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Ribonucleotide reductase catalyzes the rate-liming step in deoxyribonucleotide 

triphosphate biosynthesis and is a major determinant of genomic integrity. Unbalanced 

dNTP pools can cause genetic abnormality and cell death. Although a number of 

elaborate regulatory mechanisms govern RNR activity, the physiological impact of 

RNR deregulation had not previously been examined in an animal model. The aim of 

this dissertation is to elucidate the physiological effect of RNR deregulation using 

transgenic mouse models and to further dissect the molecular mechanisms of RNR-

induced mutagenesis and lung tumorigenesis. 

 

We generated transgenic mice that broadly overexpress individual RNR genes, 

and found that overexpression of the small RNR subunit potently and selectively 

induces lung neoplasms. RNR deregulation was found to promote lung carcinogenesis 

through a mutagenic mechanism, as evidenced by increased mutation rates in RNR 

overexpressing 3T3 cells and enhanced mutagenesis and carcinogenesis when 

combining RNR deregulation with defects in DNA mismatch repair. Moreover, the 

proto-oncogene K-ras was identified as a frequent mutational target in RNR-induced 

lung neoplasms. Importantly, RNR-induced lung neoplasms histopathologically 

resemble human papillary adenocarcinoma, making RNR transgenic mice a 



 

 

particularly authentic model for lung cancer. 

 

We initially hypothesized that RNR-induced mutagenesis and carcinogenesis 

was due to disturbed dNTP pools. However, we observed no alteration of dNTP levels 

or ratios in RNR overexpressing cells, suggesting that RNR-induced mutagenesis 

might be independent of RNR enzyme activity. Moreover, RNR overexpression was 

not associated with acute transforming activity. Alternatively, excess free radical 

production by the small RNR subunit may account for lung specific carcinogenesis in 

RNR transgenic mice. To further assess the requirements for free radical production 

and RNR enzyme activity in RNR-induced mutagenesis, we generated Rrm2 mutants 

and found that Rrm2 overexpressing cells exhibited significantly higher intracellular 

reactive oxygen species levels and Rrm2 mutants that are defective for RNR enzyme 

activity still promote mutagenesis in cultured 3T3 cells and exhibited elevated reactive 

oxygen species levels. Our data suggest that increased ROS production, rather than 

increased RNR enzyme activity, is the major driving force of RNR-induced 

mutagenesis, and potentially lung tumorigenesis.  

 

These studies establish a new oncogenic activity for the small subunit of RNR. 

RNR-induced lung tumors arose with moderate latency in a stochastic process 

associated with an elevated mutation rate and increased ROS production. This novel 

mouse lung cancer model holds great promise for providing insights into basic 

mechanisms in human lung cancer and developing effective strategy for prevention 

and therapy of lung cancer.  
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CHAPTER 1 

 

Literature Review 

 

1.1    Deoxyribonucleotide triphosphates and genome integrity 

A balanced supply of deoxyribonucleotide triphosphates (dNTPs), the basic 

building block of DNA, is fundamental for ensuring DNA replication fidelity and 

efficient DNA damage repair. Imbalanced dNTP pools can cause genetic defects. 

Therefore, the control of dNTP concentrations is essential for the maintenance of 

genetic stability, and disruption of this control can cause the accumulation of 

mutations in oncogenes or tumor suppressor genes, resulting in tumorigenesis.  

 

1.1.1 dNTP biosynthesis pathways 

dNTPs are synthesized by two biosynthetic pathways, the de novo and the 

salvage pathway. In the de novo pathway, dNTPs are produced in multiple steps from 

the principle products of purine and pyrimidine, inosinic acid (IMP) and uridine 

monophosphate (UMP), respectively (Fig 1.1) (Kunz, 1988; Kunz et al., 1994). Except 

for dTTP, dNTPs are derived from the reduction of corresponding ribonucleoside 

diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide 

reductase (RNR). The dNDPs are then phosphorylated to the triphosphates by 

nucleoside diphosphate kinase.  dTTP is produced from dUMP, which is generated 

either from hydrolysis of dUTP by dUTPase or from deamination of dCMP by the 

dCMP deaminase. Then dUMP is methylated by dTMP synthase to produce dTMP,  

with N5, N10-methylene tetrahydrofolate (MTHF) serving as a methyl donor. Finally, 

dTMP kinase phosphorylates dTMP to dTDP, which is in turn phosphorylated to 

dTTP by nucleoside diphosphate kinase. In the salvage pathway, dNTPs are generated 
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              Figure 1.1 The de novo dNTP biosynthesis pathway. 
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 in single steps from deoxyribonucleosides by deoxyribonucleoside kinases(Reichard, 

1988). Mammalian cells have two sets of deoxyribonucleoside kinases: one is present 

in the cytosol, and the other in mitochondria. The cytoplasmic and mitochondrial 

isozymes of thymidine kinase (TK) are called TK1 and TK2, respectively, which play 

import roles in dTTP salvage biosynthesis. Deoxycytidine kinase (dCK), in addition to 

phosphorylating deoxycytidine, also plays a dominant role in salvage synthesis of 

dAMP and dGMP. Adenosine and guanoside kinase (dAK and dGK), also 

phosphorylate the resepective deoxyribonucleosides, but relatively inefficiently (Kunz 

et al., 1994).  

 

1.1.2 Imbalanced dNTP pools and genomic instability 

Biosynthesis of dNTPs is precisely regulated with respect to concentration and 

timing (Kunz et al., 1994). Cell cycle dependent control of dNTP pools results in 

periodic but coordinated changes in dNTP pool size during the cell cycle. In S phase 

dNTP levels are elevated to coinciding with DNA replication. In contrast, dNTP 

concentration is maintained at low levels for DNA repair and mitochondrial DNA 

replication in G1/G0, and G2/M phases. In addition to cell cycle control, the control of 

dNTP pool sizes is also linked to DNA damage responses (Mathews, 2006). 

Loss of normal control of dNTP biosynthesis results in imbalances in dNTP 

pools and leads to aberrant DNA replication, enhanced mutagenesis, stimulated 

recombination, enhanced sensitivity to DNA damage reagents, oncogenic 

transformation and cell death(Kunz and Kohalmi, 1991; Mathews, 2006). Deficiency 

in all four dNTP pools or deprivation of any of dNTPs, such as dTTP deprivation, lead 

to incomplete DNA replication and defect in DNA repair, and cause mutagenesis and 

cell death (Reichard, 1988). Elevated dNTP pools, including unbalanced dNTP pool 

expansion with accumulation or depletion of one nucleotide and balanced expansion 



4 

of all four dNTP pools proportionally, are mutagenic (Kunz et al., 1994; Wheeler et 

al., 2005). 

The mechanisms of mutagenesis caused by imbalanced dNTP pools have been 

extensively explored. Excess or deficient dNTPs results in non-Watson-Crick base 

pair and mis-insertion during DNA replication.  In the presence of elevated nucleotide 

pools, the rate of base mis-insertion is increased during DNA replication and the 

efficiency of proof-reading is decreased due to the enhanced polymerization rate, 

termed “next-nucleotide effect”. Both dNTP mis-insertion and next-nucleotide effects 

contribute to the mutagenicity of dNTP imbalance in vivo (Kunz and Kohalmi, 1991). 

dNTPs in excess can also form a correct base pair at a slipped or dislocated 3’ 

terminus and lead to frameshift mutations (Bebenek et al., 1992). Furthermore, altered 

dNTP levels might influence the repair of damaged DNA (Kunz and Kohalmi, 1991). 

Hydroxyurea, an inhibitor of RNR, has been found to inhibit DNA-excision repair in 

human cells as a consequence of reduced dNTP levels (Snyder, 1984; Snyder, 1985). 

Finally, constitutively high dNTPs in inhibit cell cycle progression and leads to a 

defect in DNA damage checkpoint response (Chabes and Stillman, 2007). 

Mutagenic effect caused by imbalanced dNTP pool size has been suggested to 

contribute to the carcinogenesis. Thus, dNTP pool sizes have to be tightly controlled 

to prevent genomic instability and cancer development. Cells utilize multilevel 

controls to maintain the optimal dNTP level, which ensures the replication accuracy 

and genome stability. Among these controls, allosteric control and genetic control of 

the enzymes involved in dNTP biosynthesis are major mechanisms to maintain a 

balanced dNTP concentration and ratios.  
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1.2    Ribonucleotide Reductase (RNR) 

RNR catalyzes a crucial rate-limiting step of the de novo synthesis of dNTPs 

and is the sole enzyme responsible for reducing all four NDPs to the corresponding 

dNDPs, which are subsequently phosphorylated to dNTPs. Thus, RNR occupies a key 

position in the dNTP synthesis and plays an essential role in accurate DNA replication 

and repair by supplying adequate and balanced dNTPs for cells. RNR is indispensable 

for the survival of all living organisms.  The key role of RNR in DNA synthesis, and 

thereby cell proliferation, makes RNR an important target for cell growth control and 

target of chemotherapeutic treatment of cancer. 

1.2.1 RNR enzyme 

1.2.1.1    Classification of RNR 

There are three main classes of RNR enzymes that depend on different metal 

cofactors for catalytic activity (Kolberg et al., 2004). Class I enzymes contain an 

oxygen-bridged dinuclear iron center, class II enzymes contain cobalamin cofactor 

(vitamin B12), and class III enzymes contain an iron-sulfur cluster coupled to S-

adenosylmethionine (SAM). However, all three classes have a conserved cysteine 

residue at the active site that is converted to a thiyl radical, which initiates the 

substrate reduction by abstracting a hydrogen atom from the ribose ring of the 

substrate (Kolberg et al., 2004). The thiyl radical site is located on the tip of a protein 

loop in the center of a αβ barrel in all three classes of RNR. In the class II, the metal 

cofactor may interact directly with the active site cysteine, whereas in class I and class 

III, a stable protein radical is generated on a separate subunit and the radical is then 

transferred to the catalytic site through a radical transfer pathway consisting a chain of 

hydrogen bonded amino acid residues (Kolberg et al., 2004). All eukaryotic RNR 

enzymes belong to class I and are oxygen-dependent.  
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1.2.1.2    Overall structure of the RNR enzyme 

In mammals, RNR is composed of two non-identical homodimeric subunits, 

the large subunit R1 and the small subunit R2 (Fig. 1.2). The large subunit R1 exists 

as a homodimer with a molecular weight of 170 kD (Wright et al., 1990). Each R1 

monomer harbors a catalytic site, which reduces the substrate, and two allosteric 

regulation sites (specificity site and activity site, which will be discussed in detail 

later). Each R1 monomer is composed of three domains: one αβ barrel domain, an N 

terminal domain and one small domain (Uhlin and Eklund, 1994). The catalytic site is 

located in a cleft between the N-terminal domain and barrel domain. Two-monomer 

interaction area buries 4% of R1 surface area. 

The small subunit R2 is a homodimer with a molecular weight of 88 kD and 

forms a heart shape. Each R2 monomer contains an oxygen-bridged dinuclear iron 

center and a unique tyrosyl free radical, which is transferred through a radical transfer 

path to produce a thiyl radical in the catalytic site of R1 subunit. This tyrosyl free 

radical is situated in a hydrophobic environment close to the dinuclear iron center and 

is deeply buried inside the R2 subunit, protected from solvent.  The N-terminal of R2 

is not needed for enzyme activity, but is important for cell cycle regulation of the RNR 

enzyme. The C-terminal of R2 is important for the formation of the holoenzyme 

complex with R1 (Uhlin and Eklund, 1994) (Uppsten et al., 2006). The dimer appears 

to be a very stable entity. Two-monomer interaction area is extensive and buries 

18.5% of the accessible surface (Eklund et al., 2001). 

 

1.2.1.3    RNR catalytic mechanism 

At the catalytic site of the R1 subunit, a thiyl radical initiates catalysis by 

abstracting the 3’-hydrogen atom from the ribose ring of the substrate ribonucleotide  
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Figure 1.2  Schematic showing the structure of RNR and the reaction it catalyzes. 
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to generate a substrate radical (Uppsten et al., 2006). An essential redox cysteine pair 

at the catalytic site of R1 then reduces the substrate radical to deoxyribonucleotide by 

replacing the 2’-hydroxyl group on the ribose ring by a hydrogen atom. After reducing 

the substrate, a disulfide bond between the redox cysteine pair is formed and has to be 

reduced before the enzyme can be active again. Oxidized RNR can be reduced by the 

thioredoxin and glutaredoxin system. Oxidized thioredoxin and glutaredoxin then can 

be reduced by thioredoxin reductase and glutathione reductase, both depending on 

NADPH to provide final reducing power. Additional redox cysteine pair at the surface 

of the flexible C-terminus of R1 is involved in the reactivation of the enzyme by 

swinging out to the surface to be reduced and then swinging in again to the catalytic 

site to affect reduction (Eklund et al., 2001; Uhlin and Eklund, 1994).  

 

1.2.1.4    Radical formation and storage  

The thiyl radical that initiates the catalysis in the R1 subunit is transiently 

generated by a long-range radical transfer path from a stable tyrosyl radical in the R2 

subunit (Kolberg et al., 2004). The R2 subunit contains a dinuclear iron center and a 

stable tyrosyl radical, which is reduced and re-oxidized during each catalytic cycle 

(Uppsten et al., 2006).  

The dinuclear iron center in the R2 subunit possesses a strong oxidation power 

and is responsible for generating the stable tyrosyl radical. When oxygen reacts with 

the diferrous R2 (Fe(II)-Fe(II)), it will spontaneously oxidize the diiron center through 

a series of intermediate states, leading to a oxygen-bridged diferric iron cluster 

(Fe(III)-Fe(III)) and oxidizing the tyrosine residue (Y177 in mouse R2) to the tyrosyl 

radical (Uppsten et al., 2006).  

In mammals, formation of one dinuclear iron cluster in one R2 monomer can 

very strongly increase the formation of the second cluster in the second R2 monomer 



9 

(Kolberg et al., 2004). In addition, mammalian R2 has a low affinity to iron (II), which 

might be a novel regulatory mechanism utilized for preventing the formation of the 

tyrosyl radical when it is not needed, or under unfavorable growth conditions, such as 

hypoxia (Graff et al., 2002). The dinuclear iron center of mouse R2 are labile, and 

although the same mouse R2 dimer can carry out several redox cycles, a continuous 

supply of ferrous iron and oxygen is needed to keep the enzyme fully active (Kolberg 

et al., 2004). 

When the tyrosine 177 residue in the mouse R2 subunit is mutated for another 

redox-active amino acid with a suitable side chain and appropriate redox potential, like 

tryptophan (W), this residue can be oxidized. However, despite the formation of a 

transient tryptophan radical, no catalytic activity could be detected in the R2-Y177W 

mutant (Potsch et al., 1999). Moreover, when the tyrosine 177 is mutated to 

phenylalanine (F), cysteine (C), or histidine (H), all these mutants also lose enzyme 

activity, suggesting strongly that the tyrosyl radical 177 cannot be replaced by other 

amino acids (Potsch et al., 1999). 

 

1.2.1.5    Radical transfer 

The stable tyrosyl radical in the R2 subunit is transferred through a long-range 

proton-coupled radical transfer path to the thiyl radical at the catalytic site in the R1 

subunit. This radical transfer path consists of a chain of conserved hydrogen-bonded 

residues between the catalytic site of R1 and the tyrosyl radical of R2 (Nordlund and 

Reichard, 2006), which involves following conserved residues: His173, Asp266, 

Trp103 in the R2 subunit and Tyr738, Tyr737, Cys429 in the R1 subunit (Nordlund 

and Eklund, 1993; Uhlin and Eklund, 1994).  

In addition, a tyrosine residue (Y370 in mouse), localized in the flexible C-

terminus of the R2 subunit, has been found to link the radical transfer path in the R2 
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subunit to the radical transfer path in the R1 subunit during the radical transfer (Rova 

et al., 1999). Site-directed mutagenesis of this tyrosine residue to phenylalanine or 

tryptophan (Y370F and Y370W) has been found to inactivate RNR enzyme activity. 

The Y370F mutant protein was completely inactive, whereas the Y370W mutant 

protein only had 1.7% of the wildtype RNR enzyme activity (Rova et al., 1999). 

Although this tyrosine residue localizes to the C-terminus of the R2 subunit, it is not 

involved in the binding of the R1 subunit (Rova et al., 1999). 

 

1.2.2 RNR genes 

1.2.2.1    Mouse RNR genes 

The genes for the mouse R1 and R2 subunits are regulated separately and are 

located on separate chromosomes. Three RNR genes have been identified.  

The large subunit R1 is encoded by the Rrm1 gene, which consists of 19 exons and 

spans 26 Kb on chromosome 7; the small subunit R2 is encoded by the Rrm2 gene on 

chromosome 12 or the recently identified p53R2 gene on chromosome 15, which 

shares 80% homology with Rrm2 gene. Rrm2 gene is 5.9 Kb and consists of 10 exons, 

whereas p53R2 gene is 37 Kb and consists of 9 exons (Guittet et al., 2001; Jordan and 

Reichard, 1998). A heterotetrameric complex of Rrm2 and Rrm1 accounts for most 

RNR activity during S phase. p53R2 was originally identified as a target gene for the 

p53 tumor suppressor protein and is transcriptionally induced following DNA damage 

(Nakano et al., 2000; Tanaka et al., 2000). Mouse p53R2 displays 81% identity to 

mouse Rrm2 at the amino acid level, but lacks the KEN box required for Rrm2 

degradation in late mitosis. In addition to its role in stress responses, p53R2 is 

expressed at low levels throughout the cell cycle and complexes with Rrm1 to produce 

dNTPs for continuous mitochondrial DNA replication in quiescent cells (Bourdon et 

al., 2007; Hakansson et al., 2006b; Pontarin et al., 2007).  
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Several known functional domains in mouse Rrm2 are conserved in p53R2, 

including the iron center, tyrosine radical site, the hydrophobic pocket surrounding the 

tyrosyl radical site, the radical transfer pathway from the small subunit to the large 

subunit, and the hydrophobic channel from the surface to the interior of the protein. 

The major sequence difference between Rrm2 and p53R2 is that p53R2 lacks 33 

amino acid residues in its N-terminus (Chabes et al., 2004; Guittet et al., 2001). The 

tyrosyl radical signal in the p53R2 protein is almost identical with that in Rrm2 

protein. However, the reaction rate of p53R2 is lower than that of Rrm2, which may 

be due to its reduced binding affinity to R1(Shao et al., 2004).  

 

1.2.2.2    Yeast RNR genes 

Yeast contains four RNR genes. RNR1 and RNR3 encode the large subunit R1, 

and RNR2 and RNR4 encode the small subunit R2. RNR1 and RNR3 are two highly 

homologous genes (Elledge and Davis, 1990). The standard large subunit R1 in yeast 

is a RNR1 homodimer. RNR1 is essential for yeast. Levels of RNR1 mRNA fluctuate 

during the cell cycle, being the highest during S phase, while RNR3 mRNA is induced 

only after DNA damage, and is not essential. The small subunit of R2 in yeast is a 

heterodimer of RNR2 and RNR4, with RNR4 stabilizing an active RNR2-RNR4 

complex (Chabes et al., 2000; Eklund et al., 2001). 

 

1.2.3 Regulation of RNR 

Due to its vital importance to cellular physiology, RNR enzyme activity is 

tightly controlled by a variety of elaborate regulatory mechanisms:  allosteric 

regulation, cell cycle regulation, subcellular localization regulation, and small 

inhibitory protein regulation. 
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1.2.3.1    Allosteric regulation of RNR 

RNR has unique allosteric regulation mechanism through the large subunit R1 

because triphosphate nucleotides regulate the substrate specificity and overall enzyme 

activity in such a way that a balanced supply of the different deoxynucleotides are 

present during DNA synthesis but also the enzyme can adapt rapidly to changes in the 

requirements for dNTPs (Uhlin and Eklund, 1994). Regulation involves binding of 

effectors to two separate allosteric sites: specificity site (S-site) and activity site (A-

site). Recently, a third site, hexamerization site (H-site), has also been proposed to 

bind ATP to regulate RNR enzyme activity (Cooperman and Kashlan, 2003; Kashlan 

and Cooperman, 2003).  

The S-site binds to different allosteric effectors to influences substrate choice.  

When dATP binds to the S-site, the RNR enzyme binds and reduces CDP to dCDP 

and UDP to dUDP; when dTTP binds to the S-site, the enzyme binds and reduces 

GDP to dGDP; when dGTP binds to the S-site, the enzyme binds and reduces ADP to 

dADP. The S-site does not discriminate between ATP and dATP, so ATP also 

promotes reduction of CDP and UDP. Furthermore, dTTP is an inhibitor of pyrimidine 

reduction. In addition, dGTP is a negative feedback inhibitor of GDP reduction and 

also inhibits reduction of pyrimidines (Jordan and Reichard, 1998; Kolberg et al., 

2004; Nordlund and Reichard, 2006). 

The A-site modulates enzyme activity by monitoring the ATP/dATP ratio. 

Binding of ATP activates RNR and binding of dATP turns the enzyme off.  dATP acts 

as an overall negative regulator through inhibition of all four ribonucleotide 

reductions. Therefore, dATP has both stimulatory (S-site binding) and inhibitory (A-

site binding) effect. Because dATP has higher affinity to the S-site, the inhibitory 

effect is only significant at very high concentration of dATP. This feedback regulation 

ensures that a balanced dNTP pool is supplied for DNA synthesis.  
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Recent studies also suggest the R1 subunit contains a third regulation site (the 

hexamerization site, H-site). ATP binding to the H-site promotes the formation of an 

Rrm16-Rrm26 hexamer. This hexamer has been suggested to be the major active form 

of RNR in mammalian cells(Cooperman and Kashlan, 2003; Kashlan and Cooperman, 

2003). However, the presence of H-site and the Rrm16-Rrm26 hexamer is still highly 

controversial (Kolberg et al., 2004).  

 

1.2.3.2    Cell cycle regulation of RNR 

RNR is tightly regulated during the cell cycle through transcriptional 

expression, mRNA stability, and protein degradation. RNR enzyme activity increases 

greatly during S phase. R1 and R2 are regulated differentially, with R2 being rate 

limiting for enzyme activity (Bjorklund et al., 1990; Eriksson et al., 1984; Mann et al., 

1988).  

 

1.2.3.2.1 Transcriptional regulation of RNR during the cell cycle 

During an unperturbed cell cycle, the transcription of Rrm1 and Rrm2 is 

undetectable in G0/G1 phase and reaches maximal levels in S phase (Bjorklund et al., 

1990; Eriksson et al., 1984; Mann et al., 1988). However, the level of the Rrm1 

subunit is nearly constant throughout the cell cycle in proliferating cells, owing to its 

long half-life of more than 20 hours, and it is in excess relative to the Rrm2 subunit. 

Therefore, the cell cycle dependent RNR activity is controlled by synthesis and 

degradation of the Rrm2 subunit, which has a half-life of 3 hours. Rrm1 and Rrm2 

both contain promoter active regions (Nordlund and Reichard, 2006), which are 

controlled by S phase specific transcriptional machinery. Transcription of p53R2 is 

constant throughout the cell cycle, but is induced in response to DNA damage 

(Nakano et al., 2000; Tanaka et al., 2000). 
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The S phase specific transcription of the TATA-less mouse Rrm1 gene is 

controlled by proteins that bind to four different promoter elements, β (nucleotide -189 

to -167), α (-97 to -76), Inr (-4 to +16), and γ (+34 to +61) (Johansson et al., 1998). 

YY1, a ubiquitous transcription factor, binds to the β and α elements, which control 

the promoter strength.  The cell cycle-specific expression of Rrm1 is controlled by 

protein complexes containing TFII-I that bind to the Inr element and the downstream γ 

element (Johansson et al., 1998).  

Although the transcription of Rrm2 is tightly correlated to the cell cycle, less is 

known about the Rrm2 promoters responsible for this cell cycle regulated transcription 

(Chabes et al., 2004). Rrm2 promoters show no obvious sequence homologies with the 

Rrm1 promoters that could explain the common S phase specific expression pattern. 

Mouse Rrm2 promoter contains an atypical TATA –box with the sequence TTTAAA, 

which is not required for S –phase specific activity (Kotova et al., 2003). E2F4 binds 

to a repressive element of Rrm2 promoter to repress the Rrm2 transcription during 

G1/G0 phase. Binding of nuclear factor Y (NF-Y) to the Rrm2 promoter impedes the 

binding of E2F4 to this repressive site, and thus facilitates the release of E2F4 during 

S phase. In addition, an upstream activating region is also important for S phase 

specific transcription of Rrm2 gene. However, proteins binding to this activating 

region have not been identified (Chabes et al., 2004). 

 

1.2.3.2.2 mRNA stability 

In addition to transcriptional activation of gene expression, post-transcriptional 

mechanisms that alter mRNA message stability also play an important role in 

controlling message abundance and gene expression in mammalian cells.  

The Rrm1 gene contains a cis-element at the 3’-UTR of the mRNA that 

interacts with the R1BP protein complex. The Rrm2 gene also contains a cis-element 
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that interacts with the R2BP complex at the 3’-UTR of Rrm2 mRNA (Amara et al., 

1996; Angel et al., 1987; Burton et al., 2003; Chen et al., 1994). When cells are treated 

with potent tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), the binding 

of R1BP and R2BP to their respective cis-elements is down-regulated, which 

correlates with an increase in Rrm1 and Rrm2 mRNA stability. The Rrm2 gene 

contains additional binding site at the 3’-UTR that binds to p75 in response to TGF-β 

stimulation and confers Rrm2 mRNA stability. The tumor promoter TPA and a DAG 

(1,2, diacylglycerol) analogue can activate PKC and cause elevation of Rrm1 and 

Rrm2 mRNA levels and prolong their half-life (Amara et al., 1996; Burton et al., 

2003; Chen et al., 1994). Thus, these two signaling pathways, PKC and TGF-β 

signaling pathways, regulate RNR message stability. Redox-sensitive mechanisms 

also play a role in R2BP/Rrm2 mRNA binding activity (Amara et al., 1996). Higher 

oxidation potential has also been found to be associated with progression with 

progression toward mitosis, therefore the control of many cell cycle proteins such  as 

RNR depend on redox-sensitive reactions (Goswami et al., 2000). Increasing oxidation 

during the cell cycle decreases the binding of R2BP, resulting in an increase in Rrm2 

mRNA stability, enabling the cell to increase its dNTP production for DNA synthesis 

(Burton et al., 2003). 

 

1.2.3.2.3 Post-translational regulation of RNR by the cell cycle 

In addition to transcriptional regulation and mRNA stability, the Rrm2 subunit 

is also regulated by enzyme degradation during mitosis in a cell cycle dependent 

manner. Rrm2 has a short half-life of 3 hours. RNR enzyme activity is therefore 

determined in part by the Rrm2 protein levels. Rrm2 protein accumulation is periodic; 

the polypeptide is absent during G0/G1-phase, peaks in S–phase, and then falls in 

mitosis due to proteolytic degradation (Chabes and Thelander, 2000; Chabes et al., 
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2003b; Eriksson et al., 1984).  

The mouse Rrm2 subunit contains an N-terminally located conserved KEN 

box (KENXXXN), a sequence recognized and ubiquitinated by the Cdh-anaphase-

promoting complex (Cdh1-APC). Cdh1-APC is an ubiquitin ligase that targets protein 

degradation during the mitosis and G1 phase. The overall periodicity of Rrm2 protein 

levels depends on this KEN box sequence. Mutating the KEN signal stabilizes the 

Rrm2 protein during mitosis and G1 phase (Chabes et al., 2003b). Additionally, Ser 20 

at the N-terminal tail of mouse Rrm2 protein is phosphorylated by p34cdc2 and CDK2 

protein kinases, which is also important for cell cycle regulation of the enzyme but the 

function of this phosphorylation has not been determined (Chan et al., 1993). 

However, the N-terminal sequence is not needed for enzyme activity since truncation 

of N-terminal residues in mouse Rrm2 does not significantly affect the enzyme 

activity (Mann et al., 1991). 

 

1.2.3.3    Subcellular localization regulation of RNR  

Translocation of RNR subunits from the cytosol to nucleus has been proposed 

to provide additional regulation of RNR. In mammals, it is well established that Rrm1 

and Rrm2 are cytoplasmic (Engstrom and Rozell, 1988; Engstrom et al., 1984), but the 

location of p53R2 and the translocation of Rrm1, Rrm2 and p53R2 after DNA damage 

are still controversial. Nakano and Tanaka both reported that p53R2 localizes to the 

nucleus in genotoxin treated cells, which may facilitate the localization of nucleotides 

at sites of DNA damage (Nakano et al., 2000; Tanaka et al., 2000). A study in a 

human tumor cell line showed that both Rrm2 and p53R2 undergo translocation from 

the cytosol to the nucleus coincident with activation of DNA synthesis (Liu et al., 

2005). In addition, translocation of Rrm1, Rrm2, p53R2 from the cytoplasm to the 

nucleus in response to UV irradiation is consistent with the increase in RNR activity 



17 

(Xue et al., 2003). However, a recent study found that all three RNR proteins reside in 

the cytosol independent of DNA damage, suggesting that dNTPs produced by RNR in 

the cytosol and diffuse into the nucleus or are transported into the mitochondria to 

support DNA replication and repair (Pontarin et al., 2008). Nuclear staining of p53R2 

was probably caused by non-specific staining of polyclonal antibodies, since cytosolic 

localization of p53R2 was detected by using specific monoclonal antibodies or affinity 

chromatography purified polyclonal antibodies in Pontarin’s report.  

In yeast, during the normal cell cycle, RNR1 and RNR3 are localized 

predominantly in the cytoplasm, whereas RNR2 and RNR4 have a primarily nuclear 

localization. In response to DNA damage, the small subunit complex RNR2/RNR4 

translocates from the nucleus to the cytoplasm, forming the active tetrameric RNR 

complex with the large subunit (Yao et al., 2003). Control of the nuclear localization 

of RNR2/RNR4 complex involves an anchor mechanism and Wtm1 is a key 

component of that anchor in budding yeast (Lee and Elledge, 2006; Zhang et al., 

2006). In addition, Damage regulated Import Faciliator 1 (Dif1) has been found to 

directly binds to the RNR2-RNR4 complex through a Hug domain to drive nuclear 

import of RNR2-RNR4 complex and Dif1 is both cell-cycle and DNA-damage 

regulated (Lee et al., 2008; Wu and Huang, 2008).  Thereby, the combination of both 

nuclear anchor limiting nuclear export and a regulated importer to coordinate 

subcellular localization of RNR has been proposed in budding yeast. In fission yeast, 

in addition to specifically binds and inhibit R1 (Cdc22p), inhibitory protein Spd1p can 

anchor the small subunit R2 in the nucleus (Hakansson et al., 2006a). 

 

1.2.3.4    Regulation of RNR by small inhibitory proteins 

 In some organisms, RNR activity can also be regulated by the binding of small 

inhibitory proteins, such as Sml1 in S. cerevisiae (Zhao et al., 1998) and Spd1 in S. 
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pombe (Hakansson et al., 2006a; Liu et al., 2003). Sml1 is a 104-residue peptide that 

binds the large subunit of RNR through its C-terminus and inhibit RNR enzyme 

activity by interfering with the regeneration of the catalytic site on the large subunit. 

Spd1 binds specifically to the Cdc22p (the large subunit R1 in fission yeast) to inhibit 

RNR activity. In addition to transcriptional induction of RNR following DNA 

damage, the Mec1 and Rad53 pathway also regulates RNR activity through 

phosphorylation and degradation of Sml1 inhibitory protein. Sml1 protein levels 

decrease during S phase and become undetectable after DNA damage, resulting in de-

repression of RNR activity. Failure to remove Sml1 in mec1 and rad53 mutants results 

in decreased dNTP levels, incomplete DNA replication, defective mitochondrial DNA 

propagation, and cell death (Zhao et al., 2001). Mutant strains lacking Sml1 grow 

normally, exhibit increased resistance to DNA-damage agents, and have higher dNTP 

levels compared to wild-type strains (Zhao et al., 1998). 

In mammalian cells, a Sml1-like mechanism for controlling the activity of 

RNR has not been identified.  However, p53 has been found to directly interact with 

p53R2 and Rrm2 but not Rrm1. After exposure to UV, p53R2 and Rrm2 have been 

suggested to dissociate from p53 and bind to Rrm1, forming Rrm1-Rrm2 and Rrm1-

p53R2 complexes to provide dNTPs for DNA repair (Xue et al., 2003).  

 

1.2.4 RNR and DNA damage response 

RNR plays an important role in DNA damage response and genome 

maintenance. In response to DNA damage and DNA replication blocks, all organisms 

arrest cell cycle progression at specific points and induce the expression of genes 

facilitating DNA repair. The largest category of DNA damage-inducible genes are 

those involved in DNA replication, including DNA polymerases and RNR genes. 
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Induction of these genes in response to stress of DNA damage is thought to produce a 

metabolic state that facilitates DNA replication and repair processes.  

Consistent with a need for nucleotides during DNA repair, DNA damage 

induces transcription of the RNR genes in both yeast and mammalian cells, in a 

manner dependent on DNA damage checkpoint signaling pathways (reviewed in 

(Elledge et al., 1993) see also (Filatov et al., 1996; Guittet et al., 2001; Hakansson et 

al., 2006b; Nakano et al., 2000; Tanaka et al., 2000; Zhao et al., 2001). In yeast, RNR 

is the best-studied transcriptional target of the Mec1 and Rad53 checkpoint pathway. 

Dun1, a downstream kinase of the Mec1/Rad53 pathway, activates transcription of 

RNR genes in response to DNA damage (Chen et al., 2007b; Zhao and Rothstein, 

2002; Zhou and Elledge, 1993). Dun1 was originally identified in yeast as a mutant 

showing a defect in the up-regulation of RNR in response to DNA damage (Zhou and 

Elledge, 1993). In addition to transcriptional activation of RNR, Dun1 is also 

responsible for phosphorylation and degradation of the RNR inhibitory protein Sml1 

in response to DNA damage (Zhao and Rothstein, 2002). Dun1-dependent regulation 

of the localization of different RNR subunits in response to DNA damage serves as an 

additional mechanism for RNR activation in DNA damage response (Lee and Elledge, 

2006; Zhang et al., 2006). Collectively, in yeast, DNA damage results in a substantial 

increase in dNTP levels. This increase in dNTP pools dramatically improves survival 

following DNA damage (Chabes et al., 2003a). 

Like in yeast, activation of checkpoint pathways promotes the delay of cell 

cycle progression in mammalian cells, allowing required repair to take place before 

commencement of DNA replication and mitosis. DNA double-stranded breaks (DSBs) 

and stalled DNA replication forks prompt the activation of Atm (ataxia telangiectasia-

mutated) and Atr (AT and Rad3-related) signaling pathways. Activated Atm and Atr, 

on one hand, recruit Mdc1, p53BP1 and Brca1 to sites of DNA damage to facilitate 
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repair and simultaneously propagate the checkpoint signals to Chk2/p53 and Chk1 to 

block G2/M transition and S phase progress. p53R2 is targeted by the p53-dependent 

checkpoint pathway through transcriptional activation in response to DNA damage 

(Nakano et al., 2000; Tanaka et al., 2000). Concomitantly, the level of Rrm2 is 

repressed in a p53 dependent manner (Lin et al., 2004; Tanaka et al., 2000).  

It has been suggested that mammalian Rrm1 and Rrm2 are DNA damage-

inducible. The Rrm1 promoter is induced up to 3-fold and the Rrm2 promoter is 

induced up to 10-fold by UV light at a dose-dependent manner (Filatov et al., 1996). 

Rrm2 protein is stabilized in response to DNA damage (Chabes and Thelander, 2000). 

Several studies found that Rrm2 can substitute for the function of p53R2 in providing 

dNTPs for DNA repair in cells lacking functional p53 (Lin et al., 2004) and excess 

Rrm2 protein functions coordinately with the S phase checkpoint to contend with 

DNA damage and alleviate replication stress (Lin et al., 2007).  

The finding of the DNA damage-inducible p53R2 gene resolved the mystery of 

how non-proliferating cells with no detectable Rrm2 proteins would obtain dNTPs for 

DNA repair after DNA damage. In mammalian cells, ATM activates p53, which then 

induces the expression of p53R2 by directly activating its transcription through 

binding of a sequence in the first intron of the p53R2 gene(Nakano et al., 2000; 

Tanaka et al., 2000). P53R2 protein forms an active Rrm1-p53R2 complex with Rrm1 

to provide dNTPs for DNA repair (Guittet et al., 2001; Hakansson et al., 2006b). Cells 

that can not make p53R2 protein are more sensitive to DNA-damaging agents (Tanaka 

et al., 2000; Yamaguchi et al., 2001). Recent studies found that ATM directly 

phosphorylates p53R2 at Ser72 in response to genotoxic stress and this modification is 

essential for maintaining p53R2 protein stability (Chang et al., 2008). ATM dependent 

p53R2 phosphorylation at Ser72 regulates cell viability and p53R2 protein stability by 

inhibiting p53R2 hyper-ubiquitination and degradation by MDM2 in response to DNA 
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damage (Chang et al., 2008). Together, transcriptional induction of p53R2 by p53 

and/or phosphorylation of p53R2 by ATM are responsible for providing dNTPs by 

Rrm1-p53R2 complex for DNA repair following DNA damage. 

It is still unclear whether dNTP levels also increase after DNA damage in 

mammalian cells. Mammalian cells have a more strict dATP feedback inhibition of 

RNR activity, so increased levels of RNR enzyme in mammalian cells might not result 

in a general increase in the dNTP pools (Akerblom et al., 1981). The p53-dependent 

induction of the p53R2 protein is important in the cellular response to DNA damage 

(Nakano et al., 2000; Tanaka et al., 2000), and by analogy with the yeast system, it has 

been assumed that mammalian cells also increase their RNR activity and dNTP pools 

after DNA damage (Lin et al., 2004). However, there are conflicting reports on the 

effect of DNA damage on dNTP pools in mammalian cells (Kunz and Kohalmi, 1991). 

A recent study found no major increase in the dNTP pools in logarithmically growing 

or resting mammalian cells after DNA damage, which is in strong contrast to the 

pronounced increase in dNTP pools observed in yeast after DNA damage (Hakansson 

et al., 2006b). 

In summary, in response to DNA damage, cellular dNTP levels increase by 

several fold due to the elevation of RNR activity through transcriptional induction, 

inactivation of the RNR negative regulator sml1, and changes in subcellular 

translocation, as discussed above. Up-regulated RNR activity can rescue the lethality 

caused by mutations of essential cell cycle checkpoint genes Mec1/Rad53 in yeast 

(Desany et al., 1998; Zhao et al., 1998). Mammalian cells with increased RNR activity 

are also resistant to particular DNA damaging agents (Huang et al., 1997).  In the 

context of DNA damage response, the increase in dNTP levels may be necessary for 

repair synthesis, and translesion DNA polymerases need higher concentration of 
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dNTPs to bypass DNA lesions (Chabes et al., 2003a). Therefore, up-regulated RNR is 

beneficial to cell survival following DNA damage.  

 

1.3    Deregulation of RNR and genome instability 

Although up-regulated RNR promotes cell survival following DNA damage, 

abundant evidence shows that deregulation of RNR is mutagenic, causing increased 

mutation rates in both yeast (Chabes et al., 2003a) and mammalian cells (Caras and 

Martin, 1988). Deregulation of RNR might cause genomic instability through two 

major different mechanisms: imbalanced dNTP pools resulting from altered RNR 

enzyme activity and increased oxidative DNA damage resulting from increased radical 

production. 

1.3.1 Genomic instability induced by deregulated dNTP synthesis enzyme 

RNR plays a dominant role in tightly regulating dNTP pool sizes and 

composition. Hence the control of RNR activity is important not only in regulating the 

kinetics of DNA replication, but also in maintaining the integrity of the genome 

(Herrick and Sclavi, 2007). Deregulation of RNR is mutagenic in both yeast and 

mammalian cells, which is largely due to elevated dNTP levels or altered dNTP ratios 

generated by increased RNR activity (Caras and Martin, 1988; Chabes et al., 2003a; 

Weinberg et al., 1981; Zhou et al., 1998a). The observation of severe mitochondrial 

DNA (mtDNA) depletion in humans with p53R2 mutations demonstrates that p53R2 

has a crucial role in maintaining dNTP supply, especially for the synthesis of mtDNA, 

which constantly replicates. 

As with RNR deregulation, deregulation of other enzymes involved in dNTP 

biosynthesis also leads to enhanced mutagenesis and genomic instability. Cdh1-

APC/C not only controls RNR degradation in a cell cycle dependent manner, but also 

degrades thymidine kinase (TK1) and thymidylate kinase (TMPK), two enzymes 



23 

controlling dTTP synthesis, during mitosis. When these control mechanisms are shut 

off by mutating the KEN box in those two proteins, dTTP accumulates in a 

unbalanced fashion, causing an increase in spontaneous mutation rates and genomic 

instability (Ke et al., 2005). Thus, the tight regulation of enzymes controlling dNTP 

synthesis and the post-S phase shutoff of dNTP synthesis play a key role in 

maintaining optimal genomic stability (Mathews, 2006). 

The connection between RNR deregulation and enhanced mutagenesis is still 

not fully understood. Allosteric regulation of RNR by dATP inhibition keeps the S 

phase dNTP pools at a level that is optimal for replication, which does not increase 

even when the limiting Rrm2 protein is overproduced. In hydroxyurea-resistant Rrm2-

overproducing mouse cells having 3-15 times higher RNR activity than the parent 

cells, all dNTP pools were close to normal, except for a 3-4 times higher dATP pools 

(Akerblom et al., 1981). Furthermore, hydroxyurea-resistant, Rrm2 over-producing 

mouse mammary tumor TA 3 cells, containing about 40 fold higher Rrm2 protein than 

parent cells, had the same dNTP pools as the parent cells (Eriksson et al., 1984). In 

both of these cases, the cell cycle regulation of the Rrm2 protein was not disturbed 

(Chabes and Thelander, 2000). In contrast, in mouse cells containing Rrm1 protein 

with a D57N mutation in the allosteric activity site, which abolishes the dATP 

feedback inhibition, dNTP pools increased 3-9 fold and the spontaneous mutation rate 

was about 100 times higher than the parent cells (Weinberg et al., 1981). However, 

another study found Rrm1-D57N mutant produced mutator phenotype in mammalian 

cells without significant changes in dNTP pools (Caras and Martin, 1988). Therefore, 

whether the enhanced mutagenesis associated with RNR deregulation resulted from 

perturbations of dNTP pools has not been established. 

Despite the well-established association between RNR and maintenance of 

genome integrity, the mechanisms of genomic instability caused by RNR deregulation 
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have not been conclusively determined. In addition to possibly altered enzyme activity 

and changes in dNTP pools, other mechanisms may also contribute to genomic 

instability associated with RNR deregulation. 

 

1.3.2 RNR deregulation and oxidative DNA damage 

The small subunit of RNR produces a radical for catalysis and shows dynamic 

carboxylate, radical, and water shifts in different redox form (Kolberg et al., 2004). 

The structure and function of RNR is closely linked to its redox state.  Free radicals let 

loose in the cell can perpetrate all kinds of damage, including mutagenesis and 

molecular degradation (Stubbe, 1994). Similarly, cytochrome c oxidase, which has 

redox active tyrosine in the binuclear center, participates in reducing oxygen in 

respiration, suggesting that proteins containing tyrosyl radicals with a binuclear center 

may be reducing or oxidizing reagents (Xue et al., 2006). It has been reported that 

human RRM2 protein produces reactive oxygen species (ROS) in vitro (Xue et al., 

2006). Thus, free radical-induced oxidative DNA damage might also contribute to the 

mutagenic effect of RNR deregulation. ROS can cause DNA damage, which has long 

been thought to be involved in carcinogenesis by amplifying genomic instability. 

However, p53R2 is indicated to play a key role in defending against oxidative stress 

by scavenging ROS (Xue et al., 2006). 

 

1.4    RNR and cancer 

Large amounts of dNTPs are required for the replication of the genome in 

proliferating cells during the S phase of cell cycle, whereas in the other phase the 

requirement is low. The level of RNR in mammalian cells is therefore closely linked 

with cell cycle and growth control mechanism. Elevations in RNR activity have been 
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reported to be linked to neoplastic properties of cells (Wright et al., 1990), malignant 

transformation and cancer metastasis.  

 

1.4.1 RNR and transforming activity 

Preliminary evidence had suggested that Rrm1 may function as a tumor 

suppressor (Bepler et al., 2002; Fan et al., 1997; Gautam et al., 2003) and has 

malignancy-suppressing activity. Stable expression of Rrm1 in a Ras-transfected 

mouse fibroblast cell line resulted in reduced anchorage-independent growth and 

tumor formation in syngeneic mice (Fan et al., 1997). Rrm1 has been also found to 

function as a metastasis suppressor gene through induction of PTEN expression. 

Overexpression of Rrm1 in human and mouse lung cancer cell lines induced PTEN 

expression, reduced phosphorylation of focal adhersion kinase (FAK), suppressed 

migration, invasion, and metastasis formation (Gautam et al., 2003). 

Rrm2 has been suggested to play a direct role in determining malignant 

potential through cooperating with oncogenes. R2 is not only capable of acting in 

cooperation with a variety of oncogenes (H-ras, rac-1, v-fms, v-src, A-raf, v-fes, and 

c-myc) to promote anchorage-independent growth and tumor formation, but also 

enhances cancer invasive potential (Fan et al., 1998; Fan et al., 1996; Zhou et al., 

1998b).  

p53R2, on the other hand, has been proposed to have tumor suppressor activity 

based on its regulation by p53 and its role in the DNA damage response (Tanaka et al., 

2000). Given that many human tumors contain mutations in p53, discovery of p53R2 

thus created a link between one of the most important tumor suppressor and the 

synthesis of deoxyribonucleotides (Xue et al., 2003).  
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1.4.2 RNR and human cancer 

In humans, RRM1 is located on chromosome segment 11p15.5, a region with 

frequent loss of heterozygosity in non-small-cell lung cancer (NSCLC) (Bepler et al., 

2002; Pitterle et al., 1999). Low levels of expression of the gene are associated with 

poor survival among patients with NSCLC (Bepler et al., 2004). RRM1 protein 

expression in NSCLC cells is nuclear, highly correlated with ERCC1 expression, and 

significantly associated with prolonged cancer-free and overall survival in untreated 

early-stage NSCLC (Zheng et al., 2007). However, RRM1 overexpression has been 

linked to drug resistance in tumor chemotherapy, and is utilized as a marker for 

chemoresistance and poor survival in patients with advanced NSCLC (Ceppi et al., 

2006; Gazdar, 2007) . Thus, RRM1 in NSCLC has been proposed to have a dual role 

in both cancer susceptibility and drug resistance by repairing DNA lesions during the 

early stage of the cancer to promote survival and by repairing the drug-DNA adducts 

formed after chemotherapy to cause drug resistance and poor survival during the late 

stage of the cancer (Gazdar, 2007). 

RRM2 expression level was correlated with both advanced breast tumor grade 

and stage, suggesting that RRM2 may play a dual role in supporting both rapid cell 

proliferation and invasive growth (Ma et al., 2003). The genomic regions containing 

human RRM2 (2p25-2p24) are commonly amplified in human lung cancers (Pei et al., 

2001; Wong et al., 2003). Human RRM2 gene expression levels and gene 

amplification have also been correlated with chemotherapy drugs (for example, 

docetaxel/gemcitabine) resistance and clinic outcomes of lung adenocarcinomas 

(Souglakos et al., 2008; Zhou et al., 2001).  

p53R2 gene is localized to chromosome 8q23.1 and several tumors have been 

noted to have losses of  this chromosome region. A few reports have suggested 

potential implications of p53R2 in human squamous cell carcinomas and  NSCLC 
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(Uramoto et al., 2006; Yanamoto et al., 2003). In addition, a number of 

polymorphisms in the gene encoding p53R2 have been identified in esophageal 

squamous cell carcinoma and in colon carcinoma (Deng et al., 2005; Smeds et al., 

2001; Yamaguchi et al., 2001), but none of these mutations are associated with altered 

p53R2 activity (Chang et al., 2008).  

The level of RNR tyrosyl radical is dependent on the oxygenation of the cells, 

where the radical disappears when the cells are deprived of oxygen (Probst et al., 

1989). Human cancer cells with an increased level of R2 resume S phase progression 

faster upon re-oxygenation after exposure to moderate hypoxia than cells with a 

normal level of RNR (Graff et al., 2002). Cells are thus given less time for DNA 

repair, which would result in an increased probability of mutations.  This indicates 

how an increased level of RNR might raise the malignant potential of tumors (Fan et 

al., 1998; Fan et al., 1996).  

 

1.4.3 RNR as a target for cancer therapy 

Tumor cells are more sensitive to the cytotoxic effect of RNR inhibition than 

normal cells because of the increased need for dNTPs for proliferation and decreased 

adaptability and low responsiveness to regulatory signals. Thus the enzyme has long 

been considered an excellent target for cancer chemotherapy (Shao et al., 2006). 

Specific inhibitors of RNR such as hydroxyurea and substrate analogues such as 

Gemcitabine have long been used for treatment of cancer. Hydroxyurea is a radical 

scavenger and it inactivates RNR by directly reducing the tyrosyl radical of the R2 

subunit to a normal tyrosine residue via one-electron transfer from the drug (Shao et 

al., 2006). Hydroxyurea inhibits both RRM2 and p53R2 (Shao et al., 2004) and is 

commonly used for the treatment of chronic myelogenous leukemia and 

thrombocythemia. Overexpression of RRM2 increases resistance to hydroxyurea in 
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cancer cells and RRM2 gene amplification and alterations in transcriptional regulation 

are probably responsible for the mechanism of the drug resistance (Shao et al., 2006).   

 

1.5    Models of RNR deregulation 

Several models have been established to study the effect of RNR deregulation. 

In yeast, up-regulated RNR activity, through overproduction of Rnr1, inactivation of 

the inhibitory protein Sml1, or a mutation in allosteric activity site (rnr1-D57N), can 

rescue the lethality caused by mutations of the essential cell cycle checkpoint genes 

Mec1/Rad53. However, this increased survival is at the expense of increased 

mutagenesis due to the increase in dNTP levels.  In cultured mammalian cells, 

expression of Rrm1-D57N mutant protein results in a mutator phenotype, with a15-25 

fold increase in spontaneous mutation rates. However, no significant dNTP pool 

changes were observed in this study (Caras and Martin, 1988). In addition, Rrm1 and 

Rrm2 overexpressing 3T3 cells were generated and Rrm2 overexpressing cells found 

to have transforming activity in cooperation with variety of oncogenes. 

Overexpression of Rrm1 in 3T3 cells, on the other hand, was found to have tumor 

suppressing activity. 

In mouse models, p53R2 knockout mice die from severe renal failure by the 

age of 14 weeks and show attenuated dNTP pools and higher rates of spontaneous 

mutation in the kidneys, suggesting that p53R2 has an essential role in maintaining 

dNTP levels for repair of DNA in resting cells (Kimura et al., 2003). In addition to 

kidney failure, p53R2 knockout mice show growth retardation, muscle atrophy and 

had a markedly decreased mtDNA content at 12 weeks of age, suggesting that p53R2 

has a crucial role in dNTPs supply for the synthesis of mtDNA, which constantly 

replicates  (Bourdon et al., 2007). Recently, Rrm1 transgenic mice were generated and 
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showed significantly suppressed carcinogen-induced lung tumor formation and higher 

efficiency in chemical-induced damage repair (Gautam and Bepler, 2006).  

 

1.6    Summary 

RNR catalyzes the rate-limiting step of dNTP biosynthesis and plays an 

essential role in DNA replication and DNA repair. Due to its critical role in genome 

maintenance, RNR activity is tightly regulated through S phase specific transcription 

of Rrm1 and Rrm2 genes, binding of allosteric effectors to Rrm1 protein, anaphase 

promoting complex-cdh1-mediated degradation of the Rrm2 protein during late 

mitosis. Deregulation of RNR has been found to cause genomic instability in both 

yeast and mammalian cells.  

Although RNR enzyme activity has long been associated with cancer cell 

proliferation and RNR inhibition is an effective strategy for cancer therapy, the 

connection between RNR and cancer development is still unclear. It is critical to 

establish whether RNR deregulation will initiate and promote cancer progression. We 

hypothesize that deregulation of RNR, by overexpressing each RNR subunit in mice, 

would cause genomic instability and cancer development. The aim of this dissertation 

is to elucidate the physiological effect of RNR deregulation using the transgenic 

mouse models and to further dissect the molecular mechanisms of RNR-induced 

tumorigenesis. 
 

 
 
 
 
 
 
 
 
 
 



30 

CHAPTER 2 

 

Broad Overexpression of Ribonucleotide Reductase Genes in Mice 

Specifically Induces Lung Neoplasms 

 

2.1 Abstract 

Ribonucleotide reductase catalyzes the rate-limiting step in nucleotide 

biosynthesis and plays a central role in genome maintenance. Although a number of 

regulatory mechanisms govern RNR activity, the physiological impact of RNR 

deregulation had not previously been examined in an animal model. We demonstrate 

here that overexpression of the small RNR subunit potently and selectively induces 

lung neoplasms in transgenic mice and is mutagenic in cultured cells. Combining RNR 

deregulation with defects in DNA mismatch repair, the cellular mutation correction 

system, synergistically increased RNR-induced mutagenesis and carcinogenesis. 

Moreover, the proto-oncogene K-ras was identified as a frequent mutational target in 

RNR-induced lung neoplasms. Together, these results demonstrate that RNR 

deregulation promotes lung carcinogenesis through a mutagenic mechanism and 

establish a new oncogenic activity for a key regulator of nucleotide metabolism. 

Importantly, RNR-induced lung neoplasms histopathologically resemble human 

papillary adenocarcinomas and arise stochastically via a mutagenic mechanism, 

making RNR transgenic mice a valuable model for lung cancer. 
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2.2 Introduction 

An adequate and balanced supply of deoxyribonucleotide triphosphates 

(dNTPs) is essential for accurate DNA replication and repair. The rate limiting step in 

de novo dNTP biosynthesis is catalyzed by the enzyme ribonucleotide reductase 

(RNR). RNR reduces ribonucleoside diphosphate (NDP) to deoxyribonucleoside 

diphosphate (dNDP), phosphorylation of which yields dNTP. RNR is composed of 

two non-identical homodimeric subunits (Nordlund and Reichard, 2006). The large R1 

subunit harbors the catalytic site and is encoded by the Rrm1 gene in mammals. The 

small R2 subunit contains an oxygen-bridged dinuclear iron center that generates a 

tyrosyl free radical that is transferred to the R1 subunit for enzyme activity. 

Mammalian genomes contain two independent genes, Rrm2 and Rrm2b (p53R2), that 

encode closely related R2 proteins. A complex of Rrm2 and Rrm1 accounts for most 

RNR activity during S phase. p53R2 was originally identified as a target gene for the 

p53 tumor suppressor protein and is transcriptionally induced following DNA damage 

(Nakano et al., 2000; Tanaka et al., 2000). In addition to its role in stress responses, 

p53R2 is expressed at low levels throughout the cell cycle and complexes with Rrm1 

to produce dNTPs for mitochondrial DNA replication (Pontarin et al., 2007).  

Because intracellular nucleotide concentrations have a major impact on DNA 

replication fidelity (Mathews, 2006), RNR enzyme activity is tightly controlled by 

several regulatory mechanisms. During an unperturbed cell cycle, the transcription of 

Rrm1 and Rrm2 is undetectable in G0/G1 phase and reaches maximal levels in S phase 

cells (Bjorklund et al., 1990; Eriksson et al., 1984; Mann et al., 1988). However, 

owing to its long half-life, Rrm1 protein levels are nearly constant throughout the cell 

cycle and in excess relative to the R2 subunit. RNR enzyme activity is therefore 

determined in part by R2 protein levels. Rrm2 protein is absent during G0/G1-phase, 
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peaks in S–phase, and then falls in mitosis following ubiquitination by the anaphase 

promoting complex (Chabes and Thelander, 2000; Chabes et al., 2003b; Eriksson et 

al., 1984). Consistent with a need for nucleotides during DNA repair, DNA damage 

and replication stress induce RNR expression in both yeast and mammalian cells, in a 

manner dependent on DNA damage checkpoint pathways (Elledge et al., 1993; 

Hakansson et al., 2006b). While mammalian Rrm1 and Rrm2 proteins are cytoplasmic 

(Engstrom and Rozell, 1988), p53R2 localizes to the nucleus in genotoxin-treated cells 

(Nakano et al., 2000; Tanaka et al., 2000), which may facilitate the localized 

production of nucleotides at DNA damage sites. 

RNR enzyme activity also is controlled by two allosteric sites in the R1 

subunit. A specificity site regulates the relative cellular concentration of each of the 

four dNTPs by influencing substrate choice, while an activity site regulates the total 

dNTP pool size by monitoring the ATP/dATP ratio. Analysis of the mutant Rrm1-

D57N, which is insensitive to feedback inhibition by dATP due to a mutation in the 

activity site, indicates that loss of RNR allosteric control results in a mutator 

phenotype in both yeast and mammalian cells (Caras and Martin, 1988; Chabes et al., 

2003a; Reichard et al., 2000).  

Although RNR is a major determinant of genomic integrity, the consequences 

of RNR deregulation in animals are unknown. We generated transgenic mice that 

overexpress Rrm1, Rrm2, or p53R2 and found that overexpression of either small 

RNR subunit induced spontaneous lung neoplasms and was mutagenic in cultured 

cells. Defects in DNA mismatch repair (MMR) synergistically increased RNR-

induced mutagenesis and carcinogenesis, and activating mutations in the proto-

oncogene K-ras were identified in lung neoplasms from Rrm2 and p53R2 transgenic 

mice. These results identify mutagenic and carcinogenic effects of RNR deregulation 

in vivo. 
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2.3 Material and methods 

2.3.1 Plasmids.   

Expression plasmids encoding mouse Rrm1, Rrm2, or p53R2 were constructed 

in the pCaggs expression vector (Niwa et al., 1991) as follows. The mouse Rrm1 

cDNA sequence was cloned as an XhoI fragment from clone D65 (Thelander and 

Berg, 1986) into XhoI-digested pCaggs plasmid, producing pCaggs-Rrm1. The Rrm2 

open reading frame was PCR amplified with primers 5’-

AGAGCTCGAGCCATGCTCTCCGTCCGCAC-3’ and 5’-

AGAGCTCGAGTTAGAAGTCAGCATCCAAGGT-3’ using clone C10 (Thelander 

and Berg, 1986) as a template. The resulting PCR product was digested with XhoI and 

cloned into XhoI-digested pCaggs plasmid, producing pCaggs-Rrm2. The p53R2 open 

reading frame was PCR amplified from EST clone AA623971 with primers 5’-

GCGGAATTCATGGGCGACCCGGAAAGG-3’ and 5’-

GCGGAATTCTTAGAAATCTGCATCCAAGGT-3’. The resulting PCR product was 

digested with EcoRI and cloned into EcoRI-digested pCaggs plasmid, producing 

pCaggs-p53R2. All PCR products were fully sequenced and confirmed to be free of 

mutations.  

 

2.3.2 Transgenic mice. 

Transgenic mice were generated by microinjection of linear plasmid DNA into 

the pronucleus of zygotes derived from FVB/N mice as previously described (Muller 

et al., 1988). SalI-linearized pCaggs-Rrm1, SalI/BamHI-digested pCaggs-Rrm2, and 

SalI/PstI-digested pCaggs-p53R2 were used. Transgenic founder mice were initially 

identified by Southern blot analysis using probes specific for Rrm1, Rrm2, or p53R2. 

Transgenic mice were maintained as hemizygotes on a pure FVB/N background by 
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breeding with wild-type FVB/N mice. Genotyping was performed by PCR with 

primers: 5’-ATCAGAAGGTGGTGGCTGGTGTGG-3’ and 5’-

GCTATGACTGGGAGTAGTCAGGAG-3’ for Rrm1 and p53R2; 5’-

AGAGCTCGAGCCATGCTCTCCGTCCGCAC-3’ and 5’-

GCTAAATCGCTCCACCAAGTTCTC-3’ for Rrm2. For analysis of tumor 

development, cohorts of mice were aged until moribund for 15 to 21 months. As part 

of another study, some RNR transgenic mice were bred with mice heterozygous for a 

targeted deletion of the Hus1 cell cycle checkpoint gene. Hus1+/- mice show no 

apparent phenotypes (Weiss et al., 2000) and as expected no differences in tumor 

incidence or any other phenotypes were noted between Hus1+/- (n=74) and Hus1+/+ 

(n=183) mice in the cohort. Therefore, the Hus1 genotype is not distinguished in the 

final data set consisting of 257 mice (Table 1). Msh6-null mice (Edelmann et al., 

1997) were obtained from the Mouse Models of Human Cancers Consortium and bred 

with Rrm2Tg or p53R2Tg mice to generate Msh6+/-RNRTg mice. Msh6+/-RNRTg mice 

were crossed with Msh6+/- or Msh6-/- mice to produce littermates of the following 

genotypes: Msh6-/-RNRTg, Msh6-/-, Msh6+/-RNRTg, Msh6+/-, Msh6+/+RNRTg , and 

Msh6+/+. Mice were aged until moribund for 6 or 17 months depending on the 

experiment and analyzed as noted above. All mice were maintained identically, 

following guidelines approved by the Cornell University Institutional Laboratory 

Animal Use and Care Committee. 

 

2.3.3 Pathological assessment.  

Mice terminated according to schedule, as well as those with visible neoplasms 

or showing signs of clinical disease, including hunched posture, labored breathing, 

poor grooming, and wasting, were euthanized by asphyxiation using carbon dioxide 

and necropsied. Inflated lungs and other affected tissues were fixed with 10% neutral-
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buffered formalin, embedded in paraffin and 4-5 µm thick sections were stained with 

hematoxylin and eosin. If needed for molecular biological and biochemical studies, a 

part of freshly dissected tissues was snap-frozen in liquid nitrogen and kept at -80ºC. 

Pathological assessment was performed according to guidelines endorsed by the 

Mouse Models of Human Cancers Consortium (Nikitin et al., 2004).  

 

2.3.4 Immunohistochemistry. 

Immunohistochemistry was performed using the Vectastain ABC kit (Vector 

Laboratories) on 5 µm paraffin sections. Briefly, endogenous peroxidase was 

quenched using 3% H2O2 in distilled water. Sections were blocked for 2 h at RT in 

TBS containing 4% normal goat serum and 10% non-fat milk and then incubated for 2 

h at 37°C in TBS containing 0.04% Triton-X100 and Anti-pro-SP-C (Chemicon 

International; 1:500 dilution) or anti-CC10 (Santa Cruz Biotechnology; 1:250 

dilution). Sections then were washed with TBS, incubated for 30 min at RT with 

biotinylated anti-IgG antibody (Vector Laboratories), and incubated with ABC 

complex diluted in blocking solution for 30 min at RT. Staining was done with a 

peroxidase substrate kit (Vector Laboratories) according to manufacturer 

recommendations. Counterstaining of sections was performed with methyl green 

(Fisher Scientific). 

 

2.3.5 Generation of RNR overexpressing 3T3 cell pools. 

 All cells were cultured in culture medium (Dulbeco’s Modification of Eagles 

Medium supplemented with 10% bovine calf serum, 1.0 mM L-glutamine, 0.1 mM 

MEM non-essential amino acids, 100 µg/ml of streptomycin sulfate, and 100 U/ml of 

penicillin). Mouse 3T3 fibroblasts were transfected with linearized empty pCaggs 

vector, pCaggs-Rrm1, pCaggs-Rrm2, or pCaggs-p53R2 along with PGK-puro using 
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FuGENE 6 transfection reagent (Roche Diagnostics Co., Mannheim, Germany) 

following the procedure recommended by the manufacturer. At 48 hours, the medium 

was replaced with selection medium containing 1 mg/ml puromycin, which was 

changed every 2 days. After 2 weeks, puromycin-resistant cells were pooled and 

expanded for further analysis under selection conditions.  

 

2.3.6 Northern blot analysis. 

Total RNA was isolated from cultured cells or mouse tissues using RNA 

STAT-60 (Tel-Test Inc.). Approximately 2.5 µg of each RNA was resolved on a 1% 

agarose/formaldehyde gel and then hybridized with probes specific to mouse Rrm1, 

Rrm2, p53R2, or Gapdh. 

 

2.3.7 Western blot analysis.  

Tissue samples or cultured cells were prepared in RIPA buffer (50mM Tris-

HCl [pH 8.0], 1% [vol/vol] Nonidet P-40, 0.5% sodium deoxycholate, 0.1% [wt/vol] 

sodium dodecyl sulfate, 150mM sodium chloride, 50mM sodium fluoride) and 1x 

protease inhibitor cocktail (Roche). Immunoblotting was performed on PVDF 

membranes using standard methods, with signal detection by enhanced 

chemiluminescence (Pierce). The antibodies used were mouse anti-R1 (AD203, Bio 

Med Tek), goat anti-R2 (sc-115, Santa Cruz Biotechnology,), rabbit anti-p53R2 (2383, 

ProSci-inc,) and β-actin (A5441, Sigma). 

 

2.3.8 Hprt mutation rate assay. 

Cells were maintained in HAT medium (culture medium supplemented with 

0.2mM sodium hypoxanthine, 0.4µM aminopterin, 0.02µM thymidine [GIBCO]) for 

two weeks. Cells then were maintained in HT medium (culture medium supplemented 
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with 0.1mM sodium hypoxanthine, 0.016µM thymidine [GIBCO]) for one week. 

Subsequently, cells were seeded at a density of 5x105 cells per 10cm plate (10 plates 

total) in culture medium containing 5µg/ml 6-thioguanine (Sigma). After 3 weeks, 6-

thioguanine resistant colonies were counted, isolated, and individually expanded.  

RNA was extracted, and cDNA was synthesized with primer 5’-

GCAGCAACTGACATTTCTAAA-3’ using the SuperscriptTM First Strand Synthesis 

System (Invitrogen). The Hprt open reading frame was PCR amplified using primers: 

5’-TTTCCGGAGCGGTAGCAG-3’ and 5’-TTACTAGGCAGATGGCCACA-3’. 

Hprt mutations were identified by direct sequencing of PCR products using primers: 

5’-CTTCCTCCTCAGACCGCTTT-3’ and 5’-TGGCAACATCAACAGGACTC-3’. 

Plating efficiency was determined by plating 200 cells in medium without 6-

thioguanine in triplicate for 2 weeks and counting stained colonies. 

 

2.3.9 Big Blue mutation rate assay. 

Big Blue C57Bl/6 mice (Jakubczak et al., 1996), hemizygous for the lambda 

shuttle vector, were obtained from Stratagene (La Jolla, CA) and were bred with 

Rrm1, Rrm2, or p53R2 hemizygous transgenic mice. Genomic DNA was isolated from 

3-month old lung tissues by phenol-chloroform extraction using the RecoverEase 

DNA isolation kit protocol (Stratagene, LA Jolla, CA). The bacteriophage λ transgene 

was recovered from genomic DNA by incubation with in vitro λ packaging extract 

(Transpack; Stratagene) according to the manufacturer’s instruction. Phage containing 

cII mutations were identified by mixing 100µl of packaged phage with 200µl of an 

overnight culture of E. coli G1250 cells. This solution was mixed with TB-1 top agar, 

poured onto TB1 plates, and incubated at 24°C for 48 h. To determine the total 

number of phage screened, 10 µl of a 1:100 dilution of packaged phage was mixed 

with 200µl of G1250, plated on TB1 plates in triplicate, and incubated at 37°C for 24 
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h. The mutant plaques were confirmed by re-plating on TB1 plates at 24°C. For cII 

sequencing, well-isolated, clear plaques (phages with cII mutants) were picked and 

PCR amplified (forward primer: 5’-CCGCTCTTACACATTCCAGC-3’, reverse 

primer: 5’-CCTCTGCCGAAGTTGAGTAT-3’). Mutations in λ cII gene were 

identified by direct sequencing of the PCR products using primer 5’-

CCACACCTATGGTGTATG-3’. Mutation frequencies were compared using a 

Maximum Likelihood Ratio test and two-way ANOVA. 

 

2.3.10 Determination of mutation rates in Saccharomyces cerevisiae. 

All yeast strains were derived from either W4069-4C (WT) or W4069-8C 

(rnr1-D57N1) (Chabes et al., 2003a).  These strains are derived from the W303 strain. 

Mutations in the mismatch repair genes were introduced into these strain backgrounds. 

The msh2D::hisG, msh6D::hisG and msh3D::hisG alleles have complete or nearly 

complete disruptions of their respective genes and were introduced into these strains 

by single-step gene transplacement (Alani et al., 1987). The spontaneous forward 

mutation rate to canavanine resistance (Canr) was measured in W4069-4C (WT), 

W4069-8C (rnr1-D57N1), EAY1997-2000 (msh3∆), EAY2001-2003 (rnr1-D57N 

msh3∆), EAY2004-2006 (msh2∆), EAY2007-2009 (rnr1-D57N msh2∆), EAY2010-

2013 (msh6∆), EAY2014-2019 (rnr1-D57N msh6∆) as described previously (Reenan 

and Kolodner, 1992). Briefly, independent cultures from at least 3 independent 

isolates of each genotype were plated for single colonies at 30°C on YPD plates. 

Appropriate dilutions of cells from single colonies (~2 mm) were plated on: 1) 

synthetic complete (SC) medium lacking arginine to determine the number of viable 

cells and 2) SC-Arg plus L-canavanine (60 mg/ml) to determine the number of Canr 

cells per culture. The rate of mutation per generation was calculated from the median 

mutation frequency using the method of Lea and Coulson (Lea and Coulson, 1949). 
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The mutation rate and 95% confidence interval were determined from at least 22 

independent measurements for each strain. To determine mutation spectra, the CAN1 

gene was PCR amplified with primers AO1863: 5'-TCAGGGAATCCCTTTTTGCA-

3’ and AO257: 5'-GTGAGAATGCGAAATGGCGTG-3’ and sequenced with primers 

AO256: 5'-AGTTCTTCAGACTTCTTAACTC-3’, AO1864: 5'-

CCAGTGGGCGCTCTTATA-3’, AO1865: 5'-TTACCGGCCCAGTTGGAT-3’, 

AO1866: 5'-CAACCATTATTTCTGCCG-3’, AO1977: 5'-

CACCCAAGGACTGCGTGACAG-3’.   

 

2.3.11     Sequencing of K-ras exons 1 and 2. 

5 µm sections of lung tumor samples were microdissected with a Leica Laser 

Microdissection instrument and incubated in proteinase K buffer (150 µg/ml 

proteinase K in Taq DNA polymerase PCR buffer [MI188J, Promega]) at 50°C for 4h. 

The sample was heated at 100°C for 10 min to inactivate the proteinase K and then 

centrifuged at 4000 rpm for 2 min. The supernatant was used for PCR amplification of 

K-ras exons 1 and 2 with the following primer sets: (5’-

CCATGTATTTTTATTAAGTGTTGA-3’ and 5’-

CTCCTCGAGCAAGCGCACGCAGACTGTAGAGCA-3’ for exon 1) and (5’-

CTCGAATTCATCCTAATGGGTACTAATGGTGT-3’ and 5’-

CTCCTCGAGAGCAAAGAATCAATAAATGTAAGC-3’ for exon 2). Mutations in 

K-ras exons 1 and 2 were identified by direct sequencing of the PCR products using 

the following primers: (5’-CTATAATGGTGAATATCTTC-3’ for exon 1) and (5’-

CTCTATCGTAGGGTCGTACT-3’ for exon 2). 
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2.4 Results 

2.4.1 Generation of RNR transgenic mice and analysis of transgene expression. 

Deregulation of RNR is mutagenic in yeast and cultured mammalian cells 

(Caras and Martin, 1988; Chabes et al., 2003a). To test the consequences of RNR 

deregulation in an animal model, we set out to generate transgenic mice featuring 

broad, high level expression of the individual mouse RNR genes Rrm1, Rrm2, and 

p53R2, using pCaggs expression constructs that place the RNR genes under the 

control of chicken β-actin promoter and cytomegalovirus enhancer regulatory 

sequences. Six Rrm1, two Rrm2, and four p53R2 transgene-positive founders were 

generated and subsequently maintained on a pure FVB/N strain background.  RNR 

transgenic mice appeared grossly normal and were fertile. When bred with wild-type 

FVB mice, p53R2 hemizygotes produced fewer than the expected number of transgene 

positive offspring (205 p53R2 transgene positive and 349 transgene negative mice 

were identified among 554 mice genotyped at weaning). 

Endogenous and transgenic Rrm1, Rrm2 and p53R2 mRNA expression was 

tested in a variety of organs by Northern blot analysis. The endogenous Rrm1 and 

Rrm2 genes were coordinately expressed, with highest expression in proliferative 

tissues such as testis and thymus (Fig. 2.1A, left panels). Expression of the 

endogenous p53R2 gene was undetectable in all tested wild-type FVB tissues. 

Importantly, Rrm2Tg and p53R2Tg mice showed high-level transgene expression in all 

tissues, with overexpression being highest in muscle (Fig. 2.1A, right panels). Rrm1 

overexpression was only observed in muscle and testis of Rrm1Tg mice. For technical 

reasons, the Rrm1 transgene included additional non-coding cDNA sequences and was 

microinjected as a linearized construct without removal of plasmid backbone 

sequences, which may contribute to the relatively poor transgene expression.  
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Figure 2.1. Widespread overexpression of ribonucleotide reductase genes in transgenic 

mice. (A) Northern blot analysis of RNR expression in wild-type and RNR transgenic 

mice. Total RNA was extracted from the indicated tissues from wild-type FVB mice 

(left panels), or RNR transgenic mice (right panels) and subjected to Northern blot 

hybridization with the indicated probes specific for Rrm1, Rrm2 or p53R2. Positions 

of endogenous and transgene-derived RNR transcripts are indicated. (B) Western blot 

analysis of RNR protein expression in the indicated tissues from wild type (WT) and 

RNR transgenic (Tg) mice, as well as lung neoplasms from the corresponding 

transgenic strains (Tumor 1, 2). Total protein from the indicated tissues was subjected 

to immunoblotting with antibodies specific to Rrm1, Rrm2 or p53R2. Duplicate 

membranes were immunoblotted for β-actin as a loading control.
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Consistent with results from the Northern blot analyses, immunoblotting 

revealed that the Rrm2 and p53R2 proteins were highly overexpressed in all tested 

tissues from Rrm2Tg and p53R2Tg mice (Fig. 2.1B). Although Northern blotting failed 

to identify p53R2 expression in wild-type tissues (Fig. 2.1A), low levels of p53R2 

protein were apparent in most wild-type FVB tissues. Rrm1 protein overexpression 

was limited to muscle and to a lesser extent lung in Rrm1Tg mice as compared to wild-

type littermates. Together, these results establish the restricted overexpression of the 

large RNR subunit Rrm1 and the widespread, high level overexpression of the small 

RNR subunits Rrm2 and p53R2 in transgenic mice.  

 

2.4.2 Overexpression of the small RNR subunit promotes lung carcinogenesis. 

In order to identify spontaneous neoplasms and other abnormalities in RNR 

transgenic mice, we established a cohort consisting of 52 Rrm1Tg, 75 Rrm2Tg, and 81 

p53R2Tg mice, as well as 49 transgene-negative control mice, and aged them until they 

exhibited clinical illness. Notably, a significantly increased frequency of lung 

neoplasms was observed in Rrm2Tg and p53R2Tg mice (Table 2.1). 72% of Rrm2Tg and 

74% of p53R2Tg animals developed spontaneous lung neoplasms. By contrast, 31% of 

transgene-negative controls developed lung neoplasms, a frequency consistent with 

the reported incidence for aged wild-type FVB mice (Mahler et al., 1996). The lung 

neoplasm incidence in Rrm1Tg mice was 31%, identical to that of the control animals 

and significantly less than that of Rrm2Tg or p53R2Tg mice (Chi-square analysis, 

p<0.05). Lung neoplasms were observed in multiple independent Rrm2Tg and p53R2Tg 

lines, indicating that transgene integration site effects did not account for the 

neoplastic phenotype. Signs of clinical illness arose following a latency of 16-18 

months for all genotypes. No differences in lung neoplasm incidence between sexes  
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Table 2.1 Lung neoplasm characteristics in RNR overexpressing mice 

 
 
 
 
 
 
 
 

 
NOTE: Mice were aged until moribund for up to 21 months, euthanized by 
asphyxiation using carbon dioxide, and subjected to pathological examination as 
described in Materials and Methods.  

 
†WT FVB refers to transgene-negative control mice. 
 
§Includes mice that had both epithelial hyperplasia of alveoli and lung neoplasms. 
 
*Statistically significant difference (p<0.05) relative to WT FVB mice. Incidences 
were compared by Chi-square analysis. Neoplasm sizes were compared by t-test 
analysis. 

Mouse 
 genotype 

# of 
animal

s 

% of mice  
with lung 
neoplasms 

% of mice 
 with 

 hyperplasia§ 

Average  
lung neoplasm 
size (mm)±SD 

% of mice  
with multiple 

lung neoplasms 

% of  mice  
with lung 

adenocarcinoma 

WT FVB† 49 31% 12% 4.04 ± 3.98 8% 6% 

Rrm1Tg 52 31% 15% 3.96 ± 3.59 8% 10% 

Rrm2Tg 75 72%* 44%* 6.68 ± 4.22 53%* 40%* 

p53R2Tg 81 74%* 20% 4.26 ± 3.44 47%* 21% 
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was noted for any of the transgenic lines. The frequency of epithelial hyperplasia of 

alveoli also was increased in p53R2Tg and especially Rrm2Tg mice. Other neoplasms, 

including papilloma, histiocytic sarcoma, mammary carcinoma, and lymphoblastic 

lymphoma, were observed in 13% of Rrm1Tg, 12% of Rrm2Tg, and 12% of p53R2Tg 

mice, but only 2% of transgene-negative mice. 

The lung neoplasms in Rrm2Tg and p53R2Tg mice displayed several features 

consistent with a substantial lung cancer predisposition. A significantly greater lung 

neoplasm multiplicity was observed for Rrm2Tg and p53R2Tg mice, and the lung 

neoplasms in Rrm2Tg mice were also considerably larger than those from control 

animals (Table 2.1). The lung neoplasms from Rrm2Tg and p53R2Tg mice ranged from 

adenoma to advanced adenocarcinoma (Fig. 2.2A I-VI), and resembled human 

glandular pulmonary neoplasms, particularly adenocarcinomas. RNR-induced lung 

adenocarcinomas were primarily of the papillary subtype and exhibited pleural 

invasion, heterogeneous growth pattern, nuclear atypia, high mitotic index, and blood 

vessel invasion (Fig. 2.2A III-VI).  A greater frequency of adenocarcinoma was 

observed in Rrm2Tg and p53R2Tg mice as compared to Rrm1Tg or transgene-negative 

mice (Table 2.1), with Rrm2 overexpression in particular eliciting pathologically 

advanced neoplasms. Together, these data indicate that overexpression of either small 

RNR subunit in mice promotes lung neoplasm formation, with Rrm2 being more 

potent than p53R2 with respect to tumor size, multiplicity, and malignancy.  

To investigate the possible cell type of origin for RNR-induced lung 

neoplasms, we performed immunohistochemistry using antibodies against Clara cell 

antigen (CC10) and surfactant apoprotein-C (SP-C), markers that distinguish Clara 

and alveolar type II cells, respectively. Eight of eight lung neoplasms from Rrm2Tg and 

p53R2Tg mice were positive for SP-C (Fig. 2.2A VII), while none was positive for 

CC10 (Fig. 2.2A VIII). Adjacent bronchioles, on the other hand, were positive for  
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Figure 2.2 Histopathological and molecular analysis of lung neoplasms from RNR 

transgenic mice. (A) (I) Lungs from a Rrm2Tg mouse with multiple independent 

neoplasms affecting several lobes. (II-VI) H&E-stained sections of lung neoplasms. 

(II) Solid adenoma from a p53R2Tg mouse. (III-VI) Papillary adenocarcinomas from 

Rrm2Tg or p53R2Tg mice showing pleural invasion (arrow) (III), regional variation in 

growth pattern (IV), multiple mitotic figures (arrows) (V), and blood vessel invasion 

(arrow) (VI). (VII, VIII) Immunohistochemical staining of RNR-induced lung 

neoplasms for Pro-SP-C (VII) or CC10 (VIII) by the ABC method, with methyl green 

counterstain. Inserts show higher magnification views of the boxed regions. 

Calibration bar: II, IV: 50 µm; III: 241 µm; V: 10 µm; VI: 25 µm; VII, VIII: 100 µm. 

(B) Northern blot analysis of lung neoplasms from RNR transgenic mice. Total RNA 

was prepared from lung neoplasms (Tumor 1, Tumor 2, Tumor 3) or normal lung 

tissue (Lung) from RNR transgenic mice, as well as from wild-type FVB lung tissue 

(WT FVB). Northern blotting was performed with the indicated radiolabeled probes. 

(C) Western blot analysis of Rrm1 expression in lung neoplasms (Tumor 1, Tumor 2) 

or normal lung tissues (lung) from RNR transgenic mice as well as normal lung from 

wild-type FVB lung tissue (WT FVB) . Total protein was subjected to immunoblotting 

with antibody specific to Rrm1 or α-tubulin as a loading control.
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Figure 2.2 (continued)



49 

CC10 and negative for SP-C as expected. These results suggest that RNR-induced 

lung neoplasms arose from alveolar type II cells or their progenitors. 

To confirm a causative role for RNR overexpression in lung carcinogenesis, 

we analyzed the expression of Rrm1, Rrm2, and p53R2 in lung neoplasms by Northern 

(Fig. 2.2B) and Western (Fig. 2.1B) blotting. Lung neoplasms from Rrm2Tg and 

p53R2Tg animals showed prominent RNR overexpression, consistent with a causative 

role for RNR in the genesis of these lung lesions. By contrast, lung neoplasms from 

Rrm1Tg mice did not display high level transgene expression, providing further 

evidence that carcinogenesis in Rrm2Tg and p53R2Tg mice is highly specific. Overall, 

these data identify a novel oncogenic activity for the small RNR subunit. 

Previous studies suggest that Rrm1 has tumor suppressor activity (Bepler et al., 

2002; Fan et al., 1997; Gautam et al., 2003). Lung neoplasms in Rrm2Tg and p53R2Tg 

mice showed slightly lower Rrm1 mRNA expression levels compared to normal lung 

tissues from these transgenic mice in Northern blot analysis (Fig 2.2B). In order to test 

whether enhanced lung tumorigenesis in Rrm2Tg or p53R2Tg mice is associated the 

down-regulation of Rrm1, we analyzed Rrm1 protein levels in lung neoplasms from 

RNR transgenic mice by western blotting. As shown in Fig. 2.2C, there was no 

difference in the expression of Rrm1 protein in these lung lesions induced by small 

RNR subunit overexpression, suggesting that lung tumorigenesis in Rrm2Tg and 

p53R2Tg mice is not due to down-regulated Rrm1 protein levels. 

Rrm1Tg mice did not show increased lung carcinogenesis, which might be due 

to the fact that the R2 subunit is the limiting component of the enzyme. To test 

whether overexpression of the large subunit Rrm1 would enhance lung tumorigenesis 

induced by Rrm2 or p53R2 overexpression, we crossed Rrm1Tg mice to Rrm2Tg or 

p53R2Tg mice to generate RNR bi-transgenic mice. We established a cohort consisting 

of 14 Rrm1TgRrm2Tg, 9 Rrm1Tgp53R2Tg, 13 Rrm1Tg , 4 Rrm2Tg, and 6 p53R2Tg mice, as  
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well as 9 transgene negative controls, and aged them until they exhibited clinical 

illness up to about 17 months. As shown in table 2.2, 93% (13/14) of Rrm1TgRrm2Tg 

bi-transgenic mice developed spontaneous lung neoplasms, which was not 

significantly different than the lung tumor incidence in Rrm2Tg mice (100%, 4/4); 

similarly, 56% (5/9 ) of Rrm1Tgp53R2Tg bi-transgenic mice exhibited lung neoplasms, 

which was not significantly different with lung tumor incidence of p53R2Tg mice (67% 

; 4/6). Consistent with the data from the cohort of mice with the individual RNR 

transgenes, 22% (2/9) transgene negative control mice and 8% (1/13) Rrm1Tg 

transgenic mice developed spontaneous lung neoplasms. In addition, compared to 

Rrm2Tg mice, Rrm1TgRrm2Tg bi-transgenic mice showed no differences in the 

frequency of multiple lung neoplasms and adenocarcinomas. Similarly, when 

compared to p53R2Tg mice, Rrm1Tgp53R2Tg bi-transgenic mice showed no difference 

in lung tumor multiplicity.  In addition, we did not observed an increased incidence of 

other tumor in these Rrm1TgRrm2Tg and Rrm1Tgp53R2Tg bi-transgenic mice as 

compared to either Rrm2Tg or p53R2Tg mice.  These data suggest that the 

overexpression of the large RNR subunit does not enhance lung tumorigenesis induced 

by the small RNR subunit.  

 

2.4.3 Increased mutation frequency following RNR overexpression in cultured 

3T3 cells. 

We hypothesized that RNR overexpression induced lung neoplasms through a 

mutagenic mechanism because defects in RNR allosteric control result in increased 

mutation frequencies in yeast and mammalian cells (Caras and Martin, 1988; Chabes 

et al., 2003a). To determine if RNR overexpression was similarly mutagenic, we 

generated Rrm1, Rrm2, or p53R2 overexpressing 3T3 cell pools using the same 

expression constructs as used to generate the transgenic mice. Overexpression of  
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Table 2.2 Lung neoplasm characteristics in RNR bi-transgenic mice 

 
 
 

 
 
 
 
 
 
 
 
 

 
NOTE: Mice were aged until moribund for about 500 days, euthanized by 
asphyxiation using carbon dioxide, and subjected to pathological examination as 
described in Materials and Methods.  
 
†WT FVB refers to transgene-negative control mice. 
 
*Statistically significant difference (p<0.05) relative to WT FVB mice. Incidences 
were compared by Chi-square analysis. Neoplasm sizes were compared by t-test 
analysis. 
 
§ Other neoplasms including lymphoma, ovary tumor, urinary bladder tumor.  
 

Mouse 
 genotype 

# of 
animals 

Age 
(days) 

% of mice  
with lung 
neoplasms 

Average  
lung neoplasm 
size (mm)±SD 

% of mice  
with 

multiple 
lung 

neoplasms 

% of  mice  
with lung 

adenocarcinoma 

% of  mice  
with other 
neoplasms§ 

WT FVB† 9 508 22% 8.0 ± 8.5 0% 11% 11% 

Rrm1Tg 13 466 8% 6.00 ± 0 0% 8% 0% 

Rrm2Tg 4 489 100%* 5.3 ± 3.3 100%* 50%* 25% 

p53R2Tg 6 516 67%* 1.6 ± 1.1 50%* 0% 0% 

Rrm1Tg Rrm2Tg 14 427 93%* 6.4 ± 2.9 100%* 57%* 21% 
Rrm1Tg p53RTg 9 461 56%* 4.7 ± 2.9 40%* 30% 33% 
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individual RNR genes in these cell pools was confirmed by Northern and Western 

blotting (Fig. 2.3A and B). We then measured mutation frequency using the Hprt 

mutation detection assay, which identifies cells harboring Hprt mutations by virtue of 

their resistance to 6-thioguanine (6-TG) (Fenwick, 1985). In a representative 

experiment (Fig. 2.3C), a significantly increased mutation frequency was observed in 

a Rrm2 overexpressing cell pool (9.0 X 10-6) as compared to Rrm1 overexpressing or 

empty plasmid vector cell pools (less than 0.7 X 10-6 and 0.8 X 10-6, respectively). 

Three independent Rrm2 overexpressing cell pools showed a consistently increased 

mutation frequency that was 9.9- to 16.0-fold greater than that observed for vector 

control cells. A p53R2 overexpressing cell pool showed a more modestly but 

nevertheless significantly increased mutation frequency of 3.0 X 10-6 (Fig. 2.3C). 

However, mutation frequency in p53R2 overexpressing cells varied, with three p53R2 

overexpressing cell pools showing an elevated mutation frequency that was 4.2- to 

11.2-fold greater than that for vector control cells while two other p53R2 

overexpressing cell pools displayed no increase in mutation frequency. Whether this 

variability is due to differences in expression levels between individual cell pools, or 

to the fact that the mutation frequencies measured were near the lower end of 

sensitivity for this assay, has not been determined.  However, three independent Rrm1 

overexpressing cell pools and another five empty plasmid vector cell pools showed no 

detectable increase in mutation frequency.  
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Figure 2.3 Increased mutation frequency in RNR overexpressing NIH/3T3 cell pools. 

(A) Northern blot analysis of RNR expression in stable 3T3 cell pools transfected with 

either pCaggs empty vector or pCaggs RNR genes. Total RNA was extracted from the 

indicated cell lines and subjected to Northern blot hybridization with probes specific 

for Rrm1, Rrm2, p53R2, or Gapdh. (B) Western blot analysis of RNR protein 

expression in RNR overexpressing 3T3 cells. Total protein was extracted from the 

indicated cell lines and subjected to immunoblotting with antibodies specific to Rrm1, 

Rrm2, or p53R2. Duplicate membranes were immunoblotted for b-actin as a loading 

control. Samples in (A) and (B) were run on single blots, which were then cropped to 

remove extraneous lanes. (C) Mutation frequency at the Hprt locus in Rrm1, Rrm2 and 

p53R2 overexpressing 3T3 cells. Mutation frequency was determined by Hprt assay.
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To determine the nature of the mutations conferring 6-TG resistance, we 

sequenced the Hprt gene from individual colonies (Wijnhoven et al., 2000).  

Interestingly, four of seven Hprt mutations from the Rrm2 overexpressing cell pool 

shown in Fig. 2.3C were G→T substitutions (Table 2.3), which are relatively rare 

among reported spontaneous Hprt mutations (Zhang et al., 1992). Similar results were 

obtained in a separate experiment with an independent Rrm2 overexpressing cell pool 

(Table 2.3). One of six mutations from the p53R2 overexpressing cell pool shown in 

Fig. 2.3C also was a G→T mutation, but no G→T mutations were observed among six 

6-TG resistant clones from a second independent experiment (Table 2.3). Collectively, 

the results indicate that overexpression of the small RNR subunit causes a mutator 

phenotype.  

 

2.4.4 Combined defects in RNR regulation and MMR result in synergistic 

increases in mutagenesis and carcinogenesis.  

To further evaluate a role for mutagenesis in RNR-induced lung 

carcinogenesis, we investigated whether combining RNR deregulation with a defect in 

MMR, the repair system that suppresses mutation accumulation, would cause a 

synergistic increase in mutagenesis and carcinogenesis. In eukaryotes, a complex of 

Msh2-Msh6 is responsible for recognizing base-base mispairs and single base 

insertion/deletions, while a Msh2-Msh3 complex detects larger insertion/deletion 

loops (Modrich, 2006). We first tested this hypothesis in S. cerevisiae by measuring 

the mutation rate by canavanine resistance assay in strains with deregulated RNR 

activity and mutations in MMR genes. To deregulate budding yeast RNR, we utilized 

the rnr1-D57N mutant in which a single amino acid change in the R1 activity site 

makes the enzyme insensitive to feedback inhibition by dATP 
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   Table 2.3 Mutational spectrum at the Hprt locus in RNR overexpressing cell pools 
Cell pool Clone ID Mutation† Amino acid change 

1 355 G>T G>Stop codon 

2 106 del G Stop codon 

3§ 568 G>T G>Stop codon 

4 602 A>G D>G 

Rrm2-A 

5 403 ins AG stop codon 

1 403-404 GA>TT‡ D>F 

2 584 A>C Y>S 

3 613 G>T V>F 

4§ 403-404 GA>TT‡ D>F 

5§ 389 T>G V>G 

6§ 584 A>C Y>S 

Rrm2-B 

7 403-404 GA>TT‡ D>F 

1 643 A>G K>E 

2 581 A>T D>V 

3§ 542 T>C F>S 

4 581 A>T D>V 

5 530 A>G D>G 

p53R2-A 

6 542 T>C F>S 

1§ 586 A>G N>D 

2 586 A>G N>D 

3 635 G>A G>E 

4 409 A>T I>F 

5§ 609-626 del Stop codon 

p53R2-B 

6 544 G>T E>Stop codon 

NOTE: 6-thioguanine resistant colonies were isolated and expanded from the indicated cell pools. 
RNA was extracted for cDNA synthesis and the Hprt gene coding region was amplified by PCR. 
Mutations in the Hprt cDNA were identified by directly sequencing PCR products. These data 
represent results from two independent experiments done with independent RNR overexpressing cell 
pools (A and B). The mutation frequencies shown in Fig. 1C are for cell pools Rrm2-B and p53R2-
B.  

 
†The numerical value indicates the position of the mutated nucleotide followed by the specific 
sequence change. 
 
§Additional, independent colonies on the same plate had the same mutation as these clones and were 
excluded as clonal events. 
 
‡These clones also expressed low levels of a smaller transcript that had a deletion of nucleotides 403-
470. 
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(Caras and Martin, 1988). Consistent with published reports (Chabes et al., 2003a), 

rnr1-D57N yeast exhibited a 3.4-fold increase in mutation rate relative to the wild-

type strain, which had a mutation rate of 1.5 X 10-7 (Fig. 2.4). MMR defective strains 

also displayed elevated mutation rates (msh2Δ: 28.4-fold; msh3Δ: 2.9-fold; msh6Δ: 

9.8-fold), similar to previous reports (Lau et al., 2002). Notably, rnr1-D57N msh2Δ 

and rnr1-D57N msh6Δ double mutants displayed approximately multiplicative 

increases in mutation rate relative to the single mutants (61.4-fold and 23.8-fold, 

respectively). Multiplicative increases in mutagenesis are seen for mutations that 

affect factors acting in series in a common pathway (Morrison et al., 1993), suggesting 

that the Msh2-Msh6 complex corrects DNA mismatches induced by RNR 

deregulation. By contrast, combining rnr1-D57N with msh3Δ resulted in only an 

additive increase in mutation rate (rnr1-D57N msh3Δ: 3.9-fold). The spectrum of 

mutations arising in WT, rnr1-D57N, msh2Δ, and msh6Δ strains was consistent with 

previous publications (Chabes et al., 2003a; Lau et al., 2002; Marsischky et al., 1996) 

and included primarily base substitutions, as well as frameshift mutations for msh2Δ 

(Table 2.4). The frequency of frameshift mutations involving single nucleotide 

insertions or deletions was substantially increased in rnr1-D57N msh2Δ and rnr1-

D57N msh6Δ strains relative to the single mutants.  

The synergistic effects of RNR deregulation and MMR deficiency on mutation 

rates in yeast prompted us to further test genetic interactions between RNR and MMR 

in mice, by crossing RNR transgenic mice with Msh6-null mice (Edelmann et al., 

1997). If RNR overexpression induces lung carcinogenesis through a mutagenic 

mechanism, Msh6 deficiency would be predicted to accelerate lung carcinogenesis in 

RNR transgenic mice. A cohort of Msh6-/-, Msh6+/-, or Msh6+/+ mice that also carried 

either the Rrm2 or p53R2 transgene was established and examined for survival and 

cancer susceptibility. Interestingly, the median lifespan for Msh6-/-p53R2Tg mice (136  
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Figure 2.4 Genetic interactions between RNR and mismatch repair in yeast. 

Canavanine mutation rate assay for RNR1(WT) and rnr1-D57N strains on MMR-

deficient backgrounds (msh3Δ, msh2Δ, msh6Δ, or WT) of S. cerevisiae. The forward 

mutation rate (per generation) to canavanine resistance was measured for the indicated 

single and double mutant combinations.  Error bars show the 95% confidence interval. 
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Table 2.4. Mutational spectrum at the CAN1 locus in wild-type and rnr1-D57N yeast 
strains that vary in mismatch repair status 

NOTE: The CAN1 gene was PCR amplified from Canr colonies and directly sequence. 

WT (4C)   
rnr1-
D57N 
(8C) 

  msh2∆ 
(4C/98)   msh6∆ 

(4C/108)   

rnr1-D57N 
msh2∆ 
(8C/98) 

  
rnr1-D57N 

msh6∆ 
(8C/108) 

Type of 
mutation 

# %  # %  # %  # %  # %  # % 

Base 
substitut
ion                  

GC pair 6 55%  10 63%  4 31%  15 68%  3 18%  14 37% 

AT pair 3 27%  3 19%  2 15%  3 14%  0 0%  8 21% 
Frame 
shift                  

Deletion 1 9%  1 6%  6 46%  1 5%  4 24%  12 32% 

Insertion 0 0%  2 12%  1 8%  3 14%  10 59%  4 11% 
Large 

deletion 1 9%  0 0%  0 0%  0 0%  0 0%  0 0% 

                  

Total 11 100%   16  100%   13 100%   22 100%   17 100%   38  100% 
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days) was significantly reduced compared to that of transgene-negative Msh6-/- mice 

(258 days; p<0.05; logrank test) (Fig. 2.5). The reduced survival of Msh6-/-p53R2Tg 

mice was associated with early onset lymphomagenesis (Table 2.5). Because these 

Msh6-/-p53R2Tg mice died at a young age, we could not evaluate whether Msh6 

deficiency cooperated with p53R2 overexpression in inducing lung neoplasms. 

The survival rate for Msh6-/-Rrm2Tg and  transgene negative Msh6-/- mice was not 

significantly different (p=.975; logrank test), suggesting that Rrm2 overexpression, 

unlike p53R2 overexpression, did not enhance lymphomagenesis (Fig. 2.5). However, 

that 90% of Msh6-/-Rrm2Tg mice had developed lung neoplasms despite their shortened 

lifespan of approximately 10 months was suggestive of a synergistic genetic 

interaction (Table 2.5). To directly test whether lung carcinogenesis was accelerated in 

Msh6-/-Rrm2Tg mice, we sacrificed a cohort of Msh6-/-Rrm2Tg mice and littermate 

controls at 6 months of age. 3 of 18 Msh6+/+Rrm2Tg mice and 3 of 17 Msh6+/-Rrm2Tg 

mice had developed lung neoplasms by 6 months, while no lung neoplasms were 

observed in transgene-negative Msh6+/+ or Msh6+/- littermates (Table 2.6). Lung 

neoplasms were also observed in 2 of 13 Msh6-/- mice. Msh6 deficiency strongly 

accelerated Rrm2-induced lung carcinogenesis, as 13 of 13 Msh6-/-Rrm2Tg mice 

developed lung neoplasms by 6 months of age, with 9 of these mice carrying multiple 

lung neoplasms.  

To determine whether combining RNR overexpression with MMR deficiency 

would increase mutation frequency in vivo, we analyzed the mutation frequency at the 

λ phage cII locus in lung tissue from 3 month old RNRTg mice, with or without Msh6 

deficiency, using the Big Blue transgene system (Jakubczak et al., 1996). There was 

no difference in mutation frequency in RNR transgenic mice as compared to wild-type 

mice (Fig. 2.6A and Table 2.7), possibly because the Big Blue system is relatively 

insensitive due to a high background mutation frequency. However, the mutation 
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Figure 2.5 Genetic interactions between RNR and mismatch repair in mice. Survival 

curves for Msh6-/-RNRTg (Rrm2Tg or p53R2Tg) mice. Mice were aged until moribund for 

up to 17 months. Survival curves were generated using SPSS software. The following 

number of animals was analyzed for each genotype: Msh+/+ (11), Msh6+/- (23), Msh6+/-

Rrm2Tg (22), Msh6+/-p53R2Tg (11), Msh6-/- (34), Msh6-/-Rrm2Tg (20), Msh6-/- p53R2Tg 

(17). 
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Table 2.5 Combining RNR overexpression with mismatch repair 
deficiency results in a synergistic increase in tumorigenesis 

NOTE: Mice were aged for up to 17 months, euthanized by asphyxiation using 
carbon dioxide, and subjected to pathological examination as described in 
Materials and Methods.  
 
†Other neoplasms include gastrointestinal, liver, skin, and uterine neoplasms. 

Mouse genotype 

Number 
of  

animals 
Median 

 age of death 

Number of mice 
with lung neoplasms 

(%) 

Number of mice 
with lymphoma 

(%) 

Number of 
mice 

with other 
neoplasms† 

(%) 

Msh6-/- p53R2Tg 17 136 4 (24%) 16 (94%) 2 (12%) 

Msh6-/- Rrm2Tg 20 316 18 (90%) 15 (75%) 7 (35%) 

Msh6-/- 34 258 12 (35%) 29 (85%) 8 (24%) 

Msh6+/- p53R2Tg 11 519 4 (36%) 0 (0%) 1 (9%) 
Msh6+/- Rrm2Tg 22 510 21 (96%) 1 (5%) 2 (9%) 

Msh6+/- 23 518 6 (26%) 3 (13%) 0 (0%) 

Msh6+/+ p53R2Tg 4 519 2 (50%) 0 (0%) 1 (25%) 

Msh6+/+ Rrm2Tg 2 503 2 (100%) 0 (0%) 0 (0%) 
Msh6+/+ 11 518 3 (27%) 0 (0%) 2 (18%) 
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Mouse genotype 
# of 

animals 

% of mice 
with lung 
neoplasms 

% of mice 
with 

 multiple 
lung 

neoplasms 

# of lung 
neoplasms per 
mouse† ±SD 

Average 
lung neoplasm 
size (mm)±SD 

% of  mice 
 with 

lymphoma 

Msh6-/-Rrm2Tg 13 100%* 69%* 2.9 ± 1.99 1.30 ± 0.54 31% 

Msh6-/- 13 15% 0% 1.0 ± 0 1.25 ± 1.06 8% 

Msh6+/-Rrm2Tg 17 18% 0% 1.0 ± 0 0.73 ± 0.68 12% 

Msh6+/- 10 0% 0% N/A N/A 0% 

Msh6+/+Rrm2Tg 18 17% 6% 1.33 ± 0.58 1.23 ± 0.25 0% 

Msh6+/+ 14 0% 0% N/A N/A 0% 
 

 
 
 
 
 
 
 
 
Table 2.6. Combining RNR overexpression with mismatch repair deficiency 
results in a synergistic increase in lung carcinogenesis 

NOTE: Mice were aged for 6 months, euthanized by asphyxiation using carbon 
dioxide, and subjected to pathological examination as described in Materials and 
Methods. Only mice that lived to 6 months were included. Four Msh6-/-Rrm2Tg mice 
died before 6 months due to lymphoma, one of which also had a lung neoplasm. Four 
Msh6-/- mice died before 6 months due to lymphoma.  
 
†Values refer to the average number of lung neoplasms per mouse among tumor-
bearing animals only. 
 
*Statistically significant difference (p<0.01) relative to Msh6-/-, Msh6+/-Rrm2Tg, or 
Msh6+/+Rrm2Tg mice as determined by Fisher’s Exact test. 
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Figure 2.6 Synergistic effect on mutagenesis when combining RNR and mismatch 

repair defects in mice. Mutation frequency at the λ cII locus in lung (A) or spleen (B) 

tissues from RNR overexpressing and control mice. Genomic DNA was isolated 

from 3-month old mice of the indicated genotypes and packaged into infectious 

phage. Mutation frequency was determined based on the ratio of the number of 

mutant phage obtained to the total number of phage analyzed.
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Table 2.7. Analysis of mutation frequencies at the cII locus of a bacteriophage l   

transgene in lung tissue from Msh6-/- RNRTg and control mice 

Stain Animal 
ID 

Age 
(days) Sex 

Total 
number 

of 
plaques 

Number 
of 

mutants 

Mutation 
frequency 

Mutation 
frequency 

(Avg ± 
SD) 

6378 90 F 341550 16 4.7 
6394 98 M 366948 23 6.2 
6469 102 M 579466 25 4.3 
6793 92 F 264000 20 7.6 
6830 91 M 269500 11 4.1 
6864 93 F 363000 17 4.7 

WT 

3682 95 M 286000 18 6.3 

5.5±1.3 

6380 90 F 260000 10 3.8 
6468 102 M 332133 23 6.9 
6470 102 M 341000 9 2.6 
6465 133 F 284715 21 7.4 
6466 133 F 264000 16 6.1 

Rrm1Tg 

6832 91 M 260333 15 5.8 

5.4±1.9 

6395 98 M 247250 14 5.7 
6397 98 M 173600 14 8.1 
6895 93 M 418000 29 6.9 
6896 93 M 286000 11 3.8 
6900 93 F 82830 4 4.8 
3681 95 M 363000 11 3.0 

 
Rrm2Tg 

3463 96 M 341667 10 2.9 

5.0±2.0 

6359 57 F 463833 23 4.9 
6790 93 F 402800 35 8.7 
6862 92 F 198000 13 6.6 

 
p53R2Tg 

3378 91 F 423333 24 5.7 

6.5±1.6 

3676 95 F 357500 78 21.8 
3750 96 F 455000 133 29.2 Msh6-/- 
3752 96 M 220000 92 41.8 

31.3±1.4 

3163 102 M 363000 156 43.0 
3461 96 F 223333 189 84.6 
3467 96 M 671667 256 38.1 

Msh6-/-

Rrm2Tg 
3677 95 F 263333 145 55.1 

55.2±20.9 

3321 102 F 352000 128 36.4 
3749 96 F 290000 176 60.7 Msh6-/-

p53R2Tg 3751 96 F 315000 204 64.8 
54.0±15.4 

NOTE: Genomic DNA was isolated from the lungs of 3-month old mice and l vector 
was then packaged into phage. The number of mutants was derived from raw counts 
of mutant plaques.  
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frequency in Msh6-/-Rrm2Tg (55.2 ± 20.9 x 10-5) and Msh6-/-p53R2Tg (54.0 ± 15.4 x 10-

5) lung tissues was consistently higher than that in Msh6-/- lung tissue (31.1 ± 10.4 x 

10-5), although these differences were not statistically significant. By contrast, the 

mutation frequency was similar in spleen tissue from Msh6-/-Rrm2Tg (52.0 ± 20.1 x 10-

5) and Msh6-/- (50.5 ± 16.3 x 10-5) mice, but slightly elevated in Msh6-/-p53R2Tg (63.7 

± 10.7 x 10-5) animals (Fig. 2.6B and Table 2.8). Together, these results indicate that 

MMR deficiency synergizes with RNR overexpression in a tissue specific manner to 

increase mutagenesis and carcinogenesis. 

 

2.4.5     RNR-induced lung neoplasms display a unique signature of K-ras    

             activating mutations. 

A mutagenic mechanism implies that RNR overexpression triggers additional 

genetic alterations while promoting tumor development. Because mutations in codons 

12 and 61 of the K-ras proto-oncogene are often observed in human and mouse lung 

cancers (Mills et al., 1995; You et al., 1989), we examined the frequency of K-ras 

mutations in microdissected lung neoplasms from the RNR cohort. 100% of Rrm2-

induced lung neoplasms and 79% of p53R2-induced lung neoplasms carried K-ras 

activating mutations (Table 2.9), indicating that RNR-induced lung carcinogenesis 

frequently involves K-ras activating mutations. 56% and 100% of the rare lung 

neoplasms from transgene-negative control and Rrm1Tg mice, respectively, also had K-

ras mutations. 

Sequence analysis revealed that the lung neoplasms from Rrm2Tg and p53R2Tg 

mice exhibited distinct mutation spectra relative to those from transgene-negative and 

Rrm1Tg mice (Table 2.10). In particular, 50% of the K-ras codon 12 mutations from 

Rrm2-induced lung neoplasms were G→T transversions (GGT→GTT, G12V), as 

were 30% of those from p53R2-induced lung neoplasms. By contrast, lung neoplasms  
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Table 2.8. Analysis of mutation frequencies at the cII locus of a bacteriophage l 
transgene in  spleen tissue from Msh6-/- RNRTg and control mice 

NOTE: Genomic DNA was isolated from the spleen of 3-month old mice and λ vector 
was then packaged into phage. The number of mutants was derived from raw counts of 
mutant plaques.  

Stain Anim
al ID 

Age 
(day

s) 
Sex 

Total 
number of 

plaques 

Number 
of 

mutants 

Mutatio
n 

frequenc
y 

Mutation 
frequency 

(Avg ± SD) 

6378 90 F 173844 8 4.6 
6394 98 M 599500 24 4.0 WT 
4020 101 M 108333 3 2.8 

3.8 ± 0.9  

6380 90 F 292230 5 1.7 
6468 102 M 270000 25 9.3 Rrm1Tg 
6470 102 M 373000 14 3.8 

4.9 ± 3.9 

6395 98 M 225500 13 5.8 
6397 98 M 198000 11 5.6  

Rrm2Tg 3463 96 M 226667 12 5.3 
5.6 ± 0.3 

3754 96 M 335000 9 2.7 
3378 91 F 350000 20 5.7  

p53R2Tg 6790 92 F 165000 8 4.8 
4.4± 1.5 

3676 95 F 261750 78 29.8 
3750 96 F 111000 65 58.6 
2431 100 M 135000 91 67.4 Msh6-/- 

3752 96 M 216667 100 46.2 

50.5 ± 16.3 

3163 102 M 335000 114 34.0 
3461 96 F 116000 45 38.8 
3467 96 M 149667 117 78.2 

Msh6-/-

Rrm2Tg 
3677 95 F 198333 113 57.0 

52.0 ± 20.1 

3321 102 F 138350 80 57.8 
3749 96 F 136667 104 76.1 Msh6-/-

p53R2Tg 3751 96 F 141667 81 57.9 
63.7 ±10.7 
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Table 2.9. Mutations in K-ras codons 12 and 61 in lung tumors from RNR transgenic 
mice 

NOTE: DNA was extracted from lung neoplasm tissue isolated by laser 
microdissection. K-ras exons 1 and 2 were amplified by PCR and then directly 
sequenced.  
 
†WT FVB refers to transgene-negative control mice. 

# of mutations in K-ras 
Mouse 

genotype 

# of 
neoplasms 
analyzed  Codon 12 (%) Codon 61 (%) Total (%) 

WT FVB† 9 2 (22%) 3 (33%) 5 (56%) 

Rrm1Tg 4 4 (100%) 0 (0%) 4 (100%) 

Rrm2Tg 12 6 (50%) 6 (50%) 12 (100%) 

p53R2Tg 14 7 (50%) 4 (29%) 11 (79%) 
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Table 2.10. Mutational spectrum at K-ras codons 12 and 61 in RNR-induced 
and control lung neoplasms 

Genotype Tumor 
ID 

Mutations in codon 12 Mutations in codon 61 
1234 G12D, GGT>GAT None 
4738 G12D, GGT>GAT None 
3427 None Q61R, CAA>CGA 
3855 None Q61R, CAA>CGA 
1579 None Q61R, CAA>CGA 
3352 None None 
4741 None None 
1417 None None 

WT FVB 
(N=9) 

1575 None None 
4737 G12D, GGT>GAT None 
5804 G12D, GGT>GAT None 
984 G12D, GGT>GAT None 

Rrm1Tg 
(N=4)  

1416 G12D, GGT>GAT None 
6956 G12D, GGT>GAT None 
791 G12D, GGT>GAT None 

1577 G12V, GGT>GTT None 
5485 G12R , GGT>CGT None 
792 G12V, GGT>GTT None 

1164 G12V, GGT>GTT None 
1162 None Q61R, CAA>CGA 
1166 None Q61R, CAA>CGA 
1161 None Q61H, CAA>CAT 
6071 None Q61H, CAA>CAT 
1322 None Q61L, CAA>CTA 

Rrm2Tg 
(N=12) 

3892 None Q61L, CAA>CTA 
3114 G12D, GGT>GAT None 
1233 G12D, GGT>GAT None 
3428 G12D, GGT>GAT None 
3432 G12D, GGT>GAT None 
908 G12R, GGT>CGT None 
909 G12V, GGT>GTT None 
905 G12V, GGT>GTT None 

4817 None Q61R, CAA>CGA 
3117 None Q61R, CAA>CGA 
3353 None Q61R, CAA>CGA 
1225 None Q61H, CAA>CAT 
904 None None 

3113 None None 

p53R2Tg 
(N=14) 

907 None None 
NOTE: DNA was extracted from lung neoplasm tissue isolated by laser 
microdissection. K-ras exons 1 and 2 were amplified by PCR and then directly. 
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 from transgene-negative and Rrm1Tg mice showed exclusively G→A transitions 

(GGT→GAT, G12D) in K-ras codon 12. We conclude that K-ras activating 

mutations, common events in lung carcinogenesis, are central to Rrm2- and p53R2-

induced lung carcinogenesis and arise through a mechanism that appears distinct from 

that underlying spontaneous lung tumor development in wild-type animals. 

Alterations in the p53 tumor suppressor gene are also common in human lung cancer 

(Chiba et al., 1990). The majority of these alterations are missense mutations that 

result in the accumulation of high levels of mutant p53 protein. Other mutations in p53 

gene confer the loss of p53 expression. To investigate whether aberrant expression of 

p53 is associated with these RNR-induced lung neoplasms, we analyzed p53 

expression levels in lung neoplasms by western blotting. As shown in Fig 2.7, there 

was no difference in p53 expression levels in these RNR-induced lung neoplasms 

compared to normal lung from RNRTg or transgene negative control mice. This result 

suggests that p53 mutations may not be a common event in RNR-induced lung 

tumorigenesis. 

 

2.5 Discussion 

RNR enzyme activity has long been positively correlated with cancer cell 

division (Elford et al., 1970), and RNR inhibition is an effective strategy for 

suppressing tumor proliferation and survival (Shao et al., 2006). Yet, investigation of 

the effects of RNR deregulation in animal models has been incomplete. We report that 

overexpression of Rrm2 or p53R2 specifically induces lung but not other neoplasms at 

high frequency in transgenic mice. Previous studies indicated that human RRM2 has 

transforming activity in cultured cells (Fan et al., 1996), while p53R2 has been 

suggested to have tumor suppressor activity based on its regulation by p53 and its role 

in the DNA damage response (Tanaka et al., 2000). RNR may be an example of a  
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Figure 2.7 p53 expression in RNR-induced lung neoplasms. Western blotting analysis 

of p53 expression in lung neoplasms (Tumor 1, Tumor 2) or normal lung tissues 

(lung) from RNR transgenic mice as well as normal lung from wild-type FVB mice 

(WT FVB). Total protein was subjected to immunoblotting with antibody specific to 

p53 or α-tubulin as loading control. 



72 

 

growth regulator that has dual roles both as a tumor suppressor and oncogene. While 

impaired RNR function can trigger genomic instability by limiting nucleotide 

availability for DNA replication and repair purposes, RNR hyperactivity may be 

equally detrimental due to its mutagenic effects. Interestingly, the genomic regions 

containing human RRM2 (2p25-2p24) and p53R2 (8q23.1) are commonly amplified in 

human lung cancers (Goeze et al., 2002; Lui et al., 2001; Pei et al., 2001; Wong et al., 

2003), raising the possibility that RNR deregulation might have a causative role in 

human lung carcinogenesis.  Because RNR is a DNA damage-inducible enzyme, our 

results also suggest that increased RNR levels due to chronic DNA damage in the 

lungs of smokers may contribute to tumor development. 

In contrast to Rrm2Tg and p53R2Tg mice, Rrm1Tg mice did not show increased 

lung carcinogenesis. In addition,  Rrm1TgRrm2Tg and Rrm1Tgp53R2Tg mice did not 

show enhanced lung carcinogenesis compared to Rrm2Tg and p53R2Tg mice. This 

might be due to the relatively limited overexpression of the Rrm1 transgene. or the fact 

that the R2 subunit is the limiting component of the enzyme (Engstrom et al., 1985; 

Mann et al., 1988). However, Rrm1 demonstrates tumor suppressor activity both in 

cultured cells and human lung cancer patients (Fan et al., 1997; Gautam et al., 2003; 

Zheng et al., 2007). Consistent with our findings, Rrm1 overexpression in another 

mouse model also did not result in any overt spontaneous phenotypes and instead was 

reported to suppress chemical carcinogenesis in the lung (Gautam and Bepler, 2006). 

Thus, lung tumor induction might be specific to the small RNR subunit and 

independent of RNR enzyme activity.  

We determined that RNR-induced lung tumorigenesis proceeded through a 

mutagenic mechanism. Overexpression of Rrm2 or p53R2, but not Rrm1, in 3T3 cells 

resulted in a significant increase in mutation frequency. Additional experiments in 



73 

budding yeast indicated that MMR normally corrects base mispairs that arise due to 

RNR deregulation, as multiplicative increases in mutation rate were observed when 

the allosteric site mutant rnr1-D57N was combined with MMR gene mutations. A 

similar genetic interaction between RNR and MMR was observed in mice. Msh6-null 

mice develop primarily lymphoma (Edelmann et al., 1997), and p53R2 overexpression 

cooperated with Msh6-deficiency to cause an earlier onset of lymphomagenesis and 

shortened lifespan in Msh6-/-p53R2Tg mice as compared to Msh6-/- controls. We also 

observed that Msh6 deficiency strongly accelerated Rrm2-induced lung 

carcinogenesis, with 100% of Msh6-/-Rrm2Tg mice developing lung neoplasms by 6 

months of age. The accelerated lung carcinogenesis in Msh6-/-Rrm2Tg mice was 

associated with increased mutation frequency in lung tissue, while the accelerated 

lymphomagenesis in Msh6-/-p53R2Tg mice correlated with a modestly elevated 

mutation frequency in spleen tissue. The synergy observed between these pathways 

raises the possibility that aberrant RNR expression may be selected for in MMR-

deficient cancers.   

A key question arising from this study is the molecular basis for mutagenesis 

and lung tumor induction by Rrm2 and p53R2 overexpression. One possibility is that 

increased RNR expression leads to dNTP level alterations that impair replication 

fidelity and trigger mutations in growth regulatory genes. Abnormal nucleotide levels 

result in increased base misinsertion during DNA replication as well as decreased 

proof-reading due to enhanced polymerization rates (Mathews, 2006). Consistent with 

the notion that regulators of nucleotide biosynthesis can influence cell transformation, 

overexpression of another enzyme involved in dNTP biosynthesis, thymidylate 

synthase, transforms cultured cells (Rahman et al., 2004) and promotes tumor 

formation in transgenic mice (Chen et al., 2007a).   

Alternatively, carcinogenesis due to R2 subunit overexpression could be 
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independent of nucleotide metabolism. One possibility is that free radical production 

by Rrm2 and p53R2 contributes to cell transformation. During each catalytic cycle the 

small RNR subunit generates a tyrosyl radical that normally is transferred to the active 

site in Rrm1 for use in NDP reduction (Nordlund and Reichard, 2006). R2 protein 

overexpression might lead to increased radical generation and the formation of 

reactive oxygen species (ROS), which cause oxidative DNA damage and are 

mutagenic. ROS also have mitogenic effects and can play a direct role in neoplastic 

transformation (Droge, 2002). Notably, human RRM2 protein generates ROS in vitro, 

although recombinant p53R2 was reported in the same study to have antioxidant 

activity, despite the fact that both RRM2 and p53R2 generate tyrosyl free radicals 

(Xue et al., 2006). G→T transversions, a signature of oxidative DNA damage, were 

detected at K-Ras codon 12 in lung neoplasms from Rrm2Tg and p53R2Tg mice, and 

also at the Hprt locus in Rrm2 and p53R2 overexpressing 3T3 cells.  Because MMR 

corrects mismatches arising from both replication errors (Modrich, 2006) and 

oxidative DNA damage (Slupphaug et al., 2003), the multiplicative increases in 

mutagenesis and carcinogenesis observed when combining RNR overexpression with 

MMR deficiency are compatible with both dNTP level alterations and increased ROS 

production as possible mechanisms of action. 

The possibility that R2 subunit overexpression induces mutagenesis and 

tumorigenesis through excessive free radical production may account for the 

observation that RNR transgenic mice, despite broad RNR overexpression, develop 

lung but not other neoplasms at high frequency. The lung is an oxygen-rich 

environment with a high basal level of ROS (Rahman, 2003) and thus may be more 

susceptible to increased free radical production. Alternatively, it could be that the 

mutational targets of RNR dictate the tissue specificity. Indeed, activated K-ras 

preferentially induces lung neoplasms in mice (Johnson et al., 2001). Other more 
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trivial explanations for the lung specific carcinogenesis, such as subtle transgene 

expression level differences or varying DNA repair efficiencies among tissues, also 

cannot be ruled out. 

Although Rrm2 and p53R2 encode related R2 proteins, they did not give 

identical results in our experiments. While overexpression of either was capable of 

inducing lung neoplasms, Rrm2 overexpression elicited larger and more malignant 

tumors. p53R2 overexpression, on the other hand, significantly accelerated 

lymphomagenesis in Msh6-null mice, suggesting a broad effect of p53R2 

overexpression. Rrm2 also was more mutagenic than p53R2 in cultured cells, and 

induced a greater proportion of G→T transversions in both the Hprt and K-ras genes. 

One possible explanation for the partially distinct phenotypes associated with Rrm2 

and p53R2 is that both dNTP alterations and ROS production can contribute to 

neoplastic transformation, and that these activities differ between Rrm2 and p53R2. 

The distinct subcellular localizations of Rrm2 and p53R2 (Nakano et al., 2000; Tanaka 

et al., 2000) could contribute to such differing effects on dNTP biosynthesis or ROS 

production. 

Mouse models hold great promise for facilitating the development of 

diagnostic tools, prognostic markers, and therapeutics for lung cancer, the leading 

cause of cancer death world-wide. Like human lung adenocarcinomas (Linnoila et al., 

1992), the RNR-induced lung neoplasms expressed SP-C, a marker of type II alveolar 

cells. Furthermore, RNR-induced lung neoplasms arose with moderate latency in a 

stochastic process associated with an elevated mutation rate, suggesting that this may 

be a particularly authentic model for lung cancer. A mutagenic mechanism for RNR-

induced lung carcinogenesis implies that several genetic alterations are required for 

lung carcinogenesis. Consistent with this model, we observed activating K-ras 

mutations at very high frequency in RNR-induced lung neoplasms. K-ras has been 
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reported to be mutated in 90% of mouse lung neoplasms and as many as 25% of 

human lung adenocarcinomas (Mills et al., 1995; You et al., 1989). That G→T 

transversions in K-ras codon 12 were detected in RNR-induced lung neoplasms 

further validates this lung cancer model, as G→T transversions are the most common 

mutations at K-ras codon 12 in human lung cancers and correlate with a poorer 

prognosis (Keohavong et al., 1996; Rodenhuis et al., 1988). Continued use of the RNR 

lung cancer model has great potential for revealing additional genetic alterations that 

contribute to lung tumor initiation and progression. 
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CHAPTER 3 

 

RNR-induced Mutagenesis and Lung Tumorigenesis through an 

Oxidative Mechanism 

 

3.1 Abstract 

Ribonucleotide reductase plays a central role in maintaining genomic stability 

by catalyzing the rate-limiting step of dNTP biosynthesis for DNA replication and 

repair. Its activity is tightly regulated through allosteric mechanism and control of 

expression levels throughout the cell cycle. Recent studies showed that overexpression 

of the small subunit of RNR promoted lung tumorigenesis through a mutagenic 

mechanism and established a novel oncogenic activity for RNR. We initially 

hypothesized that RNR-induced mutagenesis and carcinogenesis might be caused by 

altered dNTP pools due to increased RNR activity. However, RNR-induced 

mutagenesis was not associated with altered dNTP levels or ratios.  In addition, RNR 

overexpression was not associated with acute transforming activity, which has been 

suggested by previous studies. Alternatively, we hypothesized that excess free radical 

production by the small RNR subunit may result in mutation accumulation and 

account for lung specific tumorigenesis. Indeed, Rrm2 overexpression was associated 

with elevated reactive oxygen species (ROS) levels. Rrm2 mutants, defective for RNR 

enzyme activity but still capable of producing free radicals, were able to promote 

mutagenesis and enhance ROS production. Our data indicate that the mechanism of 

RNR-induced mutagenesis and lung tumorigenesis may be independent of RNR 

enzyme activity and instead may be caused by increased oxidative stress associated 

with overexpression of the small radical generating RNR subunit. 
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3.2 Introduction 

Cancer arises due to stepwise accumulation of mutations that produce 

oncogenes with dominant gain of function and tumor suppressor genes with recessive 

loss of function. Therefore, genomic instability, due to either aging or inherited 

defects in carekeeper genes, has been thought to be the driving force of aggressive 

transformation of normal cells into highly malignant cancer cells. To maintain the 

integrity of the genome, cells employ multi-level safeguards: DNA replication, gene 

transcription, DNA repair, and cell cycle checkpoints (Hoeijmakers, 2001). Among 

these mechanisms, maintaining homeostasis of deoxyribonucleotide (dNTP) levels is 

fundamental for ensuring the replication fidelity and efficient repair of DNA lesions. 

Ribonucleotide reductase (RNR) is an essential enzyme that controls the homeostasis 

of dNTP levels and thereby maintains genomic integrity.   

RNR catalyzes the rate-limiting step in the production of deoxyribonucleotide 

triphosphates (dNTPs) for DNA replication and DNA repair. Mammalian RNR is 

composed of two non-identical homodimeric subunits: the large subunit R1 and the 

small subunit R2 (Nordlund and Reichard, 2006).  The R1 subunit contains allosteric 

regulation and catalytic sites to provide sufficient and balanced dNTP pools; the R2 

subunit contains a dinuclear iron center and a tyrosyl free radical that is essential for 

enzyme catalytic activity. A proton-coupled electron transfer chain composed of 

hydrogen-bonded residues is responsible for radical transfer between the tyrosyl 

radical site of R2 and the catalytic site of R1. In mammals, the Rrm1 gene encodes the 

large subunit R1, and the Rrm2 gene encodes the small subunit R2 which together 

form the Rrm1-Rrm2 complex that provides dNTPs for normal cell proliferation 

during S phase. The p53R2 gene encodes another small subunit and forms the Rrm1-

p53R2 complex that supplies dNTPs for mitochondrial DNA replication and DNA 
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repair throughout the cell cycle (Nakano et al., 2000; Pontarin et al., 2007; Tanaka et 

al., 2000).  

Due to its essential role in maintaining genome integrity, RNR activity is 

tightly regulated through allosteric mechanism and control of expression levels 

throughout the cell cycle (Bjorklund et al., 1990; Chabes and Thelander, 2000; 

Chabes et al., 2003b; Elledge et al., 1993). The Rrm1 protein level is constant and in 

excess throughout the cell cycle, whereas Rrm2 is limiting and only expressed during 

the S phase owing to transcriptional induction in the late G1 phase and degradation by 

Cdh-APC ubiquitination during the G2/M phase. p53R2 is expressed at a low level 

throughout the cell cycle and is induced after DNA damage in a p53 dependent 

manner (Nakano et al., 2000; Tanaka et al., 2000).   

Deregulation of RNR has been found to cause genomic instability in both yeast 

and cultured mammalian cells (Caras and Martin, 1988; Chabes et al., 2003a; 

Reichard et al., 2000). In yeast, upregulation of RNR by abolishing feedback 

inhibition at the activity site of R1 subunit leads to improved survival after DNA 

damage and increased mutagenesis associated with altered dNTP pools (Chabes et al., 

2003a; Zhao et al., 1998). In cultured mammalian cells, deregulation of RNR by 

mutating the activity site responsible for feedback inhibition resulted in increased 

mutagenesis, although no dNTP pool alterations were detected (Caras and Martin, 

1988). Recently, we generated mouse models of RNR deregulation and identified a 

novel causative role of RNR in the etiology of spontaneous lung neoplasms through a 

mutagenic mechanism (Xu et al., 2008). Overexpressing the small subunits of RNR, 

Rrm2 and p53R2, is mutagenic in cultured 3T3 cells and in transgenic mouse tissues. 

More strikingly, widespread overexpression of the small subunit of RNR in 

transgenic mice specifically promotes lung carcinogenesis. Studies in human cancers 

suggest that RRM1 is a putative tumor suppressor gene (Pitterle et al., 1999) and loss 
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of heterozygosity at the chromosome region containing RRM1 has been correlated 

with poor survival in non-small cell lung cancer patients (Bepler et al., 2002). 

However, RRM1 overexpression has been linked to drug resistance in tumor 

chemotherapy, and is utilized as a marker for chemoresistance and poor survival in 

patients with advanced NSCLC (Ceppi et al., 2006; Gazdar, 2007). Thus, RRM1 in 

NSCLC has been proposed to have a dual role in both cancer susceptibility and drug 

resistance (Gazdar, 2007). There is limited information concerning the effect of 

RRM2 expression in tumors. Overexpression of RRM2 in human oral carcinoma cells 

enhanced invasive potential (Zhou et al., 1998b). Polymorphisms of the p53R2 gene 

have also been found to correlate to esophageal squamous cell carcinomas and colon 

carcinoma. More interestingly, the genome regions containing human RRM2 and 

P53R2 are frequently amplified in lung cancer patients (Goeze et al., 2002; Lui et al., 

2001; Pei et al., 2001). 

Studies in human patients and our RNR transgenic mouse model may provide 

new insights into the role of RNR in cancer development. Rather than functioning 

only as a downstream effector of transformation by providing high dNTP levels for 

cancer cell proliferation, RNR deregulation also may have a direct role in initiation of 

cancer development by promoting mutagenesis, leading to mutations in oncogenes or 

tumor suppressor genes. However, the molecular mechanisms of RNR-induced 

mutagenesis and lung tumorigenesis are still unclear.   

The simplest explanation for RNR-induced mutagenesis is that deregulation of 

RNR causes altered dNTP pools, which are mutagenic. Mutagenesis induced by RNR 

deregulation in budding yeast is associated with altered dNTP levels (Chabes et al., 

2003a).  However, there has been conflicting reports on whether altered dNTP levels 

are associated with mutagenesis caused by RNR deregulation in mammalian cells 

(Caras and Martin, 1988; Weinberg et al., 1981). One possible explanation for this 
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discrepancy is that changes in dNTP levels in subnuclear compartments are 

undetectable by measurement of total dNTP levels. Alternatively, other mechanisms 

that control dNTP homeostasis, such as the control of enzymes in the salvage 

pathway, may play a role in keeping dNTP levels undisturbed when RNR is 

deregulated. It also remains possible that RNR-induced mutagenesis could be 

independent of RNR enzyme activity. 

Previous studies suggest that Rrm2 has transforming activity since Rrm2 can 

enhance transforming potential in combination with activated oncogenes in cultured 

mammalian cells.  However, Rrm2 alone has not been found to have any direct 

transforming activity (Fan et al., 1998; Fan et al., 1996). Interestingly, p53R2 has 

previously been suggested to have tumor suppressor activity, since it is induced 

transcriptionally after DNA damage in a p53 dependent manner. p53R2 directly 

participates in DNA damage repair by providing dNTPs and p53R2 deficient cells are 

more sensitive to DNA damage agents (Nakano et al., 2000; Tanaka et al., 2000). 

However, p53R2 transgenic mice were also highly prone to spontaneous lung 

tumorigenesis and cells overexpressing p53R2 exhibited enhanced mutagenesis (Xu 

et al., 2008).  Thus, the role of p53R2 in genomic stability and cancer is still unclear.  

Since the small subunit of RNR contains a tyrosyl radical essential for enzyme 

activity, another potential mechanism for RNR-induced mutagenesis and lung 

carcinogenesis is that free radical production due to the overexpressed small subunit 

and leads to oxidative DNA damage that drives RNR-induced mutagenesis and 

carcinogenesis. Recently, studies found that human RRM2 recombinant protein can 

function as an oxidant reagent due to its ability to produce free radicals (Xue et al., 

2006), although p53R2 has been proposed to have anti-oxidative property, despite the 

fact that both RRM2 and p53R2 generate tyrosyl radicals. ROS generating property of 

human RRM2 raises the possibility that elevated RNR expression might cause 
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increased oxidative stress, leading to genomic instability and lung cancer 

development.  

There has been abundant evidence for involvement of ROS in lung 

carcinogenesis in both human lung cancer studies and mouse lung cancer models.  It 

is well known that tobacco smoke contains DNA oxidants and causes an increase in 

8-oxo-deoxyguanine (8-oxo-dG) in the human lung. 8-oxo-dG is the most prevalent 

oxidative DNA damage, and can base pair with adenine and cytosine with equal 

efficiency during DNA replication, resulting in G to T transversions (Nakabeppu et 

al., 2004).  Lung cancer patients had higher levels of 8-oxo-dG than in non-lung 

cancer patients (Inoue et al., 1998). Lung cancer risk is reduced by consumption of 

anti-oxidant containing fruits and vegetables (Miller et al., 2004; Riboli and Norat, 

2003). Increased levels of MnSOD and decreased levels of catalase, two key players 

in regulation of intracellular ROS levels, have been found in human lung cancer 

patients. A polymorphic variant in OGG1, a protein that excises 8-oxo-dG from 

DNA, causes reduced enzyme activity and the increased risk of lung cancer (Le 

Marchand et al., 2002). Mth1 hydrolyzes the 8-oxo-dGMP, avoiding the incorporation 

of 8-oxo-dG into DNA during DNA synthesis, and Ogg1 glycosylase removes 8-oxo-

dG from DNA (Nakabeppu et al., 2004).  In mouse models, deficiency in either the 

Ogg1 gene or the Mth1 gene in knockout mice is associated with an increased 

incidence of lung tumors. Ogg1 knockout mice accumulated high levels of 8-oxo-dG 

(Minowa et al., 2000; Sakumi et al., 2003; Tsuzuki et al., 2001; Xie et al., 2004). This 

evidence supports ROS as a causative agent in lung cancer development (Maciag and 

Anderson, 2005).  

We previously found that widespread overexpression of RNR in transgenic 

mice specifically promotes spontaneous lung tumorigenesis through a mutagenic 

mechanism (Xu et al., 2008). Notably, we found increased signature mutations of 
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oxidative DNA damage at K-ras codon 12 from these RNR-induced lung neoplasms 

and at the Hprt gene locus in RNR overexpressing 3T3 cells. Mismatch repair 

corrects mismatches from replication error and oxidative DNA damage (Modrich, 

2006; Slupphaug et al., 2003). We observed multiplicative increase in mutagenesis 

and lung tumorigenesis when combining RNR overexpression with mismatch repair 

deficiency in our previous study, a finding that is compatible with increased ROS 

production as possible mechanism for RNR-induced mutagenesis. The lung is an 

oxygen-rich environment with high basal level of ROS (Rahman, 2003) and thus may 

be more susceptible to free radical production. This evidence strongly suggests that 

RNR-induced lung tumorigenesis might involve oxidative DNA damage in a highly 

tissue specific manner. This may be related to the redox property of the small subunit 

of RNR.  

In this study, we investigated the molecular mechanisms of RNR-induced 

mutagenesis and lung tumorigenesis and obtained results suggesting that RNR 

overexpression drives mutagenesis and lung tumorigenesis through an oxidative 

mechanism. First, we did not observe detectable alterations in dNTP levels or ratios in 

lung cells from RNR transgenic mice or in RNR overexpressing 3T3 cells. Second, 

we did not observe acute transforming activity of RNR. However, Rrm2 

overexpressing cells consistently show increased ROS levels. Interestingly, cells 

overexpressing Rrm2 mutants, which are defective for RNR enzyme activity but can 

still produce the initial tyrosyl radical or a transient tryptophan radical, exhibited 

enhanced mutagenesis and increased oxidative stress. Our results indicate that RNR-

induced mutagenesis may be independent of RNR enzyme activity, and instead could 

act through elevated oxidative stress due to free radical overproduction.  
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3.3 Materials and Methods 

3.3.1 Cells. 

All cells were cultured in culture medium (Dulbeco’s Modification of Eagles 

Medium supplemented with 10% bovine calf serum, 1.0 mM L-glutamine, 0.1 mM 

MEM non-essential amino acids, 100 µg/ml of streptomycin sulfate, and 100 U/ml of 

penicillin). Mouse 3T3 cells overexpressing Rrm1, Rrm2, p53R2, Rrm2-Y177W, 

Rrm2-Y370W, Rrm2-Y177F, Rrm2-Y370F, or empty vector were generated as 

described in Material and Methods section in Chapter 2. 

 

3.3.1 Measurement of intracellular dNTP pool size. 

106 RNR over-expressing 3T3 cells were plated on 100mm tissue culture 

dishes in DMEM supplemented with 10% dialyzed bovine calf serum on the day 

before the experiment. 24 h after plating, cells were harvested by trypsinization and 5x 

105 cells were centrifuged for 3 min at 1300g. The supernatant was aspirated and the 

cell pellet was extracted with 100 µl of cold 0.4N perchloric acid for 20 min on ice. 

After centrifugation (1 min at 16,000g), the supernatant was neutralized by mixing 

with 100 µl 0.5N trioctylamine (Sigma) in 1, 1, 2-trichlorotrifluoroethane (Sigma). 

The phases were separated by centrifugation (2 min at 16,000g) and the upper aqueous 

phases were fast frozen in dry ice-ethanol and stored at –80°C until analyzed. dNTP 

pool size was measured according to methods described by Sherman and Fyfe 

(Sherman and Fyfe, 1989).  The reaction mixture (40 µl) contained 100mM HEPES 

buffer (pH 7.3) and 10mM MgCl2, 1 U of E. coli DNA polymerase I  klenow fragment 

(Fermentas), 0.25µM (for dATP and dTTP) or 0.05µM (for dCTP or dGTP) 

oligonucleotide template, 8 µl of dNTP extract, and 1.25 µM 3H-dATP(18 Ci/mmol, 

Moravek Biochemicals) (for dTTP, dCTP, and dGTP) or 3H-dTTP(60 Ci/mmol, 
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Moravek Biochemicals) ( for dATP). Following is the sequence of oligonucleotide 

template for measuring:  

dTTP:5'ATTATTATTATTATTAGGCGGTGGAGGCGG 3' 

3' CCGCCACCTCCGCC 5' 

dCTP:5' TTTGTTTGTTTGTTTGTTTGGGCGGTGGAGGCGG 3' 

3' CCG CCACCTCCGCC 5' 

dGTP:5' TTTCTTTCTTTCTTTCTTTCGGCGGTGGAGGCGG 3' 

3' CCGCCACCTCCGCC 5' 

dATP:5' AAATAAATAAATAAATAAATGGCGGTGGAGGCGG 3' 

3'CCGCCACCTCCGCC 5' 

Reactions were started by addition of the enzyme and were carried out for 60 min at 

room temperature. After incubation, 20 µl aliquots were removed and spotted onto 

Whatman DE81 paper. The papers were dried, washed (3x 10 min) with 5% Na2HPO4, 

and rinsed once each with distilled water and 95% ethanol. After drying, the 

radioactivity on the paper was measured in a liquid scintillation counter. 

 

3.3.2 Lung cell isolation and preparation. 

3-month old wildtype FVB, Rrm1, Rrm2 and p53R2 transgenic mice were 

euthanized and lung cells were isolated. Briefly, perfused and lavaged lungs were 

digested with elastase  (4.3U/ml, Worthington, Lakewood, NJ) for 25 min at 37°C, 

then minced sequentially filtered through nylon meshes (160, 37, 10µm pore size), and 

plated on mouse IgG  (Polysciences, Inc ) coated cell culture dishes for 1h at 37°C in a 

humidified incubator with 6% CO2 in air (Bates et al., 2002). Cells were then 

trypsinized and harvested for dNTP measurement. To make IgG coated plates, put 1.5 

ml 0.5mg/ml IgG in 50mM Tris (pH=9.5) to cover 60mm culture dish and rock for 3 

hrs at room temperature. 
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3.3.4 Focus formation assay. 

1x106 3T3 cells were plated on 100mm dishes with DMEM supplemented with 

10% bovine calf serum the day before the experiment. 24 hrs later, cells were fed with 

fresh DMEM supplemented with 10% bovine calf serum. Cells were then transfected 

by calcium phosphate precipitation using 20µg of each construct plasmid DNA. 48 hrs 

post transfection, cells were trypsinized and 1/3 of cells were passed into new 100mm 

cultured dishes and fed with DMEM supplemented with 10% bovine calf serum every 

3 days for 3 weeks. Cells were then fixed in 95% methanol for 1 h, stained with 10% 

Giemsa, and foci were scored. Ras and Myc plasmids have been described previously 

(Kelekar and Cole, 1987; Parada et al., 1982). 

 

3.3.5 Construction of expression plasmids and site-directed mutagenesis.  

Rrm2-Y177W, Rrm2-Y177F, Rrm2-Y370W and Rrm2-Y370F mutant 

constructs were generated by overlap extension PCR of pCaggs-Rrm2 plasmid where 

the required mutation was introduced as described previously (Ho et al., 1989). The 

internal primers that hybrids at the site of mutations for site-directed mutagenesis 

were:  

Y177W forward: 5’-

GGAAAACATACACTCTGAAATGTGGAGTCTCCTTATTGACACTTAC-3’; 

Y177W reverse: 5’-

GTAAGTGTCAATAAGGAGACTCCACATTTCAGAGTGTATGTTTTCC-3’; 

Y370W forward: 5’-GCGAGTAGGCGAGTGGCAGAGGAGGGGAGTCATG-3’; 

Y370W reverse: 5’-CATGACTCCCATCCTCTGCCACTCGCCTACTCGC-3’;  

Y177F forward: 5’-

GGAAAACATACACTCTGAAATGTTCAGTCTCCTTATTGACACTTAC-3’; 
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Y177F reverse: 5’-

GTAAGTGTCAATAAGGAGACTGAACATTTCAGAGTGTATGTTTTCC-3’; 

Y370F forward: 5’-TTGAGAAGCGAGTAGGCGAGTTTCAGAGGATGG-3’; 

Y370F reverse: 5’-CCATCCTCTGAAACTCGCCTACTCGCTTCTCAA -

3’(underlined letters denote the mutated codon); 

The upstream flanking primer containing the xhoI site used for PCR extension is: 5’-

AAACTCGAGCCATGCTCTCCGTCCGCACCCC-3’  and the downstream flanking 

primer containing the xhoI site is : 5’-

AGAGCTCGAGTTAGAAGTCAGCATCCAAGGT-3’ (boldface letters denote the 

xhoI site) ;  

To synthesize overlapping fragments, two separate PCR reactions were 

performed. In the first PCR reaction, the universal upstream flanking primer and 

reverse site-specific internal primer for each mutant were used to generate upstream 

overlapping fragment; in the second reaction, forward site-specific internal primer for 

each mutant and the universal downstream flanking primer were used to amplify 

downstream overlapping fragment. Synthesized upstream and downstream 

overlapping fragments were then fused by denaturing and annealing them in a 

subsequent extension reaction. The fused products were then PCR amplified using the 

universal upstream flanking primer and the universal downstream flanking primer. 

The fragments containing the mutations were then ligated into the pCaggs-Rrm2 

plasmid digested with xhoI to replace the original wildtype Rrm2 fragment. Whole 

Rrm2 cDNA was sequenced for all plasmids to confirm the mutated codons and to 

ensure the absence of other mutations.  
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3.3.6 Generation of mutant Rrm2 overexpressing 3T3 cell pools. 

Mouse 3T3 fibroblasts were transfected either with the empty pCaggs vector 

(1.35 µg) as a control or with the pCaggs-Rrm2, pCaggs-Rrm2-Y177W, pCaggs-

Rrm2-Y370W, pCaggs-Rrm2-Y177F, or pCaggs-Rrm2-Y370F expression vector 

(1.35 µg) along with PGK-puro (0.15 µg) using FuGENE 6 Transfection Reagent 

(Roche Diagnostics Co., Mannheim, Germany) following the procedure recommended 

by the manufacturer. The medium was replaced by selection medium containing 

1.25 µg/ml puromycin every 2 days. After 3 weeks, puromycin-resistant cells were 

pooled and expanded for further analysis under selection conditions. 

 

2.5.1 Western blot analysis.  

Cultured cells were prepared in RIPA buffer (50mM Tris-HCl [pH 8.0], 1% 

[vol/vol] Nonidet P-40, 0.5% sodium deoxycholate, 0.1% [wt/vol] sodium dodecyl 

sulfate, 150mM sodium chloride, 50mM sodium fluoride) and 1x protease inhibitor 

cocktail (Roche). Immunoblotting was performed on PVDF membranes using 

standard methods, with signal detection by enhanced chemiluminescence (Pierce). The 

antibodies used were goat anti-R2 (sc-115, Santa Cruz Biotechnology,) and α-tubulin 

(A5441, Sigma). 

 

2.5.2 Cell proliferation assay. 

Cells were cultured and passed according to the 3T3 protocol. In brief, 106 

cells were plated on a 100 mm culture dish; after 3 days, cells were counted and 106 

cells were replated. Population Doublings were calculated using the formula 

ΔPDL=log(nf/n0)/log2, where n0 is the initial number of cells and nf is the final 

number of cells at each passage(Blasco et al., 1997). 
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2.5.3 Hprt mutation rate assay. 

Cells were cultured in HAT medium (culture medium supplemented with 

0.2mM sodium hypoxanthine, 0.4µM aminopterin, 0.02µM thymidine [GIBCO]) for 

two weeks. Cells then were cultured in HT medium (culture medium supplemented 

with 0.1mM sodium hypoxanthine, 0.016µM thymidine [GIBCO]) for one week. 

Subsequently, cells were seeded at a density of 5x105 cells per 10cm plate (10 plates 

total) in culture medium containing 5µg/ml 6-thioguanine (Sigma) for 3 weeks. Then 

plates were fixed in methanol for 1 hour and stained with crystal violet overnight, then 

rinsed with water and dried. Number of 6-thioguanine resistant colonies were then 

counted. Plating efficiency was determined by plating 200 cells in medium without 6-

thioguanine in triplicate for 2 weeks and counting stained colonies (Fenwick, 1985). 

 

3.3.7 ROS measurement. 

Intracellular ROS levels were measured by quantifying carboxyl-2,7-

dichlorodihydrofluorescin diacetate ( CH3-DCFDA) fluorescence. Briefly, 1x 106 

Rrm2 over-expressing 3T3 cells were plated per 100mm tissue culture dish in DMEM 

supplemented with 10% bovine calf serum two days before the experiment. 48 hrs 

after plating, cells were trypsinized and washed twice with warm PBS. 1x 106 cells 

were then resuspended in 10µM freshly prepared CH3- DCFDA ( Molecular Probe ) at  

1x 106 cells/ml and incubated at 37°C in the dark for 20 min. Cells were then filtered 

through 40 micron nylon mesh and analyzed immediately by flow cytometry at 488 

nm excitation and 530 nm emission on a FACs-Calibur flow cytometer (Beckman). 

Ten thousands cells were routinely collected and data were analyzed with Flowjo 

software (Radisky et al., 2005).  
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3.4 Results 

3.4.1 No detectable alterations in dNTP levels or ratios in RNR overexpressing 

3T3 cells and RNR transgenic lung tissues. 

RNR deregulation by abolishing feedback inhibition at the activity site of R1 

subunit in yeast causes altered dNTP levels and enhanced mutagenesis (Chabes et al., 

2003a). We hypothesized that the mutagenic effects of RNR overexpression would 

also involve altered dNTP pool size due to an increased RNR activity, which is 

manifested by enhanced mutagenesis in RNR overexpressing cells and by lung 

tumorigenesis in RNR transgenic mice (Xu et al., 2008). To test this hypothesis, we 

first measured intracellular dNTP levels in logarithmically growing RNR 

overexpressing 3T3 cells. There were no significant differences detected in dATP, 

dTTP, dCTP and dGTP pools in Rrm1, Rrm2 and p53R2 overexpressing cells 

compared to those in empty plasmid vector cells (Fig. 3.1A). Each dNTP pool size 

was consistent with previously reported results for logarithmically growing 3T3 cells, 

with dTTP being highest and dGTP being lowest (Ke et al., 2005). To further test this 

in vivo, we analyzed intracellular dNTP levels in lung cells from 3-month old RNR 

transgenic mice. Compared to lung cells from wildtype control mice, lung cells from 

Rrm1, Rrm2 and p53R2 transgenic mice exhibited similar levels of dATP, dTTP, 

dCTP and dGTP pools (Fig. 1B). The individual dNTP levels in these adult lung cells 

were consistent with the reported dNTP levels in muscle tissue, with dCTP pool being 

highest and dTTP pool being the lowest (Hakansson et al., 2006b). In summary, RNR 

overexpression was not associated with detectable changes in dNTP levels or ratios in 

RNR overexpressing 3T3 cells and transgenic lung cells, suggesting that RNR 

overexpression induced mutagenesis and lung tumorigenesis might not involve altered 

dNTP levels or ratios.  
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Figure 3.1  Intracellular dNTP pools in logarithmically growing RNR over-expressing 

3T3 cells or RNR transgenic lung tissues. Intracellular dNTPs were extracted and 

quantified from (A) logarithmically growing 3T3 cells overexpressing Rrm1, Rrm2, 

p53R2, or containing the empty plasmid vector and (B) RNR transgenic lung tissues, 

using an enzymatic assay as described in Materials and Methods. Each data point 

represents the mean of three independent experiments, with error bars representing the 

standard deviation.
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3.4.2 RNR has no detectable acute transforming activity. 

Previous studies suggest that Rrm2 has transforming potential in cooperation 

with a variety of oncogenes (Fan et al., 1998; Fan et al., 1996). To determine whether 

lung tumorigenesis caused by Rrm2 and p53R2 overexpression involves acute 

transforming activity of the small RNR proteins, we transfected Rrm1, Rrm2, p53R2 

and control vector into 3T3 cells and scored formation of transformation foci 3 weeks 

posttransfection. As shown in Fig. 3.2.A, introduction of any of the RNR genes alone 

did not result in the focus formation, suggesting that overexpression of individual 

RNR genes is not sufficient to transform 3T3 cells, which is consistent with previous 

reports (Fan et al., 1998; Fan et al., 1996). Previous studies suggest that Rrm2 

increased focus formation in H-ras transfected 3T3 cells. To further test whether RNR 

cooperate with the H-ras gene in focus formation and explore the role of transforming 

activity in RNR-induced tumorigenesis, we introduced Rrm1, Rrm2, p53R2 and 

control vector into 3T3 cells along with H-ras gene to assess focus formation. We 

observed that Rrm1, Rrm2, and p53R2 did not cooperate with H-ras to transform 3T3 

cells, since they exhibited a similar number of foci with cells co-transfected with 

vector and H-ras (Fig 3. 2.B, C). However, consistent with previous studies that c-Myc 

can cooperate with H-ras in focus transformation, c-Myc and H-ras co-transfected 

cells exhibited significantly increased foci formation. Our data suggest that RNR-

induced lung carcinogenesis might not involve direct transforming activity of RNR. 

 

3.4.3 Generating Rrm2-Y177W and Rrm2-Y370W mutant overexpressing 3T3   

         cells. 

We did not observe altered dNTP levels and ratios in RNR overexpressing 

cells. Although cannot rule out the possibility that alterations in dNTP levels within  



93 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.2. Focus formation in 3T3 cells transfected with either individual RNR genes 

or RNR genes with H-ras genes. (A) 3T3 cells were transfected with Rrm1, Rrm2, 

p53R2 or empty plasmid vector using Calcium phosphate coprecipitation methods.  

Transfected cells were fed every 3 days for 3 weeks, then fixed and stained with 

Giemsa. (B) 3T3 cells were co-transfected with H-ras gene with Rrm1, Rrm2, p53R2 

or empty plasmid vector using Calcium phosphate coprecipitation methods.  

Transfected cells were fed every 3 days for 3 weeks, then fixed and stained with 

Giemsa. Cells co-transfected with c-Myc and H-ras were used as positive control. (C) 

The number of foci formation in three independent experiments was plotted. Each data 

point is the mean with error bars representing the standard deviation. 
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Figure 3.2 (continued)
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Figure 3.2 (continued)
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subcellular compartments are undetectable when measuring total dNTP levels, our 

data suggest that mutagenic and lung tumorigenic effects caused by RNR 

overexpression might involve other RNR activities beside reduction of NDP. One such 

mutagenic activity could be radical production, since both the mutator phenotype and 

lung cancer development were specific to small subunit overexpression. We 

hypothesized that RNR induced mutagenesis and lung tumorigenesis might involve 

increased reactive oxygen species due to elevations in free radical production 

associated with small subunit overexpression. To test whether enzyme activity or free 

radical formation is required for RNR-induced mutagenesis and lung tumorigenesis, 

we generated Rrm2 mutants defective for these functions (Fig. 3.3).  

The Rrm2-Y177W mutant, with a mutation at the initial tyrosyl radical site, 

has been shown to only produce a transient tryptophan radical and to be defective for 

enzyme activity (Potsch et al., 1999). The Rrm2-Y370W mutant, carrying a mutation 

in the radical transfer path between the Rrm2 and Rrm1 subunits, can still produce the 

initial tyrosyl radical but only has a 1.7% of RNR enzyme activity compared to the 

wildtype Rrm2 protein (Rova et al., 1999). To test whether these Rrm2 mutants, which 

are unable to support RNR enzyme activity but can still produce radicals, are also 

mutagenic, we generated Rrm2-Y177W and Rrm2-Y370W mutant constructs using site-

directed mutagenesis and cloned them into the same pCaggs expression vector used 

for generating RNR overexpressing 3T3 cells and RNR transgenic mice. Then we 

generated Rrm2-Y177W mutant and Rrm2-Y370W mutant overexpressing 3T3 cell 

pools as described in Material and Methods. Overexpression of individual Rrm2 

mutant genes in these cells was confirmed by Western blot (Fig. 3.4A). The cells 

overexpressing wildtype Rrm2, Rrm2-Y177W or Rrm2-Y370W mutants had similar 

proliferation rates as compared to cells expressing empty vector (Fig. 3.4B) 
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Figure 3.3  Schematic showing Rrm2 mutants and predicted results. Rrm2 mutants 

defective for either radical production or enzyme activity were generated to assess 

their importance in RNR-induced mutagenesis. Rrm2-Y177W mutant can produce a 

transient tryptophan radical and is defective for enzyme activity. Rrm2-Y370W and 

Rrm2-Y370F mutant are unable to support enzyme activity due to a mutation at a 

residue required for radical transfer, but can still produce initial tyrosyl radical at 

Y177. Rrm2-Y177F mutant is defective for both radical generation and enzyme 

activity.  
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Figure 3.4 Increased mutation frequency in Rrm2 mutant overexpressing 3T3 cell 

pools. (A) Western blot analysis of Rrm2 protein expression in 3T3 cells 

overexpressing Rrm2-Y177W and  Rrm2-Y370W mutants. Total protein was extracted 

from the indicated cell lines and subjected to immunoblotting with antibodies specific 

to Rrm2. The membrane was re-probed for α-tubulin as a loading control. (B) 

Accumulated population doublings (PDL) of 3T3 cells overexpressing Rrm2, Rrm2-

Y177W, Rrm2-Y370W or empty plasmid vector. Cells were cultured following a 3T3 

protocol as described in Material and Methods. Plot shows the number of PDL. (C) 

Mutation frequency at the Hprt locus in 3T3 cells overexpressing Rrm2, Rrm2-

Y177W, Rrm2-Y370W or empty plasmid vector. Mutation frequency was determined 

by Hprt assay as described in Material and Methods. 
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3.4.4 Increased Hprt mutation rates in Rrm2 mutant cells that are defective for   

         RNR enzyme activity. 

To test whether RNR-induced mutagenesis depends on RNR enzyme activity, 

we measured mutation frequency in Rrm2 mutant cells, defective for RNR enzyme 

activity, using the Hprt mutation detection assay.  Consistent with our previous 

results, a significantly increased mutation frequency was observed in wildtype Rrm2 

overexpressing cell pool (10.6 x 10-6) as compared to empty plasmid vector cells (1.6 

x 10-6) (Fig. 3.4C). Notably, cell pools overexpressing Rrm2-Y177W or Rrm2-Y370W 

exhibited significantly increased mutation frequencies compared to control cells. 

Mutation frequency in cells overexpressing the Rrm2-Y177W mutant was lower than 

wildtype Rrm2 overexpressing cells, but significantly higher than vector (7.6 x 10-6 

versus 1.6 x10-6).  Since Rrm2-Y177W is defective for RNR enzyme activity but can 

still produce a transient tryptophan radical, this supports a model in which RNR-

induced mutagenesis is independent of RNR enzyme activity and may instead be due 

to increased free radical production. Cells overexpressing Rrm2-Y370W showed the 

highest mutation frequency (20.5x 10-6). The initial tyrosyl radical can still be 

produced in the Rrm2-Y370W mutant, but cannot be transferred to the Rrm1 subunit 

due to defects in the radical transfer path. Therefore, the high mutation frequency 

observed in cells overexpressing Rrm2-Y370W might reflect that initial tyrosyl radical 

produced in this mutant were leaked into cells and led to oxidative damage and 

increased mutagenesis. Together, these results indicate that Rrm2-induced 

mutagenesis is independent of RNR enzyme activity, and most likely depends on its 

radical production activity. 
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3.4.5 Increased ROS levels in Rrm2 and Rrm2 mutant cells. 

To determine whether increased ROS levels account for the increased 

mutagenesis in wildtype Rrm2 overexpressing cells. We first measured the levels of 

ROS in 3T3 cells overexpressing wildtype Rrm2 using carboxyl -2’-7- 

dichlorohydrofluorescein diacetate (CH3-DCFDA) staining. CH3-DCFDA can readily 

cross cell membranes and is hydrolyzed by intracellular esterase to non-fluorescent 

carboxyl -2’-7- dichlorohydrofluorescein (CH3-DCFH) (Radisky et al., 2005). In the 

presence of ROS, CH3-DCFH is oxidized, producing highly fluorescent molecule 

carboxyl -2’-7- dichlorofluorescein (CH3-DCF). CH3-DCF fluorescence is commonly 

used as a indicator of oxidative stress. As shown in Figure 3.5A, Rrm2 overexpressing 

cells exhibited an average 2.2 fold increase in ROS levels compared to empty vector 

cells(p<0.01, t-test). Five independent Rrm2 overexpressing cell pools showed 

consistently increased ROS production. Consistent with previous reports that H-ras 

transformed 3T3 cells produce large amounts of the reactive oxygen species (Irani et 

al., 1997), H-ras transfected 3T3 cells were used as a positive control and showed a 

5.1 fold increase in ROS levels compared to vector (p<0.01, t-test). Figure 3.5B shows 

the overlay of one representive experiment for CH3-DCFDA intensity. These results 

indicate that increased ROS production contributes to Rrm2-induced mutagenesis.  
Although Rrm2-Y177W and Rrm2-Y370W mutants are defective for RNR enzyme 

activity, they can still produce a transient tryptophan radical or the initial tyrosyl 

radical, respectively. To further test whether increased mutagenesis in Rrm2-Y177W 

and Rrm2-Y370W mutant cells was due to increased ROS production, we measured 

intracellular ROS levels in cells overexpressing these mutants. As shown in Figure 

3.5C, cells overexpressing Rrm2-Y177W showed a 2.7 fold increase in ROS levels 

compared to vector cells (p<0.05 t-test), suggesting that the Rrm2-Y177W mutant 

might cause mutagenesis through radical production and a possible oxidative damage 

mechanism. Rrm2-Y370W mutant cells exhibited the highest elevations in  

 



103 

 

 

 

 

 

 

 

Figure 3.5. Increased reactive oxygen species levels in Rrm2 and Rrm2 mutant 

overexpressing cells. (A) Intracelluar ROS levels were assessed by FACs analysis of 

CH3-DCFDA fluorescence in Rrm2 overexpressing 3T3 cell pools. H-ras transfected 

3T3 cells used as a positive control. Each data point is the mean of 5 independent cell 

lines, with error bars representing the standard deviation. “*” symbol indicates that 

there is a statistically significant difference (p< 0.05) relative to control vector cells by 

student t –test. (B) Overlay of one representative experiment showing the distribution 

of CH3-DCFDA fluorescence. (C) Intracellular ROS levels in 3T3 cells 

overexpressing Rrm2, Rrm2-Y177W, Rrm2-Y370W or empty plasmid vector assessed 

by FACs analysis of CH3-DCFDA fluorescence. Each data point is mean of three 

independent experiments with error bars representing the standard deviations. “*” 

symbol indicates that there is a statistically significant difference (p< 0.05) relative to 

control vector cells by student t –test; “#” symbol indicates that p value is 0.051 by 

student t –test. 
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ROS production (2.9 fold increase compared to vector cells, p=0.051, t-test), which is 

in consistent with the highest Hprt mutation frequency observed in Rrm2-Y370W cells 

(Figure 3.4 C), further implicating elevated radical production, rather than increased 

RNR enzyme activity, as the major driving force of RNR-induced mutagenesis, and 

potentially, lung tumorigenesis. 

 

3.4.6 Increased ROS levels in a Rrm2 mutant that is defective for radical  

         production.  

To directly test whether free radical formation is required for RNR-induced 

mutagenesis and lung tumorigenesis, we generated two additional Rrm2 mutants to 

distinguish the role between RNR enzyme activity and radical production activity 

(Fig. 3.3). 

A second mutation at the tyrosyl radical site, in which tyrosine residue is 

replaced by non-oxidizable phenylalanine, the Rrm2-Y177F mutant, has been shown 

to suppress the radical formation and completely destroy RNR enzyme activity 

(Potsch et al., 1999). A second mutation at the tyrosine 370 residue on the radical 

transfer path between the Rrm2 and Rrm1 subunit, in which tyrosine residue is 

replaced by non-oxidizable phenylalanine, Rrm2-Y370F, has been shown to be 

complete inactive for RNR enzyme activity, but the initial tyrosyl radical at residue 

177 is intact (Rova et al., 1999). We generated Rrm2-Y177F and Rrm2-Y370F mutant 

constructs using site-directed mutagenesis and cloned them into same expression 

vector used for generating RNR overexpressing 3T3 cells and RNR transgenic mice. 

We then generated Rrm2-Y177F mutant and Rrm2-Y370F mutant overexpressing 3T3 

cell pools as described in Material and Methods. Overexpression of individual Rrm2 

mutant genes in these cells was confirmed by Western blot (Fig. 3.6A). The cells 
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overexpressing wildtype Rrm2, Rrm2-Y177F or Rrm2-Y370F mutants had similar 

proliferation rates as compared to cells expressing empty vector (Fig. 3.6B) 

 

We predicted that cells overexpressing the Rrm2-Y177F mutant would not 

have increased ROS production, but cells overexpressing Rrm2-Y370F would, if 

increased ROS production in Rrm2 overexpressing cells is dependent on radical 

production at the tyrosine Y177 site. Cells overexpressing wildtype Rrm2 again 

showed a 2.3 fold increase in ROS levels compared to vector cells (p=0.08, t-test)(Fig. 

3.6B). As we predicted, cells overexpressing Rrm2-Y370F mutant showed a 3.5 fold 

increase in ROS levels compared to that in vector cells (p<0.05, t-test). Surprisingly, 

cells overexpressing Rrm2-Y177F, defective for both enzyme activity and radical 

production, also showed increased ROS production (2.5 fold compared to vector cells, 

p<0.05, t-test). These data suggest that cells overexpressing Rrm2-Y177F mutant still 

cause increased oxidative stress, probably through other mechanisms, such as a 

dominant negative effect by binding to Rrm1 and indirectly inhibiting RNR function 

of providing dNTPs for mitochondria, causing mitochondria defect and increased 

oxidative stress. To test whether RNR-induced mutagenesis depends on the radical 

production activity, we are going to measure mutation frequency in Rrm2-Y177F 

mutant cells using Hprt mutation detection assay.  
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Figure 3.6. Increased reactive oxygen species levels in Rrm2 mutant overexpressing 

cells. (A) Western blot analysis of Rrm2 protein expression in 3T3 cells 

overexpressing Rrm2-Y177F, Rrm2-Y370F mutants. Total protein was extracted from 

the indicated cell lines and subjected to immunoblotting with antibodies specific to 

Rrm2. Membrane was re-probed for α-tubulin as a loading control. Samples were run 

on a single blot, which was then cropped to remove extraneous lanes. (B) 

Accumulated population doublings (PDL) of 3T3 cells overexpressing Rrm2, Rrm2-

Y177F, Rrm2-Y370F or empty plasmid vector. Cells were cultured following a 3T3 

culture schedule as described in Material and Methods. Plot shows the number of 

PDL. (C) Intracellular ROS levels in 3T3 cells overexpressing Rrm2, Rrm2-Y177F, 

Rrm2-Y370F or empty plasmid vector assessed by FACs analysis of CH3-DCFDA 

fluorescence. Each data point is mean of three independent experiments with error 

bars representing the standard deviations. * Statistically significant difference (p< 

0.05) relative to control vector cells by student t –test. # p=0.08; § p=0.09. 
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3.5. Discussion 

RNR overexpression is common in human cancers. However, up-regulation of 

RNR has long been thought of to act passively as a very downstream target of 

transforming pathway by solely providing dNTPs for cancer cell hyper-proliferation.  

Although deregulation of RNR has been shown to promote genetic instability in yeast 

and cell culture models (Caras and Martin, 1988; Chabes et al., 2003a; Reichard et al., 

2000), the role of RNR deregulation in cancer initiation and progression in mouse 

models and human cancers had not been explored.  We recently extended the analysis 

of RNR deregulation in transgenic mouse models and identified a novel oncogenic 

activity of RNR in lung specific tumorigenesis (Xu et al., 2008). We found that 

broadly overexpressing the small RNR subunits, Rrm2 and p53R2, specifically causes 

lung carcinogenesis through a mutagenic mechanism. The key question we addressed 

in this study is what is the molecular mechanism of RNR-induced mutagenesis and 

lung tumorigenesis.  Here we showed that RNR-induced mutagenesis and lung 

tumorigenesis were neither associated with detectable alterations in dNTP pool 

size/ratios, nor direct transforming activity. Interestingly, Rrm2 overexpressing cells 

exhibited significantly elevated ROS levels . Moreover, cells overexpressing mutant 

Rrm2 proteins, defective for RNR enzyme activity, exhibited enhanced mutagenesis 

and elevated ROS generation. Our results establish the causative role of RNR 

deregulation in elevated ROS production and enhanced mutagenesis, implying that 

free radical generation by RNR is sufficient for mutagenesis, which may be 

independent of RNR enzyme activity.  

Although both p53R2 and Rrm2 have radical production activity, one in vitro 

study showed that p53R2 recombinant protein had anti-oxidant property (Xue et al., 
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2006). It is possible that, unlike Rrm2, p53R2 might drive lung tumor development 

through a different unknown mechanism rather than oxidative stress, or p53R2 

protein also produce free radical in vivo and drives lung tumorigenesis through 

oxidative stress. Mutagenic and carcinogenic analysis of p53R2 mutants that are 

defective for RNR enzyme activity or radical production activity will provide more 

insight into the role of oxidative stress in p53R2-induced lung tumorigenesis. 

It is well known that free radicals let loose in the cell can cause oxidative 

damage to DNA, protein and lipids. RNR has long been conceived of an oxidant-

generating enzyme, along with cytochrome c oxidase, NADPH oxidase and the 

cytochrome P450 system (O'Donnell et al., 1995). However, there is very little 

evidence directly demonstrating the oxidizing ability of RNR protein as an organic 

radical protein. One study reported that recombinant human RRM2 protein generated 

ROS in vitro in a cell free system, although recombinant p53R2 protein has been 

suggested to have antioxidant activity in vitro (Xue et al., 2006). Structural analysis of 

mouse Rrm2 protein showed that a hydrophobic channel to radical site in mouse 

Rrm2 is wider and makes the radical much more accessible to environment than 

E.Coli Rrm2 (Kauppi et al., 1996). Therefore, overexpression of mouse Rrm2 protein 

more likely cause increase oxidative stress due to the more accessible radicals. In our 

study, we provided the first direct evidence that overproduced ROS, probably at least 

partially due to overproduced free radicals in the R2 subunit of RNR, correlated with 

the enhanced mutagenesis caused by RNR overexpression. Since abundant evidence 

suggest that ROS plays an causative role in both human and mouse lung cancer 

development (Inoue et al., 1998; Le Marchand et al., 2002; Minowa et al., 2000; 

Sakumi et al., 2003; Tsuzuki et al., 2001; Xie et al., 2004), elevated ROS production 

and resultant enhanced mutagenesis due to RNR overexpression may explain why 

RNR transgenic mice, with widespread overexpression of RNR, specifically 
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developed lung but not other neoplasms at high frequency. The multiplicative 

increase in mutagenesis and lung carcinogenesis when combining RNR 

overexpression with mismatch repair deficiency also support increased ROS 

production as possible mechanisms since the mismatch repair system can suppresses 

the mutation accumulation due to oxidative DNA damage (Modrich, 2006; Slupphaug 

et al., 2003). ROS also have mitogenic effects on the cells and can play a direct role in 

neoplastic transformation (Irani et al., 1997). Cultured 3T3 cells overexpressing 

Mox1, a superoxide-generating oxidase, have transforming activity, exhibiting 

anchorage-independent growth and tumor formation in athymic mice (Suh et al., 

1999).  

To confirm that increased ROS production by overexpression of Rrm2 

accounts for lung tumorigenesis, we are currently testing the effect of anti-oxidant 

treatment on Rrm2-induced lung tumorigenesis. N-acetylcysteine (NAC) is an 

aminothiol and synthetic precursor of intracellular cysteine and glutathione (GSH) 

and able to detoxify reactive free radicals through conjugation or reduction reaction. 

Anti-oxidant activity of NAC has been proposed to have antimutagenic and 

anticarcinogenic function (van Zandwijk, 1995). NAC has emerged as a most 

promising cancer chemopreventive agents, although 2-year supplement of NAC in 

lung cancer patients resulted in no benefit in terms of survival in clinic trials for NAC 

cancer prevention (van Zandwijk et al., 2000), which may be due to short period NAC 

intervention. In animal models, oral administration of NAC through diet has been 

found to prevent lung adenoma by carcinogens (De Flora et al., 1986).  Our previous 

data showed that 100% of Msh6-/-Rrm2Tg mice develop spontaneous lung neoplasms 

by 6 months of age. A mouse cohort consisting of Msh6-/-Rrm2Tg mice and littermate 

controls are being established and treated with the anti-oxidant NAC in drinking 

water from the date of weaning to 6 months of age. This cohort will then be sacrificed 
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to assess whether NAC alleviates Rrm2-induced lung tumorigenesis. If NAC 

treatment can specifically reduce the lung tumor frequency, size and malignancy 

caused by Rrm2 overexpression, these data will further strengthen the role of ROS 

production by the Rrm2 subunit in RNR-induced lung tumorigenesis. In addition,  the 

role of ROS in RNR-induced lung tumorigenesis can also be confirmed by evaluating 

whether deficiency in base excision repair genes,Ogg1 or Mth1, will accelerate RNR-

induced lung tumor development by crossing RNR transgenic mice to Ogg1 or Mth1 

knockout mice. 

Whether free radical production is required for RNR-induced mutagenesis was 

not elucidated prior to our study. One assumption is that RNR overproduction leads to 

elevated dNTP pools, and this imbalance in dNTP pools accounts for RNR-induced 

mutagenesis. However, there is no convincing evidence for elevated dNTP pools 

caused by over-produced RNR enzyme in mammalian systems. Here we employed 

mutant Rrm2 proteins that have defective RNR enzyme activity to dissect the 

molecular mechanisms of RNR-induced mutagenesis and to distinguish the role of 

RNR enzyme activity and radical production activity in RNR-induced mutagenesis. 

Interestingly, cells overexpressing these mutants still exhibited a mutator phenotype, 

indicating that RNR induced mutagenesis is independent of RNR enzyme activity. 

Our observations imply that RNR overexpression drives lung specific tumorigenesis 

via increased ROS production and oxidative DNA damage, rather than via increased 

RNR enzyme activity. Consistent with this interpretation, mice overexpressing Rrm1-

D57N, a mutant defective for dATP feedback inhibition and exhibiting hyperactive 

RNR enzyme activity, did not show obvious lung tumor predisposition as we 

observed in Rrm2 and p53R2 transgenic mice (Page JL and Weiss RS, unpublished 

data). These data support that RNR deregulation induces lung specific tumorigenesis 

independent of RNR enzyme activity and instead through increased free radical 
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production by overexpression of the small R2 subunit. Increased ROS levels in cells 

overexpressing wildtype Rrm2 and Rrm2-Y177W, Rrm2-Y370W and Rrm2-Y370F 

mutants provide more direct evidence for this hypothesis. Further analysis of lung 

tumor development in transgenic mice overexpressing these Rrm2 mutants would 

confirm whether ROS-induced mutagenesis is responsible for lung carcinogenesis.  

Surprisingly, cells overexpressing Rrm2-Y177F, which is defective for both 

RNR enzyme activity and tyrosyl radical production, still exhibited elevated ROS 

production. One possibility is that Rrm2-Y177F has a dominant negative effect 

through binding to the Rrm1 subunit to inhibit Rrm1 function. There is mounting 

evidence that Rrm1 and p53R2 form a complex to provide dNTPs for maintaining 

mitochondrial genome stability. Deficiency in p532R2 gene has been shown to cause 

severe mitochondrial DNA depletion in muscle (Bourdon et al., 2007). Thus, 

overexpressing Rrm2-Y177F may indirectly inhibit p53R2 function by competing 

with Rrm1 protein, causing mitochondrial dysfunction and a respiratory chain defect, 

and increased ROS production, which also raises the possibility that the Rrm2 

mutants that still can produce radicals but are defective for RNR enzyme activity 

might also have similar dominant negative effect. Analysis of mitochondrial function 

in Rrm2-Y177F mutant by Mitotracker (a probe specifically labeling mitochondria) 

staining, would clarify whether such a dominant negative mechanism occurs. The C-

terminus of Rrm2 is involved in the binding of the R1 subunit (Nordlund and Eklund, 

1993; Uppsten et al., 2006). Rrm2 mutants that are defective for both radical 

production and Rrm1 binding would circumvent this dominant negative effect.  

The effect of RNR over-production on dNTP pool size in mammalian cells 

remains controversial. Various hydroxyurea-resistant cell lines containing a high level 

of overproduced R2 subunits exhibited no or only a modest increase in RNR activity 

and dNTP pools (Lin et al., 2007). In our study, we did not observe altered dNTP pool 
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size or ratios in RNR overexpressing 3T3 cells and RNR transgenic lung cells.   These 

data support that mammalian cells have more strict dATP allosteric inhibition, which 

may be the major control of dNTP pool size. Therefore, overexpression of the small 

subunit of RNR may not lead to increased RNR enzyme activity due to feedback 

inhibition caused by increased dATP levels. However, we cannot rule out the 

possibility of a localized increase in dNTP pools due to subcellular dNTP 

compartmentalization, which is undetectable using currently available dNTP 

measurements. Moreover, other mechanisms, such as the control of other enzymes 

involved in de novo dNTP biosynthesis and the control of the salvage pathway of 

dNTP biosynthesis, may also play a role in keeping dNTP levels undisturbed in RNR 

overexpressing cells.  

It has been proposed that Rrm2 has transforming activity based on the 

experiments showing that Rrm2 can cooperate with a variety of oncogenes to promote 

focus formation, anchorage-independent growth and tumor formation in syngeneic 

mice (Fan et al., 1998; Fan et al., 1996). In our study, we did not observe the 

enhanced focus formation when we co-transfected Rrm2 with H-ras into 3T3 cells. 

This discrepancy may be due to different Rrm2 expressing constructs and different 

transformation methods; in our study, we used pCaggs expression constructs that 

place Rrm2 under the chicken β-actin promoter and cytomegalovirus enhancer 

regulatory sequence to get high levels of expression. We co-transfected H-ras with 

individual RNR genes, or vector (negative control) and c-Myc (positive control) into 

3T3 cells. Previous studies used retrovirus expression constructs to overexpress Rrm2 

and then transfected H-ras into established Rrm2 expressing cells. Our results suggest 

that Rrm2 expressed from the pCaggs construct, cannot enhance H-ras induced focus 

formation. Thus, acute transforming activity probably does not account for RNR-

induced mutagenesis and lung tumorigenesis.  
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Our findings not only elucidate the involvement of ROS production in Rrm2-

induced mutagenesis, and potentially lung carcinogenesis, but also might have 

implications in the response of cancers to chemotherapeutic reagents. Inhibitors of 

Rrm2, such as hydroxyurea, have long been used as effective anti-cancer 

chemotherapy treatment. The molecular mechanism of hydroxyurea was identified 

long after its application; it has been thought to inhibit RNR enzyme activity through 

inactivation of the small R2 subunit by destruction of the tyrosyl free radical. Our 

findings suggest that anti-cancer effect of hydroxyurea might not be limited to the 

anti-proliferative effect of RNR inhibition, but may also be due to the inhibition of 

intracellular ROS production.  
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CHAPTER 4 

 

  Summary and Future Directions  

 

RNR plays an essential role in maintaining genomic stability by providing 

dNTPs, the basic building blocks of the genome, for DNA replication and repair. 

Abnormal expression of RNR has long been linked to human cancers, and studies in 

yeast and cultured cells show that deregulation of RNR is mutagenic. However the 

physiological effects of RNR deregulation in mammals have not been fully explored. 

The aim of this dissertation was to elucidate the physiological effect of RNR 

deregulation using transgenic mouse models (chapter 2) and to further dissect the 

molecular mechanisms of RNR-induced mutagenesis and lung tumorigenesis (chapter 

3). 

 To determine the consequence of RNR deregulation in an animal model, we 

generated Rrm1, Rrm2 and p53R2 transgenic mice and obtained widespread, high 

level overexpression of the small RNR subunits, Rrm2 and p53R2, and the restricted 

overexpression of the large RNR subunit Rrm1 in transgenic mice. Notably, 

widespread overexpression of either small RNR subunit in mice specifically promotes 

lung tumorigenesis, with Rrm2 being more potent than p53R2 with respect to tumor 

size, multiplicity and malignancy. The lung neoplasms in Rrm2Tg and p53R2Tg mice 

histopathologically and immunohistochemically mimic human lung cancer, 

particularly lung adenocarcinomas. These finding raise the possibility that increased 

RNR expression may have a role in human lung tumorigenesis. 

To investigate the mechanism by which RNR deregulation causes lung 

tumorigenesis, we generated RNR overexpressing 3T3 cells and found that RNR 

overexpression is mutagenic in cultured cells. To evaluate a role for mutagenesis in 
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RNR-induced lung carcinogenesis, we investigated whether combining RNR 

deregulation with a defect in the mismatch repair system would synergistically 

increase mutagenesis and tumorigenesis.  We found that mismatch repair deficiency 

synergized with RNR overexpression to greatly increase mutagenesis and 

carcinogenesis. Our data support that mismatch repair normally suppresses the 

mutations induced by RNR de-regulation and further confirmed that RNR-induced 

lung tumorigenesis through a mutagenic mechanism.  

A mutagenic mechanism implies that RNR overexpression triggers mutation 

accumulations in oncogenes or tumor suppressor genes, driving lung tumorigenesis. 

K-ras is frequently mutated in both human lung cancers and mouse lung cancers. We 

explored whether activating mutations of K-ras is involved in RNR-induced lung 

tumorigenesis and found that mutated K-ras is central to Rrm2- and p53R2-induced 

lung tumorigenesis.  

A key question from this study is what is the molecular mechanism for 

mutagenesis and lung tumorigenesis induced by Rrm2 and p53R2 overexpression. One 

possibility is that RNR overexpression leads to altered dNTP levels that impair 

replication fidelity and trigger mutations in growth regulatory genes. A second 

possibility is that the small RNR subunit has direct transforming activity, driving lung 

tumorigenesis. Alternatively, free radical production by Rrm2 or p53R2 contributes to 

cell transformation through oxidative stress induced mutagenesis. Thus, we propose 

the initial model for lung tumorigenesis by RNR overexpression based on our findings 

in chapter 2 (Fig. 4.1). This model postulates that overexpression of the small RNR 

subunit leads to mutagenesis, through either altered dNTP levels and/or increased 

oxidative stress due to overproduced free radicals. The mutagenic effect of RNR 

overexpression results in mutations in growth regulatory genes, such as K-ras, driving 

lung neoplasm initiation  
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Figure 4.1.  Initial model for RNR overexpression and lung cancer. Overexpression of 

the small RNR subunit leads to mutagenesis through either altered dNTP levels and/or 

increased oxidative stress due to overproduced free radicals. The mutagenic effect of 

RNR overexpression results in mutations in growth regulatory genes, such as K-ras, 

driving lung neoplasm initiation and /or progression. Alternatively, the small RNR 

subunit has direct transforming activity to transform normal lung cells into malignant 

cancer cells. 
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and /or progression. Alternatively, the small RNR subunit could have direct 

transforming activity through an unknown mechanism to transform normal lung cells 

into malignant cancer cells. 

In chapter 3, we performed a series of experiments to address whether altered 

dNTP levels, RNR transforming activity, or increased oxidative stress are involved in 

RNR-induced mutagenesis and lung tumorigenesis.  

RNR overexpression was not associated with detectable changes in dNTP 

levels or ratios in RNR overexpressing 3T3 cells and transgenic lung tissue, 

suggesting that RNR overexpression-induced mutagenesis and lung tumorigenesis 

might be not involved in altered dNTP levels or ratios. Moreover, RNR did not show 

direct transforming activity, nor enhanced transforming activity when co-transfected 

with H-ras, suggesting that RNR induced mutagenesis and lung carcinogenesis might 

not involve the direct transforming activity of RNR. 

To determine whether radical production activity is involved in RNR-induced 

mutagenesis, we generated two Rrm2 mutant cell pools. The Rrm2-Y177W mutant, 

with a mutation at the tyrosyl radical site, has been shown to be defective for enzyme 

activity and to only produce a transient tryptophan radical. The Rrm2-Y370W mutant, 

with a mutations in the radical transfer path between Rrm2 and Rrm1 subunits, only 

has 1.7% of RNR enzyme activity compared to the wildtype Rrm2 protein. Both 

mutants are defective for RNR enzyme activity, but can still produce a transient 

tryptophan radical or the initial tyrosyl radical, respectively. Interestingly, cells 

overexpressing either mutant still exhibited enhanced mutagenesis, suggesting that 

Rrm2-induced mutagenesis likely is independent of RNR enzyme activity, but rather 

depends on its radical production activity. 

Rrm2 overexpressing cells showed significantly higher intracellular ROS 

levels than control cells. Moreover, cells overexpressing Rrm2 mutants, also showed 
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increased ROS levels in agreement with their enhanced mutagenesis. Although it is 

possible that these Rrm2 mutants, which are able to produce radical but defective for 

RNR enzyme activity, also have dominant negative effect and cause mitochondrial 

defects and associated oxidative stress, these results highlight the importance of 

radical production, rather than RNR enzyme activity, as the major driving force of 

RNR induced mutagenesis, and potentially lung tumorigenesis.  

Based on these findings, I propose a model for RNR-induced lung 

tumorigenesis as shown in Fig. 4.2. Overexpression of the small RNR subunit leads to 

mutagenesis through increased oxidative stress, likely due to overproduction of free 

radicals. The mutagenic effect of RNR overexpression results in mutations in growth 

regulatory genes, such as K-ras, driving lung neoplasm formation. 

Ongoing experiments, testing whether anti-oxidant treatment will alleviate 

Rrm2-induced lung tumorigenesis in a mouse model, will further strengthen the role 

of oxidative stress in RNR-induced mutagenesis and lung tumorigenesis. In addition, 

analysis of mutations in p53R2 radical production site and radical transfer sites would 

provide more information about the role of the radical property of the small RNR 

subunit in mutagenesis and tumorigenesis. p53R2 shares 80% homology with Rrm2. 

The dinuclear iron center, the tyrosyl radical site, and the radical transfer pathway are 

all conserved between Rrm2 and p53R2. However, recombinant p53R2 protein has 

been suggested to have anti-oxidant activity in vitro (Xue et al., 2006).Analysis of 

similar mutants at tyrosyl radical site and radical transfer pathway of p53R2 would 

confirm that Rrm2 and p53R2 utilize the same mutagenic mechanism, such as 

increased ROS production by overproduced free radicals. Finally, analysis of whether 

repair of oxidative DNA damage by the base excision repair pathway suppresses RNR 

induced lung tumorigenesis by crossing RNR transgenic mice to mice defective for  
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Figure 4.2.  Current model for mechanisms of RNR overexpression and lung cancer. 

Overexpression of the small RNR subunit leads to mutagenesis through increase 

oxidative stress, possibly due to overproduced free radicals, and thereby enhanced 

mutagenesis. The mutagenic effect of RNR overexpression results in mutations in 

growth regulatory genes, such as K-ras, driving lung neoplasm formation. 
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repairing oxidative DNA damage would establish the significance of oxidative DNA 

damage in RNR-induced lung tumorigenesis.  

This novel lung cancer model based on RNR overexpression holds great 

promise for further dissection of the molecular mechanisms of lung cancer initiation 

and progression. Interesting questions that can be addressed using this novel lung 

cancer model in future studies include 1) Are bronchioalveolar stem cells (BASCs), 

the putative lung cancer stem cells, more sensitive to RNR-induced mutagenesis and 

does BASCs expansion occur during early stage of RNR-induced lung tumorigenesis? 

To address this question, BASCs can be isolated from RNR transgenic mice at 

different development stage and mutation frequency of RNR overexpression BASCs 

cells can be measured using Hprt assay. 2) What are the other growth regulatory 

genes in addition to K-ras that are mutated and involved in RNR-induced lung 

tumors? Genetic alterations of other growth regulatory genes can be identified by 

sequence capture microarray analysis in RNR-induced lung tumors. 3) Are alterations 

in RRM2 and p53R2 genes (mutations or gene amplification) involved in human lung 

carcinogenesis? This question can be addressed by sequencing and in situ 

hybridization of human RRM2 and p53R2 genes in human lung cancer samples.  

Aside from dissecting the mechanisms of lung cancer development, this novel 

mouse lung cancer model also can be used to test putative chemopreventive or 

chemotherapeutic agents in lung cancer prevention and treatment. It also has value as 

a model of lung cancer for imaging studies for micro-CT and multiphoton 

microscope, such as for computational assessment of lung tumor growth rate, tumor 

progression, and regression using micro-CT technology.  

- 
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