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3.1. Formulation and Applications

An economic problem of great practical importance is to choose the
Jocation of facilities, such as industrial plants or warehouses, in order to
minimize the cost (or maximize the profit) of satisfying the demand for some
commodity. In general there are fixed costs for locating the facilities and
transportation costs for distributing the commodities between the facilities
and the clients. This problem has been extensively studied in the literature

and is commonly referred to as the plant location problem, or facility

location problem. When each potential facility has a capacity, which is the

maximum demand that it can supply, the problem is called the capacitated

facility location problem, When the capacity hypothesis is not needed, we

have the simple or uncapacitated facility location problem, or, for short,

the UFL Problem.

The mathematical formulation of these problems as integer programs has
proven very fruitful in the derivation of solution methods. To formalize the
UFL Problem, we consider a set of clients [ = {1,...,m} with a given demand
for a single commodity, and a set of sites J = {1,...,n} where facilities
can be located. In the literature it has been traditional to use the phrase
"facility Jj is open" to mean that a facility fis actually established at
site j. Let fj be the given fixed cost of opening facility j and assume
there is a known profit c,. that is made by satisfying the demand of client

1]

i from facility j. Typically, ¢ is a function of the production costs

1J
at facility Jj, the transportation costs from facility j to client 1, the
demand of client 1 and the selling price to client 1. For example,

iy T di(pi'qj'tij> where d. fis the demand, p, the price per unit, a;

the production cost per unit and tij the transportation cost per unit.
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The UFL Problem is to open a subset of facilities in order to maximize
total profit, given that all demand has to be satisfied. An instance of the
problem is specified by integers m and n, an mxn matrix C = {Cij} and a
Ixn matrix f = {fj}. Note that there is no loss of generality in assuming
fj >0 for all jeJ since if fk < 0 every optimal solution contains
facility k.

For any given set S of open facilities, it is optimal to serve client

i from a facility j for which Cis is maximum over j ¢ S. So, given S,

J
the profit is z(S) = J max Cij - 5y f.. The problem is to find a set S
iel jeS JjeS J
that yields the maximum profit Z, that is Z = max z(S). This can be
Sed

viewed as a combinatorial formulation of the problem,

An integer linear programming formulation is obtained by introducing the
following variables. Let Xj =1 1if facility Jj 1is open and Xj = {
otherwise; ;)/1.j = 1 1if the demand of client 1 1is satisfied from facility

j and yij = 0 otherwise. The integer program is

Z=max ) ) Ciy..- ) F.x; (1.1)
iel jed N g I
Ioygy=l all i el (1.2)
Jed
Yi S %45 all iel, jeld (1.3)
Xis Yij € 0,1y all iel, jeld. (1.4)

The constraints (1.2) guarantee that the demand of every client is satisfied,
whereas (1.3) guarantees that the clients are supplied only from open

facilities.
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: c. for

Note that because of (1.2) if «c.. 1is replaced by Cij =S435 *

1]
all j ¢ J, then the profit of each feasible solution is changed by Cye
Hence we can add a constant to any row of matrix C and the set of optimal
decisions remains the same. In particular, the selling price of the commodity
to client 1 1is a constant added to row i. Therefore, only the costs

(production, transportation and fixed operating costs) are relevant for the

decision., This is why in the literature the UFL Problem is often presented as

min VY diy..+ ) fx. (1.1")
iel jeo TN g I

subject to (1.2)-(1.4) where dij js the cost (production plus transpor-
tation) of serving client i from facility Jj. This formulation is math-
ematically equivalent to (1.1)-(1.4) since (1.1') becomes -(1.1) by setting
Cij = 'dij' In other words, costs can simply be regarded as negative profits.
In the integer program (1.1)-(1.4), the xj's are the strategic vari-
ables, Once a set of xj's that satisfy (1.4) are specified, it is simple
to determine a set of yij.S that solves the integer program for the fixed
x.'s, Even if we drop the integrality requirement on the yij's, an optimal

J

set of yij‘s is given by yij* =1 and Yij = 0, j # J* where Cij* =

max{cij: Xj =1, j e J}. Thus (1.4) can be replaced by

Xj € {0,13, Yij >0 all iel, Jed. (1.4")

The formulation (1.1)-(1.3), (1.4') is a mixed integer linear program.



An integer linear program equivalent to (1.1)-(1.4) is obtained by

replacing the constraints (1.3) by the more compact set of constraints

o<mx, all joe Jd. 1.3"
%Iyu_me Je ( )

To see that (1.3) can be replaced by (1.3'), note that when xj = 0 both

(1.3) and (1.3') imply yjj =0 for all 1 ¢ I, and when X5 = 1 both (1.3)
and (1.3') are satisfied for all choices of yij that satisfy the constraints
(1.2). However, the two formulations are equivalent only for 0-1 values of
the variables X g For each j, (1.3') is obtained by summing (1.3) over all
i ¢ I; hence any solution to (1.2), (1.3) is also a solution to (1.2) and

(1.3'). But the converse is false when 0 < xj < 1; i.e. the feasible region

defined by (1.2), (1.3"') and
<1l,y,,>0 all ie¢lI, jel (1.5)

strictly contains the region defined by (1.2), (1.3) and (1.5).

In the UFL Problem, the number of facilities that are open in an optimal
solution is not specified; it is determined by a solution of (1.1)-(1.4).
From a practitioner's standpoint, it might be useful to consider a formulation
where the number p of open facilities is a parameter of the problem. This
is realized by adding one of the following constraints to the program (1.1)-

(1.4)



¥ X5 =P (1.6)
Jed
or
Lox <P
iy (1.7)

where p is some given integer, 1 < p < n., The formulation (1.1)-(1.4),

(1.6) is called the p-facility location problem. When fj =0 for all

je d, (1,1)-(1.4), (1.6) is known as the p-median problem., This model is

the topic of Chapter 2.

In addition to the classical interpretation of the UFL Problem given above,
the mathematical model (1.1)-(1.4) has several other applications. We conclude
this section by giving two such applications. First we interpret (1.1)-(1.4) as
as bank account location problem, (see Cornuejols, Fisher, Nemhauser, 1977b).
The second example occurs in clustering analysis, (see Mulvey and Crowder,

1979). Other applications arise in lock-box location (Kraus, Janssen and
McAdams, 1970), location of offshore drilling platforms (Balas and Padberg,
1976), economic lot sizing (Krarup and Bilde, 1977), machine scheduling and
information retrieval (Hansen and Kaufman, 1972) and portfolio management (Beck
and Mulvey, 1982). The formulation (1.1)-(1.4) also arises as a subproblem in
several contexts, such as some problems in network design, vehicle routing and,
of course, location theory when additional constraints, such as capacity

constraints, are present,

A Bank Account Location Problem

The number of days required to clear a check drawn on a bank in city J
depends on the city i 1in which the check is cashed. Thus, to maximize its

available funds a company that pays bills to clients in various locations may



find it advantageous to maintain accounts in several strategically located
banks. It would then pay bills to clients in city i from a bank in city J
that had the largest clearing time. The economic significance to large
corporations of such a strategy is discussed in an article in Businessweek
(1974).

To formalize the problem of selecting an optimal set of account
locations, let I = {1,...,m} be the set of client locations, J = {l,...,n}
the set of potential account locations, fj the fixed cost of maintaining an
account in city J, di the dollar volume of checks paid in city 1, and ¢ij
the number of days (translated into monetary value) to clear a check issued
in city Jj and cashed in city i. All this information is assumed to be
known and Cij
from an account in city Jj. Let xj =1 if an account is maintained in city

= di¢ij represents the value of paying clients in city 1

j, and Xj = 0 otherwise; yij =1 if clients in city 1 are paid from
account j, and yij = 0 otherwise. Then the account location problem can
be stated as (1.1)-(1.4).

Besides desiring to delay payments for as long as possible, corporations
also want to collect funds due to them as quickly as possible. This can be
done by situating check collection centers or "lock-boxes" at optimal
locations. Since (1.1) and (1.1') are mathematically equivalent, (1.1)-(1.4)

is also a model for the lock-box problem,

A Clustering Problem

Cluster analysis consists of partitioning objects into classes, known as
clusters, in such a way that the elements within a cluster have a high degree
of natural association among themselves while the clusters are relatively

distinct from one another. Cluster analysis is used in biology, psychology,



medicine, artificial intelligence, pattern recognition, marketing research,
automatic classification, statistics, and other areas,

et I = {1,...,m} be the set of objects to be clustered, The
clustering is done around objects that "represent” the clusters. Let
J={1,...,n} be the set of eligible "cluster representatives”., In many
applications J = I. However in some applications 'Jl < ‘Il, that is only
objects with certain characteristics can qualify as representatives (e.g.
survey papers and books in the automatic classification of technical material

in some field). In other cases !I‘ < 'J , (e.g. in the automatic classi-

fication of technical material, an alternative to the above policy is to
represent a cluster by a 1ist of key words. This 1ist does not need to
match exactly that of any single paper in the cluster).

The clustering problem is defined relative to a matrix of parameters
c.. that represent the similarity between objects 1 and j. For example

1]
c.. could be the number of common key words associated with technical papers

1J

i and j. Anderberg (1973) gives several ways of calculating the similar-
ity matrix C. In many applications there are no natural fixed charges,
rather, the constraint (1.6) is added to the formulation (1.1)-(1.4) and the
problem is solved as a p-median problem. As an alternative, artificial fixed
charges can be introduced and then the problem is solved as a UFL problem.

It is interesting to note that the method which consists of introducing
artificial fixed charges and varying their value has been proposed by some
authors as a way of solving the p-median problem for some values of p

(Marsten, 1972) and Mavrides, 1979). In general, however, the p-median

problem cannot be solved for all values of p 1in this way.



3.2. Brief Historical Overview

There is a vast literature on the UFL Problem. Krarup and Pruzan (1983)
give an up-to-date survey. We will not repeat their effort here. However,
to set the stage for the ensuing sections, we will mention the main solution
approaches and cite some basic references.

The first approaches were heuristic. One of the earliest of these is
due to Kuehn and Hamburger (1963). Their heuristic approach 1is actually
designed for a wider class of Tocation problems. It consists of two
routines. The first routine opens facilities sequentially in an order that
maximizes the increase of the objective function value at each step. It
stops when adding a new facility would decrease the value, Kuehn and
Hamburger called it the "add routine"; in the modern literature such a

procedure is called a greedy heuristic because of its appetite for maximum

improvement at each step. Their second routine is the "bump and shift
routine". It eliminates (bumps) any facility that has become uneconomical
because of the presence of other facilities chosen subsequently by the greedy
heuristic. Then, starting from this feasible solution, it considers
interchanging an open facility with a closed facility. Such a pairwise
interchange is performed if it improves the current feasible solution and the
procedure stops when a solution has been found that cannot be improved by
such interchanges. In the remainder of this chapter, the shifting procedure

will be referred to as an interchange heuristic.

The greedy and interchange heuristics are the basis of numerous
approximation algorithms. They can, of course, be helpful in exact
algorithms that require feasible initial solutions or use feasible solutions

in other ways, (Spielberg, 1969b; and Hansen and Kaufman, 1972). However,
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when a heuristic is used to obtain a final solution, it is very important to
have an upper bound as we]i so that the user can be confident that the
heuristic solution value is not too far from the optimal value. Cornuejols,
Fisher and Nemhauser (1977b) gave such bounds for the greedy and interchange

heuristics, both a priori worst-case bounds and a posteriori bounds on a

particular solution constructed by the heuristic. In Section 3.5, heuristic
approaches are developed in more detail. 1In Section 3.9, we mention that
some of the heuristic results can be generalized to the maximization of
submodular set functions (see Nemhauser, Wolsey and Fisher, 1978).

General solution techniques for finding optimal solutions to integer
programs have been specialized to the UFL Problem. The mixed integer linear
programming formulation can be solved by Benders decomposition (see Benders,
1962). This approach was proposed by Balinski and Wolfe (1963) and appears
to have been the first attempt to solve the UFL Problem to optimality. The
computational experiments were discouraging (see Balinski, 1965), and this
method was abandoned until recently. Magnanti and Wong (1981) develop
techniques to accelerate the convergence of Benders decomposition. They
generate strong cuts from the set of feasible Benders cuts and by so doing
they are able to reduce the number of integer programs to be solved.
Nemhauser and Wolsey (1981) consider the Benders cuts in the more general
framework of maximizing a submodular set function.

Branch-and-bound algorithms for the UFL Problem use the fact that it is

not necessary to constrain the variables y to be integral. Branching is

1J
done on a binary enumeration tree with respect to the variables Xj' Bounds
are obtained from one of the two linear programming relaxations - (1.1),

(1.2), (1.5) and (1.3) or (1.3"). The earlier algorithms used the linear
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program with (1.3'), which we call the weak linear programming relaxation.

Efroymson and Ray (1966) showed that this linear program can be solved
analytically so that the bound at each node of the enumeration tree could be
computed very quickly in constant time. Improvements to Efroymson's and
Ray's algorithm were made by Spielberg (1969a), Khumawala (1972) and Hansen
(1972). However, the bounds obtained from the weak linear programming
relaxation are generally not sufficiently strong to curtail the enumeration
adequately.

As we observed previously, the constraints (1.3) imply (1.3') but not
conversely, The linear programming relaxation that uses (1.3) is called the

strong linear programming relaxation (SLPR). ReVelle and Swain (1970), among

others, observed that SLPR is so effective that its solution is very often
integral. Thus a branch-and-bound algorithm that uses SLPR to compute bounds
is very likely to perform well in the sense that very little (if any) enumer-
ation will be required. However, because of its size, it is not efficient to
solve SLPR directly by the simplex method,

Much of the recent research on the UFL Problem has involved the
development of special purpose algorithms for solving SLPR., Marsten (1972)
used parametric linear programming and a special implementation of the
simplex method., Garfinkel, Neebe and Rao (1974) used Dantzig-Wolfe
decomposition. Schrage (1975) devised a generalized simplex method to treat
the variable upper bounds (1.3). Guignard and Spielberg (1977) suggested a
version of the simplex method that pivots only to integral vertices of the
polytope of feasible solutions to (1.2), (1.3), and (1.6). Cornuejols and

Thizy (1982b) used a primal subgradient algorithm,
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Dual algorithms or algorithms that solve the dual of the SLPR have the
advantage that upper bounds are obtained from any dual feasible solution.
Thus a sufficiently good bound may be obtained to fathom a node of the
enumeration tree prior to solving the dual to optimality. Duality is
discussed in Section 3.4.

Bilde and Krarup (1977) and Erlenkotter (1978) used heuristic methods to
obtain a near-optimal solution of the dual. Erlenkotter went a step further
by using the complementarity slackness conditions of linear programming to
improve this bound. His procedure was so effective that in 45 out of the 48
problems that he tested, optimality was reached at the first node of the
branch-and-bound algorithm. His DUALOC code appears to outperform all exist-
ing algorithms,

A Lagrangian dual of the formulation (1.1)-(1.4), proposed by Geoffrion
(1974), is obtained by weighting the constraints (1.2) by multipliers and
placing them in the objective function. It can be solved using subgradient
optimization, (see Held, Wolfe and Crowder, 1974). The Lagrangian approach
can also be used for the p-median location problem., Some computational
results are reported by Narula, Ogbu and Samuelsson (1977), Cornuejols,
Fisher, Nemhauser (1977b) and Mulvey and Crowder (1979). Krarup and Pruzan
(1983) mention a different Lagrangian dual obtained when constraints (1.3)
(instead of (1.2)) are weighted by multipliers and placed in the objective
function,

In Section 3.6, we present and relate some of the methods for solving

SLPR.
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3.3. Computational Complexity

An algorithm is said to be a polynomial-time algorithm for problem P,

if for all instances of P (possible data sets), the computing time of the
algorithm can be bounded by a polynomial function of the data size. If L
measures the data size and k 1is the order of the polynomial, we say that
the computing time of the algorithm is O(Lk). Sometimes it is more conve-
nient to express the computing time as a function of basic data parameters,
such as the dimension of a matrix or the number of nodes in a graph. Then,
but only then, it is assumed that all arithmetric operations and compari-
sons are performed in unit time.

A fundamental theoretical question, also of some practical importance,
is whether a given combinatorial optimization problem can be solved by some
polynomial-time algorithm. Denote by P the class of problems that can be
solved in polynomial-time, that is by some polynomial-time algorithm. For
most combinatorial optimization problems of practical interest, the question -
"Are they in P?" - has not been answered. A significant step was made by
Cook (1971) and Karp (1972) who introduced the notion of NP-complete
problems. This is a class of combinatorial problems that are equivalent in
the sense that either all or none of these problems can be solved by a
polynomial-time algorithm.

At present no polynomial-time algorithm is known for solving any
NP-complete problem and it has been widely conjectured that none exists. A
problem is said to be NP-hard if the existence of a polynomial-time algorithm
to solve it would imply that all NP-complete problems can be solved by a
polynomial-time algorithm. Thus to show that a problem (P) is NP-hard it

suffices to find a polynomial transformation that reduces a known NP-complete
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problem, (see, e.g., the comprehensive 1ist given by Garey and Johnson,

1979), to the problem (P),
Theorem 3.1 The UFL Problem is NP-hard.

Proof: First we need to introduce the node cover problem, Given a graph G

and an integer k, does there exist a subset of k nodes of G that cover
all the arcs of G? (Node v is said to cover arc e if v 1is an
endpoint of e,) The node cover problem is NP-complete, (see Karp, 1972 or
Garey and Johnson, 1979),

We now reduce the node cover problem to the UFL Problem. Consider a
graph G = (V,E) with node set V and arc set E. Construct an instance
of the UFL Problem with the set of potential facilities J = V and set of

clients I =E, Let c,.=2 if v, eV is an endpoint of e, « E and let

iJ J
Cij = { otherwise, Also let fj =1 for all vj ¢ V. This transformation

is polynomial in the size of the graph., A small example of the transformation

is shown in Figure 3.1.

v, f=(1 111 1)

ey 2 2 0 0 o0
2.0 0 2 0

Vg C = 2 0 0 0 2
02 2 0 o0

. . 00 2 2 0
6 000 2 2

Figure 3.1.
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An instance of the UFL Problem defined in this way consists of covering
all the arcs of the graph G with the minimum number of nodes. Thus an
optimal solution of the UFL Problem provides the answer to the node cover
problem, This proves that the UFL Problem is NP-hard. (In the example,

X = Xg = Xg = 1, xj = ) otherwise is an optimal solution to the instance
of UFL. Hence 3 nodes are needed to cover all of the arcs of G.) [

A polynomial transformation that reduces a known NP-hard problem to a
problem (Q) shows that (Q) 1is also NP-hard. An immediate corollary of
Theorem 3.1 is that the p-facility location problem is NP-hard since solving
it for every p=1,...,n provides a solution to the UFL Problem,

Although the UFL Problem is NP-hard, some special cases can be solved 1in
polynomial-time, Kolen (1982) has shown that the UFL Problem is solvable in
time O(r3) when the problem is defined on a tree with r nodes and some
other assumptions are imposed., These are (i) the clients as well as the
facilities are located at nodes of the tree, (ii) a positive length is
associated with each edge of the tree, and (iii) dij is the length of the
path between nodes i and j. Kolen solves the formulation (1.1)', (1.2)-(1.4)
and also shows that SLPR always has an integral optimal solution in this case.

Another interesting case of the UFL Problem that can be solved in
polynomial time was discovered by Krarup and Bilde (1977). The conditions
required by Krarup and Bilde generalize those obtained when a clasical
economic lot size problem is formaulated as a UFL Problem. In this problem
too, it is very significant that SLPR always has an integral optimal solution.

Finally, Barany, Edmonds and Wolsey (1984) have given a polynomial-time
algorithm for a tree partitioning problem that contains both Kolen's and
Krarup's and Bilde's problems., These problems are described and studied in

Section 3.8,
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3.4. Duality
Suppose we are given a feasible solution to the UFL Problem that is
claimed to be optimal or nearly optimal (within a specified absolute or
relative tolerance), We know of only two ways to verify this claim:
a. enumeration: compare, perhaps implicitly, the value of this feasible
solution to all others, and
b. bounding: determine an upper bound on the optimal value of all feasible
solutions that is sharp enough to verify the claim,

Enumeration is useful algorithmically only when it can be done implic-
itly. Generally, this means that the enumerative approach, as in a
branch-and-bound algorithm, uses upper bounds to curtail the enumeration.
Conversely, an algorithm whose primary thrust is bounding may need to resort
to some enumeration to verify the claim.

The point is that good upper bounds, as well as good feasible solutions,
are crucial in solving the UFL Problem, as for that matter, any hard com-
binatorial optimization problem. We will see, however, that the UFL Problem
has many features that make it a relatively easy NP-hard problem.

Duality plays a key role in the determination of upper bounds. The dual

of the strong linear programming relaxation given by (1.1)-(1.3), (1.5) s

W=min J u;+ 7ty (4.1)
iel Jed

Uty 2egy all il jed (4.2)

;gl Wij + tJ. > "fj all jed (4.3)

W.., t. >0 all ie I, je d. (4.4)
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We can eliminate variables and constraints from this formulation by

noting that:

(a,) because of (4.1), we would like to make tj as small as possible,

Thus, for given w,., (4.3) and (4.4) imply that t. = ( ) w,. - f.)+,
i J hp

where (a)+ = max(0,a).
(b.) hence, for given Uss to make tj as small as possible, we would like

to make Wi ; as small as possible., Thus (4.2) and (4.4) imply that

+
+ +
= [0V (c.. - us) - f. ] . 4.5
t; [iél(c13 us) f all j e (4.5)

If we think of u; as the price of the 1ith client, we can interpret tj

as the profits from the jth facility relative to these prices,

Substituting (4.5) into (4.1) yields the condensed dual

W=ming § u;+ § LT (cy - £, (4.6)

u el Jed el

The first term in (4.6) is the value of the clients and the second term is the
value of the facilities. The dual problem (4.6) is to determine values or

prices for the clients to minimize the total value of the resources.

‘ +

If )y [(c;: - u; )
ie1 iJ i

Hence if Uy is increased by a small amount, then tj will be decreased by

+ .
- fj] > 0, then there is a k such that ckj - U > 0.

the same amount so that the objective function (4.6) does not increase. Hence

there is an optimal solution with ) (
iel
Also if wu, > max Ciso then u; can be decreased without increasing the
Jed

+ :
Cij - u;) - fj <0 for all j e Jd.
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objective function (4.6). These observations yield a second condensed dual

W=min } u, (4.7)
U jel
Lo(ers -u) - f. <0 all jed (4.8)
iel ij i J -
u; < max Cij all i ¢ I. (4.9)
Jed

Although both condensed dual formulations are nonlinear, they are
important because they contain only m variables u = (ul’UZ""’um)°
Furthermore, since u 1is unconstrained in (4.6), by duality, we obtain an

upper bound on the primal objective function given by

+ +

W(u) = ¥ w, + ¥ [F (c,o -u) - f.1. (4.10)
iel | jed el 7 J
When (4.8) holds, the upper bound reduces to
Wu) = Uy o (4.11)

)
jel !

A Lagrangian dual of (1.1)-(1.4) is obtained by weighting the constraints

(1.2) by multipliers us and placing them in the objective function. Let

L(u) = max[ ) 7} iy )] (4.12)

. E f.x, + z u'i(l- z y
iel jed j

H Jjed JJ iel Jed 1

subject to (1.3) and (1.4).
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Frequently, a Lagrangian dual provides a tighter upper bound than a

1inear programming dual. But this is not the case here,

Proposition 3.2 L(u) = W(u) for all wu,

Proof: L(u) =max § § (c.. -u)y.. - ) f.x.+ ] wu, subject to
jel jed W 17N 50y 33 40 T
(1.3) and (1.4), Hence
xJ if Cij - Uy >0
yij = 0 if Cij - Uy < 0 (4.13)
0 or xj if Cij - Uy = 0
Thus
L(u) = max J [7 (c]..—ui)+—fj]xj+ T ou.
Xje{O,l} Jed el J iel
Hence
f
1 if +
iel ( ij = ui) - fJ >0
+
o= )y s o= U - f. < 4,14
X < 0 if iél (c13 us) fy<0 ( )
L 0 or 1 otherwise.
Thus

where tj is given by (4.5). 0O

An immediate consequence of Proposition 3.2 is
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Corollary 3.3 L = min L(u) = W,
u

When u satisfies the constraints (4.8), the solution (4.14) satisfies

the complementarity conditions

- f)x. =0 all j e d. (4.15)

Equation (4.15) suggests that if u satisfies (4.8), then X5 = 0 unless
o +
Cov = U
iél ( ij 1>
we should only consider opening those facilities for which
. +
The results of this section will be used in the next two sections in the

- fj = (. In other words, to find a good primal solution,

development of solution techniques for the UFL Problem.
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3.5. Heuristics

The combinatiorial formulation of the UFL Problem max z(S), where
Sed

z(S) = J maxc.. - ] f. can be viewed as a condensed, nonlinear primal
. . 1] .
iel jeS JeS
that depends only on the values of the sets S c J. Based on this obser-
vation numerous authors have proposed heuristics that iterate on the set S
of open locations and avoid an explicit integer programming formulation.

Primal heuristics of this type are described in Section 3.5.1 and a dual

descent heuristic is given in Section 3.5.2.

3.5.1 Primal Heuristics

The Greedy Heuristic.

The greedy heuristic starts with no facilities open. Given a set S of

open facilities, the greedy heuristic adds to S that facility j g S whose

incremental value pj(S) = z(S v {j}) - z(S) s as large as possible, and is
positive. If no such facility exists, it stops with the set S of open

facilities. Formally, the procedure is stated as follows:

0 N
I = 0, 0.(s) = -, t=1.
nitialization S 0, pJ(¢) iZI c1J fJ, t =1
€
. . — t-1
Iteration t Find j, = arg max p.(S"7").
. t-1 Y
JgS

1

If Pjt(5t~1).i 0, stop. The set St' is the greedy

Ly yf s 1L 1f b=,

solution with value ZG = z(S
the greedy solution is sl = {3} (Note that when t =1,

some facility must be opened since S =@ 1is not feasible).
If 5. (sP71) >0, st = sty (53,
Jt t

Set t «t + 1,
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The greedy heuristic requires at most n iterations and each iteration

requires O{nm) calculations. Thus the overall running time is O(nzm).

An Example

We will use the following small example to introduce and motivate the
ideas developed subsequently. Real-world problems are typically much larger
(e.g. m = n = 100). Consider the instance of the UFL Problem defined by the

data:

m=4,n=26, f=(3,2,2,2,3,3) and

Ve ™~
/6 6 8 6 0 6 ™\

b,

6 8 6 0 6 o

Applying the greedy heuristic to the example yields

iteration 1: (pl(¢),...,p6(¢)) = (16,15,15,12,10,13).

Hence =1 and S1 = {1}.

I
iteration 2: (p,({1}),..05p6({1})) = (1,0,-1,-1,-1).

Hence Jj, =2 and s = (1,2}.

iteration 3: (p3({1,2}),.--996({1,2})) = (0,-1,-2,-2).

G

The set S of value 28 = z(s?)

= 17 1is the greedy solution.
We can now use (4.10) to obtain upper bounds on the values of the feasi-
ible solutions produced by the greedy heuristic. In fact, such an upper

bound can be associated with any S < J.



Define
U}(S) = max ¢y all i e 1. (5.1)
jeS
Note that
2(8) = ] uy(s) - ) f; (5.2)
iel JeS
and
o —_ +
p.(S) = (c..-u(s)) -f all j¢Ss
J L 1] 1 J f

Thus, from (4.10)

since Ci5 - u;($) <0 forall iel and JeS.

In particular if SG is the final set chosen by the greedy heuristic

then, by the stopping criterion, pj(SG)‘i 0, jv¢ SG, so that W(GKSG)) =

) EA(SG). Hence by (5.2), the greedy solution SGl deviates from
iel
optimality by at most ) f.. This suggests that it will yield a small

jest J
error when the fixed costs are small in comparison to the profits.

Furthermore, we may obtain a better bound by considering all of the sets

produced by the greedy algorithm, Let U? = min Cij all i 1 and
Jed
, k=1,,..,t-1. Define a dual greedy value by NG = min W(
k

= (6,6,5,2),

)

= § pgle) =L, @
Jed

In the example, EO =(0000), W(EO)

22
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W@l = § U+ 1=20, W= (6,8,5,3) and W) = § Uj=22. Hence

The bound we have given so far is an a posteriori bound for a particular

instance of the UFL Problem. In fact, a general relationship between ZG and

G

W that a priori applies to all instances of the UFL Problem is given by

Theorem 3.4 [Cornuejols, Fisher and Nemhauser (1977b)]. Let
R= ) minc,. - y f. and e be the base of the natural logarithm.
iel jed " jed

Then

76 2_(Eél)wa + ()R .

A proof of Theorem 3.4 that uses linear programming duality is given in
Fisher, Nemhauser and Wolsey [1978].

For the p-median problem with Cij >0 for all 1 and j, we have R > 0.
Thus we achieve a simple data independent statement of Theorem 3.4,

Corollary 3.5 [Cornuejols, Fisher and Nemhauser (1977)] For the p-median

problem with Cij >0 for all i and J,

There are families of p-median problems for which this bound is achieved

asymptotically. Furthermore, since 76 <Z<W 5.wG
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max %E., %., ﬁa_ Z_(§%1.1/3 = 0.86.

There are several variations and generalizations of the greedy heuristic
for which bounds similar to those of Theorem 3.4 and Corollary 3.5 are known,
see Cornuejols, Fisher and Nemhauser [1977b] and Nemhauser, Wolsey and Fisher
[1978]. For example, we can begin with all facilities open and at each
jteration close a facility that gives the largest improvement in the objec-
tive function so long as such a facility exists. A generalization of the
greedy heuristic is to start with the family consisting of all sets of cardi-
nality k, for some fixed k, and apply greedy to each of these (E) initial
sets separately; we then choose the best of the resulting (Q) solutions.

None of these variations or generalizations, however, improve the
worst-case bound of the greedy heuristic., In fact, what is remarkable about
the bound on the greedy heuristic is not its value, but that no polynomial-
time procedure of any degree whatsoever is known for p-median problems that
has a better worst-case performance,

The salient feature of the greedy heuristic is that the maximum possible
improvement is made at each step. If this is not done, worst-case perfor-
mance deteriorates, even if a broader choice of improvements is considered.

An example of such a heuristic is generalized interchange, see Nemhauser,

Wolsey and Fisher (1978). Here we begin with an arbitrary set SO. Given

t-1 t) t—l)

S , at iteration t we select any set St such that z(S > z(S

ISt\St'll_i 1 and 'St'l\st' <1 or stop if no such st

3

exists. Thus,
at each iteration, we are allowed to open a facility, close a facility or do

both so long as an improvement is made.
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The worst-case bound of generalized interchange is weaker than that of

greedy, For example, under the conditions of Corollary 3.5, this heuristic
can guarantee only to find a solution of value at least half of the optimum
value. Of course, by starting with a greedy solution, the bounds of Theorem
3.4 and Corollary 3.5 are obtained. Nevertheless, they are not strengthened
by applying generalized interchange. On the other hand, greedy followed by
generalized interchange seems to give good empirical performance, (see Hansen,
1972, and Cornuejols, Fisher and Nemhauser, 1977b).

The dual solution u(S) given by (5.1) yields a bound on the value of
the primal solution S. Conversely, given a dual solution that satisfies
(4.8), the complementarity conditions (4.15) suggest considering a primal

solution in which xj =0 if (c:. = u. - fi < 0,

Define

An optimal solution with xj =0 for jy¢g J(u) 1is obtained by solving

max { ) max c,. - ) f.},
Scd(u) del jes 9 jes Y

but this problem may not be much easier to solve than the original problem.

Instead, we take any minimal set K(u) < J(u) that satisfies

max ¢y = max - 4y all i ¢ 1. (5.3)
JeK(u) Jed(u)



26

Proposition 3.6 Given a u that satisfies (4.8) and wu, < max Cij
Jed(u)
all 1 ¢ I, and a primal solution K{u) defined by (5.3), let

k; = ‘{3‘ e K(u): i

optimal set of open facilities.

> ui} . If ki <1 all ie I, then K(u) 1is an

Proof:
z(K(u)) = ¥ max C,. - f..
iel jek(u) Y jek(u)
If ki =
max C.. = U, = Uu; + ) (civ = ug)t
jek(w) YT T geku)y YT
and if ki =1
max C.. = U, + Y (cy. - u )+
Jek(u) T gek(u) YT
Hence, if k. <1 all 1e¢ 1,
+
z(k(u)) = § ¥ (c..-u)t - 7 fo+ 5oL
jel jeK(u) W ! JeK(u) VR S O
v Iy + N
= ) (7 (e, -wu) -f.)+ ¥ uy
JeK(u) el 1J 1 J iel !
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In our example, with u = (6 6 4 3), we obtain J(u) = K(u) = {2,3,4}

and (kl’kZ’kB’k4) = (1 110). Hence these are optimal primal and dual
solutions of value } u; = 19.

While Propositiogéé.G may permit us to recognize an optimal solution, it
is limited to those cases in which mJn W(u) = Z and even then it is still
necessary to find an appropriate u and K(u).

3.5.2 Dual Descent

Dual descent is a heuristic that begins with a u satisfying (4.8) and
then attempts to decrease the ui's one-at-a-time while maintaining (4.8),
(see Erlenkotter, 1978, and Bilde and Krarup, 1977). It is surprisingly
effective, but not fail safe, in finding a u that satisfies the conditions
of Proposition 3.6. This descent approach, with some embellishments, is the
inner loop of Erlenkotter's DUALOC algorithm. The basic descent method
procedes as follows:

Begin with u? = ?aﬁ Cij all i e I. Cycle through the indices 1 ¢ I

€

attempting to decrease us while satisfying the constraints (4.8). If Uy

cannot be decreased, then consider Uspge If us can be decreased, then
decrease it to max{cij: Cij < ui} if this change satisfies (4.8). If not,
then decrease U, to the minimum value allowed by (4.8). When all of the
ui's are blocked from further decreases, the procedure terminates. The
reason for decreasing U only to the next smaller Cij’ rather than to the
smallest permissible value, is to keep the ki of Proposition 3.6 as small
as possible.

Applying dual descent to our example yields the results shown in

Table 3.1. For the first four steps, each
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n R B P
J jer M !
Step
0 8 8 6 4 3 2 2 2 3 3
1 6 8 6 4 3 2 0 2 3 3
2 6 6 6 4 3 0 0 2 3 3
3 6 6 5 4 3 0 0 1 3 3
4 &6 6 5 3 3 0 0 1 2 2
5 6 6 4 3 2 0 0 0 2 2
Table 3.1

of the ui's is decreased to the second max in the row. Now Uy is con-
sidered again, but cannot be decreased because the constraints (4.8) for

J = 3 would be violated, Similarly, a decrease of u, would violate (4.8)
for j = 2. However, uz can be decreased; but it is decreased only to 4
because (4.8) becomes active for j = 4 when uy = 4, Finally u, cannot
be decreased because of (4.8) for j = 2, This completes the dual descent
with u= (664 3) and W(u) = .Z u; = 19. Now, as noted above, J(u) =
K(u) = {2,3,4} and we also obtai;€£ primal solution of value 19,

A possible improvement of dual descent, which is Tikelier to produce a
primal and dual pair for which Proposition 3.6 applies, is obtained by
modifying the order in which the ui’s are considered as candidates to
decrease. In particular, rather than just cycling through the ui's, let
Qi(u) = {J: Cij - U > 0}. Then if us is decreased and descent terminates,
ki < ,Q.(u)'. Hence we choose wu . next if 'Qs(u)' f,’Qi(U)’ for all
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Suppose dual descent terminates with the dual solution u* and we
determine a primal solution given by K(u*) such that Proposition 3.6 fails
to verify optimality. Then there exists an i such that ki > 1, By

increasing u; to its previous value and reapplying dual descent, it may be

possible to improve the dual solution further,
We have sketched the basic ideas of the dual descent procedure. An

example in which it does not find an optimal solution is given by

022
f=1(222), C={ 202 . (5.4)
220
In this instance, beginning with u0 = (2 2 2), dual descent terminates

with u = (0 2 2), which is not optimal. Moreover, the embellishments do not
give an optimal solution either. An optimal u is (1 1 1) yielding W =3
and Z = 2, Nevertheless, dual descent has performed extremely well on the
problems that Erlenkotter and others have considered. Erlenkotter reports
that in 45 of 48 problems tested, the heuristic found an optimal solution.

To provide the capability of finding an optimal solution and proving optim-
ality, the heuristic is imbedded in a branch-and-bound algorithm. The whole
procedure is called DUALOC. Given its simplicity, speed and availability,
DUALOC may be the most efficient way to solve the UFL Problem. However, it
may perform poorly on hard problems in which the heuristic bound is not as
good as the linear programming bound. Thus one is motivated to develop
efficient algorithms for solving the strong linear programming relaxation.

This is the subject of the next section,
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3.6. Algorithms and Reformulations of the Strong Linear Programming Relaxation

The strong linear programming relaxation (SLPR) of the UFL Problem is

Z,, =max § ) C..y.. - ) f.x, (6.1)
LP jel geg 1T gy 3T
(6.2)
by =1 all i e 1
jed
Yis =% 20 all 1el,jed (6.3)
¥i3205 %520 all iel,Jeld. (6.4)

The polyhedron of feasible solutions to (6.2), (6.3) and (6.4) has
fractional extreme points. In the example given by (5.4), the unique optimal
solution to SLPR is xj = 1/2 for Jj=1,2,3, y1.j =1/2 for i+ Jj and
yij =0 for i =j. The fractional extreme points of this polyhedron will be
characterized in the next section. However, for reasons that are barely under-

stood, very frequently, SLPR has an optimal integral solution. This obser-

vation is supported by results in the literature on random problems and some
applications. Thus an efficient method for solving SLPR will also be an
efficient method for solving many instances of the UFL Problem. Even when SLPR
has a fractional optimal solution, its optimal value generally provides a
very good upper bound on the optimal value of UFL so that a branch-and-bound
algorithm should terminate rapidly.

On the basis of these remarks, one might conclude that the UFL Problem can
be solved using SLPR and a standard mixed integer programming package.

However, this is not true because of the large number of constraints (6.3).
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For example, an instance of the UFL Problem with m = n = 100 has more than
10,000 constraints. Hence any approach to the UFL Problem that uses the SLPR
must be capable of solving very large linear programs.

In this section, we consider several approaches for solving very large
structured linear programs. We begin the section by briefly mentioning two
direct approaches to eliminating the difficulty caused by the large number of
constraints (6.3). Then we will apply some well-known reformulations and
algorithms including Lagrangian duality and subgradient optimization,
Dantzig-Wolfe decomposition, Benders decomposition, and subgradient optimi-
zation on the primal. Connections among those approaches will be noted.
Finally, we will consider a reformulation that involves the aggregation and
disaggregation of clients so that the matrix C reduces to a useful

canonical form,

3.6.1 Direct Approaches

The constraints y xj are generalizations of simple upper bound

ij <
constraints in which the upper bounds themselves are variables. It is
well-known how to handle fixed upper bound constraints in the simplex method
without expanding the dimension of the basis to include them. Schrage (1975)
has generalized this idea to incorporate variable upper bounds and has
reported computational results obtained by applying the method to SLPR.
An alternative is to generate the constraints yij f-xj as cuts only

when they are violated in an optimal solution to the weak Tinear programming
relaxation. This idea has been tested by Morris (1978). In the example of

the last section, an optimal solution to the weak linear programming relax-

ation is Xp = X3 = Xp = Xg = 1/4 and Y93 = Yop = Y34 T Ya5 = 1. We could
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then add the four violated variable upper bound constraints and continue to
solve the linear program.

The direct approaches are primal methods. Dual methods, however, may be
superior for two reasons, First, if SLPR is incorporated in a branch-and-bound
algorithm, it may not be necessary to solve SLPR to optimality at every node of
the enumeration tree, since at some of the nodes, a dual feasible solution may
suffice to bound the subproblem. Second, as we have already shown in the last
section, one may easily generate an integral primal solution from a given dual

solution.

3.6.2 Lagrangian Duality and Subgradient Optimization

The Lagrangian L(u) of (4.12) forms the basis of a subgradient
algorithm for solving the dual of SLPR. The subgradient algorithm solves the
problem man L{u).

The function L(u) given by (4.12) is the maximum of a finite number
of linear functions. Therefore L(u) 1is piecewise linear and convex., Sub-
gradient optimization (Held, Wolfe and Crowder, 1974) has proved to be a useful
method for minimizing unconstrained piecewise linear convex functions. This
approach is a generalization of the gradient method for minimizing smooth,
nonlinear convex functions. Since gradients do not exist at non-differentiable
points of L(u), the gradient direction is replaced by a "subgradient direc-
tion", which will be explained below.

Given ut, an iteration of the subgradient algorithm generates a new dual

solution by the formula

TR TS N ) (6.2.1)
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t t

where aL(ut) is a subgradient at u is the stepsize, If

t) = 0, then Wt s an optimal dual solution,

and Y

abl(u

Suppose

L(u) = 7 ¥ cooy.¥- § foxr+ 7 u(l - 7 y.*)
iel Jed 171 1

where {x;, yi§} are defined by (4.13) and (4.14), If the {y1§} are

unique then

db(u), =1 - 7 y.*¥ all ie¢l (6.2.2)

is the gradient of L(u) at wu. However if the {yi§ } are not unique,
then any direction given by (6.2.2) or convex combinations of such directions
is a subgradient direction. Although a step in a subgradient direction does
not guarantee a decrease in L(u), it can be proved that with an appropriate
choice of stepsize the iterates given by (6.2.1) converge to an optimal
solution (Polyak, 1969). Cornuejols, Fisher and Nemhauser (1977b) have
reported computational results on solving the Lagrangian dual by subgradient
optimization,

In our example, if we start with uO = (8 86 4), then L(u

O =2, we obtain ul = (6 6 4 2)

0y = 26 and
dL(u) = (1 11 1). With a stepsize of

and L(ul) = 19, With u = ul, the solution (4.13), (4.14) is not unique;

however, the optimal solution Xo = X, = 1, Xj = 0 otherwise, and Yi9 = Yoo =
Y34 = ¥gp = 1, ¥j; = O otherwise, yields sL(ul) = (0 0 0 0) and verifies
1

the optimality of u~.
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3.6.3 Dantzig-Wolfe Decomposition

For all non-empty R < I, let x? = 1 if facility j serves only these

clients in the set R and x? = 0 otherwise, If x? =1, facility Jj yields

a profit of ) Cij - fj. Thus the UFL Problem can be reformulated as the
ieR
integer program

Z=max § § () c- fnS (6.3.1)
jed Rel  1eR J 3
oy oaR= all i el (6.3.2)
jeJ R3i Y
;AR < all jed (6.3.3)
Rel J
R .
A (0,1 all Rel, § el (6.3.4)

The equations (6.3.2) state that each client is served by exactly one facility
and the inequalities (6.3.3) state that each facility can serve only one set of
clients.

We consider the linear programming relaxation of this integer program
obtained by replacing (6.3.4) by
R
J

Ay >0 all Rel, jed. (6.3.5)

Proposition 3.7: Let 7 be the optimal value of the linear program (6.3.1),

(6.3.2), (6.3.3) and (6.3.5). Then Z = Zip
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Proof: Apply Dantzig-Wolfe decomposition to the linear program (6.1)-(6.4)
with master constraints (6.2) and subproblem constraints (6.3), (6.4) and
X5 <1 all j e J. Substituting the subproblem extreme points into (6.2)
yields (6.3.2), and (6.3.3) are the convexity constraints for the subproblems. [

Some simplifications can be made in the integer program (6.3.1)-(6.3.4) and
its linear programming relaxation. First observe that the constraints (6.3.3)
are unnecessary. To see this, suppose x? = x?l =1 where R =z R'. If
R nR'# @, then (6.3.2) will be violated. If R nR' = @, then since

fj > 0, we have

Loy fiz docy it L, S Ty
jeRuR’
) H
Hence the alternate solution with x?UR =1 and x? = x? =0 1is at

least as good.

A further simplification is obtained by noting that if

) -f.> )y ¢, - f , then xi = (0 1in every optimal solution., Hence

C. . ,
jep 117 g Tk Kk

for each R, we need only one variable, say Apo whose profit is given by

Iy

d, =max ( § c,. - f.).
R jed der W3

Thus we can restate the integer program as

Ap = 1 all i e 1 (6.3.6)
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m-1

This formulation has 2 variables and m constraints, Since n

does not enter into the size of this formulation, for fixed m, it can be
solved in polynomial-time.
The linear program obtained from (6.3.6) by replacing the integrality

requirement by A, > 0 all R < I can be solved by column generation,

R
Suppose we begin with m columns, say those for R = {i}, i = 1,...,m. Then

the primal solution is xg =1 for R={i}, i=1,...,m, and the dual solu-

tion is uq = max(c., - f.) all i ¢ I.
i . ij Jj
Jed
We now need to see if any of the nonbasic columns have a positive price.

This can be done at iteration p by solving for each j ¢ J the subproblem

subject to (1.3) and (1.4), since 7§ (ij - u?) - fj is the price of variable
ieR
x?. The solution of the subproblem is tg = () (Cij - u?)+ - fj)+‘ If

iel ’
t? =0 all j ¢ J then the current solution is optimal. For each k such that

p . . - _ P ;. - 4P
tk > 0, let Rk be any set satisfying {i: Cip = U3 2 0} ¢ Rk e {11 ¢y = Uj > 0).
We now add to the linear program variables A for all k such that tE > 0.
k

Garfinkel, Neebe and Rao (1974) have obtained computational experience with
this type of algorithm.

An important feature of this approach is that both lower and upper bounds

P

on Z are obtained at each iteration. By primal feasibility, ZLP > 3 75

LP iel

and from (4.12) we see that ZLP-i t? + 7 u? = W(up). Moreover, as
Jed iel
well as obviously being a primal method, it also can be viewed as a dual method

and compared with the method that uses Lagrangian duality and subgradient
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optimization. Here the ui's at each iteration are determined by solving a

linear program, while in the previous method the dual variables are determined
by moving in the direction of a subgradient of the function L(u).
In our example, we start with an initial basis consisting of the four unit

columns Ri = {i}, i = 1,...,4 with objective coefficients dR = dR = 6,
1 2
dR = 4 and dR = 1, This yields the dual solution u0 =(6641).
3 4
Solving the subproblems, we obtain tO =(020100) and thus

17 < 7| p £ 20. We generate two new columns Rg = {1 2 4y and Rg = {3 4y

with objective coefficients d5 = 15 and d6 = 6, The next master linear

program yields the primal solution xé = xé =1, xé = 0 otherwise and the
5 3 i

dual solution b = (6 6 4 3). Now t§

0 all j e J so that the primal
has been solved. In terms of the original variables, we have X = Xy = 1,

Xj = 0 otherwise.

3.6.4 Primal Subgradient Algorithm

For a given x, the profit from the 1ith client is

Vi(x) = max ) cy4Y

Jed i

yoyss =1

j2d iJ (6.4.1)
yij ‘_xJ all j e d

It is known from the theory of parametric linear programming that the function
Vi(x) is piecewise linear and concave. Hence we can formulate SLPR as the
maximization of a piecewise linear concave function subject to simple

constraints, In particular,
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(6.4.2)

Technically, (6.4.2) also requires the constraint .Z X5 > 1, but this con-
straint can be omitted by adding a suitably large cgigtant to any row of the
profit matrix C. In the remainder of this chapter, we assume that _ZJ X > 1
is satisfied by every optimal solution to (6.4.2). s

The formulation given by (6.4.2) can be solved by subgradient optimiza-
tion. Llet aZ(x)j be the jth component of a subgradient of the objective
function at x. We have aZ(x)j = 121 avi(x)j - fj where aVi(x)j is the
jth component of a subgradient of Vi(x).

To obtain a closed form expression for aVi(x)-, we consider the linear

J
program (6.4.1), which can be solved by a greedy method. In particular,
p-i.- p"
SUppose C.. > C.. > ... > C;. and define p. by 7 x; <1< X
;= 13, 1, i k=1 Jk ke Ik
Then an optimal solution to (6.4.1) is given by Yij = %5 for
. k k
K = 1,0eespi- 1, V.. =1 - §1 X, and y.. =0 otherwise. Thus we can
! p k=1 Jk Hy
i +
take avi(x)j = (Cij - Cipi) and
T + .

Given xt, an iteration of the subgradient algorithm generates a new point

xt+1 t t ( t). 1f Xt+1

= X~ =y dL(X does not lie in the cube O < Xj.i 1, all

j e J, and therefore violates some of the constraints of (6.4.2), we modify it

by simply projecting it on the cube, that is we replace x§+1 by 0 if

t+l
X

“hco and by 1if x§+1 > 1.
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Cornuejols and Thizy (1982b) report some computational experience in
solving (6.4.2) by a subgradient algorithm.
The results of attempting to solve (6.4.2) by subgradient optimization for
our example are summarized in Table 3.Z2. An optimal solution to SLPR is
obtained at iteration 3, but the expression (6.4.3) for the subgradient is not

adequate to verify optimality.

iter- X V(X z X VX t
ation (x) LP( ) () 2132

0 o 1 1 1 1 098 8 6 4 17 -3 -2-2-2-3 -3 1/4
1 0 1/2 1/2 1/21/4 0 | 7 7 9/2 3|71/41-1 10 1-1-1 1/4

~J

2 0 3/41/23/4 0 O 15/2 21/4 11/41 37/2 | -1 1 0 1 -1 -1 1/4

3 0o 1 1/2 1 0 017 8 6 3 19 -3 -2 0-2-2 -2

Table 3.2

3.6.5 Benders Decomposition

We can state (6.4.2) as

Z, =max ) V.- ) fux

LP iel Jed J
¥ S_Vi(x) all i e 1 and all feasible x (6.5.1)
0 5-Xj <1 all Jj e d.

U. + w.. > c.,. all jed (6.5.2)
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since (6.5.,2) is the dual of (6.4.1). We have wq;j = (Cij - ui)+ so that

Vi(x) = min(u; + -u)’) (6.5.3)

The right-hand side of (6.5.3) is a piecewise linear function of Us and the
function changes slope when u, = Cij for some Jj. Hence the minimum is

i
attained when ui = Cik for some k ¢ J. Hence

+
V.(x) = min(c,, + 5 x.{csi-cs) )
i ked ik jed Jj\Uid ik
and (6.5.1) can be stated as the Tinear program
Z,, =max §y V- ) f.x.
LP iel 1 Jjed 3
+ .
Vi - jzd Xj(cij - Cik) < iy all i eI, k € (6.5.4)

This is precisely the linear program that arises when applying Benders
decomposition to SLPR. Although we have mn constraints of the form (6.5.4),
we can think of these as cutting planes and generate them only as they are
needed,

In particular, suppose we have only a proper subset of the constraints
(6.5.4)., We solve the relaxed linear program and determine an optimal
solution (xq,Vq). Now we use x93 in (6.4.1) to determine V.(xq) all

1
iel, If

vox® < vdoann ded, (6.5.5)

then (xq,vq) satisfies all of the constraints (6.5.4) and x4 is an optimal
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solution., If not, each i for which (6.5.5) is violated specifies a violated
constraint of the form (6.5.4). These are added to the linear program and we
continue.

In our example, we begin with the constraints (6.5.4) determined by the
second maximum in each row, i.e., V1 - 2x3_§ 6, V2 - 2x2'§ 6, V3 - Xy <5,
and V4_§ 4, A solution to the linear program is V1 = (6 854) and xl =
(010000). Then by solving (6.4.1) we obtain V(x') = (6 8 0 3) and

generate the constraints

Now we obtain the solution V2 = (6 86 3) and x2 = (010100). Since

V(x2) = (6 8 6 3), all of the constraints of (6.5.4) are satisfied and x2
is an optimal solution.

Magnanti and Wong (1981) have used a variation of this approach and have
developed stronger inequalities in an attempt to accelerate the convergence

of the algorithm,

3.6.6 Canonical Reduction

We now present a formulation that involves the disaggregation and aggre-
gation of clients, (see Cornuejols, Nemhauser and Wolsey, 1980). The
aggregation of two clients il and i2 means to replace clients 11 and
iz by a single client i such that

C..=¢C, .+c. . all jed . (6.6.1)
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The disaggregation of client i 1into two clients 11 and 12 means to
replace i by two clients 11 and 12 such that (6.6.1) holds. While
aggregation is uniquely defined, disaggregation is not,

In general, aggregation yields an underestimation of profit and disaggre-
gation overestimates. This is true, because if (6.6.1) is satisfied the greedy
solution to the linear program (6.4.1) implies Vi(x) i'vil(X) + Viz(x) for
all x with O 5-Xj < 1, We say that aggregation or disaggregation is valid

when

V. (x) (x) (6.6.2)

Vi (x) +V

for all x with O 2 X <1,

For keI, let s, = (sk(l),sk(Z),...,sk(n)) be any permutation of

(1,2,...5m) such that Cyq (1) 2 Cyg (2) 2 ++* 2 ks, (n)°

Proposition 3.8 For 11,12 e I, if there exists S and S5 such that

Sil(j) = Siz(j)’ j=1,...,n, then (6.6.1) is a valid aggregation of rows i,
and 12.
Proof: If Sil(j) = siz(j) for all j, and rows i, and i, are aggregated
by (6.6.1), then Si .y =S: (5y = S: (1y» J = lse.esne Thus the greedy

i(3)  Ti(d) " 7i,0)

solution to (6.4.1) implies that (6.6.2) holds. 0

Corollary 3.9 If row i eI Is disaggregated into rows il and 12 and

(6.6.1) is satisfied and there exists s., s, and s. such that s.,.y =
i 7y i, i(3)
s. ,.. =5. ,.. forall J, then the disaggre ation is valid.
i(3) ~ %i,(3) ) sgres
The following proposition shows how any row with at least two unequal

elements can be disaggregated.



Proposition 3.10  Suppose Cisi(l) > 2 S5 (p-1) > Cis. (p) 2 eee 2 Chg ()
Then for j=1,...,0 - 1
C. - and c, = C. . C.
11511(3) is.(p) 1251-2(3) is:(J) iss(p)
and for j = D,...,N
“ipsy (3) T Cisy(a) M Cipsy (3 7O
171 i 271
1 2
is a valid disaggregation of row 1.
Proof: The condition of Corollary 3.9 holds. [I
We can apply Proposition 3.10 recursively to disaggregate a row 1 into
at most n rows, il""’in with the following properties:
(i) Ci < e {0,ry )} for t =1,...,n, (ii) r, >0 for t > 1, (iii)
J 1 i
t t t
¢. .=r, for j=1,...,n, (iv) ¢, . =0 implies c, . =0 for
o Tt Tt+1d
t = 2,-..,”"1.
To do this, suppose Cisi(q) = = Cisi(n) for some ¢ < n.
Apply Proposition 3.10 with p = q. This yields
“isi ()T Sisp(a) 37 bt
1% i\d
1
[ =1 1
“is;(3) T Cisg(q) T e
Cizsi (j) © ¢
2
0 J = gseessne
A
Row i, s in the desired form and if Cisi(j) Cis1(j+1)’ J=1,00.,0 - 2
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so is row i Otherwise let & be the largest value of for which

23
Cisi(x-l) > Cisi(x)' Now apply Proposition 3.10 with p =2 to disaggregate
row 12. Here we refer to the two new rows as 12 and i3. Thus

7~ - -

C_is (,Q‘) - C_is1(q) J 1,.9.3q 1
C. . =
12512(3> <

kO 3 = q,o'o,n

fC - C

'iS_i(j) —is.i(x) j = 1,00.,,2, - 1
C sy =
13513(3) <

\.O j =/Q,,so-3nc

Row i2 is now in the desired form and we now disaggregate row 13 if
necessary. Since at each step, the row to be disaggregated has at least one
more zero than the previous row, the procedure takes at most n - 1 steps

and yields at most n rows each having the desired property.

Consider
(c].1 Cip Ci3 c14) = (422 -1).
We obtain
(c C. A C. oC. ) = (-1-1-1-1)
111 112 113 114
and
(ci21 Ci 5 € 3 c 4) = (5 330).
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Disaggregating row 12 yields (33 30) and (200 0). Thus a client
represented by the row (4 2 2 -1) can be replaced by 3 equivalent clients:
(-1 -1 -1 -1), (3330) and (2 000).

Suppose each of the clients i ¢ I is disaggregated in this way. Now we
may obtain pairs of clients say 1t and kx such that for j ¢ J citj +# 0 if

and only if Cy j # 0. By Proposition 3.8, these two clients can be aggregated
2
into a single client with profit ¢, . + G 1 for je< T and 0 profit
T e

for j g T. Finally, a client whose profit is constant for all J edJd can be

eliminated from the problem since this client produces the same profit for all
feasible «x.

To summarize this procedure, we can transform the matrix C into an
equivalent canonical matrix R containing at most min(m(n-l),Zn—Z) rows,
Each row of R represents a set Tc J, T 2 ¢, and there is a profit rr

for all j e T and a profit of zero for j x T.

In our example,

6 6 6 6 0 6 !’
. client 1
0 0 2 0 0 O L
6 6 6 0 6 6
client 2
0 2 0 0 0 0 L
R:
3 0 3 3 3 0 7
2 0 0 2 0 0 { client 3
0 0 01 0 o0 .
2 2 0 2 2 2
3 0 1 0 0 1 1 ’ client 4
00 0 0 1 1/ ~
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We will now use this transformation to obtain a reformulation of SLPR.

Given x, 0 fixj <1 all j e d, the profit from the cliient represented by

the set T is

).

) =r-=-r(l - ) x
T T jeT d

Vo(x) = ro(min( s
7{x 7(min jZT X

If ) X3 > 1, we say that the client represented by the set T s fully
JeT
served. The quantity Tp = (r- 3 x.)+ is the fraction of client T not
JeT
served. Thus

Let T be the collection of subsets of J that are represented in the profit

matrix R. Then

Z o, = ) ro=-min( ) romo+ ) fx.)
Pogg T Ter 7T geg 9
¥ 'Z Xj >1 all TeT (6.6.3)
JeT
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The dual of (6.6.3) is

Z¥, = - max ) u
LP TeT T
TZ' ur < fy all j e (6.6.4)
3]
0 <up<ry all TeT.

The linear program (6.6.4) has at most m(n-1) variables and n con-
straints plus upper bounds on the variables. It is the most compact linear
programming formulation we know and has the structure of the linear program-
ming relaxation of a set packing problem. In our example, see the matrix
R given above, there are only 10 variables and 6 constraints other than
upper bounds. In comparison, the original 1inear programming formulation of
SLPR ((6.1)-(6.4)) has 32 variables and 28 constraints. In experimenting
with some k-median problems, Cornuejols, Nemhauser and Wolsey (1980) have
observed that when the simplex method (with upper bounds treated implicitly)
is applied to the various linear programming formulations, the formulation
(6.6.4) was by far the best one in terms of simplex pivots and running time.
In addition, the formulation (6.6.4) provides a nice interpretation for the

dual descent heuristic given in Section 3,5. We leave this as an exercise.

3.6.7 Summary

Two types of decompositions have been considered in this section.
Lagrangian duality and Dantzig-Wolfe decomposition assign prices to the
clients and for a fixed set of prices, the problem decomposes into

independent, single problems for the facilities. The two methods differ only
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in their schemes for adjusting prices. Benders decomposition and the
formulation of Section 3.6.4 choose a facilities vextor x and for a given
x, the problem decomposes into independent, simple problems for the
clients. The two methods differ only in their schemes for adjusting x.

Any method for solving the UFL Problem that uses exact or approximate
solutions of SLPR as a subroutine, must be imbedded into a branch-and-bound
algorithm. One approach is to solve SLPR by a special purpose algorithm,
Another approach is to use a general purpose mixed-integer programming (MIP)
system,

Among the special purpose algorithms, DUALOC, which uses approximate
dual solutions to SLPR, is a strong candidate. It is generally available as
a FORTRAN program, is very fast on most problems and is not limited by size
unless quite a lTot of enumeration is necessary.

Difficult instances of the UFL problem may require the capability of
finding optimal solutions of SLPR in order to curtail the enumerative phase
of the algorithm. Here solving the Lagrangian dual by subgradient optimi-
zation provides an easily programmable and a relatively fast algorithm,
Another method worth considering is the linear programming formulation
(6.6.4), which has a significant advantage in size over the other linear
programming formulations and can be solved directly by the simplex method for
instances that are not too large. Schrage's adaptation of the simplex method
to handle generalized upper bounds is still another possibility.

If we choose to use a MIP system, the original formulation (1.1)-(1.4),
the Benders formulation with Xj e {0,1} for all j e J and the canonical
formulation (6.6.3) with Xj ¢ {0,1} are candidates. However, each of these

formulations is limited by problem size since they involve O(mn) constraints
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and/or variables. The formulation (6.6.4), which is the dual of (6.6.3) is
the most compact linear programming formulation, but to use it in a conven-
tional MIP system would require a modification that permits branching on
fractional dual variables.

The main advantage of using a general MIP system is that additional con-
straints create no difficulties, as they may for special purpose codes.
There is work in progress on MIP systems that will be capable of working with
the weak linear programming relaxation and will generate violated variable
upper bound constraints as needed (see Martin and Schrage, 1982, and Van Roy
and Wolsey, 1983.) Codes of this type should make it feasible to solve

medium-sized instances of the UFL Problem as general mixed integer programs.
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In this section, we study the polytope of feasible solution to the

SLPR constraints

!

and the polytope defined by

3.7.1 The SLPR Polytope

Let Qm n

be the polytope of

1’-aogm
(7.1)

lyasasm and j = 1,.,.,0,

the convex hull of integral solutions to (7.1).

feasible solutions to (7.1) When m < 2

or n <2, it has been shown by Muckendi (1975), Krarup and Pruzan (1983), and

Cho, Johnson, Padberg and Rao (1983) that all the extreme points of (7.1) are

integral. In fact, the constraint

However, for values as small as m

0
points. For example, when C = 1
1
remarked previously that Xj =1/2

i+ 3, Yij = 0 for i =7 1is the
The fractional extreme points

the next theorem,

Cu
"

{jed: 0< X <1} and

—t
H

1 {ielty..=10 or xj

[N
one j}.

For a given fractional solution

for all j

matrix is totally unimodular in that case.

n =3, Qm,n has fractional extreme

11

01j}and f., =1 for j=1,2,3, we have
J

10

for j =1,2,3 and yij = 1/2 for

unique optimal solution.
of Qm p are completely characterized by

(x,y) of (7.1) let

and Y5 is fractional for at least

J
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Let aij =1 if yij

matrix whose elements are aij for 1 ¢ Il, J e Jl‘

>0 and 0 otherwise, and denote by A the ’Il’ X 'JI'

Theorem 3.11 (Cornuejols, Fisher and Nemhauser, 1977b). A fractional solution

(x,y) of (7.1) is an extreme point of Q, N if and only if

9

(i) X. =max y.. for all j e J
J jiel W 1
(i1) for each i ¢ I, there is at most one j ¢ J with 0 < Yis <%y

(ii1) the rank of A equals 'Jl"

The three conditions of this theorem are easily verified for the example
given above,

Since Qm,n has many fractional extreme points, the type of objective
function that is optimized over this polyhedron must play an important role in
the attainment of integral optimal solutions. Frequently, C = {Cij} is
defined over a network with the property that the further node v is from
node Vj in the network the smaller is Cij‘ (E.g., if Vi is on the shortest
path from v to vj in the network then Cij f-ci'j)’ This property is
important in showing that SLPR always has an integral optimal solution for tree
networks (see Section 3.8). A similar result is known for the p-median problem
defined on a path (Wong, Ward, Oudjit and Lemke, 1984). However, for more
general networks, appropriate conditions on C for attaining an integral optimal
solution are not known.

In some cases SLPR often has fractional optimal solutions. An example is
the linear programming relaxation of the set covering problem. The set covering
problem is the special case of the UFL Problem where ¢ = {Cij} is a general
0,1 matrix and fj =1 all j e Jd.

Some valid inequalities for the UFL Problem that are violated by fractional

extreme points of Qm , are given in the next theorem.
2
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Theorem 3.12 (Cho et al., 1983). Let B be a k x k nonsingular 0,1
-1

matrix such that B~ e > 0, where e 1is a column vector of ones. Index the

rows and columns of B by I < I and J c J where 'Ik‘ = ldk’ = k. Then

D L els” 1—‘

1€Ik Jedk JeJk

is a valid inequality for the UFL Problem. It cuts off at least one frac-

T p-!

tional extreme point of Q B™" e 1is not integral.

0 1 1
For example, if B={ 101 we generate the constraint y +y +
110 12 13
Yo t Yo3 Y3 Y3 7 Xy - X3 < 1, which cuts off the fractional

extreme point given in the beg1nn1ng of this section,
Moreover, it is easy to show that the family of valid inequalities
defined in Theorem 3.12 cuts off all the fractional extreme points of Qm ne

However, in general new fractional extreme points arise.

3.7.2 The UFL Polytope

Let Pm N be the polytope defined as the convex hull of the integer

solutions to the system (7.1). Thus the extreme points of Pm , are the

3

feasible solutions to the UFL Problem., Here we consider the identification of

valid inequalities for Pm n that define facets. To explain these results,

s

we need some definitions from Tinear algebra and polyhedral theory.

A set of k + 1 points wo, wl,...,wk are affinely independent if the

k wvectors wl—wO,...,wk—wO are linearly independent. A polytope has

dimension k if it contains k + 1 affinely independent points but not

more. An affine space is the intersection of hyperplanes. The smallest
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affine space which contains a polytope P is called its affine hull, The
polytope Pm n has dimension mn + n - m and affine hull given by
n mn 2 .
{{x,y) eR xR : § y..=1 for 1 =1,,..,m.
P, 1J
Jj=1
A face of a polytope P 1is a set F =P n {x: ax = b} where ax < b
is satisfied by every x ¢ P and ax < b for at least one x ¢ P, The
inequality ax < b 1is said to define the face F. Any face of a polytope is
itself a polytope. When its dimension is one less than that of the polytope
P, the face F 1is called a facet. To describe the polytope P by a linear
system, it suffices to have a description of its affine hull and one defining
inequality for each facet of P,
If such a description of P, [, were known then, in principle, the UFL
Problem could be solved as a linear program., Cho et al (1983) give a complete
description of Pon When n <3 or m< 3, However, when n >4 and

9

m > 4, a complete linear system defining Pm n is not known explicitly. Even

s

if one were, only relevant portions of it need be used to solve an instance of

the UFL Problem, That is, some of the facets of Pm p can be used as cutting

s

planes in the spirit of Padberg and Hong's (1980) and Grotschel's (1980) work
on the traveling salesman problem,
Whatever the algorithmic use of a partial linear description of Pm N

the first step is to identify some of its facets.

Theorem 3,13 The following inequalities define distinct facets of Pm 0

1]

(i) Y3 f.xj for all 1 eI, Jed
(i1) yij-i 0 for all ie¢ I, jeld
(iii) X, <1 for all j ¢ d.
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These facets are called the elementary facets of Pm ne The next theorem

s

provides a necessary and sufficient condition for an inequality with coeffi-

cients of 0 or 1 to define a facet of Pm ne

Assume that I' < I and J' c J are two nonempty sets and that

B=(b;.,) iel,Jjed s a 0,1 matrix with no zero row, Consider the

1J
inequality

Y biyii- b X< (7.2.1)
161' jét]l 1J 13 J'EJI J

Define the graph G as follows. It has a node associated with each

variable vy iel, jed, and Xj’ j e Jd. We will use the same notation

ij’
for a node and its associated variable., For all i e¢ I and j e J, the
node yij is joined by an arc to the node xj and to every node Yik for
k # 3.

Let N' be the set of nodes {{yij: iel', jed'yu {xj: jed'}r and
let G' be the subgraph of G induced by the node set N', Given a graph H
we denote by «(H) the maximum size of a stable set in H (a stable set is a
set of mutually nonadjacent nodes). Finally, an arc e of H s critical

if a(H - e) > «(H), where H - e denotes the graph obtained from H by

removing the arc e,

Theorem 3.14 (Cornuejols and Thizy, 1982a) The inequality (7.2.1) is a facet

of Pm n if and only if the following set of conditions is satisfied

(1) r=afG') - ’J’

(ii) G' is connected,

(iii1) for every 1 e I', j ¢ J' such that bij = 1, the arc (Xj’yij) is
critical,
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(iv) for every j, k ¢ J', there exists a sequence of critical arcs

)s (y y

(¥; .5 ¥

: s Vi o Jeesesly; )s (. s Yi o1 )e
113 1121 1Sk

. s Vs
T4 T Ts-1ts-2 TTso1ts- Tshso1
(v) for every 1 ¢ I, j € J such that Yij 7 N', the inequality «(G') <
a(G") is strict, where G" denotes the subgraph of G induced by
[}
These necessary and sufficient conditions can be used to prove the next theo-

rem, which provides constructively a large class of facets for the UFL Problem.
at 2
b7s) +)
2 columns whose rows consist of all distinct 0,1 vectors with T ones

For 2 <t < <n, define B?E = | as a matrix with ( rows and

and g - t zeros.

Theorem 3,15 (Cornuejols and Thizy, 1982a) For any pair of integers & and t

such that 2 <t <2 <n and (ﬁ) <m, and any sets I'< I, J' < J such that
II" = (%) and IJ" = g, the inequality

705 bty o T xi< (M rt-a-1

jelt jegr WOW gggr I

defines a facet of P .
myn

23 0 1 1
For example, take t =2, 2=3,B8""={1 0 11}, and I'=2J"'-=
1 1 0

{1,2,3}. According to Theorem 3.15 we get the facet

xg < 1,

Yipg ¥ Y13 T Y91 T Y3t Y3 F Y37 X %

which is identical to the valid inequality of Theorem 3.12 that we obtained

above with B = B>,
Additional material on facets of the UFL polytope can be found in Guignard

(1980), Cornuejols and Thizy (1982a), and Cho, Padberg and Rao (1983).
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3.8. Polynomially Solvable Cases

Formally, by a special case of the UFL Problem, we mean a problem of the
form (1.1)-(1.4) all of whose instances are described by a subfamily of
objective functions (C,f). In this section, we consider two special cases
that have the following significant properties.

1. SLPR always has an integral optimal solution

2. The problem can be solved in polynomial-time by a combinatorial algorithm.

The Economic Lot Size Problem

There is a demand di in period i, i = 1,...,n. The fixed cost of

producing in period Jj is fj > 0. The variable production cost is pj.

The variable storage and backorder costs are C; >0 and c} > 0 respec-
tively. Let yjj represent the fraction of the demand of period i produced
in period Jj, and Xj =1 1if and only if there is production in period j.

Then the UFL formulation can be used to minimize production cost where

+ + . . .
Cij = -(p‘j *C; +,..F Ci—l)di if >3
and

The Tree Location Problem

Let G = (V,E) be a graph with node set V and arc set E and suppose
that G s a tree, (that is, there is a unique path in G between each pair
of nodes). Here the nodes represent both clients and facilities. The cost of
opening the jth facility is fj >0 all v, ¢ V. Associated with each arc

J
e ¢ E, there is a given non-negative distance, The distance dij between any
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pair of nodes Vs and Vj is the sum of the edge distances along the unique

path between v. and v, for all v vj ¢ V. There is also a non-negative

i J i’
weight W, associated with each node Ve Let Cij = 'widij’ Vis vj e V, 1 #
and Cij = 0 all Vi € '

The induced subgraph of G generated by Vj <V is the graph Gj =

j) where Ej = {e ¢ E: both end nodes of e are in Vj}. Gj is said

to be a subtree of G if Gj itself is a tree.

(Vj,E

Theorem 3.16 (Kolen, 1982) There is an optimal solution to the tree location

problem in which the set of open facilities S c V is such that for each
v, € S, Vj = {Vi e V: node Vs is served by node vj} induces a subtree,
Moreover, this solution is also optimal to the linear programming relaxation
of the tree network problem.

A similar result applies to the lot sizing problem. Consider the tree
G = (V,E) where V = {Vl’VZ""’Vn} and E = {(vi,vi+1): i=1,...,n-1}.
Here G 1is simply a path from node Vi to node v, SO that V' <V is a

subtree or a path if and only if V' = {v.,v. .,...,v, } for some i and
i i+l k

k, 1 <i<n and k> i,

Theorem 3.17 (Krarup and Bilde, 1977) There is an optimal solution to the lot

sizing problem in which the set of periods having positive production S c V
is such that for each j ¢ S, Vj = {Vi e V: period i is served by production
in period j} dinduces a path. Moreover, this solution is also optimal to the
Tinear programming relaxation of the tree network problem.

The fact that an optimal solution to these problems induces subtrees that

partition V is not surprising. In the tree location problem, suppose that
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node Vs is on the path joining nodes vj and Vi and node Vj serves node

Vi but not node Ve Hence Vj does not induce a subtree. Suppose node Vs

is served by node vj. # Vj' Then the from this part of the solution is

d., + fj + dj'l + fj.. If instead, node v is served by node Vj’ the cost

Jk

is d.. + d,, + fj + ...

i ik J

Thus if dji <d then v. can serve v, and all nodes after v,

jri J i
that are being served by Vi without increasing the cost. Otherwise
dji > dj'i’ which implies

jk 7 i ik J'i ik

This inequality implies that the solution in which Vj‘ serves v, and only

nodes after vk

original., A recursive application of this argument proves the first statement

that are currently being served by Vj costs less than the

of Theorem 3,16,
A similar argument proves this result for the economic lot sizing problem.
Both of these results suggest that the ability to partition the solution

into subtrees is crucial and leads us to consider the following generalization.

The Tree Partitioning Problem

Given a tree graph G = (V,E) and a node by node matrix with elements

all v., v. ¢ V, let the weight of a subtree Gj = (V.,Ej) be w(Gj) =

LN J
max () vii ). Find a partition of G into subtrees such that the sum

Vkev‘j Vier

of the weights over all subtrees in the solution is maximum.

ij
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To model the lot sizing problem as a tree partitioning problem we take

.= =(f. + p.d.
vig = (Fy*pydy)

+ + . ) .
Yij = -(pj + ¢ ...t Ci—l)di if 1> 3]

To model the tree location problem as a tree partitioning problem we take

yjj= 'fj and Y4 = 'Widij if 1 £ J.
We now formulate the tree partitioning problem as an integer program in a

manner that establishes its connection to the UFL Problem. If Vj* € Vj is

such that arg max () yik) = vj*, we say that Vj* is the root of subtree
Vker V~i er

G.. Let y..=1 if v, ¢V 1is in a subtree rooted at v, and y.. =0

J 1] 1 J 1J

otherwise. Then the tree partitioning problem can be formulated as

max Z % Yijyij (8.1)
T J
Z Yij = 1 all Vi€ v (8.2)
J
Yij = Vi <0 all Vis Viis Vye V such that Vi (8.3)
precedes v; ona path from vj to v,
Yij € (0,1} all v, vs e V. (8.4)



60
Constraint (8.3) guarantees that if Vj is the root of a tree that con-
tains Vs then the tree must also contain Viie Constraint (8.2) guarantees
that each node must be in exactly one tree.
The linear programming relaxation of this integer program is obtained by

replacing (8.4) by

yig2 0 all vy, vye . (8.5)

Theorem 3.18 (Barany, Edmonds and Wolsey, 1984) The polyhedron defined by

(8.2), (8.3) (8.5) has only integral extreme points. Hence for any objective
function (8.1), the solution to the linear programming relaxation is integral.
This model for the tree partitioning problem resembles the model (1.1)-

(1.4) for the UFL Problem if we think of the yjj's as xj s and replace
(8.3) by (1.3). 1In fact, we can represent solutions of (1.1)-(1.4) as a
collection of subtrees that partition a graph G, but unfortunately G 1is not
necessarily a tree. In the graph of Figure 3.2, V1 represents the set of

clients and V2 the set of facilities.
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Figure 3.2

A solution to the problem is a set of subtrees, each of which is rooted at
a node in VZ‘ The arcs from the root of a tree to nodes in V1 show the
clients being served by the facility that corresponds to the root. A node

in V2 that is not a root corresponds to an unused facility. We set

Yij ° %3 for v, € V1 and Vi € Vs To eliminate the possibility of
nodes 1in V1 being roots we set Yij = =M for vj € V1 (M 1is a large
positive number) and to represent the fixed costs we set \ek = —fj for
vy € VZ' Finally to accommodate unused facilities we set Yik = 0 if vy
and v, arein V2.

We close this section by giving an O('V2|) dynamic programming
algorithm for solving the tree partitioning problem. Another very general
dynamic programming algorithm for location problems on trees can be found 1in

Megiddo, Zemel and Hakimi (1983).
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Given the tree G = (V,E) we choose an arbitrary root nocde r. This
induces a partial order on V. For all v ¢ V, Tet V(v) = {u: v is on the
unique path between r and u} and S(v) = {u: u « V(v) and (v,u) ¢ E}.
Let TV be the tree induced by V(v) and g(v) be the maximsum weight of a
partition for the tree Tv.

The idea of the algorithm is to calculate g(r) recursively by deter-
ming g(v) from {g(u)} for all u « S(v). To develop the general recursion
equations, we need another function. Let gu(v) be the maxi mum weight of a
partition of Tv when v 1is served by node wu., If u g V(v ), then gu(v)

includes the terms Y uw for all w ¢ V(v) that are served by u.

Then

g(v) = max gu(v). (8.6)
ueV(v)

Now suppose we are given gu(w) for all w ¢ S(v) and all u ¢ V. The

calculation of gu(v) divides into two cases as shown in Figure 3.3

/OD

S(V) S(V)

Figure 3.3
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If ugV(v) or u=v, and u serves v, then w ¢ S(u) 1is either served
by u or some node in V(w) because of the tree structure. Thus w is
served by u when v 1is served by u if and only if gu(w) > g{w). Hence

9,(v) =y, * w«é(v) max{g, (w),g(w)}. (8.7)

If ue V(v)\{v} serves v, then the tree structure impiies that the node

w* ¢ S(v) on the path joining v and u must also be served by u. Hence

9 =y, * é max{g, (w),g(w)} + g (w*). (8.8)

we S(V)\{w*}

#. The recursion

A node v e V is said to be a leaf of Tr if S(v)

is begun with the Teaves. For all leaves v ¢ V, we have

g(v) = g (v) = for u # v. (8.9)

y Tyy and gu(v)

= Yy

An Example

We consider a tree location problem on the graph of Figure 3.4, The

numbers on the arcs are the

3
;)

oA 3
3

(2,11)

Figure 8,3
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dijls and the pair of numbers adjacent to the nodes are (wi’fi) all

vye Vo Let Yij * -fj all v
Hence we obtain the matrix

/o
[ .8 -4 =14 -6 -4 %
[ |

y = g -14 =11 =20 -18

7 -3 =10 -6 -5

-12 -4 -18 =10 -8
For the leaves V3s Vg and Ves the bottom 3 rows of the matrix y give

g,» See (8.9).

For node Voo (8.7) and (8,8) yield

91(2) = v,y *+ max{g;(4),9(4)} + max{g,(5),9(5)}
-8 + max(-7,-6) + max(~12,-8) = -22

max(=3,-6) + max(-4,-8) = -11

[{e]
N
o~
o
p—
H
|
=
+

93(2) = -14 + max(-10,-6) + max(-18,-8) = -28

[{o]
S
——
N
g
#
<
N
=
+

max{g, (5),9(5)r + g(4)
= -6 + max{-10,-8} + (-6) = =20

95(2) = -4 + max{-5,-6} + (-8) = -17,

Hence

9(2) = max{g,(2),9,(2),95(2)} = max{-11,-20,-17} = g,(2) = -11.
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For node v1 we obtain

g, (1) = -7 + max{-22,-11} + max{-6,-11} = -24

g,(1) = -4 + max{-14,-11} + (-11) = -26
g3(1) = -3 + max{-28,-11} + (-11) = -25
g, (1) = -7 + max{-20,-11} + (-20) = -38
g5 (1) = -6 + max{-18,-11} + (-17) = -34 .

Hence g(1) = g;(1) = -24, where g;(1) = v;; + 9(2) + g;(3).
Thus node v, serves itself and node V3. Since g¢(2) = 92(2) = Y9y *

92(4) + 92(5), node v, serves itself and nodes Vg and Vge



66

3.9. Submodularity

As defined at the outset of this chapter, the UFL is the combinatorial
optimization problem max z(S) where
Sed

m
z(S) = ) wmax Cij - ;. (9.1)
121 jeS jes

is the profit made when the set S of facilities is open. A very important
property of the set function z 1is its submodularity, A function w

defined on the subsets of a finite set J 1is submodular if

w(Su{k}) - w(S) < w(Ru{k}) -w(R) for all k ¢ S and R S cd - {k}.

The fact that the profit function 2z s submodular was observed by
Spielberg (1969a), Babayev (1974), Frieze (1974) and Fisher, Nemhauser and
Wolsey (1978). It means that the additional profit that can be made by
opening a facility in location k when a set S is already open in other
locations is a nonincreasing function of S with respect to set inclusion.
The larger S, the smaller the profit of establishing a new facility. This

is proved formally in the next theorem.

Theorem 3.19 The profit function z given by (9.1) is submodular.
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Proof: lLet R<S<J - {k}. Forall i=1,...,m

max C,. - max c,. = max(0, ¢c,, - max c..)
jesutky 9 jes Tk jes 1
< max(0, Cip = Mmax C..) = max C,. - max c,.

jeR W jerviky Y g W

where the inequality follows from max c.. > max c...
A ij — . ij
jeS JeR
By summing these inequalities for all 1, we obtain

m m m m
N N

4 jesuqey & fos “10S 4k jRopg 1T i Ger 197
Hence
z(Su{k}) - z(S) < z(Ru{k}) - z(R). O
Thus the UFL Problem is a special case of the problem
max {z(S): z submodular}. (9.2)

Scd

We can apply the greedy and interchange heuristics to (9.2), we can formulate
(9.2) as an integer program and many of the results that we have given for
the UFL Problem extend to (9,.,2) and, in particular, to the capacitated
location problem, which is another special case of (9.2). We will not
elaborate on these results here, but refer the interested reader to Fisher,
Nemhauser and Wolsey (1978), Nemhauser and Wolsey (1978), Nemhauser, Wolsey
and Fisher (1978), Cornuejols, Nemhauser and Wolsey (1980), Nemhauser and

Wolsey (1981) and Conforti and Cornuejols (1984).
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3.10. Probabilistic Results

In Section 3.4 the point was made that good feasible solutions as well
as good upper bounds are crucial in solving the UFL Problem. Accordingly,
the algorithmic tools presented in this chapter focused on heuristics
(Section 3.5) and on the solution of SLPR {Section 3.6). The computational
experience accumulated over the years on this problem has shown that several
algorithms produce very good lower and upper bounds. Can these observations
be explained formally? The first formal probabilistic analysis of a location
algorithm was performed by Fisher and Hochbaum (1980). Their main result is
for the p-median problem but it is also useful for the UFL Problem.

This type of analysis requires that we assume an underlying probability
distribution of problem instances. Since these assumptions can be somewhat
arbitrary, different models can emerge, each giving a different insight. To
illustrate the approach, we will consider one specific model, the so-called
Euclidean model.

Here n points, Xl""’xn’ are chosen independently and uniformly at
random in the unit square [0,1]2. Denote by "Xi - Xj" the Euclidean

distance between points X; and xj, and Tet f be a fixed cost. The

Euclidean UFL Problem is to choose S 5_{x1,...,xn}, S # @, such that

Xi;S Q;?S llxi - XJ‘I + f’Sl is minimum,

The results of Fisher and Hochbaum were improved by Papadimitriou
(1981). Papadimitriou's paper is about the p-median problem but his results
can also be applied to the Euclidean UFL Problem defined above. We will

state them for this problem. Assume that

for some ¢ > 0, n <f<n ", (10.1)



Theorem 3.20 (Papadimitriou, 1981) Under assumption (10.1), the optimum

value of the Euclidean UFL Problem is

1/3n2/3

7~ (.986612,..)f almost surely.

Equivalently, this theorem states that, for any o« > O,
Z

Pr‘[l-—cxi 13
(.986612...)f /3213~

<l+al>1 as n-» o,

Papadimitriou also proposes the following heuristic,
(a) Let Kk =[(.328871...)F2/3n2/3]

(b) Tile the plane with hexagons H ,H, each of area 1/K.

1,00. K
Choose those hexagons Hj for which Hj 5_[0,1]2. Let the set

of their centers be H = {h ,hp}, p < K.

1909.
(c) Define the set S = {51,...,sp} of open facilities as follows.
For j=1,...,p, let Sj € {Xl"”’xn} be a point such that
-"h. < ™ . f i = s 0 203glig
o= all < 1l =] ror a1t

(¢) 7" - ) mm”1'XJ”+fH

X, gS X .S

Theorem 3.21 (Papadimitriou, 1981) Under assumption (10.1), the value ZH

of the solution produced by the heuristic for the Euclidean UFL Problem is

1/3n2/3

7" ~ (.,986612...)f almost surely.

In other words, Theorems 3.20 and 3.21 assert that the error (ZH - 7)
made by using the heuristic is of an order smaller than the optimal value

that is

69

Z,
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+0 as n+ =,

The bound W provided by the SLPR can be analyzed in a similar fashion.

Theorem 3.22 (Ahn, Cornuejols and Frieze, 1984) Under assumption (10.1),

the value of the SLPR for the Euclidean UFL Problem is

f1/3n2/3

W~ (.984745,,.) almost surely.

L - W

Corollary 3,23 ~ ,00189..,. almost surely,

The probabilistic results obtained for this model have some interesting
consequences. Any branch and bound algorithm where the branching is done on
the variables xj and the bounding is based on the SLPR, will almost surely
enumerate an exponential number of subproblems before it can produce an
optimum solution., That is if we insist on having an optimum solution. On the
other hand, a very good solution and a proof that the solution is within two
tenth of one percent of the optimum can almost surely be found very quickly.

(Details can be found in Ahn, Cornuejols and Frieze, 1984),
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3.11. Exercises

1. Sometimes a p-median problem can be solved by removing the condition
j;J X5 %P introducing an artificial fixed charge of fj = f for each
Jj e J, and solving the resulting UFL Problem for different value of f
until a value f* {is found for which an optimal solution of the UFL
Problem has p open facilities,

(a) Show that this method does not always work by giving an instance of a
2-median problem for which no value of f provides an optimal solution
with 2 open facilities in the associated UFL Problem.

(b) For each n > 3, find an integer m and an m x n matrix C such
that the instance of the UFL Problem defined by C and fj = f for
j=1,...,n, has only two possible optimal solutions when f wvaries:
when f < f*, there is a unique optimal solution and it has one open
facility; when f > f* there is a unique optimal solution and it has

n - 1 open facilities; when f = f*, both of these solutions are optimum.

2. The set covering problem is defined as follows and is known to be
NP-hard, Given a finite set E and a family of subsets
Ai < E, i=1,...,9, find a subfamily {Ai}izH’ where H < {1,...,9}

such that 13H

A; = E and IH' is minimum.
Show that the UFL Problem is NP-hard by a polynomial transformation of

the set covering problem,

3. The strong linear programming relaxation of the p-facility location
problem is given by (1.1)-(1.3), (1.5), (1.6).

{(a) Write its dual.

(b) Write a condensed dual similar to (4.6).

(c) Write a condensed dual similar to (4.7)-(4.9).
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(d) Write a Lagrangian dual similar to (4.12).

(e) Can you prove a proposition similar to Proposition 3.2 for the p-facility

location problem?

Consider an instance of the UFL Problem where the optimum value W of
SLPR equals the optimum value Z of UFL. Let u be a dual solution
satisfying (4.8), (4.9). Define J(u) = {j: 7 (c., - u,) - f. =0}

and for, any set K(u) < J(u), let ks ’{j ¢ K(u) = T ui}'.

Show that a necessary condition for u to be an optimal dual solution is

that there exists a set K(u) = J(u) such that ki <1 for all 1 ¢ I.

Consider the greedy algorithm applied to the p-facility location problem.

t) = pj(@) for t=1,...,p~-1 and all j e¢dJd - gt,

then the greedy algorithm is optimum.

Show that, if o, (S

Let jl,...,jp be a solution obtained by applying the greedy algorithm to

the p-facility location problem, and let A be an optimum solution.

Denote by St = {jl""’jt} the partial greedy solution obtained at

iteration t,

Show that, if o (s*" 1 = o. (s*Tua) forall t=1,....p, then
t

p .
Jg

the greedy algorithm is optimum.

Consider the instance of the UFL Problem defined by m= 5, n=8, f. = 2

for j=1,...,8 and
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(a) Use the greedy heuristic to find a solution. Give the greedy value ZG

and the dual greedy value WG.

(b) Give the value W' of the weak linear programming relaxation,

(c) Apply the dual descent procedure, cycling through the indices 1i. Give
the value W(u) found by this procedure, Is the set K(u) given by

{(5.3) an optimal set of open facilities for this problem instance?

8. Let P denote the set of nine integral points in the square
0<x<2,0<y<2., Forany point je P, Tet Xj and yj be its

coordinates. Consider the instance of the UFL Problem defined by

m=n=9, fj =2 for all je¢ P and

; j'-'yi-yj, for all i,j « P.

(a) Use the greedy heuristic to find values ZG and WG.
(b) Apply the variation of the dual descent procedure based on the sets
Q.(u). Is the set K(u) given by (5.3) an optimal set of open facilities

i
for this problem instance?

9. Find an instance of the UFL Problem having the following properties:

(1) Z = W, (i) €5

integer for every j e J; (ii11) any optimum dual solution (ul,...,u

is integer for every i ¢ I, j ¢ J and fj is

)

m

has at least one fractional coordinate Use

Can the dual descent procedure solve the SLPR for this problem instance?
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(d)

11.
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Consider the instance of the UFL Problem defined in Exercise 7.

Starting from the point uO defined by u? = =1 max g Cij’ perform
two iterations of the subgradient algorithm applied to the Lagrangian

dual. Take YO = 1.2 and yl = 4 as the respective step sizes.

Solve the problem using the Dantzig-Wolfe approach. Start with

Ri = {i}, i = 1,...,5 and, in the iterative step, take

Rk = {i: Cik - u? > 0} whenever there is a tie for the choice of Rk'
Starting from the point xO = (0,0,0,0,1,1,1,1), perform three iterations
of the primal subgradient algorithm using the step sizes YO = yl = 1/4

and 72 = 1/16,

Solve the problem using Benders decomposition. Start from the five
constraints (6.5.4), one for each 1, determined by the index k such
that i is the second maximum Cij‘ Then choose an optimal solution
1

x~ to this Tinear program which is not identically zero.

Let p and g be two positive integers and consider a p x q matrix A

with elements a,. =0 or 1 forall i=1,...,p and j =1,...,9.

1J
Let b be a p-vector and ¢ be a g-vector. Given any set S of columns

of A, let I(S) = {i: = 1 for at least one j ¢ S}.

a. .

1]

We define the following problem.

Find a set S of columns of A which maximizes J b. - ) c..
ieI(s) v jés J

Formulate this problem as an integer program.

How does this relate to the canonical formulation (6.6.3)7?

(a) Show that the constraint matrix of the UFL Problem is totally
unimodular when m < 2,

(b) Show that it is totally unimodular when n < 2,
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14,

15,

16.

17.
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(a) Show that the conditions (i)-(iii) of Theorem 3.11 are necessary.

(b) Prove Theorem 3.12.
Prove Theorem 3,13,

Show that the inequality of Theorem 3.15 satisfies all the conditions of

Theorem 3.14,
Prove Theorem 3.17.

(a) Prove that, if a set function w is submodular and nondecreasing,

then

w(T) < w(S) + ) p.(S) for all S,T.
JeT=-S J

Consider a p-median problem with ij > 0. Let Pt be the increase in

the profit value achieved at the tth step of the greedy heuristic,

t=1,...,p. Show that the optimal solution Z of the p-median problem

satisfies

k
7 <

t

1

o~

p, + pp, for k=1,...,p.
1 t k

Use the inequalities found in (b) and the fact that the greedy value 1is

G p
Z p-1
pp to prove that 2~ 2 1 —(;75:> .

[}
i
il &~1"0

t=1
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