials(Agilent, http://www.agilent.com, Santa Clara, CA) and stored at 

-20°C. They were then analyzed with a Waters Acquity UPLC system coupled to a 

hybrid quadropole time-of-flight (QTOF) Premier mass spectrometer (Waters, 

http://www.waters.com/, Milford, MA). A reverse-phase, 1. 7-mm UPLC BEH C18, 

column (Waters) was used for separations. The mobile phase consisted of eluent A (0. 

1% [v/v] acetic acid/water) and eluent B (acetonitrile), and separations were achieved 

using a linear gradient of 95% to 30% A over 30 min, 30% to 5% A over 3.0 min, 

and 5% to 95% A over 3.0 min. The flow rate was 0.56 mL min21, and the column 

temperature was maintained at 60°C. Masses of the eluted compounds were detected 

in the negative ESI mode from 50 to 2,000 mass-to-charge ratio. The QTOF Premier 

was operated under the following instrument parameters: desolvation temperature of 

400°C, desolvation nitrogen gas flow of 850 L h21, capillary voltage of 2. 9 kV, cone 

http://www.agilent.com/
http://www.waters.com/
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voltage of 48 eV, and collision energy of 10 eV. The MS system was calibrated using 

sodium formate, and raffinose was used as the lockmass compound.  

Ion List and Metabolomics Data Processing 

Waters .raw data files were converted to .cdf file format, followed by metabolite data 

extraction, alignment, and they were exported using MET-IDEA software (Broeckling, 

Reddy et al. 2006). An ion list containing 377 retention time/ion pairs was used for 

the targeted metabolomics data analysis of the saponin biochemical phenotypes 

(APPENDIX_TARGETED_ION_RIV). An ion list containing 151 retention 

time/ion pairs was used for the saponin-targeted metabolomics data analysis. 17 of 

these pairs are validated authentic standards (e.g. 3-Glc-28-Glc-Medicagenic Acid 

standard), 53 of these pairs are tentatively identified via spectral information (source 

fragmentation and MS/MS in some cases) as an Aglycone and some combination of 

sugars (e.g. Hex-Rha-Hex-Hex-Hederagenin), 28 of these pairs have minimal 

annotation based spectral features resulting from probable source fragmentation (e.g. 

possibly bayogenin, GlcGlc?), and the remainder are unknowns. The unknown pairs 

in the ion list were identified with non-targeted MARKERLYNX analysis and had 

m/z values and retention times in the same regions as the known and putative pairs. In 

addition to the targeted analysis, de novo non-targeted analysis of all samples was 
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performed using Waters MARKERLYNX software. Spectral abundance signals for all 

metabolites in a separation were normalized to the internal standard (0.018 mg/ml 

umbelliferone). Descriptive statistics were performed in Excel. One-way ANOVA was 

performed using a custom MATLAB script (MathWorks, 

http://www.mathworks.com/). Multivariate analyses including principal component 

analysis and hierarchical clustering were performed using JMP 5.0 software (SAS, 

http://www.sas.com/).  

Cloning 

All primer sequences and NCBI Genbank (NCBI, 

http://www.ncbi.nlm.nih.gov/genbank/, Bethesda, MD) accession numbers are 

presented in Appendix_RIV_Primers. Coding sequences for cyp88d2 and cyp88d3 

were obtained from NCBI Genbank, cyp88d1 coding sequence was obtained from the 

genome sequence of M. truncatula (http://www.medicagohapmap.org/?genome). All 

cloning primers were designed using primer3 (Rozen and Skaletsky 1999). The 

forward primer for each target included both a BamHI restriction site and a kozak 

yeast translation initiation sequence, while each reverse primer included an EcoRI cut 

site. Targets were amplified from cDNA prepared from aerial organs from the isoline 

A17 using Plantium Hi-Fi Taq polymerase (Life Technologies, 

http://www.mathworks.com/
http://www.sas.com/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.medicagohapmap.org/?genome
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http://www.lifetechnologies.com/home.html, Carlsbad, California). Amplified 

products were cloned into the pGEM-easy vector (Promega, 

http://www.promega.com/, Madison, WI), and sequenced using M13 forward and 

reverse primers. The targets were excised from the p-GEM easy vector via BamHI and 

EcoRI restriction digest, sub-cloned into the pYeDP60 vector (Pompon, Louerat et al. 

1996; Urban, Mignotte et al. 1997) and sequenced using the gal10 promoter primer 

(Appendix_RIV_cloned_sequence). Wat11 yeast cells were transformed as previously 

reported (Greenhagen, Griggs et al. 2003). Transformation of yeast was confirmed via 

colony PCR with gene specific primers.  

Recombinant expression and microsomal preparations of CYP72A68 enzymatic 

assays 

The potential catalytic activities of CYP88D1, CYP88D2, and CYP88D3 were tested 

using in vitro assays with a variety of triterpene sapogenin substrates. Wat11 cells 

containing pYeDP60+target or empty pYeDP60 were grown and microsomes were 

prepared as previously described (Greenhagen, Griggs et al. 2003). All assays were 

performed in triplicate. For assays with purified reference standards as substrates, 

100µg of total microsomal protein (quantified via Bradford assay) (Seki, Ohyama et al. 

2008) was assayed for 2 hours at 30°C in a 500µl reaction volume of 50mM 

http://www.promega.com/
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potassium phosphate buffer (pH 7.25) containing 1mM NADPH, and 40µM 

purified substrate. ß-amyrin, erythrodiol, and oleanolic acid were obtained from 

Sigma-Aldrich (Sigma-Aldrich, http://www.sigmaaldrich.com/, St. Louis, MO). 

Hederagenin and cycloartenol were obtained from Chromadex (Chromadex, 

http://www.chromadex.com, Irvine, CA). Bayogenin was obtained from PhytoLab 

(PhytoLab, http://www.phytolab.com, Vestenbergsgreuth, Germany). A mixture of 

partially purified aglycones obtained through acid hydrolysis of saponin extracts 

obtained from Medicago truncatula root tissues (Huhman and Sumner 2002) were at 

assayed at an approximate 80µM concentration.  

Pearson Correlation Coefficients for Transcripts vs. Metabolites 

Pearson correlation coefficient analysis was performed for [gene of unknown function] 

vs. [total saponin accumulation] for the inter-ecotype, intra-aerial-organ comparison 

permutation for both the averaged (n=4) and individual (n=12) cases. A custom 

MATLAB (MathWorks, http://www.mathworks.com/) script was used to generate 

bootstrapped confidence intervals and bootstrapped standard errors for Pearson’s r for 

transcript vs. total saponin content correlations for high priority transcripts(using 

5000 iterations). The bootstrapping algorithm in the script was the “bbcorr” function 

(http://www.mathworks.com/matlabcentral/), which computes double block 

http://www.sigmaaldrich.com/
http://www.chromadex.com/
http://www.phytolab.com/
http://www.mathworks.com/matlabcentral/
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bootstrap (Lee and Lai 2009) percentile confidence intervals and bootstrap standard 

errors.  

Screening the M. truncatula Tnt-1 Retrotransposon Insertion Population for 

Identification transposon insertion mutants 

The M. truncatula R108 Tnt-1 population (Million Tadege 2008) was screened for 

insertions in cyp88d2 and cyp88d3 loci (Appendix_RIV_Primers) as previously 

described (Pang, Wenger et al. 2009).  

Additional Information 

Accession Numbers 

Currently found in Appendix_RIV_Primers 

Appendices 

Appendix_RIV_Primers-Primer sequence information for all of the primers used in 

the qRT-PCR analysis of gene expression, cloning, and Tnt-1 reverse mutant 

screening.  

APPENDIX_TARGETED_ION_RIV-The 377 Ion/Retention Time pairs used for 

the targeted metabolomics data analysis of the ecotype UPLC-ESI(-)-qTOF-MS data, 

including the 151 saponin-target pairs prepared as a separate list.  

Appendix_RIV_cloned_sequence-Nucleotide sequence of cloned target genes 
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Conclusion 

The research detailed in this dissertation adds to several areas of knowledge within the 

fields of Plant Biology, Plant Natural Product Biochemistry, and Cytochrome P450 

Enzymology.  

The research indicates that it appears unlikely that triterpene sapogenin 

biosynthesis does not take place at a single "source" tissue and subsequently transport 

sapogenins or saponins. Rather, the observation that saponins of soyasapogenols B and 

E were not detected in the aerial organs of any of the ecotypes lends additional 

support to the conjecture that the bio-oxidation of carbon 22 and carbon 24 of ß-

amyrin does not occur in aerial organs. Similarly, the observation that saponins zanhic 

acid were not detected in the root organs of any of the ecotypes indicates that bio-

oxidation of carbon 16 is unlikely to occur in root organs. As was highlighted 

extensively in Chapter I, the metabolomics profiles for the ecotypes ESP_105 and 

GRC_43 indicate that a low total saponin accumulator for aerial organs may be a high 

accumulator in root organs, and vice versa. Taken together with the organ-specific 

accumulation for soyasapogenol and zanhic acid saponins, these observations of varied 

spatial accumulation patterns offer a fundament of data to address questions about the 

physiological location of triterpene saponin biosynthesis.  
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The results of the metabolomics profiling are also of potential utility to other 

researchers in related fields. Indeed, metabolomics “phenotyping” of germplasm on 

the scale presented in Chapter I is just now emerging as a viable experimental 

complement to genome-scale investigations. As such, it is difficult to assess the 

ultimate utility of studies at this scale, and exciting novel applications of such data 

may emerge as more researchers become aware of and come to understand the content, 

promise and limitations of these high-resolution metabolomics phenotypes. The 

metabolomics profiling data for the germplasm diversity collection could also be 

paired with modern genomics-level information and methodologies such as genome 

wide association studies (GWAS) to associate the observed phenotypic diversity with 

genomic and allelic variation from the same germplasm. In addition to genomics-level 

investigations, ecologists interested in plant-insect or plant-pathogen interactions 

could use the aglycone-specific saponin accumulation data to select ecotypes with the 

appropriate chemical profiles to investigate hypotheses concerning the role of specific 

compounds in ecological interactions. Similarly, physiologists interested in abiotic 

stresses could use the profiling data to select appropriate ecotypes for structure-specific 

investigations.  
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Researchers interested in cytochrome P450 and glycosyltransferase enzymes 

from Medicago truncatula should benefit from the concatenated lists of cytochrome 

P450 and glycosyltransferase annotations for the probe design sequences of the 

Affymetrix Medicago Gene Chip, as this list represents the most comprehensive such 

resource available to date.  

The success of the experimental matrix of the selected ecotypes and organs in 

identifying gene candidates for the target trait (triterpene saponin biosynthesis, as 

indicated by the successful in vitro characterization of CYP72A67 and CYP72A68) 

offers a form of validation of several aspects of the integrated transcript and metabolite 

methodology. The combined analyses of the total saponin accumulation data with the 

transcript expression levels lent support to the predicted supposition that there is a 

strong relationship between these discrete properties/levels of biological organization. 

The supposition that low accumulation of total saponin content would be associated 

with low expression levels for transcripts of biosynthetic genes from the target pathway 

was bolstered by the data, and offers validation for the notion of selected hypo-

accumulator ecotypes as an operational form of "knock-down mutant" in 

transcriptomics studies. If one accepts the successful cases of cyp72a67 and cyp72a68 

as validation of the relationship between transcript expression levels and saponin 
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accumulation, the formalization of the relationship (Equations 1 & 2) between the 

observed crude phenotypes ("high vs. low total saponin content") and transcript 

expression levels from two permutations of the experimental matrix implicates 

numerous additional gene candidates for involvement in the biosynthesis and/or 

regulation of the target pathway. Finally, the observed relationship between transcript 

expression levels and saponin accumulation data among the two different organ types 

lends further support to the case for localized (i.e. non-centralized) biosynthesis of 

triterpene saponin compounds.  

Expanded Repertoire of Reaction Pairs 

The biochemical results offer new knowledge about the molecular basis of the bio-

oxidation reactions of the triterpene sapogenin biosynthetic pathway. Characterization 

of enzymatic activities for CYP72A67 and CYP72A68 contributes to the larger efforts 

of gene discovery and functional annotation in the model legume M. truncatula 

specifically and plant functional genomics generally. The in vitro enzymology results 

provide new structure and direction to the bio-oxidation pathway for triterpene 

sapogenins. Specifically, the results show that CYP72A67 and CYP72A68 accept 

substrates with bio-oxidation at carbon 28, and do not accept substrates lacking bio-

oxidation at carbon 28. The broad substrate tolerance demonstrated for CYP72A67 
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and CYP72A68 adds to the growing evidence of broad substrate tolerance as a 

frequently observed property of cytochrome P450 enzymes which function in plant 

natural product metabolism. Further, the multifunctionality demonstrated for 

CYP72A68 provides yet another example of the sequential bio-oxidation activities of 

cytochrome P450 enzymes which function in plant metabolism. 

Physiology of Seed Development in M. truncatula (Lethality and Organ-

Specific Expression) 

The lethal mutations observed for insertion mutants of cyp72a67 and cyp72a68 loci, 

in combination with the noted high levels of expression of cyp72a67 and cyp72a68 

transcripts in developing seed organs raises a tantalizing prospect of a critical 

physiochemical role for triterpene sapogenin compounds in the seed developmental 

physiology of M. truncatula.  

Matrix Pathways 

The use of conceptual “matrix” pathways in the place of more traditional “linear” 

pathways was shown to be profitable in the case of the triterpene sapogenin 

biosynthetic pathway in M. truncatula. The hypothetical model of the matrix pathway 

predicted the likely presence of several minor compounds (gypsogenin, gypsogenic 
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acid, polygaligenin) that were subsequently identified (putatively) in extracts of both 

plant material and enzymatic reactions. The dramatic reduction in dimensionality 

afforded through the imposition of a hypothetical matrix pathway was useful in that it 

greatly reduced the number of probable intermediate compounds to account for when 

analyzing complex analytical results. 

 

 



174 
 

Appendices 

Appendix RII – Gross Phenotype Comparisons 
Gross 

Phenotype 
Comparison 

Rank 

Probeset 

 Sequence 
source for 
probeset 
design 

BLAST ID 
(M. 

truncatula) 

Value 
from 

Equation 
2 

GRC43 
Root 

A17 
Root 

ESP105 
Root 

R108 
Root   

GRC43 
Aerial 

1 
Mtr.50075
.1.S1_s_at 

IMGAG|98
6. m00012  

AC140721. 
15 

10109 13214 56 447 11737   13 

2 
Mtr.40021

.1.S1_at 
TC106322  

AC183304. 
14 

5070 6730 853 5140 300   13 

3 
Mtr.8678.
1.S1_at 

TC100985  
CU468275. 

4 

3391 4130 489 2434 729   1873 

4 
Mtr.43645

.1.S1_at 
TC95765  CR962121. 2 1009 2400 709 1107 1028   131 

5 
Mtr.12441

.1.S1_at 
TC94806  

CU468276. 
4 

918 3364 752 2085 1520   1755 

6 
Mtr.11646

.1.S1_at 
TC110595  CR962122. 2 908 1183 338 327 429   1024 

7 
Mtr.43644

.1.S1_at 
TC95764  

Medicago 
truncatula 

class III HD-
Zip protein 

CNA2 

838 886 268 237 196   29 

8 
Mtr.9513.
1.S1_at 

TC103568  

MYB 
transcription 

factor 
MYB52 

664 529 52 117 125   311 

9 Mtr.42879
.1.S1_at 

TC94010  AC135413. 
43 

644 1877 425 1045 862   713 

10 Mtr.35791
.1.S1_s_at 

TC94009  AC137603. 
16 

642 1600 354 855 710   609 

11 
Mtr.49779

.1.S1_at 

IMGAG| 
1198. 

m00032 

AC148242. 
14 

581 692 272 32 299   626 

12 
Mtr.50733

.1.S1_at 

IMGAG| 
1042. 

m00006 

nsp2 gene for 
GRAS family 
protein ||320|| 

440 273 21 23 36   8 

13 
Mtr.1885.
1.S1_at 

BE239880  
No sig 

similarity 
found 

410 2547 774 1981 758   775 

14 
Mtr.23572

.1.S1_at 
1681. 

m00026 

 zinc finger 
transcription 
factor ||319|| 
palmate-like 

pentafoliatea1 

335 948 152 608 412   25 

15 Mtr.5719. BF646019  No sig 283 1007 142 705 450   1113 

http://www.ncbi.nlm.nih.gov/nucleotide/52138786?report=genbank&log$=nucltop&blast_rank=1&RID=0N2H6P2101S
http://www.ncbi.nlm.nih.gov/nucleotide/52138786?report=genbank&log$=nucltop&blast_rank=1&RID=0N2H6P2101S
http://www.ncbi.nlm.nih.gov/nucleotide/114842513?report=genbank&log$=nucltop&blast_rank=1&RID=0N2KUYC9014
http://www.ncbi.nlm.nih.gov/nucleotide/114842513?report=genbank&log$=nucltop&blast_rank=1&RID=0N2KUYC9014
http://www.ncbi.nlm.nih.gov/nucleotide/166788357?report=genbank&log$=nucltop&blast_rank=1&RID=0N2RCA0701N
http://www.ncbi.nlm.nih.gov/nucleotide/166788357?report=genbank&log$=nucltop&blast_rank=1&RID=0N2RCA0701N
http://www.ncbi.nlm.nih.gov/nucleotide/83582540?report=genbank&log$=nucltop&blast_rank=1&RID=0N2UJ50X01S
http://www.ncbi.nlm.nih.gov/nucleotide/159132218?report=genbank&log$=nucltop&blast_rank=1&RID=0N2WJXMS01S
http://www.ncbi.nlm.nih.gov/nucleotide/159132218?report=genbank&log$=nucltop&blast_rank=1&RID=0N2WJXMS01S
http://www.ncbi.nlm.nih.gov/nucleotide/83582541?report=genbank&log$=nucltop&blast_rank=1&RID=0N6UEZ7M01S
http://www.ncbi.nlm.nih.gov/nucleotide/62510120?report=genbank&log$=nucltop&blast_rank=1&RID=0N6E3F0M01S
http://www.ncbi.nlm.nih.gov/nucleotide/62510120?report=genbank&log$=nucltop&blast_rank=1&RID=0N6E3F0M01S
http://www.ncbi.nlm.nih.gov/nucleotide/29124172?report=genbank&log$=nucltop&blast_rank=1&RID=0N6AUXA901N
http://www.ncbi.nlm.nih.gov/nucleotide/29124172?report=genbank&log$=nucltop&blast_rank=1&RID=0N6AUXA901N
http://www.ncbi.nlm.nih.gov/nucleotide/48717587?report=genbank&log$=nucltop&blast_rank=1&RID=0N66W2TJ01N
http://www.ncbi.nlm.nih.gov/nucleotide/48717587?report=genbank&log$=nucltop&blast_rank=1&RID=0N66W2TJ01N
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1.S1_at similarity 
found 

 
Appendix RII – Hidden Markoff Models 

Cytochrome P450 Models 
http://supfam.org/SUPERFAMILY/cgi-bin/models_list.cgi?sf=48264;listtype=sf 

Model ID No. of seqs Build date Seed sequence Family of seed 
54912 10095 5/31/2010 d3czha1 Cytochrome P450 
44092 4008 9/8/2005 d1tqna_ Cytochrome P450 
41802 3250 9/8/2005 d1odoa_ Cytochrome P450 
39101 2672 9/8/2005 d1io7a_ Cytochrome P450 
36587 3890 9/8/2005 d1dt6a_ Cytochrome P450 
44304 2788 9/8/2005 d1ueda_ Cytochrome P450 
42400 3466 9/8/2005 d1po5a_ Cytochrome P450 
40482 2863 9/8/2005 d1lfka_ Cytochrome P450 
36859 3920 9/8/2005 d1e9xa_ Cytochrome P450 
49296 9115 9/10/2008 d1s1fa_ Cytochrome P450 
42621 3260 9/8/2005 d1q5da_ Cytochrome P450 
41273 3727 9/8/2005 d1n97a_ Cytochrome P450 
38307 3037 9/8/2005 d1gwia_ Cytochrome P450 
36106 3408 9/8/2005 d1cpta_ Cytochrome P450 
44298 3271 9/8/2005 d1ue8a_ Cytochrome P450 
41837 3864 9/8/2005 d1og2a_ Cytochrome P450 
39299 3007 9/8/2005 d1izoa_ Cytochrome P450 
36682 2010 9/8/2005 d1dz4a_ Cytochrome P450 
46634 5531 9/10/2008 d1eupa_ Cytochrome P450 
42421 3878 9/8/2005 d1pq2a_ Cytochrome P450 
41213 2523 9/8/2005 d1n40a_ Cytochrome P450 
37346 2629 9/8/2005 d1f24a_ Cytochrome P450 
35710 3862 9/8/2005 d1bu7a_ Cytochrome P450 

Glycosyltransferase Models 
http://supfam.org/SUPERFAMILY/cgi-bin/models_list.cgi?sf=53756 

Model 
ID 

No. of 
seqs Build date Seed 

sequence Family of seed 

35835 2 9/8/2005 d1c3ja_ beta-Glucosyltransferase (DNA-modifying) 

46669 450 9/10/2008 d1f0ka_ Peptidoglycan biosynthesis glycosyltransferase 
MurG 

46716 797 9/10/2008 d1f6da_ UDP-N-acetylglucosamine 2-epimerase 
48500 497 9/10/2008 d1o6ca_ UDP-N-acetylglucosamine 2-epimerase 
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44616 216 9/8/2005 d1v4va_ UDP-N-acetylglucosamine 2-epimerase 
52910 1192 9/10/2008 d2gj4a1 Oligosaccharide phosphorylase 
48983 881 9/10/2008 d1qm5a_ Oligosaccharide phosphorylase 
51304 497 9/10/2008 d1ygpa_ Oligosaccharide phosphorylase 
46587 843 9/10/2008 d1em6a_ Oligosaccharide phosphorylase 
49238 694 9/10/2008 d1rrva_ Gtf glycosyltransferase 
42392 283 9/8/2005 d1pn3a_ Gtf glycosyltransferase 
47375 1298 9/10/2008 d1iira_ Gtf glycosyltransferase 
38341 280 9/8/2005 d1gz5a_ Trehalose-6-phosphate synthase, OtsA 
48814 1572 9/10/2008 d1pswa_ ADP-heptose LPS heptosyltransferase II 
51981 6238 9/10/2008 d2bisa1 Glycosyl transferases group 1 
52623 10289 9/10/2008 d2f9fa1 Glycosyl transferases group 1 
53131 4324 9/10/2008 d2iw1a1 Glycosyl transferases group 1 
43452 1301 9/8/2005 d1rzua_ Glycosyl transferases group 1 
52533 17 9/10/2008 d2ex0a1 Sialyltransferase-like 
54538 3989 5/31/2010 d2pq6a1 UDPGT-like 
53693 3513 5/31/2010 d2acva1 UDPGT-like 
54711 3669 5/31/2010 d2vcha1 UDPGT-like 
53762 3891 5/31/2010 d2c1xa1 UDPGT-like 
54312 610 5/31/2010 d2nzwa1 FucT-like 
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Appendix RII– Targeted Ion List 
Authentic Standards David Huhman 
161.0239 (4.45, Umbelliferone ) 
1087.4955 (13.728, 3-Glc-Glc-28-Ara-Rha-Xyl Medicagenic Acid ) 
1383.6057 (11.26, O Zhan Stand ) 
1545.6609 (11.39, O Zhan Stand ) 
1545.6595 (11.56, O Zhan ) 
941.5112 (17.955, Rha-Gal-GlcA-SoyB ) 
1073.5208 (14.15, 3-Glc-28-Ara-Rha-Xyl Medicagenic Acid  ) 
351.0705 (2.4, ChlorogenicAcid ) 
269.0441 (10.189, Apigenin  ) 
269.0441 (2.449, pel_3_O  ) 
267.0671 (12.53, 7-hydroxy-3-methoxyflavone ) 
415.1044 (4.17, Daidzin  ) 
415.1044 (4.42, Daidzin  ) 
163.0386 (4.99, m-coumaric acid ) 
445.079 (6.51, quercitrin ) 
431.0962 (7.18, apigenin-7-O-glu ) 
269.248 (32.39, 6-hydroxy genistein ) 
285.0389 (1.96, CY_3_O  ) 
175.0378 (6.35, 4MethylUmbelliferone ) 
271.0606 (6.83, Narigenin-7-O-glucoside - aglycone ) 
269.0816 (14.11, medicarpin ) 
431.0989 (5.97, Genistin ) 
193.0482 (4.9, Ferulic acid ) 
433.1123 (6.83, Narigenin-7-O-glucoside ) 
381.0609 (4.84, scopoletin dimer) 
315.0123 (6.95, myricetin ) 
299.0182 (8.81, Quercetin ) 
447.0925 (6.1, luteolin-5'- 7-O-glucoside ) 
283.0606 (15.173, Biochanin  ) 
283.061 (15.37, 7-methoxy apigenin ) 
179.0367 (2.78, caffeic acid ) 
269.045 (10.06, Genistein ) 
163.0382 (6.12, o-CoumaricAcid ) 
593.1554 (6.99, kaempferol-7-neohesperidoside ) 
299.023 (8.64, Quercetin  ) 
503.1612 (0.64, Cellotrise ) 
447.0938 (7.05, kaempferol-7-O-glucoside ) 
447.0924 (7.1, luteolin4'- 7-O-glucoside) 
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593.1505 (6.25, kempferol-3-O-rutinoside ) 
461.0737 (5.43, CY_3_O  ) 
299.0566 (10.894, chrysoecin  ) 
299.057 (11.07, diosmetin ) 
267.0663 (8.47, Formononetin_7_OG  ) 
267.0656 (8.64, Ferulic acid ) 
193.0492 (5.37, 3-Hydroxy-4-methoxycinnamic acid ) 
579.175 (7, Naringin ) 
285.0502 (8.36, eriodictyol ) 
459.0567 (5.38, scutellarein-&-0-glucuronide ) 
283.0602 (10.92, Sissotrin ) 
301.0335 (5.08, taxifolin ) 
447.0597 (6.69, luteolin-4-O-glu ) 
607.1699 (7.478, diosmin ) 
117.0188 (0.89, succinic acid ) 
609.1505 (5.14, luteolin-3-7-di-O-glu ) 
579.1342 (5.95, luteolin 7-O-glucoside ) 
285.0407 (8.68, Luteolin  ) 
325.0919 (4.25, o-Coumaric acid-B-glucoside ) 
299.0565 (15.26, kaempferide ) 
153.0178 (1.76, gentisic acid ) 
167.0346 (4.9, 5-Methoxysalicylic acid ) 
283.0614 (10.68, sissotrin ) 
255.0669 (7.894, Liquiritin ) 
431.098 (5.54, genistoside ) 
431.0971 (5.56, Vitaxin ) 
283.0257 (8.96, Luteolin ) 
271.0607 (9.88, Naringenin  ) 
271.0598 (10.07, Naringenin ) 
289.0726 (3.22, Epicatechin ) 
135.1213 (2.07, 1-Hydroxybenzotriazole ) 
301.0353 (4.862, DHQ  ) 
267.0667 (12.35, 7-hydroxy-2-methoxyflavone ) 
255.0667 (11.7, isoliquiritigenin  ) 
577.1594 (7.135, rhoifolin ) 
284.0313 (11.05, scutellarein ) 
417.1193 (19.03, gardenin A ) 
253.0468 (14.76, chrysin  ) 
163.0385 (3.92, p-Coumaric acid ) 
451.1235 (3.09, EpicatechinGlucoside ) 
285.0396 (10.34, Kaempferol ) 
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255.0662 (8.13, Liquiritigenin ) 
433.1139 (4.81, naringenin 4'-O-glucoside ) 
285.0398 (9.11, Luteolin ) 
237.0546 (17.3, 3Hydroxyflavone ) 
299.0914 (14.03, faureral ) 
415.104 (3.45, Puerarin  ) 
191.0344 (4.9, Scopoletin ) 
177.0158 (2.81, Esculetin ) 
447.0931 (5.4, luteolin3'- 7-O-glucoside) 
253.0481 (8.25, Daidzein ) 
283.0607 (9.08, Glycitein ) 
144.0464 (3.69, alpha-Cyano-3-hydroxycinnamicacid fragment) 
431.0971 (6.451, Genisitin  ) 
663.3777 (17.53, 3-Glc-MedicagenicAcid ) 
285.0398 (10.61, Kaempferol ) 
445.112 (10.92, sissotrin ) 
358.0234 (0.84, 50ngSinigrin_MW397_46 Indofine  ) 
349.0707 (6.35, 4MethylUmbelliferone - Dimer ) 
1677.7001 (11.45, O Zhan Stand ) 
313.0713 (15.84, irisolidone ) 
237.0551 (18.72, 5-hydroxyflavone ) 
301.0332 (8.81, Quercetin ) 
289.0712 (2.4, Catechin ) 
957.4825 (17.4, Glc-Gal-GlcA-SoyB ) 
957.5084 (17.414, Soy Mix Stand ) 
287.0545 (2.4, Catechin fragment) 
593.1508 (4.45, saponarin ) 
151.0382 (4, isoVanillin ) 
237.0545 (11.95, 7Hydroxyflavone ) 
465.1035 (1.96, CY_3_O ) 
237.0546 (11.64, 4Hydroxyflavone ) 
609.1814 (7.64, hesperidin ) 
593.1312 (9.53, tiliroside ) 
449.108 (2.449, pel_3_O  ) 
315.0515 (9.28, 6-methoxyluteolin ) 
315.087 (12.62, eucomol ) 
227.0721 (7.12, resveratrol ) 
151.02 (1.76, gentisic acid fragment) 
267.0669 (11.95, 4-hydroxy-7-methoxy flavone ) 
267.0295 (6.77, orionin ) 
237.0557 (13.2, 6Hydroxyflavone ) 
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267.0285 (12.25, Baicalein ) 
267.0666 (12.07, 7-hydroxy-4-methoxyflavone ) 
237.0542 (13.37, 2Hydroxyflavone ) 
149.0602 (8.4, HydroCinnamicAcid ) 
607.1701 (7.82, NeoDiosmin  ) 
609.1821 (8, neohesperidin ) 
237.0541 (12, 5-hydroxy-flavone ) 
301.0716 (10.56, homo-eriodictyol ) 
1007.3277 (0.64, Cellotrise - Dimer ) 
911.5005 (18.303, Rha-Ara-GlcA-SoyB ) 
473.1038 (13.2, 6Hydroxyflavone - Dimer ) 
577.1187 (4.1, lucenin B ) 
473.1036 (11.95, 7Hydroxyflavone - Dimer ) 
343.0826 (15.48, nevadensin ) 
577.1584 (6.76, isorhoifolin ) 
265.0492 (5.51, tectochrysin ) 
408.0443 (1.82, 50ngBenzylglucosinolate_C14H18O9NCH3_4Canada ) 
147.044 (8.92, trans-cinnamic acid ) 
422.0589 (2.95, 50ngPhenylEthylglucosinolate_Chromadex ) 
473.1023 (18.97, 5-Hydroxyflavone - Dimer ) 
471.3469 (23.17, hederagenin ) 
269.0446 (7.3, 6,7,4-Trihydroxyflavone ) 
285.04 (4.89, 3',4''7'8-tetrahydroxyflavone ) 
285.0407 (5.039, 7,3,4,5-tetrahydroxyflavone ) 
285.0418 (6.84, 3,6,2,4-tetrahydroxyflavone ) 
285.0423 (7.25, 3,3,3,4-tetrahydroxyflavone ) 
153.0168 (1.33, 3,5 dihydroxybenzoic acid ) 
283.0602 (15.31, 4,5-dihydroxy-7-methoxy isoflavone ) 
283.06 (15.375, 3',4'-O-methoxyflavone ) 
179.035 (2.79, 5,6,7-OH flavone ) 
301.0353 (6.989, 5,7,3,4,5-penthahydroxyflavone ) 
609.1476 (5.4, luteolin-3,7-O-glu ) 
285.0413 (8.4, 3,6,2,3-tetrahydroxyflavone ) 
253.0477 (10, 4',6-dihydroxy aurone ) 
253.0475 (10.06, 4,6,OH-aurone ) 
195.0645 (5.53, 3,5,Dimethoxy4Hydroxyacetophenone ) 
253.0491 (8.05, 7,4-OH-flavone ) 
297.0791 (8.85, 4,6-dimethoxyisoflavone-7-O-beta-D-glucoparanoside ) 
311.0909 (13.12, 3',4'-methoxy-7-hydroxy-flavone ) 
341.0981 (15.21, 2-OH-5,7-dimethoxy-isoflavone ) 
301.0373 (5.022, 3,7,3,4,5-pentahydroxyflavone ) 
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299.0946 (12.15, 5,7-dimethoxyapigenin ) 
341.1035 (16.22, 7,4-dimethoxyflavone ) 
253.0475 (11.75, 3,4-dihydroxy aurone ) 
151.0347 (6.89, 2,6,Dihydroxyacetphenone ) 
151.0025 (1.51, 3,4DiHydroxyBenzoicAcid ) 
151.0399 (5.55, 2,4,Dihydroxyacetophenone ) 
151.039 (4.81, 2,5,Dihydroxyacetophenone ) 
223.0607 (5.15, 3,5-dimethoxy-4-hydroxy oxycinnamic acid ) 
285.0761 (14.28, 5,7-dihydroxy4'-methoxy-flavone ) 
341.1031 (14.71, ?5,4-dimethoxyflavone ) 
297.0778 (17.81, 7,4-dimethoxy-3hydroxyflavone ) 
167.0346 (5.01, 2,4,6,Trihydroxyacetophenone ) 
297.0763 (19.72, 4,7-dimethoxy apigenin ) 
267.0285 (12.18, 5,6,7-trihydroxy-flavone ) 
237.0549 (12.71, 3',7-hydoroxy-flavone ) 
297.0761 (12.51, 3,3',4'-methoxy-phenylo-7-OH-Coumarin ) 
371.1106 (18.4, 5,7,4-trimethoxy aurone ) 
327.0863 (21.03, Kaempferol-3,7,4-trimethyl ether ) 
401.1241 (16.62, 7,8,3,4-tetramethoxy aurone ) 
224.046 (17.71, 1,8,9-Anthracenetriol ) 
 
Authentic Standards John Snyder 
469.33181 (24.73, GLYCYRRHETINIC ACID, 18Beta) 
471.34746 (24.08, COROSOLIC ACID) 
471.34746 (23.08, HEDERAGENIN) 
471.34746 (23.15, PYGENIC ACID A) 
471.3469 (23.17, hederagenin ) 
487.342375 (18.44, ASIATIC ACID) 
455.352545 (22.81, Oleanolic acid) 
 
Literature and Empirical Validation David Huhman 
462.0923 (7.66, 7-Methylthio-n-heptyl-glucosin ) 
494.0787 (6.83, 4-Benzoyloy-n-butyl-glucosino ) 
524.0737 (10.924, 6'Benzoyl-4-methyl-sulfinyl-bu ) 
402.0891 (4.92, 4-Methylpentyl-glucosio ) 
448.0772 (5.549, 6-Methylthio-n-heyl-gluc ) 
434.0621 (3.6, 5-Methylthio-n-pentyl-glucosinolate ) 
480.0628 (5.351, 3-Benzoyloy-ethyl-glucosinola ) 
406.03 (1.56, 3-Methylthio-n-propyl-glucosinolate ) 
436.039 (0.86, 4-Methylsulfinyl-n-butyl-gluco ) 
447.0516 (2.613, Indol-3-ylmethyl-glucosinolat ) 



182 
 
463.0471 (2.613, Methoyindol3-ylmethyl glucosinolae ) 
430.1207 (9.971, iso-Heptyl glucosinolate from Armoracia lapathifolia ) 
416.1057 (7.205, iso-Hexylglucosinolate from Armoracia lapathifolia ) 
376.0383 (0.7, 3-Hydroy-n-propyl-gluc ) 
464.0729 (1.349, 6-Methylsulfinyl-n-heyl-glucosinolate ) 
492.1024 (3.22, 8-Methylsulfinyl-n-octyl glucosinolate  ) 
420.0447 (2.14, 4-Methylthio-n-butyl-glucosinolate ) 
376.0371 (0.86, 3-Hydroypropyl glucosinolate ) 
390.0516 (0.86, 4-Hydroy-n-butyl-glucosinolate ) 
476.108 (9.99, 8-Methylthio-n-octyl-gluc ) 
372.0416 (1.69, 3-Butenyl-glucosinolate ) 
450.0562 (0.97, 5-Methylsulfinyl-n-pentyl-glucosinolate) 
478.0874 (2.02, 7-Methylsulfinyl-n-heptyl-glu ) 
 
Putative Identification Based on MS/MS analysis John Snyder 
1067.5469 (19.58, soyasapogenol B_2x Rha, Hex ) 
1383.6111 (11.69, Gypsogenin_Arab/xyl,  ) 
1235.5293 (11.316, zanhic acid_2x GlcA, Arab/xyl ) 
1251.5713 (11.963, zanhic acid?) 
1397.5726 (11.186, zanhic acid_2x arab/xyl, GlcA, Hex ) 
1221.5436 (11.926, Gypsogenin_Arab/xyl ) 
1221.562 (11.963, Gypsogenin_Arab/xyl,  ) 
1103.5247 (11.39, zanhic acid_GlcA, more) 
1265.5645 (11.154, zanhic acid_? ) 
1265.5499 (11.315, zanhic acid_ ?) 
1205.5675 (13.756, Gypsogenin_? ) 
1205.5549 (13.83, many possible_3x Arab/xyl, 2x Hex? ) 
1161.5352 (13.793, ?) 
1089.5249 (12.06, zanhic acid_HEX, Arab/xyl ) 
1089.5249 (12.167, ?) 
1089.5249 (11.389, zanhic acid_? ) 
1089.5249 (19.617, gypsogenic acid_? ) 
1089.5249 (19.525, gypsogenic acid_3x Rha, hex? ) 
1089.5249 (12.203, bayogenin_3x Hex, Rha ) 
1089.5249 (13.424, ?) 
1089.5249 (14.089, hederagenin_ara/xyl, 2x HEX ) 
1089.5249 (14.699, Gypsogenin?_3x Hex ) 
1089.5249 (11.389, bayogenin_3x Hex, Rha ) 
469.335 (24.96, possible_Gypsogenin) 
469.3321 (22.01, possible_Gypsogenin) 
469.332 (23.77, possible_Gypsogenin) 
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Putative Identification based on m/z and/or fragmentation David Huhman 
1087.4974 (13.81, Mt Leaf  ) 
1067.5479 (19.89, Mt Leaf ) 
1383.6086 (11.84, Mt Leaf ) 
1383.608 (11.97, Mt Leaf ) 
1235.5402 (11.61, Mt Leaf  ) 
1251.5621 (12.138, Mt Leaf ) 
1397.5889 (11.29, Mt Leaf  ) 
1221.554 (12.059, Mt Leaf ) 
1103.4962 (11.77, Mt Leaf  ) 
1205.5613 (13.93, Mt Peak  ) 
1161.5363 (13.9, Mt Peak) 
1089.5117 (12.225, Mt Leaf ) 
1251.5675 (11.5, Mt Leaf  ) 
941.5107 (17.877, Ara-Rha-GlcA-Bayogenin ) 
941.5099 (17.6709, 3-Rha-Gal-GlcA-Soyasapogenol B ) 
1367.6135 (13.63, 3Glc-Glc-28-Ara-Rha-Xyl-Api-Med ) 
1083.5422 (19.89, Mt Leaf ) 
1235.5725 (13.8147, Mt Peak  ) 
1235.5703 (13.827, 3-GlcA-28-Ara-Rha-Xyl Medicagenic Acid ) 
1235.5771 (13.84, Mt Peak Leaf  ) 
793.5449 (33.93, Rha-? ) 
957.507 (13.65, Hex-Hex-Hex-Hederagenin ) 
957.5068 (13.85, Hex-Hex-Hex-Hederagenin ) 
957.4758 (13.979, Glc-Gal-GlcA-SoyB ) 
1307.5969 (13.562, Mt Leaf ) 
939.498 (19.535, 3-Rha-Xyl-GlcA ) 
971.4856 (14.16,  Mt peak ) 
1119.564 (10.18, Mt Leaf  ) 
1085.5544 (16.206, Leaf ) 
809.4349 (17.945, Hex-HexA-Hederagenin ) 
823.4152 (14.05, Hex-HexA-New Aglycone ) 
955.495 (14.93, Rha-Hex-? ) 
1089.5494 (10.25, Mt Leaf  ) 
973.5025 (12.84, Hex-Hex-Hex-Bayogenin ) 
1413.6189 (11.609, Mt Leaf  ) 
987.4836 (12.536, Mt Root ) 
987.4818 (12.52, Mt Root ) 
823.4148 (14.09, GlcA-Glc-NewAglycone  ) 
809.4337 (13.816, Hex-HexA-Hed ) 
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955.4971 (14.376,  Mt peak-? ) 
927.497 (15.1, Hex-Hex-Pent-Hederagenin ) 
985.4704 (12.928, Mt Root ) 
1119.5602 (11.57, Mt Root ) 
1145.5433 (13.81, Mt  Leaf  ) 
911.4344 (14.06, 3-Glc-28-Glc-Malonyl-Med  ) 
793.4389 (16.23, HexA-Hex-Soy E ) 
795.4543 (17.945, Gal-GlcA-SoyB ) 
941.514 (16.97, Rha-Hex-Hex-Hederagenin ) 
811.4469 (12.441, GlcGlcBayogenin ) 
811.4475 (12.47, Hex-Hex-Bayogenin-?) 
925.4822 (19.55, Hex-Hex-Rha-SoyE ) 
955.4933 (15.26,  ) 
955.4926 (15.356, GlcA-? ) 
793.4408 (19.62, Hex-HexA-455 ? ) 
811.4481 (16.92, Hex-Hex-Bayogenin ) 
925.5173 (14.86, Rha-Hex-Hex-SoyE may be related to 1087 ) 
987.4858 (12.466,  Hex-Hex-Hex-Med Scotts work ) 
1043.5476 (17.45, ? ) 
795.4542 (18.357, Hex-Hex-Hederagenin? ) 
957.5092 (16.05, Rha-Hex-Hex-Bayogenin ) 
809.4334 (18.78, Glc-Glc-hed? ) 
941.5093 (17.96, Leaf ) 
1057.4866 (13.65, Mt Peak Root ) 
1101.5518 (13.55, Glc ) 
795.4526 (19.819, Hex-Hex-Hederagenin ) 
989.4892 (8.257, Mt Root ) 
825.4666 (15.77, GlcGlcMed? ) 
825.4643 (15.95, GlcGlc? ) 
649.3969 (17.47, Hex-Bayogenin ) 
649.394 (17.44, HexA-Bayogenin ) 
663.3756 (15.49, Hex-Medicagenic Acid ) 
663.3762 (17.48, Hex-Medicagenic Acid ) 
1087.5739 (14.86, Hex-Rha-Hex-Hex-SoyE ) 
647.3831 (14.14, Hex-New Aglycone ) 
1119.5729 (7.845, GlcRha? ) 
809.4335 (15.29, Hex-HexA-Hederagenin ) 
749.4464 (15.57, Hex-Pent-Soyasapogenol E ) 
765.4424 (19.41, Hex-Hex-Hederagenin ) 
989.4884 (9.54, Glc ) 
1119.5544 (12.3889, Rha-Hex-Hex-Hex-Bayogenin ) 
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1103.517 (10.07, Mt Leaf ) 
809.4333 (15.77, HexA-Hex-Hederagenin ) 
1159.4995 (14.143, Mt peak-? ) 
647.3798 (18.78, Hex-New Aglycone ) 
501.3228 (19.881, Mediagenic Acid ) 
795.4525 (14.99, Hex-Hex-Hederagenin ) 
1085.5581 (16.231, Saponin?  ) 
1117.5343 (10.661, Mt Root ) 
825.4304 (16.998, 3-Glc-Glc-MedicagenicAcid?) 
647.4343 (20.997, GlcA-Hederagenin ) 
765.4431 (18.552, Ara-GlcA-SoyB ) 
809.4341 (19.05, Unknown - Hed ) 
1105.5775 (10.337, Glc ) 
957.507 (9.305, Mt Root ) 
647.3817 (21.57, GlcA-Hederagenin ) 
809.4313 (19.243, Unknown ) 
631.3854 (22.029, ? ) 
1073.5581 (17.02, ? ) 
765.4431 (18.994, GlcAHed ) 
925.5151 (19.028, ? ) 
705.3849 (18.28, 3-Glc-Malonyl-MedicagenicAcid ) 
855.4741 (15.86, GlcAGlcHed? ) 
1113.5566 (19.29, Unknown ) 
989.5104 (8.928, Glc ) 
487.3421 (20.637, Bayogenin ) 
1367.5752 (11.666, Mt Leaf  ) 
971.4877 (16.129, HexHex ) 
633.4041 (20.989, Hex-Hederagenin ) 
987.4865 (10.766, GlcGlcGlc ) 
515.3385 (23.54, Zhanic Acid Aglycone? ) 
485.3254 (22.89, New Aglycone ) 
897.4828 (18.159, 3-Ara-Glc-Ara-Hederagenin ) 
617.4049 (22.001, Hex-SoyE? ) 
749.4512 (17.25, Pent-Hex-SoyE ) 
853.4593 (18.357, ? ) 
1027.5154 (16.62, Saponin V-? ) 
1129.5471 (15.56, Leaf ) 
1057.5605 (23.05, Unknown ) 
515.3362 (25.46, Zhanic Acid Aglycone? ) 
1113.5524 (18.45, Unknown ) 
1073.5574 (17.339, GlcA-? ) 
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Putative Identification based on m/z and/or fragmentation Mohamed Bedair 
1073.5175 (14.1311, 3-Glc-28-Ara-Rha-Xyl Medicagenic Acid ) 
269.0452 (10.4704, Apigenin  ) 
957.506 (14.031, Hex-Hex-Hex-Hederagenin ) 
939.4945 (19.2447, Dehydrosoyasaponin ) 
1119.5579 (10.137, 3-Hex-Hex-Hex-28-Hex-Echinocystic acid ) 
175.039 (6.2289, 4-Methyl Umbelliferone ) 
973.4991 (11.7007, Hex-Hex-Hex-Bayogenin ) 
957.5018 (12.4346, Hex-Hex-Rha-Bayogenin ) 
973.5004 (13.5744, Hex-Hex-Hex-Bayogenin ) 
825.4275 (13.4499, GlcA-Glc-Bayogenin ) 
939.4936 (13.5333, Dehydrosoyasaponin ) 
957.5032 (11.5434, Hex-Hex-Rha-Bayogenin ) 
973.4997 (10.2012, Hex-Hex-Hex-Bayogenin ) 
433.1121 (3.824, Naringenin chalchone 4-O-glucoside ) 
987.4791 (13.5266, GlcA-Glc-Glc--Bayogenin ) 
255.0649 (11.9383, Isoliquiritigenin ) 
925.511 (14.827, Rha-hex-hex-Soyasapogenol E fragment of 1087 ) 
941.51 (13.2652, Rha-Hex-Hex-Hederagenin fragment of 1103-162) 
285.076 (9.5444, 4',5-Dihydroxy-7-methoxyflavonone or 7,2'-Dihydroxy-4'-methoxyisoflavanone ) 
633.3975 (14.2205, Hex-Herdeagenin ) 
253.0501 (6.376, Daidzein ) 
1103.564 (14.0897, Hex-Rha-Hex-Hex-Hederagenin ) 
793.433 (11.442, Fragment hexA-hex-soyasapogenol E ) 
1884.0123 (17.6683, [2M-1] of m/z 941.509 3-Rha-Gal-GlcA-SoyB ) 
455.3538 (28.766, Soyasapogenol E ) 
811.4449 (12.8105, Glu Glu Bayogenin Fragment to 973-162) 
1117.5419 (13.6447, Rha-Hex-Hex-Hex-Quillaic acid ) 
1117.5395 (11.0018, Rha-Hex-Hex-Hex-Gypsogenic acid ) 
973.4977 (14.5488, Hex-Hex-Hex-Bayogenin ) 
1073.5138 (14.7251, 3-Glc-28-Ara-Rha-Xyl Medicagenic Acid  ) 
475.1244 (4.7971, Luteolin 7,3'-dimethyl ether 5-glucoside or any isomer C23H24O11 ) 
607.1312 (6.3976, Kaempferol 3-rhamnoside-7-galacturonide or any isomer C27H28O16) 
617.4051 (23.6318, Hex-Soyasapogenol E ) 
647.3793 (16.8011, Hex-Quillaic acid ) 
647.3766 (14.5771, Hex-Gypsogenic acid ) 
1189.5656 (13.7904, Pen-Pen-Pen-Rha-GlcA-Echinocystic acid ) 
471.3486 (26.543, Aglycone triterpene C30H48O4 ) 
811.4447 (11.4075, Fragment hex-hex-bayogenin ) 
485.3257 (22.7271, Gypsogenic acid ) 
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649.3932 (16.6029, Hex-Bayogenin ) 
1027.5117 (15.5922, GlcA-Rha-Glc-malonyl-Soyasapogenol B ) 
471.3457 (27.0986, Aglycone triterpene C30H48O4 ) 
471.3468 (25.8634, Echinocystic acid ) 
485.327 (26.3936, Quillaic acid ) 
471.3485 (23.0424, Hederagenin ) 
 
Putative Identification based on m/z and/or fragmentation Dongsik Yang 
277.2173 (28.606, Linolenic acid ) 
279.2367 (30.6349, Linoleic acid ) 
255.232 (31.8631, Palmitic acid ) 
1235.536 (11.3357, 3-GlcA-28-Ara-Rha-Xyl Medicagenic Acid ) 
421.2078 (9.1802, Epicatechin Pentose ) 
283.2629 (33.1727, Stearic acid ) 
1367.6123 (13.6662, 3Glc-Glc-28-Ara-Rha-Xyl-Api-Med ) 
607.1294 (5.1396, Kaempferol Glucuronide Rhamnose ) 
461.1079 (7.5346, Leteolin 3'-methyl ether 7-glucoside ) 
227.2007 (28.7351, Myristic acid ) 
431.0992 (6.9725, Genistein 7-O-b-D-glucoside) 
253.2166 (29.2798, Palmitoleic acid ) 
607.1297 (5.4053, Kaempferol Glucuronide Rhamnose ) 
1103.5603 (11.2146, Hex-Rha-Hex-Hex-Hederagenin) 
241.2167 (30.5534, Pentadecanoic acid ) 
447.2224 (10.648, Linalool glucoside Pentose ) 
283.0218 (5.876, Lucernol ) 
141.0163 (23.9785, 18-Hydroxy-9-octadecenoic acid ) 
245.0429 (9.8794, Isopimpinellin ) 
461.0723 (5.3592, Kaempferol Glucuronide ) 
447.0931 (6.4753, Kaempferol-3-O-glucoside ) 
255.027 (8.8021, Purpurin ) 
477.1047 (6.1909, Kaempferol Hexose ) 
283.0603 (7.3836, Biochanin A ) 
241.2164 (27.0009, Pentadecanoic acid ) 
227.2009 (24.7706, Myristic acid ) 
447.0919 (6.7914, Kaempferol Hexose ) 
607.1086 (9.0041, Biochanin A b-D-diglucoside ) 
607.1077 (8.6031, Biochanin A b-D-diglucoside ) 
593.1288 (10.0838, Kaempferol Coumaroyl Hexose ) 
367.3582 (35.8388, Lignoceric acid ) 
593.1301 (9.6433, Genistein b-D-di-glucoside ) 
433.2587 (20.7929, Rasfonin ) 
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339.0724 (9.5337, Cichoriin ) 
299.2586 (31.0314, Octadecene-1,9,18-triol () 
447.2738 (24.4337, Isolinaritriol triacetate ) 
321.2055 (21.0978, Rapanone ) 
321.2064 (20.6406, Rapanone ) 
Appendix RII – Primers 
Primer Set 8(cyp88d3) 

Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp88d3 (BAG68926) 
Forward Primer Sequence: AAGGAAACCTTCTTCATCTCTTTCAA 
Reverse Primer Sequence: AGGACATTGCAATCAATTCGTTAG 

Primer Set 4 (cyp88d2) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp88d2 (BAG68925) 
Forward Primer Sequence: ACGGCGACCAGATGAGAAATA 
Reverse Primer Sequence: CAATTTCCACTACCTCCTGGTGAT 

Primer Set 3 (cyp88d1) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp88d1 (BAG68925) 
Forward Primer Sequence: TGATATGGCGTATTGTTTCATCAA 
Reverse Primer Sequence: GCCAAGGAAGAGCAAGAAGGA 

Primer Set 23 (GT2-1 R) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (Seki, 2008): triterpene udp-glucosyl transferase ugt73k1 
Forward Primer Sequence: ACGAAATGAGCAGCCATGTG 
Reverse Primer Sequence: TTTCGCTGCTTCCGATAACC 

Primer Set 22 (GT2-2 R) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): triterpene udp-glucosyl transferase ugt71g1 

(AAW56091) 
Forward Primer Sequence: TAGTCCACTCTCAGTCCCAAACC 
Reverse Primer Sequence: ATGCAGAACAACAGCTTAATGCTT 

Primer Set 19 (CAS-1) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cycloartenol synthase (CAA75588) 
Forward Primer Sequence: GGATTCGGGCTAAATGAAGTTTG 
Reverse Primer Sequence: GATAGCGCGTTGGGTTGAAG 

Primer Set 18 (BAS1-2) 
Used for qRT-PCR transcript expression level analysis 
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Gene Target (NCBI Protein accession ID): beta-aymrin synthase (CAD23247) 
Forward Primer Sequence: CCAAGGGAGGCATGAAAAATAG 
Reverse Primer Sequence: GCAAACCAGTGATGGCCATT 

Primer Set 16 (SE2-2) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): squalene monooxygenase 2 (CAD23248) 
Forward Primer Sequence: CCCAAGTGTATGAGCCAAAGC 
Reverse Primer Sequence: CGGTGATGCTGATGTTATCATTG 

Primer Set 14 (SE1-2) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): squalene monooxygenase 1 (CAD23249) 
Forward Primer Sequence: AAAGGAAATTGTAGAGTGCAGCAA 
Reverse Primer Sequence: CGGTTTCGGGTGGATCAC 

Primer Set 43 (qRT_72A68_1429) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp72a68 (ABC59077. 1) 
Forward Primer Sequence: GTTTGGAGCGGGTCCTAGAAT 
Reverse Primer Sequence: TCTTTGCTTCCAACAGGGAAA 

Primer Set 44 (qRT_72A68_1069) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp72a68 (ABC59077. 1) 
Forward Primer Sequence: TTGGACGATGGTGTTGTTGAG 
Reverse Primer Sequence: TCTAATACTTCCTTCCTTGCACGTT 

Primer Set 33 (cyp716a12_3) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp716a12 (ABC59076. 1) 
Forward Primer Sequence: ATGGAAGCTTTATTGGAGTGCAA 
Reverse Primer Sequence: TCTCTGGCATGGGAAAACATT 

Primer Set 34 (cyp716a12_4) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp716a12 (ABC59076. 1) 
Forward Primer Sequence: CGGCGAGTTACCTCACATTTATG 
Reverse Primer Sequence: GCTGGTTTCGATTTTGCAATTT 

Primer Set 37 (cyp72a67_3) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp72a67 (ABC59075. 1) 
Forward Primer Sequence: ACCAGCATTTGGTGTTACTCGAT 
Reverse Primer Sequence: CACTCCAGCAGGTACTTCCATGT 

Primer Set 38 (cyp72a67_4) 
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Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp72a67 (ABC59075. 1) 
Forward Primer Sequence: CACTTTCTCTTTCCCTTTCTGTTTCT 
Reverse Primer Sequence: ACCTTTTTACTGGTGTTTTGGAATCT 

Primer Set 41 (cyp83g1_3) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp83g1 (ABC59084. 1) 
Forward Primer Sequence: TCAGCAAAAATGGCCAAAGAA 
Reverse Primer Sequence: CGCGGGTCGGTTACAGAAT 

Primer Set 45 (qRT_72A68_1019) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp72a68 (ABC59077. 1) 
Forward Primer Sequence: TGCAGGTTATTCCATGTTGCA 
Reverse Primer Sequence: TCAACAACACCATCGTCCAAA 

Appendix RIII – Primers 
Cloning Primers 
cyp72a67(NCBI ID: DQ335780. 1) 

Used for cloning of gene for yeast expression and genomic DNA locus cloning 
Forward Primer Sequence (cyp72a67with kozak and BamH1): 

TCCGGATCCGTTATGGAAGCATCATTGGCCATATATTA 
Reverse Primer Sequence (cyp72a67with EcoR1 site): 

AGGGAATTCTTATGCTTTCACTTTGCGTAGAA 
cyp72a68 (NCBI ID: DQ335782. 1) 

Used for cloning of gene for yeast expression and genomic DNA locus cloning 
Forward Primer Sequence (cyp72a68 with kozak and BamH1): 

TCCGGATCCGTTATGGAATTATCTTGGGAAAC 
Reverse Primer Sequence (cyp72a68 with EcoR1 site): 

AGGGAATTCTTATGTTTTGATTTTGCGTAGAA 
cyp83g1 (NCBI ID: DQ335789. 1) 

Used for cloning of gene for yeast expression 
Forward Primer Sequence (cyp83g1 with kozak and BamH1): 

TCCGGATCCGTTATGAACAAAAACATGTCACCCCTTA 
Reverse Primer Sequence (cyp83g1 with EcoR1 site): 

AGGGAATTCTCACACGCATTCAATTCGCTTCTT 
cyp716a12 (NCBI ID: DQ335781. 1) 

Used for cloning of gene for yeast expression 
Forward Primer Sequence (cyp716a12with kozak and BamH1): 

TCCGGATCCGTTATGGAGCCTAATTTCTATCT 
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Reverse Primer Sequence (cyp716a12with EcoR1 site): 
AGGGAATTCTTAAGCTTTGTGTGGATAAAG 

cyp88d3 (NCBI ID: AB433176. 1) 
Used for cloning of gene for yeast expression 
Forward Primer Sequence (cyp716a12with kozak and BamH1): 

TCCGGATCCGTTATGGAAATGCAGTGGGTTTA 
Reverse Primer Sequence (cyp716a12with EcoR1 site): 

AGGGAATTCTTAAGCACGTGAGACTTTAATAACC 
Reverse Screen 
cyp72a67-f 

Forward Primer Sequence:CTTAGCAGAGATCAACCAACTAG 
cyp72a68-f 

Forward Primer Sequence:GCACGAGGAAAACATTTCACAC 
cyp83g1-f 

Forward Primer Sequence:CTTAGCAGAGATCAACCAACTAG 
cyp83g3-f 

Forward Primer Sequence:GAAATGCAGTGGGTTTACATTTG 
cyp716a12-f 

Forward Primer Sequence:ATGGAGCCTAATTTCTATCT 
Tnt1-Fw 

Forward Primer Sequence:ACAGTGCTACCTCCTCTGGATG 
Tnt1-Re 

Reverse Primer Sequence: CAGTGAACGAGCAGAACCTGTG 
Appendix RIII – Cloned Sequence 
>JHS CYP72A67 YV A10 , 1512 bases 
ATGGAAGCATCATTGGCCATATATTATGGCATAATTCTCATCACTGTAAC 
ACTTGGTTTAGTATACACATGGAGAGTACTGAATTGGATTTGGTTGAAGC 
CAAAGAGGCTAGAGAAGCTCTTACGAGAACAAGGATGTAATGGAAATTCT 
TATAGACTTGTGCTTGGGGACTTGAAGGATTCATATAAGATGGGAAAGAA 
AGCCAAATCCAAACCCATGGAACTGTCGGATGATATAATCCCTCGTGTCA 
TTCCCTACATTCAACAACTTGTTCAAATTTACGGGAAGAATCCTTTCATT 
TGGTCTGGAACAACACCAAGGCTGATTCTCACAGAACCAGAGCTAATAAA 
AGATGTCTTAAACAGAACTTCTGAATTACAAAAGCCAAAATATGAGATTT 
TCAAATTTCTATTTAGTGGTCTTATAATTCACGAGGGAGAAAAGTGGAGA 
AAGCATAGAAGGTTAATGAACGCTGCTTTCCAGTTAGAAAAATTGAAGAT 
CATGGCACCAAGTTTCCTCACAAGTTGCATTGATATGATTAGCAAATGGG 
AGTCAACGTTGTCATCAGATGGATCAGGTGAAATAGACATATGGCCTTCC 
CTACAGAATTTGACAAGTGATGTTATTTCTCGAAACGCATTTGGAAGTAG 
TTACGAAGAAGGAAAAAGAATATTTGATCTTCAAAGAGAGCAAGGTGAAC 
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TTGTTATGAAAAATCTAGTGAAATCTTTAATCCCTTTATGGAGGTTTATA 
CCTACAGCTACTCAAGGAGGATGCATGAAATTGAAAAAAGATATAGATTC 
TTCTCTTAGATATATAATTAACAAAAGAGAGAAAGCAATGAAGGCAGGTG 
AAGCAACTGAGAATGACTTGTTAGGTCTTCTTCTAGAGTCAAACCACCAA 
GAAATTAGAGATCATGGAAACAACAAGAATATGGGAATGAGTCTTGAAGA 
TGTAGTGGGGGAATGCAAGTTATTCTACTTGGCAGGGCAAGAATCTACTT 
CAACTATGCTTGTTTGGACAATGATATTGTTGAGTAGGTACCCTGATTGG 
CAAGAACGTGCTAGGGAGGAAGTATTACAAATATTTGGCAACAAAAAACC 
AGACTATGAAGGACTAAATAAACTTAAGATTCTCCCTATGATTTTGTATG 
AGGTTCTAAGGTTGTATCCACCAGCATTTGGTGTTACTCGATATGTTGGC 
AAAGACATAAAGTTTGGAAACATGGAAGTACCTGCTGGAGTGGAAGTTTT 
CTTACCAATTATTTTGCTTCAACATAACAATGAACTATGGGGTGATGATG 
CAAAGATGTTCAATCCTGAGAGATTTGCTGAAGGAATTTCCAAAGCAACA 
AATGGTAGATTTATATATTTTCCATTTGGAGGGGGTCCTAGAGTTTGCAT 
GGGACAAAACTTTTCCCTATTGGAAGCAAAGATGGCAGTGTCAATGATTT 
TACAAAATTTCTATTTTGAACTTTCTCCAACCTATGCTCATACTCCAAAT 
TTAGTGATGACT 
>jhsCYP72A68, 1563 bases 
ATGGAATTATCTTGGGAAACAAAATCAGCCATAATTCTCATCACTGTGAC 
ATTTGGTTTGGTATACGCATGGAGGGTATTGAATTGGATGTGGCTGAAGC 
CAAAGAAGATAGAGAAGCTTTTAAGAGAACAAGGCCTTCAAGGGAACCCT 
TATAGACTTTTGCTTGGAGATGCAAAGGATTATTTTGTGATGCAAAAGAA 
AGTTCAATCCAAACCCATGAATCTATCTGATGATATTGCGCCACGTGTCG 
CTCCTTACATTCATCATGCTGTTCAAACTCATGGGAAAAAGTCTTTTATT 
TGGTTTGGAATGAAACCATGGGTGATTCTCAATGAACCTGAACAAATAAG 
AGAAGTATTCAACAAGATGTCTGAGTTCCCAAAGGTTCAATATAAGTTTA 
TGAAGTTAATAACTCGCGGTCTTGTTAAACTAGAAGGAGAAAAGTGGAGC 
AAGCATAGAAGAATAATCAACCCTGCGTTTCACATGGAAAAATTGAAGAT 
TATGACACCAACATTCTTGAAAAGCTGCAATGATTTGATTAGCAATTGGG 
AAAAAATGTTGTCTTCAAATGGATCATGTGAAATGGACGTATGGCCTTCC 
CTTCAGAGCTTGACAAGTGATGTTATCGCTCGTTCGTCATTTGGAAGTAG 
TTATGAAGAAGGAAGAAAAGTATTTCAACTTCAAATAGAGCAAGGTGAAC 
TTATAATGAAAAATCTAATGAAATCTTTAATCCCTTTATGGAGGTTTTTA 
CCTACCGCTGATCATAGAAAGATAAATGAAAATGAAAAACAAATAGAAAC 
TACTCTTAAGAATATAATTAACAAGAGGGAAAAAGCAATTAAGGCAGGTG 
AAGCCACTGAGAATGACTTATTAGGTCTCCTCCTAGAGTCGAACCACAGA 
GAAATTAAAGAACATGGAAACGTCAAGAATATGGGATTGAGTCTTGAAGA 
AGTAGTCGGGGAATGCAGGTTATTCCATGTTGCAGGGCAAGAGACTACTT 
CAGATTTGCTTGTTTGGACGATGGTGTTGTTGAGTAGGTACCCTGATTGG 
CAAGAACGTGCAAGGAAGGAAGTATTAGAGATATTTGGCAATGAAAAACC 
CGACTTTGATGGACTAAATAAACTTAAGATTATGGCCATGATTTTGTATG 
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AGGTTTTGAGGTTGTACCCTCCTGTAACCGGCGTTGCTCGAAAAGTTGAG 
AATGATATAAAACTTGGAGACTTGACATTATATGCTGGAATGGAGGTTTA 
CATGCCAATTGTTTTGATTCACCATGATTGTGAACTATGGGGTGATGATG 
CTAAGATTTTCAATCCTGAGAGATTTTCTGGTGGAATTTCCAAAGCAACA 
AACGGTAGATTTTCATATTTTCCGTTTGGAGCGGGTCCTAGAATCTGCAT 
TGGACAAAACTTTTCCCTGTTGGAAGCAAAGATGGCAATGGCATTGATTT 
TAAAGAATTTTTCATTTGAACTTTCTCAAACATATGCTCATGCTCCATCT 
GTGGTGCTTTCTGTTCAGCCACAACATGGTGCTCATGTTATTCTACGCAA 
AATCAAAACATAA 
>JHS_CYP83G1, 1521 bases 
ATGAACAAAAACATGTCACCCCTTATTCTTTTACCCTTTGCTCTCTTGCT 
ATTCTTCTTGTTCAAAAAACACAAAACATCTAAGAAATCAACAACTCTTC 
CACCAGGTCCTAAAGGCCTTCCTTTCATTGGAAACTTACACCAACTTGAT 
AGTTCAGTTCTTGGTTTAAATTTCTATGAACTCTCTAAGAAATATGGCCC 
TATAATCTCCCTTAAACTTGGTTCAAAGCAAACAGTCGTTGTTTCATCAG 
CAAAAATGGCCAAAGAAGTAATGAAAACACATGATATCGAATTCTGTAAC 
CGACCCGCGTTAATCAGCCATATGAAAATATCATATAATGGATTAGATCA 
AATATTTGCACCATATAGAGAATATTGGAGACACACAAAAAAACTTTCCT 
TTATTCATTTTCTTAGTGTCAAAAGAGTCTCAATGTTTTACTCAGTTAGA 
AAAGATGAGGTGACACGAATGATCAAGAAGATATCAGAAAATGCTTCTTC 
CAACAAAGTTATGAACATGCAGGATCTTCTTACTTGTCTTACAAGTACTT 
TAGTTTGTAAGACCGCCTTCGGCAGAAGGTATGAAGGGGAAGGAATTGAG 
CGTAGCATGTTTCAAGGTCTGCATAAAGAAGTTCAGGATTTGCTAATTTC 
GTTCTTTTACGCGGATTATTTGCCCTTTGTTGGAGGGATTGTTGATAAGC 
TCACCGGAAAGACGAGTCGCCTTGAGAAAACGTTCAAGGTTTCAGATGAA 
CTTTATCAAAGTATTGTTGATGAACATCTTGATCCAGAAAGGAAGAAGTT 
GCCTCCACATGAGGATGATGTTATTGATGCCTTGATTGAACTGAAGAATG 
ATCCTTACTGCTCAATGGATCTCACTGCAGAACACATCAAGCCCTTGATC 
ATGAATATGTCGTTTGCTGTGACAGAAACAATTGCGGCAGCGGTAGTCTG 
GGCTATGACTGCGCTAATGAAGAATCCAAGAGCGATGCAGAAAGTACAAG 
AAGAGATTCGGAAAGTGTGTGCAGGGAAAGGTTTTATAGAGGAAGAAGAT 
GTCGAAAAGCTTCCATATTTCAAGGCCGTTATAAAAGAATCGATGAGATT 
GTACCCAATTTTGCCTATACTTTTACCAAGAGAAACAATGACAAATTGCA 
ACATTGCAGGGTACGACATTCCAGACAAGACATTGGTGTACGTGAATGCA 
TTGGCGATCCATAGAGACCCAGAAGTATGGAAGGATCCAGAAGAGTTTTA 
TCCAGAGAGATTCATAGGAAGTGATATAGATTTAAAAGGACAAGATTTTG 
AGCTGATTCCGTTTGGTTCTGGGCGAAGAATTTGCCCCGGCTTAAACATG 
GCTATTGCTACCATCGACCTTGTACTTTCTAATCTTCTCTATTCATTTGA 
CTGGGAAATGCCTGAAGGAGCTAAGAGGGAAGACATTGACACTCATGGTC 
AAGCCGGACTTATTCAACACAAGAAAAATCCTCTCTGTCTTGTTGCTAAG 
AAGCGAATTGAATGCGTGTGA 
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>JHS_CYP88D3_d3-3a, 1479 bases 
ATGGAAATGCAGTGGGTTTACATTTGTACTGCTGCTTTGTTTGCATGCTA 
TGTTTTTGTAAACAAATTTTTGAGGAGGTTTAATGGTTGGTACTATCATC 
TCAAATTAAGAAACAAAGAGTACCCTTTGCCTCCAGGTGATATGGGATGG 
CCACTTATTGGCAACCTATTATCGTTTAACAAAAACTTCTCATCTGGCCA 
ACCTGATTCATTCACCACCAACCTTATTCTCAAATATGGGAGAGATGGTA 
TCTACAAAACTCACGTGTGTGGAAATCCAAGTATCATAATTTGTGATCCT 
GAGATGTGTAAGCGAGTGCTCTTAGATGATGTAAACTTTAAAATTGGTTA 
TCCAAAATCCATCCAAGAATTGACAAAATGTAGACCCATGATTGATGTCT 
CGAACGCAAATCACAAGCATTTTCGACGCCTAATCACTGCTCCCATGGTT 
GGTCACAAGGTGTTAGACATGTACCTAGAACGTCTCGAGGACATTGCAAT 
CAATTCGTTAGAAGAATTGTCTAGCATGAAGCACCCCATCGAGCTCTTGA 
AAGAGATGAAGAAGGTTTCCTTTAAATCCATTATCCATGTTTTCATGGGA 
ACTTCTAATCAGAACATTGTTAAAAACATTGGAAGTTCATTTACTGATTT 
GTCTAAAGGCATGTACTCTATCCCCATCAATGCACCTGGTTTTACTCTCC 
ACAAAGCACTCAAGGCACGGAAGAAGATAGCTAAATTATTGCAACCTGTT 
GTGGATGAAAGGAGGTTGATGATAAAAAATGGACAACATGTGGGAGAGAA 
GAAAGATCTTATGGATATTCTATTGGAAATCAAAGATGAGAATGGTAGAA 
AATTGGAGGATCAGGATATCAGTGACCTGTTGATAGGACTTTTATTTGCC 
GGACATGAAAGTACAGCAACTGGGATAATGTGGTCAGTTGCACATCTTAC 
ACAACATCCACATATCCTACAAAAAGCCAAGGAAGAGCAGGAAGAAATCT 
TGAAGATAAGACCAGCCTCCCAAAAACGATTGAGTCTTAATGAAGTCAAG 
CAAATGATTTATCTTTCATATGAAATCGATGAAATGTTGCGATTTGCCAA 
CATTGCCTTTTCAATTTTTCGAGAGGCTACATCTGATGTTAACATCAACG 
GTTATCTCATACCAAAAGGATGGAGAGTGCTAATATGGGCGAGAGCCATT 
CATATGGATTCTGAATATTATCCAAATCCTAAAGAATTTAATCCTTCTAG 
ATGGAAAGATTATAATGCCAAGGCAGGAACCTTTCTTCCTTTTGGAGCAG 
GAAGTAGGCTCTGTCCTGGAGCCGACTTAGCAAAACTTGAAATTTCTATA 
TTTCTTCATTATTTCCTCCTTAACTACAGGTTGGAGCGAATAAACCCAGA 
TTGCCCTGTTACTACCTTGCCACAATGTAAGCCCACTGATAACTGCCTCG 
CTAAGGTTATTAAAGTCTCACGTGCTTAA 
>JHS_CYP716A12, 1440 bases 
ATGGAGCCTAATTTCTATCTCTCCCTTCTCCTTCTCTTTGTCACTTTCAT 
ATCTCTCTCTCTTTTTTTCATATTCTACAAACAGAAATCTCCATTAAATT 
TGCCACCTGGTAAAATGGGTTACCCAATCATAGGTGAAAGCCTTGAGTTC 
TTATCAACAGGATGGAAAGGACATCCTGAAAAATTCATTTTCGACCGTAT 
GCGTAAATATTCCTCAGAACTCTTTAAAACATCAATCGTAGGAGAATCTA 
CGGTGGTTTGTTGCGGAGCAGCAAGTAACAAGTTTTTGTTTTCAAACGAG 
AATAAACTTGTGACTGCATGGTGGCCAGATAGTGTAAACAAAATCTTCCC 
TACTACTTCTCTTGACTCTAACTTGAAGGAAGAATCCATCAAGATGAGAA 
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AATTGCTTCCACAATTCTTTAAACCCGAAGCTCTACAACGTTATGTTGGT 
GTCATGGATGTTATTGCTCAAAGACATTTTGTTACTCATTGGGATAATAA 
AAATGGAATCACCGTCTACCCCTTGGCCAAGAGGTACACCTTTTTGTTAG 
CTTGTCGGTTGTTCATGAGCGTTGAAGACGAGAATCATGTAGCAAAATTT 
AGTGATCCATTTCAGTTAATTGCGGCCGGAATCATATCTCTACCAATTGA 
TTTGCCAGGAACACCATTCAACAAAGCTATAAAGGCCTCAAACTTTATAA 
GAAAGGAGTTGATTAAGATCATAAAGCAAAGGAGGGTAGATTTGGCAGAA 
GGGACAGCATCACCAACACAAGATATATTGTCTCACATGTTGTTGACAAG 
TGATGAAGATGGAAAGAGTATGAATGAACTTAATATTGCTGATAAGATTC 
TTGGCCTTTTGATCGGAGGACATGACACTGCTAGCGTCGCATGCACTTTC 
CTTGTCAAATATCTCGGCGAGTTACCTCACATTTATGATAAAGTCTATCA 
AGAGCAAATGGAAATTGCAAAATCGAAACCAGCAGGAGAATTGTTGAATT 
GGGATGACCTGAAGAAAATGAAATACTCTTGGAACGTAGCTTGTGAAGTA 
ATGAGACTTTCCCCTCCACTCCAAGGAGGTTTCAGGGAAGCCATCACCGA 
CTTTATGTTCAATGGATTCTCAATTCCTAAGGGATGGAAGCTTTATTGGA 
GTGCAAATTCAACACATAAGAACGCAGAATGTTTTCCCATGCCAGAGAAA 
TTTGACCCAACAAGATTTGAAGGAAATGGACCAGCTCCTTATACTTTTGT 
TCCCTTTGGTGGAGGACCAAGGATGTGTCCTGGAAAAGAGTATGCAAGAT 
TAGAAATACTTGTTTTCATGCACAATTTGGTGAAAAGGTTTAAGTGGGAA 
AAGGTGATTCCAGATGAGAAGATTATTGTTGATCCATTCCCCATCCCTGC 
AAAGGATCTTCCAATTCGCCTTTATCCACACAAAGCTTAA 
Appendix RIV – Primers 
Cloning Primers 
cyp88d3 (NCBI ID: BAG68926) 

Used for cloning of gene for yeast expression 
Forward Primer Sequence (cyp88d3 with kozak and BamH1): 

TCCGGATCCGTTATGGAAATGCAGTGGGTTTA 
Reverse Primer Sequence (cyp88d3 with EcoR1 site): 

AGGGAATTCTTAAGCACGTGAGACTTTAATAACC 
cyp88d1 (Removed from NCBI (Seki, 2008)) 

Used for cloning of gene for yeast expression 
Forward Primer Sequence (cyp88d1 with kozak and BamH1): 

TCCGGATCCGTTATGGAACTTCAATGGTTTTGGATGTTTGCTGCCACTT 
Reverse Primer Sequence (cyp88d3 with EcoR1 site): 

AGGGAATTCTTAAGAATCAGAGATCTTTATGACCTTAGCAAGACAA 
cyp88d2 (NCBI ID: BAG68925) 

Used for cloning of gene for yeast expression 
Forward Primer Sequence (cyp88d1 with kozak and BamH1): 

TCCGGATCCATGGAATTTCAATGGTTTTGG 
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Reverse Primer Sequence (cyp88d3 with EcoR1 site): 
AGGGAATTCTTAAGCATCAGAGAGCTTTG 

Sequencing of Plasmid 
gal10 promoter 

Used for confirmation of sequence from yeast transformation 
Forward Primer Sequence:TCATATGGCATGCATGTGCTCTG 

qRT-PCR Primers 
Primer Set 8(cyp88d3) 

Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp88d3 (BAG68926) 
Forward Primer Sequence: AAGGAAACCTTCTTCATCTCTTTCAA 
Reverse Primer Sequence: AGGACATTGCAATCAATTCGTTAG 

Primer Set 4 (cyp88d2) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp88d2 (BAG68925) 
Forward Primer Sequence: ACGGCGACCAGATGAGAAATA 
Reverse Primer Sequence: CAATTTCCACTACCTCCTGGTGAT 

Primer Set 3 (cyp88d1) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cyp88d1 (BAG68925) 
Forward Primer Sequence: TGATATGGCGTATTGTTTCATCAA 
Reverse Primer Sequence: GCCAAGGAAGAGCAAGAAGGA 

Primer Set 23 (GT2-1 R) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (Seki, 2008): triterpene udp-glucosyl transferase ugt73k1 
Forward Primer Sequence: ACGAAATGAGCAGCCATGTG 
Reverse Primer Sequence: TTTCGCTGCTTCCGATAACC 

Primer Set 22 (GT2-2 R) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): triterpene udp-glucosyl transferase ugt71g1 

(AAW56091) 
Forward Primer Sequence: TAGTCCACTCTCAGTCCCAAACC 
Reverse Primer Sequence: ATGCAGAACAACAGCTTAATGCTT 

Primer Set 19 (CAS-1) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): cycloartenol synthase (CAA75588) 
Forward Primer Sequence: GGATTCGGGCTAAATGAAGTTTG 
Reverse Primer Sequence: GATAGCGCGTTGGGTTGAAG 

Primer Set 18 (BAS1-2) 
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Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): beta-aymrin synthase (CAD23247) 
Forward Primer Sequence: CCAAGGGAGGCATGAAAAATAG 
Reverse Primer Sequence: GCAAACCAGTGATGGCCATT 

Primer Set 16 (SE2-2) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): squalene monooxygenase 2 (CAD23248) 
Forward Primer Sequence: CCCAAGTGTATGAGCCAAAGC 
Reverse Primer Sequence: CGGTGATGCTGATGTTATCATTG 

Primer Set 14 (SE1-2) 
Used for qRT-PCR transcript expression level analysis 
Gene Target (NCBI Protein accession ID): squalene monooxygenase 1 (CAD23249) 
Forward Primer Sequence: AAAGGAAATTGTAGAGTGCAGCAA 
Reverse Primer Sequence: CGGTTTCGGGTGGATCAC 

Primers Used in Reverse Screen 
cyp88d2 F 

Forward Primer Sequence: ATGGAATTTCAATGGTTTTGGATG 
cyp88d2 F2 

Forward Primer Sequence: ACGGGCTCTTGCGATCAAGGTAC 
Tnt1-Re 

Reverse Primer Sequence: CAGTGAACGAGCAGAACCTGTG 
Appendix RIV – Targeted Ions 
Targeted Analysis 
Mass/Charge(Retention Time,Ion ID) 
161.023(4.36, IS) 
1119.5729(7.845, GlcRha?) 
989.4892(8.257, ?) 
989.5104(8.928, Glc) 
957.507(9.305, ?) 
989.4884(9.54, Glc) 
1103.517(10.07, Leaf) 
1119.564(10.18, Leaf) 
1089.5494(10.25, Leaf) 
1105.5775(10.337, Glc) 
1117.5343(10.661, ?) 
987.4865(10.766, GlcGlcGlc) 
1383.6057(11.26, O Zhan Stand) 
1397.5889(11.29, Leaf) 
1397.5887(11.39, Leaf) 
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1545.6609(11.39, O Zhan Stand) 
1677.7001(11.45, O Zhan Stand) 
1251.5675(11.5, Leaf) 
1265.5474(11.51, Leaf) 
1545.6595(11.56, O Zhan Stand) 
1119.5602(11.57, ?) 
1413.6189(11.609, Leaf) 
1235.5402(11.61, Leaf) 
1413.6149(11.666, O Zhan Stand) 
1515.6458(11.666, O Zhan Stand) 
1367.5752(11.666, Leaf) 
1103.4962(11.77, Leaf) 
1383.6086(11.84, Leaf) 
1383.608(11.97, Leaf) 
1221.554(12.059, Leaf) 
1251.5621(12.138, Leaf) 
987.4799(12.206, GlcA-Glc-Glc--Bayogenin) 
1089.5117(12.225, Leaf) 
1119.567(12.407, GlcRhaGlc?) 
811.4469(12.441, GlcGlcBayogenin) 
987.4858(12.466, Possible Hex-Hex-Hex-Med Scotts work) 
811.4475(12.47, Hex-Hex-Bayogenin ? Higher Mass) 
987.4818(12.52, ?) 
987.4836(12.536, ?) 
1119.5621(12.64, Rha-Hex-Hex-Hex-Bayogenin) 
1117.5499(12.83, Rha-Hex-Hex-New Aglycone) 
973.5025(12.84, Hex-Hex-Hex-Bayogenin) 
985.4704(12.928, ?) 
971.4853(12.976, Possibly bayogenin) 
987.482(13.13, Possible Hex-Hex-Hex-Med Scotts work) 
811.4505(13.2, Hex-Hex-Bayogenin ? Higher Mass) 
1103.5669(13.29, Hex-Rha-Hex-Hex-Hed) 
971.4885(13.304, Hex-Hex-HexA-Hederagenin) 
825.4297(13.485, 3-Glc-28-Glc-Medicagenic Acid (Standard)) 
1101.5518(13.55, Glc?) 
1307.5969(13.562, Leaf) 
1367.6135(13.63, 3Glc-Glc-28-Ara-Rha-Xyl-Api-Med) 
1057.4866(13.65, ?) 
957.507(13.65, Hex-Hex-Hex-Hederagenin) 
1087.4955(13.728, 3-Glc-Glc-28-Ara-Rha-Xyl Medicagenic Acid (Stand)) 
1087.4974(13.81, Leaf) 
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1145.5433(13.81, Leaf) 
1235.5725(13.8147, ?) 
809.4337(13.816, Hex-HexA-Hed) 
1235.5703(13.827, 3-GlcA-28-Ara-Rha-Xyl Medicagenic Acid) 
1235.5771(13.84, Leaf) 
957.5068(13.85, Hex-Hex-Hex-Hederagenin) 
1161.5363(13.9, Leaf) 
1205.5613(13.93, Leaf) 
1205.5653(13.94, ?) 
957.4758(13.979, Glc-Gal-GlcA-SoyB) 
823.4152(14.05, Hex-HexA-New Aglycone) 
823.4152(14.06, Hex-HexA-New Aglycone) 
911.4344(14.06, 3-Glc-28-Glc-Malonyl-Med) 
823.4148(14.09, GlcA-Glc-NewAglycone) 
647.3831(14.14, Hex-New Aglycone) 
1159.4995(14.143, ?) 
1073.5208(14.15, 3-Glc-28-Ara-Rha-Xyl Medicagenic Acid  (Stand)) 
1073.5253(14.152, Leaf) 
971.4856(14.16, Not Sure) 
955.4971(14.376, ?) 
925.5173(14.86, Rha-Hex-Hex-SoyE may be related to 1087) 
1087.5739(14.86, Hex-Rha-Hex-Hex-SoyE) 
955.495(14.93, Rha-Hex-?) 
795.4525(14.99, Hex-Hex-Hederagenin) 
927.497(15.1, Hex-Hex-Pent-Hederagenin) 
955.4933(15.26, 0) 
809.4335(15.29, Hex-HexA-Hederagenin) 
955.4926(15.356, GlcA-?) 
663.3756(15.49, Hex-Medicagenic Acid) 
1129.5471(15.56, Leaf) 
749.4464(15.57, Hex-Pent-Soyasapogenol E) 
809.4333(15.77, HexA-Hex-Hederagenin) 
825.4666(15.77, GlcGlcMed?) 
855.4741(15.86, GlcAGlcHed?) 
825.4643(15.95, GlcGlc?) 
957.5092(16.05, Rha-Hex-Hex-Bayogenin) 
971.4877(16.129, HexHex) 
1085.5544(16.206, Leaf) 
793.4389(16.23, HexA-Hex-Soy E) 
1085.5581(16.231, ?) 
1027.5154(16.62, ?) 
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811.4481(16.92, Hex-Hex-Bayogenin) 
941.514(16.97, Rha-Hex-Hex-Hederagenin) 
825.4304(16.998, 3-Glc-Glc-MedicagenicAcid?) 
1073.5581(17.02, ?) 
749.4512(17.25, Pent-Hex-SoyE) 
1073.5574(17.339, GlcA-?) 
957.4825(17.4, Glc-Gal-GlcA-SoyB (Stand)) 
957.5084(17.414, Soy Mix Stand) 
649.394(17.44, HexA-Bayogenin) 
1043.5476(17.45, ?) 
649.3969(17.47, Hex-Bayogenin) 
663.3762(17.48, Hex-Medicagenic Acid) 
663.3777(17.53, 3-Glc-MedicagenicAcid (Stand)) 
941.5107(17.877, Ara-Rha-GlcA-Bayogenin) 
809.4349(17.945, Hex-HexA-Hederagenin) 
795.4543(17.945, Gal-GlcA-SoyB) 
941.5112(17.955, Rha-Gal-GlcA-SoyB (Soy1)) 
941.5093(17.96, Leaf) 
897.4828(18.159, 3-Ara-Glc-Ara-Hederagenin (standard)) 
705.3849(18.28, 3-Glc-Malonyl-MedicagenicAcid) 
911.5005(18.303, Rha-Ara-GlcA-SoyB (Stand)) 
795.4542(18.357, Hex-Hex-Hederagenin?) 
853.4593(18.357, ?) 
1113.5524(18.45, Unknown) 
765.4431(18.552, Ara-GlcA-SoyB (Stand)) 
809.4334(18.78, Glc-Glc-hed?) 
647.3798(18.78, Hex-New Aglycone) 
765.4431(18.994, GlcAHed) 
925.5151(19.028, ?) 
809.4341(19.05, Unknown - Hed) 
809.4313(19.243, Unknown) 
1113.5566(19.29, Unknown) 
765.4424(19.41, Hex-Hex-Hederagenin) 
939.498(19.535, 3-Rha-Xyl-GlcA) 
925.4822(19.55, Hex-Hex-Rha-SoyE) 
793.4408(19.62, Hex-HexA-455 ?) 
795.4526(19.819, Hex-Hex-Hederagenin) 
501.3228(19.881, Mediagenic Acid) 
1067.5479(19.89, Leaf) 
1083.5422(19.89, Leaf) 
487.3421(20.637, Bayogenin) 
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633.4041(20.989, Hex-Hederagenin) 
647.4343(20.997, GlcA-Hederagenin) 
647.3817(21.57, GlcA-Hederagenin) 
647.3814(21.59, GlcA-Hederagenin) 
617.4049(22.001, Hex-SoyE?) 
631.3854(22.029, ?) 
485.3254(22.89, New Aglycone (Aglycone Mix)) 
1057.5605(23.05, Unknown) 
471.3484(23.129, Hederagenin) 
515.3385(23.54, Zhanic Acid Aglycone?) 
515.3362(25.46, Zhanic Acid Aglycone?) 
455.3528(28.886, SoyE) 
793.5449(33.93, Rha?) 
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	Authentic Standards David Huhman
	161.0239 (4.45, Umbelliferone )
	1087.4955 (13.728, 3-Glc-Glc-28-Ara-Rha-Xyl Medicagenic Acid )
	1383.6057 (11.26, O Zhan Stand )
	1545.6609 (11.39, O Zhan Stand )
	1545.6595 (11.56, O Zhan )
	941.5112 (17.955, Rha-Gal-GlcA-SoyB )
	1073.5208 (14.15, 3-Glc-28-Ara-Rha-Xyl Medicagenic Acid  )
	351.0705 (2.4, ChlorogenicAcid )
	269.0441 (10.189, Apigenin  )
	269.0441 (2.449, pel_3_O  )
	267.0671 (12.53, 7-hydroxy-3-methoxyflavone )
	415.1044 (4.17, Daidzin  )
	415.1044 (4.42, Daidzin  )
	163.0386 (4.99, m-coumaric acid )
	445.079 (6.51, quercitrin )
	431.0962 (7.18, apigenin-7-O-glu )
	269.248 (32.39, 6-hydroxy genistein )
	285.0389 (1.96, CY_3_O  )
	175.0378 (6.35, 4MethylUmbelliferone )
	271.0606 (6.83, Narigenin-7-O-glucoside - aglycone )
	269.0816 (14.11, medicarpin )
	431.0989 (5.97, Genistin )
	193.0482 (4.9, Ferulic acid )
	433.1123 (6.83, Narigenin-7-O-glucoside )
	381.0609 (4.84, scopoletin dimer)
	315.0123 (6.95, myricetin )
	299.0182 (8.81, Quercetin )
	447.0925 (6.1, luteolin-5'- 7-O-glucoside )
	283.0606 (15.173, Biochanin  )
	283.061 (15.37, 7-methoxy apigenin )
	179.0367 (2.78, caffeic acid )
	269.045 (10.06, Genistein )
	163.0382 (6.12, o-CoumaricAcid )
	593.1554 (6.99, kaempferol-7-neohesperidoside )
	299.023 (8.64, Quercetin  )
	503.1612 (0.64, Cellotrise )
	447.0938 (7.05, kaempferol-7-O-glucoside )
	447.0924 (7.1, luteolin4'- 7-O-glucoside)
	593.1505 (6.25, kempferol-3-O-rutinoside )
	461.0737 (5.43, CY_3_O  )
	299.0566 (10.894, chrysoecin  )
	299.057 (11.07, diosmetin )
	267.0663 (8.47, Formononetin_7_OG  )
	267.0656 (8.64, Ferulic acid )
	193.0492 (5.37, 3-Hydroxy-4-methoxycinnamic acid )
	579.175 (7, Naringin )
	285.0502 (8.36, eriodictyol )
	459.0567 (5.38, scutellarein-&-0-glucuronide )
	283.0602 (10.92, Sissotrin )
	301.0335 (5.08, taxifolin )
	447.0597 (6.69, luteolin-4-O-glu )
	607.1699 (7.478, diosmin )
	117.0188 (0.89, succinic acid )
	609.1505 (5.14, luteolin-3-7-di-O-glu )
	579.1342 (5.95, luteolin 7-O-glucoside )
	285.0407 (8.68, Luteolin  )
	325.0919 (4.25, o-Coumaric acid-B-glucoside )
	299.0565 (15.26, kaempferide )
	153.0178 (1.76, gentisic acid )
	167.0346 (4.9, 5-Methoxysalicylic acid )
	283.0614 (10.68, sissotrin )
	255.0669 (7.894, Liquiritin )
	431.098 (5.54, genistoside )
	431.0971 (5.56, Vitaxin )
	283.0257 (8.96, Luteolin )
	271.0607 (9.88, Naringenin  )
	271.0598 (10.07, Naringenin )
	289.0726 (3.22, Epicatechin )
	135.1213 (2.07, 1-Hydroxybenzotriazole )
	301.0353 (4.862, DHQ  )
	267.0667 (12.35, 7-hydroxy-2-methoxyflavone )
	255.0667 (11.7, isoliquiritigenin  )
	577.1594 (7.135, rhoifolin )
	284.0313 (11.05, scutellarein )
	417.1193 (19.03, gardenin A )
	253.0468 (14.76, chrysin  )
	163.0385 (3.92, p-Coumaric acid )
	451.1235 (3.09, EpicatechinGlucoside )
	285.0396 (10.34, Kaempferol )
	255.0662 (8.13, Liquiritigenin )
	433.1139 (4.81, naringenin 4'-O-glucoside )
	285.0398 (9.11, Luteolin )
	237.0546 (17.3, 3Hydroxyflavone )
	299.0914 (14.03, faureral )
	415.104 (3.45, Puerarin  )
	191.0344 (4.9, Scopoletin )
	177.0158 (2.81, Esculetin )
	447.0931 (5.4, luteolin3'- 7-O-glucoside)
	253.0481 (8.25, Daidzein )
	283.0607 (9.08, Glycitein )
	144.0464 (3.69, alpha-Cyano-3-hydroxycinnamicacid fragment)
	431.0971 (6.451, Genisitin  )
	663.3777 (17.53, 3-Glc-MedicagenicAcid )
	285.0398 (10.61, Kaempferol )
	445.112 (10.92, sissotrin )
	358.0234 (0.84, 50ngSinigrin_MW397_46 Indofine  )
	349.0707 (6.35, 4MethylUmbelliferone - Dimer )
	1677.7001 (11.45, O Zhan Stand )
	313.0713 (15.84, irisolidone )
	237.0551 (18.72, 5-hydroxyflavone )
	301.0332 (8.81, Quercetin )
	289.0712 (2.4, Catechin )
	957.4825 (17.4, Glc-Gal-GlcA-SoyB )
	957.5084 (17.414, Soy Mix Stand )
	287.0545 (2.4, Catechin fragment)
	593.1508 (4.45, saponarin )
	151.0382 (4, isoVanillin )
	237.0545 (11.95, 7Hydroxyflavone )
	465.1035 (1.96, CY_3_O )
	237.0546 (11.64, 4Hydroxyflavone )
	609.1814 (7.64, hesperidin )
	593.1312 (9.53, tiliroside )
	449.108 (2.449, pel_3_O  )
	315.0515 (9.28, 6-methoxyluteolin )
	315.087 (12.62, eucomol )
	227.0721 (7.12, resveratrol )
	151.02 (1.76, gentisic acid fragment)
	267.0669 (11.95, 4-hydroxy-7-methoxy flavone )
	267.0295 (6.77, orionin )
	237.0557 (13.2, 6Hydroxyflavone )
	267.0285 (12.25, Baicalein )
	267.0666 (12.07, 7-hydroxy-4-methoxyflavone )
	237.0542 (13.37, 2Hydroxyflavone )
	149.0602 (8.4, HydroCinnamicAcid )
	607.1701 (7.82, NeoDiosmin  )
	609.1821 (8, neohesperidin )
	237.0541 (12, 5-hydroxy-flavone )
	301.0716 (10.56, homo-eriodictyol )
	1007.3277 (0.64, Cellotrise - Dimer )
	911.5005 (18.303, Rha-Ara-GlcA-SoyB )
	473.1038 (13.2, 6Hydroxyflavone - Dimer )
	577.1187 (4.1, lucenin B )
	473.1036 (11.95, 7Hydroxyflavone - Dimer )
	343.0826 (15.48, nevadensin )
	577.1584 (6.76, isorhoifolin )
	265.0492 (5.51, tectochrysin )
	408.0443 (1.82, 50ngBenzylglucosinolate_C14H18O9NCH3_4Canada )
	147.044 (8.92, trans-cinnamic acid )
	422.0589 (2.95, 50ngPhenylEthylglucosinolate_Chromadex )
	473.1023 (18.97, 5-Hydroxyflavone - Dimer )
	471.3469 (23.17, hederagenin )
	269.0446 (7.3, 6,7,4-Trihydroxyflavone )
	285.04 (4.89, 3',4''7'8-tetrahydroxyflavone )
	285.0407 (5.039, 7,3,4,5-tetrahydroxyflavone )
	285.0418 (6.84, 3,6,2,4-tetrahydroxyflavone )
	285.0423 (7.25, 3,3,3,4-tetrahydroxyflavone )
	153.0168 (1.33, 3,5 dihydroxybenzoic acid )
	283.0602 (15.31, 4,5-dihydroxy-7-methoxy isoflavone )
	283.06 (15.375, 3',4'-O-methoxyflavone )
	179.035 (2.79, 5,6,7-OH flavone )
	301.0353 (6.989, 5,7,3,4,5-penthahydroxyflavone )
	609.1476 (5.4, luteolin-3,7-O-glu )
	285.0413 (8.4, 3,6,2,3-tetrahydroxyflavone )
	253.0477 (10, 4',6-dihydroxy aurone )
	253.0475 (10.06, 4,6,OH-aurone )
	195.0645 (5.53, 3,5,Dimethoxy4Hydroxyacetophenone )
	253.0491 (8.05, 7,4-OH-flavone )
	297.0791 (8.85, 4,6-dimethoxyisoflavone-7-O-beta-D-glucoparanoside )
	311.0909 (13.12, 3',4'-methoxy-7-hydroxy-flavone )
	341.0981 (15.21, 2-OH-5,7-dimethoxy-isoflavone )
	301.0373 (5.022, 3,7,3,4,5-pentahydroxyflavone )
	299.0946 (12.15, 5,7-dimethoxyapigenin )
	341.1035 (16.22, 7,4-dimethoxyflavone )
	253.0475 (11.75, 3,4-dihydroxy aurone )
	151.0347 (6.89, 2,6,Dihydroxyacetphenone )
	151.0025 (1.51, 3,4DiHydroxyBenzoicAcid )
	151.0399 (5.55, 2,4,Dihydroxyacetophenone )
	151.039 (4.81, 2,5,Dihydroxyacetophenone )
	223.0607 (5.15, 3,5-dimethoxy-4-hydroxy oxycinnamic acid )
	285.0761 (14.28, 5,7-dihydroxy4'-methoxy-flavone )
	341.1031 (14.71, ?5,4-dimethoxyflavone )
	297.0778 (17.81, 7,4-dimethoxy-3hydroxyflavone )
	167.0346 (5.01, 2,4,6,Trihydroxyacetophenone )
	297.0763 (19.72, 4,7-dimethoxy apigenin )
	267.0285 (12.18, 5,6,7-trihydroxy-flavone )
	237.0549 (12.71, 3',7-hydoroxy-flavone )
	297.0761 (12.51, 3,3',4'-methoxy-phenylo-7-OH-Coumarin )
	371.1106 (18.4, 5,7,4-trimethoxy aurone )
	327.0863 (21.03, Kaempferol-3,7,4-trimethyl ether )
	401.1241 (16.62, 7,8,3,4-tetramethoxy aurone )
	224.046 (17.71, 1,8,9-Anthracenetriol )
	Authentic Standards John Snyder
	469.33181 (24.73, GLYCYRRHETINIC ACID, 18Beta)
	471.34746 (24.08, COROSOLIC ACID)
	471.34746 (23.08, HEDERAGENIN)
	471.34746 (23.15, PYGENIC ACID A)
	471.3469 (23.17, hederagenin )
	487.342375 (18.44, ASIATIC ACID)
	455.352545 (22.81, Oleanolic acid)
	Literature and Empirical Validation David Huhman
	462.0923 (7.66, 7-Methylthio-n-heptyl-glucosin )
	494.0787 (6.83, 4-Benzoyloy-n-butyl-glucosino )
	524.0737 (10.924, 6'Benzoyl-4-methyl-sulfinyl-bu )
	402.0891 (4.92, 4-Methylpentyl-glucosio )
	448.0772 (5.549, 6-Methylthio-n-heyl-gluc )
	434.0621 (3.6, 5-Methylthio-n-pentyl-glucosinolate )
	480.0628 (5.351, 3-Benzoyloy-ethyl-glucosinola )
	406.03 (1.56, 3-Methylthio-n-propyl-glucosinolate )
	436.039 (0.86, 4-Methylsulfinyl-n-butyl-gluco )
	447.0516 (2.613, Indol-3-ylmethyl-glucosinolat )
	463.0471 (2.613, Methoyindol3-ylmethyl glucosinolae )
	430.1207 (9.971, iso-Heptyl glucosinolate from Armoracia lapathifolia )
	416.1057 (7.205, iso-Hexylglucosinolate from Armoracia lapathifolia )
	376.0383 (0.7, 3-Hydroy-n-propyl-gluc )
	464.0729 (1.349, 6-Methylsulfinyl-n-heyl-glucosinolate )
	492.1024 (3.22, 8-Methylsulfinyl-n-octyl glucosinolate  )
	420.0447 (2.14, 4-Methylthio-n-butyl-glucosinolate )
	376.0371 (0.86, 3-Hydroypropyl glucosinolate )
	390.0516 (0.86, 4-Hydroy-n-butyl-glucosinolate )
	476.108 (9.99, 8-Methylthio-n-octyl-gluc )
	372.0416 (1.69, 3-Butenyl-glucosinolate )
	450.0562 (0.97, 5-Methylsulfinyl-n-pentyl-glucosinolate)
	478.0874 (2.02, 7-Methylsulfinyl-n-heptyl-glu )
	Putative Identification Based on MS/MS analysis John Snyder
	1067.5469 (19.58, soyasapogenol B_2x Rha, Hex )
	1383.6111 (11.69, Gypsogenin_Arab/xyl,  )
	1235.5293 (11.316, zanhic acid_2x GlcA, Arab/xyl )
	1251.5713 (11.963, zanhic acid?)
	1397.5726 (11.186, zanhic acid_2x arab/xyl, GlcA, Hex )
	1221.5436 (11.926, Gypsogenin_Arab/xyl )
	1221.562 (11.963, Gypsogenin_Arab/xyl,  )
	1103.5247 (11.39, zanhic acid_GlcA, more)
	1265.5645 (11.154, zanhic acid_? )
	1265.5499 (11.315, zanhic acid_ ?)
	1205.5675 (13.756, Gypsogenin_? )
	1205.5549 (13.83, many possible_3x Arab/xyl, 2x Hex? )
	1161.5352 (13.793, ?)
	1089.5249 (12.06, zanhic acid_HEX, Arab/xyl )
	1089.5249 (12.167, ?)
	1089.5249 (11.389, zanhic acid_? )
	1089.5249 (19.617, gypsogenic acid_? )
	1089.5249 (19.525, gypsogenic acid_3x Rha, hex? )
	1089.5249 (12.203, bayogenin_3x Hex, Rha )
	1089.5249 (13.424, ?)
	1089.5249 (14.089, hederagenin_ara/xyl, 2x HEX )
	1089.5249 (14.699, Gypsogenin?_3x Hex )
	1089.5249 (11.389, bayogenin_3x Hex, Rha )
	469.335 (24.96, possible_Gypsogenin)
	469.3321 (22.01, possible_Gypsogenin)
	469.332 (23.77, possible_Gypsogenin)
	Putative Identification based on m/z and/or fragmentation David Huhman
	1087.4974 (13.81, Mt Leaf  )
	1067.5479 (19.89, Mt Leaf )
	1383.6086 (11.84, Mt Leaf )
	1383.608 (11.97, Mt Leaf )
	1235.5402 (11.61, Mt Leaf  )
	1251.5621 (12.138, Mt Leaf )
	1397.5889 (11.29, Mt Leaf  )
	1221.554 (12.059, Mt Leaf )
	1103.4962 (11.77, Mt Leaf  )
	1205.5613 (13.93, Mt Peak  )
	1161.5363 (13.9, Mt Peak)
	1089.5117 (12.225, Mt Leaf )
	1251.5675 (11.5, Mt Leaf  )
	941.5107 (17.877, Ara-Rha-GlcA-Bayogenin )
	941.5099 (17.6709, 3-Rha-Gal-GlcA-Soyasapogenol B )
	1367.6135 (13.63, 3Glc-Glc-28-Ara-Rha-Xyl-Api-Med )
	1083.5422 (19.89, Mt Leaf )
	1235.5725 (13.8147, Mt Peak  )
	1235.5703 (13.827, 3-GlcA-28-Ara-Rha-Xyl Medicagenic Acid )
	1235.5771 (13.84, Mt Peak Leaf  )
	793.5449 (33.93, Rha-? )
	957.507 (13.65, Hex-Hex-Hex-Hederagenin )
	957.5068 (13.85, Hex-Hex-Hex-Hederagenin )
	957.4758 (13.979, Glc-Gal-GlcA-SoyB )
	1307.5969 (13.562, Mt Leaf )
	939.498 (19.535, 3-Rha-Xyl-GlcA )
	971.4856 (14.16,  Mt peak )
	1119.564 (10.18, Mt Leaf  )
	1085.5544 (16.206, Leaf )
	809.4349 (17.945, Hex-HexA-Hederagenin )
	823.4152 (14.05, Hex-HexA-New Aglycone )
	955.495 (14.93, Rha-Hex-? )
	1089.5494 (10.25, Mt Leaf  )
	973.5025 (12.84, Hex-Hex-Hex-Bayogenin )
	1413.6189 (11.609, Mt Leaf  )
	987.4836 (12.536, Mt Root )
	987.4818 (12.52, Mt Root )
	823.4148 (14.09, GlcA-Glc-NewAglycone  )
	809.4337 (13.816, Hex-HexA-Hed )
	955.4971 (14.376,  Mt peak-? )
	927.497 (15.1, Hex-Hex-Pent-Hederagenin )
	985.4704 (12.928, Mt Root )
	1119.5602 (11.57, Mt Root )
	1145.5433 (13.81, Mt  Leaf  )
	911.4344 (14.06, 3-Glc-28-Glc-Malonyl-Med  )
	793.4389 (16.23, HexA-Hex-Soy E )
	795.4543 (17.945, Gal-GlcA-SoyB )
	941.514 (16.97, Rha-Hex-Hex-Hederagenin )
	811.4469 (12.441, GlcGlcBayogenin )
	811.4475 (12.47, Hex-Hex-Bayogenin-?)
	925.4822 (19.55, Hex-Hex-Rha-SoyE )
	955.4933 (15.26,  )
	955.4926 (15.356, GlcA-? )
	793.4408 (19.62, Hex-HexA-455 ? )
	811.4481 (16.92, Hex-Hex-Bayogenin )
	925.5173 (14.86, Rha-Hex-Hex-SoyE may be related to 1087 )
	987.4858 (12.466,  Hex-Hex-Hex-Med Scotts work )
	1043.5476 (17.45, ? )
	795.4542 (18.357, Hex-Hex-Hederagenin? )
	957.5092 (16.05, Rha-Hex-Hex-Bayogenin )
	809.4334 (18.78, Glc-Glc-hed? )
	941.5093 (17.96, Leaf )
	1057.4866 (13.65, Mt Peak Root )
	1101.5518 (13.55, Glc )
	795.4526 (19.819, Hex-Hex-Hederagenin )
	989.4892 (8.257, Mt Root )
	825.4666 (15.77, GlcGlcMed? )
	825.4643 (15.95, GlcGlc? )
	649.3969 (17.47, Hex-Bayogenin )
	649.394 (17.44, HexA-Bayogenin )
	663.3756 (15.49, Hex-Medicagenic Acid )
	663.3762 (17.48, Hex-Medicagenic Acid )
	1087.5739 (14.86, Hex-Rha-Hex-Hex-SoyE )
	647.3831 (14.14, Hex-New Aglycone )
	1119.5729 (7.845, GlcRha? )
	809.4335 (15.29, Hex-HexA-Hederagenin )
	749.4464 (15.57, Hex-Pent-Soyasapogenol E )
	765.4424 (19.41, Hex-Hex-Hederagenin )
	989.4884 (9.54, Glc )
	1119.5544 (12.3889, Rha-Hex-Hex-Hex-Bayogenin )
	1103.517 (10.07, Mt Leaf )
	809.4333 (15.77, HexA-Hex-Hederagenin )
	1159.4995 (14.143, Mt peak-? )
	647.3798 (18.78, Hex-New Aglycone )
	501.3228 (19.881, Mediagenic Acid )
	795.4525 (14.99, Hex-Hex-Hederagenin )
	1085.5581 (16.231, Saponin?  )
	1117.5343 (10.661, Mt Root )
	825.4304 (16.998, 3-Glc-Glc-MedicagenicAcid?)
	647.4343 (20.997, GlcA-Hederagenin )
	765.4431 (18.552, Ara-GlcA-SoyB )
	809.4341 (19.05, Unknown - Hed )
	1105.5775 (10.337, Glc )
	957.507 (9.305, Mt Root )
	647.3817 (21.57, GlcA-Hederagenin )
	809.4313 (19.243, Unknown )
	631.3854 (22.029, ? )
	1073.5581 (17.02, ? )
	765.4431 (18.994, GlcAHed )
	925.5151 (19.028, ? )
	705.3849 (18.28, 3-Glc-Malonyl-MedicagenicAcid )
	855.4741 (15.86, GlcAGlcHed? )
	1113.5566 (19.29, Unknown )
	989.5104 (8.928, Glc )
	487.3421 (20.637, Bayogenin )
	1367.5752 (11.666, Mt Leaf  )
	971.4877 (16.129, HexHex )
	633.4041 (20.989, Hex-Hederagenin )
	987.4865 (10.766, GlcGlcGlc )
	515.3385 (23.54, Zhanic Acid Aglycone? )
	485.3254 (22.89, New Aglycone )
	897.4828 (18.159, 3-Ara-Glc-Ara-Hederagenin )
	617.4049 (22.001, Hex-SoyE? )
	749.4512 (17.25, Pent-Hex-SoyE )
	853.4593 (18.357, ? )
	1027.5154 (16.62, Saponin V-? )
	1129.5471 (15.56, Leaf )
	1057.5605 (23.05, Unknown )
	515.3362 (25.46, Zhanic Acid Aglycone? )
	1113.5524 (18.45, Unknown )
	1073.5574 (17.339, GlcA-? )
	Putative Identification based on m/z and/or fragmentation Mohamed Bedair
	1073.5175 (14.1311, 3-Glc-28-Ara-Rha-Xyl Medicagenic Acid )
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	607.1294 (5.1396, Kaempferol Glucuronide Rhamnose )
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