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To accurately predict the performance of physical systems, it becomes essen-
tial for one to include the effects of input uncertainties into the model system
and understand how they propagate and alter the final solution. The presence
of uncertainties can be modeled in the system through reformulation of the gov-
erning equations as stochastic partial differential equations (SPDEs). The spec-
tral stochastic finite element method (SSFEM) and stochastic collocation meth-
ods are the most popular simulation methods for SPDEs. However, both meth-
ods utilize global polynomials in the stochastic space. Thus when there are
steep gradients or finite discontinuities in the stochastic space, these methods
converge slowly or even fail to converge.

In order to resolve the above mentioned issues, an adaptive sparse grid col-
location (ASGC) strategy is developed using piecewise multi-linear hierarchical
basis functions. Hierarchical surplus is used as an error indicator to automati-
cally detect the discontinuity region in the stochastic space and adaptively refine
the collocation points in this region. However, this method is limited to a mod-
erate number of random variables. To address the solution of high-dimensional
stochastic problems, a computational methodology is further introduced that
utilizes the High Dimensional Model Representation (HDMR) technique in the
stochastic space to represent the model output as a finite hierarchical correlated

function expansion in terms of the stochastic inputs starting from lower-order



to higher—order component functions. An adaptive version of HDMR is also de-
veloped to automatically detect the important dimensions and construct higher-
order terms using only the important dimensions. The ASGC is integrated with
HDMR to solve the resulting sub-problems.

Uncertainty quantification for fluid transport in porous media in the pres-
ence of both stochastic permeability and multiple scales is addressed using the
developed HDMR framework. In order to capture the small scale heterogeneity,
a new mixed multiscale finite element method is developed within the frame-
work of the heterogeneous multiscale method in the spatial domain. Several
numerical examples are considered to examine the accuracy of the multiscale
and stochastic frameworks developed.

A summary of suggestions for future research in the area of stochastic mul-

tiscale modeling are given at the end of the thesis.
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CHAPTER 1
INTRODUCTION

Over the past few decades there has been considerable interest among the
scientific community in studying physical processes with stochastic inputs.
These stochastic input conditions arise from uncertainties in boundary and ini-
tial conditions as well as from inherent random material heterogeneities. To
accurately predict the performance of physical systems, it becomes essential for
one to include the effects of input uncertainties into the model system and un-
derstand how they propagate and alter the final solution. The presence of uncer-
tainties can be modeled in the system through reformulation of the governing
equations as stochastic ordinary /partial differential equations (SODEs/SPDEs).
The goal of my thesis is to develop an efficient computational framework that
accounts for uncertainties and the inherently random nature of various com-
plex systems which will give the researchers a new guideline on the analysis of

experimental results.

In the past decade, there has been tremendous progress in posing and solv-
ing SPDEs with the methods used usually classified into three major groups.
The first group refers to sampling methods. The most traditional one is the
Monte Carlo (MC) method. Its convergence rate does not depend on the num-
ber of independent input random variables. Furthermore, MC methods are very
easy to implement given a working deterministic code. However, the statistical
approach becomes quickly intractable for complex problems in multiple ran-
dom dimensions. This is because the number of realizations required to acquire
good statistics is usually quite large. Furthermore, the number of realizations

changes with the variance of the input parameters and the truncation errors



are hard to estimate. This has in part been alleviated by improved sampling
techniques like Latin hypercube sampling [1]. The second group of methods
consists of moment/perturbation methods, e.g. KL-based moment-equation ap-
proach [2, 3, 4]. These methods can deal with large number of inputs. However,
they are limited to small fluctuations and do not provide high-order statistics of

the solution.

Significant emphasis is given recently on the non-perturbative methods in
the third group. The first approach in this group for quantifying uncertainty is
the spectral stochastic finite element method (SSFEM) [5]. In this method, we
project the dependent variables of the model onto a stochastic space spanned
by a set of complete orthogonal polynomials and then a Galerkin projection
scheme is used to transform the original stochastic problem into a system of
coupled deterministic equations. These polynomials are functions of a set of
random variables £(6) where 0 is a realization of the random event space. In
the original work of Wiener [6], Gaussian random variables were used with
Hermite polynomials. Some of the early applications of SSFEM are presented
in [5, 7, 8, 9]. This scheme has been extended to include other random distri-
butions leading to generalized polynomial chaos expansions (gPC) [10]. The
gPC was successfully applied to model uncertainty propagation in various ap-
plications [11, 12, 13]. Error bounds and convergence studies [14] have shown
that these methods exhibit fast convergence rates with increasing orders of ex-
pansions. These convergence studies assume that the solution is sufficiently
smooth in the random space. Also, the computed absolute error may become
unacceptably large during long-term integration. In addition, when the solution
exhibits a discontinuous dependence on the input random parameters, the gPC

may converge slowly or even fail to converge. This is due to the global polyno-



mial expansion used in the gPC which cannot resolve the local discontinuity in
the random space, the well-known Gibbs phenomenon which occurs in spectral

decompositions of discontinuous functions.

Thus, more efficient and robust schemes are needed to address the presence
of discontinuities in the solution in the random space. In [14, 15, 16], finite el-
ement basis functions were used in the random space to approximate locally
the stochastic dependence of the solution. In [17], the authors have success-
fully applied this method to capture unstable equilibrium in natural convection.
The wavelet basis expansion method was also utilized to address this prob-
lem [18, 19]. The multi-element generalized polynomial chaos method (ME-
gPC) was introduced to address discontinuities in the random space while pre-
serving the convergence rate of the gPC method [20, 21, 22]. The main idea
of the ME-gPC method is to decompose the space of random inputs into dis-
joint random elements, then employ a gPC expansion in each element. All of
the above methods employ a Galerkin projection in the random space to trans-
form the corresponding stochastic equations to a set of deterministic algebraic
equations. The coupled nature of the resulting equations for the unknown co-
efficients in the spectral expansion makes the solution of the stochastic problem
extremely complex as the number of stochastic dimensions and/or the number
of expansion terms increase, the so called curse of dimensionality. In fact, compu-
tational complexity of the problem increases combinatorially with the number
of stochastic dimensions and the number of expansion terms. In addition, it is
required to develop a stochastic simulator, which is a non-trivial task especially

if the underlying ODEs/PDEs have complicated nonlinear terms.

There have been recent efforts to couple the fast convergence of the Galerkin



methods with the decoupled nature of MC sampling, the so called stochastic col-
location method. This framework represents the stochastic solution as a polyno-
mial approximation. This interpolant is constructed via independent function
calls to the deterministic problem at different interpolation points. This strategy
has emerged as a very attractive alternative to the spectral stochastic paradigm.
However, the construction of the set of interpolation points is nontrivial, espe-
cially in multi-dimensional random spaces. In [23], a methodology was pro-
posed wherein the Galerkin approximation is used to model the physical space
and a collocation scheme is used to sample the random space. A tensor product
rule was used to interpolate the variables in stochastic space using products
of one-dimensional (1D) interpolation functions based on Gauss quadrature
points. Though this scheme leads to the solution of uncoupled deterministic
problems as in the MC method, the number of realizations required to build the
interpolation scheme increases as power of the number of random dimensions.
On the other hand, the sparse grid resulting from the Smolyak algorithm de-
pends weakly on dimensionality [24]. Sparse grids has been applied in many
tields, such as high-dimensional integration [25], interpolation [26, 27, 28] and
solution of PDEs [29]. For an in depth review, the reader may refer to [30].
In [31, 32, 33], the authors used the Smolyak algorithm to build sparse grid in-
terpolants in high-dimensional stochastic spaces based on Lagrange interpola-
tion polynomials. Using this method, interpolation schemes can be constructed
with orders of magnitude reduction in the number of sampled points to give
the same level of approximation (up to a logarithmic factor) as interpolation on
a uniform grid. Hereafter, this method is referred as conventional sparse grid

collocation (CSGC) method.

Error estimates for Smolyak algorithm based stochastic collocation methods



have been given in [32, 33], where assuming smoothness of the solution in ran-
dom space they were shown to achieve fast convergence, similar to stochastic
Galerkin methods. However, it is noted that some stochastic sparse grid collo-
cation methods, e.g. [31, 33], utilize the Lagrange polynomial interpolant, which
is a global polynomial basis in the random space. Therefore, as is the case with
gPC that uses orthogonal global polynomials, these methods fail to capture lo-
cal behavior in the random space. To this end, we concentrate on stochastic
collocation strategies which utilize basis functions with local support, the same
idea as in [14, 15, 16, 18, 19, 20], in order to resolve successfully discontinu-
ities in the random space. In addition, we also seek for an adaptive collocation
strategy which can refine the sparse grid only locally around the discontinuity
region. It is noted that, for the current existing polynomial interpolation meth-
ods, e.g. [31, 33], the set of interpolation points are either Clenshaw-Curtis or
Gaussian quadrature points, which are pre-determined. So this leads to grids

with no substantial room for adaptivity.

Therefore, an adaptive framework utilizing local interpolant/basis func-
tions offers greater promise in efficiently and accurately representing high-
dimensional non-smooth stochastic functions. Towards this idea, the authors
in [20] proposed an adaptive version of the ME-gPC, where decay rate of local
variance was used as an error indicator to adaptively split the random element
into two parts along each dimension similar to the i-adaptive approach in the
deterministic finite element method. In order to utilize the decoupled nature of
the collocation algorithm, they later extended this method to the multi-element
probabilistic collocation method (ME-PCM), where tensor product or sparse
grid collocation is used in each random element [34]. Then the collocation so-

lution is projected back onto the PC basis such that one can employ the same



adaptive criterion as in ME-gPC. These are still dimension-dependent methods,
where the number of random elements increases fast with the number of ran-
dom dimensions. The same problem also exists for the Stochastic Galerkin [16]
and Wiener-Haar expansion [19] methods. Thus, there is also a need for an
adaptive framework that scales linearly (O(N)) with increasing dimensionality
instead of the (O(2")) scaling of current adaptive stochastic methods, where N
is the stochastic dimension. In Chapter 3, we utilize a piecewise multi-linear hi-
erarchical basis sparse grid interpolation approach towards adaptivity that ad-
dresses the issues of locality and curse-of-dimensionality. This borrows ideas di-
rectly from wavelet-based representation of functions [29, 35, 36, 37, 38], where
the coefficients of the representation are used as error indicators. However,
in [29, 35, 36, 37, 38], the multi-dimensional interpolation grid is constructed
through tensor product of one-dimensional wavelet expansions and therefore it
is not suitable for high dimensions. The method introduced in this work is dif-
ferent from the adaptive wavelet method since it employs a different adaptation
strategy based on the Smolyak algorithm for constructing the interpolation grid.
The basic idea here is to use a piecewise linear-hat function as a hierarchical ba-
sis function by dilation and translation on equidistant interpolation nodes. Then
the stochastic function can be represented by a linear combination of these basis
functions. The corresponding coefficients are just the hierarchical increments
between two successive interpolation levels (hierarchical surpluses) [27, 30].
The magnitude of the hierarchical surplus reflects the local regularity of the
function. For a smooth function, this value decreases to zero quickly with in-
creasing interpolation level. On the other hand, for a non-smooth function, a
singularity is indicated by the magnitude of the hierarchical surplus. The larger

this magnitude is, the stronger the singularity. Thus, the hierarchical surplus



serves as a natural error indicator for the sparse grid interpolation. When this
value is larger than a predefined threshold, we simply add the 2N neighboring
points to the current point. A key motivation towards using this framework is
its linear scaling with dimensionality, in contrast to the N-dimensional tree (2")
scaling of the h-type adaptive framework (e.g. the framework in [20]). In ad-
dition, such a framework guarantees that a user-defined error threshold is met.
We will also show that it is rather easier with this approach to extract realiza-
tions, higher-order statistics, and the probability density function (PDF) of the

solution.

It is noted here that, in previous works, there exists the so called dimension-
adaptive (anisotropic) sparse grid methods employing the concept of general-
ized sparse grids, which was originally developed in [39] and further extended
to interpolation in [28]. In recent papers [40, 41], the authors have applied this
method to various stochastic problems. In this framework, the structure of the
solution was detected on-the-fly to sample the space in a non-isotropic way. The
most sensitive dimension is detected and adaptively sampled. Then all of the
interpolation points from the next level are added along this dimension. Error
bounds and convergence issues for the anisotropic sparse grid collocation tech-
nique are discussed in [41]. However, this framework requires the underlying
discontinuity to be aligned along the lines of the underlying sparse grid, which
is not the case in most problems. The method introduced in Chapter 3 is differ-
ent from the above adaptive strategy. We only add locally around the current
point the 2N neighboring points from the next interpolation level instead of all
of the interpolation points along only one dimension. In this way, besides the
detection of important dimensions, additional singularities and local variations

in a stochastic function can be found and resolved [29, 30, 42]. It is also noted



that the work in [41] uses Lagrange polynomial interpolation and thus cannot

resolve discontinuities.

In Chapter 3, it is shown that the ASGC can successfully resolve stochastic
discontinuity problems and solve stochastic elliptic problems up to 100 dimen-
sions when the weights of each dimension are highly anisotropic and thus when
the ASGC places more points only along the first few important dimensions.
However, it is also shown in the chapter that when the importance of each di-
mension weighs equally, ASGC cannot solve the problem accurately even with
a moderate (21) stochastic dimensionality. In this case, the effect of ASGC is
nearly the same as of the CSGC and thus the convergence rate deteriorates. Asis
well known, in realistic random heterogeneous media often we deal with a very
small correlation length and this results in a rather high-dimensional stochastic
space with nearly the same weights along each dimension. In this case, all the

previously mentioned stochastic methods are obviously not applicable.

These modeling issues for high-dimensional stochastic problems motivate
the development of the so called “High Dimensional Model Representation”
(HDMR) technique in Chapter 4. Hereafter, this method is referred as con-
ventional HDMR. It is a general set of quantitative assessment and analysis
tools for capturing the high-dimensional relationships between sets of input
and output model variables. It was originally developed as a methodology to
create an efficient fully equivalent operational model of the original chemical
systems [43, 44, 45, 46, 47, 48]. It expresses the model output as an additive
hierarchical superposition of correlated functions with increasing numbers of
input variables, i.e. 1,2,... up to the total number of input variables. A sys-

tematic mapping procedure between the inputs and outputs is prescribed to



reveal the hierarchy of correlations amongst the input variables. At each new
level of HDMR, higher-order correlated effects of the input variables are in-
troduced. If these higher-order correlated effects between the input variables
have negligible effect upon the output, the HDMR approximation is accurate
enough by using only lower-order (usually up to the third-order) component
functions. This is the case for most realistic physical systems and is the ansatz
that the HDMR is based upon. Depending on the way that one determines the
hierarchical component functions in HDMR, there are particularly two types of
HDMR: ANOVA-HDMR and CUT-HDMR [43]. ANOVA-HDMR is the same as
the analysis of variance (ANOVA) decomposition used in statistics and is use-
ful for measuring the contributions of variance of each component function to
the overall variance and therefore for computing the global sensitivity [49]. It
involves high-dimensional integration and thus is computationally expensive.
On the other hand, the CUT-HDMR expansion is a finite exact representation
of the model output in the hyperplane passing through a reference point in the
input variable space, which is different from gPC that has infinite terms. It only
involves function evaluations at the sample points and is more computationally

efficient than ANOVA-HDMR. Therefore, it is our focus in Chapter 4.

The model output can be considered as a function taking value over the pa-
rameter space supported by the input variables. Therefore, it is also a multivari-
ate function approximation/interpolation method as well as a means to analyze
the relevant statistics of the random output, which is the same idea as stochastic
collocation method where the solution to the SPDEs is regarded as a stochastic
function in the stochastic input space. It is thus straightforward to apply CUT-
HDMR in the random space to construct the stochastic input-output mapping.

The most important aspect of this method is the capability to find a way to nu-



merically represent each component function of HDMR. In [50], CUT-HDMR
is applied to a transport model to represent the stochastic response and MC
analysis is used on the obtained approximation to obtain statistics. However,
each CUT-HDMR component function was numerically represented as a low-
dimensional look-up table over its variables. To obtain an approximate value,
one needs to search and interpolate in the table. In [51, 52], CUT-HDMR is
derived from a Taylor expansion and is used to find moments of the solution
using the so called moment-based quadrature rule in stochastic mechanics. Al-
though the name “dimension reduction method” is used in these papers, it is
another form of HDMR. Later, the same author applied this method to frac-
ture and reliability analysis, where component functions are interpolated using
tensor product Lagrange polynomials and again MC analysis is used on the
obtained approximation to obtain statistics [53, 54]. The author in [55] also ap-
plied CUT-HDMR to reliability analysis however the interpolant is constructed
through moving least squares (MLS) approximation which is only limited up
to three dimensions. Most of the above applications approximate each compo-
nent function on a tensor-product uniform sampling space thus they are very
expensive and not very accurate implementations. In addition, all the previous
applications are still limited to relatively low-number of stochastic dimensions

(< 12).

In [56], the authors have applied CUT-HDMR, under the name “Anchored-
ANOVA”, to find the mean and variance of the solution using multi-element
probabilistic collocation method and integrating the resultant HDMR expansion
term by term. In [57], the authors have applied the same method for the com-
putation of high-dimensional integrals using quadrature schemes with applica-

tions to finance. They also developed a dimension-adaptive version of HDMR
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to find the important component functions and related it with the anisotropic
sparse grid method. Motivated by their work, we develop a general framework
to combine the strength from both HDMR and ASGC and apply it to uncertainty
quantification. We first redefine the way to compute the error indicator in the
formulation of ASGC. The use of the magnitude of the hierarchical surplus as
the error indicator is too sharp and may result in non-terminating algorithms.
The new error indicator incorporates the information from both the basis func-
tion and the surplus. This guarantees that the refinement will stop at a sufficient
interpolation level. Then HDMR is used to decompose the high-dimensional
stochastic problem into several lower-dimensional sub-problems. Each low-
dimensional sub-problem is solved by ASGC in a locally-adaptive way within
only related dimensions. In this way, an efficient low-dimensional stochastic
reduced-order model is constructed and any model output in the stochastic
space can be interpolated. By using ASGC, the interpolation of component func-
tions is done efficiently by summing the corresponding hierarchical surplus and
basis function as compared with that of using a numerical table. Mean and vari-
ance can also be obtained analytically through integrating the basis functions
without any MC analysis. In addition, the ASGC provides a linear combination
of tensor products chosen in such a way that the interpolation error is nearly the
same as for full-tensor product (numerical table) in higher dimensions. In prac-
tice, HDMR is often truncated into a lower-order representation. However, for a
very large stochastic dimension (> 100), even second-order expansion will have
too many component functions. For example, 125251 component functions are
needed for a second-order expansion of a 500-dimensional problem. Therefore,
we need to find a way to construct only the important component functions.

Motivated by the work in [57], in Chapter 4, we also develop a dimension-

11



adaptive version of HDMR to detect the important component functions. This
is defined in two steps: First, the first-order HDMR is constructed and a weight
associated with each term is defined to identify the most important dimensions.
Then, higher-order components functions are constructed which consist only
of these important dimensions. This method to our knowledge is the first ap-
proach which can solve high-dimensional stochastic problems by reducing the
dimensions from truncation of HDMR and resolve low-regularity by local adap-
tivity through ASGC. It is noted here that the adaptivity in our paper is different
from that used in [57]. The definition of the error indicator is not the same. The
authors in [57] did not identify the important dimensions and thus there is a sig-
nificant computational overhead in finding the important component functions
for high-dimensional problems. It is also noted that in [52, 56], the CUT-HDMR
is written in an explicit form which is not suitable for adaptive construction. On
the other hand, in our work, a recursive form of an HDMR component function

is introduced which is the basis for our adaptive implementation.

In the final part of the thesis, we utilize the computational strategies de-
veloped to analyze flow through random heterogeneous media with the multi-
scale permeability variation. We link stochastic analysis and multiscale method
to investigate this problem. A stochastic mixed finite element heterogeneous
multiscale method is formulated to incorporated the effects of the multiscale
stochastic permeability. To achieve this, a new multiscale mixed finite element
is developed which is based on the framework of heterogeneous multiscale

method [58, 59].

The organization of this thesis is as follows: In Chapter 2, the basic mathe-

matical theory to represent uncertainty and a model problem definition is intro-

12



duced. In Chapter 3, the adaptive sparse grid collocation method is developed.
In Chapter 4, stochastic high dimensional model representation technique is
combined with ASGC to address the stochastic problem of high dimensions.
In Chapter 5, the development of the stochastic mixed finite element heteroge-
neous multiscale method is detailed. Finally, in Chapter 6, conclusions of this

thesis work and suggestions for future research are summarized.
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CHAPTER 2
MATHEMATICAL PRELIMINARIES AND PROBLEM DEFINITION

In this chapter, the mathematical framework of stochastic PDEs is formu-
lated. In particular, this chapter provides overview of basic ideas of uncertainty
quantification used extensively in the later parts of this thesis viz. the Karhunen-
Loeve (K-L) expansion, the Generalized polynomial chaos expansion technique,

the stochastic collocation method and the multi-element based methods.

2.1 Mathematical preliminaries

Let us define a complete probability space (2, ¥, #) with sample space Q which
corresponds to the outcomes of some experiments, ¥ the o-algebra of subsets
in Q (these subsets are called events) and # : ¥ — [0, 1] the probability mea-
sure [60]. In this framework, a single real-valued random variable Y is defined

as a function that maps the probability space Q to R, i.e,,
Y: Q- R, (2.1)

which assigns to each element w of Q a real value Y(w). We define y = Y(w),w €
Q, a realization of Y. In this thesis, we will restrict ourselves to continuous ran-
dom variables. For a single-valued random variable Y, the set of values of Y for

all w € Q is called the image Y(Q2) of Q, i.e.
I'y = (Y(w):weQ}CR. (2.2)

That is, I'y is actually the range (of all values) of Y on the real line or subset of
the real line and therefore it is sometimes also called the state space of Y. Let

f : R — R be a real-valued function. The composition U = f o Y is a function
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from Q into R, defined by
Uw) = f¥(w)) forall we Q, (2.3)
with the state space I'y. For each u = U(w) € I'y, we have
u= f(y) forall yeTy. (2.4)

Thus, the function U = foY also defines a random variable thus called stochastic

function since it is also a function of random variables..

The above definition can be generalized to vectors of random variables.

Now, let us assume that {¥;}"', are components of Y : Q — R" and their im-

1
ages I'; = Y'(Q) are bounded intervals in R for i = 1,..., N. Then the stochastic

state space of Y is defined as
N
r = 1_[ ' c RV, (2.5)
i=1

with the joint PDF as p(y). For example, if Y; is independent uniform random
variable in [-1, 1], then T = [-1, 1]". In the work of this thesis, it is assumed that

the space I' is bounded.

2.2 A general problem definition

In this section, we follow the notation in [61]. Define a complete probability
space (Q, 7, ) with sample space Q which corresponds to the outcomes of some
experiments, ¥ c 29 is the o-algebra of subsets in Q (these subsets are called
events) and P : ¥ — [0, 1] is the probability measure. Also, define D as a d-

dimensional bounded domain D c R (d = 1,2,3) with boundary dD. We are
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interested to find a stochastic function u : Q x D — R such that for P-almost

everywhere (a.e.) w € Q, the following equation holds:

L(x,w;u) = f(x,w), Yx €D, (2.6)

and
Bx;u) = gx), Yx e€adD, (2.7)
where x = (xi,..., x,) are the coordinates in R?, £ is (linear/nonlinear) differ-

ential operator, and 8 is a boundary operator. In the most general case, the
operators L and B as well as the driving terms f and g, can be assumed ran-
dom. We assume that the boundary has sufficient regularity and that f and g
are properly defined such that the problem in Egs. (2.6)-(2.7) is well-posed #

-a.e. w € Q.

2.21 The finite-dimensional noise assumption and the Karhunen-

Loeve expansion

Any second-order stochastic process can be represented as a random variable
at each spatial and temporal location. Therefore, we require an infinite num-
ber of random variables to completely characterize a stochastic process. This
poses a numerical challenge in modeling uncertainty in physical quantities that
have spatio-temporal variations, hence necessitating the need for a reduced-
order representation (i.e. reducing the infinite-dimensional probability space
to a finite-dimensional one). Such a procedure, commonly known as a ‘finite-
dimensional noise assumption’ [23, 31], can be achieved through any truncated
spectral expansion of the stochastic process in the probability space. One such

choice is the Karhunen-Loéve (K-L) expansion [5].
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For example, let the force term f(x,w) be a second-order stochastic process,
and its correlation function be R(x;, x,), where x; and x, are spatial coordinates.
By definition, the correlation function is real, symmetric, and positive definite.
All its eigenfunctions are mutually orthonormal and form a complete set span-
ning the function space to which f(x,w) belongs. Then the truncated K-L ex-

pansion takes the following form:

N
f@x,0) = BIfIx) + ) NAgix)Yi(w), (2.8)
i=1

where {Yi(w)}fi , are uncorrelated random variables. If the process is a Gaus-
sian process, then they are standard identically independent N(0, 1) Gaussian
random variables. Also, ¢;(x) and 4; are the eigenfunctions and eigenvalues of
the correlation function, respectively. They are the solutions of the following

eigenvalue problem:

fR(xl,xz)fﬁi(xz)dxz = Aigi(xy). (2.9)
D

The number of terms needed to approximate a stochastic process depends on
the decay rate of the eigenvalues. Generally, a higher correlation length would

lead to a rapid decay of the eigenvalues.

Following a decomposition such as the K-L expansion, the random inputs

can be characterized by a set of N random variables, e.g.

L(x,(,();l/t) = L(x,Yl((,()),"',YN((,());M),

f(x’ w) f(x’ Yl(w)’ T YN(w)) (210)

Hence, by using the Doob-Dynkin lemma [62], the solution of Egs. (2.6) and (2.7)

can be described by the same set of random variables {Y;(w)}Y ,, i.e.
u(x, w) = u(x, Yi(w),- - -, Yy(w)). (2.11)
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Thus, the use of the spectral expansion guarantees that the finite-dimensional
noise assumption is satisfied and effectively reduces the infinite probability

space to a N-dimensional space.

When using the K-L expansion, we here assume that we obtain a set of mu-
tually independent random variables. The issue of non-independent random
variables can be resolved by introducing an auxiliary density function [23]. In
this thesis, we assume that {Y;(w)}Y, are independent random variables with
probability density function p;,. Let I'; be the image of Y;. Then

N
o(Y) = ]_[ oY), VYEeT, (2.12)
i=1

is the joint probability density of Y = (Y}, - - -, Yy) with support
N
= 1_[ T, e RY. (2.13)
i=1

Then the problem in Egs. (2.6) and (2.7) can be restated as: Find the stochastic

function u : T' X D — R such that
L&, Y;u) = f(x,Y), (x,Y)eDxT, (2.14)
subject to the corresponding boundary conditions

Bx,Y;u) =¢gx,Y), (x,Y)€dD xT. (2.15)

We emphasize here that the dimensionality N of the space I' is usually de-
termined by the number of the independent random variables Y;, for example
from the K-L expansion in Eq. (2.8). In addition, we also assume without loss of
generality that the support of the random variables ¥;isI" = [0, 1] fori=1,---,N
and thus the bounded stochastic space is a N-hypercube I' = [0, 1]V, since any

bounded stochastic space can always be mapped to the above hypercube.
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Therefore, the original infinite-dimensional stochastic problem is restated as
a finite-dimensional problem. Then we can apply any stochastic method (gPC
expansion or stochastic collocation) in the random space and the resulting equa-
tions become a set of deterministic equations in the physical space that can be
solved by any standard deterministic discretization technique, e.g. the finite el-
ement method. In the next two sections, the basic theories of gPC expansion

and current stochastic collocation method are briefly reviewed.

2.3 Generalized polynomial chaos expansion

The theory and properties of the gPC expansion have been well documented
in various references [5, 10, 12]. In this approach, the solutions are regarded
as random processes. The gPC expansion is used to represent the variables in

terms of orthogonal polynomials in the stochastic space I'. This is written as

Np

u(x, w) = > u(X)O(Yw)), (2.16)

i=0

where u is the solution of Egs. (2.14) and (2.15). Here u; are deterministic coeffi-
cients and the summation in the equation above has been truncated to (N, + 1)
terms. The random basis functions {®;} are chosen according to the type of ran-
dom variable {Y;} that has been used to describe the random input. For exam-
ple, if Gaussian random variables are chosen then the Askey based orthogonal
polynomials {®;} are chosen to be Hermite polynomials, if Y; are chosen to be
uniform random variables, then {®;} must be Legendre polynomials [10]. The
total number of expansions terms is determined by the stochastic dimension (V)

and the highest-order (p) of the orthogonal polynomials as follows:

N + p)!
Np+1:( P)
N!p!

(2.17)
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The gPCis used to expand all the solution dependent random processes in terms
of the orthogonal polynomials. Substituting these expansions into the govern-

ing equation, Eq. (2.14), gives:

Np
LO w®;x,Y) = f(x,Y). (2.18)
i=0

Following this, a Galerkin projection of the above equation onto each polyno-

mial basis ®; is conducted:

NP
(LO w®;: x.Y), ®) =(f(x.Y), ®;), j=0,....N, (2.19)
i=0

where (a, b) is the inner product of the functions a and b over the ensemble
(a,by = fg ab dY). A similar procedure is also applied on the boundary condi-
tion Eq. (2.15). By using the orthogonality of the polynomial basis, we can obtain
a set of (N, + 1) coupled equations for the solution u. By utilizing the polyno-
mial chaos expansion followed by the Galerkin projection, the randomness has
been transferred from the dependent variables to the basis polynomials. The

resulting governing equations for the expansion coefficients are deterministic.

This methodology has been very successful in solving SPDEs [5, 10, 11, 12,
13, 20, 63]. We will restrict our discussion to the disadvantages of this method to
motivate the development of ASGC. Substantial effort has to be put in to convert
a validated deterministic code into a gPC-based stochastic one. The global sup-
port of the gPC expansion does not allow modeling of SPDEs with steep gradi-
ents or discontinuities in the random space. The coupled nature of the resulting
algebraic equations in the expansion coefficients makes the implementation of
the gPC method non-trivial. Finally, as the number of stochastic dimensions or

the order of polynomials used increases, the efficiency of the method is reduced.
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2.4 Stochastic collocation method

In this section, we review the fundamentals of stochastic collocation method.
For more details, the interest readers may refer to [31, 33, 40]. The basic idea
of the stochastic collocation approach is to build an interpolation function for
the unknown stochastic solutions using their values at a pre-determined set of
points in the stochastic space. These points are called the collocation points.
The Galerkin projection is then applied to find that interpolation function which
minimizes the projected error of the approximated system. Denote by Y any
point in the random space I c R", by Iy, the space of all N-variate polynomials
and by II}, the subspace of polynomials of total degree at most p. The problem
of interpolation can be stated as follows: Given a set of nodes Oy = {Y;}, in the
N-dimensional random space I' and the smooth function f : RV — R, find the

polynomial 7 f such that 7 f(Y;) = f(Y,),Vi=1,..., M.

The polynomial approximation 7 f can be expressed using the Lagrange in-

terpolation polynomials as follows:

M
TF(Y) = ). FY)L(Y) (2.20)
i=1

where L,(Y;) = ;;. Now, once the interpolating polynomial have been generated
using the nodes {®y}, the value of the stochastic function at any point Y € I' is
approximately 7 f(Y). The Lagrange interpolated value of u, denoted by i is as
follows:

M
=" u(Y)L(Y) (2.21)

i=1

Substituting this into the governing equation, Eq. (2.14), gives

M
.E[x, Z u(Y,-)Ll-(Y)] = f(x,Y). (2.22)

i=1
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The interpolation form of the solution immediately leads to M decoupled deter-
ministic systems

L(x,w(Y))=f(xY), i=1,...,M. (2.23)

The collocation method collapses the (N + d)-dimensional problem to solve M
deterministic problems in d dimensions. The kth-moment of the random solu-
tion can then be obtained by

M

)= ¥ [ LVp0acy) 224
i=1

Choice of collocation points include tensor product of zeros of orthogonal
polynomials [23] or sparse grid approximations [31, 33, 40]. In the current im-
plementations, the sparse grid points are chosen as Gauss quadrature points
according to the random distributions. So, the integration value of the basis
function coincides the Gauss quadrature weights. Therefore, the interpolation
function is not explicitly formulated. Instead, the statistics of the solution is di-
rectly calculated. Asis well known, the global polynomial interpolation cannot
resolve local discontinuity in the stochastic space. In addition, the quadrature
points are pre-determined thus leaving no space of allowing adaptivity. Based
on these observations, adaptive sparse grid collocation method which utilizes

local linear interpolation is developed in next chapter.

2.5 Multi-element generalized polynomial chaos

The regularity of the solution with respect to the stochastic space I' affects the
convergence rate of gPC expansion, especially of approximations of global sup-

port. However, such regularity is usually not known a priori in many problems.
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This has motivated the development of the multi-element based stochastic do-
main decomposition method. The basic idea is to divide the stochastic space
into several disjoint elements and solve each subproblem using gPC or conven-
tional probabilistic collocation method, which results in the ME-gPC and ME-
PCM methods, respectively. In this section, we briefly discuss the Multi-element
(ME) based method, since it is one of the current stochastic methods developed
for resolving discontinuities in the random space. The description here closely

mirrors that in [20, 34].

Let Y be a random variable defined on the random space I" and the compo-
nents of Y be independent identically distributed random variables. We define

a decomposition B of I' with M disjoint elements as follows:

[ =[d, b)) X [ah, bh) X ... X [al, b)),
B=:T=U"T, (2.25)
;T =0 if i) # iy,
wherei,ij, i, = 1,2,---, M. Based on this decomposition, we define the following

indicator random variables:

1, if YEF[,
I = i=1,2,- M. (2.26)

0, otherwise,

Then, a local random vector Y; is defined in each element I'; subject to a condi-
tional PDF

o Y;
JilYillr, =1) = S

= Bk =T (2.27)

where J; = Pr(Ir, = 1) > 0.

Let us assume that the gPC expansion of a random field in element i is

Np

a;(Y;) = Z i j@; i(Y5), (2.28)

j=0
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where p is the highest expansion order of the orthogonal polynomial and the
number of expansion term N, is given by Eq. (2.17). From the orthogonality of

gPC, the local variance is given by
op, = ) i (D). (2.29)
The approximate global mean i and variance 6 can be expressed as

M M
= ol =) |0l + @ - 17| (2.30)
i=1

i=1 i
A local decay rate of relative error of the approximation in each element is de-

fined as follows: N o
S ot 2400
pp= Rt VM (2.31)
o,

A random element will be split into two equal parts when the following condi-
tion is satisfied

niJi =60, 0<a<l, (2.32)

where « is a prescribed constant usually set to 1/2. For high-dimensional ran-
dom inputs, we use another threshold parameter 6, to choose the most sensitive
random dimension in this element. The sensitivity for each random dimension

is defined as )
N 2
(i) (@2
Np VNP VRN
Zj=Np_1+1 ui,j<q)i,j>

where the subscript -, denotes the mode consisting only of random dimension

k=1,2,---,N, (2.33)

Iy =

Y, with polynomial order p. All random dimensions which satisfy

rez 6 max ri, 0<@<l, k=12--N, (2.34)
J=1es

will be split into two equal random elements while all other random dimen-

sions remain unchanged. Therefore, it is seen that although the most sensitive
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random dimension is detected, this method still requires a large number of el-
ements when the random dimension is high. At the same time, the number of
expansion terms also increases very quickly, see Eq. (2.17). So it is still a dimen-
sion dependent method [21]. We implemented this method in order to compare
computational cost and accuracy in the examples of Chapter 3. It is noted here,
that due to the assumption of uniform distribution, the local conditional PDF
Eq. (2.27) is still uniform. Thus, we do not need to reconstruct the orthogo-
nal polynomials in each random element. In general, the orthogonality is not
satisfied because the PDF is also discretized simultaneously and one needs to

numerically construct the orthogonal polynomials on the fly [21].
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CHAPTER 3
SOLVING STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: AN
ADAPTIVE HIERARCHICAL SPARSE GRID COLLOCATION
ALGORITHM

In this chapter, the development of adaptive sparse grid collocation algorithm is
detailed. Most content of this chapter is from the work in [61]. The contribution
of this work is as follows: (1) We utilize the concepts of hierarchical sparse grid
collocation. This provides a new point of view on the sparse grid collocation
method leading to the concept of adaptivity; (2) We develop a locally-refined
adaptive sparse grid collocation method with 2N linear scaling for the refine-
ment, which further reduces the curse of dimensionality; (3) By purely based on
the interpolation, it is shown that this method not only can calculate easily the
mean and the variance, but also can extract the realization of the solution as a
function of the random variables in order to examine its local behavior. This is

another issue not addressed in earlier works [31, 32, 33, 34, 40, 41].

3.1 Hierarchical stochastic sparse grid collocation method

The basic idea of this method is to have a finite element approximation for the
spatial domain and approximate the multi-dimensional stochastic space using
interpolation functions on a set of collocation points {Y;}¥, € I'. Suppose we
can find a finite element approximate solution u of the deterministic solution
of the problem in Egs. (2.14)-(2.15) for each point Y;, we are then interested in

constructing an interpolant of u by using linear combinations of the solutions

u(-, Y;). The multi-dimensional interpolation can be constructed through either
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full-tensor product of 1D interpolation rule or by the so called sparse grid inter-
polation method based on the Smolyak algorithm [24]. Since in the full tensor
product case the number of support points grows very quickly as the number of
stochastic dimensions increases, we will mainly focus on the sparse grid method

and discuss the proposed adaptivity algorithm.

3.1.1 Smolyak algorithm

The Smolyak algorithm provides a way to construct interpolation functions
based on a minimal number of points in multi-dimensional space. Using the
Smolyak method, univariate interpolation formulae are extended to the multi-
variate case by using tensor products in a special way. This provides an interpo-
lation strategy with potentially orders of magnitude reduction in the number of
support nodes required. The algorithm provides a linear combination of tensor
products chosen in such a way that the interpolation error is nearly the same as

for full-tensor product in higher dimensions.

Let us consider a smooth function f : [0, 1]Y — R. In the 1D case (N = 1), we

consider the following interpolation formula to approximate f:

U =), f(¥)-d, (3.1)

J=1

with the set of support nodes
X' ={Yi|yie[0,1]for j=12,....m}, (32)

where i € N, a; =a j(Y;) e C([0, 1]) are the interpolation nodal basis functions,
and m; is the number of elements of the set X'. We assume that a sequence of

formulae Eq. (3.1) is given with different i. In the multivariate case (N > 1), the
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tensor product formulae are

mi

(U @ @UY)f) =D - > fYi,.. Y@ e--od) (33
iN=1

Ji=1 JN=

which serve as building blocks for the Smolyak algorithm.

The Smolyak algorithm constructs the sparse interpolant A, y using products

of 1D functions. A,y is given as [26, 27, 28]

. (N—-1 . .
A= Y emﬂ( )«wwm®wm (3.4)
g-N+1<lil<q q -
with ¢ > N, Ay_1xy = 0 and where the multi-index i = (i},...,iy) € NV and
il =i +---+iy. Here iy, k = 1,...,N, is the level of interpolation along the k-th

direction. The Smolyak algorithm builds the interpolation function by adding
a combination of 1D functions of order i; with the constraint that the sum total
(il = i; +...+iy) across all dimensions is between g— N + 1 and g. The structure of
the algorithm becomes clearer when one considers the incremental interpolant,
A' given by [26, 27, 28]

U =0, N=U-U". (3.5)

The Smolyak interpolation A, y is then given by

An(f) = D (A ®---® AV)(f)
lil<g
= A )+ ) (AT®-- @ AM(f). (3.6)

lil=¢
To compute the interpolant A, y(f) from scratch, one needs to compute the func-
tion at the nodes covered by the sparse grid H, y:
Hov= [ X" xeexx™), 3.7)
g-N+1slil<q
The construction of the algorithm allows one to utilize all the previous re-

sults generated to improve the interpolation (this is immediately obvious from
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Eq. (3.6)). By choosing appropriate points for interpolating the 1D function, one
can ensure that the sets of points X are nested (X' c X™*!). To extend the inter-
polation from level i — 1 to i, one only has to evaluate the function at the grid
points that are unique to X/, that is, at X} = X"\X"'. Thus, to go from an order
g — 1 interpolation to an order g interpolation in N dimensions, one only needs
to evaluate the function at the differential nodes AH, y given by

AH,y = JXi @0 X)), (3.8)

lil=¢

3.1.2 Choice of collocation points and the nodal basis functions

It is more advantageous to choose the collocation points in a nested fashion
to obtain many recurring points with increasing g. One of the choices is the
Clenshaw-Curtis grid at the non-equidistant extrema of the Chebyshev polyno-

mials [31, 33, 41]. For any choice of m; > 1, the sets X' = {Y],---,Y},} are given
by

1, ifi=1,
m; = (39)
20h 41, ifi> 1,

| (—cos(n(j = 1)/(m; = 1)) + 1)/2, for j=1,...,ms,ifm>1,
v - J J (3.10)
0.5, for j=1,ifm; = 1.

With this selection, the resulting sets are nested, i.e., H,y € H,+in. The corre-

sponding univariate nodal basis functions are Lagrange characteristic polyno-

mials.
1, fori=1,and
i _ m; Y — Yi
4j= l—[ S fori>1land j=1,...,m,. (3.11)
Yy:-YvY!
k=1 7 J k
k)
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It is noted that by using this grid, the support nodes are pre-determined as in
Eq. (3.10). Thus, this grid is not suitable if we want to use adaptivity. Therefore,
we propose to use the Newton-Cotes grid using equidistant support nodes. By
using equidistant nodes, it is easy to refine the grid locally. However, it is well
known that for Lagrange polynomial interpolation on equidistant nodes, the
error may not go to zero as the number of nodes increases due to the well-
known Runge’s phenomenon [28]. To this end, we propose to use the linear hat
function as the univariate nodal basis function [25]. The piecewise linear hat
function has a local support in contrast to the global support of the polynomial

in Eq. (3.11), so it can be used to resolve discontinuities in the stochastic space.

We first consider the 1D interpolation rule Eq. (3.1) with the support nodes

defined as
1, ifi=1,
mi = (3.12)
20041, ifi> 1,
j—1
. ]—, forj:1,...,mi,ifmi>1,
v, = ¢ mi-1 (3.13)

0.5, for j=1,if m; = 1.
It is noted that the resulting grid points are also nested and the grid has the

same number of points as the Clenshaw-Curtis grid.

In the linear setting, the simplest choice of 1D basis function is the standard

linear hat function [27, 29, 30]:
1y, ifYe[-1,1],

a(Y) = (3.14)
0, otherwise.

This mother of all piecewise linear basis functions can be used to generate an

arbitrary a' with local support [Y}~2'", ¥{+2!"] by dilation and translation, i.e.,

a; = 1 fori=1,and (3.15)

30



, 1—(m=1)-|Y =Y if|Y-=Y|<1/(m;-1),
a = J J (3.16)
0, otherwise,

fori>1and j=1,...,m;. The N-dimensional multilinear basis functions can be

constructed using tensor products as follows:

N
d(Y):=dl ®---ed = |a, (3.17)
k=1
where the multi-index j = (ji,...,jy) € NV and ji, k = 1,...,N, denotes the

location of a given support node in the k-th dimension from Eq. (3.13). Thus, we

define the functional space
V= span{a} ieNYjeNY ji=1,....m, k= 1,...,N}, (3.18)

as the space of piecewise multi-linear functions for a give multi-index i. Then
the family of functions {a}} is just the standard nodal basis of the finite dimen-
sional space Vi. If we want to apply the Smolyak algorithm using nodal basis, it
is straightforward to use Eq. (3.4). It can be rewritten as
i (N-1 , , .
Aun(f) = Z (1l (q } Iil) : Zf(Y;, LYy (3.19)
g-N+1<lii<q j
Now we can define the sparse grid interpolation space Vr as
= P V. (3.20)
g-N+1<lii<q
It is noted that the coefficients of the approximation in the stochastic space
mainly depend on the function values at the interpolation points. Thus they do
not give much information about the regularity of the solution in the random
space. Therefore, the interpolation formulae provided above are not appropri-

ate for an adaptive implementation.
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3.1.3 From nodal basis to multivariate hierarchical basis

Let us return to the incremental interpolation formula Eq. (3.6). This formula
takes advantage of the nested nature of the grid points, X c X"*! [27]. Here,
we follow closely [27] to provide a clear development of the derivation of the

hierarchical basis and the hierarchical surpluses.

We start from the 1D interpolation formula Eq. (3.1) using nodal basis as

discussed in the previous section. By the definition of Eq. (3.5), we can write:

A(f) = U - UK. (3.21)
With
U(f)= ) ;- f(¥), and U = U (E)), (3.22)
Yiexi

we obtain [27]

Ny = Y d-f(r = > d- U (D
Y;’.exi Y;’.exi
= ) di- (fY) = U (HY), (3.23)
Yiexi

and, since f(Y}) - (Lli‘l(f)(Y;) =0,VYie X~! we obtain
N = ) di- (FV) = U (YD), (3.24)
YieX,
recalling that X, = X'\ X'~!. Clearly, X} has m!, = m; —m,_, points, since X;_; C X;.
By consecutively numbering the elements in X}, and denoting the j-th point of

X\ asY ;., we can re-write the above equation as [27]

i
A

N = ) () - UT D). (3.25)

=

m

w'
J

32



Here, we define w', as the 1D hierarchical surplus, which is just the difference
between the function values at the current and the previous interpolation lev-
els. We also define the set of functions a/ as the hierarchical basis functions.
Fig. 3.1 shows the comparison of the nodal and the hierarchical basis func-
tions [27]. Fig. 3.2 shows a comparison of the nodal and hierarchical interpo-

lation in 1D [27].

A A
1 3 3 3 a3 3 1
ai a2 as 4 a5 \ v\ .
a
2 \ 2
a a,
. /
3
1 % 1
0 > 0 >
Yl3 Y23 Y33 Y43 Y53 le Yls Yll Y23 Yzz

Figure 3.1: Nodal basis functions a3,¥; € X (left) and hierarchical basis
functions aj. with the support nodes ¥ ; € X,,i = 1,2,3 (right)
for the Newton-Cotes grid.

B

v
v

Figure 3.2: Nodal (left) versus hierarchical (right) interpolation in 1D.

For example, in Fig. 3.2, if we work in the nodal basis of interpolation level

3, then the function f is approximated as from Eq. (3.1)
f=r@)al + f(V)ay + f(YDa; + f(YDa; + f(Y)a3. (3.26)

On the other hand, the hierarchical basis for the same interpolation level from
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Eq. (3.25) is given as follows:

_ ol 202 202 33 33
f=wa, +wiaj] + wya; + wiaj + was,. (3.27)

Please note the different numbering used for the hierarchical and nodal basis
functions. It is seen that the hierarchical basis utilizes only some of the nodal
basis functions form level 1 to 3 instead of all of the nodal basis functions in
level 3. Itis for this reason that we refer to this representation as the ‘hierarchical

basis’.
For the multi-dimensional case, we define a hierarchical difference space
N
W= Vi @ vi-e (3.28)
k=1

where e, denotes the k-th unit vector. To complete this definition, we formally
set

Vi =0, if i =0. (3.29)
Thus, through a new multi-index set
Bi:={jeN":v¥eXlforjy=1,...mi k=1, N} (3.30)
we can obtain another basis of V', the hierarchical basis
{dl:jeBk<il, (3.31)

which also leads to

W= span {a} ije Bi}. (3.32)

It is clear that the following decomposition holds [29, 30]

Vi= @éwk = Hwk (3.33)

k=1 kn=1 k<i
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This equation provides another view on the nodal basis function space V'. Note
that in Egs. (3.31) and (3.33), ‘<’ refers to the element-wise relation for multi-

indexes.

We next obtain the sparse grid interpolation formula for the multivariate

case in a hierarchical form. From Eq. (3.6), we can write:

5quV(j)

AAGN(f)

A1 n(f) + AA NS, (3.34)

Q@ AW, (3.35)

¢
>

li=g
with Ay_; y = 0. This can be further simplified as
Apan() = D (A @---@AY), (3.36)
lil<g—-1
and

AANS) = Z Z (@l ®---®a)

lil=q jeB;

X Y0 = AN YD), (337)
Here, we define
wh=F YD) = (DY), (3.38)

as the hierarchical surplus, which is just the difference between the function
value at a point in the current level of interpolation and the corresponding value
at the previous interpolation level [27, 29]. Eq. (3.37) actually provides a hierar-
chical subspace splitting of Vr:
Vi = P Wi (3.39)
lil<q
Thus, we can work either in the nodal basis functional space or the hierarchical

basis space. For smooth functions, the hierarchical surpluses tend to zero as the
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interpolation level tends to infinity as shown in Fig. 3.2. On the other hand,
for non-smooth functions, steep gradients/finite discontinuities are indicated
by the magnitude of the hierarchical surplus. The bigger the magnitude is, the
stronger the underlying discontinuity is. Therefore, the hierarchical surplus is a

natural candidate for error control and implementation of adaptivity.

3.1.4 Interpolation error

As a matter of notation, the interpolation function used will be denoted Ay. y,
where k is called the level of the Smolyak interpolation. This is because we
always start the construction from the N-dimensional multi-index i = (1,...,1).

We consider the interpolation error in the space
Fy:= {f : [0,11Y = R, D™ f continues, m; < 2, Vi}, (3.40)

where m € NQ’ and D™ is the usual N-variate partial derivative of order |m|:

Then the interpolation error in the maximum norm is given by [26, 27, 28]
If = Agwv()lleo = O (M log,MP™ "), (3.42)

where M = dim(H(g, N)) is the number of interpolation points.
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3.1.5 From hierarchical interpolation to hierarchical integration

Any function u € I' can now be approximated by the following reduced form
from Eq. (3.37):

u@x,Y) = ) wiex) - al(Y). (3.43)

lii<q jeB;

This expression can be considered as an approximate solution of the problem
in Egs. (2.14) and (2.15). It is just a simple weighted sum of the value of the
basis functions for all collocation points in the sparse grid. Therefore, we can
easily extract the useful statistics of the solution from it. For example, we can
sample independently N times from the uniform distribution [0, 1] to obtain
one random vector Y, then we can place this vector into the above expression to
obtain one realization of the solution. In this way, it is easy to plot realizations
of the solution as well as its PDE. On the other hand, if the Smolyak algorithm
Eq. (3.4) is used based on the cubature rule [32], although it is easy to calculate
the mean and variance, it is difficult to extract the value of the solution at a
particular point in the random space. This is one of the advantages of applying
the stochastic collocation method based on the present interpolation rule, which
allows us to obtain a visualization of the solution dependence on the random
variables. After obtaining the expression in Eq. (3.43), it is also easy to extract

the mean and variance analytically, leaving only the interpolation error.

The mean of the random solution can be evaluated as follows:

Elu®] = Y > wix)- f d(YV)dY, (3.44)
r

lii<q jeB;

where the probability density function p(Y) is 1 since the stochastic space is a
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unit hypercube [0, 1]¥. The 1D integral can be evaluated analytically:
1 1, ifi=1,
[Camar =41 iima, (3.45)
2= otherwise.
This is independent of the location of the interpolation point and only depends
on the interpolation level in each stochastic dimension due to the translation
and dilation of the basis functions. Since the random variables are assumed
independent of each other, the value of the multi-dimensional integral is sim-
ply the product of the 1D integrals. Denoting f a}(Y)dY = IJ?, we can rewrite
Eq. (3.44) as F

Elu(x)] = Zzw}(x)J;. (3.46)

lii<q jeB;

Thus, the mean is just an arithmetic sum of the product of the hierarchical sur-

pluses and the integral weights at each interpolation point.

To obtain the variance of the solution, we need to first obtain an approximate

expression for i, i.e.,

P Y) = )0 ) - d(v). (3.47)

lii<q jeB;

Then the variance of the solution can be computed as:

E[u*(x)] - (E[u(x)])*

2
DY w1~ (Z > ) - 1}] . (3.48)

lil<g jeBi lil<q jeBi

Var[u(x)]

3.2 Adaptive sparse grid collocation (ASGC)

As discussed in Section 3.1.3, the magnitudes of the hierarchical surpluses de-

cay to zero quickly as the level of interpolation increases assuming a smooth
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function in the stochastic space. If the smoothness condition is not fulfilled, an
adaptive sparse grid is preferred, which for example may place more points
around the discontinuity region and less points in the region of smooth vari-
ation. One way to perform adaptation and refinement is on the level of the
hierarchical subspaces W' in Eq. (3.32). This leads to the so-called dimension-
adaptive (anisotropic) sparse grids [39, 40, 41]. This approach detects important
dimensions and places all the collocation points from the hierarchical subspace
Wi*ei along the important dimension j. Thus, this method is not suitable if we
want to look at the local behavior of the stochastic function. Alternatively, the
adaptation and refinement process can be performed on the level of the single
hierarchical basis functions a} from Eq. (3.31). We then obtain a method which,
besides the detection of important dimensions, identifies and resolves singular-
ities and local non-smooth variations in the stochastic function [29, 30, 42]. In
this section, we focus on the latter method and develop an adaptive sparse grid
stochastic collocation algorithm based on the error control of the hierarchical

surpluses.

3.2.1 The ASGC algorithm

Before discussing the algorithm, let us first introduce some notation. The 1D
equidistant points of the sparse grid in Eq. (3.13) can be considered as a tree-like
data structure as shown in Fig. 3.3. It is noted that special treatment is needed
here going from level 2 to level 3. For the nodes 0 and 1 in level 2, we only
add one point along the dimension (there is only one son here instead of two
sons as is the case for all other subsequent levels of interpolation). Then, we can

consider the interpolation level of a grid point Y as the depth of the tree D(Y).
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For example, the level of point 0.25 is 3. Denote the father of a grid point as

F(Y), where the father of the root 0.5 is itself, i.e., F(0.5) = 0.5.

0.5
&
' N
0.25\ ’9.75\
0.125/ 0.375 0.625 0.875

YNNG NN

Figure 3.3: 1D tree-like structure of the sparse grid.

Thus, the conventional sparse grid in the N—dimensional random space can

be reconsidered as

N
Hoy = {Y = {Yi,.... Yyl ) DY) < q}. (3.49)
i=1
We denote the sons of a grid point Y = (Y3,...,Yy) by

SOHS(Y) = {S:(SlaSQ"'~’SN)|(F(Sl)aS2’-'~’SN):Yaor

S1,F(S2),....Sv)=Y,...,0or (51,S,,....,F(Sx)) = Y}. (3.50)

From this definition, it is noted that, in general, for each grid point there are two
sons in each dimension, therefore, for a grid point in a N-dimensional stochastic
space, there are 2N sons. It is also noted that, the sons are also the neighbor points
of the father. Recall from the definition of grid points from Eq. (3.13) and the
definition of hierarchical basis from Eq. (3.31) that the neighbor points are just
the support nodes of the hierarchical basis functions in the next interpolation
level. By adding the neighbor points, we actually add the support nodes from
the next interpolation level, i.e., we perform interpolation from level |i| to level
li| + 1. Therefore, in this way, we refine the grid locally while not violating the

developments of the Smolyak algorithm Eq. (3.37).
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The basic idea here is to use hierarchical surpluses as an error indicator to
detect the smoothness of the solution and refine the hierarchical basis functions
ai whose magnitude of the hierarchical surplus satisfies [wj| > &. If this criterion
is satisfied, we simply add the 2N neighbor points of the current point from
Eq. (3.50) to the sparse grid. An example of a case with two random variables
is shown in Fig. 3.4. It is noted that the growth of the points scales linearly with
increasing dimensionality rather than the O(2") tree-like scaling of the standard

h—type adaptive refinement as in a random element-based framework, e.g. in

ME-gPC.

-
\

Figure 3.4: An example of nodes and supports of a locally refined sparse
grid in 2D random domain.

In the Smolyak construction, we always perform the interpolation level by
level. For each level, we first calculate the hierarchical surplus for each point,
then we check whether the adaptive criterion |W}| > ¢ is satisfied. If so, we
generate the 2N neighboring points. There is a possibility that the neighbors
have already been generated by other points. Therefore, it is critical to keep
track of the uniqueness of the newly generated neighboring points. We refer to
these newly generated neighboring points as active points. To this end, we use
the data structure <set> from the standard template library in C++ to store all
the active points and we refer to this as the active index set. <set> is a kind of

sorted associative container that stores unique elements (keys). When inserting
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a new element, this data structure will check if the new element already exists.
If so, it will not insert the element. If not, the element is inserted according to
the ordering of the elements in the <set>. Due to the sorted nature of the <set>,
the searching and inserting is always very efficient. Another advantage of using
this data structure is that it is easy for a parallel code implementation. Since we
store all of the new points from the next level in the <set>, we can evaluate the

surplus for each point in parallel, which increases the performance significantly.

In addition, when the discontinuity is very strong, the hierarchical surpluses
may decrease very slowly and the algorithm may not stop until a sufficiently
high interpolation level. However, from Eq. (3.45), it is seen that the weights IJ?
decrease very quickly as the level of interpolation increases. The same is true
with the hierarchical surpluses. The contribution of this term to the mean and
the variance may be neglected in comparison to a certain desired accuracy level
of the statistics. Therefore, a maximum interpolation level is always specified
as another stopping criterion. It is noted here that the definition of the level
of the Smolyak interpolation for the ASGC method is the same as that of the
conventional sparse grid even if not all points are included. The first hierar-
chical surplus is always the function value at the point (0.5,...,0.5). There is a
possibility that the function value may be zero and thus the refinement termi-
nates immediately. In order to avoid an early stop for the refinement process,
we always refine the first level and keep a provision on the first few hierarchical
surpluses [29]. Therefore, let £ > 0 be the parameter for the adaptive refinement
threshold. We propose the following iterative refinement algorithm beginning
with a coarsest adaptive sparse grid Gy, i.e., we begin with the N-dimensional

multi-indexi = (1,..., 1), which is just a point (0.5,...,0.5).
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1. Set level of Smolyak construction k = 0.

2. Construct the first level adaptive sparse grid Gy v.

e Calculate the function value at the point (0.5, ...,0.5);

e Generate the 2N neighbor points and add them to the active index

set;
o Setk=k+1.
3. While k < k., and the active index set is not empty:
e Copy the points in the active index set to an old index set and clear

the active index set.

e Calculate in parallel the hierarchical surplus of each point in the old

index set according to

Wi = Y = G n (N Y. (3.51)

J

Here, we use all of the existing collocation points in the current adap-
tive sparse grid Gu+—1n. This allows us to evaluate the surplus for

each point from the old index set in parallel.
e For each point in the old index set, if |W;:| > &

— Generate 2N neighbor points of the current active point according
to Eq. (3.50);

— Add them to the active index set.

e Add the points in the old index set to the existing adaptive sparse

grid Gy+i—1.n. Now the adaptive sparse grid becomes Gy n.

o k=Fk+1.
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4. Calculate the mean and the variance, the PDF and if needed realizations

of the solution (see Section 3.1.5).

Remark 1. In practice, instead of using w}, it is sometimes preferable to use v}
from Eq. (3.47) as the error indicator. This is because the hierarchical surplus v}
is related to the calculation of the variance. In principle, we can consider it like
a local variance. Thus, it is more sensitive to the local variation of the stochastic
function than w; In all but the first example in Section 5.4, the set threshold e
refers to the surpluses v; Recall that for accurate calculation of the variance in
Eq. (3.48), both the function and its square are interpolated independently, see
Egs. (3.46) and (3.47), respectively.

Remark 2. The algorithm developed here is different from the original algo-
rithm in [29]. In [29], the sparse grid introduced is based on the so-called
maximum-norm-based sparse grid [27, 28]. It assumes that the function value
vanishes on the boundary and the hierarchical surplus is calculated through a
N-dimensional stencil which gives the coefficients for a linear combination of
function values at the collocation points. Generally, this kind of sparse grid is

not very suitable for high-dimensional stochastic spaces [27, 28].

Remark 3. It is also noted that, in the adaptive sparse grid G, we also keep
some points whose surpluses are smaller than the threshold when they are gen-
erated from their fathers whose surpluses are larger than the threshold. In other
words, we want to keep the adaptive sparse grid balanced, the so called bal-
anced adaptivity, see [64]. This is different from the algorithm in [29], where all

of the points whose hierarchical surplus is less than the threshold are omitted.
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3.2.2 Convergence and accuracy of the adaptive collocation

method

For a threshold € and a fixed level g = N + k of the sparse grid interpolation, the
approximation u, (x,Y) from Eq. (3.43) of the conventional sparse grid method
can be rewritten as a sum of two terms u,, representing the interpolation on the
adaptive sparse grid G and u? that accounts for all of the missing points (see
also Remark 3) whose hierarchical surpluses are below the threshold ¢. Since
for any piecewise N-linear basis function a}(Y), IIa}IIOO = 1 [30], we can show
that the error between the adaptive sparse grid interpolation and that of using

conventional sparse grid is

GV

PIDNEENE

lii<g jeB
|wJ!|<£

< eM,, (352)

q q _ q
g — uglleo = ||u<||oo

where M, is the number of all missing points. When decreasing the threshold
g, the number of missing terms M, also decreases (as the tolerance is reduced,
more points are locally refined). Therefore, we can see that indeed the approxi-
mation of the adaptive sparse grid interpolation converges to the conventional
interpolation case when decreasing the threshold £. Accordingly, the interpo-
lation error when using the adaptive spare grid collocation method can be ap-

proximated by

w= gl

|l — M;Hm = ||u —uf, +ug, — u;”00 < ||u - u;’j{”D0 + ||u (3.53)

The first term in the equation above is the interpolation error of the conventional
sparse grid collocation method (see Eq. (3.42)). The second term is the error

between the conventional and adaptive sparse grid collocation methods that
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was shown to be of the order of O(¢). Numerical investigation of these errors

are provided in Section 3.3.1.

Hereafter, for convenience, we use CSGC to denote the conventional sparse
grid collocation method from Eq. (3.37) using multi-linear basis functions and
ASGC to denote the adaptive sparse grid collocation method from the algorithm

introduced in this section with the same basis functions.

3.3 Numerical examples

This section consists of four examples. The first example is used to demon-
strate the failure of the dimension-adaptive method when the singularity is not
aligned along the grid. On the second example, we compare our method with
MC and the multi-element based method on a benchmark problem involving
stochastic discontinuity. In the third example, we assess the ability of ASGC to
detect the important dimension in a high dimensional stochastic elliptic prob-
lem. In the last example, Rayleigh-Bénard instability is considered to showcase

the use of the method in physical problems.

3.3.1 Approximation of function with regularized line singu-

larity

In this section, we demonstrate the ability of the ASGC method in interpolating

given functions. The computed results are compared with the CSGC method.
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We consider the function on [0, 1]*:

1
0.3 —x2—y2|+6’

fxy) = (3.54)

where § = 107!, We first construct the interpolant A,»(f), then we randomly

generate 1000 points in [0, 1]* and finally compute the error as follows:

e= max |f(xi) = Aga(H)x)I. (3.55)

The function of interest has a line singularity that is not along the grid lines,
see Fig. 3.5. From the convergence plot with respect to & on the left of Fig. 3.6, it
is seen that the error converges nearly exponentially fast with respect to €. On
the right of Fig. 3.6, the convergence rate is shown with respect to the needed
number of points for different thresholds. For example, it is noted that for
threshold & = 107 more points are needed than when using the other two
thresholds shown but a higher level of accuracy is obtained. Also note that
much less points are needed in the ASGC than in the CSGC to achieve the same
accuracy. The highest accuracy achieved for ASGC is 6.09 x 10, where the in-
terpolation level is 19 and the number of points is 16659 as opposed to 6029313
points using the same level of CSGC. The evolution of the adaptive grid for
threshold & = 107 is shown in Fig. 3.7. The line of discontinuity is automati-

cally detected by the ASGC method.

Since the line singularity is not along any dimension, it is expected that the
dimension-adaptive (anisotropic) sparse grid method [39, 41] fails in this case.
The results are shown in Fig. 3.8, where the algorithm is implemented using the
MatLab Sparse Grid Interpolation Toolbox developed by Klimke [65]. From the
convergence plot, it is interesting to note that the convergence rate is nearly the

same as that of the CSGC method in Fig. 3.6. This is because the line singularity
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Figure 3.5: Line singularity: Comparison of the exact (left) and interpolant
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Figure 3.6: Line singularity: (left) Convergence of the ASGC method with

respect to the threshold ¢; (right) Comparison of the interpola-
tion error for conventional and adaptive sparse grid interpola-
tion using different threshold ¢ values.

results in the same importance of both dimensions and the anisotropic method

thus puts points in all dimensions. This is seen from the sparse grid in Fig. 3.8,

where the grid is nearly the same as the full tensor product case. Therefore,

this example verifies that if the singularity is not exactly along the dimensions,

the dimension-adaptive sparse grid method is not applicable and identifies the

need to

develop a different adaptive strategy that works directly on the hierar-

chical basis as the one presented in this chapter.
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Figure 3.7: Line singularity: The evolution of the adaptive sparse grid
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Line singularity: (left) Convergence of the dimension-adaptive

method; (right) Dimension-adaptive sparse grid.

3.3.2 A dynamical system with discontinuity

This problem that was originally addressed using Wiener-Haar expansion

in [18] has an analytical solution. We consider the following governing equa-
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tion for a particle moving under the influence of a potential field and friction

force:
’X
dr?

dh

dX
T T

(3.56)
with parameters f > 0, dh/dx and two initial conditions: X(t = 0) = x, and
dX/di(t = 0) = vy. If we set the potential field as h(x) = (35/8)x* — (15/4)x?,
then the differential equation has two stable fixed points (x = ++v15/35) and

an unstable fixed point at x = 0. The stochastic version of this problem with

random initial position in the interval [x;, x,] can be expressed as

X dX 35, 15

— +f—=-=X+—=X 57
az Tk (3:57)
with stochastic initial condition
dX
Xt=0,Y) =X, +AXY, Elt:() =0, (358)

where X(z,Y) denotes the response of the stochastic system, Xy = (x; + x2)/2,
AX = |x; — x|/2, and Y is uniformly distributed random variable over [-1, 1]. If
we choose X, = 0.05, AX = 0.2 and a relatively large friction coefficient f = 2,
a steady-state solution is achieved in a short time. The analytical steady-state

solution is given by

X(t > o0,Y) = —+/15/35, Y <-0.25,
(3.59)

X({t —> 00,Y)= +15/35, Y > -0.25.
1
This results in the following statistical moments, E[X(t — o0,Y)] = 2 v15/35 and
4
Var[X(t —» o, Y)] = 1—152 In the following computations, the time integration of

Eq. (3.57) is performed using a fourth-order Runge-Kutta scheme and a time

step At = 0.001 is used.
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Failure of gPC and Lagrange polynomial interpolation

First, we apply the gPC method to the model problem (Fig. 3.9). It is shown
that, no matter what the expansion order is, the gPC method cannot give accu-
rate representation of the discontinuous behavior of the solution. The gPC so-
lution results in unphysical oscillations in the realization of X at r = 10 as shown
in the middle column of Fig. 3.9. For the steady-state solution at t = 25, these
oscillation still exist, see left plot in Fig. 3.10. On the right of Fig. 3.10 similar
results are shown obtained with the sparse grid collocation method using La-
grange polynomials. The existence of these wiggles is a typical characteristic of
the Gibbs phenomenon when applying global spectral decomposition to prob-
lems with discontinuities in the random space [18]. The corresponding PDF of
the solution X at = 10 is also shown on the right column of Fig. 3.9. The analyt-
ical PDF should be two Dirac masses with unequal strength located at the two
equilibrium points. However, it can be seen from Fig. 3.9 that the gPC solution
exhibits a broad spectrum far from the equilibrium points and there are several

unphysical peaks.

To further illustrate this point, convergence of the mean and the variance at
steady-state are shown in Fig. 3.11. It is obvious that the results fail to converge
with increasing expansion orders. A similar plot is presented in Fig. 3.12 using
the sparse grid collocation method with Lagrange polynomials. The Lagrange
polynomials as the chaos polynomials, are of global support, so similar oscilla-
tions exist in the solution of X at ¢ = 10 (especially when the interpolation level
is 5). Unlike the gPC, increasing the interpolation level can significantly reduce
the wiggles in the solution, which is noted for the steady-state solution at ¢t = 25

in the right plot in Fig. 3.10. For level of interpolation 10, the solution at# = 10 in
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Figure 3.9: gPC solution of the model problem. The left column shows the
evolution of X(¢,Y) for 0 < ¢ < 10. The solution at r = 10 as
a function of Y is plotted in the middle column and the corre-
sponding PDF is shown in the right column. Results are ob-
tained for gPC expansion orders 10 (top) and 20 (bottom).

Fig. 3.12 suggests that there exists a discontinuity in the solution and there are
two equilibrium points. However, near the discontinuity point of the solution,
there are still several wriggles, which can be further noted in the corresponding
PDEF. These wiggles will not disappear even for higher interpolation levels due
to the Gibbs phenomenon. Better predictions of the low-order moments are ob-
tained than the gPC method as shown in Fig. 3.13. Though the results indeed

converge, the converged values are not accurate.
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Figure 3.10: Steady-state solution at t = 25 of the model problem. Left:
gPC method with different expansion orders; Right: Conven-
tional sparse grid collocation method using Lagrange polyno-
mials with different interpolation levels.
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Figure 3.11: Mean (left) and variance (right) using the gPC expansion for
the model problem with expansion orders from 3 to 20.

Conventional sparse grid collocation with linear basis functions and adaptiv-
ity

We now apply the CSGC method with linear basis functions to the model prob-
lem. The linear basis functions have local support, so it is expected that they
should correctly resolve the discontinuity. The results are shown in Figs. 3.14

and 3.15. It is indicated that with increasing interpolation level, the CSGC

method can provide an adequate representation of the discontinuous behav-
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Figure 3.12: Solution of the model problem using the sparse grid collo-
cation method with Lagrange polynomial interpolation. The
left column shows the evolution of X(¢,Y) for 0 < ¢t < 10. The
solution at + = 10 as a function of Y is plotted in the middle
column and the corresponding PDF is shown in the right col-
umn. Results are obtained for interpolation levels 5 (top) and
10 (bottom).

ior of the solution. Note that unlike the solutions obtained in the last section,
there are no oscillations in the solutions shown here. Even for low interpolation
level, the computed solution provides an insight to the existence of disconti-
nuity. In the right plot of Fig. 3.15, the PDF is indeed two Dirac masses with
unequal strength. Therefore, basis functions of local support are able to resolve
the discontinuity. This is the same idea as the Wiener-Haar expansion [18],
where piecewise constant representation of the stochastic support space was
used. However, note that the CSGC method is expected to be faster than the
Wiener-Haar expansion approach, since it only requires repeated calls to a deter-

ministic solver, while the Wiener-Haar expansion results in coupled equations
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Figure 3.13: Mean (top) and variance (bottom) using sparse grid colloca-
tion with Lagrange polynomial basis. The results in the right
column are the detailed view from interpolation level 10 to 13.

as is the case with the gPC expansion.

The error of the mean decreases very fast to about 10~'? at interpolation level
3. So we only show the error of the variance in Fig. 3.16, where comparison with
the results of the ASGC is also made. Here, it is noted that since the solution is
very smooth far from the discontinuity point, the magnitude of the hierarchical
surpluses are also very small in the first three levels. In order to avoid early stop
of the refinement, we always refine the first three levels. For the CSGC method,
a maximum interpolation level of 15 is used and 32769 points are needed to
reach accuracy of 1 x 107. For the ASGC method, a maximum interpolation

level of 30 is used. Only 115 number of points are required to achieve accuracy
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Figure 3.14: Solution of the model problem using multi-linear sparse grid
collocation method. The left column shows the evolution of
X(t,Y) for 0 < t < 10. Results are obtained for interpolation
levels 5 (left) and 10 (right).
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Figure 3.15: Left: Steady-state solution at t = 25 of the model problem
with different interpolation levels. Right: The corresponding
PDF using interpolation level 10.

of 3 x 107'°. This is because the magnitude of the hierarchical surpluses are
very small in the smooth part of the stochastic support space, i.e. about order
of 107"%, and only points near the discontinuity point (-0.25) are refined. This
is noted in the right plot of Fig. 3.16 (only first 20 levels are shown), where the
points are only refined after the appearance of collocation point —0.25, where
the magnitude of the hierarchical surplus is very large. As mentioned before, for
very strong discontinuities, the magnitude of the hierarchical surplus decreases

very slowly, thus we need to specify a maximum interpolation level to force
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the refinement to stop. If we use the CSGC to achieve the same accuracy, an
interpolation level of 30 must be used, which corresponds to 1.0737x10° number

of collocation points. This shows the advantage of the ASGC method.
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Figure 3.16: Left: Comparison of the absolute error of the variance ob-
tained using the conventional and adaptive sparse grid meth-
ods. Right: The corresponding adaptive sparse grid.

Highly discontinuous solution

Now we consider a more difficult problem as in [18]. Specifically, we set
f =0.05 Xy = 1 and AX = 0.1. All other conditions remain as before. The
reduction of the friction coefficient, together with higher initial energy will re-
sult in the oscillation of the particle for several cycles between each of the two
stable equilibrium points. The results using the CSGC method with linear ba-
sis functions are shown in Fig. 3.17. An interpolation level 10 can successfully
resolve several discontinuities in each cycle. It is noted from Fig. 3.18 that both
the gPC and the collocation method with Lagrange polynomials fail to provide
an accurate representation of the behavior of the solution. Unlike the solution in
the previous section, the failure of Lagrange polynomial interpolation is much

more obvious. Overall in this section the accuracy and efficiency of the sparse
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grid collocation method with piecewise multi-linear basis functions is verified
through a simple dynamical problem involving discontinuities. We proceed

next to apply the ASGC method to several benchmark problems.
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Figure 3.17: Steady-state solution at + = 250 of the highly discontinuous

solution with different interpolation levels using the CSGC
method with piece-wise multi-linear basis functions.

3.3.3 Kraichnan-Orszag (K-O) problem

The transformed Kraichnan-Orszag three-mode problem can be expressed

as [20]
v _
dr Y1ys,
dv: _ _
dr Y2Y3,
dy;
T —}’%"‘}’%’ (3.60)
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Figure 3.18: Steady-state solution at ¢+ = 250 of the highly discontinuous
solution using gPC with expansion order 20 (left) and con-
ventional sparse grid collocation with Lagrange polynomial
interpolation of interpolation level 10 (right).

subject to initial conditions
y1(0) = "1(Qw),  »00) = 12(0;w),  y3(0) = Y3(0; w). (3.61)

This problem shows a bifurcation on the parameter y;(0) and y,(0). The deter-
ministic solutions of the problem are periodic, and the period goes to infinity if
the initial conditions are located at the planes y; = 0O and y, = 0, i.e. discontinuity
occurs when the initial conditions cross these two planes [20]. Here, we choose
the random initial conditions subject to the uniform distribution ¥ ~ U(-1, 1).
In this formulation, the initial conditions cross the discontinuity plane and thus
as expected the gPC method fails in computing the solution to this problem.
This problem was originally solved using ME-gPC and ME-PCM in [20, 21, 34].
Here, we are addressing this problem using the ASGC method. The time in-
tegration of Eq. (3.60) is performed using a fourth-order Runge-Kutta scheme.
In all computations described in this section, a time step Az = 0.01 was used.
Error convergence and comparison of computation cost with both ME-gPC and

ME-PCM are conducted.
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One-dimensional random input

At first, we study the following random initial conditions:
y1(0)=1.0,  »(0)=0.1Y(0;w),  y3(0)=0. (3.62)

In Fig. 3.19, we show the evolution of the variance within the time interval [0, 30]
(short time behavior). For comparison, the results of gPC are also included. The
‘exact’ solution is obtained using a quasi-random Sobol (MC-SOBOL) sequence
with 10° iterations. Due to the discontinuity, the result from MC-SOBOL is much
more accurate than the standard MC simulation directly sampling from the uni-
form distribution. It is seen that the gPC begins to fail at time 7 ~ 8§, while the
ASGC method converges even with a large threshold ¢ = 0.1. From the adap-
tive sparse grid in Fig. 3.19, it is noted that even though most of the points are
refined as a result of the small threshold &, most of the refinement after level 8
occurs around the discontinuity point ¥ = 0.0. The refinement stops at level 16,
which corresponds to 425 number of points, while the conventional sparse grid

requires 65537 points.

The maximum error of the variance of y;, y, and y; at ¢ = 30 is tabulated in Ta-
ble 3.1. The maximum error of the variance is defined as lr:r%asz |Var(y;)—Var(y; yc)l
at t = 30. The ‘exact’ solution is taken as the results given by MC-SOBOL 10°
iterations. For each threshold ¢, we show the level when the refinement stops,
the corresponding number of collocation points and the error. It is seen that,
with decreasing threshold, the stopping interpolation levels and the number of
collocation points increase. At the same time, the accuracy becomes better and
we can approximately obtain an error of the order of 0.01s. We have also tab-
ulated the error using MC-SOBOL and MC with the same number of samples.
Although the MC-SOBOL is a quasi-MC method with better convergence than
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Figure 3.19: Evolution of the variance of the solution for 1D random in-
put. Top left: y;, Top right: y,, Bottom left: y;, Bottom right:
Adaptive sparse grid with ¢ = 1072,

the standard MC method, from the table it can be seen that the ASGC procedure
approximately leads to 2 and 1 orders of magnitude reduction in the erroz, as
compared to MC and MC-SOBOL, respectively. We then compare the compu-
tational cost between the ASGC and multi-element based methods (Table 3.2).
The error level is achieved by decreasing the error threshold ¢ in AGSC and
6, in both ME-gPC and ME-PCM. It is noted that we conduct the ME-gPC us-
ing a third-order expansion while we use linear basis functions in ASGC. In
ME-PCM, a level 3 Clenshaw-Curtis sparse grid is used in each element. From

the results, we note that for comparable accuracy, both the ASGC method and
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ME-PCM are much faster than the hr-adaptive ME-gPC. Although using higher-
order gPC expansion can reduce the number of random elements, the increase
of the expansion terms results in more computation time. On the other hand,
the computational time is nearly the same for ASGC and ME-PCM. However,
it is more meaningful to compare the number of function calls since both meth-

ods are based on a collocation algorithm. Many more points are needed for the

ME-PCM than the ASGC to achieve the same accuracy.

Table 3.1: Comparison of maximum error of the variance of y;, y, and y; at
t = 30 for the 1D K-O problem for the same number of sample

points.
ASGC MC MC-SOBOL
Threshold | Level | #Points Error Error Error
107! 11 117 [ 513x 107 | 4.62%x 1072 | 4.27x 1072
1072 16 425 234%x 107 [ 1.40x 1072 | 1.28x 1073
1073 17 1381 | 2.08x 107 | 7.71 x 107 | 5.00 x 107*
10~ 26 5349 | 2.59x107° | 2.85x 107 | 9.54 x 1073

The long-term behavior of the solution is presented in Fig. 3.20 within the
time interval [0,100]. The corresponding realizations at different times as a
function of random variable Y are given in Fig. 3.21. These realizations are re-
constructed using hierarchial surpluses according to Eq. (3.43). It is seen that at
early times, the discontinuity has not yet been developed, which explains the
reason the gPC is accurate at earlier times. With increasing time, the disconti-
nuity is growing stronger and the solution is very oscillatory. Thus, many more

interpolation points are needed to successfully resolve the discontinuity.
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Table 3.2: Comparison of computational costs for the 1D K-O problem.

Error level ASGC h-adaptive ME-gPC | h-adaptive ME-PCM
Time(s) | #Points | Time(s) | #Elems | Time(s) | #Points
102 0.03 21 13.75 16 0.38 126
1073 0.25 117 51.11 58 0.87 288
1074 1.70 425 82.02 92 7.12 2304
107 13.65 1381 97.42 110 14.26 4608
Two-dimensional random input
In this section, we study the K-O problem with 2D random input:
yi(0) =10,  »(0)=0.1Y1(0;w),  y3(0) = ¥>2(0; w). (3.63)

Now, instead of a point, the discontinuity region becomes a line. In Fig. 3.22, we
show the evolution of the variance of y;, y,, y; and the adaptive sparse grid. We
restrict the maximum interpolation level to 20, which is sufficient for achieving
desired accuracy. As before, we also include for comparison the result obtained
by the gPC with order p = 10. From these results, it can be seen that even though
the gPC fails at a larger time, the adaptive collocation method converges to the
reference solution given by MC-SOBOL with 10° iterations. From the adaptive
sparse grid, we can see that more points are placed around the line ¥; = 0,
since we know that the discontinuity crosses the plane Y; = 0. The maximum
error of the variance of y;, y, and y; at t+ = 10 is tabulated in Table 3.3. The
‘exact’ solution is taken as the results given by MC-SOBOL as before. Due to the

increased discontinuity, the reduction of the error from ASGC compared with
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Figure 3.20: Long term behavior of the solution for 1D random input. Top
left: Variance of y,, Top right: Mean of y;, Bottom left: Vari-
ance of y,, Bottom right: Variance of ys.

that of the MC-SOBOL is not as significant as in the one-dimensional input case.
However, the error is still much better than that of the standard MC method.
The comparison of the computational cost is given in Table 3.4. The error level
is defined the same as before. We still use a third-order expansion for ME-gPC
and level 3 Clenshaw-Curtis sparse grid for ME-PCM and vary 6, while fixing
6, = 1072 In this situation, the speed up of the ASGC and ME-PCM with respect
to the ME-gPC is still obvious. It is interesting to note that the ME-PCM is
much faster than ASGC, although the number of collocation points is about ten

times more than that of ASGC. This is because the computational time of the
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Figure 3.21: Realizations of the solution (y;, y,,y3) for the 1D K-O problem
as a function of the random variable Y at different times.

deterministic problem may be ignored since it is a simple ODE. Most of the time
in the ASGC is spent on hierarchical surplus calculation and communication
between different processors due to MPI parallelization. Therefore, in terms of

functional evaluations, ME-PCM is much more expensive than the ASGC.

Three-dimensional random input

In this section, we study the K-O problem with 3D random input:
y1(0) = "1(Qw),  »(0) = V2(0;w),  y3(0) = Y3(0; w). (3.64)

This problem is much more difficult than any of the other problems examined
previously. This is due to the strong discontinuity (the discontinuity region now

consists of the planes ¥, = 0 and Y, = 0) and the moderately-high dimension.
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Figure 3.22: Evolution of the variance of the solution for 2D random input.
The maximum interpolation level is 20. Top left: y,, Top right:
y2, Bottom left: y;, Bottom right: Adaptive sparse grid with
e=1072.

It can be verified from comparison with the result obtained by MC-SOBOL that
unlike the previous results, here 2x 10° iterations are needed to correctly resolve
the discontinuity. Due to the symmetry of y; and y, in Eq. (3.60) and the corre-
sponding random input, the variances of y, and y, are the same. Therefore, in
Fig. 3.23 we only show the results for y; and y;. The maximum interpolation
level is set at 15. Finally, in order to show the implementations of h-adaptive
multi-element based methods are correct, we provide the results from both
methods in Fig. 3.24. The computation results for the ASGC, ME-gPC and ME-

PCM methods are shown in Tables 3.5-3.7, respectively, where we fix 6§, = 10~
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Table 3.3: Comparison of maximum error of the variance of y;, y, and y; at
t = 10 for the 2D K-O problem for the same number of sample

points.
ASGC MC MC-SOBOL
Threshold | #Points Error Error Error
107! 903 395%x 1072 | 4.62%x 1072 | 1.30x 1073
1072 6457 | 1.50x 107 | 1.21x 1072 | 9.43x 107
1073 23099 | 1.83x 107 | 3.34x 107 | 525% 107
107 79213 | 543 x107° | 1.26 x 107 | 6.46x 107>

Table 3.4: Comparison of computational costs for the 2D K-O problem.

Error level ASGC h-adaptive ME-gPC | h-adaptive ME-PCM
Time(s) | #Points | Time(s) | #Elems | Time(s) | #Points
1072 5.82 1575 20.89 22 0.78 232
1073 17.13 2251 34.69 86 1.78 3944
10~ 27.01 6457 118.29 408 11.17 67280
107 144.48 | 23099 | 383.57 1612 29.50 213324
and 6, = 1073. The error is defined as the maximum of the absolute error of

the variance of y, and y; at time # = 10 from the ‘exact’ solution given by MC-

SOBOL with 2 x 10° iterations. It is seen that although the ASGC method has

larger error compared with MC-SOBOL and the convergence rate is not optimal,

it has better accuracy than the standard MC method. In addition, it is still much

faster than the ME-gPC for a comparable accuracy of the order of 107*. Due to

the strong discontinuity in this problem, it took much longer time for both the
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ASGC and ME-PCM to arrive at the same accuracy than in the 2D problem. It
is interesting to note that ME-PCM is the fastest method in this case. However,
as before, to achieve the same accuracy as the ASGC, many more points are re-
quired for the ME-PCM. The advantage of ME-PCM is its p-type convergence
such that the error quickly drops to the order of 10~ when interpolation level
increases to 8 in each element. However, the number of function evaluations
is 10 times more than that of the reference solution. Therefore, the efficiency of
all the methods over the MC method is not as obvious as in the previous two

examples. In this extreme case, the MC-SOBOL is more favorable.
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Figure 3.23: Evolution of the variance of y; = y, (left) and y; (right) for the
3D K-O problem using ASGC.

3.3.4 Stochastic elliptic problem

In this section, we compare the convergence rate of the CSGC and ASGC meth-
ods through a stochastic elliptic problem in two spatial dimensions. As shown
in the previous examples, the adaptive sparse grid collocation method can accu-

rately capture the non-smooth region of the stochastic space. Therefore, when
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Figure 3.24: Evolution of the variance of y; = y, (left) and y; (right) for
the 3D K-O problem using both ME-gPC and ME-PCM. Both
results are obtained with 6, = 10™* and 6, = 1073.

Table 3.5: Computational results for 3D K-O problem using ASGC.

ASGC MC MC-SOBOL
Threshold | #Points Error Time Error Error
107! 46953 | 1.95x 1073 | 0.09 hour | 2.72x 1073 | 6.23x 107>

1072 210177 | 2.95x 10™* | 0.85 hours | 8.99 x 107* | 6.61 x 107>

1073 498025 | 1.58 x 10™* | 3 hours |547x10™* | 2.74x 107

the non-smooth region is along a particular dimension (i.e. one dimension is
more important than others), the ASGC method is expected to identify and re-
solve it. In this example, we demonstrate this ability of the ASGC method to
detect important dimensions when each dimension weighs unequally. This is
similar to the dimension-adaptive method, especially in high stochastic dimen-

sion problems.
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Table 3.6: Computational results for 3D K-O problem using h-adaptive

ME-gPC.
order p h-adaptive ME-gPC
#Elements Error Time
3 5584 1.10x 107 | 10 hours
4 3256 5.85 x 10™* | 22.5 hours
5 2336 3.29x 107 | 39 hours
6 1624 2.98 x 107* | 108 hours

Table 3.7: Computational results for 3D K-O problem using h-adaptive

ME-PCM.
Level k h-adaptive ME-PCM

#Points Error Time
6 590364 | 4.15x 1073 | 0.05 hour
7 14305746 | 1.53 x 107 | 0.48 hours
8 15788608 | 6.78 x 107 | 0.55 hours

Here, we adopt the model problem from [33]:
-V (ay(w, )Vu(w,") = fyvlw,"), inDXxT,
uw,) = 0, on oD xT,

with the physical domain D =

70

(3.65)

{x = (x,y) € [0, 1]2}. To avoid introducing
large errors from physical discretization, we take a deterministic smooth load
fv(w, x,y) = cos(x)sin(y) with homogeneous boundary conditions. Therefore,

we assume that there are no substantial errors from the physical discretization.



The deterministic problem is solved using the finite element method with 900
bilinear quadrilateral elements. Furthermore, as in [33], in order to eliminate
the errors associated with a numerical Karhunen-Loeve expansion solver and
to keep the random diffusivity strictly positive, we construct the random diffu-

sion coefficient ay(w, x) with 1D spatial dependence as

VAL 12 N
log (an(w, x) = 0.5) = 1 + Y (w) (T) + an¢n(X)Yn(w), (3.66)
n=2
where
—(| 2 1xL)?
&, = (\/EL)U2 exp (%), if n>1, (3.67)
and
sin ( L%LJM) , ifneven,
Gp(x) = L,lj’m (3.68)
Cos (ZL—p) , ifnodd.
Y,(w),n = 1,...,N, are independent uniformly distributed random variables in

the interval [- V3, V3]. The parameter L, in Eq. (3.68) can be taken as L, =
max{l,2L.} and the parameter L in Egs. (3.66) and (3.67) is L = L./L,. This
expansion is similar to a Karhunen-Loéve expansion of a 1D random field with

stationary covariance

_ _ 2
—n—xw) ) . (3.69)

cov [log(aN - 0.5)] (x1,X) = exp( i

Small values of the correlation length L. correspond to slow decay in
Eq. (3.66), i.e., each stochastic dimension weighs almost equally. On the other
hand, large values of L. result in fast decay rates, i.e., the first several stochastic
dimensions corresponding to large eigenvalues weigh most importantly. By us-
ing the expansion Eq. (3.66), it is assumed that we are given an analytic stochas-
tic input. Thus there is no truncation error. It is different from the discretiza-

tion of a random field using the K-L expansion, where for different correlation
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lengths we keep different terms accordingly. In this example, we fix N and
change L. to adjust the importance of each stochastic dimension. In this way,
we want to investigate the effect of correlation length L, on the ability of the

ASGC method to detect important dimensions.

To study the convergence of the algorithm, we consider a problem where the
interpolation level increases linearly. We estimate the L*(D) approximation error
for the mean and the variance. Specifically, to estimate the computation error in
the g-th level, we fix the dimension N and compare the results at two consecu-
tive levels, e.g. the error for the mean is E [ﬂq,N(uN) - ﬂqH,N(uN)]. Similar error
is defined for the variance. The results are shown in Fig. 3.25 for different corre-
lation lengths at N = 11. Each symbol denotes one interpolation level. To com-
pare the convergence rate between the CSGC and ASGC methods, we choose
the same maximum interpolation level for both methods. Then we decrease the
threshold & until the ASGC method arrives approximately at the same accuracy
as the CSGC method. In [33], the authors proved for the stochastic elliptic prob-
lem that the convergence rate for the CSGC is nearly exponential. Since a linear
basis can be considered as polynomial of order one, it is seen in Fig. 3.25 that the
error for CSGC indeed decreases nearly exponentially which verifies the result
in [33]. For small correlation lengths, the effects on the convergence rate for both
CSGC and ASGC are nearly the same. On the other hand, for large correlation
length, if we adopt the ASGC method, much less number of collocation points
is required to achieve the same accuracy as the CSGC method. This is because
more points are placed along the important dimensions which are associated
with large eigenvalues. Therefore, the larger correlation lengths have positive
effects on the rate of convergence, while decreasing L. leads to a deterioration

of the rate of convergence of the ASGC method due to equal weighting of all
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directions. It is also noted that, for small correlation length, we need a small
threshold to achieve the desired accuracy. Smaller correlation length indicates a
smoother stochastic space. The surplus also decreases very fast. Therefore, for

a larger threshold, the refinement stops earlier.
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Figure 3.25: The convergence of the stochastic elliptic problem in
N = 11 dimensions for different correlation lengths L. =
1/2,1/4,1/8,1/16, using both the CSGC and ASGC methods.

Next, in Fig. 3.26 we study some higher-dimensional case. Due to the rapid
increase in the number of collocation points, we focus on a moderate correla-
tion length L. = 0.6 so that the ASGC is effective. From this figure, it is seen
that for N > 25, the ASGC method successfully detects the important dimen-

sions and terminates the refinement automatically. The expansion in Eq. (3.66)
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is dominated by the first several terms which depend on the chosen correlation
length. Since we choose a moderate large value of L., the important expan-
sion terms associated with large eigenvalues are almost the same for the four
cases considered in Fig. 3.26. Thus, the error level that can be achieved is nearly
identical for the four cases. However, many more points are needed for increas-
ing dimensions. Therefore, it is rather difficult to solve this problem using the
CSGC method. For example, when N = 75 and ¢ = 107°, the refinement using
the ASGC method stops at level 8 and the corresponding number of points is
276913. On the other hand, the number of points required for the CSGC method

with the same interpolation level is 3.5991 x 10'".

In order to further verify our results, we compare the mean and the vari-
ance when N = 75 using the AGSC method with & = 107° with the ‘exact’ so-
lution given by MC simulation with 10° samples. The comparison is shown

in Fig. 3.27 over the entire physical domain. The relative error is defined as
|E(A N (uy)) — E(upc)

|E(umc)l
while the maximum relative error for the variance is 5.29 x 1073. Therefore, the

. The maximum relative error for the mean is 9.89 x 1074,

ASGC method is indeed a very accurate method comparable to the MC method
even in high stochastic dimensions. The computational time is about 0.5 hours,
which is much less than the time needed by the MC method which took about

2 hours on 10 processors.

We also compare the convergence rate with the standard MC method. L*(D)
error is computed by comparing the solution with a reference solution com-
puted from 10° MC samples. The results are shown in Fig. 3.28. As expected,
when the correlation length is large, the ASGC method is most effective. With

the same number of points, the error of the ASGC is nearly one order lower
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Figure 3.26: The convergence of the stochastic elliptic problem in N =
25,50,75, 100 dimensions for correlation length L. = 0.6 using
the ASGC method.

than that of the MC method. When the correlation length decreases, the effect
of the ASGC is nearly the same as that of the CSGC. Thus, the convergence rate
becomes slower as seen in the right plot of Fig. 3.28, where the ASGC error is
nearly one-order larger than the MC error. This is due to the performance of
the CSGC method suffering from increasing number of dimensions (unlike MC
method) as a result of the weak dependence on the dimensionality in the loga-
rithmic term of the error bound as indicated in Eq. (3.42). To achieve a desired
accuracy, we have to increase the interpolation level. However, the number of

collocation points will increase excessively fast as shown in Fig. 3.29, and there-
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Figure 3.27: Relative error of the mean (left) and variance (right) when N =
75 using the ASGC method with error threshold & = 107°. The
‘exact’ results are given by MC with 10° iterations.

fore the problem becomes prohibitively expensive. We also implemented the
ME-PCM version of this problem that however was not appropriate for such
high dimensional problem. When we start solving this problem with only one
element, due to the large local variance, the method tends to split the element in
every dimension, which results in 2% new elements thus exceeding computer
memory. Therefore, the multi-element based domain decomposition method

depends much more on the dimensionality than the ASGC does.
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Figure 3.28: L*(D) error in the mean versus the number of collocation
points (or samples of the Monte Carlo method) for N = 25.
Left: L. = 0.6, Right: L. =1/16.

In summary, the results show that, besides indicating local variance in the
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solution, the ASGC method is also an efficient numerical approach to detect the
important dimensions in the stochastic space. This plays the same role as in the
dimensional adaptive method, in particular in problems with high stochastic di-
mension. However, the performance of the method depends on the smoothness
of the stochastic space. If the stochastic space is rather smooth (i.e. all stochas-
tic dimensions are equally important), the MC method is still the best choice
for problems with a high number of stochastic dimensions. Finally, it is also
noted that the adaptation discussed here is not the same as that in the dimen-
sional adaptive method [39, 41]. Besides adding the points along the important

dimensions, we here also add all the associated neighboring points.

3.3.5 Application to Rayleigh-Bénard instability

Finally, we study the well-known stochastic Rayleigh-Bénard problem with ran-
dom boundary temperature around the neighborhood of the critical point. Nat-
ural convection starts when the fluid buoyancy effect due to temperature gra-

dients exceeds the stabilizing viscous effect. The state where these opposing
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effects neutralize each other is called the critical point. Below this point, the
viscous effect dominates, the fluid flow vanishes and heat transfer takes place
purely by conduction. Above this point, the buoyancy effect dominates, fluid-
flow is initiated and heat transfer is by conduction and convection. When the
system inputs fluctuate about the critical point, the input-output relationship
becomes highly non-linear and possibly discontinuous due to drastic change in
the governing dynamics. This problem was previously solved using the Wiener-
Haar expansion [18] and the stochastic Galerkin method [17]. Here, we study it
using the ASGC method.

Deterministic problem

Consider a 2D bounded domain D c R? with a boundary D, |J dD,. Dirichlet
boundary conditions are applied on dD,, while Neumann boundary conditions
are applied on dD,. The deterministic problem consists of finding the velocity
u, pressure p and temperature 6 such that the following non-dimensional gov-

erning equations are satisfied:

V-u = 0, (3.70)
Oou )
a5 +u-Vu = -Vp+PrVu+ F(u,0), (3.71)
Z—f +u-Vo = V3%, (3.72)

where F(u, ) is the forcing function in the Navier-Stokes equations and Pr is
the Prandtl number of the fluid. In the problems considered later, F(u,0) is
the Bousinnessq approximated buoyant force term —RaPrfg, where Ra is the

thermal Rayleigh number and g is the gravity vector.
Here, we want to study the stochastic formulation of this problem. The phys-
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ical domain is taken to be a closed cavity [0, 1]* filled with air (Pr = 0.7). No-slip
conditions are imposed on the boundary. The vertical walls are assumed to be
adiabatic. The top wall is maintained under a deterministic cold temperature
6. = —0.5. The bottom wall temperature is assumed to be a random hot temper-
ature 0),. The statistics of 8, are assumed to be such that both stable and unstable
modes occur with finite probability. We set Ra = 2500, which is larger than the
critical Rayleigh number, so that convection can be initialized by varying the

hot wall temperature.

Under these conditions the problem is to find stochastic functions that de-
scribe the velocity u = u(x,t,w) : DX [0,T] XTI — R?, pressure p = p(x,t,w) :
D x[0,T] xT — R and temperature 6 = 6(x,t,w) : D X [0,T] XxI' = R, such that

the following equations are satisfied:

V-u(,w)=0, in Dx[0,T]xT, (3.73)

aug,tw) +u(, ) Vu(,w) = -Vp(,w) + Prv*u(-, w) (3.74)
+Fu(-, w),0(,w)), in Dx[0,T]xT,

(99((;;)) +u(-,w) - Vo(-,w) = V?0(-,w), in Dx[0,T]xT. (3.75)

The deterministic governing Egs. (3.70)-(3.72) are solved using the second-
order stabilized projection finite element method developed in [63]. The spatial
domain is discretized using 40x40 bilinear quadrilateral finite elements. Prior to
stochastic simulation, several deterministic computations were performed in or-
der to find out the range where the critical point lies in. These simulations were
conducted by perturbing the hot wall temperature from the purely conductive

solution. We monitor the time evolution of the average kinetic energy in the
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tield as illustrated in Fig. 3.30. It is seen that after a short time, the kinetic en-
ergy exhibits growth (heat convection mode) or decay (heat conduction mode)
until steady-state is arrived, depending on the hot wall temperature. Therefore,
the critical temperature lies in the range [0.5, 0.55]. In addition, we also monitor

the steady-state Nusselt number which denotes the rate of heat transfer:

1 1
%yzodx. (3.76)

Nu =
Y= Jo

Clearly, in the conductive (stable) regime, Nu = 1. For temperature larger than
the critical value, convection is initialized and heat transfer enhancement occurs
so that Nu (6;) > 1. The results are shown in Table 3.8. Obviously, when the hot
wall temperature is larger than 0.55, heat convection begins. This again veri-
fies the critical hot wall temperature lies in the range [0.5,0.55]. However, the
exact critical value is not known to us. So, we now try to capture this unstable

equilibrium using the ASGC method.

10°

6,=0.30
/ — — — - 6,=040
; D 9,=0.50
\/ / ———-6,=055
\ / — - 8,=060

——e—— 0,=070

10"

v2

(K]

107 N

10°%

20 0 60 80 100
Time

Figure 3.30: Evolution of the average kinetic energy for different hot wall
temperatures.
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Table 3.8: Steady-state Nusselt number for different hot wall temperatures

0.30

0.40

0.50

0.55

0.60

0.70

1.00000

1.00000

1.00000

1.01496

1.07357

1.17744

Adaptive sparse grid collocation scheme

In this section, we assume the following stochastic boundary condition for the
hot wall temperature:

0, = 0.4+ 0.3, (3.77)

where Y is a uniform random variable in the interval [0, 1]. Following the dis-

cussion above, both a stable and an unstable flow occur for this range of 6.

As discussed above, for the conductive regime, Nu = 1 and Nu > 1 when heat
convection occurs. Thus, the difference 6Nu = Nu (6,) — 1 provides a measure of
the heat transfer enhancement. This result is provided in the left of Fig. 3.31.
The result is reconstructed from the hierarchical surplus of the solution. It is
noted that, the critical value is about 0.541, since below this value éNu = 0.0 and
an essentially linear increase of 6Nu with 6, is observed beyond this value. This
can be further verified from the corresponding adaptive sparse grid in the same
tigure shown on the right. For the first 6 interpolation levels, it is seen that less
points are placed on the left hand side of point 0.55, which is expected due to
the pure conduction mode in this region. In this region of the random space,
the solution is smooth and the magnitude of the hierarchical surpluses decrease
very quickly. On the other hand, almost all points on the right of point 0.55 are

refined since heat convection occurs in this regime. After level 6, we can see
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that only the points around point 0.541 refine until the refinement stops at inter-
polation level 12, which suggests larger hierarchical surpluses occur there and
that the solution is not very smooth in the neighborhood. Therefore, the critical
value for the hot wall temperature is indeed about 0.541, which is consistent
with our discussion in Section 3.3.5. In addition, we also plot in Fig. 3.32 the
solution of the state variables at point (0.1, 0.5) as a function of hot-wall temper-
ature. At this point the solution exhibits a higher variance in temperature (see
also Fig. 3.36 at the end of this section). Again, the same critical point is pre-
dicted from Fig. 3.32. Specifically, the velocity vanishes below the point 0.541
and increases with 6, beyond this points where heat convection occurs. The
temperature increases linearly with the hot wall temperature below the critical
point which is a typical characteristic of heat conduction. On the other hand,

the temperature grows non-linearly beyond this point.

01r

ONu

0.05

04 045 05 055 06 065 07 04 045 05 05 06 065 07
0, o

h

Figure 3.31: Steady-state oNu (left) versus hot-wall temperature using
ASGC and the corresponding adaptive sparse grid with
threshold & = 0.01 (right).

To further verify the results, we sample a uniform random variable for hot

wall temperature from the conduction regime and reconstruct the solution from
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Figure 3.32: Solution of the state variables versus hot-wall temperature
at point (0.1,0.5). Top left: u velocity, Top right: v velocity,
Bottom: temperature.

the hierarchical surpluses. At the same time, we run a deterministic problem
using the same realization of the random variable. The comparison of the re-
sults is shown in Fig. 3.33. The velocities are zero and thus they are not shown.
We can see that the contour distribution of the temperature is characterized by
parallel horizontal lines which is a typical distribution for heat conduction. The
prediction from the collocation method is the same as the deterministic solution.
We repeat this process by sampling a hot wall temperature from the convection
regime. The results are shown in Fig. 3.34. Again, the results compare very

well and correctly predict the convective behavior. It is interesting to note that
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the difference of the maximum value of the velocity between the predicted and
deterministic solutions is within the order O(107?), which is consistent with the

error threshold 1072,

Max = 0.436984 Max = 0.436984

Figure 3.33: Prediction of the temperature when 6, = 0.436984 using ASGC
(left) and the solution of the deterministic problem using the
same 0.

Finally, we provide the mean and variance in Figs. 3.35 and 3.36, respectively.
We also include for comparison the results obtained with the MC-SOBOL se-
quence with 10* iterations. The results compare very well, which again verifies
the accuracy of the present method. The number of collocation points, i.e. the
number of runs of the deterministic simulator needed for the adaptive sparse
grid is 49, while the computation time is about 1.5 hours. However, the compu-
tation time for MC-SOBOL is 15 hours. Therefore, the time needed by the MC

method is much more than that for the ASGC.

In summary, the ASGC method can successfully capture the unstable equi-
librium in natural convection. In addition, it can also predict quite accurately

the critical point.
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Figure 3.34: Prediction of the u velocity (left column), v velocity (middle
column) and temperature (right column) when 6, = 0.667891
using ASGC (top row) and the solution of the deterministic
problem using the same 6, (bottom row).

3.4 Conclusions

In this chapter, we developed an adaptive hierarchical sparse grid collocation
method based on the error control of local hierarchical surpluses. By utilizing
multi-linear hierarchical basis functions of local support, this method can re-
solve successfully discontinuities in the stochastic space. Through numerical
examples, we demonstrated that in the presence of discontinuity in the stochas-
tic space, this approach leads to significant reduction in the number of points re-
quired to achieve the same level of accuracy as the CSGC method. Unlike the di-
mension adaptive collocation method developed earlier, the current method re-
tines the sparse grids locally by working directly in the hierarchical basis. Thus,

besides the detection of important dimensions as dimension-adaptive methods
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Max =1.73123

Figure 3.35: Comparison of the mean of the u velocity (left column), v ve-
locity (middle column) and temperature (right column) using
ASGC (top row) and MC-SOBOL method with 10* iterations
(bottom row).

can do, additional singularity and local behavior of the solution can also be re-
vealed. By applying this method to the Rayleigh-Bénard instability, it is shown

that the adaptive sparse grid can accurately predict the critical point.

We provided extensive comparisons with the ME-gPC and ME-PCM meth-
ods. Due to the decoupled nature of the stochastic collocation method, it is
shown that the computational cost of the ASGC and ME-PCM methods is much
less than that of the ME-gPC method at least for the low-dimensional problems
considered. The ME-PCM is even faster than the ASGC in terms of computa-
tional time for low-dimensional problems. However, the ASGC requires much
less number of collocation points than the ME-PCM to achieve the same accu-

racy. Furthermore, the multi-element based method is not suitable for high-
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Max = 3.30617 Max = 3.28535 Max = 0.0129218

Figure 3.36: Comparison of the variance of the u velocity (left column), v
velocity (middle column) and temperature (right column) us-
ing ASGC (top row) and MC-SOBOL method with 10* itera-
tions (bottom row).

dimensional problems due to its O(2") tree-like scaling of the standard h—type

adaptive refinement.

Solutions are also compared with MC results. For the 3D K-O problem, due
to the rather strong discontinuity, the convergence rate of the AGSC is not opti-
mal compared with MC. However, in general, the ASGC can achieve a desired
accuracy at a cost much lower than that of the MC method provided that the
ASGC is effective in detecting the regularity in the stochastic space. On the other
hand, as shown in the stochastic elliptic problem, if each dimension weighs al-
most equally for a high-dimensional problem, the ASGC is not the best choice.
This is because although the Smolyak algorithm depends less on dimensionality

than the gPC method, it still suffers with increasing number of dimensions due
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to the weak dependence on the dimensions in the logarithmic term of the error

bound. A new method is developed to address this issue in the coming chapter.

It is also worth noting that the ASGC method not only gives us the solution
statistics the same as using MC, but also calculates an approximate functional
representation of the solution in the stochastic space. Therefore, in the context
of function approximation, MC is not applicable to solve stochastic problems.
Currently, the ME-PCM is based on quadrature rule and only gives us mean and
variance. Although it can provide response surface of the solution by projecting
the collocation solution onto the gPC basis, it is not as straightforward as the

ASGC since it needs to search in the multi-element grid.
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CHAPTER 4
SOLVING HIGH-DIMENSIONAL SPDES - AN ADAPTIVE
HIGH-DIMENSIONAL STOCHASTIC MODEL REPRESENTATION
TECHNIQUE

As is shown in Section 3.3.4, when the importance of each dimension weighs
equally, ASGC cannot solve the problem accurately even with a moderate (21)
stochastic dimensionality. In this case, the effect of ASGC is nearly the same
as of the CSGC and thus the convergence rate deteriorates. In this chapter, the
high dimensional model representation technique is utilized to address the high
dimensional problem. In addition, an adaptive version of HDMR is also devel-
oped for the first time to automatically detect the important dimensions and
construct higher-order terms using only the important dimensions. This chap-

ter closely follows the work in [66].

4.1 High dimensional model representations (HDMR)

In this section, the basic concepts of HDMR are introduced following closely the
notation in [43, 44, 48, 57]. For a detailed description of the theory applied to

deterministic systems, the interesting reader may refer to [44].

Let £(Y) : RY — R be a real valued smooth multivariate stochastic function.
Here, it is noted that f(Y) may be also a function of physical coordinate, f(Y, x).
From now on, we will omit x to simplify the notation. HDMR represents f(Y) as

a finite hierarchical correlated function expansion in terms of the input variables
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as [43, 44, 48]

N N
FOO=fo+ D0 D i, Wi 1), (4.1)
s=1 i <-<is
where the interior sum is over all sets of s integers iy, ..., i, that satisfy 1 < i; <

iy < N. This relation means that

N
O = St D A+ D fun (N Yi) +
i=1

1<i|<ia<N

+ Z ﬁl"'is (Yil,...,Yl’S)-i' +f12---N (Yl,...,YN). (42)

1<i) <<iy <N

Here, f is the zeroth-order component function which is a constant denoting
the mean effect. The first-order component function fi(Y;) is a univariate func-
tion which represents individual contributions to the output f(Y). It is noted
that fi(Y;) is general a nonlinear function. The second-order component func-
tion f;;,(¥;,,Y;,) is a bivariate function which describes the interactive effects of
variables Y;, and Y;, acting together upon the output f(Y). The higher-order
terms reflect the cooperative effects of increasing number of input variables act-
ing together to impact f. The s-th order component function f;, .. (¥;,...,Y:)
is a s-dimensional function. The last term fi,..y (Yy,...,Yy) gives any residual
dependence of all input variables cooperatively locked together to affect the
output f(Y) [43, 44]. Once all the component functions are suitably determined,
then the HDMR can be used as a computationally efficient reduced-order model
for evaluating the output. This is the same idea as the stochastic collocation

method where we also obtain an approximate representation of f(Y).

Remark 1. The HDMR expansions are based on exploiting the correlation ef-
fects of the input variables, which are naturally created by the stochastic input-
output mapping, i.e. the SPDE. It is noted that the term “correlation” employed
here does not indicate the correlation effects between the input random vari-

ables as employed in statistics since in general the random input variables are
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independent and thus uncorrelated. Instead, it indicates the impact of these

input variables upon the system output when acting together.

Equation (4.1) is often written in a more compact notation [57] as follows:

) = ) fulYo), (4.3)
uch
for a given setu € O, where D := {1, ..., N} denotes the set of coordinate indices

and fy(Yo) = fo. Here, Y, denotes the |ul-dimensional vector containing those
components of Y whose indices belong to the set u, where [u] is the cardinality
of the corresponding set u, i.e. Y, = (¥))iew. For example, if u = {1,3,5}, then

lu| = 3 and f,(Y,) implies fi35(Y;, Y3, Ys).

The component functions f,(Y,) can be derived by minimizing the error

J

functional [43, 44]:

2

= > Yo duY), (44)

uc{o0,...,s}

where 0 < s < N.

The measure du determines the particular form of the error functional and
of the component functions. The measure u induces the projection operator

Py, : TV — '™ by [44]

Pyf(Yu) := FY)dpp\u(Y), (4.5)

N—ul

Where dﬂD\u(Y) = HieZ),iééu d,Ll,(Y,)
Therefore, the 2" terms f, can be recursively defined by [43]

FulYa) 1= Puf(Ya) = D" A(Y), (4.6)

vCu

and can also be given explicitly by [67]

fuY) 1= > (=D MR (YY), (4.7)

vCu
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This formulation is particularly useful to combine with ASGC as will be dis-
cussed later. The component functions are orthogonal with respect to the inner

product induced by the measure 4,

f fu(Yu)fv(YV)d,u(Y) = O, foru # Vv, (48)
vy

and thus the resulting decomposition Eq. (4.3) is unique for a fixed measure p.

In the next sections, we will present two particularly useful decompositions.

411 ANOVA-HDMR

In this case, the measure y is taken as the ordinary Lebesgue measure du(Y) =
d(Y) = 1Y, dY;. With this choice, the actions of the projection operators in the
ANOVA-HDMR are given by

Pyf(Yy) = FY)dY pyu. (4.9)

NIl

More specifically, the first few terms are

fio= [ ey gon= [ o[ Tar-
j#i
oy = [ o[ Jan-f-f@-s .. @)
- k#i,j

This decomposition is the same as the well-known analysis of variance
(ANOVA) decomposition used in statistics. A significant drawback of ANOVA-
HDMR is the need to compute the high-dimensional integrals. Even the zeroth-
order component function requires a full-dimensional integration in the space.
To circumvent this difficulty, a computationally more efficient CUT-HDMR ex-
pansion will be introduced in the following section for the stochastic model

representation which is the focus of this chapter.
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4.1.2 CUT-HDMR

In this work, the CUT-HDMR is adopted to construct the response surface of
the stochastic solution. With this method, the measure u is chosen as the Dirac
measure located at a reference point Y = (Yl, Yo,..., YN), ie. du(Y) =TIY,6(; -

Y;)dY;. With this choice, the projections Eq. (4.5) become

Pyf(Yu) == f(Dly=\v, (4.11)

where the notation Y = Y \ Y, means that the components of Y other than
those indices that belong to the set u are set equal to those of the reference point.
Equation (4.11) defines a |u]-dimensional function where the unknown variables
are those dimensions whose indices belong to u. The component functions of

CUT-HDMR are explicitly given as follows [43]:

f(Y), fi(Yi) = f(Y)|Y:Y\Y,- - fO
f(Y)|Y:Y\(Y,«,Y,-) - fi(Yi) - fj(Yj) - fo, <. (4-12)

Jo

fij(Yi, Y5)

It is argued in [43, 44] that quite often in typical deterministic physical sys-
tems the correlation effects of the higher-order terms amongst the input vari-
ables for their action upon the output are weak. Tests on several examples
from [43, 44] indicate that only the low-order correlations have a significant
impact on the output and thus the few lower-order terms (usually up to third-
order) are often sufficient to represent the model to a desired accuracy. The
extent of high-order variable cooperativity depends on the choice of input vari-
ables [44]. However, the exact factors which determine the correlation effect in

stochastic space are unclear and this will be one of the focus points of this work.
It is also interesting to note that the CUT-HDMR can be derived from a Tay-
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lor expansion at the reference point [52]:

_ ) 1 N 0]](. _ o
fOO) = W)+ )5 ) G (D =Ty
j=1 7" i=1 !

* i . 1- Z 6j1-+j2f- W, = 1) (Y, = V)2 + -0 (413)
Sy it S oyloy)

The infinite number of terms in the Taylor series are partitioned into finite num-

ber of groups with each group corresponding to one CUT-HDMR component

function. For example, the first-order component function f;(Y;) is the sum of all

the Taylor series terms which contain and only contain variable ¥; and so on [47].

Any truncated HDMR expansion should provide higher-order accuracy than a

truncated Taylor series of the same order.

Choice of the reference point

The convergence property of HDMR is rather sensitive to the choice of the refer-
ence point. It is argued in [43] that the reference point can be chosen arbitrarily
provided the HDMR expansion is converged. Later, it is pointed out in [48, 68]
that in some cases the choice of the reference point is important in order to ob-
tain a good approximation for a fixed-order HDMR and a careless choice may

lead to an unacceptable approximation error.

We would like to choose a suitable point such that the error of a fixed-order
HDMR approximation is as small as possible and the HDMR expansion order
is as low as possible. The authors in [48, 68] proved that a good reference point
should satisfy:

min |£(¥) ~ E[f(V)]]. (4.14)
However, the mean of the output is not known a priori. To this end, they pro-

posed to sample a moderate number of random inputs and compute the mean
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of the sample outputs. Then the reference point is chosen as the one among
the samples whose output is the closest to the above mean value [48, 68]. It is

obvious that this method will be quite expensive if it is used in our problem.

According to the Taylor expansion Eq. (4.13), if we choose the reference point
as the mean of the input random vector, then the expectation of the output
is close to the function value at the mean vector since the coefficients associ-
ated with higher-order terms in the Taylor series are usually much smaller than
lower-order terms. It has been shown that in many stochastic mechanics prob-
lems [47], a second-order HDMR expansion usually leads to a satisfactory ap-
proximation within a desired accuracy if the reference point is chosen as the
mean vector. Therefore, unless otherwise stated, we always choose the mean of

the random input vector as the reference point in this work.

4.2 Integrating HDMR and ASGC

Although ASGC depends less on dimensionality than the gPC method, it still
suffers with increasing number of dimensions [61]. Therefore, for problems
with high stochastic dimensionality, to obtain accurate results one needs to use
a higher-interpolation level. However, the number of needed points will grow
quickly as shown in Fig. 3.29. Integrating HDMR and ASGC is a way to address

and overcome this difficulty.

First, we want to discuss the choice of error indictor in ASGC. Previously,
the magnitude of the hierarchical surplus is chosen as the error indicator in
Section 3.2. However, this error indicator is too sharp and may result in a non-

terminating algorithm. We will need to define a new error indicator. The new
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error indicator is defined as follows:

Hw}(x) . IJ?

Ly(D)

" Ewals /-

Here, the L, norm is defined in the spatial domain. This error indicator mea-

i

(4.15)

sures the contribution of each term in Eq. (3.46) to the integration value (mean)
relative to the overall integration value computed from the previous interpola-
tion level. In addition to the surpluses, it also incorporates information from the
basis functions. This makes the error 7} decrease to a sufficiently small value for
a large interpolation level. Therefore, for a reasonable error threshold, this error
indicator guarantees that the refinement would stop at a certain interpolation

level.
Within the framework of CUT-HDMR, let us rewrite Egs. (4.3) and (4.7) as

) =D A = > > DAY )y gy, (4.16)

uch ucD vCu
where we define f(Yy) = f(Y). Therefore, the N-dimensional stochastic prob-
lem is transformed to several lower-order |v|-dimensional problems f(Yy)y-v\y,
which can be easily solved by the ASGC as introduced in the last section:

0 = 3 DM YN Wl - dyy), (4.17)

uchD vCu I<N+q j

where [[il| = i} + -+ + iy, wivj(x) are the hierarchical surpluses for different sub-
problems indexed by v and a}(YV) is only a function of the coordinates which
belong to the set v. It is noted that the interpolation level ¢ may be different for
each sub-problem according to their regularity along the particular dimensions
which is controlled by the error threshold . In this work, € is the same for all

sub-problems.
Interpolation is done quickly here (with no need to search any tables)
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through simple weighted sum of the basis functions and the corresponding hi-
erarchical surpluses. In addition, it is also easy to extract statistics as introduced
in Section 3.1.5 by integrating directly the interpolating basis functions. Let us
denote

Jy = Z(—l)‘“l—'vl Z ng(x) v (4.18)

vCu ii<N+q j

as the mean of the component function f,. Then the mean of the HDMR ex-
pansion is simply E[f(Y)] = Yu.cpJu- To obtain the variance of the solu-
tion, we can similarly construct an approximation for u? and use the formula

Var[u ()] = E|v’(x)] - (E [u ()],

Remark 1. It is also possible to use the Smolyak quadrature rule directly to in-
tegrate the CUT-HDMR in order to obtain the mean and the variance [56, 57].
However, the method introduced here is much better since it provides a func-
tion approximation to the output that can be used as a stochastic reduced-order

model [69] with local adaptivity built in its representation.

4.3 The effective dimension of a multivariate stochastic func-

tion

Related to HDMR expansions is the concept of the effective dimension of a mul-
tivariate function [57, 67]. In [57], the authors have discussed it in the case of
integration. Here, we extend this concept to a multivariate stochastic function.
Let f := > uco [Jul be the sum of all contributions to the mean value, where

[Jul = | f fudYul < lIfulle, [57]. Then, for the proportion @ € (0, 1], the truncation
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dimension is defined as the smallest integer N,, such that
2, Wil =af, (419)
uc{l,...,N;}
whereas, the superposition dimension is defined as the smallest integer N;, such

that
Dl = of. (4.20)

The superposition dimension is also called the order of the HDMR expansion.
The effective dimensions in the case of interpolation cannot be defined in a

unique manner and their definition is part of the algorithmic approach used.

With the definition of effective dimensions, we can thus truncate the expan-
sion in Eq. (4.3). In other words, we take only a subset S of all indices u € D.

Here, we assume that the set S satisfies the following admissibility condition:
ueSandvcu=>vedS. (4.21)

This is to guarantee that all the terms can be calculated according to Eq. (4.7).
For example, the set of indices based on the superposition dimension can be
defined as Sy, := {u € D : |[u] < N,} and the set of indices based on the truncation

dimension can be defined as Sy, := {u C {1,...,N;}}.

Therefore, from Section 4.2, we can define an interpolation formula Asf for
the approximation of f which is given by

Asf = ) Alf). (4.22)

uesS

Here A(fy) is the sparse grid interpolant of the component function f, and Asf
is the interpolant of the function f using the proposed method with the index set
. Itis common to refer to the terms { f, : [u| = [} collectively as the “order-/ terms”.

Then the expansion order, p, for the decomposition Eq. (4.22) is defined as the
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maximum of /. Note that the number of collocation points in this expansion is
defined as the sum of the number of points for each sub-problem from Eq. (4.17),

ie. M = ZueS Mu.

Now, let us consider the approximation error of the truncated HDMR ex-
pansion with ASGC used for the component functions in Eq. (4.22). To this
end, we fix @« € (0,1] and assume that N; and N,, the corresponding su-
perposition and truncation dimensions, are known. We define the index set

Swnn, i={u c{l,...,NJ, [ul < N,}. We can state the following theorem:

Theorem 1. Let S = Sy, y,, and let A be the ASGC interpolant with the same error
threshold & for all the sub-problems. Then:

|f - ﬂsfl < C(NY’ Nl‘)g + 8[? (4:.23)

for all f € Fy, where Fy := {f: [0, 11V — R, D™ £ continuous, m; < 2,Vi}. Here,
the constant c(N,, Ny) depends on the effective dimensions but does not depend on the
nominal dimension N. g, is the truncation error of Eq. (4.22) according to the definition

of effective dimensions.

Proof: The proof of this theorem is similar to that of Theorem 3.3 in [57]. We

start with
If = Asfl < |f = fsl + |fs — Asfl, (4.24)

where fs = Y. Sy, Ju(Yu)- The first term on the right hand side is the trun-
cation error and the second term is the interpolation error. According to the
definition of effective dimensions, with increasing @ € (0, 1], the approximation
approaches the true value. Therefore, for a fixed @, we can denote the truncation

error as |f — fs| = &. From Eq. (4.7), we have the expression

fam AR = Y (DM - AP (4.25)

vCu
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According to the ASGC algorithm, it is known that the approximation error is
controlled by the error threshold &. Since we choose the same & for each sub-

problem, we have |P, f — A(Pyf)| < e [61].
Therefore, we have

fs=AsHl < D la=AGI < DY 1P — AP

ues ueS vCu

Ny
I Z( )Z( ) <N, NJe,  (426)
ueS vCu k=1

with the constant c¢(N,, N;) given as [57]

N

o = SLIEL- Sl <o

— j=1

which completes the proof.

Therefore, it is expected that the expansion Eq. (4.22) converges to the true
value with decreasing error threshold £ and increasing number of component

functions.

4.4 Adaptive HDMR

In practice, the effective dimensions are not known a priori. In order to find
the effective dimensions, one needs to compute all 2V component functions.
They were originally defined for the representation of pure mathematical func-
tions [48, 57]. However, in our case, calculating effective dimensions is not
practical since we need to solve PDEs and thus the computational cost is much

higher than that for function evaluation. Note that the total number of compo-
!

nent functions for a I-th order expansion is Z , which increases quickly
i=

l'(N i’
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with the number of dimensions. Therefore, in this section, we would like to
develop an adaptive version of HDMR for automatically and simultaneously

detecting the truncation and superposition dimensions.

We here assume each component function f, is associated with a weight
nu = 0, which describes the contribution of the term f, to the HDMR. Using
this information, we then want to automatically determine the optimal index

set S, which consists of two steps.

At first, we try to find the important dimensions, i.e. the truncation dimen-
sion. To this end, we always construct the zeroth- and first-order HDMR expan-
sion where the computational cost is affordable even for very high-dimensions.

In this case, the weight is defined as:

il o0

= (427)
1fo(l.p)

i

where Jj; = f fi(Y))dY; follows the definition in Eq. (4.18) and the L, norm is
defined in the spatial domain when the output is a function of spatial coordi-
nates. Each first-order component function is only a one-dimensional function
which measures the impact on the output when each dimension is acting inde-
pendently. According to Egs. (4.12) and (4.27), this weight can be considered as
a measurement of the sensitivity of the output when only the ith—-dimension is
the input. Then we define the important dimensions as those whose weights
are larger than a predefined error threshold 6,. Now, the set O in Eq. (4.16) only
contains these important dimensions instead of all the dimensions. For exam-
ple, if the important dimensions are 1, 3 and 5, then only the higher-order terms
{13}, {15}, {35} and {135} are considered. It is noted that the important dimen-
sions depend on the choice of 8,. With decreasing 6,, more dimensions become

important and therefore more terms need to be included in the HDMR.
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The reason for defining the weight in Eq. (4.27) is as follows. HDMR is aimed
to reveal the correlation effects among the input variables as reflected upon the
output. The correlation effect is large if the change of the random input within
its range will lead to a significant change on the output. According to the defi-
nition of first-order component function, f(Y;) = f(Y)ly-v\v. — fo, fi(Y;) measures
the difference between the function value with only input arising from one di-
mension acting independently and the function value at the reference point. It
contains the information about the impact upon the output from this particular
dimension. Therefore, if the weight is defined as in Eq. (4.27), it clearly gives us
information on the impact that this dimension has when is acting alone upon
the output. Only those dimensions which have significant impact on the out-
put are considered as important. Then it is straightforward to argue that if two
dimensions are important, there is a possibility that the impact upon the out-
put is still significant if these two dimensions act together. Therefore, we need
to consider all the component functions of only these important dimensions. It
is noted that a similar definition is also proposed in [57] and is proved to be

effective.

However, not all the possible terms are computed. Instead, we adaptively
construct higher-order component functions increasingly from lower-order to
higher-order in order to reduce the computational cost in the following way.

For each computed higher-order term f,, [u] > 2, a weight is also defined as

I ullom)

(4.28)

T

S es i1 7 V||L2(D)

It measures the relative importance with respect to the sum of current integral
value which has already been computed in set from the previous order. Sim-
ilarly, the important component functions are defined as those whose weights

are larger than the predefined error threshold 6,. We put all the important di-

102



mensions and higher-order terms into a set 7-, which is called the important set.
When adaptively constructing HDMR for each new order, we only calculate the

term f, whose indices satisfy the admissibility relation Eq. (4.21),
uePDandvcu=veT. (4.29)

In other words, among all the possible indices, we only want to find the terms
which can be computed using the previous known important component func-
tions via Eq. (4.6). In this way, we find those terms which may have significant
contribution to the overall expansion while ignoring other trivial terms thus re-

ducing the computational cost for high-dimensional problems.

Let us denote the order of expansion as p. Furthermore, we also define a
relative error p of the integral value between two consecutive expansion orders

pand p—1as

p = ”ZIHKIJ Ju = Z|u|<p—1 J“”LZ(D). (4.30)
||Zlu|<p—l J“||L2(D)

If p is smaller than another predefined error threshold 6,, we consider that the

HDMR has converged and the construction stops.
The above procedure is detailed in Algorithm 1.

It is noted here that we add all the computed indices to set even if their
weight is below the threshold 6, in order to further improve the accuracy since
we have already paid the cost to compute them. This is similar idea to that used

in the ASGC algorithm.

Before closing this section, we want to comment again on the definition of
the weights in Egs. (4.27) and (4.28). As discussed before, these weights provide
information on the contribution of each component function to the overall ex-

pansion. In addition, the weights from the first-order expansion also provide
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Algorithm 1: Adaptive construction of the index set

Initialize: Let = {0}, R = {0} and 7 = {0}. Set p = 1.

Construct the zeroth and first-order component functions:

e Solve each sub-problem using the ASGC method with error threshold ¢

and add all the indices to .

e Compute the weights of each first-order term according to Eq. (4.27).

Add those dimensions which satisfy n > 6, to set 7.

repeat
e p < p+ 1. Construct the set R whose indices satisfy the admissibility

relation Eq. (4.29) for |u| = p.

e If R # {0}, for each index u € R, solve the corresponding sub-problem

using ASGC with error threshold & and add all the indices to .

e Compute the weight of component functions according to Eq. (4.28).

Add those indices which satisfy 7 > 6, to set 7~ and clear set R.

e Compute the relative error p according to Eq. (4.30).

until R = {0} or p < 6,;

us information on the important dimensions. An important dimension here is
defined in a relative sense, which means that its impact upon the output is more
significant than that of others. Here, we provide a guideline to select 6,. Since
the expansion of each order only depends on the previous order, we can first
only construct the first-order expansion. Then we can sort all dimensions in a
descending order according to the value of ;. Finally, the value of 6, is chosen

such that only a certain portion of the dimensions are considered important. If
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all the weights are the same, we have to include all the dimensions. Although
we do not have the situation in the numerical examples considered here, there

is a possibility that [|fo(Y)llz, = 0. In this case, one can simply define n; = ||J;;|L,-

4.5 Numerical examples

In this section, two sets of numerical examples are considered to illustrate the
proposed HDMR technique. In the investigations below we consider both adap-
tive HDMR and conventional HDMR where the adaptivity here refers only to the
truncation of the expansion. In all examples, the ASGC method is used for the
calculation of the component functions. The ASGC method used alone refers to
the adaptive sparse grid collocation in [61] applied directly (without HDMR ex-
pansion) to the interpolation of the original function of interest or to the solution
of the SPDE. Similarly, CSGC refers to the conventional sparse grid interpola-
tion without adaptivity applied to the original function or solution of the SPDE.
The first set of examples involves elementary mathematical functions while the
second set involves stochastic fluid mechanics problems. Whenever possible,
comparisons with alternative methods are provided to evaluate the accuracy,
computational efficiency, and convergence of the proposed method. In the fol-

lowing examples, unless otherwise specified, 6, is fixed at 10~*.

Example Set I - Mathematical Functions

It is noted that according to the right hand side of HDMR Egq. (4.1), if the func-

tion has an additive structure, then HDMR is exact, e.g., when f(Y) can be ad-
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ditively decomposed into functions f;(Y;) of single variables, then the first-order
expansion is enough to exactly represent the original function. On the other
hand, if a multiplicative nature of the function is dominant then all components
of HDMR may be needed to obtain an accurate result. However, if HDMR re-
quires all 2V components to obtain a desired accuracy, the method becomes very
expensive. This example is designed to investigate how function structure and

input variability affect the accuracy of the proposed method.

4.5.1 Example 1: Function with additive structure

Let us first consider the following simple function which has an additive struc-
ture in [0, 1]V:

N
F(Y) = Z Y2. (4.31)
i=1

where Y; are uniform random variables with range [0, 1]. Here, we take N = 10
and a third-order conventional HDMR expansion with € = 107*. After construct-
ing the HDMR, we generate 100 random points and compare the interpolating

results of HDMR with the exact value. The normalized L, error is defined as

VE oY) = foaa (Y2

100
i=1 fexact(Yi)2

(4.32)

€1,

The result is shown in Table 4.1. As expected, only first-order HDMR is
enough to represent the function exactly. Increasing the expansion order does

not improve the accuracy.

We compare next the convergence rate of first-order HDMR with other meth-

ods, which is shown in Fig. 4.1. Using HDMR, the number of points required
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Table 4.1: Interpolation of the function in Eq. (4.31) using HDMR of differ-
ent orders with interpolation error threshold & = 107*.

N =10 # Points L, Error

1* order HDMR 1291 1.3027 x 107*

2" order HDMR | 33016 | 1.3027 x 10~

3" order HDMR | 340336 | 1.3027 x 10~

to achieve a certain level of accuracy is much less than that using other meth-
ods. The number of points for CSGC at level 6 is 171425, when going to the next
level, the number increases to 652065. The number of points using ASGC alone
is 12621. It is also interesting to note that the convergence rate of HDMR is the
same as for ASGC, which shows that the error of HDMR is also controlled by «.
To further verify the results numerically, we compare the maximum error with
respect to different & for HDMR and ASGC, respectively, in Table 4.2. As ex-
pected the error threshold ¢ also controls the error of a converged HDMR. This
can be partially explained as follows. From Eq. (4.23), the error of HDMR con-
sists of two parts: truncation error of HDMR and interpolation error of ASGC
in the component function calculation. When HDMR has converged, the error
is only determined by the interpolation error of each low-dimensional compo-
nent function using ASGC which is also &, and recall that HDMR is a linear
combination of all the low-dimensional functions. Therefore the error is ap-
proximately Ce, where C is a constant. This case suggests that a lower-order
converged HDMR is a good substitute of ASGC with much less needed number

of collocation points.
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Figure 4.1: L, interpolation error versus number of points for the function
in Eq. (4.31).

Table 4.2: Maximum error using first-order HDMR and ASGC with vari-

ous &.
N=10 HDMR ASGC
# Points MaxError # Points MaxError
e=10" 51 1.3887 x 107! 221 1.3887 x 107!

=107 171 8.3629 x 1073 1421 8.3629 x 1073

e=1073 331 2.1349 x 1073 3021 2.1349 x 1073

e=10" 1291 1.3027 x 107 | 12621 | 1.3027 x 107*

e=107 5131 8.3142x10°° | 51021 |8.3142x107°

4.5.2 Example 2: Function with multiplicative structure

Next we consider the function“product peak” in [0, 1]V from GENZ test pack-

age [70] which has multiplicative nature:

N

FOO = [T+ vi—w?) (4.33)

i=1
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where ¢; and w; are constants and N = 10. Y; are uniform random variables with
range [0, 1]. The interpolation error is defined the same as before. The integra-
tion (mean) value of this function is defined as I = f[] o1 f(Y)dY. The relative

|Inum - Iexactl

integration error is defined as where the exact value is available an-

Hexacl
alytically.

We first examine the convergence of the HDMR with different expansion
orders while fixing £ = 107°, which is shown in Fig. 4.2. Unlike the previous
example, we now need all the terms in the HDMR expansion to obtain the exact
result due to the multiplicative structure of the function. However, it is seen that
the interpolation error decreases quickly with increasing expansion order. At
least a fifth-order expansion is needed to achieve accuracy of O(107%) in this case.
It is also interesting to note that HDMR converges faster for integration. Since
the integration (mean) value is a statistical measure, it possibly suggests that the
convergence rate depends more on the statistics of the input than the structure
of the function itself. We will further investigate this in the next example.

0
10

——o&— Interpolation Error
—H— Integration Error

Error

HDMR order

Figure 4.2: Convergence of HDMR for the function in Eq. (4.33) with dif-
ferent orders.

In Tables 4.3 and 4.4 , we also report the convergence of the ASGC used in the
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calculation of the component functions for a fixed HDMR expansion order. In
the combination of each order and ¢, the first column is the L, interpolation error
and the second is the relative integration error. As expected, the refinement of
the ASGC does not improve the accuracy of the interpolation error within each
expansion order. This is consistent with the previous results that when HDMR
is not converged, the overall error is dominated by the truncation error. On
the other hand, the integration value converges with a third-order expansion
and for this case refining the ASGC improves the accuracy of the mean value.
This suggests that the expansion order and the refinement of ASGC should be
increased simultaneously to achieve a satisfactory accuracy, which is consistent

with the results reported in [56].

Table 4.3: Relative L, interpolation error for various HDMR expansion or-
der and error threshold.

Order | £=107 =107 e=10"
1 2.56x 107! | 2.56 x 107! | 2.56 x 107!
2 7.53 %1072 | 7.57x 1072 | 7.57 x 1072
3 1.07x1072 | 1.12x 1072 | 1.13 x 1072

Table 4.4: Relative mean error for various HDMR expansion order and er-

ror threshold.
Order | £=107 e=10"° e=10"
1 399x 1072 | 3.98x 1072 | 3.98 x 1072
2 223x 1073 | 2551073 | 2.65%x 1073
3 402x107% [ 225%x107* | 1.46 x 107
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Since each dimension may weigh unequally in this function, it is also inter-
esting to compare the performance of HDMR with that of adaptive methods,
i.e. adaptive HDMR and ASGC. The adaptive HDMR is combined with ASGC
as described in Section 4.2. We fix 6, = 10~* while varying 6,. In addition,
we choose the same & = 107 for all three methods (conventional fixed-order
HDMR, adaptive HDMR and ASGC). The results are given in Table 4.5. For
conventional HDMR, we need about 4 million collocation points to obtain an
accurate result. On the other hand, it is seen that we can arrive at the same inte-
gration error as that of conventional HDMR and ASGC with much less number
of collocation points by using adaptive HDMR. However, the interpolation error
of adaptive HDMR is larger than that of the other two methods. This is expected
since our error indicator for the important component functions is based on the
mean value and thus it generally favors the strong interaction between those
dimensions that impact the mean of the output. Therefore, due to the multi-
plicative nature of the function, we need to include all the component functions

to compute an accurate value.

Table 4.5: Comparison of performance of conventional (fixed-order)
HDMR, adaptive HDMR and ASGC.

# Terms | # Points €interpolation €integration
5" HDMR 638 4712870 | 5.65x 10™* | 1.62 x 10~
HDMR: 6, = 1073 78 83400 |6.23x 1072 | 8.72x107*

HDMR: 4, = 10~ 140 220930 | 1.47x 1072 | 1.28 x 107*

ASGC: e =10"° N/A 305670 | 4.23 x 10™* | 1.28 x 10~*

This example shows that HDMR may not be useful for interpolating arbi-

trary mathematical functions but it may have a good convergence property for
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the approximation of integrals. Although the lack of the importance of higher-
order effects for constructing the approximation of input-output relations for
most deterministic physical systems is general [43, 44, 45, 46, 47], this feature
for the interpolation of stochastic systems deserves further investigation in the
next few examples. In addition, the relation between the convergence of the
output statistics and the expansion order of HDMR is also important which has

not been reported before.

In Fig. 4.3, we also investigate the effects of different choices of the reference
point. It is shown that the results are indeed more accurate for a fixed-order
expansion if the reference point is near the center of the domain. Therefore, in
the remaining examples, we always take the reference point as the mean of the
input random vector.

10"

4

+ %
Relative integration error

L, interpolation error

3| —©— Reference point 1: (0.5,...,0.5)
—&— Reference point 2: (0.6,...,0.6)

-4| —&— Reference point 1: (0.5,...,0.5)
—H&— Reference point 2: (0.6,...,0.6)

—*+— Reference point 3: (0.3,...,0.3) —+— Reference point 3: (0.3,...,0.3)
0 —=— Reference point 4: (0.1,...,0.1) 10'57+ Reference point 4: (0.1,...,0.1) |
1 2 3 4 5 1 2 3 4 5
HDMR Order HDMR Order

Figure 4.3: Error convergence for four different reference points.
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4.5.3 Example 3: Function with different weights among di-

mensions

The final example in this set entails calculation of the mean and standard devi-

ation of the output

1
)= L 434
) 1+ 30 aiX; *.34)

where the random input X; = oY; and Y; are i.i.d. uniform random variables
in [-V3, V3],i = 1,...,10. Therefore, the parameter o controls the standard
deviation (std) of the input. The coefficients «;,i = 1,..., 10 adjust the weight of
each dimension. The HDMR expansion is employed to compute the mean and

standard deviation of the output.

First, an isotropic case is considered by setting ; = 0.1,i = 1,..., 10, i.e. each
dimension weighs equally. The results are plotted in Fig. 4.4 for increasing val-
ues of standard input deviation. The relative errors are defined the same as be-
fore where the reference solution is taken from 10° MC samples. Here, conven-
tional (fixed-order) HDMR is used where the error threshold is £ = 107°. From
the figure, it is seen that with increasing o, a higher-order expansion is needed
to obtain an acceptable accuracy of order O(107%). On the other hand, when o is
small, only second-order expansion is enough to give us accurate results. Even
tirst-order expansion is accurate when o < 0.1. When o > 0.7, fourth-order ex-
pansion is not enough and thus higher-order terms in the HDMR expansion are
needed. The higher the input standard deviation is, the stronger the correlation
effects are among the dimensions. Therefore, higher-order expansion is needed
to capture these cooperative effects. In function Eq. (4.33), the input is uniform
distribution [0, 1]. Its input standard deviation is about 0.289, which is not very

large. This explains why its mean converges after a third-order expansion.
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Figure 4.4: Mean and standard deviation of the function in Eq. (4.34) for
increasing values of input standard deviation using conven-
tional (fixed-order) HDMR. Top left: Mean; Top right: Error of
mean; Bottom left: Standard deviation; Bottom right: Error of
standard deviation.

The interpolation error is also given in Fig. 4.5. As expected, due to the
non-linear nature of the function, higher-order HDMR expansions usually give
better accuracy. But at the same time, the interpolation error for a fixed-order
expansion also increases with increasing o-. It is also noted that, as for the inte-
gration case, a smaller o has the effect of reducing the number of the effective
dimensions of the function. For example, when o = 0.3, the relative error is

about 10~* when using only a second-order HDMR.

Next, we consider two anisotropic cases. For Case 1, ¢; = —,i = 1,..., 10.

The ratio between the smallest coefficient and the largest one is about 0.002. For
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Figure 4.5: Interpolation error of the function in Eq. (4.34) using conven-
tional (fixed-order) HDMR with different expansion orders.

0.1
W’i = 1,...,10. The ratio between the smallest coefficient and

the largest one is about 10~°. Thus, Case 1 refers to an anisotropic problem with

Case 2, a; =

small differences between dimensions while Case 2 refers to a highly anisotropic
problem where the first four dimensions are the most important. In these two
cases, we again fix the ASGC threshold & = 107° and choose a rather large input
standard deviation o = 2.0. The reference solution is still taken from 10° Monte
Carlo samples. The results for Cases 1 and 2 are plotted in Figs. 4.6 and 4.7,
respectively. In the left plot of Fig. 4.6, it is seen that the mean and standard
deviation converge even for such a large o. The interpolation error achieves an
order of 10~* with only a fourth-order HDMR. Therefore, the different weights
between dimensions result in reduction of the number of effective dimensions
in the HDMR expansion. This is more obvious in the left plot of Fig. 4.7 where
the mean and std errors converge after a second-order expansion and the inter-
polation error converges after a third-order expansion. This can be explained
as follows. If the weights of some dimensions are much larger than those of

others, then these dimensions have most of the impact on the output. In this
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case, only those component functions which consist of these dimensions pro-
vide most of the contribution to HDMR. If the number of important dimensions
is small, then less component functions are needed and this leads to an accurate

low-order HDMR expansion.

Since each dimension is given a different weight, we also use adaptive
HDMR. In the plots on the right of Figs. 4.6 and 4.7, we compare the HDMR
(conventional and adaptive) convergence rates for Cases 1 and 2, respectively,
with those of ASGC. To plot the convergence of conventional (fixed-order)
HDMR, we increase the expansion order from 1 to 5 (each symbol in the fig-
ures denotes an expansion order). The convergence of adaptive HDMR is plot-
ted by decreasing 6, (each symbol in the figures corresponds to a different 6,
value). To plot the convergence of ASGC, we plot the error at each interpola-
tion level when constructing the grid level by level. It is seen that for Case 2
adaptive HDMR is much better than both conventional HDMR and ASGC. On
the other hand, in Case 1, ASGC is better than the HDMR methods in terms of
interpolation. This is expected since, in such a high o case, there is no signifi-
cant difference between dimensions and we need a higher-order expansion to

capture the interaction effects.

Tables 4.6 and 4.7 show the total number of collocation points and also the
number of expansion terms used in HDMR for different 6,. It is noted that
adaptive HDMR requires much less expansion terms and thus less collocation
points than conventional HDMR, especially in Case 2. It is also interesting to
note that to achieve the same accuracy, the number of expansion terms in Case
2 is less than that of case 1. This is due to the strong anisotropic weights such

that only the first five dimensions are important. Therefore, only those terms
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Figure 4.6: Error convergence of the anisotropic Case 1 when a; =
0.1/27',i = 1,...,10 with ¢ = 2.0. Left: Conventional
(fixed-order) HDMR. Right: Comparison between conven-
tional (fixed-order) HDMR, adaptive HDMR and ASGC.
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Figure 4.7: Error convergence of anisotropic Case 2when e, = 0.1/10",i =
I,...,10 with o = 2.0. Left: Conventional (fixed-order)
HDMR. Right: Comparison between conventional (fixed-
order) HDMR, adaptive HDMR and ASGC.

which involve these dimensions are constructed by adaptive HDMR. In Fig. 4.8,
for both cases we also plot the weights, which are defined in Eq. (4.27) for each
tirst-order component function indicating the importance of each dimension. It
can be seen that the weights decrease quickly with the indices of the dimensions.

In Case 1, the number of important dimensions are 7, 9 and 10 for §; = 107,10°

117



and 1077, respectively. In Case 2, the number of important dimensions are 3, 4

and 5 for 6; = 107°,107" and 107~?, respectively.

Table 4.6: Comparison of performance of fourth-order HDMR and adap-
tive HDMR for the anisotropic Case 1 where o; = 0.1/2"',i =

1,...,10.
4t HDMR Adaptive HDMR
91 = 10_5 91 = 10_6 91 = 10_7
# Terms 386 37 64 88
# Points 388891 16584 44095 75877

Table 4.7: Comparison of performance of third-order HDMR and adap-
tive HDMR for the anisotropic Case 2 where a; = 0.1/ 1070 =

1,...,10.
34 HDMR Adaptive HDMR
6, =10°%16, =107 |6, =107°
# Terms 176 14 17 22
# Points 30296 1144 1575 2912

Overall, the HDMR reveals the correlations among the input variables as re-
flected upon the output. Each order-/ terms introduce the correlated effects of
l-input variables into the expansion. Therefore, the order of HDMR expansion
or the total number of component functions depends on the cooperative effects
among the input dimensions, which further depends on the input variability
and the importance of each dimension as demonstrated through this example
set. In general, higher-order expansion will give better accuracy since it captures

more correlation effects. However, as shown in this example, HDMR is useful
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Figure 4.8: The decay of the weights of the first-order expansion terms for
the two anisotropic cases.

if it can represent the output to a good accuracy with a sufficiently low-order
expansion. For the case of small input variability and strong anisotropic situa-
tion, a low-order expansion can lead to a good accuracy. At the same time, by
using adaptive HDMR, we can also significantly reduce the computational cost
without sacrificing the accuracy. In the next two sections, we will investigate the
convergence properties of adaptive HDMR on realistic physical systems and in-

vestigate if similar conclusions are obtained.

Example Set II - Fluid-Mechanics Problems

In the following two examples, random fields which are discretized by K-L ex-
pansion are introduced to increase the dimension of the stochastic problem. The
reference solutions are taken from Monte Carlo simulations. The obtained mean
values in these examples compared extremely well with the corresponding MC

results for all cases considered and therefore we will focus our discussion only
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on the standard deviation. The spatial L, normalized error of std o is defined as

3 \/Z?:l (Cupmr(X;) — O'Mc(xi))z
B Z?:] T mc(x;)?

where n is the number of grid points in the spatial domain.

(4.35)

€, L,

4.54 Example 4: Flow through random heterogeneous media

In this section, we consider flow through random porous media where the per-
meability is a random field obtained from the K-L expansion of an exponential
covariance function. Through this classical problem, we want to investigate
the effects of input variability on the accuracy and convergence of HDMR. The

problem is defined as follows:

V-ulxY) f(x), (4.36)

ulx,Y) -K(x,Y)Vp(x,Y), (4.37)

where the source/sink term f(x) is taken to be deterministic and K(x,Y) is the
random permeability. The domain of interest is a quarter-five spot problem in
a unit square D = [0, 1]*. Flow is driven by an injection well at the bottom left
corner of the domain and a production well at the top right corner. A mixed

finite element method is utilized to solve the forward problem [71].

The log-permeability is taken as zero mean random field with a separable

exponential covariance function

Cov(x,y) = o?exp (_le Zyll _ e Zyzl), (4.38)

where L is the correlation length and o is the standard deviation of the random
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tield. The K-L expansion is used to parameterize the field as

N
Y(w) =log (K@) = " JAg(x)Y,, (439)
i=1

where the eigenvalues 1;,i = 1,2,..., and their corresponding eigenfunctions
¢i,i = 1,2,..., can be determined analytically as discussed in [3, 5]. The Y; are

assumed as i.i.d. uniform random variables on [-1, 1].

In order to investigate the accuracy and applicability of the proposed HDMR
approach, we design a series of numerical runs with different correlation
lengths L and various degrees of spatial variability 0. The first three cases
aim to investigate the effects of correlation length (L = 1.0,0.5 and 0.25) on the
proposed approach. In these cases, the degree of spatial variability is kept at
o? = 1.0, which corresponds to a moderately high variability. The next three
cases are compared against case 3 when L = 0.25 to examine the impact of the
log-permeability variability (o = 0.01,0.25 and 2.0) ranging from very low to
extremely high variability. Monte Carlo simulations are conducted for the pur-
pose of comparison. For each case, the reference solution is taken from 10° MC

samples and all errors are defined as normalized L, errors. In all cases, the

threshold 6, for the relative error is fixed at 6, = 107*.

Let us first determine the stochastic dimension of our example cases. The
eigenvalues and the sum of the eigenvalues as a function of the number of terms
included are illustrated in Fig. 4.9 with three different correlation lengths for the
case o = 1.0. The corresponding eigenfunctions are shown in Fig. 4.10. Based
on these figures, the K-L expansions are truncated after 33, 108 and 500 terms,
respectively for L = 1.0,0.5,0.25, which represents ~ 95% percent of the total
variance of the exponential covariance function. The truncation level for the

expansion does not change for a fixed correlation length. Therefore, in all cases,
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the number of stochastic dimensions is N = 33,108 and 500, respectively for L =
1.0,0.5 and 0.25. In these cases, the ratio between the smallest eigenvalue and
the largest eigenvalue is about 10~ which is similar to the moderate anisotropic
case 1in Section 4.5.3. According to previous results on mathematical functions,
we would expect that the convergence of the HDMR expansion depends on the
input variability and that HDMR can deal with a moderately high stochastic

input standard deviation.

—-L=10
\ —--L=05
\ ——L=025 |

05

0.2

0.1
0

_ 100 200 300 400 500 600
! i

Figure 4.9: Series of eigenvalues and their finite sums for three different
correlation lengths at o = 1.0.

Effect of correlation length

We fix 02 = 1.0 and consider three different correlation lengths at L =
1.0,0.5 and 0.25. In this way, the input variability is fixed and the change of
correlation length adjusts the weights of each random dimension. Thus, we
want to investigate the effect of the smoothness of the stochastic space on the

accuracy of the HDMR expansion as we did in Section 4.5.3.

We decrease ¢ and 6, simultaneously until the L, normalized errors reach an

order of O(107%). It is interesting to note that these computed errors are achieved
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Figure 4.10: Four different eigenfunctions for L = 1.0 and o* = 1.0. Top
left: ¢;; Top right: ¢,; Bottom left: ¢5; Bottom right: ¢.

with the same & = 107° and 6, = 107 for all three correlation lengths. In Fig. 4.11,
we compare the standard deviation of the v velocity-component along the line
y = 0.5 with the results from the MC simulation. It is seen that the two results
compare extremely well, where the errors are 1.46 x 107, 1.19 x 10~? and 1.39 x

1073, respectively for L = 1.0, L = 0.5 and L = 0.25.

To investigate the convergence of HDMR, we fix £ = 10° while varying
6. The PDFs of the v velocity-component at point (0,0.5), where the standard
deviation is large as in Fig. 4.11, are shown in Fig. 4.12. Each PDF is gener-
ated by plotting the kernel density estimate of 10000 output samples through
sampling the input space and computing the output value through the HDMR

approximation. When 6; = 1072, the weights of all first-order terms are smaller
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Figure 4.11: Standard deviation of the v velocity-component along the
cross section y = 0.5 for different correlation lengths where
02=1.0,e=10%and 9, = 10™.

than the threshold and thus there are no higher-order terms. It is seen that the
results from only the first-order expansion are not accurate in all three cases
which is consistent with the result in Fig. 4.6. This may be explained intu-
itively as follows. The spatial variability o> determines the total input variabil-
ity, which further determines the correlation effects among the input variables.
The larger the input variability is, the stronger the correlation effects are. The
role of HDMR component functions is to capture these input effects upon the
output. In other words, the number of component functions needed depends
on the input variability. The higher the input variability is, the more component
functions are needed for a fixed stochastic dimension. For low-input variability,

even first-order expansion may be accurate enough no matter what the stochas-
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tic dimension is. In our case, o = 1.0 represents a rather high-input variabil-
ity. Higher-order terms are therefore needed to capture these effects whereas
only first-order terms are not enough. The number of important dimensions is
shown in Table 4.8. By decreasing 6;, more dimensions whose weights defined
in Eq. (4.27) are larger than 6, become important and thus more second-order
terms appear. This means more correlation effects are included in the expan-
sion and thus better accuracy. The number of component functions is 287, 889
and 2271 while for the full second-order expansion it is 562, 5887 and 125251,
respectively. Thus, the advantage of using adaptive HDMR is obvious, espe-
cially for N = 500. As expected, all the results converge to those obtained from
the MC simulation with decreasing #,. The computed PDFs indicate that the
corresponding HDMR approximations are indeed very accurate. Therefore, we
can obtain any statistic from this stochastic reduced-order model, which is an
advantage of the current method over the MC method.

Table 4.8: Number of important dimensions N; and component functions
N. for different 6.

0, L=10 | L=05 | L=0.25
Ni| N. |[N;| N. | N;| N,
1020|340 |109] 0| 501
10°| 5| 44 | 8 | 137 | 11| 556
107* | 23 | 287 | 40 | 889 | 60 | 2271

The convergence of the L, normalized error with respect to the total number
of collocation points is shown in Fig. 4.13 by fixing 6, = 10~*. The error plots are
obtained by decreasing the threshold € used in the ASGC. Although different

correlation lengths result in different truncated stochastic dimensions from the
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Figure 4.12: PDF of v velocity-component at point (0, 0.5) for different cor-
relation lengths, where o = 1.0 and & = 107%.

K-L expansion, it is interesting to note that we still have algebraic convergence
rates and they are nearly the same for all three cases. This may be explained
using Theorem 1. The input variability is the same and so is the superposition
dimension. Thus, the constant in Eq. (4.23), which only depends on the effective
dimensions, is nearly the same. In addition, the error in Eq. (4.23) exhibits a
linear dependence on the threshold & and as we know the convergence rate of
the sparse grid collocation method is algebraic [33, 61]. Thus, the convergence

plot here indeed exhibits algebraic rate as indicated from Theorem 1.

In order to further verify the results discussed in this section, we investigate

the effect of the spatial variability in the next section.
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Figure 4.13: Convergence of the L, normalized errors of the standard de-
viation of the v velocity-component for different correlation
lengths, where 0 = 1.0 and 6, = 107*.

Effect of the spatial variability o

In this section, we fix the correlation length at L = 0.25 such that the weight of
each dimension from the K-L expansion is nearly the same. Then we explore
the effects of the spatial variability o, from very small variability o = 0.01 to
very high variability o = 2.0. The number of stochastic dimensions is N = 500.
For such a nearly isotropic situation, as indicated in Fig. 4.4, it is expected that

the accuracy of HDMR depends on the input spatial variability.

Fig. 4.14 compares the standard deviation of the v velocity-component along
the line y = 0.5 with the results obtained from the MC simulation. Again, we

obtain very good comparison where the errors are 8.08 x 107, 7.37 x 10~* and
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2.86 x 107 for o = 0.01, 0 = 0.25 and o = 2.0, respectively. Comparing with
the result when o> = 1.0, it can be seen that the error in standard deviation
increases with increasing input variability which again verifies our previous re-
sults in Fig. 4.4. However, we can still obtain an acceptable accuracy even when
the spatial variability is as high as o> = 2.0. It is interesting to note that the
threshold € needed to achieve the desired accuracy is smaller for o = 0.01 and
0.25 than for o = 1.0. This is due to the small correlation length and low input
variability which results in a rather smooth stochastic space such that the hier-
archical surpluses decrease very fast. Therefore, we need a much smaller ¢ to
trigger the adaptivity otherwise the refinement of ASGC for each sub-problem
stops earlier. This also shows the ability of ASGC to detect the smoothness of
the stochastic space. The increase of the spatial variability also results in the
increase of the magnitude of the standard deviation from ¢ = 0.01 to o = 2.0

in Fig. 4.14, i.e. increasing of the variability in the solution.

Similarly, the convergence of the corresponding PDFs is given in Fig. 4.15.
For the case 0 = 0.01, we show the convergence with respect to ¢ instead. This
is because the first-order expansion is accurate enough to represent the solution
due to the rather low input variability as expected. Even when the value of 6, is
as small as 107, the weights of all the first-order terms from Eq. (4.27) are still
smaller than the threshold. Therefore, there is no need to include second-order
terms. Due to the small variability, even a smaller ¢ can give us a very accu-
rate result as shown in the figure. Compared with Fig. 4.12, although second-
order terms are still needed for the cases o> = 0.25 and 2.0, the PDFs from the
first-order terms are not apart from the MC results for the cases o = 0.25 and
6 = 1072 when the input variability is moderately high. On the other hand, for

o? = 2.0, the result from the first-order HDMR expansion (§; = 107%) deviates
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Figure 4.14: Standard deviation of the v velocity-component along the
cross section y = 0.5 for different o2, where L = 0.25 and
N = 500.

significantly from that of the MC results. Indeed, comparing all four cases when
L = 0.25, it is clear that the PDFs from the first-order expansion deviate gradu-
ally from the MC results with increasing input variability o. This reflects that
the correlation effects become significant and therefore more higher-order terms
are needed to capture these effects, which is again consistent with the result in
Fig. 4.5. The improvement of the results is obvious as more terms are included
with decreasing 6,. This numerically verifies our previous discussion that the
number of component functions needed depends on the input variability. There
are 501, 879 and 2271 component functions for o = 0.01, 0.25 and 2.0, respec-
tively. Correspondingly, the total number of collocation points are 9337, 74127,
and 249329.
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Figure 4.15: PDF of the v velocity-component at point (0, 0.5) for different
0%, where L = 0.25 and N = 500.

The convergence of the L, normalized error with respect to the total num-
ber of collocation points is shown in Fig. 4.13 by decreasing ¢ in the ASGC. As
expected, the convergence rates deteriorate with increasing 0. For o = 0.01,
the convergence rate is nearly of the order of O(M~**"). This is because first-
order HDMR expansion is used and the number of collocation points used in
the first-order terms is much lower than that in higher-order terms. The conver-
gence rate for the case o2 = 2.0 is the lowest among all the cases examined so
far. However, it is still better than the theoretic MC rate O(M~%°) and the results
compare well with that of MC. Comparing all four cases when L = 0.25, it is
seen that although the stochastic space is smooth, the convergence rate still de-
creases with increasing spatial variability. Thus, as discussed before, the num-

ber of component functions needed for a fixed stochastic dimension depends
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more on the input variability for such situation. This provides us a very useful
guideline to set up the parameters when applying HDMR to realistic stochastic
problems. On the other hand, the regularity of the stochastic space can be effec-
tively resolved with the ASGC method. The proposed method is indeed a very

powerful and versatile method to address stochastic PDE problem:s.
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Figure 4.16: Convergence of the L, normalized errors of standard devia-

tion of the v velocity-component for different o, where L =
0.25.

Effect of choices of the reference points Y

Here, we also investigate the effect of the reference points Y on the convergence
of the adaptive HDMR expansion when ¢? = 1.0 and L = 1.0 as discussed in

Section 4.1.2. We fix £ = 107 and vary 6;. The error convergence for three

131



different reference points is shown in Fig. 4.17. As expected, when the reference
point is far from the mean point, the convergence rate is quite slow and many

more points are required to achieve a good accuracy.
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Figure 4.17: Convergence of the L, normalized errors of standard devia-
tion of the v velocity-component for three different reference
points.

In Table 4.9, we also tabulate the relevant parameters. It is seen from the
table and Fig. 4.17 that when the reference point Y = (0.5,...,0.5), it requires
the least number of component functions and thus collocation points to achieve
an error of order O(107%). When the reference point is far from the center,
higher-order expansion is needed to obtain an accurate result. However, when
Y = (0.1,...,0.1), the error is 3.82 X 1072 even when using a fourth-order ex-
pansion. Thus, we need to increase the expansion order or decrease 6;. This
will significantly increase the computational cost. Overall, the result of HDMR
is sensitive to the choice of reference point. According to our experience, the
mean vector can always give us a satisfactory result with much less computa-
tional cost. It is also interesting to note that when Y = (0.6,...,0.6), in order

to achieve an error of order O(107%), the number of component functions is 830
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while the number is 6018 when using conventional HDMR. This again shows

the advantage of the adaptive HDMR method.

Table 4.9: Comparison of performance for three different reference points.
e = 10%and 6, = 10™*. N; denotes the number of important
dimensions and p denotes the expansion order of the HDMR
defined in Section 4.3.

Y # Terms | # Points | N; | p

(0.5,...,0.5) | 287 27968 | 23

0.6,..,06) | 880 | 170992 |33 |3

(0.1,...,01) | 5526 | 1854460 | 33 | 4

Finally, it is emphasized here that using the ASGC or CSGC methods alone
as in [61] to solve these high-dimensional problems is not feasible due to the
following two reasons. At first, the number of needed collocation points is sig-
nificant for such high-dimensional cases and the convergence rate is very small
due to the logarithmic term shown in the error estimation. For example, for
N = 500, the number of points is 167169001 for a third-level interpolation. Sec-
ondly, there is a need for large memory storage to store all the high-dimensional
multi-indices. Therefore, we are not able to compare the results shown in this
chapter with results that can be obtained directly from the ASGC. However,
through the numerical examples, it is shown that the method presented here is

indeed a useful tool for solving high-dimensional stochastic problems.
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4.5.5 Example 5: Stochastic natural convection problem with

random boundary conditions

It is interesting to also solve non-linear transient SPDEs using HDMR to inves-
tigate if the effective dimensions depend on the type of SPDE. In the following
example, a stochastic natural convection problem in a closed cavity is consid-

ered.

For ease of analysis, we consider the same non-dimensional form of the gov-
erning equations (3.73)-(3.75) in Section 3.3.5. The physical domain is taken to
be a closed cavity [0, 1]*. The Prandtl number Pr is set to 1.0 and the thermal
Rayleigh number Ra is set to 1000. The deterministic governing equations are
solved using the second-order stabilized projection finite element method de-
veloped in [63]. The spatial domain is discretized using 30 x 30 bilinear quadri-
lateral finite elements. Each deterministic simulation is performed until steady-
state is reached. No slip boundary conditions are enforced on all four walls.
The left wall is maintained at a higher mean temperature of 0.5. The tempera-
ture at different points on the left wall is correlated. This is physically feasible
through, say, a resistance heater, where the mean temperature remains constant,
but material variations cause local fluctuations from this mean temperature. We

assume this correlation is a Gaussian correlation function:

_ 2 |yl_y2|2
Cov(yi,y2) = oexp — | (4.40)

with L being the correlation length and o the standard deviation. The K-L ex-

pansion of the correlation for the input random temperature is performed:

N
0, Y) = 0.5+ ) VA, (441)
i=1
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where the Y; are assumed as i.i.d. uniform random variables on [-1, 1].

We consider three different cases: L = 0.1, = 0.05, L = 0.1,0 = 1.0 and
L = 1.0,0 = 2.0. The coefficients of variation, which is the ratio of the standard
deviation and the mean, are 10%, 200% and 400%, respectively. The decay rate
of the eigenvalues of this correlation is much faster than the exponential one of
Eq. (5.58). Therefore, we truncate the expansion after 10 terms, i.e. the stochastic
dimension is 10. The ratio between the smallest and largest eigenvalues is 107°
and 107" for L = 0.1, 1.0, respectively. Thus, this problem is similar to the highly
anisotropic case 2 discussed in Section 4.5.3. It is expected that the problem has
a low effective dimensionality and a lower-order expansion may be accurate for
large input variability. In addition, due to the highly anisotropic situation, the

adaptive HDMR is expected to be most effective.

The mean and standard deviation of the v velocity component are shown in
Fig. 4.18 when L = 0.1 and o = 0.05. We choose ¢ = 107" and 6, = 107, As
expected, for such a small input variability, the construction of HDMR stopped
after a first-order expansion even with §; = 10™*. The results compare quite
well with the reference solution which is from Monte Carlo simulation with 10°
samples which shows that the first-order expansion is enough to capture the
additive effects when each dimension is acting independently. Since the error
of the mean converges very fast, we only show the convergence of error of the
standard deviation with decreasing ¢ in Fig. 4.19. Only 261 collocation points
are needed to achieve an error 1.69 x 10, which is a significant computational

saving in comparison to MC.

Next, we consider the case 0> = 1.0 and L = 1.0. For this case of high input

variability, it is expected that higher-order terms are needed. We choose & =
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Figure 4.18: Mean (top row) and standard deviation (bottom row) of v ve-
locity when L = 0.1 and o = 0.05. Left column: HDMR solu-
tion, Right column: 10° Monte Carlo samples.
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Figure 4.19: Convergence of the L, normalized errors of standard devia-
tion of the v velocity-component where L = 0.1 and o = 0.05.

107 and 6; = 107*. The construction stopped after order 2. However, not all

the terms are needed. Only 17 component functions are in the final HDMR

expansion including only 6 second-order component functions which consist of

only important dimensions. The total number of terms in conventional HDMR
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is 56 which shows the effectiveness of the adaptive method. The mean and
standard deviation of u velocity component are given in Fig. 4.20, which again
compares well with the MC results. The error convergence is shown in Fig. 4.21.
Only 1085 collocation points are needed to achieve an error 1.78 x 107, It is
noted that the convergence rate is a little slower than that of o = 0.05, which is

consistent with Fig. 4.16.

Figure 4.20: Mean (top row) and standard deviation (bottom row) of u ve-
locity when L = 0.1 and o = 1.0. Left column: HDMR solu-
tion, Right column: 10° Monte Carlo samples.

Finally, we consider the extreme case L = 1.0 and o = 2.0. It is noted that
this case may not be feasible in a physical sense. However, we still include it to
demonstrate the applicability of this method. We choose € = 107 and 6, = 0.1
such that only the first two dimensions are important. Only 356 collocation
points are required to obtain a good comparison with that of MC results, which

is shown in Fig. 4.22. The only second-order component function is fi,. By
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Figure 4.21: Convergence of the L, normalized errors of standard devia-
tion of the u velocity-component where L = 0.1 and o = 1.0.

adding this term to the first-order expansion, the error of temperature standard
deviation decreases from 3.25 x 10 to 1.86 x 10~*. This example clearly demon-
strates the significance of including the important component function which
captures the strong correlation effects among important dimensions. The error

convergence is given in Fig. 4.23.

4.6 Conclusions

In this chapter, a novel adaptive high dimensional stochastic model repre-
sentation technique for solving high-dimensional SPDEs is introduced. This
method applies HDMR in the stochastic space and decomposes the original
N-dimensional problem into several low-dimensional sub-problems. This has
been shown to be more efficient than solving the N-dimensional problem di-
rectly. Each sub-problem is solved using ASGC, where a proper error indicator

is introduced to adaptively refine locally the collocation points.

Numerical examples involving both elementary mathematical functions and
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Figure 4.22: Mean (top row) and standard deviation (bottom row) of tem-
perature when L = 1.0 and o = 2.0. Left column: HDMR
solution, Right column: 10° Monte Carlo samples.
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Figure 4.23: Convergence of the L, normalized errors of standard devia-
tion of the temperature where L = 1.0 and o = 2.0.

stochastic fluid mechanics problems have been conducted to verify the accuracy

and efficiency of the proposed method. The numerical examples show that the

number of component functions needed in the HDMR expansion for a fixed

stochastic dimension depends both on the input variability and the important
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dimensions no matter how many stochastic dimensions there are. However, it
does not depend on the type of the function, i.e., whether the SPDE is linear
or nonlinear. Although, in general, lower-order expansion is enough to cap-
ture all the input uncertainty to a good accuracy, the number of component
functions increases quickly with the dimension. It is impossible to calculate all
the terms through conventional HDMR in the case of extremely high-stochastic
dimension. However, by using the adaptive version of HDMR, we can effec-
tively solve the problem within a desired accuracy even for problems with high-
dimensional high input variability. On the other hand, for small variability, the
tirst-order expansion is accurate enough. Therefore, the HDMR is quite suitable
in most real physical applications for simulating high-dimensional stochastic
problems in the area of uncertainty quantification where the correlation length is
small and the input variability is generally large and solving the N-dimensional
problem directly by ASGC is not feasible. It is also shown that the convergence
rate of the proposed method is even better than that of MC for the problems

considered up to 500 stochastic dimensionality.

Finally, we note that the proposed method is more computationally efficient
than applying the ASGC method directly on the function of interest or to rep-
resent the solution of an SPDE. This is due mainly to the fact that implemen-
tation of HDMR requires less memory storage and avoids the heavy surplus
calculation typical of high-dimensional problems. However, it is emphasized
that HDMR may not be of practical use for interpolating arbitrary mathematical
functions where sometimes all 2V terms might be required, for example, in the

case of a function with multiplicative nature.
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CHAPTER 5
A STOCHASTIC MIXED FINITE ELEMENT HETEROGENEOUS
MULTISCALE METHOD FOR FLOW IN POROUS MEDIA

In this chapter, a computational methodology is developed to efficiently per-
form uncertainty quantification for fluid transport in porous media in the pres-
ence of both stochastic permeability and multiple scales. In order to capture the
small scale heterogeneity, a new mixed multiscale finite element method is de-
veloped within the framework of the heterogeneous multiscale method (HMM)
in the spatial domain. This new method ensures both local and global mass
conservation. Starting from a specified covariance function, the stochastic log-
permeability is discretized in the stochastic space using a truncated Karhunen-
Loeve expansion with several random variables. Due to the small correlation
length of the covariance function, this often results in a high stochastic dimen-
sionality. Therefore, HDMR is used in the stochastic space. This results in a set
of low stochastic dimensional subproblems which can efficiently solved using

the ASGC. This chapter closely follows the work in [72].

5.1 Introduction

Flow through porous media is ubiquitous, occurring from large geological
scales down to microscopic scales. Several critical engineering phenomena like
contaminant spread, nuclear waste disposal and oil recovery rely on accurate
analysis and prediction of these multiscale phenomena. Such analysis is com-
plicated by heterogeneities at various length scales as well as inherent uncer-

tainties. For this reason, to predict the flow and transport in stochastic porous
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media, some type of stochastic upscaling or coarsening is needed for computa-
tional efficiency by solving these problems on a coarse grid. However, most of
the existing multiscale methods are realization based, i.e. they can only solve
a deterministic problem for a single realization of the stochastic permeability
tield. This is not sufficient for uncertainty quantification since we are mostly
interested in the statistics of the flow behavior, such as mean and standard de-
viation. In this paper, we propose a stochastic multiscale approach which re-
solves both uncertainties and subgrid scales by developing a new multiscale
method and adopting a newly developed adaptive high dimensional stochastic
model representation technique (HDMR). The goal of the multiscale method is
to coarsen the flow equations spatially whereas HDMR is used to address the

curse of dimensionality in high dimensional stochastic spaces.

One of the challenging mathematical issues in the analysis of transport
through heterogeneous random media is the multiscale nature of the prop-
erty variations. Complete response evaluation involving full-scale spatial and
temporal resolution simulations of multiscale systems is extremely expensive.
Computational techniques have been developed that solve for an appropriate
coarse-scale problem that captures the effect of the subgrid-scales. The most
popular techniques developed for such upscaling fall under the category of
multiscale methods viz. the multiscale finite element (MsFEM) method [73, 74],
the variational multiscale (VMS) method [75, 76] and the heterogeneous multi-
scale (HMM) method [58, 59]. The MsFEM was originally developed in [73, 74]
for the solution of elliptic equation based problems with multiscale coefficients
using conforming linear finite elements. The primal unknown is the nodal
value, e.g. the pressure, and one can obtain the velocity by calculating the

gradient of the pressure filed given the finite element solution. The result is
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generally not accurate and conservation of the flux in each element may be
violated, which is an important property for the numerical solution of trans-
port equations in porous media. Therefore, a mixed multiscale finite element
method (MMsFEM) that guarantees the local mass conservation at the element
level was proposed in [77] using the lowest-order Raviart-Thomas mixed finite
element [78]. The basic idea of the method is to construct the multiscale finite
element basis functions that incorporate the small scale information through
the solution of a local problem in each element and couple them through a
global formulation of the problem. However, this work only produces a globally
mass conserving velocity field. Later on this work was extended in a number
of important ways to guarantee mass conservation on both fine- and coarse-
scales [79, 80]. A similar framework utilizing the finite volume method as the
global solver was also proposed in [81, 82, 83], which also preserves mass con-
servation at both scales. The basic idea of the VMS method is to invoke a multi-
scale split of the solution into a coarse-scale part and a subgrid component. The
variational coarse-scale problem is performed and solved using the solution of
the localized subgrid problem. Parallel to MMsFEM, a mixed finite element ver-
sion of VMS was also proposed in [84, 85, 86], which is often called “Numerical
subgrid upscaling”. A thorough comparison of the above three methods for

elliptic problems in porous media flows can be found in [87].

Unlike the MsFEM which was built on the finite element method (FEM), the
HMM is a more general methodology for multiscale PDEs (see [59] for a review).
The basis idea of HMM consists of two components: selection of a macroscopic
solver and estimating the needed macroscale data by solving locally the fine-
scale problem. It allows two different sets of governing equations on macro- and

micro-scales, e.g. atomistic simulation on micro-scale and continuum simula-
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tion on macro-scale [88, 89]. Later on this framework was utilized to solve mul-
tiscale elliptic problems with the conforming linear FEM (FeHMM) [90, 91, 92].
The method was analyzed in a series of papers [93, 94, 95]. However, unlike
the MMSsFEM, there is no discussion of the mixed version of FeHMM except
the work in [96], where the author first developed the theory of the mixed finite
element version of HMM for the elliptic problem and proved the stability and
convergence of this new method. However, the primitive idea in [96] is only
a simple extension to the original theory of HMM which in general is not suit-
able for realistic problems such as flow through porous media. In addition, no
numerical implementation was given in [96]. Motivated by the work in [96], in
this paper, we first develop and implement the mixed finite element version of
HMM with application to flow transport in heterogeneous porous media, which

we will call it mixed heterogeneous multiscale method (MxHMM).

However, all of the above mentioned multiscale analyses of such systems
inherently assume that the complete multiscale variation of the permeability is
known. This assumption limits the applicability of these frameworks since it
is usually not possible to experimentally determine the complete structure of
the medium at small scales. One way to cope with this difficulty is to view
the permeability variation as a random field that satisfies certain statistical cor-
relations. This naturally results in describing the physical phenomena using
stochastic partial differential equations (SPDEs). Therefore, in this chapter, we
will use both of these developments developed in the last two chapters in the
stochastic space together with the newly developed MxHMM for the spatial

discretization.

There exist several new stochastic multiscale methods for elliptic problems.
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In [97] and [98], the variational multiscale method was extended to a stochas-
tic version using gPC and stochastic collocation method respectively to solve
a simple diffusion problem. The stochastic multiscale finite element was also
developed in [99] however only an elliptic problem was solved to find the hy-
draulic head. More related work can be found in [71, 100, 101]. In [71], the
stochastic numerical subgrid upscaling method was also developed for the so-
lution of the mixed form of the Darcy’s equation using the stochastic collocation
method. However, in that work, only the statistics of the coarse-scale veloc-
ity and pressure were solved and no flow transport problem was investigated.
In [100], a projection method for the solution of stochastic mixed multiscale fi-
nite element method was introduced where the velocity solution was projected
onto the a set of multiscale velocity basis which are precomputed from an ar-
bitrary number of random realizations. It generally involves the solution of a
big linear system of equations to find the projection coefficients if the realiza-
tion number is large. For each new permeability sample, this method needs to
solve one coarse-scale problem again and is generally computationally expen-
sive. In addition, this method cannot give the statistics of the saturation directly
and thus was not reported in their work. In [101], this framework was used to
sample the permeability given measurements within the Markov chain Monte
Carlo method (MCMC) framework and again no statistics of the saturation were
reported. However, in real reservoir engineering, we are primarily interested in
mean behavior and a measure of uncertainty, e.g. standard deviation, in the sat-
uration of each phase. By using the adaptive HDMR and ASGC developed in
the last two chapters, we can obtain not only a surrogate model for the satura-
tion profile but also can extract the statistics of the saturation easily. Therefore,

the novel contributions of this chapter are as follows: (1) We develop a new
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mixed finite element version of the heterogeneous multiscale method for the
simulation of flow through porous media in the spatial domain; (2) We utilize
the newly developed HDMR technique to address the curse of dimensionality that
occurs naturally in this problem due to the heterogeneity of the permeability; (3)
Finally, we investigate the effect of the stochastic permeability on various statis-

tics of the saturation using the recently developed adaptive HDMR method.

5.2 Problem definition

In this section, we follow the notation in Chapter 2. Let us define a com-
plete probability space (Q,7,%) with sample space Q which corresponds to
the outcomes of some experiments, ¥ c 2° is the o-algebra of subsets in Q
and £ : ¥ — [0, 1] is the probability measure. Also, let us define D as a d-
dimensional bounded domain D c R? (d = 2,3) with boundary dD. The gov-
erning equations for immiscible and incompressible two-phase flow in porous
media consists of an elliptic equation for fluid pressure and a transport equa-
tion for the movement of fluid phases. For simplicity, we will neglect the effects
from gravity, capillary forces and assume that the porosity is a constant. The
two phases will be referred to as water and oil, denoted as w and o, respectively.
The total Darcy velocity # and the pressure p satisfy for f-almost everywhere

(a.e.) in Q the following SPDEs [87]
V-u=q, u=-Kx,w)A,Vp, ¥Yx e D, (5.1)
with the following boundary conditions

p=pondD, wu-n=a on dD,. (5.2)
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The total velocity u = u, + u,, is a sum of the velocities of oil u, and water
u,. g is a volumetric source terms which is assumed 0 throughout this chapter.
The random permeability tensor K is assumed to be diagonal and uniformly
positive definite. In addition, we will assume K is a stochastic scalar function.
The total mobility is given by A, = 4,, + 1,, where A; models the reduced mobility
of phase i due to the presence of the other phase. Without loss of generality, we
assume that the boundary conditions are deterministic and that the Neumman

condition is homogeneous, # = 0 on dD,.

Furthermore, to assess the quality of the multiscale model, the unit mobility
ratio displacement model is used, i.e. 4, =S, 4, = 1 =S and hence 4, = 1, where
S is the water saturation. Under this assumption, the water saturation equation

is given by
05 (x,t,w)

5 +u-VS(x,t,w)=0, Yxe D,t€[0,T]. (5.3)

Since the permeability X is a stochastic function, all the unknowns p, u and S
are also stochastic. Therefore, our complete stochastic model is: Find stochastic
functionsu : QXD - R, p: QxD —->Rand S : Qx[0,T] x D — R for P-almost

everywhere (a.e.) w € Q such that the following equations hold:

Voulx,w) = 0, ulx,w)=-Kx,w)Vpx,w) Yx €D, (5.4)
08 (x,1,
% +ou(x,tw) VS, f,w) =0, VxeD,tel0,T], (5.5)

with the boundary conditions
p=pon dD,, u-n=0 on dD,, (5.6)
together with appropriate initial and boundary conditions for S. Computa-

tion with this model is much more efficient than using the actual two-phase
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flow model because the pressure and saturation equations are effectively de-
coupled. Throughout this work, the Darcy velocity u is first computed using
the mixed finite element heterogeneous multiscale method developed in Sec-
tion 5.3.1 and then the saturation equation is solved using a upwinding finite
element scheme [102] in Section 5.3.2. Although these equations differ from the
actual flow equations, they do capture many important aspects of two-phase
flow problems. Specifically, the effects of the heterogeneity are often similar in

the unit mobility and two-phase flow problems [103].

Geostatistical models often suggest that the permeability field is a weakly
or second-order stationary random field such that the mean log-permeability is
constant and its covariance function only depends on the relative distance of
two points rather than their actual location [77]. Denote G(x, w) = log(K) and its
covariance function by Rs(x;, x2), where x; and x, are spatial coordinates. Then

the truncated K-L expansion takes the following form:

N
G(x,w) = EIG®)] + ) VAgi(x)Y(w), (57)
i=1

where {Yi(w)}ﬁi , are uncorrelated random variables. Also, ¢;,(x) and A; are the

eigenfunctions and eigenvalues of the correlation function, respectively.

When using the K-L expansion, we here assume that we obtain a set of
mutually independent random variables. Denote the probability density func-
tions of {Y(w)}Y, as p;, i = 1,...,N. Let I be the image of ¥;. Then p(Y) =
[1Y, pi(Y;) is the joint probability density of ¥ = (Y;,---,Yy) with support
[ =T, xIhx---xTy € RY. Then the stochastic log permeability can be rep-
resented by G(x,w) = G(x, Y;,...,Yy) = G(x,Y).
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5.2.1 Stochastic variational formulation

By using the Doob-Dynkin lemma [61], the solutions of Egs. (5.4) and (5.5) can

be described by the same set of random variables {Y;(w)}Y . Following [71], we

define appropriate function spaces that encode variations of the function in the

physical domain O and in the stochastic space I.

In the physical space, we introduce the following common functional

spaces [86, 71]:

W =IXD) = {p : f pPdx = p P < +oo},
D

with inner product

P9 =P, D) = f pqdx, p,qeL*(D),
D

and

H(div,D) = {u ‘ue(LXD):,V -uc LZ(D)},

with inner product

(u,v) = W,v)gavp) := | u-vdx, u,v € H(div,D).

S—

D

We will also make use of the following space:
V = Hy,(div,D) = {u : u € H(div,D),u - n = 0}.

The duality product is defined as:

(@ B) = (@ Pap, = f ipdx, ieH(D), peH D)

aD,

The functional space in I is defined as follows:

1/2
U=LT) = {p : ( fr |p(Y)|2p(Y)dY) < oo}.
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By taking its tensor product with the previous deterministic spaces, one can

form the stochastic functional spaces:

W=UQW, V=URYV. (5.15)

Multiplication of Egs. (5.4) and (5.5) by appropriate test functions and inte-
gration by parts leads to the following weak formulations: Findu € H, p € W

such that

f(K_lu, vp(Y)dY f(V v, p)p(Y)dY
r r

- f(v ~n, p)yp(Y)dY, Vv eV, (5.16)
r

0, VieW, (5.17)

f(l, V-u)p(Y)dY
r

and S € W for each r € [0, T'] such that

f(%—f,q)p(Y)dY+ f(u VS, 9)pY)dY = 0, YgeW. (5.18)
r r

Again we assume without loss of generality that the support of the random
variables Y;isI" = [0,1] for i = 1,---, N and thus the bounded stochastic space
is a N-hypercube I = [0, 1]V, since any bounded stochastic space can always be

mapped to the above hypercube.

5.2.2 Stochastic discretization by HDMR

The original infinite-dimensional stochastic problem is now restated as a finite
N-dimensional problem. Then we can apply any stochastic method in the ran-
dom space and the resulting equations become a set of deterministic equations
in the physical space that can be solved by any standard deterministic dis-

cretization technique, e.g. the finite element method. The solution to the above
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SPDEs Egs. (5.16)-(5.18) can be regarded as stochastic functions taking real val-
ues in the stochastic space I For example, we can consider the pressure as a
stochastic function p : I' = R and we use the notation p(Y) to highlight the de-
pendence on the randomness. Then it can be shown that the weak formulation
Egs. (5.16)-(5.18) is equivalent to [23]: for a.e. p € I' the following deterministic

weak form equations hold:

(K 'u,v)—(p,V-v) = —(p,v-n), WveV (5.19)
(LV-u) = 0, VieW (5.20)

aS

(E,q)+(q,u-VS) = 0,, Yge W (5.21)

This nature is utilized by the stochastic collocation method which constructs the
interpolant of the stochastic function in I' using only the solutions to the above
deterministic problems at chosen sample points. Thus, we can simply apply
HDMR in the stochastic space and the only thing we need is the deterministic

multiscale solver.

5.3 Spatial finite element discretization

As stated in Section 5.2.2, in order to utilize the HDMR, we only need to seek
the solution (u, p,S) at each collocation point in the stochastic space I'. In
other words, our goal is reduced to: for each permeability realization K (x) =
K(x,Y)),i = 1,...,M, we solve the deterministic problem: find u”’ € V, p® € W

and S® € Wsuch thatfori=1,...,.M

(K 'u vy -, V-v) = —(p,v-n), WveV, (5.22)

I,V -u?) 0, YleW, (5.23)
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oS
%

) +(qu?-VSD)y = 0, Vge W (5.24)
In this section, mixed finite element methods are introduced to solve the above
equations in the spatial domain. Since the pressure Egs. (5.22) and (5.23) are
effectively decoupled from the saturation Eq. (5.24), we will first introduce
the multiscale method to find u, p and then use the upwinding finite element
method to find S. To simplify the notation, we will omit the superscript i and

assume the deterministic equations are satisfied for an arbitrary permeability

sample in the stochastic space.

5.3.1 Mixed finite element heterogeneous multiscale method

(MxHMM)

In the porous media flow problem, the heterogeneity of the permeability field
will have a great impact on the global flow conditions. In order to resolve
the fine-scale velocity accurately with lower computational cost, a multiscale
method is needed. In addition, the mixed finite element method is also re-
quired to compute the velocity and pressure simultaneously, if we want to have
an accurate velocity and ensure mass conservation. We can identify at least
two main multiscale methods: multiscale finite element or finite volume meth-
ods [77, 79, 81] and the variational multiscale methods [84, 86]. In this section,
we will develop a new multiscale method which is based on the framework of
the heterogeneous multiscale method [92]. We present the discretization and
methodology for a two-dimensional system. Extension to three-dimensions is

straightforward.
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Consider a partition, 7 for the domain D into non-overlapping elements
e, Tn = Ufi"l e;, where N, is the number of elements of the grid. Define also the
skeleton of the partition, SP), = U;W:“l v., Where M), is the number of element faces
denoted by v,. The partition 77, is regarded as the fine-scale grid. The multiscale
permeability is defined as a cell-wise constant on this grid. To implement the
multiscale method, we also consider a coarse-scale partition of the same domain
D. Denote this partition as 7, = U?f] E;. Denote by 8P, = Uz’i”l A, the associated
skeleton of the coarse-scale discretization. Here, N, is the number of coarse
elements and M. is the number of coarse element faces denoted by A,. In order
to conserve the mass at the coarse-scale, we also assume for simplicity that the
partitions 7, and 7. are nested, conforming and consist of rectangular elements.
Fig. 5.1 shows a fine grid (finer lines) and a corresponding coarse grid (heavier

lines).

(a) ()

Figure 5.1: Schematic of the domain partition: (a) fine- and coarse-scale
grids, (b) fine-scale local region in one coarse element.

Now consider the finite dimensional subspaces on the coarse-scale V. € V
and W, € W. The mixed finite element method approximation of Egs. (5.22)-

(5.23) on the coarse-scale reads: Find the coarse-scale (u., p.) € V. X W, such
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that

(K_luca Vc) - (pc, V. vc) _<P0’ Ve n), v Ve € ch (525)

(I,V-u) = 0, VI.eW. (5.26)

Note that V. and W, should satisfy the discrete inf-sup condition [104]. In this
work, V. is taken to be the lowest-order Raviart-Thomas space [78], RT((7.) and
W, is taken to be the space of piece-wise constants on the coarse-scale mesh,
Po(T.). Other choices can be found in [104]. Therefore, we define the finite

element space for the coarse-scale velocity as:

M.
V. = {uc tue= ) s, us=0, VA, € BDM}, (5.27)

a=1
where ¥, is the RT, basis functions on the uniform mesh of rectangular elements
associated with the coarse element face A,. For a reference element E = [xk, xf]x
[x5, x§] with the area |E|, there are four vector RT| basis functions with non-zero
support:
T

v = |-t —xhol L ws= [0 -k - xh] L (528)

T

Wi = [ -/l - xb.o] L = (0.0 - xh/eE - 1) (5.29)

The basis functions satisfy the properties such that ¢{ - n; = 1if i = j, otherwise
Y;-n; =0fori, j=1,...,4. Therefore i is value of the coarse-scale flux at the
middle point of the side A,, i.e. u. - n, = u,, where n, is the unit outer normal to
the interface A,. The coarse-scale pressure approximation is piecewise constant

on the coarse-mesh and Py(7,) is

Nc
Wc = {pc P Pe = Z ¢fp,c} R (530)
a=1

where ¢ is the coarse-scale pressure basis function for the coarse element i de-

fined as

1, ifx e E;,
¢; (x) = (5.31)
O, lf X ¢ Ei-
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p¢ is the corresponding pressure degree of freedom (the average pressure in

coarse element E)).

It is obvious that all the fine-scale information is included in the bilinear

form (K 'u.,v.). Denote A = (A;;) the global matrix for the bilinear form, where

Ay = [ v K s ax, 532)
D

We could evaluate Eq. (5.32) by the 2 x 2 Gauss quadrature rule: let

fii) = g (x) - K~ (o)), (5.33)
then
Ajj = f fijdx = Z Z T fij(E) (5.34)
P EST £ ek
where &, and 74,k = 1,...,4 are the quadrature points and weights (including

the determinant of the Jacobian matrix) in the coarse element E, respectively. It
is obvious that any realization of the permeability field at the quadrature point
K (&,) is not able to capture the full information at the subgrid scale in the coarse
element since the size of the coarse element is much larger than the characteristic
length scale of the multiscale permeability field. Therefore, we need to modity
the bilinear form Eq. (5.33) at the quadrature point &, following the framework

of the heterogeneous multiscale method [91, 96] as:

1
fi€) = — | da(x)- K 'ag(x)dx, k=1,...,4, (5.35)
|E(5k| E5k
where ity (x),i = 1,...,4 is the solution to the following local subgrid problem in

the sampling domain E;, C E,k=1,...,4:
V : ﬁik(x) = 0’ ﬁik(x) = _Kvﬁik(x)’ V X € E5k’ (536)

with appropriate boundary conditions which we will discuss below. p;(x) can

be considered as the subgrid pressure.
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First, we will discuss the choice of the sampling domain E;, of the subgrid
problem. In the original problem definition of the FeHMM [91, 96], the coef-
ficient of the elliptic equation (here K) is assumed to be periodic. Therefore,
the sampling domain was taken around each quadrature point as Es5, = &, + 61,
where I = (—1/2,1/2)* and ¢ is equal to one period of the coefficient in the elliptic
equation, as in Fig. 5.2(a). However, in general, the permeability is not periodic.
If the sampling domain is too small, one cannot capture enough information on
the subgrid scale. According to the numerical results in [105], the larger the size
of the sampling domain is, the more accurate the computed result is. There-
fore, we would like to take the sampling domain to be the same as the coarse
element, i.e. E;, = E,0Es, = OF as in Fig. 5.2(b). In addition, we also assume
that the fine grid within each coarse element is the same as the fine-scale grid
71, where the permeability is defined, see Fig. 5.1(b). In this way, we can ensure

global continuity of the flux across the coarse element.

i z@i B ~ . .

B H B E R

E @ @ E R . B .

B OE| B @ S S CREE
w »

Figure 5.2: (a) Schematic of the original HMM method, where the sam-
pling domain is around the quadrature point. (b) Schematic of
the proposed MxHMM method, where the sampling domain is
the same as the coarse element.

Remark 1. Unlike the mixed multiscale finite element method [79], where the

subgrid problem is limited to the coarse element, the advantage of the heteroge-
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neous multiscale method here is that the sampling domain is not limited to the
coarse element. In fact, it can be chosen arbitrarily to include as many coarse
elements as necessary. However, in the present work we still solve the subgrid
problem in only one coarse element. The effect of the size of the sampling do-

main is reserved for later work.

Hence, all the subgrid problems are solved within the same coarse element.
The only difference is the applied boundary condition. The boundary condi-
tion of the problem in Eq. (5.36) plays a significant role in the accuracy of the
multiscale method as discussed in [105], where three different boundary con-
ditions are considered: the periodic boundary condition, Dirichilet boundary
condition, and the Neumann boundary condition. However, when mixed finite
element formulation is used on the coarse-scale, only the Neumann boundary
condition is applicable here. In [96], the following Neumann boundary condi-
tion is proposed:

ity - ngg = Yi (&) - ngg, onJE, (5.37)

where y:(§,) denotes the value of the i-th coarse-scale RT) finite element basis
function at the quadrature point &,k = 1,...,4 and ny; denotes the unit outer
normal of the coarse element boundary dE. According to the definition of RT)
basis function in Egs. (5.28)-(5.29), this boundary condition applies a uniform
flow with magnitude ¥;(&,) from one side to the opposite side while keeping
no-flow conditions on the other two sides. The example of ¥,(£,) is shown in
Fig. 5.3. However, this boundary condition only reflects the local heterogene-
ity structure within the current coarse element. It does not contain the flow
condition across the coarse element interface which is often important in guar-
anteeing the continuity of flux on the coarse-scale. Therefore, we would like to

propose a new boundary condition which reflects the heterogeneous structure
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across the coarse element boundary.

For a fine-scale element interface v,, denote the two adjacent fine-scale ele-
ments as ¢; and ej, i.e. v, = ¢;() e;. According to two-point flux approximation
finite volume method, if the element interface is in the y-direction, the element
interface transmissibility in the x-dimension is defined by [106]:

AX[ AX/')_I
4 ,

Kt K (5.38)

Tva = 2|Va| (

where |v,| is the length of the interface, Ax; denote the length of element ¢; in
the x-coordinate direction, and K; is the permeability in element ;. Similar ex-
pression can be defined in the y-dimension. The fine-scale transmissibility of
interface v, reflects the flow condition across elements. Denote the total applied
flux along the coarse element interface A due to the value of the i-th coarse-scale

basis functions at the k-th quadrature point as

O = fA WEED - nds = AWEED - my. (5.39)

Hence, we modify the boundary condition Eq. (5.37) to:

T,
Wy -njp =04 ———, onA CIE, 5.40
- na = Qi S n Tl (5.40)

where Qy is defined in Eq. (5.39) and T,, is the fine-scale transmissibility of in-
terface v, C A as defined in Eq. (5.38). When the interface is in the x-direction,
we change the definition of T,, accordingly. See for example Q,; in Fig. 5.3(b).
Therefore, the sum of the flux applied on the fine-scale element is equal to the
total flux applied on the same coarse element boundary. We just redistribute the
total flux on the coarse-scale element boundary according to the ability to trans-
port the flow at the interface of each fine-scale element. This is clearly a better
choice for boundary condition since it determines the flow conditions across the

inter-block boundaries.
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Figure 5.3: Schematic of different boundary conditions. (a) The uni-
form boundary condition, (b) The modified boundary condi-
tion where the flux is scaled according to the fine-scale trans-
missibilities.

Finally, our subgrid problem in a coarse-element E is defined as follows: For

each quadrature point &,k = 1,...,4, we seek the solution @; to the following
subgrid problem for each coarse-scale RT| basis function ¢,i = 1,...,4:
Vi (x) =0, a(x)=-KVpy(x), Vx€E, (5.41)

with the Neumman boundary condition defined in Eq. (5.40).

For convenience, we will define the corresponding modified bilinear form

as: for any u.,v. € V,

4

Ah(K‘luc,vc) = Z Z

EeT, k=1

Tk

f Ui(x) - K™'Vi(x) dx, (5.42)
|El Je

where U(V) is defined through the subgrid problems. The assembling of this

bilinear form will be detailed in Section 5.3.2. Therefore, the MxHMM version of
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Egs. (5.25)-(5.26) on the coarse-scale reads: Find the coarse-scale (u., p.) € V. xW,

such that

Ah(K_luc, vc) - (pc’ V. Vc) = —<P0, Ve n>, v Ve € Vw (543)

(le,V-u) = 0, Vi.e W, (5.44)
with the boundary condition
pe=p on 0D,, wu.-n=0 on dD,. (5.45)

The major difference between Egs. (5.25)-(5.26) and Egs. (5.43)-(5.44) lies in
the bilinear form A(-,-), which needs solution of the local subgrid problem
Eq. (56.41). It is through these subgrid problems and the mixed formulation that
the effect of the heterogeneity on coarse-scale solutions can be correctly cap-
tured. Unfortunately, it is not trivial to analyze this multiscale method in a gen-
eral case, but convergence results have been obtained using the homogenization

theory in the case of periodic coefficients [96].

Solution of the subgrid problems and assembling the bilinear form

In general, the subgrid problem Eq. (5.41) can be solved through standard or
mixed finite element method. In the present setting, since we are only interested
in the velocity, the mixed finite element method is preferred. Let E, = 7,(E)
denote the fine grid defined over one coarse element E. As mentioned before,
it coincides with the fine-scale grid 7. The subgrid-scale velocity functional

spaces will be defined on the fine grid E;, of each coarse element:

Mg
Vg = {u ca= ) yhilh, gl e RTO(Eh)}, (5.46)
a=1
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where My is the number of edges in E, and the pressure space is defined simi-
larly:
Ng
Wi = {[3 : ﬁ = Z(ﬁflﬁlh, ¢fl S PO(Eh)} , (547)
a=1
where Ng is the number of elements in E. It is noted that, as the Neumann
boundary conditions in Eq. (5.40) are imposed on all boundaries of the coarse
element E, an extra constraint must be added to make the subgrid problem well

posed. In our implementation, the pressure is prescribed to 0 at one of the ele-

ments in Ej,.

The mixed finite element method approximation of Eq. (5.41) in coarse ele-
ment E; on the subgrid-scale grid reads: Find the subgrid-scale (@, p) € Vg, X Wy,

such that

(K~ i, v) — (p,V - %)

0, V¥eVg, (5.48)

I,V -%) 0, VieWg, (5.49)

with the boundary condition Eq. (5.40). It is noted that for each coarse element,
we need to solve 4 (number of quadrature points) x 4 (number of basis func-
tions) = 16 subgrid problems. However, the only difference between them is the
boundary condition. Therefore, we only need to assemble the stiffness matrix

once and solve the problem with different right hand vectors.

Following a standard assembly process for the global matrix of the coarse-
scale bilinear form Eq. (5.42), we compute the contribution A to the global ma-
trix associated with the coarse element E, where A is a 4 X 4 matrix. Assume
the solution of the subgrid problem at the k-th Gaussian point can be written as
iy = Zjﬁiﬁ ijlﬁ?,i =1,...,4. We can write all the solutions as a 4 x Ny matrix,

C, = (cfj) where the i-th row contains the subgrid solution corresponding to the
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i-th coarse-scale basis function ;. Therefore, the value of Ag from the k-th Gauss
point can be denoted as A%, = (a});;, where

(), = %C’" fE K71 ,dx ¢ (5.50)

Denoting the bilinear form matrix from the subgrid-scale problem as B* = (b} ),

by = fE K'Y} - ¢! dx, we can write:
4

Ap = kZ‘ l%lekB"(Ck)T. (5.51)

Finally, we would like to comment on the solution of the linear systems re-

sulting from the mixed finite element discretization. The linear system is indef-

inite, and it is difficult to solve using the common iterative method. In our im-

plementation, we use the Schur complement matrix to solve the pressure first

and then solve the velocity [80]. The linear system is solved using precondi-

tioned conjugate gradient method. All the implementations are based on the

data structure of the numerical library PETSc [107].

5.3.2 Reconstruction of the fine-scale velocity and solution of

transport equation

So far we have described the development of the mixed finite element hetero-
geneous multiscale method for the solution of the coarse-scale velocity. How-
ever, in order to simulate the transport equation accurately, we need to recon-
struct the fine-scale velocity using the coarse-scale velocity and the subgrid per-
meability. It is noted that the coarse-scale velocity is not conservative at the

fine-scale. In order to obtain a mass-conservative fine-scale velocity, we solve
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Darcy’s equation within each coarse element £ using Neumann boundary con-
dition given by the coarse-scale flux along the coarse-element boundary. The
coarse-scale flux, denoted by Q¢ is directly given as the solution of the system
of linear equations from the coarse-scale discretization. That is, for each E € T,

one solves the fine-scale velocity u; inside E by [87, 106]
V-u,=0, u,= —KVp/z, Vx € E, (552)
with the boundary condition similar to the one used in Eq. (5.40):

T
=0 —"  onAcJE, 5.53
u,-njy=Q vacA T, V] on ( )

where Q¢ is the coarse-scale flux across the coarse element interface A, and 7,, is
the fine-scale transmissibility of interface v, C A. Since the mixed finite element
method is used to solve the coarse-scale equations, the coarse-scale flux Q¢ is
obtained directly. Similar to the subgrid problem, Neumann boundary condi-
tion is applied on all the boundaries of the coarse element. To obtain a unique
solution of the above problem, the pressure is fixed to the coarse-scale pressure
p. in the center element of the mesh E;. As indicated in [87, 106, 108], this recon-
struction step guarantees the continuity of the flux across the fine-scale elements
between two coarse blocks and accounts for subgrid heterogeneity. It also forces
the sum of the fine grid fluxes to be equal to the corresponding coarse-scale flux.
In this way, the resulting fine-scale velocity is conservative on fine-scale grid as

well as the coarse-scale grid.

For the solution of the saturation equation, we use the upwinding finite ele-
ment method [77, 102], which is equivalent to the standard upstream weighted
finite volume method. We also approximate the saturation as a piecewise con-
stant in each fine-scale element e, Py(7;), the same as the pressure space. Given

the discrete reconstructed fine-scale velocity field u;, for a fine-scale element
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e € T,. We define the inflow boundary of the element as de_, if uj, - n < 0 on de_
and similarly the outflow boundary as de., if u;-n > 0 on de,. For any piecewise
constant function §, over the mesh 73, the upwinding value on de is defined as
S, and is equal to the interior trace of S, if on de, and equal to the exterior trace

of §, if on de_. In addition, we also assume S, = 0 on de_ () 6D.

Therefore, the weak formulation of the upwinding scheme is to find S, € W,

such that

oS -
f —hqh dx + Z (uy, - n)Shqh ds =0, th eWw,. (554)
D

Let At be the time step and denote by S* the approximation of the water satu-
ration in fine-scale element e; at time #*. Then the discrete form of the saturation
Eq. (6.54) is:

At
SE D £i8* gy = sk, (5.55)

J#
Here le| is the area of the element e;. f;;(S) = max{sign(g;;)S;, —sign(g;;)S ;} is the
upwinding water saturation for the interface v;; = de; () de;. Finally, the flux
across the boundary is ¢;; = fv LURR T ds where n;; is the unit normal to v;;
pointing from e; to e;. It is noted that in Eq. (5.55), only the flux ¢;; on the each
interface is required. This value is directly computed as the solution from our
multiscale approach. That’s why the method discussed here is better than the

stabilized conforming finite element method [109].

It is emphasized again that we consider the transport problem with unit mo-
bility ratio, so the saturation changes will not affect the pressure or velocity.
Therefore, we can first compute the fine-scale velocity with our multiscale ap-
proach and then solve the transport equation. The flow rate of produced oil at

the outlet boundary is denotes as ¢, and the flow rate of produced water g,,.
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To assess the quality of our multiscale approach, we will use the so called wa-
ter cut curve F, which defines the fraction of water in the produced fluid, i.e.,
F = g,/(gw + g,) as a function of time measured in pore volume injected (PVI).
The water-cut is defined as

Jypou @ - WS ds

F(t) = ,
(t) LDoul(uh ' n) ds

(5.56)

where D" refers to the part of the boundary with outer flow, i.e. u;-n > 0. PVI

represents dimensionless time and is computed as

PVI = f Qdt/V,, (5.57)

where V), is the total pore volume of the system, which is equal to the area of the

domain D here and Q = faDcm (uy, - n) ds is the total flow rate.

The complete schematic of the stochastic multiscale method for porous me-

dia flow is illustrated in Fig. 5.4.

Generate the permeability
sample given the collocation
point, set coarse discretization

Generate collocation l

point Compute the stiffness matrix — Sf°"’e thﬁ E“b_g”fd pr?blenls
or eacl asIs Tunction at
for each coarse element

quadrature points

Compute the stochastic

Solve stochastic
multiscale problem

with HDMR coarse-sille fluxes
Return function value at Reconstruct the fine-scale Solve the subgrid
collocation point . < problems with coarse-
Ve|lOCIty scale flux
POSTPROCESSING: _| Solve the transport problem |

Compute the statistics
of the solution

Figure 5.4: Schematic of the developed stochastic multsicale method for
porous media flow.
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5.4 Numerical Examples

In the first two examples, we solve the problem with deterministic permeabil-
ity in order to validate the newly developed multiscale method. In the third
example, the complete stochastic problem with a known covariance function is

addressed.

5.4.1 Simulation in realistic two-dimensional reservoirs

This test case is a two-dimensional problem with a highly heterogeneous per-
meability. The permeability field shown in Fig. 5.5 is taken from the top layer
of the 10-th SPE comparative solution project [110]. The fine grid on which the
permeability is defined consists of 60220 gridblocks. It has Dirichlet boundary
conditions p = 100 on {x, = 0}, p = 0 on {x, = 220} and Neumann boundary con-
ditions # - n = 0 on both {x; = 0}, {x; = 60}. We also impose zero initial condition

for saturation S (x,0) = 0 and boundary condition S (x,7) = 1 on {x, = 0}.

The reference solution is computed on the fine-scale grid using single-scale
mixed finite element method directly, as shown in Fig. 5.6(a) and Fig. 5.7(a). We
also show the solutions obtained with the MxHMM method on various coarse
grids in Figs. 5.6 and 5.7. It is seen that the flow focuses along the region with
higher permeability while bypassing the low-permeability areas. At the same
time, the velocity field displays significant small-scale structure corresponding
to the spatial permeability variations. The multiscale solution successfully cap-
tures all the main characters of the fine-scale results and compare very well with

the fine-scale solution, with the two results being quite difficult to distinguish
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Figure 5.5: Logarithm of the permeability field from the the top layer of
the 10-th SPE model, which is defined on 60 x 220 fine grid.

visually. As a direct measure of the error in the computed velocity field, we con-
sider the L>—norm: |jul|, = ( f u-u dx)'"?, where the corresponding relative error
is given as 6(u) = [[ttrer — umslll;llurefll. The result is given in Table 5.1. In general,
the error is larger with coarser grid which is possibly due to some large local

error in the high permeability region where the velocity changes quickly.

However, for reservoir simulation the most crucial factor is the transport
properties of a velocity field. That is, a large local error in the velocity field may
not be crucial as long as the overall transport properties are correct. There-
fore, we give the contour plots of the saturation at time 0.4 PVI for various
coarse grids in Fig. 5.8. The four multiscale results compare nearly the same
as the reference solution. To assess the accuracy of the transport properties,

we measure the relative difference in the saturation profile at a given time:
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(a) Fine Scale (b)30x110 (c)15%55 (d)10x44 (e) 6x22

Figure 5.6: Contour plots of the x-velocity component for various meshes:
(a) 60 x 220 fine-scale grid, (b) 30 x 110 coarse grid, (c) 15 x 55
coarse grid, (d) 10 x 44 coarse grid, (e) 6 x 22 coarse grid.

(@) Fine Scale (b)30x110 (c)15%55 (d)10x44 (e) 6x22

Figure 5.7: Contour plots of the y-velocity component for various meshes:
(a) 60 x 220 fine-scale grid, (b) 30 x 110 coarse grid, (c) 15 x 55
coarse grid, (d) 10 x 44 coarse grid, (e) 6 x 22 coarse grid.

5(S) = (f 1S ref — S msl? dx)”z/(f IS efl* dx)'/2. The result is given in Table 5.1.
D D
It is seen that although the corresponding velocity error is larger for the same

coarse grid, the saturation error is significantly smaller.

Finally, we consider the water cut, which is shown in Fig. 5.9. Once again,
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(a) Fine Scale (b)30x110 (¢)15%55 (d)10x 44 () 6x22

Figure 5.8: Contour plots of Saturation at 0.4 PVI: (a) 60 x 220 fine-scale
grid, (b) 30 x 110 coarse grid, (c) 15 x 55 coarse grid, (d) 10 x 44
coarse grid, (e) 6 x 22 coarse grid.

the results compare well with the reference solution. Here, we measure the
maximum error as 6(F) = max,so|Fref() — Fins(?)|. The result is shown in Table 5.1,
where the error is quite small. Note that this is a quite strict measure, since
the water cut curves tend to be steep right after breakthrough, and thus a small
deviation in breakthrough time may give a large value in the error measure.

0.8

Reference
0.7 — — — — 30x110
——— 15x55
——— - 10x44
s - 6x22

0.6 -

05

0.4

F(t)

03

0.2

0.1

PVI

Figure 5.9: Water cut curves for various coarse grids.
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Table 5.1: Relative errors for various coarse grids in Example 1.

Errors | 30 x 110 | 15x 55 | 10x 44 | 6 x 22
o(u) 0.112 0.159 0.170 | 0.234
o(S) 0.025 0.049 0.067 | 0.124
o(F) 0.0033 | 0.0019 | 0.0101 | 0.0165

Overall, through this example, it is shown that the introduced multiscale

method is quite robust and accurate for different mesh discretizations.

5.4.2 Simulation in a realization sample from a random perme-

ability filed

In this section, we consider only a sample realization from a random permeabil-
ity field, which can be considered as a deterministic run at a collocation point
in a stochastic simulation. The permeability is defined on a 100 x 100 fine-scale
grid, which is shown in Fig. 5.10. Flow is induced from left-to-right with Dirich-
let boundary conditions p = 100 on {x; = 0}, p = 0 on {x; = 100} and no-flow
homogeneous Neumann boundary conditions on the other two edges. We also
impose zero initial condition for saturation S (x,0) = 0 and boundary condition
S (x,1) = 1 on the inflow boundary {x; = 0}. The reference solution is again taken
from the single-scale mixed finite element on the fine-scale grid directly. All the

errors are defined the same as before.

In Figs. 5.11 and 5.12, we show the velocity contour plots of the reference
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Figure 5.10: Logarithm of the permeability field from one sample of a log-
normal permeability filed defined on 100 x 100 fine-scale grid.

solution and the multiscale solution on a 25 x 25 coarse grid. The flow tries
to go through the high permeable regions and bypass the low permeable re-
gions, which is clearly reflected in the saturation plot at time 0.4 PVI as shown
in Fig. 5.13. All the three figures compare well with the reference solutions. The
relative errors are shown in Table 5.2. We note the relatively small saturation er-
rors compared with the large velocity errors, which again confirms that the large
local velocity errors may not reflect the overall accuracy of the saturation results
as long as the multiscale method captures the major feature of the underlying

permeability field.

Water cut curves are shown in Fig. 5.14 and the maximum error is given in
Table 5.2. All the water cut curves are visually nearly the same. The two de-
terministic numerical examples successfully validate the introduced multiscale
model. Since the stochastic multiscale framework only requires repeated solu-
tion of the deterministic problems at different collocation points, it is expected

to also have accurate statistics of the solution in the stochastic simulation as
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(a) Fine Scale (b)25%25

Figure 5.11: Contour plots of the x-velocity component for (a) 100 x 100
fine-scale grid, (b) 25 x 25 coarse grid.

(a) Fine Scale (b) 25%25

Figure 5.12: Contour plots of the y-velocity component for (a) 100 x 100
fine-scale grid, (b) 25 x 25 coarse grid.
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(a) Fine Scale (b) 25%25

Figure 5.13: Contour plots of Saturation at 0.4 PVI: for (a) 100 x 100 fine-
scale grid, (b) 25 x 25 coarse grid.

shown in the next example.

0.8

Reference

— — — — 50x50 /
7777777 25x25 e
0.6 - ——— - 20x20

0.7

0.5

F(t)

0.4

03

02

0.1F

PVI

Figure 5.14: Water cut curves for various coarse grids.

5.4.3 Simulation in random permeability field

In the last two examples, we have successfully verified the accuracy of our

newly developed multiscale solver. In this example, we are going to investi-
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Table 5.2: Relative errors for various coarse grids in Example 2.

Errors | 50 x50 | 25x25 | 20x20 | 10 x 10
o(u) 0.060 0.156 0.183 0.324
o(S) 0.019 0.065 0.089 0.182
o(F) | 0.0017 | 0.0059 | 0.0149 | 0.0079

gate the statistical properties of the transport phenomenons in random hetero-
geneous porous media. The domain of interest is the unit square [0, 1]%. Flow
is still induced from left-to-right with Dirichlet boundary conditions p = 1 on
{xy = 0}, p = 0on {x; = 1} and no-flow homogeneous Neumann boundary
conditions on the other two edges. We also impose zero initial condition for sat-

uration S (x,0) = 0 and boundary condition S (x,7) = 1 on the inflow boundary

{x; =0}.

The log-permeability is taken as zero mean random field with a separable

exponential covariance function

lx1 =yl _ lx2 = yal
L, L, )

Cov(x,y) = o%exp |- (5.58)

where L, and L, are the correlation lengths in x and y direction, respectively.
o is the standard deviation of the random field. The K-L expansion is used to

parameterize the field as

N
Y(w) = log (Kw)) = ) VAgi(x)Y,, (5.59)
i=1

where the eigenvalues 4;,i = 1,2,..., and their corresponding eigenfunctions
¢i,i = 1,2,..., can be determined analytically as discussed in [111]. Different

probability distributions can be chosen for Y;. The effects of log permeability
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with uniform, beta and Gaussian distributions on the mean and standard de-
viation of the output were investigated in [112], where the results showed that
the three distributions had close peak values of standard deviation. Therefore,
without losing the main feature of the output uncertainty, here Y; are assumed

as i.i.d. uniform random variables on [-1, 1].

In this problem, the fine-scale permeability is defined on 64 x 64 grid and the
coarse grid is taken as 8 x8. For comparison, the reference solution is taken from
10° MC samples, where each direct problem is solved using the fine-scale solver.
The stochastic problem is solved using HDMR, where the solution of each de-
terministic problem at the collocation points is from the multiscale solver. In
this way, the accuracy of both multiscale solver and HDMR can be verified. In
Chapter 4, the effects of the correlation length and standard deviation have been
studied thoroughly. Thus, here we will fix the standard deviation to ¢ = 1.0

and investigate the effect of the anisotropy of the random field.

Isotropic random field

In this problem, we take L; = L, = 0.1. Due to the slow decay of the eigenvalue,
the Eq. (5.59) is truncated after 100 terms. Therefore, the stochastic dimension
is 100. The problem is solved with HDMR where each sub-problem is solved
through ASGC. We take ¢ = 107°,6; =5x 10 and 6, = 10™.

In Fig. 5.15 we compare the mean and standard deviation at 0.2 PVI. It is
interesting to note that although the permeability field shows heterogeneity for
different realization, the mean saturation is the same as the solution with ho-

mogeneous mean permeability filed. This behavior is called “heterogeneity-
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induced dispersion” where the heterogeneity smoothes the water saturation
profile in the ensemble sense. Our results again confirms this phenomenon,
which was first investigated in [113] through method of moment equations.
The figure also indicates that higher water saturation variations are concen-
trated near displacement fronts, which are areas of steep saturation gradients.
Therefore, the comparisons between the MC and HDMR results are only shown
around the displacement fronts on the bottom two plots in Fig. 5.15. It is seen
that the solutions from HDMR compare quite well with that of MC results. The
convergence of HDMR is shown in Table. 5.3, where the normalized error is de-
fined the same as before with MC results as the reference solution. N; denotes
the number of important dimensions and N. denotes the total number of com-
ponent functions. The expansion order of HDMR for all three cases is 2. For
conventional HDMR, the total number of component functions is 5051. How-
ever, by using adaptivity, N, is reduced to 1047 which clearly demonstrates the
advantage of our methods. From the table, it is seen that the results are in-
deed quit accurate despite the fact that 64-fold upscaling is used to solve the
deterministic problem and adaptive methods are used to solve the stochastic
problem.

Table 5.3: Convergence of HDMR with different 6, at 0.2 PVI for isotropic
random field.

6, N; | N, | #Points | Error mean | Error std

1x1073 ] 2 | 102 1694 747 %107 | 438 x 1072

1x10™* |27 | 452 | 34379 | 5.69x10™* | 2.06 x 1072

5x 107 | 44 | 1047 | 77988 | 5.10x 107 | 6.66 x 1073

Next, we demonstrate the interpolatory properties of our HDMR method.
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Figure 5.15: Mean and standard deviation of saturation at 0.2 PVI for
isotropic random field. Top: Mean (a) and standard devia-
tion (b) form HDMR. Bottom: Comparison of mean (c) and
standard deviation (d) between MC and HDMR near the sat-
uration front.

As mentioned before, one of the advantages of HDMR is that it can be served
as a surrogate model for the original problem. Realization of the saturation for
arbitrary random input can be obtained through HDMR. To verify this prop-
erty, we randomly generate one input vector and reconstruct the result from
HDMR. At the same time, we run a deterministic problem with the fine-scale
model and the same realization of the random input vector. The comparison of
these results are shown in Fig. 5.16. In addition, in Fig. 5.17, we also plot the
probability density function (PDF) and cumulative distribution function (CDF)

at point (0.2,0) where it has the highest standard deviation as indicated from
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Fig. 5.15(b). These results indicate that the corresponding HDMR approxima-
tions are indeed very accurate. Therefore, we can obtain any statistics from this
stochastic reduced-order model, which is an advantage of the current method

over the MC method.

Direct Simulation HDMR Interpolation

1
0.8 0.8
0.6 0.6
04 0.4

0.2 0.2

0 NN ||| TES—it——————
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.16: Prediction of the saturation profile using HDMR and the so-
lution of the deterministic fine-scale problem with the same
input for isotropic random field. Left: Saturation at 0.2 PVI
from direct simulation , Right: Saturation at 0.2 PVI recon-
structed from HDMR.

CDF

S S
(@) )

Figure 5.17: Isotropic random field: (a) PDF of the saturation at point
(0.2,0) and 0.2 PVI, (b) CDF of the saturation at point (0.2,0)
and 0.2 PVIL.

Similar results at 0.4 PVI are also given in Figs. 5.18, 5.19 and 5.20 respec-
tively. It is noted that the standard deviation of the saturation becomes larger at

later time as is seen from the wider strip of the non-zero regions in the contour
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maps at 0.4 PVI in Fig. 5.18. With the increasing of standard deviation, more
collocation points are needed to capture the overall uncertainty. Indeed, there
are 1229 component functions and 104662 collocation points in this case. From
Fig. 5.19, it is seen that the saturation front exhibits a much more significant
variation due to the larger standard deviation. Similarly, in Fig. 5.20, we plot the
PDF and CDF at point (0.4, 0) where the highest standard deviation happens. It
is noted that the spread of the PDF at 0.4 PVIis wider than that of 0.2 PVI which
again indicates the larger variation of the saturation at this time step. Thus, it is
more difficult to predict the uncertainty with the simulation time increases.

HDMR Standard Deviation

__HDMR Mean
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Figure 5.18: Mean and standard deviation of saturation at 0.4 PVI for
isotropic random field. Top: Mean (a) and standard devia-
tion (b) form HDMR. Bottom: Comparison of mean (c) and
standard deviation (d) between MC and HDMR near the sat-
uration front.
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Figure 5.19: Prediction of the saturation profile using HDMR and the so-
lution of the deterministic fine-scale problem with the same
input for isotropic random field. Left: Saturation at 0.4 PVI
from direct simulation , Right: Saturation at 0.4 PVI recon-
structed from HDMR.
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Figure 5.20: Isotropic random field:(a) PDF of the saturation at point
(0.4,0) and 0.4 PVI, (b) CDF of the saturation at point (0.4,0)
and 0.4 PVL

Anisotropic random field

In this problem, we take L; = 0.25, L, = 0.1. Due to the increasing of correlation

length in x direction, the Eq. (5.59) is truncated after 50 terms. Therefore, the

stochastic dimension is 50.

We first solve this problem at time 0.2 PVI using HDMR with ASGC. We
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take ¢ = 107%,0, = 5x 107° and 6, = 107*. The results are shown in Fig. 5.21.
It is interesting to note that the shape of contour is nearly the same as that of
isotropic random field. Only the values of standard deviation are different. The
introduction of anisotropy has the effect of increasing the output uncertainty.
The convergence of HDMR shown in Table. 5.4. Again, the HDMR results com-
pare very well with the reference solution. According to our previous numerical
results in [66], larger uncertainty requires more expansion terms. Indeed, more
expansion terms and collocation points are needed compared with that of the
isotropic case. In addition, the highest HDMR expansion order is 3. There are
3 third-order component functions, which indicating the existence of higher-
order cooperative effects among the inputs. The reconstruction of the satura-
tion profile is shown in Fig. 5.22. The PDF and CDF at point (0.2,0) are shown
in Fig. 5.23.

Table 5.4: Convergence of HDMR with different 6, at 0.2 PVI for
anisotropic random field.

61 N; | N, | #Points | Error mean | Error std

1x103| 8 | 79 6199 1.14x 1073 | 4.69 x 1072

1x107™* | 38| 754 | 72243 | 6.95x10™* | 1.35x 1072

5x 107 |45 | 1044 | 96999 | 6.51x10™* | 1.01 x 1072

We are going to show that HDMR is indeed a versatile method where each
sub-problem can be solved by any stochastic method. Therefore, we solve
the problem at 0.4 PVI using HDMR where each sub-problem is solved with
sparse grid based on Gauss-Legendre quadrature rule instead of ASGC. A level
3 sparse grid is chosen for each sub-problem. 6, is chosen as 1 x 107>. The results

are shown in Fig. 5.24. The convergence of HDMR is given in Table. 5.5. In this
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Figure 5.21: Mean and standard deviation of saturation at 0.2 PVI for
anisotropic random field. Top: Mean (a) and standard devi-
ation (b) form HDMR. Bottom: Comparison of mean (c) and
standard deviation (d) between MC and HDMR near the sat-
uration front.

extreme case, all the 50 dimensions are considered as important and the max-
imum expansion order is 4. This again is consistent with our previous results
in [66]. Higher-order terms are needed to capture the large variability. Without
adaptivity, there are 251176 component functions for a 4th order conventional
HDMR. The advantage of adaptive HDMR is more impressive in this case. We
also solve this problem directly with a 50-dimensional sparse grid based on
Gauss-Legendre quadrature rule. The results from level 2 and 3 sparse grids
are given in Fig. 5.25. Since the mean saturations are nearly the same, we only

show the comparison between standard deviations. For level 2 sparse grid, the
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HDMR Interpolation
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Figure 5.22: Prediction of the saturation profile using HDMR and the so-
lution of the deterministic fine-scale problem with the same
input for anisotropic random field. Left: Saturation at 0.2 PVI
from direct simulation , Right: Saturation at 0.2 PVI recon-
structed from HDMR.
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Figure 5.23: Anisotropic random field: (a) PDF of the saturation at point
(0.2,0) and 0.2 PVI, (b) CDF of the saturation at point (0.2,0)
and 0.2 PVL

number of collocation points is 5301 with the mean error 8.31x10™* and std error
4.38%107%. However, when increasing the sparse grid to level 3 with a total num-
ber of 192201 collocation points, the mean error increases to 1.90 x 10~ and std
error increases to 7.09 x 1072, In other words, the direct sparse grid method fails
to converge. It is computationally impossible to increase the sparse grid level to
4 since it would thus require 5402401 collocation points. The failure of conver-

gence may be due to the steep saturation gradient near the displacement front
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which it is widely known that the polynomial based quadrature method has dif-
ficulty in convergence. From our results, it seems that the adaptive HDMR can
reduce the irregularity of the stochastic space through decomposing the dimen-
sions. However, a higher order expansion may be needed and thus increases
the computational cost significantly. This interesting phenomenon derves fur-

ther investigation in our ongoing future work.

1 HDMR Mean 1 HDMR Standard Deviation
0.8
0.6 ’
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0.3 0.35 04 045 0.5 0.55 03 04 0.5 0.6

Figure 5.24: Mean and standard deviation of saturation at 0.4 PVI for
anisotropic random field. Top: Mean (a) and standard devi-
ation (b) form HDMR. Bottom: Comparison of mean (c) and
standard deviation (d) between MC and HDMR near the sat-
uration front. Here each sub-problem is solved using sparse
grid based on Gauss-Legendre quadrature rule.

Finally, we want to comment on the computational time of this example.

First, in Fig. 5.26, the convergence of standard deviation of the saturation at
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Table 5.5: Convergence of HDMR with different 6, at 0.4 PVI for

anisotropic random field.

0, N; | N. | Order | #Points | Error mean | Error std
Ix1073 10| 96 2 4126 1.32x 1073 | 5.17 x 1072
1x10™ | 38 | 763 3 54925 | 7.00x 107* | 4.10 x 1072
5% 107 | 45 | 1087 3 82407 | 6.40x 10™* | 3.21 x 1072
1x 1075 | 50 | 2050 4 218136 | 2.97x 107* | 1.97 x 1072
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Figure 5.25: Standard deviation of saturation at 0.4 PVI for anisotropic
random field using 50-dimensional sparse grid based on
Gauss-Legendre rule: Comparison of standard deviation be-
tween MC and sparse grid level 2 (left) and 3 (right) near the
saturation front.

one point with the number of MC simulations is given. The points are chosen
at the place where the largest standard deviation occurs and they are different
for different cases. From the figure, it is seen that at least 10° MC samples are
needed in order to achieve statistical convergence. However, there are still some
small oscillations after it. As is well known, the MC convergence rate is M~'/2,

therefore, to ensure a good comparison with HDMR, we use 10° samples even-

tually. It took about 19 hours on 60 processors while the average computational
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time for HDMR is 5 hours on the same number of processors in such a high-
dimensional case. It is also noted from the figure that much more points are
needed to achieve statistical convergence in the anisotropic case which partially
explains the larger variations of saturation as is seen before. Moreover, an in-
teresting observation is that the shapes of the convergence plots are nearly the
same at the two time instants for the same random input. This phenomenon
suggests that although the convergence rate of MC is independent of number
of the stochastic dimension, it does depend on the regularity of the stochastic
input space. In general, more number of MC samples is needed for a stochastic

space which is not smooth as is seen from the case of anisotropic random field.
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Figure 5.26: Standard deviation of the saturation at the point, where the
largest value occurs, obtained from MC simulations versus
the number of realizations.
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5.5 Conslusions

In the first part of this chapter, a new multiscale methodology using the mixed
finite element method is developed for the solution of elliptic equation arising
from heterogeneous porous media problem. This multiscale framework is based
on the framework of heterogeneous multiscale method which adds a new per-
spective into the area of numerical multiscale method. A novel boundary con-
dition for the local cell problem is proposed which gives more realistic flow con-
ditions across a coarse-element interface. In addition, a reconstruction method
for the fine-scale velocity is also proposed, which ensure the continuity of the
mass at both local and global scales. The first two numerical examples verifies

the accuracy of the new method.

In the second part of this chapter, we consider the uncertainty quantification
when the permeability field is modeled as a random field. The newly developed
multiscale method is used as a direct solver within the framework of ASGC and
HDMR. Our numerical results in Example 3 compare well with that of MC re-
sults with fine-scale solvers, which again verifies the accuracy of both multiscale
and HDMR methods. Our study confirms the interesting phenomenon that the
introduction of permeability heterogeneity leads to the heterogeneity-induced
dispersion. Our results also indicates that the HDMR expansion can be served

as an accurate surrogate model for the underlying problem.

187



CHAPTER 6
CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, we dealt with three important problems relevant to generic un-
certainty quantification of complex systems on - (i) how to resolve the disconti-
nuity or steep gradients in the stochastic space, (ii) how to address the problem
of curse of dimensionality and (iii) how to incorporate uncertainty from differ-
ent scales. To resolve all these issues, a complete computational strategy was
developed. The key aspects of this framework are to utilize the adaptive high-
dimensional stochastic model representation technique coupled with adaptive
sparse grid collocation for solving the stochastic PDEs involved. The most im-
portant rational that has made the developed framework valuable is its non-
intrusive character, where only repetitive deterministic simulations are required
at a much less number of samples points than that of Monte Carlo method for
the moderately high stochastic dimensional problems considered. Therefore,
the process is trivially parallelizable, except for the final post-processing. Dur-
ing this work, we have developed a black box stochastic toolkit that can seam-
lessly link any deterministic simulator to facilitate stochastic analysis. In addition,
a new mutiscale method for porous media flow is also developed. This is the
tirst instance of a stochastic multiscale treatment of flow through random het-
erogeneous media that investigates the effect of random permeability on the

flow transport properties.

Although the computational framework developed in this thesis works well
for the numerical examples examined, there are still several areas where further
developments and research are required. Suggestions for the continuation of

this study are provided next.
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6.1 Solution of SPDEs in high dimensions

The ASGC utilizing linear interpolation exhibits slow convergence rate. There-
fore, there is a need to use high order polynomials. There are two possible

extensions to resolve this issue.

According to the tree structure of the collocation points, the first extension is
to utilize all the ancestors of the current collocation point in the previous level
to build higher-order polynomials as in [64]. For example, in Fig. 3.3, all the
ancestors of point 0.375 are 0.25,0,0.5. Therefore, we use these four points to
construct a Lagrange polynomial of order 4 as in the right plot of Fig. 6.1. The
advantage of this method is that it is built on our current algorithm and is easy
to implement. However, it is noted that the way to compute the hierarchical
surplus in [64] is different from ours and that requires alternative methods for

computing the surplus in the case of hierarchical polynomial interpolation.

0.5
d
e N\
0.25 }7{x O ‘
0.12 \5‘.375 0.625 0.875 ’
YN N NN

------------------------

Figure 6.1: Schematic of the proposed hierarchical polynomial interpola-
tion basis function: Left figure shows the needed hierarchical
ancestor for point 0.375 if a fourth order polynomial is needed.
The right figure shows the hierarchical basis polynomials using
these collocation points.

Another possible extension is to use Lagrange polynomial interpolation di-
rectly. However, it is well known that Lagrange interpolation is unstable if us-

ing equidistant points. Since our ASGC algorithm is only built the equidistant
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collocation points, we thus need to utilize a different adaptive strategy, the so
called dimensional adaptive sparse grid interpolation. There exists similar work
in [39]. The basic idea there is to use integration value of the function as an er-
ror indicator to detect the important dimension. If the dimension is considered
as important, then we add all the next level collocation points along that di-
mension. This is different from our ASGC method where we only add local
points around the current region. This method is independent of the choice of
the collocation point and thus we can choose points which are better suited for
Lagrange interpolation. Since the method in [39] is based on numerical inte-
gration, we need to adjust their algorithm to our sparse grid hierarchical inter-
polation based method. Finally, it is noted that the proposed method is quite
different from the so called anisotropic sparse grid collocation method [41]. The
work in [41] does not utilize the concept of hierarchical interpolation that can

explore efficiently the inherent structure of the underlying stochastic sytem.

The stochastic HDMR is an ideal tool for dealing with problems of high
stochastic dimension. When combined with ASGC, this method to our knowl-
edge is the first approach which can solve high-dimensional stochastic prob-
lems by reducing the dimensions from truncation of HDMR and resolve low-
regurlarity by local adaptivity through ASGC. Currently, we choose the same
error threshold & of ASGC for all components. However, in general, the regular-
ity conditions vary for the different order component functions. For example,
a small € is enough for the one-dimensional component function while a larger
¢ is needed for high-order component functions. Therefore, a possible exten-
sion is to adapt strategy which can adjust the £ automatically between different
component functions. In a similar way, the weight threshold 6, is also needed

to be tuned for different order expansions in order to achieve the best possi-
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ble computational performance. In addition, the current criteria to choose the
important dimension is in some sense heuristic. Stochastic sensitivity analysis

may be used to rank the importance of all random inputs [114, 115].

6.2 Multiscale modeling of flow through heterogeneous porous

media

In this thesis, as a first step towards this new method, only a single-phase flow
and transport problem is considered. A straight forward extension is to model
the effect of uncertain permeability on the transport properties of multi-phase
flow. It is well known that the saturation front of the multi-phase flow exhibits
strong discontinuity, which will certainly increase the computational effort. In
addition, unlike single-phase flow, the velocity and saturation equations are
tightly coupled in multi-phase flow, where we need to solve for the velocity at
each time step when the saturation field is updated. Thus, there is a need to de-
velop adaptive time-integration methods as in [79, 87]. Another issue with the
multi-phase flow is in the case of permeability without scale separation. The so-
lution is to use the global flow boundary conditions [79]. In our case, enlarging
the sampling domain to include several coarse elements may be an alternative

solution.

It is also natural to include well modeling in the multiscale method [86]. To
investigate the effect of the random location of the source/wells on the distri-
bution of the saturation profile is a very interesting but realistic topic which has

not been discussed before.
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6.3 Stochastic input model reduction using kernel PCA

The uncertainty involved in the current thesis is only from the analytic K-L ex-
pansion. It is more interesting to consider data-driven stochastic input models
from experimental data such as in [71]. However, the non-linear dimensionality
reduction methods developed in [116] do have two potential limitations. First,
they do not give us the inherent patterns (the eigenfunctions as in the K-L ex-
pansion) in the embedded random space. Therefore, they can not provide us
a mathematical parametric input model as in K-L expansion, i.e. we want to
find the form y = f(£), where vector y is a realization of a discrete random field,
and vector £, of dimension much smaller than the original input stochastic di-
mension, is a set of independent random variables with a specified distribution.
Secondly, the method in [116] only preserves some notion of the geodesic dis-
tances between the sample random fields. This definition of distance does not
consider the actual stochastic systems and thus its performance varies dramat-
ically for different problems. In practice, the target stochastic system is always
known to us and there is a need to define a distance which is best to determine
how similar two realizations of the random field are in terms of spatial proper-

ties and the corresponding stochastic system response.

A possible remedy to this problem is to use kernel principal component
analysis (KPCA) [117, 118]. KPCA has proven to be a powerful tool as a
nonlinear feature extractor of classification algorithm [117], pattern recogniza-
tion [119], image-denosing [120] and statistical shape analysis [121]. Recently,
it has been also applied in reservoir engineering in the context of inversion of

flow data [122, 123].
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Fig. 6.2 demonstrates the basic idea behind nonlinear kernel PCA. Consider
an arbitrary random field in R?, i.e. each realization is a vector of dimension
two, y = (y1,y2)". If y is non-Gaussian , y; and y, can then be nonlinearly related
to each other in R? (Fig. 6.2, left). If linear PCA or the standard K-L expansion
were used, the relationship obtained between y; and y, would again be modeled
as linear, which is clearly not right. Now consider a nonlinear mapping @ that

relates the input space R* to another space F
O:RP>F, Y=0(y); yeR,YeF (6.1)

F is called feature space. In the right plot of Fig. 6.2, after this @ transform,
the realizations that were nonlinearly related in R* becomes linearly related in
the feature space F. Standard linear PCA or the K-L expansion can now be per-

formed in F in order to determine the principal eigenvectors in this space. Now,

e R2 ..\’ F

\e ~ .
\\ ° N \.‘
\:~—:_:%—’$ .‘\..
. \
\A 4
Linear PCA Kernel PCA

Figure 6.2: Basic idea behind kernel PCA. Left: In this non-Gaussian case,
the linear PCA is not able to capture the nonlinear relationship
among the realizations in the original space. Right: After the
nonlinear mapping @, the realizations become linearly related
in the feature space F. Standard linear PCA or K-L expansion
can now be performed in F.

assume we are given N number of realizations of a random field y,,k =1,...,N,
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where each realization is representation as a high-dimensional vector y, € RY
(e.g. M can be considered as the number of grid points in the discretization).
In general, we have M > N. Realizing that nonlinear kernel PCA is essen-
tially linear PCA in a high dimensional feature space F (as opposed to the input
space RM), all results on linear PCA can be readily generalized for general ker-
nel PCA. The maps of the realizations y,,k = 1,..., Ng in the feature space F are
O(y,).k = 1,...,Ng, and assuming ®(y,) are centered (if not, they can be cen-
tered as in [117, 121]), analogous to linear PCA, a kernel eigenvalue problem is

formulated as Nzxda = Ka. The kernel matrix K is defined as
K: Kj=(0(p) ®(y)). ij=1....Ng (6.2)

One significant advantage of using kernels is that there is no need to map ex-
plicitly the points from input space R to F; all necessary computations in space
F can be carried out using the scalar product of the nonlinear function ®. This

function is called a kernel function and is given by

k(x,y) = (©(x) - ©(y)) (6.3)

The kernel function k(x, y) calculates the dot product in the feature space F di-
rectly from the elements of the input space R¥. The most common kernel func-

tion is the Gaussian kernel (radial basis function), which is given by

2
dlx,y )) (6.4)

k(x,)’) = exp (_ 20_2

where d*(x, y) is a distance measure in the input space, which is not necessary a

geodesic distance between samples.

The k-th orthonormal eigenvector of the kernel matrix in the feature space

can then be shown to be [117] V; = Zfi"l j—%@(vi) where @; = [ay;, @2, .. ., AnpilT
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and A, are the kth eigenvector and eigenvalue of the kernel matrix K, respec-
tively. Since the K-L expansion is performed in the high dimensional feature
space F, the results of the K-L expansion (realizations) thus lie in the feature
space, that is, a simulated realization Y € F. Any realization Y is a linear
combination of maps ®(y,) of the input realizations y,,k = 1,..., Ng [122]. We
can project Y onto the subspace spanned by the first largest n eigenvectors
Y = )., §,V: where § are independent random variables. Therefore, by drawing
samples of & we obtain different realizations of the underlying random field in
the feature space F. Now the dimensionality of the stochastic space successfully

reduces to a small number n.

We successfully construct a low-dimensional stochastic input model V; =
ZZR} 3—%(13()71-) in the feature space F. However, we are interested in obtaining
realizations in the original space of the input random field R because the goal
is to obtain a parameterization of the input random field and use it as the input
model to our SPDEs. In order to obtain a realization y in the original space
of the realizations R that corresponds to this simulated realization Y € F, an
inverse ® map of Y is required as y = ®~'(Y). This is known as the pre-image
problem [117, 120, 121]. A fixed point iterative algorithm was proposed in [120]
that however was shown not to be very robust. A possible solution is to use
local linear interpolation between k-nearest neighbors [116]. Another issue is
that we do not know the random distribution of the variables in advance. Thus
we need to find a way to estimate the probability density function of the random
vector £&. The Maximum likelihood or maximum entropy method can be used

to compute the probability distribution function of the underlying random field

given only the realizations of the random field [124, 125].
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