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Mycobacterium tuberculosis (Mtb) must cope with exogenous oxidative stress 

imposed by the host. Unlike other antioxidant enzymes, Mtb’s thioredoxin 

reductase TrxB2 has been predicted to be essential not only to fight host 

defenses but also for in vitro growth. However, the specific physiological role 

of TrxB2 and its importance for Mtb pathogenesis remain undefined. Here we 

show that genetic inactivation of thioredoxin reductase perturbed several 

growth-essential processes, including sulfur and DNA metabolism and rapidly 

killed and lysed Mtb. Death was due to cidal thiol-specific oxidizing stress and 

prevented by a disulfide reductant. In contrast, thioredoxin reductase 

deficiency did not significantly increase susceptibility to oxidative and 

nitrosative stress. In vivo targeting TrxB2 eradicated Mtb during both acute 

and chronic phases of mouse infection. Deliberately leaky knockdown mutants 

identified the specificity of TrxB2 inhibitors and showed that partial inactivation 

of TrxB2 increased Mtb’s susceptibility to rifampicin. We also screened a 

library of 11,000 compounds with leaky knockdown mutants and identified 

SKF867J as a potential novel TrxB2-specific inhibitor. These studies reveal 

TrxB2 as an essential thiol-reducing enzyme in Mtb in vitro and during 

infection, establish the value of targeting TrxB2, and provide tools to 

accelerate the development of TrxB2 inhibitors. 



 

 

Ultimate control of Mtb is not achievable without effective vaccines. The most 

widely used tuberculosis (TB) vaccine, the Bacillus Calmette–

Guérin (BCG) vaccine, does not provide effective protection against 

pulmonary TB. Current failures in TB vaccine development can be attributed in 

part to the lack of important virulence factors required to mediate protection in 

BCG-based vaccine candidates and insufficient antigen presentation at the 

site of infection. To overcome these limitations, we generated a novel Mtb-

based vaccine candidate for proof-of-concept experiments, in which bacterial 

lysis is achieved by inducible expression of cell wall hydrolyzing enzymes, 

mycobacteriophage lysins. We found that lysin induction caused lytic death in 

both replicating and non-replicating Mtb. Inducible lysis restricted Mtb growth 

inside macrophages and enhanced the production of pro-inflammatory 

cytokines, possibly due to the release of intracellular bacterial antigens. 

Moreover, lysin induction impaired Mtb viability during mouse infection. We are 

now performing re-challenge experiments to determine the efficacy of the 

vaccine candidate against subsequent Mtb infection. Efforts are also underway 

to identify the immunological pathways activated by lysed bacteria and the 

bacterial components activating these pathways. In addition, we analyzed the 

sequences of 26 escape mutants of inducible lysis strains and showed that the 

tet repressor sequence is most frequently mutated. We are now designing new 

strains that combine other independent killing mechanisms to decrease the 

suppressor frequency. 
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CHAPTER 1  

1.1.  Tuberculosis: Old problem and new challenge 

1.1.1. A historical and global prospective of Tuberculosis 

Tuberculosis (TB) is an airborne infectious disease caused by the intracellular 

pathogen Mycobacterium tuberculosis (Mtb). Although it primarily affects the 

lung, Mtb can cause infection throughout the body, such as the bones and the 

brain. The most common symptoms of active pulmonary TB include persistent 

cough, chest pains, weight loss, fever and night sweats (Pai et al., 2016) .  

TB is an ancient scourge. Mtb DNA has been recovered from the lung lesions 

of Egyptian (200 B.C.) and pre-Columbian Peruvian (1000 A.D.) mummies 

(Nerlich et al., 1997; Salo et al., 1994). Mtb has killed more people than any 

other single infectious agent in history. It is believed to be responsible for 20% 

of the total adult death in Europe and North America between 17th and 19th 

centuries (Comas et al., 2013; Daniel, 2006; Wilson, 2005). The dawn of 

fighting TB came when Robert Koch identified Mtb as the causative agent of 

TB in 1882 and enabled later studies to look for anti-TB therapies. With the 

discovery of streptomycin in 1944 and isoniazid in 1952, the modern era of 

tuberculosis treatment began. Soon after, several other important anti-TB 

compounds were discovered, including pyrazinamide (1954), rifampicin (1963) 

and ethambutol (1961), which form the cornerstone of current TB treatment. 

Combination therapy was introduced soon after to overcome single drug 

resistant TB. Multidrug chemotherapy marked one of the greatest 

achievements in treating TB – for the first time, TB became a curable disease. 

Even Dr. Selman Waksman, the Nobel laureate known for his discovery of 
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streptomycin, wrote optimistically during the golden age of antibiotic discovery 

in 1964 that ‘the complete eradication of the disease is in sight’ (Waksman, 

1964).  

Despite effective chemotherapies for drug-sensitive Mtb, TB remains one of 

the top 10 causes of death worldwide. In 2015, 1.8 million people died from 

the disease, including 0.4 million co-infected by HIV. In fact, TB is a leading 

killer of HIV patients, accounting for 35% of HIV-related death. Currently, the 

worldwide rate of TB incidence declined by 1.5% annually, far from what is 

required to achieve WHO’s goal of TB eradication in 2030 (World Health 

Organization, 2016). Both socioeconomic and scientific factors contribute to 

the slow progress in TB control. Among the later, the limitation of current TB 

therapy and the emergence of drug-resistant Mtb have been two major 

barriers to eradicating TB. 

1.1.2. Challenges of current TB chemotherapy 

The current regimen for treating active, drug-sensitive TB consists of a 

combination of isoniazid, rifampicin, pyrazinamide and ethambutol for two 

months followed by four months with isoniazid and rifampicin alone. 

Individuals with latent TB who have a higher risk of developing active TB (e.g., 

people who are HIV positive, individuals living in areas with a higher TB 

prevalence) are recommended for preventive therapies, which usually consist 

of months of isoniazid or rifampicin treatment. While the long duration of 

combination chemotherapies is critical to ensure the clearance of both active 

and latent TB, it also results in significant side-effects. As many as 23% 

patients have to terminate medication due to side-effects and up to 86% of 
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patients may develop medication side-effects when treated with second-line 

drugs (Leimane et al., 2005; Schaberg et al., 1996).  It is therefore not 

surprising to observe poor adherence to treatment in TB patients, which in 

turns leads to drug-resistant bacteria.  

Multidrug-resistant TB (MDR-TB) has been reported in almost every country 

surveyed (World Health Organization, 2016). MDR-TB is defined as resistance 

to at least isoniazid and rifampicin, the two most powerful, first-line anti-TB 

drugs. Appropriately 480,000 people developed MDR-TB in 2015. MDR-TB is 

still treatable with second-line anti-TB drugs, but the treatment can take up to 

two years and comes with severe side-effects as mentioned above. In some 

cases, extensively drug-resistant TB (XDR-TB), an even more severe form of 

drug-resistant TB, can develop. XDR-TB is resistant to isoniazid and rifampicin, 

plus any fluoroquinolone, and at least one of three second-line injectable 

drugs (capreomycin, kanamycin and amikacin). XDR-TB accounts for about 

9.5% of MDR-TB cases in 2015. Very few treatment options are available for 

XDR-TB patients, resulting in a high mortality rate. Although XDR-TB is 

considered to be rare, 117 countries worldwide had reported at least one case 

by the end of 2015. Overall, only 52% of MDR-TB patients and 28% of XDR-

TB worldwide are successfully treated (World Health Organization, 2016).  

The long duration and side-effects of current chemotherapies impede rigorous 

patient adherence and lead to the development of drug resistance. The high 

TB prevalence and worldwide emergence of drug-resistant Mtb strains 

necessitate the development of new anti-TB drugs with better efficacy and 

fewer side-effects. Ideally, they should target previously unexploited pathways 

and have the potential to overcome drug resistance. Other desired features 
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include lower dosing frequency, minimal drug-drug interactions, and synergy 

with current regimens to shorten the treatment duration (Koul et al., 2011). 

With new molecular biology and genetic tools becoming available, much effort 

has been devoted to new target discovery. Recently, several pathways have 

been characterized as possible drug targets, including the respiratory chain, 

cell wall metabolism, protein processing and antioxidant pathways 

(Lamichhane, 2011; Lu et al., 2013). In light of the time and cost of finding new 

compounds with novel targets, exploring new applications for existing drugs 

(repurposing) has gained increasing interest. For example, the leprosy drug 

clofazimine is now being tested for treating MDR-TB in small-scale clinical 

trials (Tang et al., 2015; Zumla et al., 2013).  

1.2.  Mtb and oxidative stress  

1.2.1. Oxidative stress as a host defense mechanism 

The primary type of host cell encountered by Mtb in the lung is the alveolar 

macrophage, although Mtb can infect neutrophils, monocytes and dendritic 

cells (DCs) as well. These innate immune cells, in particular macrophages and 

neutrophils, engulf pathogens, induce inflammation and clear infection. One of 

the preeminent mechanisms to eradicate Mtb is the production of reactive 

oxygen species (ROS) and reactive nitrogen intermediates (RNI) (Bhat et al., 

2012; Kumar et al., 2011; Trivedi et al., 2012).  

The ROS, including superoxide, hydrogen peroxide, and the hydroxyl radical, 

are generated by a series of enzymatic reactions. NADPH oxidase (NOX2) is 

a membrane-bound multiprotein enzyme complex found in both the plasma 

membrane and the membranes of phagosomes. NADPH oxidase generates 

superoxide by extracting electrons from NADPH and transferring them to 
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molecular oxygen. Superoxide can be converted by dismutase to hydrogen 

peroxide, which leads to the generation of other ROS, such as hypochlorite 

and hydroxyl radicals. The ROS generated by these host enzymes cast 

devastating effects on pathogens by destroying microbial iron-dependent 

enzymes, lipids and DNA (Imlay, 2013). Besides direct antimycobacterial 

activity, ROS may mediate the activation of inflammatory responses in 

macrophages. For example, NOX2 interaction with TLR2 is required for the 

expression of an antimicrobial peptide cathelicidin upon Mtb infection (Yang et 

al., 2009). Patients with germline mutations in phagocyte NADPH oxidase are 

predisposed to mycobacterial diseases (Bustamante et al., 2011). In contrast, 

Mtb is relatively resistant to ROS-mediated killing in vitro and mice lacking 

NADPH oxidase subunits are only slightly susceptible to Mtb infection (Chan 

et al., 1992; Cooper et al., 2000; Jung et al., 2002). The discrepancy may 

reflect the different reliance of mouse and human immune systems on this 

pathway. Nevertheless, the human genetics data clearly indicates that the 

respiratory burst in human macrophages is a crucial protective mechanism 

against Mtb. Additionally, Mtb catalase–peroxidases (katG) mutant is markedly 

attenuated in wild-type C57Bl/6 mice, and the attenuation of katG mutant is 

reversed in NADPH oxidase deficient mice, indicating that antioxidant defense 

contributes to virulence of Mtb (Ng et al., 2004). 

The production of RNI is another important host defense mechanism 

against Mtb (Bhat et al., 2012). Nitric oxide (NO) is formed from the enzymatic 

action of the nitric oxide synthases 2 (NOS2 or iNOS) using L-arginine as a 

substrate (Zahrt and Deretic, 2002). NOS2 can produce superoxide under 

some circumstances, such as when the electron transfer between NAD(P)H in 

iNOS and arginine becomes ‘uncoupled’. A stepwise oxidation of nitric oxide 
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with oxygen results in the production of other forms of intermediates, like 

nitrogen dioxide radical (•NO2 ) and nitrite (NO2 −). NO oxidizes cysteine 

sulfhydryls, generates nitrosothiols and sulfenic acids and destroys iron-sulfur 

clusters (Nathan and Ding, 2010). The reaction of nitric oxide with superoxide 

can further generate peroxynitrite (OONO2-), which is chemically unstable 

under physiological conditions and can react with all major classes of 

biomolecules.  

Similar to ROS, exposure to RNI damages biomolecules and inhibits Mtb 

growth and survival. It is generally thought that the physiological range of NO 

generated by the nitric oxide synthases is between 20 nM to 2 μM (Moncada 

et al., 1991; Patel et al., 1999). Moderate concentrations of NO have 

bacteriostatic effects on Mtb in vitro, although high concentrations of NO can 

kill Mtb (Chan et al., 1992; Firmani and Riley, 2002). The significance of NO in 

TB pathogenesis in the murine model has been well-documented. Activated 

murine macrophages produce bactericidal levels of NO that are important for 

the control of TB (Chan et al., 1992). Mice lacking iNOS succumb 

to Mtb infection much faster than their wild type littermates (MacMicking et al., 

1997). Administration of an iNOS inhibitor to Mtb-infected mice exerted a 

similar effect as the genetic deficiency (Chan et al., 1995; MacMicking et al., 

1997). NO also possesses immunoregulatory functions; NO controls lung 

immunopathology by repressing neutrophil recruitment and inhibiting 

inflammasome activation via thiol nitrosylation (Mishra et al., 2017; Mishra et 

al., 2013). 

In contrast to its widely accepted importance in the murine TB model, the role 

of NO in human pulmonary TB is less conclusive. This is mainly due to the 
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lack of appropriate reagents and experimental models, such as an iNOS-

expressing human alveolar macrophage cell line or a protocol to isolate 

precursors for tissue macrophages (Nathan, 2002; Nathan and Barry, 2015). 

Nevertheless, a significant body of evidence implies a potentially important 

role of NO in controlling human TB.  Active iNOS was detected in the 

macrophages isolated from active TB patients, but not those from normal 

subjects (Nicholson et al., 1996). iNOS and nitrotyrosine (a form of tyrosine 

nitrosated by peroxynitrite ) were also found in the granulomas  from surgically 

resected lungs of TB patients (Choi et al., 2002). Patients with impaired 

pulmonary NO bioavailability are associated with delayed clearance of 

infection and more severe disease progression (Ralph et al., 2013b). These 

results have encouraged some groups to consider arginine as an adjuvant to 

TB chemotherapy, with the intention of promoting NO production. However, 

the clinical benefits are not conclusive thus far (Ralph et al., 2013a; Schon et 

al., 2003).  

1.2.2. Mtb antioxidant machinery 

Mtb must cope with endogenous and exogenous oxidative stress to replicate 

and survive within its host. Not unexpectedly, Mtb is armed with a number of 

dedicated antioxidant systems to ensure replication and survival within its host, 

including catalase, alkyl hydroperoxidase, superoxide dismutase, mycothiol, 

ergothioneine, thiol peroxidase, thioredoxin reductase and a recently identified 

membrane-associated oxidoreductase complex (Bryk et al., 2000; Bryk et al., 

2002; Carmel-Harel and Storz, 2000; Dussurget et al., 2001; Jaeger et al., 

2004; Nambi et al., 2015; Newton et al., 1996; Ng et al., 2004; Piddington et 
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al., 2001; Saini et al., 2016). We will discuss some of the notable members 

here. 

Catalase–peroxidases (Kat) are common enzyme systems found in almost all 

living organisms to detoxify hydrogen peroxide. Mtb encodes one catalase, 

KatG, which also shows peroxynitritase activity (Wengenack et al., 1999). 

KatG is best known for its role in activating the prodrug isoniazid, one of the 

most effective anti-TB drugs (Heym et al., 1995; Zhang et al., 1992). Various 

point mutations as well as missense mutations in KatG can lead to resistance 

to isoniazid. Although KatG is not required for Mtb growth in vitro, ΔkatG Mtb 

is markedly attenuated in mice due to the reduced ability to withstand oxidative 

stress (Ng et al., 2004). 

Superoxide dismutases (SODs) are metalloproteins that detoxify superoxide 

radicals. SOD catalyzes the dismutation of the superoxide radical into 

molecular oxygen or hydrogen peroxide, which is further detoxified by other 

enzymes like catalases. Mtb harbors two SODs, an iron-containing SOD called 

SodA and a Cu/Zn-containing SOD called SodC. SodA is constitutively 

expressed by Mtb and secreted in a SecA2-depedent manner (Andersen et al., 

1991; Braunstein et al., 2003; Zhang et al., 1991). Diminishing SodA 

expression by the antisense approach confirmed its role in protecting Mtb 

against superoxide in vitro (Edwards et al., 2001). This SodA underexpressor 

is highly attenuated in C57BL/6 mice (Edwards et al., 2001). Deletion 

of secA2 also attenuated Mtb in SCID and C57BL/6 mice, partially due to 

reduced secretion of SodA (Braunstein et al., 2003). While sodC null mutants 

are sensitive to killing by superoxides and hydrogen peroxide, there is less 

unanimity on its contribution to TB pathogenesis.  Different results have been 
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observed depending on the experimental models used (Dussurget et al., 2001; 

Piddington et al., 2001).  

Alkyl hydroperoxides, a highly reactive form of organic peroxides, are 

generated when peroxide reacts with cellular components, in particular lipids.  

Mtb alkyl hydroperoxide reductase (AhpC), a member of the peroxiredoxin 

family of nonheme peroxidases, detoxifies the organic peroxide and 

peroxynitrite to alcohol and nitrite respectively (Chen et al., 1998; Hillas et al., 

2000). Mechanistically, AhpC is linked by AhpD to metabolic enzymes Lpd and 

SucB, forming a four-component antioxidant system (Bryk et al., 2000; Bryk et 

al., 2002). Consistent with the biochemistry data, genetic inactivation of AhpC 

increased Mtb sensitivity to organic peroxide cumene hydroperoxide, but not 

to hydrogen peroxide. However, the ahpC knockout is not attenuated during 

mouse infection, suggesting its role in Mtb pathogenesis may be redundant 

(Springer et al., 2001).  

The low-molecular-weight thiol thioredoxin and glutathione are produced by 

living cells to combat disulfide stress and maintain redox hemostasis. Unlike 

many Gram-negative bacteria, Mtb lacks the glutathione system (Newton et al., 

1996). Instead, mycothiol has been suggested as substitute for glutathione in 

actinobacteria, including Mtb. Mycothiol consists of an N-acetylcysteine amide 

conjugated to glucosamine, which is then linked to inositol. Mtb contains 

millimolar quantities of mycothiol in oxidized and reduced forms (Newton et al., 

1996). Oxidized mycothiol is reduced by the mycothione reductase using 

electrons from NADPH. Mycothiol acts as a major buffering system to protect 

mycobacteria against ROS and RNI (Rawat et al., 2002; Ung and Av-Gay, 

2006).  

https://en.wikipedia.org/wiki/Glucosamine
https://en.wikipedia.org/wiki/Inositol
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There are five enzymatic steps in mycothiol biosynthesis, catalyzed by MshA1, 

MshA2, MshB, MshC and MshD respectively. The mshA deletion mutants are 

defective in producing mycothiol and require catalase to grow, but are 

otherwise normal (Vilcheze et al., 2008). Mycothiol and mycothione reductase 

have been proposed to be drug targets for developing new antimycobacterial 

compounds, because this pathway is unique to actinobacteria. However, only 

MshC is essential in Mtb, while deletion of the other mycothiol biosynthesis 

enzymes have little impact on Mtb survival (Buchmeier et al., 2006; Vilcheze et 

al., 2008). There are two copies of mycothione reductase, msrA and msrB, 

neither of which alone is essential. Furthermore, msh mutations cause Mtb 

resistance to ethionamide, a second-line drug to treat drug-resistant TB, 

raising questions about the suitability of mycothiol pathway as a drug target 

(Vilcheze et al., 2008). 

1.2.3. The thioredoxin system in Mtb and other bacteria 

The thioredoxin system, which is composed of thioredoxin (Trx), thioredoxin 

reductase (TrxR) and NADPH, represents one of the most important 

antioxidant systems in almost all living organisms. Thioredoxins are small 

redox proteins (typically 12 kDa) that catalyze protein disulfide/dithiol 

exchange through the two active cysteine residues. The reduction of protein 

targets is accompanied by the formation of oxidized thioredoxin, which will 

then be reduced by the thioredoxin reductase with electrons extracted from 

NADPH (Lu and Holmgren, 2014).  

Although the thioredoxin system is highly conserved from mammalian cells to 

bacteria, the mammalian and bacterial TrxRs are vastly different in structures 
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and catalytic mechanisms. Mammalian TrxRs belong to the high molecular 

weight TrxR family with 55 kDa for each subunit, while the bacterial TrxRs are 

of low molecular weight, typically around 35 kDa (Williams et al., 2000). 

Mammalian TrxRs possess one active site at each terminus of the proteins, 

which enables them to act on a broad spectrum of substrates, including 

thioredoxin, protein disulfide isomerase and even small molecules. For 

example, mammalian TrxRs can directly reduce hydrogen peroxide and act as 

an antioxidant. In contrast, the low molecular weight TrxRs of bacteria contain 

only one active site, resulting in narrow substrate specificity. It is generally 

thought that bacterial TrxRs interact with Trxs and then Trxs provide direct 

reducing power to other proteins (Lu and Holmgren, 2014). 

Most of the knowledge on bacterial TrxR was derived from studies using E.coli, 

a gram-negative bacterium, as a model organism. Most gram-negative 

bacteria, possess both Trx and glutathione (GSH) systems like mammalian 

cells. E.coli deficient in Trx production become even more resistant to 

oxidative stress, which may be due to the compensatory upregulation of other 

antioxidant systems like the GSH system (Ritz et al., 2000). Deleting both Trx 

and GSH systems in E.coli rendered it highly susceptible to thiol-oxidizing 

stress. The double mutant required supplementation of a disulfide reductant in 

the medium to grow well aerobically (Prinz et al., 1997). Besides its antioxidant 

function, another particularly important role of E.coli Trx system is to provide 

reducing power to the ribonucleotide reductase (RNR), which is essential to 

generate deoxyribonucleotide for DNA biosynthesis (Nordlund and Reichard, 

2006). 
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The GSH system is absent in many gram-positive bacteria and Mtb, 

suggesting that they may completely rely on the Trx system for antioxidant and 

redox buffering. Mtb encodes three copies of thioredoxin, trxA, trxB and trxC. 

Interestingly, TrxA cannot receive electrons from TrxR and its transcripts are 

undetectable under different growth conditions, suggesting that only TrxB and 

TrxC are biologically active Trxs (Akif et al., 2008). Mtb also contains other 

Trx-like proteins, such as ThiX, a hypothetical thioredoxin. In contrast, there is 

only one copy of TrxR in the Mtb genome, encoded by trxB2. Purified TrxB2 

has been shown to mediate detoxification of hydrogen peroxide, organic 

peroxide, and dinitrobenzene in vitro (Akif et al., 2005; Jaeger et al., 2004; 

Zhang et al., 1999). Transposon mutagenesis analysis predicted that TrxB2 is 

essential for Mtb in vitro growth, which was confirmed by genetic study using 

replacement transformation (Harbut et al., 2015; Zhang et al., 2012). 

Overexpression of Trx and TrxR from virulent mycobacteria enhanced the 

survival of avirulent M. smegmatis  in macrophages, suggesting the 

importance of the thioredoxin system in TB pathogenesis (Wieles et al., 1997). 

Although TrxR is present in human, the catalytic mechanism of Mtb TrxB2 

differs greatly from that of mammalian TrxR and enables selective targeting 

TrxB2. Furthermore, the crystal structure of TrxB2 has been solved (Akif et al., 

2005). Therefore, TrxRs may represent valuable drug targets for the 

development of inhibitors against bacteria lacking a GSH system, including 

Mtb.  
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1.3.  TB vaccine development 

1.3.1. A brief overview of TB immunology 

It is estimated that one-third of the world's population is infected with Mtb, 

however, the majority are latently infected and remain asymptomatic 

throughout their lifetime. The likelihood to progress into active disease 

significantly increases in the HIV-positive population or patients receiving 

immunosuppressive treatments, highlighting the importance of the immune 

system in controlling TB. Recent progress in bacterial genetics, immunology, 

and human genetics has significantly advanced our understanding of TB 

immunology. However, a large knowledge gap still exists and limits the 

development of prophylactic and therapeutic interventions for this deadly 

disease. Here I briefly summarize current knowledge on protective immunity 

during Mtb infection, with a focus on adaptive immune responses and the 

implications for vaccine development.  

TB infection is initiated when patients inhale bacilli-containing droplets 

coughed by an individual with an active disease.  The initial stage of the 

immune responses is characterized by the recruitment of inflammatory 

phagocytes, such as resident alveolar macrophages, neutrophils and dendritic 

cells, which constitute the first-line of defense against Mtb infection. 

Macrophages and neutrophils possess a wide range of antimicrobial 

mechanisms, such as inducing phagosome acidification, producing ROS, RNI 

and antimicrobial peptides, and recruiting other immune cells. Despite the 

widely appreciated protective role, macrophages can also be manipulated by 

Mtb for disease dissemination. Depletion of macrophages protected mice from 

a lethal Mtb infection (Leemans et al., 2001). Studies in zebrafish revealed that 
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Mtb induced recruitment of new macrophages via the ESX1/RD1 virulence 

factor to disseminate infection (Davis and Ramakrishnan, 2009). Mtb 

preferentially recruits and infects permissive macrophages while evading 

microbicidal ones by using Mtb lipid phthiocerol dimycoceroserate (Cambier et 

al., 2014). Neutrophils also play a dual role in TB infection. The likelihood of 

getting TB infection is lower in individuals with high blood neutrophil counts at 

the time of exposure (Martineau et al., 2007). In contrast to the protective role 

of early recruited neutrophils, the accumulation of neutrophils at a late stage of 

infection acerbates lung inflammation (Kimmey et al., 2015; Mishra et al., 2017; 

Nandi and Behar, 2011). Transcriptomics analysis of peripheral blood also 

found a neutrophil-driven signature is associated with progression to active TB, 

which is further supported by the observation of infected neutrophils in the 

airways of active TB patients (Berry et al., 2010; Eum et al., 2010). Other 

types of innate immune cells, such as mucosal associated invariant T (MAIT) 

cells and invariant natural killer T (iNKT), have been implicated in the early 

response to TB infection as well (Gold et al., 2010; Rothchild et al., 2014).  

Although innate immunity efficiently curbs Mtb growth, bacterial load will keep 

increasing until the onset of adaptive immune responses. During Mtb infection, 

the priming of antigen-specific CD4 T cells is significantly delayed due to the 

long lag between initial infection and the migration of infected CCR2+, MHCII-

expressing DCs from the lungs to local lymph nodes (Gallegos et al., 2008; 

Reiley et al., 2008; Samstein et al., 2013; Wolf et al., 2008).  Multiple 

pathways may be involved in activating CD8 T cells during TB infection. 

Leakage of Mtb antigen through damaged membranes or direct Mtb 

phagosomal escape may generate antigens for the classical cytosolic MHC I 
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presentation pathway (van der Wel et al., 2007). Uninfected DCs can take up 

apoptotic vesicles from infected cells that undergo apoptosis and thereby 

cross-present antigens to CD8 T cells (Schaible et al., 2003; Winau et al., 

2006). For example, enhancing apoptosis of Mtb-infected cells by 

manipulating eicosanoid pathways resulted in more robust cross-priming and 

activation of CD8 T cells in mice (Divangahi et al., 2010).  

CD4 T cells are crucial to TB control in both mice and humans. Mice deficient 

in CD4 T cells, either by deleting the MHC II molecule or antibody depletion, 

failed to control bacterial growth and quickly succumbed to infection (Mogues 

et al., 2001). Epidemiologic analysis found HIV patients are 5 to 10-fold more 

likely to progress from latent to active TB due to the low CD4 T cell count (Pai 

et al., 2016).  

Of all the cells involved in the immune response to Mtb, the protective role of 

Th1 cells is the best characterized. Th1 cells depend on IL-12 and 

transcription factor T-bet for differentiation and maintenance, and produce 

interferon gamma (IFN-γ) and tumor necrosis factor (TNF) as signature 

cytokines. IL-12-deficient mice have delayed T cell activation and reduced 

IFN-γproduction, and cannot control Mtb growth (Cooper et al., 1997). Mice 

lacking IFN-γ and TNF are unable to restrict bacilli growth as well (Cooper et 

al., 1993; Flynn et al., 1993; Flynn et al., 1995). More importantly, mutations in 

the IL-12/IFN-γ axis in children predispose them to disseminated infection 

caused by the vaccine strain BCG and environmental mycobacteria 

(Casanova et al., 2013). Rheumatoid arthritis patients receiving TNF blocking 

antibodies are at a higher risk for TB reactivation, supporting TNF as an 

important mediator of resistance to infection in human. Intriguingly, transfer of 
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antigen specific CD4 T cells conferred protection to mice, even when these T 

cells were not able to produce IFN-γ and TNF, although different results have 

been observed depending on the models used (Gallegos et al., 2011; Green 

et al., 2013). Furthermore, other studies found a poor correlation between CD4 

T cell IFN-γ production and protection against TB in humans (Kagina et al., 

2010). These studies highlight the need to revisit the central dogma of TB 

immunology. CD4 T cells must have other mechanisms of controlling Mtb in 

vivo, independent of IFN-γ and TNF production. What are the major cellular 

sources of IFN-γ? Although the protective roles of CD4 T cells, IFN-γ and TNF 

are well-established, we are just beginning to understand their exact 

contributions to resistance. 

Considering the importance of Th1 responses in protection, it is not surprising 

that Th2 responses, which impede Th1 cell development, are detrimental to 

TB control. TB and helminthic co-infection occurs in many parts of the world 

where TB is endemic. A hallmark of helminthic infections is the generation of 

Th2 responses, which can potentially inhibit Th1 responses against Mtb. 

Indeed, worm infection is associated with poor BCG-induced immunity and 

reduced Th1 responses in both active and latent TB (Babu et al., 2009; 

Resende Co et al., 2007; Stewart et al., 1999). Mechanistically, that may be in 

part caused by the alternative activation of macrophages via the IL-4Rα 

signaling pathway (Potian et al., 2011).     

Th17 cells produce IL-17A and IL-17F as signature cytokines and mediate 

anti-microbial immunity against extracellular bacteria and fungi. Their 

contribution to TB immunity has recently been recognized. Transfer of 

antigen–dependent Th17 cells only partially inhibits Mtb growth, suggesting 



17 

 

that Th17 cells may not be required for TB control (Gallegos et al., 2011).  

However, Th17 cells augment BCG-induced responses after vaccination and 

are essential for mature granuloma formation (Khader et al., 2007; Okamoto 

Yoshida et al., 2010). Individuals carrying loss-of-function mutations in RORC, 

which encodes the lineage-specific transcription factors for Th17 cells, exhibit 

impaired immunity to both chronic candidiasis and Mtb. Surprisingly, the 

hypersusceptiblity is due to defective IFN-γ production by circulating γδ T cells 

and CD4+CCR6+CXCR3+ αβ T cells in RORγ- and RORγT-deficient individuals, 

highlighting the complicated immunological network in mediating resistance to 

TB (Okada et al., 2015). Furthermore, IL-17 can cause pathogenic responses 

and lung tissue damage in mice that received multiple BCG vaccinations (Cruz 

et al., 2010). To complicate matters, the major cellular source of IL-17 during 

infection may be γδ T cells, rather than Th17 cells (Okamoto Yoshida et al., 

2010) 

CD8 T cells are another important contributor to anti-TB immunity, although 

CD4 T cells may play a more crucial role (Lin and Flynn, 2015; Mogues et al., 

2001). The early observation that MHC I, TAP, or CD1d deficient mice show 

increased susceptibility to TB suggested that CD8 T cells are necessary to 

control the infection (Behar et al., 1999; Flynn et al., 1992; Sousa et al., 2000). 

However, these genetic knockout mice may have profound unexpected 

phenotypes in cellular compartments other than CD8 T cells. Later studies 

using CD8 T cell depletion antibodies further confirmed their non-redundant 

and important role in mediating protection (Mogues et al., 2001; van Pinxteren 

et al., 2000). In addition to producing IL2, IFN-γ, and TNF like CD4 T cells, 

CD8 T cells are able to directly kill infected cells via cytotoxic granule functions 
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(via perforin, granzymes, and granulysin) or Fas-Fas ligand interaction to 

induce apoptosis (Lin and Flynn, 2015). Interestingly, rapid accumulation of 

antigen-specific CD8 T cells, rather than CD4 T cells, is correlated with BCG 

vaccination-induced protection in challenged mice. The poly-functional 

signature of CD8 T cells (simultaneous production of IL2 and IFN-γ) is 

associated with a protective immune response following treatment (Caccamo 

et al., 2009). However, unlike CD4 T cells, the requirement for CD8 T cells in 

controlling TB infection has not been definitely proven in humans, although 

human CD8 T cells can directly kill Mtb via granulysin in vitro (Stenger et al., 

1998).  

1.3.2. Bacillus Calmette–Guérin (BCG) vaccine 

The BCG vaccine has been administrated more than 4 billion times worldwide 

and remains the only available TB vaccine. BCG is an attenuated form of 

Mycobacterium bovis (M. bovis), a close relative of Mtb commonly found in 

cows, and is usually well-tolerated in healthy individuals. However, children 

with genetic deficiencies in key immune genes, such as the IL-12/IFN-γ axis, 

or with active HIV infection are likely to develop disseminated BCG infection. 

In 2007, WHO stopped recommending BCG vaccine for HIV-positive children 

even in TB endemic areas. 

Although BCG provides a cost-effective way to prevent tuberculous meningitis, 

a severe form of extrapulmonary TB infection, its protection against pulmonary 

TB infection appears to be highly variable (Trunz et al., 2006). The efficacy 

ranged from no protection to 50% reduction in the risk of getting TB, 

depending on the populations and methods used in the studies (Colditz et al., 

https://en.wikipedia.org/wiki/Mycobacterium_bovis
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1995; Colditz et al., 1994; Nguipdop-Djomo et al., 2016; Roy et al., 2014). The 

duration of protection is under debate as well. Some studies showed BCG-

induced protection waned in adolescence, while other studies found the 

efficacy persisted for 50 to 60 years (Aronson et al., 2004; Nguipdop-Djomo et 

al., 2016). The wide variation of BCG performance may be due to a number of 

reasons, such as genetic variation in BCG strains, genetic variation in host 

populations, environmental mycobacteria that induce immune regulation and 

helminthic co-infection (Brandt et al., 2002; Brosch et al., 2007; Moliva et al., 

2017).  

Whatever the explanation for the variations, BCG is at best 50% effective 

against the development of pulmonary TB in adults. Therefore, current BCG 

clearly does not satisfy the need for global TB control. A lot of efforts are 

underway to improve, boost or replace BCG. For example, genomic 

comparison revealed the absence of immunodominant Mtb-specific antigens 

from BCG, such as RD-1 locus-encoded virulence factors ESAT6 and CFP10 

(Behr et al., 1999). Recombinant BCG exporting ESAT-6 demonstrated better 

protection against TB (Pym et al., 2003). Other strategies to increase BCG 

immunogenicity include overexpressing Antigen 85B (Ag85B), an 

immunodominant antigen shared by BCG and Mtb (Tullius et al., 2008). Some 

modified or genetically engineered BCG variants, such as the 

rBCGΔUreC:Hly+, have already entered the pipeline and will be discussed in 

the following section.  
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1.3.3. TB vaccine candidates in the pipeline 

Both the slow decline in global TB incidence and the spread of MDR-TB 

highlight the critical need for new TB vaccines that are more effective than 

BCG. The past two decades have witnessed tremendous progress in TB 

vaccine development. Currently, there are five vaccines in Phase I and eight 

vaccines in Phase II or Phase III trials (Figure 1.1). I will discuss the major 

vaccine strategies and several notable candidates in each category.  

 

 

Figure 1.1 The development pipeline of new TB vaccines, August 2015 

Source: WHO Global tuberculosis report 2016 

 

A major focus of TB vaccine development is to generate live vaccines, with the 

goal of replacing BCG with either improved recombinant BCG or attenuated 

Mtb. The improved BCG vaccines are expected to a) be safer, not causing 

diseases even in immunocompromised individuals; b) be more immunogenic; 
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c) induce longer protection; d) induce protection against highly virulent strains 

and MDR-TB (Ottenhoff and Kaufmann, 2012). One stategy to improve BCG is 

to introduce immunodominant antigens that are absent from BCG, such as 

RD-1 locus encoded virulence factors ESAT6 and CFP10 (Pym et al., 2003). A 

similar way is to overexpress immunodominant antigens that are already 

expressed by BCG but probably not at a sufficiently high level, such as the 

antigen 85 complex (Ag85) (Horwitz et al., 2000). Another approach is to 

modify the way the immune system recognizes BCG by enhancing cross-

presentation or inhibiting BCG’s ability to block phagosomal maturation. For 

example, the candidate VPM 1002 (rBCGΔUreC:Hly+) expresses a membrane 

perforating enzyme listeriolysin and contains a deletion in urease C (ureC), 

which abolishes its ability to neutralize phagosome and is required for 

listeriolysin to function (Grode et al., 2005). Membrane perforation allows BCG 

antigens to gain cytosolic access, increase host cell apoptosis and enhance 

immune activation. This candidate has shown better protection in animal 

models and is now in the Phase IIb trial (Desel et al., 2011; Farinacci et al., 

2012). A major drawback of BCG-based vaccine design is that BCG was 

derived from M. bovis, an animal-adapted mycobacterium species, while the 

natural host of Mtb is human. Furthermore, genomic analysis revealed that 

more than 100 genes are missing in the BCG genome, compared to Mtb 

clinical isolates (Behr et al., 1999; Brosch et al., 2007). Considering the co-

evolution of pathogens with their natural hosts, it is likely that some of the 

factors that mediate protection against human TB are missing in BCG.  

To substitute BCG with attenuated recombinant Mtb, at least two independent 

gene deletions or killing mechanisms are required to prevent escape mutants 
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and virulence reversion. An early example is the rMtbΔRD1ΔpanCD, which 

has deletions in RD-1 locus and two genes required for the synthesis of 

pantothenate (Sambandamurthy et al., 2002). This strain underwent limited 

replication in mice and was more attenuated than BCG in 

immunocompromised mice. rMtbΔRD1ΔpanCD provided similar protection as 

BCG in mice and guinea pigs, but failed to protect in calves and cynomolgus 

macaques (Larsen et al., 2009; Sambandamurthy et al., 2006; Waters et al., 

2007). Several other attenuated rMtb vaccine candidates are constructed 

based on similar principles. Recently, the first live-attenuated Mtb-based 

vaccine, MTBVAC, entered clinical trials, which contains two independent 

deletions of the phoP and fadD26 genes (Arbues et al., 2013). PhoP is a part 

of the two-component system that regulates the transcription of Mtb virulence 

factors and its mutant is even more attenuated than BCG (Martin et al., 2006). 

Fad26 is an enzyme critical for glycolipid cell-wall synthesis. MTBVAC had a 

comparable safety profile as the current BCG and showed slightly better 

protection than BCG in mice (Arbues et al., 2013).  

Another major category are subunit vaccines, which are delivered as a mixture 

of recombinant Mtb antigens and adjuvants. GSK M72 contains a fusion of 

Mtb antigens 32A (Rv0125) and 39A (Rv1196) mixed with a GSK adjuvant 

AS01E, which has favorable clinical properties (Garcon and Van Mechelen, 

2011). This candidate induced a high frequency of M72-specific CD4 T cells 

expressing multiple combinations of Th1 cytokines. GSK and Aeras are now 

recruiting patients for the Phase IIb trial of M72/AS01E (Penn-Nicholson et al., 

2015). H1:IC31 consists of a fusion protein Hybrid 1 (H1, containing 

immunodominant antigens Ag85B and ESAT6) and an adjuvant IC3, which 
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binds TLR9 and enhances DC activation (Ottenhoff et al., 2010). H1:IC31 

boosted the antigen-specific T cell responses induced by BCG (van Dissel et 

al., 2011). In another candidate H56:IC31, the latent TB antigen Rv2660c was 

incorporated into the backbone of H1:IC3, based on its strong upregulation 

during latent infection. H56:IC31 represents a significant advance in subunit 

vaccine design for TB. When administrated alone, H56 provided a similar 

extent of protection to BCG during the acute phase and even more efficient 

than BCG and H1 during the chronic phase (Aagaard et al., 2011). Boosting 

with H56:IC31after BCG vaccination reduced disease severity in a non-human 

primate model and even prevented TB reactivation after TNF neutralizing 

antibody treatment (Lin et al., 2012). Subunit vaccines are generally safe and 

well-tolerated, compared to viable BCG or TB vaccines. However, the antigen 

selection is largely empirical, although gene expression profiling is now 

employed to assist rational design, like in the case of H56:IC3. 

Viral-vector based vaccines deliver TB antigens through a replication-deficient 

viral vector system and raised a lot of interest a decade ago. Recombinant 

modified vaccinia virus Ankara expressing antigen 85A (MVA85A) induced a 

strong Ag85-specific CD4 T cell response in preclinical animal models and 

humans (McShane et al., 2004). However, MVA85A failed to show efficacy in 

infants as a BCG booster in a randomized and placebo-controlled Phase 2b 

trial (Tameris et al., 2013). Many explanations have been proposed for the late 

stage failure of MVA85. Some researchers argued that aerosol delivery of this 

vaccine might offer immunological advantages and MVA85A is now in clinical 

trial for delivery through a different route (Satti et al., 2014). A retrospective 

examination of published in vivo data in animal models of MVA85A raised 
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concerns on the quality of the data to support its preclinical efficacy, such as 

reproducibility, improper randomization and baseline comparability 

(Kashangura et al., 2015). Currently, there are several other candidates based 

on a highly similar strategy in the pipeline, such as Ad5 Ag85A and 

ChAdOx1.85A. More rigorous preclinical research is required before investing 

valuable resources and time on large-scale clinical trials.  There are also 

doubts about our current model of TB vaccine development. Are we 

oversimplifying the problem by designing vaccines based on already 

abundantly expressed TB antigen? 

1.4.  Thesis research aims 

1.4.1. Early antimycobacterial drug target validation focusing on TrxB2 

Mtb encounters intensive endogenous and exogenous oxidative stress during 

its life cycle. Not surprisingly, Mtb is armed with complicated antioxidant 

machineries to cope with the stress. There is a high degree of redundancy 

among these machineries, most of which are dispensable for Mtb survival and 

growth. In contrast, Mtb’s thioredoxin reductase TrxB2 has been predicted to 

be essential not only to fight host defenses but also for in vitro growth. 

However, its biological evaluation has not advanced beyond the prediction of 

its essentiality for growth of Mtb on standard agar plates. I focused on 

addressing the specific physiological role of TrxB2 and its importance 

for Mtb pathogenesis. I generated a TrxB2 conditional knockdown mutant, 

evaluated the suitability of TrxB2 as an antimycobacterial drug target, and 

developed novel genetic tools - deliberately leaky knockdown mutants- to 

facilitate target-specific drug discovery. A collaboration with GlaxoSmithKline 

(GSK) to screen for novel TrxB2 inhibitors is ongoing.  
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1.4.2. Early TB vaccine development by exploiting bacterial lysis  

Both the slow decline in global TB incidence and the spread of drug-resistant 

TB necessitate the development of new TB vaccines that are more effective 

than BCG. The inadequacy of BCG-mediated protection is in part due to the 

absence of important virulence factors required to confer protection from BCG 

genome and insufficient antigen presentation at the site of infection. To 

overcome these limitations, we generated a novel Mtb-based vaccine 

candidate for proof-of-concept experiments, in which bacterial lysis is achieved 

by inducible expression of cell wall hydrolyzing enzymes. I characterized the 

inducible lysis Mtb strains in different growth and physiological conditions. I 

also addressed the impact of induced bacterial lysis on the host immune 

system, with the ultimate goal of generating the knowledge required for 

development of more effective vaccines for TB and other infectious diseases. 
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CHAPTER 2 

ANTIOXIDANT AND BEYOND: TARGETING THIOREDOXIN REDUCTASE 

LYSES MYCOBACTERIUM TUBERCULOSIS * 

 

2.1. Introduction 

Mycobacterium tuberculosis (Mtb) must cope with exogenous oxidative stress 

imposed by the host. Unlike other antioxidant enzymes, Mtb’s thioredoxin 

reductase TrxB2 has been predicted to be essential not only to fight host 

defenses but also for in vitro growth. However, the specific physiological role 

of TrxB2 and its importance for Mtb pathogenesis remain undefined. Here we 

show that genetic inactivation of thioredoxin reductase perturbed several 

growth-essential processes, including sulfur and DNA metabolism and rapidly 

killed and lysed Mtb. Death was due to cidal thiol-specific oxidizing stress and 

prevented by a disulfide reductant. In contrast, thioredoxin reductase 

deficiency did not significantly increase susceptibility to oxidative and 

nitrosative stress. In vivo targeting TrxB2 eradicated Mtb during both acute 

and chronic phases of mouse infection. Deliberately leaky knockdown mutants 

identified the specificity of TrxB2 inhibitors and showed that partial inactivation 

of TrxB2 increased Mtb’s susceptibility to rifampicin. We also screened a 

library of 11,000 compounds with leaky knockdown mutants and identified 

SKF867J as a potential novel TrxB2-specific inhibitor. These studies reveal 

TrxB2 as an essential thiol-reducing enzyme in Mtb in vitro and during 

infection, establish the value of targeting TrxB2, and provide tools to 

accelerate the development of TrxB2 inhibitors. 

* This chapter contains published work from Lin, K., O'Brien, K.M., Trujillo, C., Wang, R., 
Wallach, J.B., Schnappinger, D., and Ehrt, S. (2016). Mycobacterium tuberculosis Thioredoxin 
Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant 
Defense. PLoS Pathog 12, e1005675. 
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2.2. Background 

Endogenous oxidative stress represents an inevitable challenge for microbes 

adapted to an aerobic lifestyle (Imlay, 2013). In addition, pathogens 

like Mycobacterium tuberculosis (Mtb) are continuously exposed to 

exogenous reactive oxygen and nitrogen species generated by the host 

immune system. Not unexpectedly, Mtb is armed with a number of dedicated 

antioxidant systems to ensure replication and survival within its host. Notable 

members include catalase, alkyl hydroperoxidase, superoxide dismutase, 

mycothiol, ergothioneine, thiol peroxidase, thioredoxin reductase and a 

recently identified membrane-associated oxidoreductase complex (Bryk et al., 

2000; Bryk et al., 2002; Carmel-Harel and Storz, 2000; Dussurget et al., 2001; 

Jaeger et al., 2004; Nambi et al., 2015; Newton et al., 1996; Ng et al., 2004; 

Piddington et al., 2001; Saini et al., 2016). The thioredoxin system, together 

with the glutathione system, regulates many important cellular processes, 

such as antioxidant pathways, DNA and protein repair enzymes, and the 

activation of redox-sensitive transcription factors (Carmel-Harel and Storz, 

2000; Lu and Holmgren, 2014). Unlike many Gram-negative bacteria, which 

possess both systems, Mtb lacks the glutathione system (Lu and Holmgren, 

2014; Newton et al., 1996). Instead, mycothiol has been suggested as 

substitute for glutathione in Mtb (Newton et al., 1996). Mycothiol-

deficient Mtb requires addition of catalase for growth in vitro, but is not 

significantly attenuated in mice (Vilcheze et al., 2008). In contrast, there is 

evidence that thioredoxin reductase (TrxB2) is essential for growth in vitro, 

implying a unique role for TrxB2 (Harbut et al., 2015; Sassetti et al., 2003; 

Zhang et al., 2012). Although purified TrxB2 has been shown to mediate 
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detoxification of H2O2, peroxide, and dinitrobenzene in vitro (Akif et al., 2005; 

Jaeger et al., 2004; Zhang et al., 1999), its role in oxidative stress defense in 

physiological conditions and its specific biological functions in Mtb physiology 

are poorly understood. Bacterial thioredoxin reductases have recently been 

demonstrated to be druggable targets (Harbut et al., 2015; Lu et al., 2013), 

however, it has not been determined whether inactivating TrxB2 in vivo, in 

acute and chronic infections, attenuates Mtb. 

To address these questions, we applied a tunable dual-control genetic switch 

(Kim et al., 2013) to generate a conditional TrxB2 knockdown mutant and 

evaluated the impact of TrxB2 depletion. Unexpectedly, depleting TrxB2 not 

only rapidly killed Mtb, but also led to bacterial lysis. TrxB2 depletion 

perturbed growth-essential processes, including sulfur and DNA metabolism 

and death could be prevented by addition of a strong disulfide reductant. In 

vivo depletion of TrxB2 resulted in clearance of Mtb during both the acute and 

chronic phases of infection. We generated deliberately leaky knockdown 

mutants to dissect the contribution of TrxB2 to oxidative stress detoxification 

and found Mtb with partially depleted TrxB2 highly susceptible to thiol-specific 

oxidizing stress, but, surprisingly, not to peroxide and reactive nitrogen 

species. The leaky knockdown mutants were used to evaluate the specificity 

of two TrxB2 inhibitors and revealed that targeting TrxB2 results in 

hypersusceptibility to the frontline anti-tuberculosis drug rifampicin. 
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2.3. Results 

2.3.1. TrxB2 is essential for growth and survival of Mtb in vitro 

We first established that TrxB2 is indeed required for growth of Mtb under 

standard laboratory conditions (Figure 2.1). Because a deletion mutant could 

not be isolated, we generated a TrxB2 dual-control (DUC) strain (Figure 2.2). 

In TrxB2-DUC expression of TrxB2 is controlled by both transcriptional 

silencing and inducible proteolytic degradation, while TrxC is constitutively 

expressed from its native promoter (Kim et al., 2013). Upon addition of 

anhydrotetracycline (atc) TrxB2 protein was rapidly depleted and below the 

limit of detection after 6 hours, which corresponds to less than 5% of TrxB2 

amount in wild type (wt) H37Rv (Figure 2.3 A and Figure 2.4). TrxB2 depletion 

not only inhibited Mtb growth in nutrition-rich 7H9 medium, but also led to rapid 

killing (Figure 2.3 B and C). Bacterial viability declined by 2.7 log after 24 

hours, and 3.4 log after 4 days of atc treatment, indicating that TrxB2 is 

required for bacterial growth and survival in replicating conditions. We also 

assessed the impact of inactivating TrxB2 on non-replicating Mtb, which is 

known to be tolerant to anti-TB drugs and, in part, responsible for the long 

duration of anti-TB chemotherapy (Barry et al., 2009). TrxB2 depletion was 

induced with atc after 10 days of incubation in PBS. Remarkably, TrxB2 

depletion killed ~90% of the bacilli after 48 h and 99.9% within two weeks of 

PBS starvation, highlighting that starvation-induced non-

replicating Mtb depends on TrxB2 for survival as well (Figure 2.3 D and E). 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s003
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
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Figure 2.1 TrxB2 is required for growth of Mtb. 

 (A) Map of the trxB2-trxC genomic region in H37Rv and ΔtrxB2::P750-trxB2-
trxC. To construct ΔtrxB2::P750-trxB2-trxC, we first generated a merodiploid 
strain by integrating a second copy of the trxB2-trxC operon into the attL5 site. 
Then trxB2 and the first 4 bps oftrxC, which overlap with trxB2, were replaced 
with a hygromycin cassette by homologous recombination. 
Inactivated trxC lacking the first 4 bps is marked with an asterisk. (B and C) 
Southern blot of XbaI-digested genomic DNA from H37Rv and seven 
ΔtrxB2::P750-trxB2-trxC candidates probed with probes 1 (B) and 2 (C) as 
indicated in (A). (D) To test essentiality of trxB2 and trxC, ΔtrxB2::P750-trxB2-
trxC was transformed with integrative plasmids expressing trxB2-
trxC, trxB2, trxC or vector control to replace the trxB2-trxCcopy in the attL5 
site. Only plasmids containing trxB2 yielded colonies demonstrating that 
trxB2 but not trxC is required for growth. 
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Figure 2.2 Construction of TrxB2-DUC. 

To generate the dual control (DUC) mutant, the trxB2-trxC plasmid located in 
the attL5 site of ΔtrxB2::P750-trxB2-trxC was replaced with a plasmid 
containing DAS-tagged trxB2expressed from the tet-operator containing 
promoter P750, trxC with its native promoter, and reverse tet repressor with a 
constitutive promoter. In addition the mutant was transformed with a plasmid 
that integrates in the tweety phage attachment site and expresses the SspB 
adaptor protein under control of wt tet repressor. 
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Figure 2.3 TrxB2 is essential for Mtb survival in replicating and non-
replicating conditions. 

 (A-C) Impact of TrxB2 depletion on replicating Mtb. (A) Immunoblot of protein 
extracts from H37Rv and TrxB2-DUC grown with and without atc. Blot was 
probed with TrxB2-specific and Eno-specific (loading control) antisera. TrxB2 
in the TrxB2-DUC mutant is of increased molecular weight due to the C-
terminal DAS tag. (B) Growth of individualMtb strains quantified by optical 
density in nutrient-rich medium with or without atc. Starting density of the 
cultures was OD580 ~ 0.01. (C) Survival of Mtb strains quantified by CFU in 
7H9 medium with or without atc (n = 6 per group). (D and E) Impact of TrxB2 
depletion on non-replicating Mtb. (D) Immunoblot of protein extracts 
from Mtb cultures during starvation in PBS with or without atc. H37Rv and 
TrxB2-DUC were suspended in PBS for 10 days to obtain a non-replicating 
state. Where indicated, atc was added to the cultures on day 10. (E) 
Quantification of CFU from cultures in (D) at the indicated time points (n = 3 
per group). (F) Appearance of the atc-treated TrxB2-DUC culture in 7H9 
medium on day 4 and on day12. (G) Growth of TrxB2-DUC in 7H9 medium, 
treated with atc or meropenem–clavulanate (MCA). Starting density of the 
cultures was OD580~ 0.1. (H) Immunoblot analysis of dihydrolipoamide 
acyltransferase (DlaT), enolase (Eno), proteasome beta subunit (PrcB) and 
secreted protein antigen 85B (Ag85B) from culture supernatants in (G) at the 
indicated times. (I) Quantification of cell length by microscopy of 
indicated Mtb strains treated or not with atc for 4 days. Mean cell lengths (n = 
100) are indicated. **** p<0.0001 by one-way ANOVA. All results are 
representative of at least three independent experiments. Data in (C) and (E) 
are means ± SD. In some panels, error bars are too small to be seen. 
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Figure 2.4 Semiquantitative immunoblot analysis of TrxB2 in TrxB2-DUC. 

Immunoblot of protein extracts from TrxB2-DUC treated with atc for 6, 24 and 
48 hrs. Serially diluted H37Rv lysate was used to determine the limit of 
detection of TrxB2. Eno serves as loading control. 
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2.3.2. Depleting TrxB2 caused lytic death of Mtb 

While culturing TrxB2-depleted Mtb in liquid growth medium, we observed that 

the culture gradually declined in optical density and turned clear (Figure 2.3 F 

and G). This motivated us to ask whether TrxB2 depletion caused lysis of Mtb. 

Notably, mycobacterial death is not always accompanied by lysis. So far, only 

a small number of cell-wall targeting compounds have been shown to induce 

lytic death (Kumar et al., 2012). To further investigate whether lysis occurred 

upon TrxB2 depletion, we monitored the release of the cytoplasmic enzymes 

enolase (Eno), dihydrolipoamide acyltransferase (DlaT) and the proteasome 

beta subunit (PrcB) into the culture supernatant. Because Eno, DlaT and PrcB 

are generally not detected in the culture supernatant of intact mycobacterial 

cells, we consider their release as an indicator of bacterial lysis. Consistent 

with a previous report that meropenem-clavulanate caused Mtb lysis (Kumar 

et al., 2012), we found Eno, DlaT and PrcB in the culture filtrate 6 days after 

exposure to meropenem-clavulanate (Figure 2.3 H). There was no detectable 

lysis of TrxB2-DUC in the absence of antibiotic or atc, even after 9 days of 

incubation. In contrast, cytoplasmic proteins were readily detectable in the 

supernatant of TrxB2-DUC treated with atc for 6 or 9 days, confirming our 

hypothesis that TrxB2 depletion caused lytic death (Figure 2.3 H). In contrast, 

depletion of nicotinamide adenine dinucleotide synthetase (NadE) which also 

rapidly kills Mtb (Kim et al., 2013), did not result in detectable lysis of NadE-

DUC (not shown). Microscopic analysis revealed that lysis of TrxB2-

depleted Mtb was preceded by significant cell elongation (Figure 2.3 

I and Figure 2.5). The majority of TrxB2-depleted bacteria were twice as long 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s005
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as those expressing TrxB2, suggesting that TrxB2 depletion affects processes 

required for cell division. 

 

 

Figure 2.5 TrxB2 depletion in Mtb causes cell elongation. 

Representative images of H37Rv and TrxB2-DUC treated with atc or not for 4 
days. Samples were examined with bright-field microscopy. Data processing 
was performed with ImageJ. 
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2.3.3. TrxB2 is essential for Mtb to establish and maintain infection in 

mice 

To evaluate the importance of TrxB2 for virulence of Mtb, mice were infected 

with TrxB2-DUC and fed doxycycline (doxy) containing food to inactivate 

TrxB2 at selected time points. The infection was rapidly cleared in mice given 

doxy food from the time of infection or during the acute phase of infection on 

day 10 (Figure 2.6 A and B). No pulmonary pathology was observed in these 

mice (not shown). Even when TrxB2 depletion was initiated during the chronic 

phase of infection on day 35, colony forming units (CFU) declined rapidly and 

no bacteria could be isolated from both lungs and spleens on day 160 (Figure 

2.6 A and B). The decline of CFU was accompanied by progressive healing of 

lesions in the lungs (Figure 2.6 C and D). These results establish that TrxB2 is 

required for growth and persistence of Mtb in mice and point to the value of 

targeting TrxB2 to treat TB. 

2.3.4. Reactivation of infection after Mtb is cleared by TrxB2 depletion 

Reactivation of latent infection represents a major problem in treating human 

tuberculosis and accounts for a significant proportion of active TB cases (Pai 

et al., 2016). Disease relapse has been reported in several murine models to 

study the latency and reactivation of tuberculosis, even after combination 

chemotherapies have reduced the number of viable bacilli to an undetectable 

level (Botha and Ryffel, 2002, 2003; McCune et al., 1966a; McCune et al., 

1966b; McCune et al., 1956; McCune and Tompsett, 1956) .  

To determine whether TrxB2 depletion completely eradicates Mtb infection, 

especially the latent bacilli, we infected the mice with TrxB2-DUC, fed them 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g002
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s006
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g002
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g002
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g002
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with doxy containing food starting on day 28 and maintained the treatment 

until day 140 post infection. TrxB2 inactivation rapidly cleared the infection and 

no viable colonies were detected in lungs, spleens, livers, kidneys or bones 

since day 112 (Figure 2.7 A and B, and data not shown). However, 23 weeks 

after the cessation of doxy treatment, 62.5% (10/16) of the mice 

spontaneously relapsed with active tuberculosis in the lungs and 25% (4/16) in 

the spleens (Figure 2.7 A and B). A more significant proportion of reactivation 

was observed in the mice rendered immunocompromised by dexamethasone 

treatment. 81.25% (13/16) of the mice had disease reactivation in the lungs 

and 43.75% (7/16) in the spleens (Figure 2.7 C and D). The bacterial load in 

the spleen was slightly higher in the mice receiving dexamethasone treatment 

compared to that in the immunocompetent host. We also tested the response 

of these reactivated bacteria to atc regulation. Their growth was completely 

inhibited by atc treatment, indicating that they were not escape mutants of tet-

regulated system (data now shown). Although TrxB2 depletion quickly reduced 

infection to an undetectable level, a substantial proportion of the mice 

reactivated with active disease spontaneously or upon immunosuppression, 

suggesting that viable bacteria were still present in the host after TrxB2 

inactivation.  
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Figure 2.6 TrxB2 is essential for Mtb to establish and maintain infection 
in mice. 

(A and B) Quantification of bacterial loads in lungs (A) and spleens (B) of 
C56BL/6 mice infected with TrxB2-DUC. Mice received doxy-containing food 
starting at the indicated time points or not at all. Data are means ± SD of four 
mice per group. The limit of detection was 4 CFU per organ and is indicated by 
the dashed line. (C) Gross pathology of lungs from infected mice receiving 
doxy-containing food starting on day 35 or not at all. Lungs were isolated on 
day 56, 119 and 160 post infection. (D) Haematoxylin/eosin-stained lung 
tissue sections from mice infected with TrxB2-DUC not treated or treated with 
doxy-containing food starting on day 35 post infection. Images are 
representative of the histopathology of the four mice from each group. Scale 
bar, 1.0 mm. Results are representative of two independent experiments. 
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Figure 2.7 Reactivation of infection after Mtb is cleared by TrxB2 
depletion.  

 (A and B) Quantification of bacterial loads in lungs (A) and spleens (B) of 
C56BL/6 mice infected with TrxB2-DUC. Mice received doxy-containing food 
for 16 weeks, starting day 28 post infection. (C and D) Quantification of 
bacterial loads in lungs (C) and spleens (D) of C56BL/6 mice infected with 
TrxB2-DUC. Mice received doxy-containing food from day 28 to day 140 post 
infection. Then mice were treated with dexamethasone in drinking water for 4 
weeks, starting on day 224 post infection. Each dot represents data obtained 
from one mouse. The limit of detection was 4 CFU per organ and is indicated 
by the dashed line. 
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2.3.5. Leaky TrxB2-TetON mutants reveal a specific role for TrxB2 in 

preventing thiol-oxidizing stress 

Although purified TrxB2 has been shown to reduce H2O2 and other peroxides, 

little is known about the detoxification function of TrxB2 in a physiological 

setting (Jaeger et al., 2004; Zhang et al., 1999). Therefore, we sought to 

evaluate the impact of partial TrxB2 depletion on the susceptibility of Mtb to 

oxidative stress. Achieving partial TrxB2 depletion to an extent that does not 

affect viability but significantly reduces the intracellular TrxB2 protein amount 

is technically challenging with a DUC strain because of the steep atc dose 

response curve of this regulatory switch (Kim et al., 2013). To circumvent this 

problem, we generated a panel of TrxB2-TetON mutants that contain point 

mutations in the operator of the tet promoter resulting in different degrees of 

constitutive, leaky transcription upon atc removal. Transcription from the 

mutated tet promoters is similar without TetR, however leaky repression 

results in a range of promoter activities without atc (Figure 2.8 A). Two of the 

leaky TrxB2-TetON mutants, TrxB2-tetON-WT and TrxB2-tetON-1C, showed 

growth defects in the absence of atc (Figure 2.8 B). Their growth defects 

correlated well with the protein depletion kinetics of TrxB2 (Figure 2.8 C). 

These mutants thus achieved a phenotypically significant level of TrxB2 

depletion yet retained enough TrxB2 to support growth. The moderate impact 

on growth of TrxB2-tetON-1C permitted the use of standard minimal inhibitory 

concentration (MIC) assays to measure how inhibition of TrxB2 affects 

susceptibility of Mtb to different chemical stresses. 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g003
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g003
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g003
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Figure 2.8 Design and characterization of leaky TrxB2-TetON mutants. 

(A) Repression of luciferase activity of leaky tet promoters by TetR 
in M. smegmatis. The x-axis specifies the promoter that was used to express 
luciferase and its tetO. Mutated nucleotides are shown in red. 
The kanR luciferase and hygR TetR plasmids were integrated into 
the M. smegmatis chromosome at the att-L5 and att-Tweety sites, respectively. 
Integers on the right indicate fold change in RLUs between bacteria without 
(gray bars) and with TetR (white bars). Data are means ± SD of eight 
replicates from at least two independent experiments. (B) Growth of H37Rv 
and TrxB2-TetON-tetO mutants in 7H9 medium in the presence or absence of 
atc. (C) Kinetics of TrxB2 depletion in TrxB2-TetON-tetO mutants in the 
absence of atc. TrxB2 in TrxB2-TetON-tetO mutants is of increased molecular 
weight due to the C-terminal DAS tag. Results in (B) and (C) are 
representative of three independent experiments. 
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Surprisingly, partial inhibition of TrxB2 did not affect Mtb’s susceptibility to 

growth inhibition or killing by plumbagin, a superoxide generator (Figure 2.9 

A and Fig 2.10). TrxB2 silencing only caused a 2-fold shift of the MIC of H2O2, 

and we did not detect significant survival differences between wild type H37Rv 

and the TrxB2-tetON mutant following H2O2 exposure (Figure 2.9 B and Fig 

2.10). Additionally, we measured Mtb’s susceptibility to reactive nitrogen 

species and found that TrxB2-silenced Mtb was only slightly less resistant to 

acidified nitrite at a high concentration (Figure 2.9 C). In contrast, TrxB2-

silenced Mtb was 8–16 fold more susceptible to growth inhibition by diamide, a 

thiol-specific oxidant (Figure 2.9 D). This hypersusceptibility suggested a 

specific role for TrxB2 in detoxifying thiol-oxidizing stress. 

To determine if thiol-specific oxidizing stress was responsible for the lethality 

caused by TrxB2 depletion, we tested if supplementation with the strong thiol-

reducing agent dithiothreitol (DTT) could prevent death of TrxB2-depleted Mtb. 

Indeed, DTT rescued viability of TrxB2-DUC in a dose-dependent manner 

(Figure 2.9 E). In contrast, neither glutathione nor catalase provided any 

survival benefit (Figure 2.9 F). These results indicate that the primary function 

of TrxB2 in Mtb is to detoxify thiol-specific oxidative stress and that TrxB2 is 

the dominant thiol-reducing enzyme in Mtb. 

 

 

 

 

 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s007
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat.1005675.s007
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
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Figure 2.9 TrxB2 protects Mtb from thiol-specific oxidizing stress and 

contributes less to defense against oxidative and nitrosative stress. 

(A and B) Susceptibility of partially TrxB2-depleted Mtb to plumbagin (A) and 

H2O2 (B). TrxB2-TetON-tetO-1C was cultured in 7H9 medium without atc for 3 

days to decrease TrxB2 expression before treatment with plumbagin and H2O2. 

OD580 was recorded and normalized to the corresponding strains without drug 

treatment. (C) Survival of Mtb strains after 4 days exposure to increasing 

concentrations of NaNO2 at pH 5.5. Data are means ± SD (n = 3 per group) 

and are representative of two independent experiments. (* p<0.05, one way 

ANOVA was used for group comparison). (D) Susceptibility of partially TrxB2-

depleted Mtb to diamide. (E) Impact of dithiothreitol (DTT) on TrxB2 depletion-

induced death in the TrxB2-DUC strain. *p<0.05, **p<0.01 and ***p<0.001 by 

unpaired Student’s t test. (F) Impact of extracellular glutathione (GSH) and 

catalase on TrxB2 depletion-induced death in the TrxB2-DUC strain. Data 

shown means ± SD (n = 3 per group) and are representative of two to three 

independent experiments. 
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Figure 2.10 Susceptibility of partially TrxB2-depleted Mtb to oxidative 

stress.  

(A) Immunoblot analysis of TrxB2 in protein extracts prepared from cultures 

used in (B). (B) TrxB2-TetON-tetO-1C mutant was cultured in the absence of 

atc for 3 days to decrease TrxB2 expression. Mtb strains were then exposed 

to 0.25 mM plumbagin for 5 h, to 5.4 mM H2O2 for 4 h or to 50 mM diamide for 

8 h and bacterial survival was determined by CFU. * p<0.05, ** p<0.01, one 

way ANOVA was used for group comparison. Results are representative of 

three independent experiments. 
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2.3.6. TrxB2 depletion perturbs growth-essential pathways 

We sought to investigate the pathways affected in TrxB2-depleted Mtb and 

analyzed the transcriptome changes associated with TrxB2 depletion. We 

found an early induction of 61 genes after 6 hours of atc treatment (fold 

change >2, p<0.02), 12 of which belong to sulfur metabolism pathways (Figure 

2.11 A). Mtb converts imported inorganic sulfate into adenosine 5’-

phosposulfate (APS), which can be used for metabolite sulfation (Hatzios and 

Bertozzi, 2011; Paritala and Carroll, 2013). Alternatively, APS can be 

sequentially reduced for the biosynthesis of essential sulfur-containing 

metabolites, including cysteine, methionine and mycothiol. The first committed 

step in this reductive branch, the conversion of sulfate to sulfide by APS 

reductase (cysH), requires reducing potential supplied by the thioredoxin 

system (Paritala and Carroll, 2013). We observed extensive up-regulation of 

sulfate importer genes (cysT, cysW, cysA1 and subI) and genes in the 

reductive branch, including cysH and the O-acetylserine sulfhydrylase 

encoding cysK1 and cysK2, which indicates a response to compensate for a 

defect in sulfur assimilation. Consistent with that, TrxB2 depletion also resulted 

in increased expression of cysE, encoding a serine acetyl transferase, which is 

required for de novo cysteine biosynthesis (Figure 2.11 A). The expression of 

sulfur metabolism genes remained induced at 24 hrs post atc treatment 

(Figure 2.11 B) and we asked whether death could be prevented or delayed by 

addition of reduced sulfur metabolites. A cysH deletion mutant was viable and 

had no growth defect, as long as it was supplemented with either 2 mM 

cysteine or methionine (Senaratne et al., 2006). However, neither cysteine nor 

methionine protected TrxB2-depleted Mtb from death, indicating that TrxB2 is 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
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required for other essential pathways besides sulfur metabolism (Figure 2.11 

C). 

Indeed, among the most highly up-regulated genes after 24 h of TrxB2 

depletion were those involved in DNA metabolism (Figure 2.11 B). We 

observed extensive up-regulation of genes involved in three DNA repair 

pathways, including base excision repair (nei, alkA, ung, ogt and xthA,), 

nucleotide excision repair (ercc3, uvrA and uvrD2), and homologous 

recombination (recA, ruvAand ruvC), suggesting that inhibition of TrxB2 was 

associated with DNA damaging stress. In support of this, we found that partial 

TrxB2 depletion decreased Mtb’s tolerance to genotoxic stress caused by 

mitomycin C, a potent DNA crosslinker (Figure 2.11 D). 

Of note, several genes involved in cell division were significantly down 

regulated in TrxB2-depleted Mtb (Figure 2.11 B) consistent with the observed 

cell elongation (Figure 2.5). The induction of antioxidant genes 

(trxB1, trxC, thiX, ahpC, ahpD and mshA) and whiB3 encoding an intracellular 

redox sensor and regulator (Singh et al., 2009) further supports that TrxB2 

depletion induces thiol-oxidizing stress. 

Because DTT rescued survival of TrxB2-depleted Mtb (Figure 2.9 E and F) we 

investigated its impact on the transcriptional changes caused by TrxB2 

depletion. DTT treatment alleviated most of the mRNA changes associated 

with TrxB2 depletion without affecting atc-mediated transcriptional silencing 

and proteolytic degradation of TrxB2 (Figure 2.12 and Figure 2.13). It reduced 

the expression of most antioxidant genes to basal levels, suppressed the 

induction of sulfur metabolism genes, reduced suppression of cell division 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g005
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g001
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g004
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genes and decreased the activation of genes involved in DNA repair (Figure 

2.13).  

Together, these data demonstrate that death following TrxB2 depletion was 

caused by pleiotropic effects on a number of growth-essential pathways, 

including sulfur and DNA metabolism, and was mediated primarily through 

exhaustion of thiol-reducing power (Figure 2.14). 
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Figure 2.11 TrxB2 depletion perturbs growth-essential pathways. 

(A) Heat-map representation of selected genes with mean expression fold 
changes >2 in TrxB2-DUC at 6 h post atc treatment (adjusted p<0.02 by one-
way ANOVA). (B) Heat-map representation of selected genes with mean 
expression fold change >3 in TrxB2-DUC at 24 h post atc treatment (adjusted 
p<0.02 by one-way ANOVA). (C) Impact of extracellular cysteine and 
methionine on TrxB2 depletion-induced death. Atc-treated TrxB2-DUC 
cultures were supplemented with 2 mM cysteine, 2 mM methionine or both. 
CFU were determined at the indicated time points. (D) Impact of partial TrxB2 
depletion on susceptibility of Mtb to mitomycin C. TrxB2-TetON-tetO-1C was 
cultured in 7H9 medium without atc for 3 days to decrease TrxB2 expression 
before treatment with mitomycin C. Data in (C) and (D) are means ± SD (n = 3 
per group) and are representative of three independent experiments. 
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Figure 2.12 DTT treatment does not affect atc-mediated TrxB2 depletion 

in TrxB2-DUC.  

Immunoblot of protein extracts from TrxB2-DUC with different treatment as 

indicated. Blot was probed with TrxB2-specific and Eno-specific (loading 

control) antisera. 
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Figure 2.13 DTT mitigates the transcriptional impact of TrxB2 depletion.  

Heat-map representation of expression level of fold-changes of selected 

genes in response to atc and DTT treatment. mRNA abundances in TrxB2-

DUC treated with atc, DTT or both were compared to those in untreated 

TrxB2-DUC. One-way ANOVA was used for group comparison (n=3 per 

group), with Benjamini–Hochberg correction for multiple hypothesis testing. 

Selected genes with mean expression fold change >3 at 24 h post atc 

treatment are shown (adjusted p<0.02).  
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Figure 2.14 Proposed model for the activities of thioredoxin reductase in 

Mtb.  

Mtb’s thioredoxin system is composed of thioredoxin reductase (encoded 
by trxB2), thioredoxin (Trx) and NADPH. TrxB2 catalyzes the disulfide-
thiol exchange of thioredoxins and thioredoxin-like proteins using electrons 
from NADPH. Thioredoxins and thioredoxin-like proteins are then able to 
reduce their substrates and maintain essential biological pathways, such as 
DNA replication, genome integrity, sulfur metabolism and cell wall processes. 
Loss of TrxB2 activity results in thiol-oxidizing stress, which damages DNA, 
perturbs sulfur metabolism, affects cell wall processes and leads to lysis of 
Mtb.  
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2.3.7. Impact of partial TrxB2 depletion on susceptibility of Mtb to 

antimicrobial compounds 

We utilized the leaky TrxB2 knockdown mutants to evaluate the specificity of 

two thioredoxin reductase inhibitors, ebselen and auranofin. Ebselen is a 

substrate of mammalian thioredoxin reductase, a competitive inhibitor of 

thioredoxin reductase from E. coli, and inhibits growth of Mtb (Lu et al., 

2013). Mtb’s susceptibility to ebselen was, however, not altered by partial 

TrxB2 depletion suggesting that ebselen inhibits Mtb growth by affecting other 

targets (Figure 2.15 A). Auranofin, a gold-containing compound, was recently 

found to inhibit the enzymatic activity of Mtb’s TrxB2in vitro and to 

kill Mtb (Harbut et al., 2015). Partial depletion of TrxB2 caused a 3.6-fold shift 

of the MIC of auranofin and sensitized Mtb to killing by 0.65 μg/ml auranofin, a 

concentration that did not affect viability of wt Mtb (Figure 2.15 B and C). 

However, wt and mutant were killed similarly in the presence of a higher 

concentration of auranofin (Figure 2.15 C). Our data suggest that TrxB2 is one 

of the major targets of auranofin, although auranofin likely inhibits multiple 

enzymes with reactive cysteine residues in Mtb, such as mycothione 

reductase (Harbut et al., 2015). 

To determine whether targeting TrxB2 sensitizes Mtb to other antimicrobial 

compounds, we screened the leaky TrxB2-TetON-1C mutant against a panel 

of antibiotics, including most of the first and second line anti-TB drugs. We 

found TrxB2-depleted Mtb highly susceptible to the cell wall biosynthesis 

inhibitors vancomycin and moenomycin (Figure 2.15 D and F). Moenomycin 

directly inhibits bacterial peptidoglycan glycosyltransferases, while vancomycin 

can block both transglycosylation and transpeptidation by binding to the 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g006
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g006
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g006
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g006
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terminal D-Ala-D-Ala residues of the peptide stem (Ostash and Walker, 2005). 

Other inhibitors of peptidoglycan transpeptidation such as ampicillin, did not 

affect TrxB2-depleted Mtb more than wt Mtb (Figure 2.15 F). Thus inhibiting 

TrxB2 may impair transglycosylation, which could contribute to the lysis 

phenotype we observed. Unexpectedly, depleting TrxB2 decreased the MIC of 

rifampicin by 5.6 fold, suggesting that a compound that inhibits TrxB2 may 

synergize with this important first line anti-TB drug (Figure 2.15 E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g006
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1005675#ppat-1005675-g006
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Figure 2.15 Impact of partial TrxB2 depletion on susceptibility of Mtb to 
antimicrobial compounds. 

(A and B) Impact of partial TrxB2 depletion on susceptibility of Mtb to TrxB2 
inhibitors ebselen (A) and auranofin (B). TrxB2-TetON-tetO-1C was washed 
and suspended in 7H9 medium without atc, then cultured for 3 days to 
decrease TrxB2 expression before treatment with ebselen or auranofin. 
OD580 was recorded and normalized to the corresponding strain without drug 
treatment. (C) Survival of strains after exposure to 0.65 μg/ml or 1.5 μg/ml 
auranofin. (D and E) Impact of partial TrxB2 depletion on susceptibility 
of Mtb to vancomycin (D) and rifampicin (E). (F) Heat-map representation of 
MIC90 shift of partially TrxB2 depleted Mtb to antimicrobial compounds. The 
MIC90shifts are shown as the ratio of the MIC90 for H37Rv to the MIC90 for 
TrxB2-TetON-tetO-1C in the absence of atc. Data in (A) to (E) are means ± 
SD of three replicates and are representative of three independent 
experiments. Data shown in (F) are representative of at least two independent 
experiments. 
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2.3.8. High-throughput screening with leaky TrxB2-TetON mutants 

identified SKF867J as a potential TrxB2-specific inhibitor 

To discover novel TrxB2-specific inhibitors, we collaborated with 

GlaxoSmithKline (Tres Cantos, Spain) to perform a high-throughput screening 

with TB Box, a focused library containing around 11,000 compounds that 

exhibit whole cell activity against Mtb (Figure 2.16). The cell-based screening 

identified 127 lead hits that were hyperactive against the leaky TrxB2-TetON-

5C mutant. These hits were then tested for their potential ‘on target’ activity at 

a single concentration of 50 μM against the purified TrxB2 enzyme. In the 

enzymatic assay, TrxB2 catalyzes reduction of the substrate DTNB (5, 5'-

dithiobis (2-nitrobenzoic) acid) to TNB (5-thio-2-nitrobenzoic acid) in presence 

of NADPH and TrxC. The product TNB generates a strong yellow color that 

can be detected at 412 nm. Six compounds (SKF867J, GSK602A, GW723X, 

GSK840A, GSK430A and GSK121A) exhibited modest to strong inhibition of 

TrxB2 enzymatic activity. Two of them (SKF867J and GSK602A) almost 

completely inhibited the reaction, and the other four compounds (GW723X, 

GSK840A, GSK430A and GSK121A) reduced the enzymatic activity by more 

than 40% at 50 μM concentration (Figure 2.17).  

We next performed dose-response analysis for these six compounds and 

found four compounds (SKF867J, GSK602A, GW723X, and GSK430A) that 

inhibited TrxB2 enzymatic activity in a dose-dependent manner (Figure 2.18 A-

E). SKF867J emerged as the best candidate among the four compounds, with 

an IC50 of 0.68 μM and an IC90 of 6.25 μM. We further confirmed the 

hyperactivity of SKF867J against TrxB2-silenced Mtb. Indeed, silencing TrxB2 

decreased the MIC of SKF867J by 5.6 to 8.4 fold, confirming that SKF867J 
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inhibits Mtb growth by targeting TrxB2 (Figure 2.18 F). Through a combination 

of chemical genomics approach and biochemistry approach, we identified 

SKF867J as a potentially novel TrxB2-specific inhibitor. SKF867J potently 

inhibits TrxB2 enzymatic activity, with IC50 and IC90 values well below the 

levels needed to achieve its cellular effects (MIC50 values of 7.5 μM and 

MIC90 values of 15.15 μM). 
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Figure 2.16 Workflow for the high-throughput screening to identify 
TrxB2-specific inhibitors 

The high-throughput screening was performed by Shipra Grover at 
GlaxoSmithKline, Spain. 
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Figure 2.17 Inhibition of 127 lead compounds against TrxB2 enzymatic 
activity at 50 μM concentration 

Purified recombinant TrxB2 was preincubated with or without inhibitors for 30 
min. Reactions were initiated by the addition of mixture containing NADPH, 
TrxC and DTNB. The final concentration of each inhibitor in the reaction was 
50 μM. The change in absorbance at 412 nm within the first 15 mins of 
reaction was monitored. The numbers shown depict the percentage of 
inhibition of the maximum rate of reaction within 15 mins by the compounds.  
Negative control assays (0% inhibition) were conducted in the absence of 
inhibitors. Ebselen was used as a positive control for the inhibition of TrxB2 
enzymatic activity. Data are representative of three independent experiments.  

GSK697A GSK215A GSK902A GSK257A GSK636A GSK114A GSK595A GSK038A

0.0% 12.7% 0.0% 0.0% 4.6% 0.0% 1.9% 19.7%

SKF867J GSK831A GSK362A GSK808A GSK632A GSK289A GSK581A GSK602A

97.4% 35.2% 0.0% 10.8% 23.7% 0.0% 5.4% 100.0%

GSK597A GSK547A GSK295A GSK027A GW723X GSK517A GSK601A GSK816A

0.0% 0.0% 0.0% 0.0% 53.7% 5.2% 0.0% 1.5%

GSK805A GSK840A GSK798A GSK651A GSK139A GSK214A GSK589A GR746X

2.1% 47.5% 0.0% 0.0% 0.0% 0.0% 0.0% 16.0%

GSK517A GSK647A GSK846A GSK826A GSK197A GSK987A GSK765A GSK299A

4.7% 3.6% 6.0% 0.0% 13.7% 0.0% 13.1% 1.5%

GSK037A GSK586A SB301 GSK028A GSK748A GSK475A GSK791A GSK959A

4.8% 3.5% 5.2% 5.9% 1.4% 0.0% 0.0% 5.3%

GSK353A GSK773A GSK018A GSK891A GSK577A GSK361A GSK460A GSK180A

12.8% 5.6% 0.0% 0.0% 0.9% 11.1% 8.8% 0.0%

GSK793A SB671 GSK804A GSK633A GSK766A GSK825A GSK376A GSK697A

0.0% 16.6% 5.4% 2.5% 11.3% 0.0% 5.5% 0.0%

GSK141A GSK047B GSK326A GSK195A GSK560A GSK438A GSK769A GSK689A

1.5% 0.0% 0.0% 0.0% 9.8% 3.3% 2.0% 1.9%

GSK991A GSK728A GSK877A GSK261A GSK862A GSK724A GSK206A GSK703A

0.0% 5.4% 7.8% 0.2% 1.1% 0.0% 0.0% 0.0%

GSK659A GSK180A GSK388A GSK752A SB308 GSK789A GSK780A BRL002GM

5.2% 9.0% 6.5% 8.0% 0.0% 0.6% 0.0% 26.8%

GSK597A SB119 GSK045A GSK470A GSK430A GSK317A GSK138A GSK860A

0.0% 20.2% 0.0% 0.0% 41.6% 22.4% 0.0% 0.0%

GSK598A GSK753A GSK582A GSK677A GSK011A GSK010A GSK587A GSK002A

0.0% 0.0% 0.0% 0.0% 2.1% 0.0% 0.0% 6.1%

GSK782A GSK045A GSK001A GSK969A GSK821A GSK044A GSK384A GR839X

4.6% 9.0% 8.2% 0.0% 5.5% 1.9% 0.0% 0.0%

GSK655A GSK729A GSK710A GSK644A GSK908A GSK121A GSK892A GSK500A

0.0% 7.7% 0.0% 0.0% 0.4% 40.2% 17.4% 1.5%

GSK932A SB024 GSK863A GSK886A GSK678A GSK048A GSK584A EBS

0.0% 3.9% 8.1% 0.0% 8.7% 5.7% 0.3% 100.0%
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Figure 2.18 SKF867J inhibits Mtb growth through targeting TrxB2. 

(A-E) Dose–response curves of SKF867J (A), Ebselen (B), GSK602A (C), 
GSK430A (D) and GW723X (E) on TrxB2 enzymatic activity. Ebselen is used 
as a positive control. (F) Impact of partial TrxB2 depletion on the susceptibility 
of Mtb to SKF867J. Data in (A) to (E) are means ± SD of three replicates and 
are representative of three independent experiments.  
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2.4. Discussion 

2.4.1. TrxB2 is a valuable target to develop novel antimycobacterial 

compounds 

The paucity of targets that are both biologically validated and susceptible to 

inhibition by drug-like small molecules, i.e. “druggable”, is a major bottleneck 

in antimycobacterial drug development. Mtb’s thioredoxin reductase TrxB2 

has recently been shown to be druggable, yet its biological evaluation has not 

advanced beyond the prediction of its essentiality for growth of Mtb on 

standard agar plates (Harbut et al., 2015). Auranofin inactivates thioredoxin 

reductase in vitro but has multiple targets in bacteria, including in Mtb (Harbut 

et al., 2015; Thangamani et al., 2016). It was thus unknown how the specific 

inhibition of TrxB2 would affect Mtb in different environments including those 

encountered during acute and chronic infections. We addressed these 

questions using genetic strategies and found that inactivating TrxB2 quickly 

cleared Mtb during the acute and, importantly, the chronic phase of mouse 

infection, validating TrxB2 as a valuable target for therapeutic intervention.  

It is noteworthy to point out while TrxB2 depletion quickly reduced the number 

of bacilli to an undetectable level in multiple organs (including lungs, spleens, 

kidneys and bones), a substantial proportion of the mice relapsed 

spontaneously or upon immunosuppression. This observation suggests that 

TrxB2 inactivation by treating with doxy-containing food did not completely 

eradicated viable bacteria in the host, despite the culture-negative state. 

Instead, some bacilli may enter the state of ‘viable but non-culturable’ (VBNC) 

and become invulnerable to TrxB2 depletion (Nathan and Barry, 2015). 

However, this does not preclude TrxB2 from being an attractive drug target for 
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several reasons. First, the relapse experiment that we performed in section 

2.3.4 has not been routinely incorporated by other researchers in the studies 

to identify novel antimycobacterial drug targets. Therefore, it is hard to draw 

comparison between TrxB2 and other targets in terms of the relapse rate. 

Second, it remains to be determined whether there are bacterial reservoirs in 

the host that are not accessible to doxy treatment, as the complete profile of 

doxy distribution in vivo is still not clear. It is thus possible that culturable bacilli 

stayed alive in the reservoirs that were not regularly examined when we 

applied doxy treatment. Upon the cessation of treatment, those bacteria 

disseminated to lungs and spleens and caused disease relapse, even though 

they were still susceptible to killing by TrxB2 depletion. In this scenario, the 

relapse is due to incomplete doxy penetration in the tissues, rather than the 

bacteria that survive TrxB2 depletion. For example, Mtb can travel through the 

bloodstream to the brain and cause meningeal tuberculosis, a type of 

extrapulmonary TB, while brain infection is not examined in most TB models 

(Thwaites et al., 2013). Third, reactivation of infection has been widely 

observed in murine models of TB latency, even after administration of frontline 

anti-TB drugs. The rate of disease relapse depends on a number of factors, 

such as the chemotherapy regiment, duration of treatment, and host immune 

state. For example, a 4-week treatment with rifampicin and isoniazid reduced 

the bacterial load to an undetectable level, but the infection spontaneously 

reactivated 8 weeks after therapy (Botha and Ryffel, 2002, 2003). The therapy 

of isoniazid and pyrazinamide also leads to highly variable outcomes. The 

spontaneous reactivation rate ranged from 0 to 50%, depending on the route 

of infection, the treatment dosing and duration (Scanga et al., 1999). Despite 

the observed disease reactivation in murine models, the four first-line anti-TB 
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drugs (isoniazid, rifampicin, ethabutol and pyrazinamide) are highly successful 

in treating TB and prevent reactivation when used in combination. Therefore, 

the high reactivation rate based on the monotherapy by TrxB2 depletion 

doesn’t void the value of targeting TrxB2 to treat tuberculosis.  

TrxB2 depletion drastically impairs the viability of both replicating and non-

replicating Mtb in culture. Inactivation of TrxB2 in vivo quickly reduces 

bacterial load to an undetectable level during both acute and chronic phases 

of infection. In addition, deliberately leaky TrxB2 knockdown mutants revealed 

that a TrxB2 inhibitor may synergize with rifampicin. Treatment combinations 

of rifampicin and a TrxB2 inhibitor could thus reduce the required drug dosage 

and limit the frequency of resistant mutants as shown for the synergistic action 

of carbapenems and rifampicin (Kaushik et al., 2015). Furthermore, the 

catalytic mechanisms of mammalian and bacterial thioredoxin reductases are 

significantly different and the crystal structure of TrxB2 has been solved (Akif 

et al., 2005; Lu and Holmgren, 2014). There are in vitro biochemistry assays to 

screen for inhibitors of TrxB2 enzymatic activity available and relatively easy to 

perform. With the construction of leaky TrxB2-TetON mutants, TrxB2 should 

be listed as a target with high priority, considering its importance in Mtb 

physiology and pathogenesis and the availability of tools for inhibitor 

development.  

2.4.2. Leaky TetON mutants provide powerful tools to facilitate drug 

development and study essential gene functions 

In addition to revealing the synergy between targeting TrxB2 and rifampicin, 

we used a deliberately leaky TrxB2 knockdown mutant to determine the 
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specificity of two TrxB2 inhibitors. The MIC of ebselen was not affected by 

partial TrxB2 depletion, suggesting that ebselen inhibits Mtb growth primarily 

through targets other than TrxB2. Ebselen has been shown to bind covalently 

to a cysteine residue located near the antigen 85 complex (Ag85C) active site 

and may thereby disrupt the biosynthesis of the mycobacterial cell envelope 

(Favrot et al., 2013; Favrot et al., 2014). Auranofin was significantly more 

active against TrxB2-depleted Mtb than wild type indicating that it exerts its 

antimycobacterial activity at least partially through inhibiting TrxB2. However, 

auranofin exhibits a higher affinity for human thioredoxin reductase than for 

bacterial enzymes (Gromer et al., 1998). Furthermore, auranofin, an FDA-

approved anti-rheumatic drug, has immunosuppressive activities by inhibiting 

NF-κB signaling and decreasing the production of nitric oxide and pro-

inflammatory cytokines, which are critical for anti-TB immune responses (Han 

et al., 2008; Jeon et al., 2000). It also has anti-tumor activity through inhibition 

of proteasome-associated deubiquitinases (Liu et al., 2014; Madeira et al., 

2012; Mirabelli et al., 1985).  

To identify inhibitors that are more specific for TrxB2 than auranofin, we 

utilized the leaky TrxB2 mutants to screen a library containing 11,000 

compounds with whole cell activity against Mtb and identified 127 lead 

compounds. Although all these leads are hyperactive against TrxB2 

hypomorph in the screen, only one compound SKF867J was confirmed to 

potently inhibit TrxB2 enzymatic activity in a dose-dependent manner and the 

other three exhibit modest inhibition. TrxB2-silenced Mtb are hypersusceptible 

to a number of compounds that do not inhibit TrxB2 activity, which may be 

due to the pleiotropic effect caused by TrxB2 depletion. Numerous growth-
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essential pathways were affected by the lack of thiol-reducing power, 

including sulfur and DNA metabolism pathways and cell wall processes. In 

support of this, TrxB2-silenced Mtb becomes highly sensitive to DNA 

replication inhibitor mitomycin C and peptidoglycan inhibitors vancomycin. We 

can speculate some of these 127 compounds may actually target these 

essential pathways and therefore demonstrate hyperactivity. 

SKF867J is a good candidate for TrxB2-specific inhibitor, with IC50 and IC90 

values well below the concentrations required to achieve its whole cell activity. 

Its MIC90 (15.15 μM) falls in a reasonable starting range to further optimize 

this compound. We are now collaborating with GSK Spain to obtain the 

structure information of SKF867J, and plan to test its cidality on Mtb, cellular 

cytotoxicity and antimycobacterial activity on Mtb inside macrophages. To 

further validate SKF867J as a TrxB2-speficic inhibitor, we need to test its 

selectivity against human thioredoxin reductase and analyze its impact on the 

Mtb transcriptomic profiles to see whether it resembles that in TrxB2-deplete 

Mtb. We will also continue analyzing other hit analogues generated by GSK 

medicinal chemists to identify TrxB2 inhibitors with better potency and 

selectivity.  

2.4.3. TrxB2 is essential for thiol redox homeostasis but plays a minor 

role in antioxidant defense 

In addition to determining TrxB2’s value as a potential target for drug 

development we wanted to gain insights into the physiological functions of 

TrxB2, especially its role in detoxifying oxidative stress. TrxB2 expression is 

induced upon oxidative and nitrosative stress and purified TrxB2 can mediate 
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the reduction of H2O2, peroxide, and dinitrobenzene (Jaeger et al., 2004; 

Zhang et al., 1999). However, TrxB2-depleted Mtb was hypersensitive 

specifically to thiol-oxidizing stress, but not to other types of oxidants, and the 

thiol reductant DTT prevented death caused by TrxB2 depletion. DTT did not 

promote growth of TrxB2-depleted Mtb, likely because DTT is very labile in 

neutral aqueous solution and it is therefore difficult to maintain a constant 

concentration over time. Alternatively, TrxB2 has a function beyond its 

enzymatic activity, which is required for optimal growth and cannot be 

replaced by DTT. Notwithstanding, these results indicate that the primary 

function of TrxB2 in Mtb is to detoxify thiol-specific oxidative stress. Its 

potential role in defending against H2O2, superoxide and nitrosative stress is 

likely redundant with other antioxidant systems. 

Mycothiol, a low-molecular-weight thiol present in millimolar quantities in 

mycobacterial cells, is thought to function as the mycobacterial substitute for 

glutathione and serve as the major redox buffer system in Mtb (Newton et al., 

1996). Mtb mycothiol-deficient mutants have a dramatically reduced 

intracellular thiol concentration, require catalase for optimal growth in 

vitro and exhibit increased sensitivity to oxidants. However, they are viable in 

vitro and only slightly attenuated in immunecompetent mice (Buchmeier et al., 

2006; Vilcheze et al., 2008). In contrast, TrxB2 depletion caused rapid lytic 

death even in the absence of exogenous oxidative stress and death was only 

prevented by DTT, but not catalase, cysteine and glutathione. Furthermore, 

TrxB2-depleted Mtb was unable to establish and maintain infection in mice. 

These phenotypic differences between mutants of the two major 

mycobacterial thiol-reducing systems emphasize that the TrxB2-dependent 
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system provides the dominant thiol-reducing source to maintain thiol redox 

homeostasis. Recently, upregulation of thioredoxin genes in mycothiol 

deficient Mtb has been observed supporting that the thioredoxin system can 

restore mycothiol (Attarian et al., 2009; Saini et al., 2016). Some genes 

involved in DNA and sulfur metabolism were also differentially expressed in 

both mycothiol and ergothioneine deficient Mtb (Saini et al., 2016), however, 

the majority of these was down regulated, while we found them induced in 

response to TrxB2 depletion. Thus, while some relationships exist between 

ergothionine, mycothiol and the thioredoxin system, they represent to a large 

degree systems with distinct activities in maintaining redox balance. 

Depriving thiol-reducing power via TrxB2 depletion affected numerous 

essential processes, including sulfur and DNA metabolism pathways. The 

conversion of sulfate to sulfide by APS reductase (CysH) requires reducing 

potential from the thioredoxin system, which may explain why TrxB2 depletion 

induced extensive up-regulation of the genes involved in cysteine 

biosynthesis (Hatzios et al., 2011; Paritala and Carroll, 2013). TrxB2 depletion 

also strongly induced three different mycobacterial DNA repair pathways and 

consistent with this caused hypersusceptibility to the genotoxic drug 

mitomycin C. Ribonucleotide reductase (RNR) requires reducing power from 

the thioredoxin system to catalyze the reduction of NTP to dNTP (Nordlund 

and Reichard, 2006), but TrxB2 depletion did not lead to increased sensitivity 

to the RNR inhibitor hydroxyurea. This is possibly due to the presence of both 

class I and class II RNRs in Mtb while hydroxyurea only inhibits class I RNR 

(Torrents, 2014). It is also possible that other DNA biosynthesis and repair 
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enzymes rely on the thioredoxin system, a hypothesis we are currently 

investigating. 

Surprisingly, we found that TrxB2 depletion lysed replicating Mtb. We 

observed significant cell elongation preceding lytic death consistent with the 

observed down-regulation of cell division genes. TrxB2-depleted Mtb was 

also highly susceptible to the peptidoglycan glycosyltransferases inhibitors 

moenomycin and vancomycin, but not to inhibitors of peptidoglycan 

transpeptidation, mycolic acid synthesis and arabinogalactan synthesis. We 

speculate that some enzymes or regulatory proteins involved in 

transglycosylation may depend on the thioredoxin system to maintain their 

intracellular redox states and function. Inactivation of TrxB2 may impair 

transglycosylation and thereby contribute to bacterial lysis. This observation 

also suggests a connection between redox-homeostasis and cell-envelope 

integrity in Mtb. We can therefore not exclude that TrxB2 depletion caused 

increased permeability to the sensitized compounds, although TrxB2-

depletion did not cause susceptibility to all high molecular weight antibiotics. 

In summary, our work identified TrxB2 as the dominant thiol-reducing enzyme 

in Mtb and refined understanding of its physiological roles in defending against 

thiol-oxidative stress and maintaining growth-essential pathways. Our results 

establish the importance of TrxB2 in Mtb pathogenesis and validate the 

enzyme as a drug target. The leaky TetON mutants we developed will facilitate 

target-based whole cell screens for the identification of TrxB2 inhibitors and 

can help maintaining on-target activity during drug development. We expect 

this strategy of partial transcriptional silencing to be widely applicable and to 
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facilitate chemical-genetic interaction studies for other growth-essential 

proteins in Mtb and other pathogens. 

 

2.5. Materials and Methods 

Ethics statement 

All animal experiments were performed following National Institutes of Health 

guidelines for housing and care of laboratory animals and performed in 

accordance with institutional regulations after protocol review and approval by 

the Institutional Animal Care and Use Committee of Weill Cornell Medical 

College (Protocol Number 0601-441A). 

Strains, media and culture conditions 

Wild type Mtb (H37Rv) and its derivative strains were grown in Middlebrook 

7H9 medium supplemented with 0.2% glycerol, 0.05% Tween-80, 0.5% BSA, 

0.2% dextrose and 0.085% NaCl or on Middlebrook 7H10 agar containing 

OADC (Becton Dickinson and Company) and 0.5% glycerol. For growth of the 

TrxB2 leaky mutants, the above media were supplemented with 400 ng/ml 

anhydrotetracycline. 

Construction of mutant strains 

To generate Mtb trxB2-DUC, we first transformed wild type Mtb H37Rv with an 

attL5-site integration plasmid expressing trxB2 and trxC under the control of 

P750 promoter to obtain a merodiploid strain; trxB2 and the first 4 bps 
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of trxC (the OFR of trxB2 overlaps with the first 4 bps of trxC ORF) were then 

deleted from the merodiploid strain by allelic exchange as previously 

described (Puckett et al., 2014; Schnappinger et al., 2015). After confirming 

deletion of the native copy of trxB2 by Southern blot, we performed 

replacement transformations of attL5 inserts to generate TrxB2-DUC (Kim et 

al., 2013). In the TrxB2-DUC mutant, TrxB2 was expressed under the control 

of a TetOFF promoter and with a C-terminal DAS+4 tag. We also introduced a 

copy of trxC under the control of its native promoter to the attL5 site of TrxB2-

DUC. The leaky TrxB2-TetON mutants were generated by replacement 

transformation of Mtb ΔtrxB2::P750-trxB2-trxC with plasmids 

containing trxB2under the control of leaky tet promoters. A copy of trxC under 

the control of its native promoter was also introduced to the attL5 site of leaky 

TrxB2-TetON mutants. 

Essentiality test of TrxB2 and TrxC for in vitro growth 

We transformed Mtb ΔtrxB2::P750-trxB2-trxC mutant with zeocin resistant 

plasmids expressing trxB2 and trxC, trxB2, trxC or vector control. The 

transformants were selected on zeocin containing 7H10 agar. ΔtrxC was 

isolated from Mtb ΔtrxB2::P750-trxB2-trxCtransformed with the plasmid 

expressing only trxB2. 

Survival of Mtb during nonreplicating conditions 

The PBS starvation assay was set up as previously described (Kim et al., 

2013). Bacteria were grown in 7H9 medium to mid-log phase, washed three 

times with PBST, and suspended in PBST. After incubation for 10 d, atc was 
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added to the cultures of TrxB2-DUC, and CFU were determined by plating on 

7H10 plates. 

Immunoblotting analysis of cytosolic proteins 

We prepared cell lysates from mid-log phase culture by bead-beating cell 

pellets in lysis buffer (50 mM Tris HCl pH 7.4, 150mM NaCl and 2mM EDTA) 

containing protease inhibitor cocktail (Roche). We then centrifuged the lysates 

at 13,000 rpm for 20 min and sterilized the supernatant by passing through 

0.22 μm Spin-X filters (Costar). 30–60 μg total protein were separated by 

SDS–PAGE and transferred to nitrocellulose membranes for probing with 

rabbit antisera against Mtb TrxB2, enolase (Eno), proteasome beta subunit 

(PrcB) and dihydrolipoamide acyltransferase (DlaT). Recombinant full-length 

Eno and TrxB2 were expressed with a C-terminal His tag, purified and used as 

antigen for immunization of rabbits. 

Analysis of bacterial lysis by immunoblotting 

Culture filtrates were prepared as follows. Mtb strains were grown in 7H9 

medium with 0.2% glycerol, 0.05% Tween-80, 0.5% BSA, 0.2% dextrose and 

0.085% NaCl until the culture reached an OD of 0.6 ~ 0.8. Cultures were then 

washed three times with PBS to remove BSA and Tween-80. We next 

suspended the pellet in 7H9 medium supplemented with 0.2% glycerol, 0.2% 

dextrose and 0.085% NaCl. After incubation, culture supernatant was 

harvested by centrifugation and filtration through 0.22 μm filters. Filtrates were 

concentrated 100-fold by using 3K centrifugal filter units (Millipore) and 

analyzed by immunoblotting with antisera against DlaT, Eno, PcrB and Ag85B 

(Abcam, ab43019). 
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Mouse infections 

We infected female C57BL/6 mice (Jackson Laboratory) using an inhalation 

exposure system (Glas-Col) with mid-log phase Mtb to deliver approximately 

200 bacilli per mouse. Mice received doxycycline containing mouse chow 

(2,000 ppm; Research Diets) starting at the indicated time-points. Lungs and 

spleens were homogenized in PBS, serially diluted and plated on 7H10 agar to 

quantify CFU. Upper left lung lobes were fixed in 10% buffered formalin, 

embedded in paraffin and stained with hematoxylin and eosin. 

Gene expression analysis by microarray 

For transcriptome analysis of TrxB2-depleted Mtb, we grew TrxB2-DUC in 7H9 

medium to an OD of 0.5~0.6 and then added 400 ng/ml atc. Samples were 

collected at 6 hr and 24 hr later. Each experiment was performed with at least 

three independent cultures. To determine the impact of DTT, TrxB2-DUC was 

treated with atc, DTT (2 mM) or both for 24 hrs. Microarray analysis was 

performed as previously described (Goodsmith et al., 2015). Cultures were 

mixed at a 1:1 ratio with GTC buffer containing guanidinium thiocyanate (4 M), 

sodium lauryl sulfate (0.5%), trisodium citrate (25 mM), and 2-mercaptoethanol 

(0.1 M) and pelleted by centrifugation. Bacterial RNA was isolated and labeled 

using a Low Input Quick Amp Labeling Kit (Agilent) according to the 

manufacturer’s instruction. Custom-designed Mtb H37Rv whole genome 

microarray (GEO platform GPL16177) were used. Analysis and clustering 

were performed with Agilent GeneSpring software. One-way ANOVA was 

used to compare microarray data, with Benjamini–Hochberg correction for 

multiple hypothesis testing. All the data have been deposited in the GEO 
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database with the accession numbers GSE72328, GSE72329, GSE72330 and 

GSE78894. 

Stress assays 

For oxidative stress, Mtb strains were grown to mid-log phase and washed 

twice in 7H9 medium. Bacterial single cell suspension was then prepared by 

centrifuging the cultures at 800 g for 10 min to remove clumps. We then 

adjusted the OD to 0.03, treated Mtb strains with H2O2, plumbagin, diamide or 

acidified nitrite and determined CFU by plating. 

Antibiotic sensitivity assays 

Mtb was grown to mid-log phase and diluted to an OD of 0.03 in 7H9 medium. 

Bacteria were then exposed to 1.5-fold serial dilution of antimicrobial 

compounds. Optical density was recorded after 14 days and normalized to the 

corresponding strains without drug treatment. Minimum inhibitory 

concentration is defined as the lowest concentration of a drug at which 

bacterial growth was inhibited at least 90%, as compared to the control 

containing no antimicrobial compounds. Ampicillin, auranofin, D-cycloserine, 

ebselen, ethambutol, faropenem, hydroxyurea, isoniazid, kanamycin, 

levofloxacin, meropenem, mitomycin C, moxifloxacin, piperacillin, rifampicin, 

streptomycin and vancomycin were purchased from Sigma Aldrich, St. Louis, 

MO. Moenomycin was from Santa Cruz Biotechnology. Bedaquilline was 

received as a gift from C. Barry. 

 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=arqxiuqulnyxlul&acc=GSE72328
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Purification of TrxB2 and TrxC 

The open reading frames of TrxB2 and TrxC were amplified from Mtb genomic 

DNA and cloned into the expression vector pEN300-NT. The plasmids were 

transformed into Escherichia coliBL21 (DE3) cells for expression. Cultures 

were grown at 37 °C to an OD600 of 0.6 prior induction with 0.6 mM Isopropyl 

β-D-1-thiogalactopyranoside (IPTG). Then the culture was left to incubate 

overnight at 16 °C. The cells were harvested  and resuspended 50mM Tris-

HCl pH 7.4 300mM NaCl, 10mM imidazole, 1mg/ml lysozyme and 1mM DTT 

with protease inhibitor cocktail (Roche) prior to lysis by sonication. DNase I 

was added after sonication and incubated with the lysate for 30min at 4 °C. 

The lysate was by passing through 0.45 μm filters.  

The cleared lysate was incubated with washed Ni-NTA agarose for one hour 

while shaking at 4°C. After applying the beads to a polypropylene column, 

non-specifically bound proteins were removed by washing with washing buffer 

I (50mM Tris-HCl pH 7.4, 300mM NaCl, 20mM imidazole) and washing buffer 

II (50mM Tris-HCl pH 7.4, 300mM NaCl, 50mM imidazole). The protein was 

eluted in elution buffer (50mM Tris-HCl, pH 7.4, 300mM NaCl, 500mM 

imidazole). Fractions of the protein were collected and analysed by SDS–

PAGE before being pooled together and dialysed overnight 25mM Tris-HCl pH 

7.4, 50mM NaCl, to remove the imidazole. The purified proteins were 

concentrated using Amicon Ultra 10 kDa and 3 kDa for TrxB2 and TrxC 

respectively. Purified proteins were frozen with 5% glycerol at -80 °C for long-

term storage. 
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TrxB2 enzymatic assay 

Briefly 40nM purified recombinant TrxB2 was preincubated with drugs or 

DMSO control at RT for 30min in the reaction buffer containing100 mM 

phosphate buffer, pH 7.4, 2 mM EDTA. Then reactions were initiated by the 

addition of mixture containing NADPH, TrxC and  5–5′-dithiobis-(2-

nitrobenzoic acid) (DTNB) . The final reaction system contains 20nM TrxB2, 

10 μM TrxC, 100 μM DTNB,100 μM NADPH in 100 mM phosphate buffer, pH 

7.4, 2 mM EDTA. The progress of the reactions was monitored at 412 nm 

against a blank control for 15 min at 25°C with a final volume of 100 μl on a 

Spectramax M5 plate reader. TrxB2 enzymatic activity was obtained by 

measuring the initial rate of DTNB reduction of during the first 15min of the 

reaction. Other negative controls include samples missing either TrxB2 or 

TrxC in the final reaction system. 

Statistical analysis 

One-way ANOVA was used for multiple group comparisons. Two-tailed 

unpaired Student’s t test was used for the analysis of differences between two 

groups. Statistical significance was defined as P < 0.05 unless otherwise 

stated. No statistical methods were used to predetermine sample size. 
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CHAPTER 3 

EXPLOITING INDUCIBLE BACTERIAL LYSIS  

TO DEVELOP NOVEL TUBERCULOSIS VACCINES 

3.  

3.1. Introduction 

Mycobacterium tuberculosis (Mtb) remains a major threat to global health. 

Ultimate control of Mtb is not achievable without effective vaccines. The most 

widely used tuberculosis (TB) vaccine, the Bacillus Calmette–

Guérin (BCG) vaccine, does not provide effective protection against 

pulmonary TB. Current failures in TB vaccine development can be attributed in 

part to the lack of important virulence factors required to mediate protection in 

BCG-based vaccine candidates and insufficient antigen presentation at the 

site of infection. To overcome these limitations, we generated a novel Mtb-

based vaccine candidate for proof-of-concept experiments, in which bacterial 

lysis is achieved by inducible expression of cell wall hydrolyzing enzymes, 

mycobacteriophage lysins. We found that lysin induction caused lytic death in 

both replicating and non-replicating Mtb. Inducible lysis restricted Mtb growth 

inside macrophages and enhanced the production of pro-inflammatory 

cytokines, possibly due to the release of intracellular bacterial antigens. 

Moreover, lysin induction impaired Mtb viability during mouse infection. We are 

now performing re-challenge experiments to determine the efficacy of this 

vaccine candidate against subsequent Mtb infection. Efforts are also underway 

to identify the immunological pathways activated by lysed bacteria and the 

bacterial components activating these pathways. In addition, we analyzed the 

sequences of 26 escape mutants of inducible lysis strains and showed that the 
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tet repressor sequence is most frequently mutated. We are now designing new 

strains that combine other independent killing mechanisms to decrease the 

suppressor frequency.  

3.2. Background  

The last two decades have witnessed a significant progress in TB control; the 

number of annual TB death fell by 22% between 2000 and 2015. However, TB 

was still responsible for 1.4 million deaths in 2015, making it one of the top 10 

causes of mortality worldwide (Pai et al., 2016). Moreover, the progress has 

slowed down. The annual decline rate in global TB incidence worldwide stays 

at only 1.5%, which needs to accelerate to a 4–5% reduction per year by 2020 

and 10% by 2025 to reach the global target to end the TB endemic in 2030 

(World Health Organization, 2016).  

Although combination chemotherapies remain our best weapon against TB, 

antibiotics alone are far from sufficient to stop TB dissemination. An active TB 

patient can spread disease to 10 to 15 contacts over the course of a year 

(World Health Organization, 2016). Therefore, the ultimate control of TB will 

not be possible without effective TB vaccines. It has proven unusually 

challenging to develop an effective TB vaccine. The BCG vaccine, which was 

developed almost 100 years ago, remains the only available TB vaccine 

despite its inadequate protection against pulmonary TB infection. The 

suboptimal protection is in part due to the absence of immunodominant Mtb-

specific antigens from BCG, such as RD-1 locus encoded antigens ESAT6 

and CFP10 (Behr et al., 1999; Pym et al., 2003). A better understanding of the 

requirement of protective immunity and how Mtb manipulates immune 
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activation will facilitate the generation of more effective vaccines. Previous 

studies revealed that the priming of Mtb-specific T cell responses is only 

initiated in the mediastinal lymph nodes and does not occur until at least 1 to 2 

weeks post infection (Gallegos et al., 2008; Reiley et al., 2008; Wolf et al., 

2008).  This may be related to limited antigen presentation at the site of 

infection or delayed dendritic cell (DC) activation (Egen et al., 2011; Griffiths et 

al., 2016). The administration of antigen at infection site or adoptive transfer of 

activated T cells and DC conferred better resistance to infection (Egen et al., 

2011; Gallegos et al., 2008; Griffiths et al., 2016). Therefore, we reasoned that 

Mtb-based inducible lysis vaccines may represent an attractive novel vaccine 

strategy, because inducing bacterial lysis inside host cells can release 

sufficient amount of Mtb-specific antigens, engage immune sensors and 

activate the immune system.  

In this study, we constructed Mtb inducible lysis strains by the conditional 

expression of cell wall hydrolyzing enzymes, mycobacteriophage lysins, via a 

tet-regulated system. Lysin induction caused lytic death in both replicating and 

non-replicating Mtb. We also showed that inducible lysis impaired bacterial 

viability in infected macrophages and mice. Moreover, inducible lysis 

enhanced the immune activation in macrophages. We further sequenced 

escape mutants of these inducible lysis strains and identified that the majority 

of the mutations occurred in the tet regulation system. Our work demonstrates 

that inducible lysis strains are promising vaccine candidates for proof-of-

concept animal experiments worth further analysis and also lays the 

foundation for generating safer versions of inducibe lysis vaccine candidates 

for human use. 
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3.3. Results 

3.3.1. Construction of inducible lysis Mtb strains 

Lysins are cell wall hydrolyzing enzymes produced by mycobacteriophages to 

lyse and exit from mycobacterial hosts when they finish replication. Lysins are 

extensively modular and contain C-terminus cell wall targeting domains with 

high specificity for mycobacterial cell wall components (Payne and Hatfull, 

2012). Therefore, mycobacteriophage lysins provide ideal tools to induce lysis 

in Mtb if regulated properly.  

To inducibly express mycobacteriophage lysins, we cloned the D29 and L5 

phage lysin genes downstream of a Tet repressor (TetR) tsc10-regulated, atc-

inducible promoter Pmyc1tetO to a plasmid that encodes TetR under a 

constitutive promoter Ptb21 (Figure 3.1 A). All the plasmids carry antibiotic 

resistance genes to allow for selection. Without atc, TetR binds to tet 

operators (tetO) in the promoter Pmyc1tetO and represses the transcription of 

lysins. Atc addition causes conformational changes of TetR and alleviates the 

repression, so that lysins can be induced (Figure 3.1 B). The D29 or L5 single 

lysin strain was generated by integrating the corresponding lysin plasmid to 

the Mtb chromosome via site-specific integration. The dual lysin strain D29-L5-

Lys contained two plasmids expressing D29 and L5 lysins respectively 

integrated at two different sites of the Mtb genome. All the three lysin strains 

grew normally on 7H10 plates in the absence of atc. Their abilities to form 

colonies were dramatically inhibited by applying atc on a paper disk in the 

center of the plate. Adding an additional copy of lysin slightly enhanced the 

growth inhibition caused by lysin induction, as evidenced by the more 

pronounced growth defect in the dual lysin strain compared to the single lysin 
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strains (Figure 3.1 C). Overall, these lysin strains responded well to atc 

regulation on agar plates. 

 

Figure 3.1 Construction of inducible lysis Mtb strains. 

 (A) Design of the integrase-containing plasmid used to inducibly express D29 
phage lysin in Mtb. (B) Regulation of transcription of mycobacteriophage lysins 
by atc. Tet repressor tsc10 was transcribed constitutively; transcription of lysin 
cassette was repressed by TSC10 in the absence of atc. Atc addition 
alleviated the repression by TSC10 and allowed for lysin induction. (C) Growth 
of D29, L5 single lysin strains and D29-L5 dual strains on 7H10 plates, with or 
without atc disk, in the presence of corresponding selection antibiotics.  

The inducible lysis Mtb strains were constructed by Joshua B. Wallach. 



85 

 

3.3.2. Plasmid loss is the major cause of high suppressor frequency in 

integrase-containing single lysin strains 

Next we examined the regulation of these lysin strains in liquid culture by 

monitoring their growth with or without atc in 7H9 medium. Because all the 

lysin plasmids (including the antibiotics resistance genes) were integrated to 

Mtb chromosome, we did not add antibiotics while recording the growth curve. 

Lysin induction by atc suppressed Mtb growth in all the strains initially. 

However, we started observing outgrowth of D29 and L5 single lysin strains 7 

days post atc treatment, while the regrowth was seen in dual lysin strains only 

after 13 days (Figure 3.2 A). The outgrowth of atc-treated culture is usually 

caused by a preexisting population of non-inducible mutants or suppressors 

that initially constitute only a small fraction of the whole culture (Muller et al., 

1995). These non-inducible mutants have a growth advantage and gradually 

take up the culture, as the bacteria that respond to atc regulation are killed by 

lysin.  The quick appearance of regrowth in the single lysin strains indicated 

the presence of suppressors at a high frequency.  

Next we determined the suppressor frequency in these lysin strains by dividing 

the number of colonies recovered from atc-containing plates by that from 

regular 7H10 plates.  Indeed, we found an extremely high suppressor 

frequency ~ 10-2 in the single lysin strains when plating on atc plates without 

antibiotics, while the frequency is more than 1000 fold lower in the dual lysin 

strain (Figure 3.2 B).  Unexpectedly, adding antibiotics to the atc plate 

decreased the suppressor rate to 10-5 ~10-6 in the single lysin strains (Figure 

3.2 B and C). In our studies, all the plasmids (including antibiotic resistance 

genes) were integrated into the chromosome. One advantage of the integrated 
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plasmid system is that these plasmids are generally stably retained in bacteria 

even without antibiotics selection during maintenance (Lee et al., 1991). We 

constructed all the strains with antibiotics selection and grew them in the 

presence of antibiotics during maintenance The antibiotics were only missing 

when we re-inoculated the bacteria to start the growth curve (Figure 3.2 A) or 

plated on antibiotics-free atc plates to determine the suppressor rate (Figure 

3.2 B and C). Therefore, the withdrawal of antibiotics for one or two weeks 

was not expected to cause Mtb to lose the plasmids and affect their growth. 

Nevertheless, the striking difference between with and without antibiotics 

groups suggested that single lysin strains were prone to plasmid loss when 

lysin was induced (Figure 3.2 B and C). In contrast, plasmid loss was largely 

prevented in dual lysin trains, although antibiotics addition also reduced the 

suppressor rate for 10 fold (Figure 3.2 B and D). 

To confirm that plasmid loss is responsible for the early outgrowth in single 

lysin strains, we repeated the growth curve in the presence of antibiotics to 

select for bacteria that kept the lysin plasmids. Antibiotics had no impact on 

the growth of lysin strains in the absence of lysin induction, but delayed the 

onset of outgrowth in single lysin strains from 7 days to 13 days post atc 

treatment (Figure 3.2 E). The plasmid integration to Mtb chromosome was 

mediated by site-specific integrases. If retaining the plasmid in Mtb 

significantly reduces bacterial fitness, the integrase can also enable the 

removal of plasmid via a reverse-integration reaction (Lee and Hatfull, 1993; 

Lee et al., 1991). Of note, all the abovementioned lysin strains (D29-Lys, L5-

Lys and D29-L5-Lys) were constructed using lysin plasmids containing 

integrases. We reasoned that the removal of integrase can prevent plasmid 
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loss. Therefore, we constructed integrase-free single and dual lysin strains. 

They are refereed as L5-Lys-ni, D29-Lys-ni and D29-L5-Lys-ni respectively, 

where ‘ni’ stands for no integrase. Consistent with our hypothesis, the 

suppressor frequency of the integrase-free single lysins (L5-Lys-ni and D29-

Lys-ni) obtained from atc plates with or without antibiotics were 

indistinguishable (Figure 3.2 F).  In contrast, integrase removal did not further 

reduce the suppressors in dual lysin strains (Figure 3.2 F).  Collectively, these 

results demonstrated the integrase-mediated plasmid loss is responsible for 

the high suppressor frequency in integrase-containing single lysin strains. 
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Figure 3.2 Plasmid loss is a major cause of escape mutants in integrase-
containing single lysin strains. 

 (A) Growth of integrase-containing single (D29-Lys or L5-Lys) and dual 
lysin  (D29-L5-Lys) strains in 7H9 medium in the absence of antibiotics with or 
without atc. (B) Suppressor frequency of integrase-containing single and dual 
lysin strains by quantifying the colonies on 7H10 atc plates with or without 
antibiotics. (C and D) Image of growth of integrase-containing D29 single lysin 
strain and D29-L5 dual lysin strains on 7H10 atc plates with or without 
antibiotics. Corresponding numbers of Mtb were plated on atc or atc plus 
antibiotics plates as indicated. (E) Growth of integrase-containing single and 
dual lysin strains in 7H9 medium in the presence of antibiotics. (F) Suppressor 
frequency of integrase-containing and integrase-free lysin strains by 
quantifying the colonies on 7H10 atc plates with or without antibiotics. Data in 
(B) and (F) are means ± SD (n = 3 per group). All results are representative of 
at least three independent experiments. 
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3.3.3. Lysin induction caused bacterial lysis in replicating and non-

replicating Mtb 

To study how lysin affects replicating Mtb, we grew the bacteria in nutrient-rich 

7H9 medium and then treated with atc to induce lysin expression. Lysin 

induction not only inhibited the growth of replicating Mtb, but also impaired 

bacterial viability (Figure 3.3 A and B). Exposure of the dual lysin strain to atc 

decreased colony-forming units (CFU) by more than 3 orders of magnitude 

after 7 days. We further examined the consequences of lysin induction on Mtb 

during different growth phases. The culture was first grown without atc and an 

aliquot of culture was taken over time to be treated with atc. Lysis was readily 

observed upon lysin induction at different growth stages, indicated by the 

decrease in culture OD (Figure 3.3 C). 

Although lysin induction resulted in quick lytic death in replicating Mtb, it may 

not necessarily lyse non-replicating Mtb, which are known to undergo cell wall 

remodeling and become tolerant to most anti-TB drugs (Barry et al., 2009; 

Betts et al., 2002; Voskuil et al., 2004). To address the impact of lysin on non-

replicating Mtb, we cultured the inducible lysis strain in PBS for 10 days to 

achieve a non-replicating state and then added atc. Bacterial viability started 

dropping one week after lysin induction and decreased for 4.4 log after four 

weeks. In addition, we detected a visible drop in culture OD after four weeks, 

confirming that lysin induction also caused lytic death in non-replicating Mtb 

although at relatively slower kinetics (Figure 3.3 E and F).  
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Figure 3.3 Lysin induction caused bacterial lysis in replicating and non-
replicating Mtb. 

(A) Growth of D29-L5 dual lysin strains in 7H9 medium with or without atc. (B) 

Survival of Mtb strains quantified by CFU in 7H9 medium with or without atc. 

(C) Impact of atc on D29-L5 dual lysin strains during different growth phases. 

Atc was added to wt Mtb H37Rv starting on day 0 and to D29-L5 dual 

lysin strains at indicated times. (D) Schematic of the experiment to assess the 

impact of lysin induction on non-replicating Mtb. Mtb was grown in PBST for 

10 days to achieve a non-replicating state. Where indicated, atc was added to 

the cultures on day 0. (E) Optical density (OD) of Mtb culture in PBS starvation 

with or without atc. (F) Quantification of CFU from cultures in (E) at the 

indicated time points. Data in (B), (E)and (F) are means ± SD (n = 3 per 

group). All results are representative of at least two independent experiments. 
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3.3.4. Lysin induction restricted Mtb growth in macrophages and 

enhanced the production of pro-inflammatory cytokines 

Effective host control of pathogens relies on prompt sensing of pathogen-

associated molecular patterns (PAMPs), triggering innate immunity and 

priming the adaptive immune system. The release of Mtb intracellular 

components from lysed cells can potentially enhance immune recognition by 

engaging the immune sensors in macrophages or dendritic cells. To assess 

the impact of inducible lysis on the host immune system, we infected mouse 

bone marrow-derived macrophages (BMDMs) with the dual lysin strain and 

treated with atc or rifampicin. Lysin induction reduced Mtb survival in resting 

macrophages at both high and low multiplicity of infection (MOI). 1 μg/ml 

rifampicin killed Mtb at similar kinetics to atc treatment, allowing us to directly 

compare host immune responses induced by lytic death and antibiotic-

mediated death (Figure 3.4 A and B). Inducible Mtb lysis elicited robust 

production of protective cytokines, whereas antibiotic-induced killing did not 

boost cytokine secretion from macrophages. IL-12 p40 production increased 

more than fivefold as a consequence of lysis and the same pattern was 

observed for IL-6 and TNF-a (Figure 3.4 C - E). We also included wt Mtb 

H37Rv-infected BMDMs treated with atc and rifampicin as a control, and failed 

to observe the boost effect, ruling out the possibility that enhanced cytokine 

production is merely an artifact caused by dead Mtb and atc (Figure 3.4 F). 

These results indicated that inducible lysis restricted Mtb growth inside 

macrophages and activated host immune responses, likely due to the release 

of intracellular bacterial contents. 
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Figure 3.4 Lysin induction restricted Mtb growth inside macrophages 
and enhanced the production of pro-inflammatory cytokines. 

(A and B) Bacterial loads in resting mouse bone marrow derived macrophages 
(BMDM) infected with D29-L5 dual lysin strains at MOI 0.1 (A) and MOI 5 (B), 
treated with atc or 1μg/ml rifampacin four hours post infection. (C - F) Cytokine 
production in cell culture supernatant of BMDM infected with Mtb strains for 24 
hours with cooresponding treatment. Cytokine concentration was measured by 
ELISA. Data in (A) to (E) are means ± SD of three biological replicates and 
representative of two independent experiments.  
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3.3.5. Lysin induction impaired Mtb viability during mouse infection 

To evaluate the impact of lysin on Mtb during in vivo infection, we challenged 

C57BL/6 mice with the dual lysin strain and fed them with doxy food to induce 

lysin during (day 14) and after (day 28) the establishment of infection. A 

control group of mice were treated with isoniazid and pyrazinamide starting on 

day 28, which have been shown to effectively clear Mtb infection in vivo 

(Figure 3.5 A). We found that Mtb failed to establish and maintain infection in 

lungs and spleens when lysin was induced (Figure 3.5 B and C). Consistent 

with decreasing bacterial load in the lungs, we also observed improved 

pulmonary pathology in doxy-treated mice (Figure 3.5 D).  

Furthermore, we measured the cytokine levels in the lungs of infected mice 

using multiplex ELISA, which allowed simultaneous detection of multiple 

cytokines. On day 42, the Chemokine (C-C motif) ligand 5 (CCL5) levels in the 

doxy day 14 group and antibiotics day 28 group were five-fold lower than 

those in untreated mice and the doxy day 28 group. Of note, the bacterial 

loads of the doxy day 14 group and antibiotics day 28 group were also lower. 

On day 60, the CCL5 level in the doxy day 28 group declined to about 20% of 

that in untreated mice, coinciding with a tenfold reduction in CFU (Figure 3.5 

E). The same pattern was also seen for IL-12 p40, indicating the levels of pro-

inflammatory cytokine production mainly reflect the bacterial burden in the host 

(Figure 3.5 F).  Although lysis induction resulted in clearance of infection in 

vivo, we did not observed enhanced cytokine production associated with 

inducible lysis. It is possible that lysis induced a transient upregulation of pro-

inflammatory cytokines, but the levels waned overtime. We plan to collect 

more samples during the early stage of infection, which may provide better 
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chance to detect the difference. We are now performing re-challenge 

experiments to determine the efficacy of the vaccine candidate against 

subsequent Mtb infection. 
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Figure 3.5 Lysin induction impaired Mtb viability during infection. 

 (A) Schematic of the mouse infection experiment. Mice were infected with 
D29-L5 dual lysin strains. Mice received doxy-containing food starting on day 
14 or day 28 or not at all. Another group of mice received isoniazid and 
pyrazinamide in drinking water from day 28. (B and C) Quantification of 
bacterial loads in lungs (B) and spleens (C) of C56BL/6 mice infected with 
D29-L5-Lys. Data are means ± SD of four mice per group. The limit of 
detection was 4 CFU per organ and is indicated by the dashed line. (D) Gross 
pathology of lungs from infected mice. Lungs were isolated on day 84 post 
infection. (E and F) CCL5 and IL-12 p40 levels in the lung homogenates of 
infected mice measured by multiplex ELISA. Data are means ± SD of three 
mice per group. 
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3.3.6. The Tet repressor sequence is frequently mutated in the escape 

mutants of D29-L5 dual lysin strains 

Our ultimate goal is to develop an inducible lysis TB vaccine for human use. 

Nevertheless, our current work is mainly proof-of-concept study, as all the 

work was performed in the background of a virulent strain H37Rv. If the 

inducible lysin strain confers good protection in animal models, we will 

consider developing it into a human vaccine strain. In that scenario, safety 

stands out as the foremost concern. Ideally, the vaccine strain should be 

sterilized in vivo by lysin induction or in combination with other killing 

mechanisms. The existence of a high frequency of non-inducible mutant or 

suppressor population may compromise the efficacy of the inducible lysis 

system. Therefore, a better understanding of the escape mechanisms is not 

only of scientific importance, but will also help us improve the vaccine 

candidate by rational design.  

To identify the suppressor mutations, we sequenced the lysin plasmid regions 

of 10 suppressor mutants of the integrase-containing dual lysin strain (D29-L5-

Lys) and 16 mutants of the integrase-free strain (D29-L5-Lys-ni), all of which 

were selected on antibiotics and atc plates to prevent plasmid loss. We found 

one mutation in each of the individual suppressor strains in the lysin plasmid 

regions we sequenced. Among the 10 mutants of D29-L5-Lys, seven of them 

harbor mutations and one contains a short deletion in the TetR sequence 

(Figure 3.6 A and B). These mutations (TetR-H64Y, H100R, L131R, H333R) 

interfere with atc binding to TetR and abolish its ability to induce 

conformational changes (Muller et al., 1995). These types of mutations can 

function in a dominant-negative way, because the mutated TetR will replace wt 
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TetR and keep transcription repressed even in the presence of atc. Therefore, 

a mutation in one lysin plasmid can abrogate lysin induction from both 

plasmids. We also identified two suppressors with a single amino acid change 

in one of the two lysin genes. It remains unclear how these lysin mutations 

affect the enzymatic functions.  

Similarly, we found point mutations in the TetR region in 15 suppressors of 

D29-L5-Lys-ni (n=16), 10 of which have mutations that affect atc binding to 

TetR (Figure 3.6 C). The others contain G143R and G376R mutation, which 

represent a different escape mechanism (Figure 3.6 D). Glycine 143 and 376 

sit at the dimer interface of TetR, and mutations to arginine convert TetR into a 

non-inducible state (Muller et al., 1995). There is also one suppressor from 

D29-L5-Lys-ni with a deletion in the TetR sequence. 

Our sequencing data for the 26 suppressor mutants identified the TetR region 

as the most frequently mutated sequence; 92.3% of the suppressors harbored 

mutations or deletion in the TetR region (Figure 3.6 E). The distribution of 

mutation mechanisms does not dramatically differ between D29-L5-Lys or 

D29-L5-Lys-ni, with mutations that abolish atc binding to TetR (TetR-H64Y, 

H100R, L131R, H333R) being the predominant type (Figure 3.6 F). These atc 

binding mutants can function as dominant mutations, so one mutation can 

inactivate lysin induction from multiple plasmids with the same regulatory 

system. Our data highlights the need to incorporate independent regulatory 

systems and killing mechanisms to decrease escape mutant frequency when 

designing inducible lysis vaccines for human use. 
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Figure 3.6 Tet repressor sequence is frequently mutated in D29-L5 dual 
lysin escape mutants. 

Mutation sites and possible mechanisms identified in the escape mutants of 
integrase-containing D29-L5 dual lysin strains (A and B), integrase-free dual 
lysin strains (C and D) or combined (E and F). Numbers in (A), (C) and (E) 
correspond to the number of strains found with the indicated type of mutation.  

The sequencing of D29-L5-Lys-ni mutants was performed by Joshua B. 
Wallach. 
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3.4. Discussion 

3.4.1.  Construction of a new type of TB  vaccine candidate – inducible 

lysis strains 

TB vaccine development has been hampered by the incomplete 

understanding of protective immunity against TB, the lack of surrogate 

biomarkers and the absence of animal models that predict vaccine efficacy. 

Although it remains unclear what immunological pathways constitute the 

portfolio that is sufficient to confer protection, studies have revealed the lack of 

important virulence factors in BCG-based vaccine candidates, insufficient 

antigen presentation and suboptimal DC activation as factors contributing to 

undesirable protection (Egen et al., 2011; Grace and Ernst, 2016; Griffiths et 

al., 2016; Pym et al., 2003).  

To overcome these limitations, we generated Mtb-based inducible lysis strains, 

which contain the virulence factors that are likely important for vaccine 

protection and are able to release a sufficient amount of antigens upon lysin 

induction. The strains were constructed by site-specific integration of lysin 

plasmid into the Mtb genome mediated by integrases. This system has been 

widely used to generate stable recombinants in mycobacteria species, and 

usually no continual selection is required due to chromosomal integration of 

the plasmids (Lee et al., 1991). In contrast to previous reports, we observed a 

high frequency of plasmid loss in integrase-containing single lysin strains 

caused by integrase-mediated reverse recombination. The high toxicity of 

lysins may impose a strong pressure for bacteria to expel the lysin plasmids, 

and may explain the discrepancy between our observation and previous 

reports. Interestingly, adding an additional copy of integrase-containing lysin 
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plasmid reduces the plasmid loss frequency as effectively as the removal of 

integrase, possibly because the likelihood to simultaneously losing both 

plasmids is rare. Dual lysin strains with or without integrase behaved similarly 

in most of the in vitro and ex vivo assays, and were exempted from plasmid 

loss. However, we believe that the integrase-free version may provide an 

advantage for in vivo mouse infection where the experiments usually take 

months and continuous selection is not feasible.  

Although the relatively low suppressor frequency (10-5 ~10-6) in the dual lysin 

strains does not interfere with most microbiological assays, even in vivo 

mouse infection, it is far from desirable for a human vaccine. We sequenced 

the lysin plasmid regions of 26 suppressors to understand the escape 

mechanisms, with the ultimate goal to improve the design and deliver an 

inducible lysis vaccine for human use. We only found one mutation for each 

individual strain we sequenced. TetR was identified as the most frequently 

mutated region in the suppressors; 84.6% suppressors contain point mutations 

and 7.69% have deletion in the TetR sequence. Mutations that abolish atc 

binding to TetR can act in a dominant-negative manner. It takes only one 

mutation of this type in one lysin plasmid to abrogate lysin induction from 

multiple lysin plasmids with the same regulatory systems. Other suppression 

mechanisms include mutations at dimer interface of TetR that convert it into a 

non-inducible state (Muller et al., 1995). We also found point mutations in lysin 

genes that cause single amino acid change (not premature termination codon). 

However, how one lysin point mutation in one plasmid disrupts the functions of 

both lysin cassettes remains unclear. It is possible that the mutant lysins lose 

the catalytic activity, but can still bind to the substrates and prevent access of 
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active lysins. It should also be noted that we only sequenced the lysin 

plasmids region on the chromosome. Therefore we cannot exclude the 

possibility that the mutations truly responsible for the non-inducible/suppressor 

phenotype lie in the region yet to be sequenced.  

Considering that most of the mutations occur in the TetR region and dominant-

negative mutations are the primary suppression mechanism, it is critical to 

include other independent regulatory systems and killing mechanisms. For 

example, we can introduce the inducible lysis system (integrase-free version) 

to auxotroph Mtb strains or combine with other toxins to improve the safety.  

3.4.2.  Lysin induction causes lytic death in both replicating and non-

replicating Mtb 

The lysin system is composed of lysin A, lysin B and holin. The LysA proteins 

are extensively modular enzymes that hydrolyze peptidoglycan, with N-

terminus catalytic domains and C-terminus cell wall binding domains which 

determine the substrate specificity (Hatfull et al., 2006). Lysin A enzymes have 

highly diverse activities, containing combinations of amidase, glycosidase and 

peptidase motifs (Payne and Hatfull, 2012). Bioinformatics analysis identified a 

GH19 (glycoside hydrolase) domain and a N4 domain (possible amidase) in 

D29 lysin A, while L5 lysin A only contains a N4 domain (Payne and Hatfull, 

2012). Lysin B enzymes cleave the linkage of mycolic acids to the 

arabinogalactan layer and release free mycolic acid (Payne et al., 2009). 

Holins coordinate the lysis by allowing these enzymes to pass through the cell 

membrane (Wang et al., 2000). However, D29 or L5 Lysin A alone enables 

lysis of M.smegmatis, suggesting holin-independent lysis in some Lysin A 
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proteins and also their functional diversity (Payne and Hatfull, 2012; Pohane et 

al., 2014). The activities of these enzymes in Mtb are relatively undefined. To 

achieve effective lysis, we included both the holin and endolysins of D29 and 

L5 phages in constructing the inducible lysis strains. Consistent with the 

requirement of cell wall synthesis in actively dividing bacteria, lysins rapidly 

killed replicating Mtb. Interestingly, lysin expression caused lytic death in non-

replicating Mtb as well, indicating that latent Mtb has to maintain cell wall 

integrity and thus is vulnerable to lysin killing. In non-replicating conditions, we 

observed decreased viability long before detectable lysis, suggesting that lysis 

is preceded by bacterial death.  

3.4.3. Inducible lysis killed Mtb and enhanced protective cytokine 

production ex vivo in macrophages and in vivo during mouse infection  

Lysin induction restricted Mtb growth inside macrophages and elicited robust 

production of protective cytokines, including IL-12 p40, TNF-a and IL-6. Mice 

lacking IL-12 p40, the shared subunit of IL12 and IL-23, are highly susceptible 

to Mtb infection (Cooper et al., 2002; Feng et al., 2005; Holscher et al., 2001). 

IL-12 initiates and promotes differentiation of Th1 cells, a critical player in 

adaptive immunity against Mtb infection (Feng et al., 2005; Khader et al., 

2006). IL-23 has been implicated in mediating protective responses after 

vaccination, although it is dispensable for controlling Mtb infection (Khader et 

al., 2007). The protective role of TNF has also been well-established. Mice 

lacking TNF fail to control infection (Flynn et al., 1995). Its importance is 

further supported by the observation that use of TNF neutralizing antibodies 

to treat rheumatoid arthritis results in latent TB reactivation (Keane et al., 

2001). IL-6 can antagonize the differentiation of regulatory T cells, which 
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delay the onset of protective immune responses in the context of TB infection 

(Kimura and Kishimoto, 2010; Scott-Browne et al., 2007; Shafiani et al., 2010).  

In contrast to lytic death, we didn’t observe enhanced production of protective 

cytokines in macrophages when Mtb was killed by rifampicin treatment, 

indicating bacterial death alone was not sufficient to boost the cytokine 

production. It also highlights that the mechanisms of how Mtb or the vaccine 

strain are cleared may play a role in shaping the protective immune response, 

in addition to the well-documented factors like the antigens, adjuvants and 

routes of immunization.  

The increased production of IL-12 p40, TNF-a and IL-6 upon inducible lysis 

represents a signature of myeloid cell activation and points to a potential 

better protection conferred by the inducible lysis strains. How inducible lysis 

activates the host immune system remains an open question. Considering 

that the direct targets of lysin are cell wall associated components, particularly 

peptidoglycan, it is tempting to speculate that TLR2/ MyD88-dependent or 

NOD-2-dependent pathways are involved sensing Mtb lysis. Mycobacterial 

lipoproteins activate myeloid cells via TLR2 to produce pro-inflammatory 

cytokines such as TNF (Hertz et al., 2001). Mice lacking the downstream 

adaptor protein MyD88 quickly succumb to infection and display markedly 

decreased levels of IL-12, TNF, and Th1 cytokines (Scanga et al., 2004). In 

light of the accumulating evidence that supports phagosomal escape of Mtb, 

cytosolic immune sensors may play an important role as well (Simeone et al., 

2012; Simeone et al., 2015; van der Wel et al., 2007). NOD-2 is a cytoplasmic 

pattern-recognition receptor implicated in sensing bacterial peptidoglycan-

derived molecules. The unique modification of mycobacterial peptidoglycan 

(N-glycolylated muramyldipeptide) makes it a highly effective agonist for 
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NOD2 (Coulombe et al., 2009). NOD2 has been shown to mediate the 

optimal production of IL-12p40, TNF and IL-6 in response to Mtb, however the 

susceptibility of NOD2-deficient mice to Mtb infection was not universally 

observed (Divangahi et al., 2008; Gandotra et al., 2007). In addition to 

disrupted cell wall, the intracellular contents were also released upon 

inducible lysis. Therefore, other innate immune pathways, such as 

phagosomal and cytosolic DNA sensing pathways, may be engaged as 

well.  Cytosolic Mtb DNA was found to activate host DNA sensor, cyclic GMP-

AMP synthase (cGAS) and the adaptor protein stimulator of interferon genes 

(STING), and thereby target bacteria for autophagy (Collins et al., 2015; 

Manzanillo et al., 2012; Wassermann et al., 2015; Watson et al., 2015; 

Watson et al., 2012). Probing the immune sensors using genetic knockout 

mice will not only broaden our knowledge on how the immune system senses 

and reacts to bacterial lysis, but also help identify the host population that will 

benefit most from inducible lysis vaccines in the long run.  

Although inducible lysis killed Mtb infection in vivo, we did not detect enhanced 

production of protective cytokines by using multiplex ELSA. Instead, the 

cytokine levels were largely determined by the bacterial load even after lysin 

induction, similar to the observations in some groups using Mtb and 

pneumococcal pneumonia infection models (Goodsmith et al., 2015; 

Witzenrath et al., 2009). In contrast, other groups found that lysin infusion via 

the bloodstream induced pro-inflammatory cytokine production in a 

Streptococcus pneumonia endocarditis rat model, which peaked at six hours 

post lysin administration and went back to basal levels after 24 hours (Entenza 

et al., 2005; Pastagia et al., 2013). The discrepancy may be related to animal 
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species, disease models and method of dosing. It is also likely that inducible 

lysis may cause a transient upregulation of these cytokines as in the case of 

the endocarditis rat model, but the inflammation resolved before we harvested 

the tissues. If we sample more frequently at early stages upon inducible lysis, 

we may be able to detect the difference. Moreover, the results can be affected 

by the detection methods as well. Multiplex ELISA measures an average level 

of a cytokine in the lung homogenate, while the majority of cells in lungs are 

non-immune cells. Switching to methods with higher sensitivity like RNA-seq 

or single-cell level analysis like FACS staining of may improve the detection. 

3.5.   Future directions 

With the establishment and verification of the inducible lysin system in vitro 

and during infection, we can address many new questions. First, it will be 

interesting to identify the exact immune sensors in macrophages that respond 

to inducible lysis using genetic knockout mice. This will also help understand 

the molecular nature (DNA, RNA or bacterial cell wall) of the lysis-induced 

signals that enhance the immune response.  

Second, most of our ex vivo work was performed with BMDM, because 

macrophages are the preferred cell type for Mtb to reside and replicate inside 

the lung. However, the priming and activation of Mtb-specific CD4 T cells 

depends on DCs (Bhatt et al., 2004; Khader et al., 2006; Samstein et al., 

2013). Recent studies also showed that pulmonary delivery of activated DCs 

can accelerate T cell activation and improve protection in vaccinated mice 

(Griffiths et al., 2016). Therefore, it may be more physiologically relevant to 
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study the impact of inducible lysis on DC activation status and production of 

inflammatory cytokines, in particular those involved in priming T cells like IL-12.  

Third, we are conducting re-challenge experiments to determine if the 

inducible lysis strains protect against subsequent Mtb infection. The bacterial 

loads, lung pathology, survival and lung functions will be compared between 

unvaccinated mice and mice vaccinated by inducible lysis strains or BCG. We 

are also trying to sample more frequently during the early stage upon 

vaccination with more sensitive methods, hoping to detect the early induction 

of protective cytokines. However, it may be more relevant to measure the 

protective memory response at the end of vaccination and early expansion of 

immune cells after re-challenge. Experiments include measuring the antigen-

specific IFN-γ or other cytokine release from in vitro–stimulated splenocytes 

isolated from vaccinated mice. Some reports suggest that multifunctionality, 

defined by the ability to simultaneously produce multiple cytokines (mostly 

IFN-γ, TNF and IL-2) or multiple effector molecules, as a marker of protective 

CD8 T cells and possibly CD4 T cells as well (Caccamo et al., 2006; Darrah et 

al., 2007; Derrick et al., 2011). We may be able to better understand the 

protection upon inducible lysis by analyzing the single, double and multiple 

cytokine producers among CD8 and CD4 T cells. It will also be informative to 

directly profile the memory T cell populations in the vaccinated hosts, 

especially the tissue-resident memory T cells which have been recently 

appreciated as a favorable target for efficacious vaccination (Gebhardt et al., 

2009; Perdomo et al., 2016).  

Lastly, if the inducible lysis strain outperforms BCG and current TB vaccine 

candidates in TB animal models, we will improve its safety toward human use 
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by incorporating other independent regulatory and killing mechanisms. For 

example, we are considering introducing the inducible lysis system to 

auxotroph Mtb strains that require supplementation of unnatural amino acid for 

survival. Alternatively, applying this system to generate better and safer BCG-

based priming vaccines may represent another attractive option.  

 

3.6. Materials and Methods 

Strains, media and culture conditions 

Wild type Mtb (H37Rv) and the inducible lysis strains were grown in 

Middlebrook 7H9 medium supplemented with 0.2% glycerol, 0.05% Tween-80, 

0.5% BSA, 0.2% dextrose and 0.085% NaCl or on Middlebrook 7H10 agar 

containing OADC (Becton Dickinson and Company) and 0.5% glycerol.  

Construction of inducible lysis strains 

To generate the integrase-containing single lysin strains (D29-Lys or L5-Lys), 

we first transformed wild type Mtb H37Rv with an attL5-site integration plasmid 

expressing either D29 or L5 phage lysin under the control of the promoter 

Pmyc1tetO. To generate the integrase-containing dual lysin strain (D29-L5-

Lys), we also introduced a copy of L5 phage lysin integrated to the tweety site 

of the D29 single lysin strain. Integrase-free single and dual lysin strains were 

generated in a similar manner, except that these lysin plasmids did not contain 

integrases and were not capable of genome integration. Instead, integrases 

were transiently introduced to Mtb by co-transformation of integrase-
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expressing plasmids with the integrase-free lysin plasmids. Corresponding 

antibiotics were added for selection when passaging the inducible lysis strains. 

25 μg/ml kanamycin for D29-Lys or L5-Lys; 25 μg/ml kanamycin and 20 μg/ml 

streptomycin for D20-L5-Lys; 25 μg/ml zeocin for D29-Lys-ni or L5-Lys-ni; 25 

μg/ml kanamycin and 25 μg/ml zeocin for D20-L5-Lys-ni. 1ug/ml atc was 

added to for lysin induction in all the inducible lysin strains.  

Suppressor rate estimation  

The suppressor rate was defined as the number of colonies recovered from 

plates containing atc or plates containing atc and corresponding antibiotics, 

divided by the numbers of colonies obtained from 7H10 plates. The colony 

numbers were determined 3 weeks after plating. 

Bone marrow derived macrophage infection 

Bone marrow derived macrophages were harvested and differentiated as 

previously described (Goodsmith et al., 2015; Vandal et al., 2008).  Cells were 

seeded at 2.5 x105 /mL and infected at the indicated multiplicity of infection 

(MOI) with a single cell suspension of log-phase Mtb culture 24 hours later. 

We then washed the monolayers with PBS 4 hours post-infection to remove 

extracellular bacteria. When indicated, 1ug/ml atc or 1ug/ml rifampicin was 

added to the media after PBS washing. Cell were lysed with 0.5% Triton X-100 

and bacteria were enumerated bacteria by plating serial dilutions on 7H10 

plates. We replaced the media with fresh ones after 3 days.  
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Mouse infections 

We infected female C57BL/6 mice (Jackson Laboratory) using an inhalation 

exposure system (Glas-Col) with mid-log phase Mtb to deliver approximately 

200 bacilli per mouse. Mice received doxycycline containing mouse chow 

(2,000 ppm; Research Diets) starting at the indicated time-points. The 

antibiotics-treated group received 125ug/ml isoniazid and 15g/L pyrazinamide 

delivered in the drinking water. Lungs and spleens were homogenized in PBS, 

serially diluted and plated on 7H10 charcoal-containing agar to quantify CFU.  

Measurement of cytokine production ex vivo and in vivo 

For measuring cytokine production by macrophages ex vivo, macrophages 

were infected at a MOI of 5 as described above. Culture supernatant was 

collected 24 hr or 72 hr post infection, and passed through a 0.22 μm filter. 

The cytokine levels were quantified using BD OptEIA ELISA kits for mouse IL-

6 or IL-12p40 (BD Biosciences) or Biolegend ELISA kit for TNF-a according to 

the manufacturer’s instructions.  For measuring cytokine levels in vivo, the 

lungs from infected mice were bead-beat to homogenize. We then passed the 

lung homogenate through a 0.22 μm filter and assayed with Mouse 9-Plex 

ProcartaPlex Immunoassay kit (Thermo Fisher) according to the 

manufacturer’s instructions. The multiplex plate was analyzed with MAGPIX 

luminex instruments.  
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