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Ahstract

We investigate the problem of selecting the ‘best’ one of k arbitrary
systems or alternatives. Consider one observation from each of the k
systems. By ‘best,’ we mean that system which has the highest
probability of yielding the °‘most desirable’ of the k cbservations.
The term ‘most desirable’ is defined according to some criterion of
goodness determined by the experimenter. We show that this problem
can be formulated as a multinomial selection problem. Hence,
multinomial selection procedures are, in a sense, nonparametric
procedures. An up—-to-date survey of such multinomial procedures is
given. Further, we describe how some of these procedures can be

adapted for use in the simulation environment.



1. Introduction

Consider k different competing populations (or systems or
alternatives, etc). A natural question to ask is: Which of these k
systems is ‘best?’ By ‘best’ system, we could informally mean, e.g.

—that one of k inventory policies which maximizes profit,

—~that one of k scales which is the most precise, or

—that one of k computer systems which has the greatest availability.
Thus, ‘best’ can take on a variety of meanings depending on the
practical problem at hand.

Denote the k populations (sources of observations) as
HI,HZ,...,Hk, respectively. Suppose we take independent vector-—
pbservations (xl,xz,...,xk), where Xi is from Ki, i=1l,...4k. Further,
for i=l,...,k, denote

P, < P{Xi is the ‘most desirable’ of xi,xz,...,xk}.»
The term 'most desirable’ must be defined according to some criterion
of goodness determined by the experimenter. Assume that nothing is
known beforehand concerning the values of the pi’s. Obviously, that ﬁi
associated with the largest of the pi's is the population which has
the highest probability of yielding the ‘most desirable’ observation
(of those observations from the k—vector). In this paper, our goal
will be to find that Hi associated with the largest of the pi's. We
refer to that Hi as the ‘best’ population.

In order to motivate this definition, consider a simple example.
Let A and B be two (s,5) inventory policies. Profit is taken to be
the criterion of desirability. Suppose that

Profit from A

Il

1000 with probability 0.001
= 0 " " 0.999

and
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Profit from B = 0.999 with probability 1.

Clearly, E(Profit from A) = 1 > 0.999 = E{Profit from B); i.e., A
gives the higher average profit. However, P{Profit from B > Profit
from A} = 0.999; therefore, B gives the higher profit alpmost all of
the time. For this reason, the experimenter might justifiably
consider policy B to be better than policy A.

Hence, it is meaningful to &onsider as ‘best’ the policy which
will most likely produce the “most desirable’ observation.

This goal of finding the ‘best’ population can be viewed as that
of finding that cell of a k—nomial distribution with the largest
underlying probability. Suppose that we take one observation from
each of the k populations. Award a one (a ‘success’) to the Hi
corresponding to the ‘most desirable’ of these k observations (use
ran&omization if necessary.) fAward a zero to the remaining k-1 Ki's.
Clearly, this is the same as taking an observation from a multinomial
distribution with cell probabilities pl,...,pk.

Thus, the problem of finding the ‘best” one of k arbitrary
populations can be formulated as a problem of finding that one
category of a k-nomial distribution with the highest underlying
‘success’ probability. This implies that any procedure which finds
the multinomial cell associated with the largest probability is a
nonparametric procedure. Since most real-life systems do not follow
one of the ‘usual’ probability distributions, such nonparametric
procedures are seen to be very useful. We group these nonparametric
procedures under the heading of pultinomial selection procedures.

additional motivation for the above arguments can be found in

Bechhofer and Sobel (1958).

In Section 2 of this paper, we give a brief summary of the



pertinent notation and terminology. In Section 3, some of the

existing selection procedures are presented. Section 4 is concerned

with applications to simulation.



2. Background

We now introduce notation and terminology which will be useful
for investigating the problem of finding the multinomial cell which
has the largest cell probability. Suppose that we take independent
observations sequentially from a k-nomial distribution with cell

probabilities pl,pz,...,pk, p. > O, Zpi = 1, until some stopping

i
criterion {(several of which will be given in the sequel) is met. Most
of the procedures which we will study take observations (up to a
limit, perhaps) until one cell has ‘significantly more’ successes than
the other cells. In this case, the stopping criteria call for the
termination of the procedures.

benote xi,t as the number of observations from cell i after t

multinomial observations {(or ‘stages’) have been taken, i=1,...,k3;

t=1,24... Further, denote Prij £ ans £ Pry as the ordered

L Prog

p; s and x[l],t < wne £ x[k],t as the ordered %Lt s. Assume that we
have no a priori knowledge as to how the p£il'5 are paired with the
multinomial cells.

Dur goal is to select as best that cell which is associated with
Pria? the largest probability. If the cell corresponding to Pria is
actually chosen, we say that a correct selectiorn (CS) has been made.
Also, it is desired that the probability of correct selection (P{LCB2})
be at least P* wh e < here (P",0"} is pre-

e a eas whenever Prk—13 & Pryyr vhe " p
specified by the user (with 1 < e* £ o and 1/k < P* < 1). Define
P 1 * C
ge* = {piO Pri—-11 g'p[k]}. We call Re* the preference zone and ge*
the indifference—zone. [Multinomial procedures such as those to be
considered below fall under the classification of so-called

indifference—zone selection procedures. fAnother rich family of

selection procedures employs the so-called subset appreoach; this



approach will not be emphasized here. The reader should refer to
Gupta and Panchapakesan (1979) for material concerning the
indifference-zone and subset methodologies. ]

We will consider the following configuration of p[i]'s as a

benchmark for comparison among procedures:

* .
Pry = © Ppyjge i=lass-sk-1 (SC)

1

I.e., Pyq = (k=1467) 1, i=1,...,k-13 1

Prey = o* (k-1+6")"!. sC stands
for slippage configuration (with slippage factor 9*). For some
sampling procedures (cf: Bechhofer, Elmaghraby, and Morse (1959)),
this configuration of p[i]'s minimizes the P{C5} over Eene*. In this
case, the SC is called the least-favorable configuration (LFC).
Informally, the LFC can be viewed as a ‘worst case’ configuration
(given that Eege*). It is not known whether the SC is the LFC for all
of the multinomial procedures to be presented in the sequel. However,
this is a reasonable conjecture; we shall treat the SC as if it is
the LFC. Since we desire P{CS5} > P* for all configurations gene*,
then (assuming the conjecture to be true) we can equivalently require
that P{BS!E$SC}3F*. Hence, it is meaningful to investigate the SC.

finother interesting configuration is the egqual probability
configuration (EPLC), where P; = 1/k for all i. OFf course, the term
‘correct selection’ is now meaningless; but the EPC is useful as
another benchmark in that we would expect such a configuration to
maximize a multinomial procedure’s expected sample size (i.e., the
expected number of multinomial observations needed before the

termination criterion is met). Denote the sample size for a procedure

P as SP' E(SP) is the expected sample size.



Ideally, we wish to find a procedure which guarantees
P{CS:E?SC}EF* but which is also parsimonious with observations; that

is, E(SP:E?SC) and E(Spig?EPC) should be ‘low.’



3. Some Multinomial Procedures

In this section, we concentrate on indifference-zone procedures
for selecting the multinomial cell which has the largest probability.
Recall that when using the indifference-zone approach, the
experimenter must pre—specify two constants, P* and e*. The
procedures to be discussed below insure that

R *
PECS!6 P, 44 Yy > P, (PR)

< Pris

where PR stands for probability requirement. For all of these
procedures, we establish the following conventions:
-All observations are independent multinomial observations.
-T is defined to be the stage at which the procedure in question
terminates sampling. T may be a random variable.
-We will choose as best that cell corresponding to x[k],T (using

randomization if necessary).
3.1 A single—sample procedure

The first procedure we consider is that of Bechhofer, Elmaghraby,

and Morse (195%9), dencted as PBEM'

Procedure PBEM:

1. Specify k, P*, and ©".
(k,P*,0") is

2. Take NBEN observations, where NBEM = NBEM

to be found in the tables of BEM (1959). NBEH is the number of

multinomial observations which must be taken in order to satisfy

the PR'/!



Remarks 3.1:

i. Kesten and Morse (1959) prove that the

2. In P

N

BEM® the number of observations we

BEM® For this reason, the procedure is

fixed—-sample or single—-sample procedure.

Example 3.1.1:

8C is the LFC.
take is fixed at

said to be a

Suppose that k=3 and that we specify P*=0.?5 and 9*=3.

Use the following table (abstracted from BEM (1959)) in order

to find NBEM'

e 1.1 1.5 2.0 3.0
Neem
1 . 355 . 429 .S00 . 600
2 .355 . 429 .S00 . 600
3 .362 .464 .563 . 696
4 . 367 .484 .594 .734
5 .370 .496 L617 .769
& .374 .515 . 645 .804
Table 1 (for PBEH)=

P{CSik=3,p=LFC} for selected

" and N

Reading down the e*=3.0 column, we see that NBEﬂzs is the

smallest value of NBEM which achieves the PR {(Note that owing

to the discrete nature of the multinomial distribution, PBEM

overshoots slightly the desired P =0.75.)

Hence, if we take



S observations, the PR will be guarantead.,,

3.2 PBK’ an improved version of PBEM

By considering the following example, it becomes apparent that

PBEM is sometimes wasteful with observations.

Example 3.2.1:

Suppose that k=2, N 7, and x_=(

Xg=(%y ,57%2, 5]

Obviously, it is impossible to terminate sampling with %4 Tgxz T"
3 s

BEM™ =(4,1).
In other words, there is no chance for cell 2 to be chosen.
Since cell 1 is guaranteed to be the victor regardless of

the remaining two cobservations, we should stop sampling at T=5.//

With this example in mind, we compare two procedures, the latter due

to Bechhofer and Kulkarni ((1983).

Procedure PBEM=

1. Specify k and N.
2. Take N observations.li

Frocedure PBK:
1. Specity k and N.
2. Take observations until either
AA. The stage t=N or
B. x(k],t-x[k~1],t=N—t {(Stop sampling if the cell(s) with

the second largest number of observations can only tie the

cell corresponding to Xri.¢? Even if the remaining N-t
k ]



observations are taken.),/

Remarks 3.2:
1. Note that PBK is a sequential procedure.

2. It is clear that E(SP )gg(sp ).
BK BEM

3. Bechhofer and Kulkarni show that P{CS.PBEM}=P{CS.PBK}.

Thus, preserves the P{CS} of the less parsimonious

Pai

procedure, P Hence, we can use the more efficient PBK

BEM®
with no loss of P{CS}.

Example 3.2.2:

Let k=3, P =0.75, and © =3. Then E(S y=N__ =5. It is
Poey | BEM

straightforward (but tedious) to show that E(SP )=3.95
BK

in the LFC.[/

3.3 A sequential procedure due to Ramey and Alam (1979)

FProcedure PRQ:
*

1. Specify k, P , @' .
2. Take observations until either

A. =N or

*rki,t

B. r, where r and N are determined by k,

*rk1,t Frk-13,t°

*
P*, and 8*, and are to be found in tables for certain k, P ,
and e* {NB: See Remarks be!vm.)//

Remarks 3.3:

1. Ramey and Alam’s tables actually contain a number of errors;



the user is advised to consult Bechhofer and Goldsman (1984a).
2. The number of ocbservations which PRA takes is bounded by
kN—-k+1.
3. It is not known whether the SC is the LFC for all k for PRA’
but we will make the reasonable assumption that this>i5 the
case.

4. r and N are determined in such a way that the FR is

satisfied and E(SP ip=LFC) is minimized over the (r,N)
RA

grid.
S. PRA is not directly comparable to PBK' However, for most
choices of k, P*, and 6*, it seems that PRA requires fewer

observations (on the average) than PBK'

Example 3.3.1:

Again, let k=3, P*=0.75, and © =3. We abstract a small
portion of the necessary (corrected) tables for PRA from

Bechhofer and Goldsman (1984a).



F e r N P{CS} E(S)
« 73 3.0 2 3 - 796 3.468
«75 2.4 2 5 « 760 4.70
79 2.0 4 S - 756 B8.8BO
- 75 1.6 4q 12 - 757 1B.24

Table 2 (for PRA):

P{CS!k=3,p=LFC}, E(Si.) for various P , &"

We see that if r=2 and N=3 are chosen, a P{CS} of 0.7956 will
be achieved in the conjectured LFC. The overshoot of the
PLCEip=LFC} (0.7%96 vs. p*=0.75) is again due to the discrete
nature of the problem. Further, In this example,

E(SP ip=LFC)Y=3.68B < 3.95=E(S

tp=LFC).
RA Pek /

/

“
»

An unbounded sequential procedure, FBKS

Bechhofer, Kiefer, and Sobel (1968) give an unbounded f{(or

opern) sequential procedure which satisfies the PR.

Procedure PBKS=
*

1. Specify k, P', ©'.

2. Take observations until

k—1 P e
(1s70%) [kI,t "Lid,t oy p%*/p*,
i=1 - 77

Remark 3.4:

1. BKS show that the SC is the LFC for this procedure.



Example 3.4.1:
Let k=3, P*=0.75, 9*=3. Consulting the appropriate tables in
Bechhofer and Goldsman (1984b), we immediately find that

P{CSip=LFC} = 0.8B42 (.0004) and E(S ip=LFC) =
P
BKS
4.526 (.051). These results are Monte Carlo estimates
obtained via simulation; the entries in parentheses are the
accompanying standard errors. The results are nearly exact,

as can be seen by the small standard errors.

5
w

PBG’ an improved version of PBKS

As in the above example, it turns out that PBKS frequently yields

P{CS!E?LFC}>>P*. This extra P{CS} is at the cost of unnecessary
observations. Therefore, Bechhofer and Goldsman (1984b) give a
procedure which decreases the attained P{CS? to a level slightly

greater than P*, but which also saves ocbservations.

Procedure PBG:
*

1. Specify k, P, © .

2?. Take observations until either

k—1 .
a. z (1/6)
i=1

*
B. the stage tzNBG’ where NBE is determined by k, P ,

X - S
k1t LTt (g %, p* o

G*, and is to be found in Bechhofer and Goldsman’s tables

* *
for certain values of k, P , © Y,

Remarks 3.95:



1. NBB is chosen as the smallest upper bound on the total
number of observations such that the PR is satisfied.

2. Unlike P P is bounded.

BKS®' " BG

%. It is not known whether the SC is the LFC for this
procedure, but we so conjecture.

4, PBE is neither directly comparable to PBK nor PRA' For
many choices of k, P*, e*, it seems that PBG requires fewer
observations (on the average) than PBK' The authors feel

that the user should consult the relevant tables when

designing an experiment.

Example 3.5.1:
Let k=3, P*=0.75, e*=3. We now abstract a small portion

of the necessary tables for PBG from Bechhofer and Goldsman

(1784h).
* »
P e NBB P{CS> E(5)
=79 3.0 S . 757 3.48
=78 2.4 8 . 760 5.5%
- 75 2.0 13 . 731 8.18
- 73 1.6 32 . 752 17.80

Table 3 (for PBE):

P{CSik=3,p=LFC}, E(Si.) for various P", @

We see that we must choose NBG=5 with the resulting



P{CSip=LFC3}=0.737 and E(SP iEFLFC)=3.48.//
BG

3.6 Pﬂl’ an augmented version of PBG
We now employ the same device which was used in PBK;

viz., we stop sampling when the cell in second place only

has a chance to tie.

Frocedure PAI=
1. Specify k, P, .

2. Take observations until

k-1 X e

A, ¥ asety TRLE TELY P PY or
i1

B. tzNﬁlzNBG’ where NBB is from PBB or

Co Xy, t ¥ ck-11,¢ = Na1 "ty

Remarks 3.6:

1. Clearly, E(S } S‘E(SP ).

Al BG

2. By reasoning similar to that given in Bechhofer and

P

Kulkarni (1983}, P{DS§PR1} = P{CSIP That is, no P{CS5>

BB} -

is lost between the two procedures.
3. Tables +for Pﬂ1 are currently being prepared. See

Remark 3.6.2 above for information concerning the P{CS&}.

Example 3.6.1:

Again, let k=3, P¥=0.75, ©"=3. Then N, =5 and P{CSip=LFC}=0.757

i

as before. Now, E(SP Ip=LFLC)=3.24 < 3.48=E(5P ip=LFC}.

Al BG 77



3.7 General remarks

We have seen procedures which follow a poset of sorts in terms of

sampling efficiency. PBEM leads to the more efficient PBK'

Similarly, PBKS leads to PBG which, in turn, leads to Pﬁl' PRQ stands

alone. We note that augmentations may be made to PRA’ but this makes

our search for the optimal combination of r, N, etc., intractable.

BEM BK
Poks = Pes — Fa1
Pra

In lieu of work currently in progress, the authors recommend use of

PRA or PAi when these procedures are applicable to the situation at

hand.



4. Applications and Augmentations in Simulation

We are now interested in the more general problem of determining
which of k arbitrary populations Hl,...,ﬂk, is the 'best.’ Suppose Xi
is an independent ocbservation from “i’ i=1,...,k. Recall that we can
correspond each of the k Hi's with a cell of a k-nomial distribution
with cell probabilities pl,...,pk, where
P; = P{Xi is the "‘most desirable’ of xl,...,xk}. Hence, the
multinomial procedures described in the last section are
nonparametric. This fact is of tremendous importance for simulators

since the underlying distributions of the Hi's (i.e., k simulated

systems) are freguently unknown.
4.1 An example

Suppose that we wish to choose that one of k different (s,5)
inventory policies which will have the highest probability of yielding
the maximum profit for a small company. Here, profit is taken to be
the criterion of desirability. It is assumed that the financial
affairs of the company are complicated enough such that an analytic
solution of this problem is not possible. Thus, it is necessary to
resort to the use of simulation and multinomial selection technigues.

For the sake of simplicity, suppose that k=3, P*=O.75, and 6*=3.
That is, we must choose among three (s,5) policies; it is desired
that P{CS:pfk] 2 e*p[k-il}’ where Py is the probability that the i-th

policy yields the highest profit in a given k—-vector observation. We
will use procedure PAI'

We simulate each of the three (s,S) policies (with different



pseudo—-random number sequences) to obtain vector cbservations

!1,!2,... Let Yj r = the profit from policy j on the t-th simulation
y

run. Xt = (Yl,t’YZ,t‘Y3,t

sampling at which PAI terminates. After the t-th stage of sampling is

completed, identify the policy which vields the highest profit among

)y, t=1,...,T, where T is the stage of

(Yl,t’vz,t'YS,t)' I1f necessary, use randomization to break ties.

Increment the count in the corresponding multinomial cell by one.

Example: If !1 = (356,422,297, then the highest
profit (for this vector observation) is realized by “2'

Thus, the count x, = (

1 Xl,l’x2,1’x3,1) = (0,1,0).!

/

Take 3—vector simulated observations until FAl calls for the

termination of sampling. Recall from Section 3.6 that PAl

terminates when

k=1 ® —¥

1. ¥ e kLt DL g %Y (= 13 or
i1

2. t = H ({ = 5) or

Al

3. = N 1—t ( = 5-t)

k1, T Yrk-11,t A

In the table below, we continue the example. The first column
gives the sampling stage — i.e., the number of 3-vector observations
which have been taken. In the next three columns, the 3-vectors of
simulated data are given. These are followed by the corresponding

multinomial cell x. ‘S,
i,t



Stage t Y Y Y %

1,t 2,t 3,t 1,t 2,t 3,t
1 356 422 297 o i O
2 411 378 314 1 1 0
3 374 393 380 1 2 0
4 368 374 378 1 2 1

At stage ¢t = 4, P calls for procedure termination since

Al
Xrk1,t x[k—l],t = NAl - t. We choose policy two as ‘best,’ since

that is the policy corresponding to XESJ,T'//
4.2 Pseudo—-observations

We discuss an augmentation of Pél that eliminates populations
which seem to be ‘inferior.’ The augmentation takes advantage of the
possibility that in the course af sampling, some of the Hi's will have
no chance of ‘winning’ (being chosen as 'best’).

For instance, in the example of Section 4.1,

Xy = Uy 3%2 30%3,3)

(1,2,0).

Claim: Given that x.

(1,2,00, it is impossible for

“3 to win (in this example).

Proof:
Case 1: If Xg = (2,2,0), then only Ui and Ez can
win (since NAI = 35).
Case 2: I¥ Xgq = (1,3,0), then sampling terminates
k-1 % —X ..
* *
and T, wins (since § (1/0") Lk, "L1d.t o p%/p* .
i=1
Case 3: I+ Xg = {1,2,1), then “2 wins {(since

Xrk1,t " *rk-11,t - Na1 T By



Thus, in this example, it is pointless to sample from “3 given
that Xy = (1,2,0).

With this example in mind, consider the following augmented
procedure, P*, which no longer takes observations from 'ﬁ3: Suppose
that before the next vector observation is taken, a U(0,1) probability
die is rolled. Let the outcome of the roll be 0<ull. Since the PR
must be satisfied, assume that (ptll‘pEZJ’p[33) = (p,p,e*p), where
p = 1f(9*+2). That is, the underlying configuration of pi's is the SC
(the conjectured LFC). If ugp<l, award a ‘success’ to multinomi al

cell 3 (i.e., increment cell 3's count by one: L + 1)
k]

*3,3
without actually taking vector observation !4. In this case, we have
generously awarded HS a ‘free success,’ and we call this non-
observation a pseudo—observation. If u>p, define !4 = (Y1’4,Y2,4). In
this case, we only sample from “1 and “2' Increment as usual the
count of the cell corresponding to the 'more desirable” of the two
cbservations. Take observations in this manner until any of the

stopping criteria from PAI are met (where the Xy t's are defined as
k

above) .

With the example still in mind, let B be the event that we are

using procedure P the underlying configuration of the pi's i= the

Al?

s5C, and §3=(1,2,0). Define C similarly except that PQI is to be

replaced by P*.

Claim: P{CSiB} = P{CSiC}.
Proof: Since we operate in the SC, Pz = P OF e*p.
Case 1: I¥f Pz = e*p, then cell 3 is the correct cell

{since e* > 1). However, it is clear that



P{cs=p3=e*p, B} = P{cs:p3=e*p, € =o.,,
Case 2: Suppose p3 = p. Then (pl,pz) = (p,e*p) or
(e*p,p). Assume the former subcase. A similar argument
will apply for the latter. Consider F* and a given
3-vector observation. Then “3 is awarded a
{pseudo-)success with probability p. Further, “1 is
awarded a success wW. p.
P{H3 will not get the success) X P{ﬂ1 will get the
success | only “1 and “2 are under consideration’.
= (1-p) x p/(p+8°p) = p. Similarly,
P{Hz will get the success} = e*p. But these success
probabilities are exactly the same as those from Pél'
Since the termination cfiteria for both procedures are
also identical, we have the result. 77
Goldsman and Schruben (1984) consider a more general
version of P*.
Procedure PQ2=
1. Specity k, P*,e*.
For t=1,2,...
2. Let It = {i;x[k],t - xi,t 2-”91 - t3
{This is the set of Hi‘s that no longer have a
chance to win.)

3. For each iel allocate an interval of length

£?
p of [0,11, where p=1/(k—1+8").

4. Roll a U(0,1) random number, u.

5. If u falls in an interval allocated for some jeIt,

increment the corresponding x. by one (i.e., award

3.t



a ‘pseudo-success’ to Hj). Otherwise, take actual

observations from all Hi‘s such that ie{l,...,k}\lt.

Increment by one the %,
i,t

desirable” observation.

corresponding to the “most

6. Terminate the procedure (with the usual decision
rule) if any of the termination criteria for PAI

are satisfied. /7

Remarks 4.2:

1. Goldsman and Schruben (1984) prove that

P{CS:P p=LFC} = P{CSiP p=LFC>.

A1’ Az?

2. Clearly, E(SP ip=EPLCY < E(SP
A2 Al

the number of stages (in which actual observations are

{ip=EPC), where S is

taken? until termination. It seems likely that this
relationship also holds when p=LFC, but this has not yet
been proven.
3. Tables for sz are currently being prepared. See
Remarks 4.2.1 and 3.6.2 for information concerning P{CSZ}.

4, The trick of taking pseudo-observations is particularly

suited for the simulation environment.

Example 4.2.1:
Again, let k=3, P'=0.75, € =3. Then P{CS!p=LFC} =

0.7537 as before, and E(SP ip=LFC) = 3.12

Az /7

4.3 Correlation induction

Frequently, it is possible for the simulator to artificially



induce (positive) correlation among the ﬂi‘s. For instance, the
simple technique of common random numbers can be used (when
applicable). More complicated methods can also be implemented. It
stands to reason that as the correlation among the populations
increases, it becomes easier for the experimenter to distinguish which
of the populations is the ‘best.’

Consider the aforementioned selection procedures. 0Obviously, an
increase in e* facilitates the distinction of the ‘best’ multinomial
cell. The following crude example illustrates how positive

. . X . . »*
correlation induction can result in increased © .

Example 4.3.1:
Suppose that k=2 and that Xi is distributed normally
with unknown mean By and known, common variance cz,
i=1,2. If one observation is larger than another, the
first observation is taken to be the more desirable.

So, defines Py = P(X1 > XE)’ Py = i - Py- Suppose

that By > By SO wWe can lst Py < op and P> = P» where

® is some number » i. Clearly, & = (1-p)/p. Finally,

define p = Corr(xl,xz) > 0.

Now, Py = P(x1>x2) = P(Xl—X2 > 0)

P{txl—xg—(ui—nz)]!m > —(n1~n2)/@},
where @ = #(262(1—9)}

I

1-6(~(p,~un Y/ w) = $({pn

{1 B —uz)/u),

1
where $(.) is the N{0,1) cdf

= Gpp, say, = 1-p.



Then ep = (1-p)/p = $M/7(1-(M)),
where N = (ul-uz)fw.

Hence, © _/©

0% = (M) /d(N")IxL(1-@(Nn")}/(1-2(M)) 1,

where ' = NJ(i1-p).

This quantity is obviously > 1. Thus, &_ > 90.
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Remark 4.3:

More details and examples are given in Goldsman and

Schruben (1984).

4.4 Population splitting

We remarked earlier that the LFC represents a ‘worst case’
configuration for Egae*, the preference zone. O0Of course, such a worst
case is rarely encountered in practice. If, in a simulation study,
Eﬁﬁe*, then it is likely that p is not in the slippage configuration.
Perhaps it is possible to take advantage of this likelihood. A
generalization of taking pseudo-observations is proposed which avoids
taking observations from Ki’s which seem to be “inferior”™ to other
populations. Indeed, in the course of sampling, we partition the Hi’s
intc a ‘good’ set 6 and a ‘bad’ set B. The populations in G receive
real observations while those in B receive only pseudo—observations.
1f certain populations in 6 do not garner many successes during
sampling, it is possible to exchange them with populations from B.
This possibility of exchange gives all of the k populations a chance
to win while discouraging actual sampling from ‘bad’ Hi‘s.

The sampling procedure we consider below 1is almost purely

heuristic. To facilitate the discussion, we consider directly



sampling from a k-nomial distribution.

Procedure Psz

1. Specify k,P", o, n, (some initial number of k-nomial
observations).

2. Take n, observations.

3. Partition cells 1,...,k into ‘good’ cells G and ‘bad’
cells B. Suggestion: Place the cells with > the median
number of successes (either real or pseudn) into G put
the others in B.

4., Temporarily be conservative and assume that the ‘best”’
cell is in B. In the LFC, this cell will have probability
e*p; FP{B} = (iB! - 1)p + e*p. With probability P{BZ},
award a pseudo-success to a randoe cell in B. If a
pseudo—success is not awarded to a cell in B, take a real
multinomial observation from the cells in 6 (i.e., take
observations only from Hi's corresponding to cells in G).

S. If any of the termination criteria from a previously
discussed multinomial procedure (which must be pre-
specified) are met, stop sampling and choose as best that

cell corresponding to x Otherwise, go to 3.
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Remarks 4.4:
1. Admittedly heuristic, this procedure is intuitively
appealing.
2. Boldsman and Schruben (1984) give more details and some
limited computer simulations relevant to this procedure.

Caveat: wvery little work has been done to date.



3. We feel that this procedure will work well for large

k and P* and for small 9*.



5. Bummary

In this expository paper, we have introduced the reader to the
problem of selecting the multinomial cell with the largest underlying
probability. A brief review of some of the existing multinomial
selection procedures was given. The superior procedures appear to be
PRA and Pﬁl' We also argued that these multinomial procedures could
actually be viewed as nonparametric procedures; thus, they should be
attractive to simulators. Various augmentations for use in the
simulation environment were presented. This interesting problem
remains an active area of research from the points of view of both

statistics and simulation.
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