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ABSTRACT

Design by constraint is a powerful approach to improve CAD systems and
designer productivity. This paper addresses the topic of incorporating integration
constraints concerning object mass and inertia in a CAD system. Two classes of
generic objects are discussed that contain affine and conformal images of a given
solid, usually derived from the initial design solution. Domain-derivatives are
partial derivatives needed to solve the existence problem of an object instance
satisfying all constraints and, eventually, to find an optimal design solution. In
the paper it is shown that these derivatives are closely linked to the topology of
the solid. They are symbolically expressable as integrals over domains having a
lower geometrical dimension than the original solid.

1. Introduction

In engineering design activities, one of the main tasks is to determine a suitable shape for a set of
design components. The actual problem usually consists of finding suitable dimensions and positions for
the design components, whose primitive shape is suggested by the professional practice or by previous suc-
cessful designs. In most problems the actual shape of a component is itself not important, but because it
determines the static and dynamic behaviour of the object component, as well as its geometric relationships
with other components in a complex assembly.

Traditional engineering design procedures are exceedingly iterative. A rough initial design, having an
approximately dimensioned shape for each component, is subject to various inspections, and some dimen-
sions are eventually modified. Then another set of checks is performed that usually lead to a new dimen-
sioning phase, and so on, in a trial and error verification process. Such a cyclic procedure may be very
expensive and time wasteful. When one component is changed, adjacent components may also have to be
modified to maintain design integrity, leading to a theoretically endless process of modification. Such a
process is actually bounded by the maximum time and cost allocated for the activity, and it is usually shor-
tened by good professional designers. |
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In recent years, Computer Aided Design (CAD) techniques have successfully reduced the design
effort by allowing explicit declaration of functional and geometric constraints to be satisfied by the design
solutions, and various prototipe CAD systems that partially automate the dimensioning of 2— and 3-D
objects have been developed*:6:3,

Design by constraint is performed by identifying, in a class of parameterized object instances, the
one that satisfies all constraints. In the oldest approaches to the parametric design, that Requichal®
denotes as primitive instancing, the object families were used mainly for representational issues, without
exploiting the involved problem-solving capabilities. Instead, the most interesting feature of generic or
parameterized objects is their capability of maintain functionality while varying in dimension!0.

Most of the work on the automatic dimensioning and positioning of parts in an assembly is related to
the pioneering work of Sutherland 20 and Ambler and Popplestone!. Automatic dimensioning and posi-
tioning where then exploited by?:16,14, The Light and Gossard 16 method, called variational geometry, ..
introduced the dimensioning of a geometric model through the solution of a simultaneous non-linear sys-
tem of equations. The only integration constraint allowed in this approach concerned the shape arca. In
Leel4 some concepts from Ambler ! and Gossard!6 are implemented for computing the spatial relationship
among the components in an assembly. More recently, design by constraint using Prolog 2,6 has been

experimented.

This paper addresses the topic of incorporating in a CAD system the integration constraints concern-
ing the required values of either mass and inertial properties of the design. Both in traditional design pro-
cedures and in the most of currently used CAD systems, the evaluation of inertial properties is performed
on the current design solution, by using approximated numeric methods. Only recently, closed formulas
that allow for the symbolic evaluation of inertial properties of linear non-convex polyhedra where given by
Lien and KajiyalS and, independently, by Cattani and Paoluzzi’, by using the Timmer-Stern method?1,17,
Section 2 is therefore dedicated to recall the mathematical background and symbolic formulas for the iner-
tia of polyhedrons. In section 3 we analize two different objectdassaconapondingtoagivengeneﬁc
object shape. The first class is that of objects obtainable as affine images of a generic object representative
of the class, usually an initial shape solution. 'Ihesecondclassisthatofco;fomalimagesofthegencric
object. In section 3 characterizations of affine and conformal objects classes are presented and relationships
between inertial properties of different object instances for both classes are given. Such relationships may
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beusedtovedfythem‘mnceofanobjectinstancesaﬁsfyingagivensctofintegmlandgeometriccon-
straints by transforming each of them in an equation, usually non-linear in the design parameters, and
looking for their simultaneous solution. If the set of real simultaneous solutions of constraints contains
more than one element, i.e. more than one feasible object instance, it is possible to look for optimal
design. For instance the object mass, or the object inertia, or the object external surface may be minim-
ized. Some examples of optimal parametric design problems and the relative statement of inertial con-
straints will be presented in sections 5.

We show in this paper that volume integrals concerning inertial constraints can be expressed as non-
linear polynomials in the design parameters. Hence, both in deciding about the existence of feasible
design solutions, and in looking for global or local optimum design, it may be necessary to arrange a sym-
bolic expression of their partial derivatives, or to evaluate in suitable points the gradient of the objective
function or the jacobian matrix of constraints.

If the design problem concerns the finding of a feasible conformal object instance, the partial deriva- -
tives of volume integrals are expressible as low-degree polynomials in the design variables, but with coeffi-
cients that are, on the contrary, very complex expressions of the position of vertices of the generic object.
Section4istﬂercforededicatedtothesmdyofgeometricproperﬁmofadassofparﬁaldeﬁvaﬁvaof
volume integrals, that we call domain-derivatives, with the aim of avoiding the necessity of invoking a sym-
bolic algebraic manipulation system when looking for a feasible or optimal object instance.

Our main result, in studying domain-derivatives of volume integrals, concerns their property of being
computable as integrals over domains having a lower geometrical dimension than the original solid. Itis
interesting to discover that the domain-derivatives are closely linked to the topology of the solid. In partic-
ular, we prove a set of theorems showing that the first, second and third derivatives of a volume integral,
with respect to the displacement parameters, (when non-zero) are respectively equal or proportional to:

(a) a surface integral of the integrand function g over a face of the integration domain;

(b) a line integral of g over an edge of the integration domain;
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() the value of g, evaluated on a vertex of the integration domsin.

Such theorems, together with the formulas (3-5) of section 2, give a very simple and computationally
efficient way for arranging symbolic expressions for domain-derivatives. Moreover, the theorems are very
general, as they hold for every volume integral over a polyhedral domain, and for each kind of integrand
function. Their validity is consequently not restricted to the derivatives of inertial properties of a physical
object.

2. Mass and inertial properties

Mass and inertial properties of solid objects are defined as volume integrals of some very simple and
low-degree polynomial functions, always the integration being done over the portion of the 3-space occu-
pied by the object under consideration. If P is the solid, then the mass M(P), the first moments M. (P),
M,(P), M,(P), the second moments M_(P), M,(P), M.(P), and the products of inertia M (P), M,,(P),
M_(P), are defined as

IS .I pGy2)dm=[[ .}[ p(xy.2) pxy,2) dV )

where p(x,y,z) is the local density of the solid, and the function p(x,y,z) is respectively equal to: 1 (mass);
x, y, z (first moments); x2, y?, 22 (second moments); xy, yz, zx (products of inertia). The coordinates of
the centroid x;(P), yo(P), zg(P) are then defined as M, (PYM(P), M, (PYM(P), M, (PYM(P). The
moments of inertia with respect to coordinate axes M2(P), M%(P), and MZ(P) are in turn defined as the
integrals of the square distances from the considered coordinate axis and are constructed, respectively, as
M, (P)+M,,(P), M(P)+M(P) and M, (P)+M,,(P).

Very frequently the density p of the solid can be considered constant. In this case the solid is said to
be homogeneous, and the density term can be expressed outside the integral. Notice that for homogeneous
solids the position of the centroid doesn’t depend on the density, but only on the geometry of the object.

Analogousapr&siommusedfmdeﬁningthemmmdinerﬁdpmpaﬁaofﬁnumdsmfmin
the 3-space. These are evaluated by means of line or surface integration, using exactly the same integrand
functions we have seen for the solid case. In8 and’ exact and closed formulas for the evaluation of line,
surface and volume integrals of general trivariate polynomials over linear and regular 1- 2- and 3-
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polyhedrons in 3-space are given. In particular, in 7 it is shown that any such integral may be computed as
a linear combination of the following terms, called structure products:

!x‘y’z’dl or [[xyvdS or [ffxPzrav 2
1 Pi P)

where P,, P, and P, are respectively a polygonal path, a polyhedral surface and a polyhedral solid; a, B
and y are non-negative integers. Some pretty resolution formulas for structure products’ follow:

{x‘iya21 dl = (3)
=’§Ilv -w,ll S (z)x“"' (x4 —x)" é (E] Pk (yi1— )“i [)z’-l (41— )l"_l"—"
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. 1 hﬁﬂg"-q-' (h+k+l+1—p—q—r) (=1y
h+k+l+1-p—g-r s=0 s s+p+q+r+1

In the above formulas, v, = [x; y; z] is the position vector of the vertex v;; the number of vertices in
the polygonal path P, is n+1; f is the generic face of the polyhedral surface P, and of the boundary 8P, of
the polyhedral solidP3;u,+1isthenumbetofverﬁmaromdthefacef;n(f)isanexternalno;malvector
to f. Furthermore, for the sake of precision, the position vector v; should be written in egs. (4) and (5) as
v, =[x Yyt z¢, and read as the i—th vertex in a circular and counterclockwise ordering around f. If mul-
tiple connection of faces is allowed, f should correspond to the single boundary loop, oriented counter-
clockwise if external and clockwise if internal to another loop. Only one level of loop nesting is allowed.

‘In order to state optimization problems for the design of a physical object, it is useful to express the
whole set of inertial properties in a compact matricial form:

M(P) = ©)

RS

=

TRXXX

"i n& ".‘F hg
T XXX

This matrix contains ordinately the first and second moments, the products of inertia and the mass of the
object P. In the following we prefer, for homogeneous objects having constant density p, the notation:

M(P) =pI(P) , ™

where I(P) = [i,], with A ,k=1,...,4. This matrix contains the geometrical features of an (homogeneous)

object, and does not depend on the object’s density or material.

3.  Affine and conformal object classes

In this section we present two different useful object classes corresponding to a given generic object
shape. The first is that of objects obtainable as affine images of the generic object representative of the
class. The second class is that of conformal images of the generic object. Both classes can be used in
parametric design. In the following we show how the inertia of an affine object instance is related to the
inertia of the corresponding generic object. Then we will see how to express symbolic expressions of
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integral properties for conformal images of the generic object.

3.1 Affine transformations of objects

Aﬁnewmafanmﬁommdeﬁnedmthemposiﬁmofaumslaﬁonandaninverﬁbleﬁmu
transformation. It is well known that such transformations of 3-space can be represented as linear transfor-
mations in the space R¢, by using homogeneous coordinates and, for convenience, a normalized represen-
tation of vectors. If vectors are represented as column, then the fourth row of the normalized matrix of
an affine transformation is always [0 0 0 1].

We want to discuss now the relationship between the mass and inertial properties of an affinely
transformed solid object and that of a similar, but untransformed object. In particular, Theorem 1 below
shows that inertial properties are computable as linear functions of the properties of the untransformed
object (considered variable), if the transformation is fixed; or they are computable as ratios of polynomials
in the coefficients of the affine transformation matrix, if the values of the inertial properties of the
untransformed object are fixed and the transformation is unknown.

Let P be the 4Xm matrix containing, arranged by column, the position vectors of vertices of the
polyhedron P, and let I(P) be the 4x4 matrix (7). Then the following theorem holds:
Theorem 1 I:thethematxixofanafﬁneu'amformaﬁonandPQbethctransformed

object (P, = Q P). Then:

1(Pp) = 1 det Q™! QI(P) Q. ®)

This theorem is a generalization of those given in Mechanics under the names of Rotating axes |
theorem and Translating axes theorem12:11, both valid only for rigid transformations. Theorem 1 allows not
only translation and rotation of the space, but also scaling and stretching. We will see that in problems of
affine optimization (see section 5) we are mainly interested in properties of this kind. In particular,
Theorem 1 allows the existence problem to be solved when looking for affine instances of a generic object
satisfying inertial constraints.



3.2 Conformal transformatisas of objects

The statements in section 3.1 hold for any object, because they operate on the space in which the
objects are embedded. At the contrary, this subsection will concern only polyhedral solids; an extention to
more general objects is under study.

Let 7, be a regular linear polyhedron, and F, be the set of its faces, with n=#F;. Then let P be
another polyhedron, with the same topology of P, and derived from it by allowing translation of planes
containing the faces. In this case, if A;x + By + C;z + Dy = 0 is the cartesian equation of the face
fo€ Fg, with unit external normal n;, then the corresponding face f; of P has equation:

D
[xyz]-n,=v——°‘—+h,. ©®)
A}+B}+C} _

where h, is the signed distance between the planes containing fy and f;, respectively. In the following we
shall call such parameters face displacements. If the face displacements maintain the topology of the
polyhedron, i.e. if the boundary of P is described by the same number of vertices, edges and faces of Py
and by the same incidence relations among them, then we can consider the polyhedron P as a function of
the original polyhedron P, and of the face displacements A;:

P=HPyhy,: -, h,) (10)

It is easy to see that P is the result of a conformal transformation of P, because all angles, planar in
the 2-dimensional case and solid in the 3-dimensional one, are invariant. For a pictorial representation of a
two-dimensional example, see fig. 1. An example with two different conformal images of a 3-dimensional
polyhedron is shown in fig. 2.

- ]

figure 1.  conformal instances of a generic 2-D object
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Such an object class, containing homeomorphic and conformal images of a given polyhedron P, will
be called conformal object class. A conformal object class is parametrized by the set of face-displacements
h, i=1,...,n. The mapping between object instances and tuples of face-displacements is not, unfortunately,
bijective, because while each well-formed object instance corresponds to a different tuple of parameters,
the converse is not always true. As a matter of fact, the object corresponding to a given tuple of parame-
_ ters might self-intersect, and so not maintain the object class topology.

0\ &

figure 2.  Three conformal instances of a generic 3-D object

The necessity of avoiding self-intersections is the main problem arising in the practical use of the
conformal transformations. This problem is not dramatic when looking for optimal object instances,
because usually an initial solution is known, and the optimization process may proceed choosing a better
feasible solution at each step. In this case it is sufficient to verify that self-intersections don’t arise at each
step, suitably modifying the decision criterion.

In order to obtain an explicit relationship between the known values of the inertial properties of the
class representative object P, and the unknown values of its generic conformal image
P =H(Pg hy, - - -, h,), it is sufficient to substitute, in the formulas (3-5), the coordinates of the object
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vertices, whose inertial properties are to be evaluated, with an expression containing explicitly the coordi-
nates of P,'s vertices and the face displacements k;. Such a substitution is suggested by the following
Theorem 2.
Let ayx+byy+c,z+d,=0 be the cartesian equation of one of the faces incident on the vertex v;,
and
G Gy a4y
A= | by by by
Cin Cu Cu
be the matrix of normal vectors to three linearly independent planes, containing faces incident on v;, and
d, = [d,, d; d;]. Then we have:
Theorem 2 Position vectors v; = [x; y; z;] of the vertices of a polyhedron under a confor-
mal transformation, and displacements k; of faces incident on vertices, are linearly related:

v =Rb+s (11)

where b, is a vector containing the displacements of three non parallel faces incident on the vertex v,,
R, is a 3X3 matrix of constants and s, is a vector of constants, with s, = —A,”'d, and

R, = -AAJ oA,
The operation denoted as o is specified as follows:

1
(by- €)? (if h=k)
0 (otherwise)

BoC = [d,] , with dy = (12)

where b, and c, are the h-th row and the k-th column of B and C, respectively.
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4. Domain-derivaiii3 of a volume integral

Inertial constraints are symbolically expressed as non-linear equation in the design parameters. So,
both in deciding about the existence of feasible design solutions, and in looking for global or local
optimum design, it is necessary to arrange a symbolic expression of their partial derivatives, or to evaluate
in suitable points the gradient of the objective function or the jacobian matrix of constraints (see appendix
1).

If the design problem concerns the finding of a feasible conformal object instance, such derivatives
are expressible as low-degree polynomials in the face displacements, but with coefficients that are, on the
contrary, very complex expressions of the position of vertices of the generic object P This section is
therefore dedicated to the study of geometric properties of a class of partial derivatives of volume
integrals, with the aim of avoiding the necessity of invoking a symbolic algebraic manipulation system
- when arranging symbolical derivatives of a volume integral.

Consider, first of all, a volume integral over a polyhedral domain P in 3-space:

Glg.P) = [ 8.y, 1)V (13)

The integral G exists if g is continous (or sectionally continous) in P. If the integration domain is a confor-
mal image of another domain, i.e. if P depends on an initial volume P, and on the orthogonal displace-
ments hy, . . ., h,, then the integral [3] becomes a composite function of g, P, and h;:

G(S,P) = G(89 H(POs hl’ L] hn))' (14)

A partial derivative of a volume integral G with respect to some face-displacement A is called a
domain-derivative. In the following we will study the properties of the domain-derivatives of G, having
fixed the integrand function g and the integration domain P,

Our main result, in studying domain-derivatives of volume integrals, concerns their property of being
computable as integrals over domains having a lower geometrical dimension than the original solid. In par-
ticular, the following theorem states that a first order derivative of a volume integral is a surface integral.

Theorem 3 The first domain-derivative of the volume integral of a continous function g

with respect to a face displacement h;, is equal to the surface integral of g over the displaced face f;:
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2 ([f gty ) av = [ g(z,y,2)dS . 1s)
ok, 7, 7

Another result states that a second order domain-derivative is proportional to the line integral along
the edge shared by two displaced faces. Their ratio will depend on the relative slopes between the faces
andthe'commonedge.Theraﬁoassummamaximumvaluewhentbctwofmareorthogonal, and it is
zero when the faces are coplanar:

Theorem 4 The second domain-derivative of the volume integral of a continous function

g, with respect to two different face displacements k; and A, is either: a) zero, if the faces f; and f;

are not adjacent, or b) proportional to the line integral of g over the edge e, = f; (M f;:

0 N =9)

62
JIJ s, y,2)av = 16)
ah,ah, P n; eﬂxnj f g(x, Yy, Z) dl (ffinfj = eﬂ)
‘s

The following corollary specifyies the physical meaning of the constant ratio between a second order
domain-derivative and the line integral along an edge: it is equal to the sin of the oriented angle between
the two considered faces. '

Corollary 4.1 A non zero second domain-derivative (with respect to two face displace-
ments) of a volume integral, is equal to (the product of) the angle between the normals to the faces,

times the line integral along their common edge .

3G
ah;dhy

=sinay [ gz, y,2)dl  (f f;Nfi=¢) 17
‘x

Corollary 4.2 The second order domain-derivatives of a volume integral G are indepen-
dent from the ordering of the derivation:

3G _ 8G
ahdhy ko (18)

The corollary 4.2 states a symmetry property important for the structure of the Hessian matrix of a
volume integral. From this result, the continuity of both first and second order domain-derivatives follows

trivially.
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Coroflary 4.3 First and second order domain-derivatives of a volume integral are con-
tinous.
And, finally, the following theorem relates the value of a third order domain-derivative to the value
of the integrand function evaluated on a vertex of the integration domain, and to the relative slopes
smong three displaced faces incident on the vertex.

Theorem § The third order domain-derivatives of the volume integral of a continous func-
tion g, with respect to three different face displacements h;, h, and h,, are either: a) zero, if the faces
[, fyand f; don’t intersect in a vertex, or b) proportional to the value of the integrand function g

evaluated on the common vertex v,;:

0 E LN = D)
o I sy v =1 . 19)

ah,ahjahk Sina i
T ey, A= )

The theorems we have shown in this section are interesting for three different reasons. First of all,
they model formally the designer’s intuitive understanding about the rate of change of the mass and iner-
tial properties, when the shape of the designed object is subject to local changes. While it is very easy and
natural to imagine that the maximum volume increment of the object is obtained by translating the face
having maximum surface, for other more complex properties, also involving distances of the object’s
points from coordinate planes, the answer is not so intuitive. The theorems we have given help to bal-
ance, intuitively but correctly, the contributions of the sizes of the modified faces, with those of the rela-
tive slopes of the adjacent faces, and those of their average distances from coordinate planes. Secondly,
such theorems, together with the formulas (3-5), give a very simple and computationally efficent way for
arranging symbolic expressions for domain-derivatives. Last but not least, the theorems in this section are
very general, as they hold for every volume integral, and for each kind of integrand function.
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s. Design =n2 sptimization

We show ia this seciion how mass and inertial properties may be used to define both the constraints
andlor the objective function of a mathematical optimization problem, in order to find a feasible or
optimal object instance in physical object design problems. We assume that an initial value for the shape
of the object to be designed is given, whereas the elements of an affine transformation matrix, to be
applied to the shape to be optimized, are unknown, and will be considered as design variables. We call
such a problem affine optimization problem (AOP).

In stating an affine optimization problem, many different situations may arise. In the simplest case,
only one homogeneous object (a) has to be considered; in a slightly more complex situations, only one
object has yet to be considered, but it is made of different homogeneous parts having different densma
(b). In the most complex situations, the design problem may concern the optimization of a complex assem-
bly, either made of homogeneous objects (c), or with some object eventually constituted of parts with dif-
ferent densities (d). In the cases (a) and (b), only one unknown transformation matrix is sufficient,
because every part, as the whole space, will be subjected to the same transformation; in the cases (c) and
(d) a different transformation matrix for each object in the assembly will be necessary.

In the following, we state the affine optimization problem for the most complex case, taking into
account an assembly with more then one homegeneous part in each component object. So, we will indicate
an assembly as a set of homogeneous parts {O;}, where the indexes refer to the j—th homogeneous part of

the i—th component object (i=1,...,N).

5.1 variables and objective functions
The design variables are the elements of the 3X4 superior submatrices of the matrices Q; of unk-

nown affine transformations associated to the N objects of the assembly to be optimized. So, in a AOP
there are 12N scalar variables.

The quality functions to be extremized will usually concern some integral qualities of the design or
some weighted combination. Three examples of such kind of objective function follow:

minimum mass

NN
min 7 = 33 oyfff v @)

jmijmi
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= 2 IdetQ,I~ 12 Py % Iy afs = 2 IdetQ,!™ 12 Py fyus

im]

minimum polar moment
min z = gzl ruf S f (2+y*+2%) dV - (21)

—‘El'dﬂQ:' lzpu(‘hﬂu%*‘hzlu‘hz‘*%lu%]

= ‘_21 IdetQ,I ™| q; 2 Py ly] qf+ ‘hz[z Pulu] ab+ ‘113[2 Py lu] a}
min 2= 33 [ =33/ s - 3 tm:-lz S @)
i=1j=1" 5C30, imj=1” 5C30

In the above equations, Q, is the i—th unknown matrix, I, is the 4x4 matrix of constants (7)
evaluated, by using the formula (5), on the initial design solution; p; is the density of the design com-
ponent Oy, assuming homogeneity; qy, is the k—th row of the unknown matrix Q,.

It is important to note that the initial design solution has two main roles: to define the topology and
some geometric invariants of the shape that will not change during the AOP solution process. In particular,
the ratios between distances of points of the same object will not change: if v,,v,,v. are the position vec-
tors of any three points belonging to the same object, then (v,—v,)%(v.~V,)? is constant under any affine
transformation. So, the optimal solution is obtained by translating, rotating, scaling and stretching the ini-
tial one, but maintaining in any case some similarity with the initial shape.

The integral objective functions we have shown are, at most, rational functions of seoond degree in
the numerator and of third degree in the denominator, in the unknowns g, 1<i<N, 1sh<4, 1=sk<3.
As a matter of fact IdetQ;! is an unknown polynomial of degree 3; this follows from the fact that the 4—h

row of an affine transformation matrix is the unit vector.
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5.2 Integration constraints

Each mass and inertial property (6), either of an elementary part Oy, or of a single component
object 0,=J,0y, or of the whole assembly, may be forced to assume a fixed value or to satisfy an ine-

quality constraint:

miis < my, = |det Q1! py qy I,qf s MJF (1sisN,1sjsN,1sh=4,1<k=3) (3)
or
N,
mifin < my, = Idet QI™1 qu| Y pyly| ol = M (1sisN, 1sh=4, 1=<k=3) (24
j=1 -
or
N N Mo
mE s Fmy, = 3, 1det QI qu | X pyly | af = ME™ (1=h=4, 1sk=3) (25
jm]1 im1 j=1

where my,,, my,, my, represent, respectively, the A,k clement of the inertia matrix relative to the assembly
part Oy, to the assembly component O;, or to the assembly as a whole. Correspondingly, m™® and M=
represent minimal and maximal feasible values for the property h k.

Of course, other constraints involving integration properties could be built up, to guarantee the
design solution matches all the design goals. For example, in order to guarantee the static equilibrium of
the component O,, the coordinates of its centroid might be confined to remain inside a restricted region:

y, N
21 Py ia 21 Py Iy
x5, S H—— = 1t QI g 4 ——afi S Xg (26)
> Py iyaas > Py Tya
&Pl &Pl
N, N, _
21 Py lip2s 21 Py Iy
Yg, = 1.,,,—— = Idet Q™! qu#— LHED £ 27
2 Py iyas 2 Py Ty
j j=1

The boundary values xg, yG, Xg, ¥, might be expressed, in turn, as functions of the transformed
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positions cf some vertex belonging to other components of the assembly.

5.3 Geometric feature constraints

Together with integral constraints, othcrldndofgwmeuimlwmtaintsmaybon@arymobtain
the correct object solution. Specific knowledge about the desired geometric properties of the design solu-
tion can be easily transformed in specific constraints in the AOP. Such constraints may a) directly involve
geometric features of feasible object instances or b) apply to the unknown transformation matrices, and
constrain their structure, and, as a consequence, the shape and position of the assembly. The constraints of
first type, studied by Ambler and Popplestone! and Leel3,14, usually concern the required spatial relation-
ships between pairs of components of the assembly. They are referred to as against, fit and hinge con-

straints.

"Against” constraints

'I‘wofminobjectso,andojmaybeconsu'ainedtorunaincoplanar,byfordngtheirexternalnor-
mal vectors to be opposite, and forcing one point of the face of O, to belong to the plane for the face of
0;. Such constraints can be expressed as follows:

Q (V=X (V=¥ = —Q (V1 =) X (Vo= V;0) (28a)
det [Qv;o Qv Qv Q] =0, (28b)

where vy, v;;, V;; and vy, V;;, V), are two suitable triples cf points from the considered faces. The equa-
tion (28a) states that the normals to two given faces must be opposite after the transformation; the equa-
tion (28b) constraints one transformed point of O; to belong to the transformed plane for v, v;;, V5.

"Fit" constraints

If two axes, belonging respectively to objects O; and O,, have to remain aligned, as in the case of a
solid cylinder that must fit inside a cylindrical hole, the following pair of constraints can be applied, which
state the alignment between a pair of points v;, v;, in O, and a pair v;;, v;; in O;:

Q (v~ V)X Q(v,—vy) = 0; (29a)
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Qv — Q)X Qi(vi2—viy) = 0; (29b)

"Hinge" constraints

Two objects may be forced to share a common vertex, or a common edge, in order to model a ball
and socket or a hinge constraint: such modeling may be carried out by stating the equality of one or two
pairs of transformed points:

Qvy = Qvp; (30a)
Qv = Qvp; (30b)

In the first case (ball and socket constaint) only one vector equation will be necessary; in the second case
(hinge constraint) both equations are needed.

Matrix constraints
Some constraints of the second type, concerning the required structure of matrices Q;, might be

exprssedbyfordngthcconsidetedunknownmanixtobeequaltotheprodm:t,inagivenorder,ofothex'
matrices representing elementary linear transformations. For example, the matrix Q; could be constrained
to represent a scaling transformation with parameters s, s,,, 5,;, and fixed point x;q, y,0, Zio- Such con-
straints can be expressed in the following way:

100 x5, O 0077100 —x4

010y Os,yOO 010 -y

Q=lo01z||lo 0s,0[[lo01 -2
0001|flo 0oo0o1|]ooo 1

or, equivalently:

911 = Sie s 92 = Sy > 933 T Siz >
ana = xo(1=5) 5 Q24 = le(l—sfy) 5 Qe = Zi(1=s,) 5

=3 =9 =98 =4qn =45:2=0.
In the same way, Q; may be forced to represent a general rotation, by imposing:

¢ =¢=63=1919 =984 =9 983 =0
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Obviously, any other kind of geometrical constraint might be applied, being careful to express each
relationship between transformed coordinates. For example, a constraint on the desired distance d
between a couple of points v;, v, belonging to the same object i will be written:
Q= v) QG- =d

APPENDIX 1

Nonlinear optimization
The standard form for mathematical optimization problems with both nonlinear objective function
and with nonlinear inequality constraints is:

maximize: z = f(x), subjectto: g;(x) <0 (1si<m) ' (31)

where x = [x,, X5, . . . , X,]. Minimization problems are reduced to form (31) by changing the objective
function f(x) to —f(x). Analogously, constraints of the form g,(x) = 0 are easily reduced to the to the )
standard form (31). If slack variables x2,,, x2,,..., X2, are added to the left sides of the constraints,
then each inequality may be converted to an equality, reducing the problem (31) to the standard form with

equality constraints:
maximize: z = f(x'), subjectto: g';(x') =0 (1<i=m) (32)

with X' = [Ryye0y Xys Xps190es Znsmls a0d g'i(x") = g;(x) + x2,;. The Lagrangian function, L, is defined as
a linear combination of the Lagrange multipliers \; with the objective function f(x), the original constraints
g;(x) and the slack variables:

L) = 1) = 3 M [aw) + 2] (33)

If the system of the Kuhn-Tucher conditions:

= =0 (j=1,....n4+m)
3_5, =0  (i=1,..m) (34)
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admits solutions, then one of them will be the solution to program (31), iff f(x) and each g;(x) have con-
tinous first partial derivatives.

One of the most frecuently used procedures for solving the problem (31) is the method of feasible
directionsS, appliceble only if the region of feasible solutions has an interior, i.e. if any pair of inequalities
in (31) isn’t derived from the conversion of an equality constraint. To apply this method, it is necessary to
evaluate in suitable points the Jacobian matrix of constraints, defined as the mXn matrix

= %j’-] (1=i=m, 1sj<n), @5
/)

and the gradient of the objective function:

Vf = [;"’g] (1sjsn). (36)

In concluding this synthetic summary ot some main concepts of non-linear optimization, we remark
that quite all methods of solution of non-linear problems may require either the knowledge, in closed
form, of derivatives of the objective function and/or the constraints, or the numeric evaluation of such
derivatives in suitable points. For this reason the main part of this paper is dedicated to the study of
domain-derivatives of volume integrals, that we claim can be used to constrain practical problems of
parametric design of physical objects.

APPENDIX 2

Proof of theorem 1
The proof is given only for two elements of the matrix I(P;). Analogous derivations could be given
for the other matrix elements. '

a) At first, we want to show that
iu(Pg) =1det Q" q, I(P) qf G7N

whereq,,isthcfourthrowofthematrixQoftheafﬁnet‘ansformaﬁon. By definition of mass, we have:
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i) =fJ _’[ dv (38)
[]
and, by exchanging the integration domain, according to the transformation represented by the matrix
Q1, J being the Jacobian of the linear transformation:

i“(PQ)=ff£lJ|dV=IdetQ‘llff{dV. (39)

Then, for a property of determinants: iy (Pp) = | det Q™! iy,(P). As for an affine matrix the fourth row
is always [0 0 0 1], the eq. (37) derives immediately.

b) Secondly, we want to show now that
i (Pg) = 1 det Q™! q; I(P) qf. 40)

Remember that we have, for the position vector, v/ = [x' y’ 2 1]T = Q'v; so, by definition of second -

moment:

inP) = [ff ;[ x'2dv (41)
Q

and, by substituting the coordinates and the integration domain after having applied the affine transforma-

tion Q:

iyy(Pp) = ff.[ (qur+a1y+a1z+q:1% | J 1 dV (42)

=1det Q7 ffJ [ @+ a)+ (@ + 4,04 20+ 4@+ ar) |

= | det Q17! [ ghiyy (P)+ahoin(P)+ahin(P)+q3i(P)
+241,q12i15(P) +2412913i3(P) +2411413615(P)
+24,,q14i1(P)+291291452(P) +291391453(P) ]

and, recalling that I = I7 and then iy, = i, we can write:

4 4
ij)(Pg) = | det Ql_lizuzl qy iy(P) gy = 1det Q" q I(P) qf © (43)



Proof of theorez: 2
The system of the equations of three generic planes parallel to the original faces for the vertex v,
may be written as A;v, = —d*;. Therefore, if the planes are linearly independent, the position vector v; of

vertex v; in dispiaced position is
v, = —Ald%, (44)
with

Py
a*y = dy + (a2 +by2+c,?)? hy (1sjs3) (45)

(S

where d; (a,+b,?+c,?) 2 is the distance from the origin of the original plane for f,, and hy= h; the

face displacement in the conformally transformed object. By arranging face displacements in vector form
and by substituting (45) in (44), linear equation (11) is directly obtained. O

figure 3.  The volume AP,, corresponding to a displacement A, of the face F;.

Proof of theorem 3
By the definition of partial derivative and by the property of domain-additivity of integrals, being
P =Py |J AP;, and P (N AP, = J, we may write:

G(P) - G(Pg)
hy

3G _ ..
S = lm (46a)
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G(Py) + G(AP;) — G(Pq)

B h (o)
_ .. G(AP;)
= 9
So, recalling the expression (13) for G, we have:
&= lm o JIf sy “n

oh "H’ hi

Now, observe figure 3: the volume increment AP; corresponding to a single displacement A, has two paral-
lel faces, namely f;; and f;, and hence the volume integral in (47) may be computed as an iterated integral
of the following kind:
hy
-gf—'=}.i‘rgili-{[ff£)g(x,y,z)d$]¢ﬁ . (48)
where f(h) is a generic planar surface between fy, and f;, and dh is a line differential in the direction
orthogonal to the surface. For fixed g and Py, the integral inside brackets in (48) is a function of A, and

we may apply the mean-value theorem for integrals, and derive the following expression, the surface
integral being evaluated over a suitable planar surface f(k) at distance & from fy;:

G _ym L hy
oh, }f}g A ff_(l;_)g(x,y,z)dg ["]0 , (49)
Therefore, we have:
— = lim x,y,2)dS 50
ah, Hff.(%s( ¥ 2) (50)

And, for the continuity of integral in (50) with respect to the variation of the integration domain:

== sy o (s



Proof of theorem 4
The two faces f; and £}, corresponding to the displacements h; and 4;, may be either disjoint or inter-
sect along the edge ¢;;. In both cases we have, by theorem 3:

G _ 3
ahiahj - ah‘ f‘{ 8(1, Y 2)dS (52)

figure 4.  Variation AF, of the face F; for a displacement h, of the adjacent face f,

Part a) If faces f; and f; are not adjacent, the surface integral in (52) is not affected in any way by the

displacement of face f;, so we have:
% (function not dependent by h) = 0 .
i

Part b) If faces f; and f; are adjacent, consider figure 4, and observe that, by definition of partial deriva-
tive, we have to compute a surface integral over the region Afj;, adjacent and coplanar to f;. Notice, from
the figure, that f;, = f, | Af), and that f; () Afy = . Hence, by definition of derivative:

3 . SCf)—=S(5)
a_h‘.r{g(xsy’z)dg_}.‘;% hi ’ (53)

where S(f) = [ [ g(x, y, z) dS. Therefore, for domain-additivity:
J]

J

3G _ ., S(Af)
ahdh, l;.',‘% h, ’ (54a)
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I |
=lim — X, y,2)dS 54b
i h‘f&lf;g( ¥, 2) (54b)
At this point, observe that the face increment Af), is a trapezoid (see figure 4) with base e; and heigth A,.
So, it is possible to solve the integral in (54b) by the iterate method, as a summation of line integrals over
lines e(h) parallel to ej;:

G
ah;ah h,«c h, f :(';.) 8,7, z)dl]dh ) 53)

Lot i [ sy (56)

where 0 < h =< hy,. Finally, it is easy to see that hy, is the projection of the vector h;n, in the direction of
the vector ;Xa,, being e, the unit vector in the direction of the edge ¢;;, oriented counterclockwise (for
the face f)):

hﬂ = hi n,- eﬁxnj . (57)

So, by substituting (57) in (56), we obtain:

3G _ . |
3h,dh, hm Dy XDy .'(';) gx,y,2)dl , (58)

and, for continuity of integrals with respect to changes in integration domain, we have finally:

3G
ahioh;

= 0y e Xmy sk, y,2)dl © (59)
2

Proof of corollary 4.1

From theorem 2, we have only to show that:

lll' eﬂXle = sin aﬁ N (m)
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where a is the oriented angie ixiween n, and n;. First of all, notice that e, is a unit vector, perpendicu-

lar to both unit vectors n, andnj,andthereforeitmaybecomputedinthefollowingway:

e = ann, = njxn,
A7 liyyxpyll  sin ay

And hence we have, by applying in (62a-62b) a theorem from vector calculus!%:

1
b, ;XM = — a5 n;: (o, Xn;)Xn,

smla,, n;- [(a: m)n; — (8- n)ny]

=1 — (m.-
= Sinaﬂ [1 (nl nj)Z]

-1 -
= e, (1 - cos?ay )

= Sinaﬁ o

Proof of corollary 4.2

Case a) If the two faces f;, f; are no adjacent, then we have, for the case a) of theorem 2:

3G _ G _, .
ahiah;  ahdhy ’

Case b) otherWise, i.f‘f‘ n -fj = eﬂ:

%G
3h;oh;

= Sinaﬁ fx(x,)’, z) dl
‘

= —sin ay- [ ~-J 8(x,y,2) dl ]

]

sin (—aji) f g(x,y,2)dl

€y

(61)

(622)
(62b)
(62)
(62d)

(62¢)

(63)

(64a)
(64b)

(64c)
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= sinay [ ¢y, D d (64D
‘v

- G

= Ghom (64¢)

figure 5. Topological and geometrical parameters involved in the displacement of three incident faces f,, f; and f,.

Proof of theorem §

In both cases we have:

3G _ 3 _3G
dhdhoh,  dh; 3hoh, )

Part a) Ifj}ﬂfk=ﬁthcn—i6—=0bytheoran4. Otherwise

PG _ o
oh,ohoh,  oh, !; 8(x,y,2) dl (662)
3 .
=a:- n not dependent by h)) = 0 . (66b)

Part b) Suppose, now,thatf,,,j}andf,intersectinthevertewi.Inthiscasewecanwritc,byvh‘tucof

theorem 4:

L(ey) —L(ey)
h‘ I

3
28 - L [4(x,y,7)dl = lim 67
:

dhohjok, ok
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where L(e) = [ g(x, y, z) dl. So, by using a demonstration scheme similar to that of theorems 3 and 4,
e

we have:
¥G  _ :
ak,oh,3h; i 3 L(Aey) (68a)
= lim L
im 3, J s n0d (685)
im 1 H
= tim - f 8ls(h), Y(0), 2(0) b (680)
4 0
1 by
= tim 2 86,3, 9 Ly [ ] (683)
Where 0 < h < hyy is a suitable curvilinear coordinate value along the edge increment Ae, ;. Therefore we
have:
_ G _ym P &, ,2) | (69)
Shohdh,  wa k507 A

From figure 6, we can see that h,; is the measure of the variation of the length of the edge ¢,;, under a

face-displacement ;. So, we have k,; = h; / n; ¢, and hence:

3G _ 1

sina
=82, 2) L = arapey £ D by, (70)
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