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ABSTRACT
We study a non-cooperative network creation game where
players, represented by nodes, can build edges to other play-
ers for a cost of α, and strive to maintain short paths to
other players while minimizing cost. Players incur a penalty
of β for each unreachable node in addition to the charges
for constructing edges. Specifically, each player i optimizes

cost(i) = αei + βni +
X

j

d(i, j)

where ei is the number of edges built by i, ni is the number
of unreachable nodes from i by paths in the network, and α
and β are parameters.

The model generalizes previous work such that it pro-
vides an abstraction for describing the synthesis of various
economic networks. For instance, in a network for the trans-
portation of goods between facilities, the α cost parameter
can intuitively be viewed as the price of establishing a route
between facilities, and β is the value (or incentive) to have
access to goods at a remote site.

We observe sharp changes in optima as the α and β pa-
rameters vary. Furthermore, we bound the price of anarchy
of the game for all values of α, β and n.

We identify surprising properties in the structure of Nash
equilibria. We show that not only do there exist zero-incentive
strict Nash equilibria of arbitrarily large size but they also
exhibit properties such as constant diameter and resilience
to any single-edge deletion. Lastly, we identify the first su-
perconstant lower bound on the price of anarchy in this line
of research and prove that it is persistent even if we incor-
porate in our model coalitions of size up to o(

√
n).

1. INTRODUCTION
The theory of network formation is fundamental in com-

puter science, economics, operations research, and the social
sciences. One of the goals is to predict the behavior of the
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network systems by using only structural properties of the
formed graphs and rules defined on the vertices.

The methods employed in network design have generally
assumed central coordination during the synthesis of the
network. This approach breaks down for explaining dis-
tributed and uncoordinated behavior in several large-scale
networks, such as linkage of the backbones of the Internet
[11] and goods exchange networks [13].

Fabrikant, Luthra, Maneva, Papadimitriou and Shenker
[11] propose a game-theoretic model for network creation
that addresses the uncoordinated and selfish behavior of the
participating agents. Their model involves a game with n
players who build edges to form a connected, undirected
graph. Each player is denoted by a vertex and is allowed to
buy link to the other players in the game at a cost of α > 0
per link. The players’ goal is to minimize the number of
edges they build while maintaining short paths to all other
members of the network. Specifically, each player i attempts
to optimize an associated cost function αei+

P

j d(i, j) where

ei is the number of edges she builds and d(i, j) is the shortest
distance between players i and j. Players can use any edge
in the network when calculating distances, but they can only
remove the edges they built themselves. The social cost of
a network is the sum of the costs of all its players.

Among the key concepts used in game-theoretic analysis is
the Nash equilibrium [19]. It is a combination of strategies in
which no player can improve his situation single-handedly by
changing his strategy. In the aforementioned model, a Nash
equilibrium is a stable solution of the network creation game
in which no player can lower her cost by building new edges
or removing any of those she already had constructed, or
both. The resulting network is called an equilibrium graph.

In [16], Koutsoupias and Papadimitriou studied the im-
pact on performance due to selfish behavior of players. They
coined the term “price of anarchy” which is defined to be the
ratio of the cost of the worst-case Nash equilibrium to the
cost of the global optimum solution. Essentially, the price
of anarchy measures the degradation of performance due to
the lack of coordination between players. The concept has
been used in literature on routing [22, 23], congestion games
[8, 9, 12] and network design [2, 3, 4, 10, 15].

1.1 Previous work
One of the earliest papers that employs game theory to

study network formation games is that of Myerson [18]. His
model consists of a cooperative game in which players can
create links to communicate or cooperate such that players
in the same component can act together as a coalition. How-November 2006.
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ever, his model is indifferent of the structure of the coalition
as long as players are connected.

Jackson and Wolinsky [14] address this concern, again us-
ing cooperative game-theory. They present a model in which
players pay for having direct links to other players, and are
rewarded for having good connectivity in the network. The
authors show that the only efficient networks obtainable are
the complete graph, the star and the empty graph, and that
the star may fail to be pairwise stable even if it is efficient.

Among the earlier work in non-cooperative network for-
mation games is the work of Bala and Goyal [5]. Their model
is similar to the one that is the subject of this paper, in that
it has unilateral and simultaneous link creation with direct
link penalty, but they instead focus on information flow in
the network.

Anshelevich et al. [2, 3] analyze a network connection
game of a different flavor where each player desires to con-
nect a pair of terminals in a flow graph. Players are allowed
to contribute to the cost of any edge on paths between their
terminals. They analyze cost-allocation schemes and how
they can affect the quality of the Nash equilibria.

Johari, Mannor and Tsitsiklis [15] investigate a network
formation game where players also have a trade-off between
connectivity cost and traffic flow, and nodes pay for their
own links. However, it differs from our model in that it
focuses on bargaining, negotiation and contracts between
players for building edges, routing of flow in the network
and employs a different cost scheme.

More general models of network formation that involve
transfer payments between players have been considered by
Anshelevich et al. [4], and Bloch and Jackson [6].

Carbo and Parkes [10] study an extension of the model
of Fabrikant et al. where edge costs are shared between
players and the creation of an edge requires consent from
both parties. They show that the worst-case price of anar-
chy in their model is worse than in the unilateral one, but
provide experimental results suggesting that the bilateral
model performs better on average.

Another extension on the Fabrikant et al. model was
done by Moscibroda et. al. [17] who study the effects on
the topology of a P2P network imposed by the fact peers
selfishly select the peers to connect to. They model the
peers of a P2P network as points in a metric space and they
prove that resulting topologies may be much worse than if
peers collaborated and also that the overall system may not
never stabilize.

The original model that we extend in this paper is that of
Fabrikant et al. [11]. They derive the upper bound of O(

√
α)

for 2 ≤ α < n2, and O(1) for other values of α. Their paper
shows that when α < 2, the social optimum is a complete
graph, and when α ≥ 2 it is a star. They also give the
lower bound of 3 − ε on the price of anarchy for any ε > 0.
Additionally, the authors conjecture that there is a constant
A such that for α > A all non-transient equilibrium graphs
are trees. A transient Nash equilibrium is one where there
exists a sequence of strategy changes that retains the social
cost in every step but leads to a non-equilibrium position.

More recently, Albers, Eilts, Even-Dar, Mansour, and
Roditty [1] improve on these bounds. They derive a con-
stant upper bound on the price of anarchy for α ∈ O(

√
n)

and α ≥ 12n⌈log n⌉, and give the improved bound of O(1 +

(min{α2

n
, n2

α
})1/3) for the intermediate values of α. For

α ≥ 12n⌈log n⌉ they show that every equilibrium graph is a

tree. Finally, they disprove the aforementioned conjecture
by constructing Nash equilibria for arbitrarily many players
and for 1 < α ≤

p

n/2 that contain cycles. The construction
has the properties that the shortest paths between players
are unique, and have a diameter of 2.

1.2 The Model
In this paper we extend the aforementioned network cre-

ation model by introducing a parameter β ≥ 0 to the cost
function that controls the penalty for players being in dif-
ferent connected components. Intuitively, a high value of
β denotes a high incentive to be connected to a large part
of the network. Before giving a motivating example, let us
thoroughly define the details of the model that we analyze
in this paper.

Consider the following game with n ≥ 2 players V =
{1, 2, . . . , n}. Each player i has a strategy Ei ⊆ V \{i}
which denotes the players to whom i will build edges. If
the combination of all strategies S = (E1, E2, . . . , En) is
known, we can create the corresponding undirected graph

G(S) = (V, E) where E =

n
[

i=1

[

j∈Ei

{i, j}. Suppose that

G(S) has the connected components C1, C2, . . . , Ck and that
i ∈ Ct for some t. Let ei = |Ei| for all i. Player i incurs a
cost of

costβ(i) = αei + βni +
X

j∈Ct

d(i, j)

where ni = n − |Ct| and d(i, j) is the shortest distance be-
tween players i and j in G(S). Here α ≥ 0 and β ≥ 0
are parameters. The social cost of the strategy is the ag-
gregate cost of all players, in other words costβ(G(S)) =
Pn

i=1 costβ(i). A configuration for the game is a tuple (α, β, n).
Notice that the model of Fabrikant et al. is the special

case β = ∞ in our model. Thus cost∞(G(S)) is equal to the
social cost incurred for G(S) in the aforementioned model.
Also, if the graph is connected, costβ(G(S)) = cost∞(G(S))
since the β-term is zero.

A Nash equilibrium is a combination of strategies S =
(E1, E2, . . . , En) such that for each player i and any other
profile of strategies S′, identical to S except in i’s compo-
nent, we have costβ(G(S)) ≤ costβ(G(S′)). The network
corresponding to a Nash equilibrium is called an equilib-
rium graph. A combination of strategies S is optimal if
costβ(G(S)) ≤ costβ(G(S′)) for all other profiles of strate-
gies S′. The corresponding network is called the optimum
graph, or simply the optimum.

To motivate the extension, we remark that when β = ∞
the social cost is finite if and only if the network is con-
nected. As mentioned in [11], this is unrealistic because it
forces players to take part in expensive networks. By intro-
ducing the β parameter, we also allow for exploration of the
dynamics of network formation. The fundamental difference
is that disconnected graphs are now valid outcomes of the
game since players can opt to not take part in the formation
of the network by building no edges. We can now start from
an empty graph and watch the network evolve over time,
whereas when β = ∞ none of the intermediate stages cor-
responding to networks with multiple components would be
valid. This uncovers the magic behind the creation of the
connected networks in the model of Fabrikant et al. .

Our model also provides an abstraction for describing the
synthesis of various economic networks. For instance, in a



network for the transportation of goods between facilities,
the α cost parameter can intuitively be viewed as the price
of establishing a route between facilities, and β is the value
or incentive to have access to the goods of a remote site. By
increasing the dimensionality of the economic model (use
of two parameters) we gain the ability to describe the evo-
lution of more realistic economic procedures, as for exam-
ples partly regulated economies where one of the parameters
(i.e. the cost of creating connections) can be fine tuned be
some external entity (i.e. government) in order to influence
the overall behavior of the system. Of course, this extra
power comes at the cost of more complicated proofs and
finer partitioning of the α-β plane in terms of what the ex-
act behavior of the resulting system looks like.

1.3 Our results
Our main contribution is to derive upper bounds on the

price of anarchy for any configuration (α, β, n) of the game.
We determine the optimum networks for any configuration

(α, β, n). We show that the unique optimum is a star for β >
1
n
(α−2)+2 if α ≥ 2, and a complete graph for β > 1

2
(α+2)

if α ≤ 2. For other values of β, the empty graph is optimal.
If β > α + 1, we show that the equilibrium graph is con-

nected and give bounds on the price of anarchy in this re-
gion. It is constant α ∈ O(

√
n) or α ≥ 12n⌈log n⌉, and

O(1 + (min{α2

n
, n2

α
})1/3) for other values of α.

Now consider β ≤ α+1. The following regions correspond
to areas B, C and D on figure (2).

• If β ≥ (α + 2)/2 the price of anarchy is constant.

• Assuming α ≥ 2, the price of anarchy when β ≥ (α −
2)/n + 2 is

O

„

(min{α2

n
,
n2

α
})1/3 +

βn

α + 2n − 2

«

.

Furthermore, when α ≥ 12n⌈log n⌉ we give a tight

bound of Θ
“

βn
α+2n−2

”

on the price of anarchy.

• For the remaining region, the price of anarchy is 1

when α ≥ 12n⌈log n⌉, it is Θ
“

1
β

”

when α <
p

n/2

and for other values of α it is

O

„„

1 + (min{α2

n
,
n2

α
})1/3

«

α + 2n − 2

βn

«

.

We conclude by exploring the implications of allowing
coalitions in the model, and show that even if we allow col-
lusions of size o(

√
n), there are instances in the network

formation model where the price of anarchy remains un-
bounded.

2. OPTIMA
In order to determine the price of anarchy in our model,

we will need to bound the social cost of optimum graphs
and equilibrium graphs for all (α, β, n) configurations. Gen-
erally speaking problems have optima that are hard to find
or characterize. However, as was shown in [11], the optimum
in the case where β = ∞ is extremely easy to compute. In
fact, for α < 2 it is a complete graph on n-vertices, and for
α ≥ 2 it is a star. With this in mind, we will commence our
analysis by precisely determining the optima for our model.

The main obstacle is that we can no longer rely on the opti-
mum graph to be connected like is implicitly assumed in the
old model. However, the following lemma shows that each
component in an optimum in must be optimal when viewed
in isolation for β = ∞.

Lemma 2.1. Suppose that C is a connected component
with k nodes in an optimum solution C∗ for some (α, β, n).
Then C in isolation is an optimum for (α,∞, k).

Proof. Suppose C was suboptimal. Substitute the C
part of C∗ with an optimum of the same size (namely k) for
the same α. This is necessarily an improvement because the
β-term of the cost function is unaffected. This contradicts
the optimality of C∗.

We are now ready to exactly characterize the optimum
graphs of our model. The result is summarized on figure 2.

Theorem 2.2. For α ≥ 2 the optimum network is a star
if β > 1

n
(α − 2) + 2 and the empty graph otherwise, and for

α ≤ 2 the optimum is a complete graph if β > 1
2
(α + 2) and

the empty graph otherwise. Furthermore, for β > α + 1, all
optima C∗ are connected.

Proof. Suppose there are k components in the optimum
C∗.

Assume α ≥ 2. By the previous lemma the optimum C∗

is a collection of stars. Let xi denote the number of nodes
in the ith star. The cost of star i is α(xi − 1) + 2(xi − 1)2 +
βxi(n − xi). The total cost of C∗ is thus

costβ(C∗) =

k
X

i=1

`

α(xi − 1) + 2(xi − 1)2 + βxi(n − xi)
´

=
k
X

i=1

(βn − 4 + α)xi +
k
X

i=1

(2 − α) +
k
X

i=1

(2 − β)x2
i

= (βn − 4 + α)n + (2 − α)k +
k
X

i=1

(2 − β)x2
i .

Let us determine the characteristics of the collection of stars
that minimizes the total cost.

(a) For β > 2, which includes the case β > α + 1, we mini-

mize (βn− 4 + α)n− (α− 2)k −Pk
i=1(β − 2)x2

i . Equiv-
alently, since (βn − 4 + α)n is constant, we maximize

(α− 2)k +
Pk

i=1(β − 2)x2
i . For any k, the optimum net-

work that maximizes this quantity consists of a big star
of n − k + 1 nodes, and k − 1 isolated vertices. We now
determine the number of components k that maximizes

(β − 2)
`

(n − k + 1)2 + k − 1
´

+ (α − 2)k.

Since β − 2 > 0, this is a convex function for continuous
k ∈ [1, n] and therefore the optimal k is either 1 or n.
If β > 1

n
(α − 2) + 2, such as when β > α + 1, then the

optimal k is 1, in other words the optimum network is a
single star. When β < 1

n
(α−2)+2 the optimal k is n so

the optimum network has n isolated vertices. Finally,
when β = 1

n
(α−2)+2 then both the star and the empty

graph are optimal.

(b) Suppose β = 2. Then the last term of the social cost

function costβ(C∗) = (βn−4+α)n+(2−α)k+
Pk

i=1(2−
β)x2

i is zero. Since α ≥ 2 we see that (βn − 4 + α)n +
(2−α)k is minimized for k = n so the optimum network
is the empty graph.
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Figure 1: Optima in our model
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Figure 2: Price of anarchy

(c) For β < 2 we minimize (βn−4+α)n−(α−2)k−Pk
i=1(β−

2)x2
i . Since

Pk
i=1 xi = n, the third term is minimized

when xi = 1 for all i. This implies that k = n which
in turn minimizes the second term. Since the first term
is constant, the overall minimum is indeed achieved at
k = n. Hence the optimum network is the empty graph.

Now assume α ≤ 2. By the previous lemma the optimum
C∗ is a collection of cliques. Let xi denote the number of
nodes in the ith clique. The cost of clique i equals (α +
2)
`

xi

2

´

+ βxi(n − xi), so the total cost of C∗ is thus

costβ(C∗) =
k
X

i=1

(α + 2)

 

xi

2

!

+ βxi(n − xi)

=

k
X

i=1

„

βn − α + 2

2

«

xi + x2
i

„

α + 2

2
− β

«

=

„

βn − α + 2

2

«

n +
k
X

i=1

x2
i

„

α + 2

2
− β

«

Let us determine the characteristics of the clique collection
that minimizes the total cost.

(a) Suppose β > a+2
2

, i.e. a+2
2

−β < 0. Then the function is

minimized when
Pk

i=1 x2
i is maximized, which happens

when k = 1 and x1 = n. Hence the optimum is an
n-clique.

(b) When β < a+2
2

, the function is maximized when
Pk

i=1 x2
i

is minimized. We can derive by a similar argument that
the empty graph is optimal.

(c) When β = a+2
2

, the cost function is constant so any
collection of cliques is optimal.

Note that for α = 2, analysis of both cases hold. Hence in
this case, for β > 2, the optimum is either a complete graph
or a star.

3. PRICE OF ANARCHY

In the previous section we determined the optimum solu-
tions for all configurations of (α, β, n). This is a key step in
determining the worst-case Nash equilibrium in the game.
We will show that the equilibrium graphs are connected if
β > α + 1. This result prompts the analysis of the price of
anarchy to be split up by cases.

Definition 1. We will be referring to the following regions,
which can also been seen graphically on figure 2.

• Region A is the area defined by β > α + 1.

• Region B is defined by (α + 2)/2 ≤ β ≤ α + 1 and
0 ≤ α < 2.

• Region C is defined by (α− 2)/n + 2 ≤ β ≤ α + 1 and
2 ≤ α.

• Finally, region D is the remaining area, that is 0 ≤ β <
(α + 2)/2 when 0 ≤ α < 2 and 0 ≤ β < (α − 2)/n + 2
when α ≥ 2.

3.1 Region A

Lemma 3.1. When β > α + 1, all equilibrium graphs are
connected.

Proof. Suppose that some equilibrium graph consists of
two or more connected components. Let i be the node cor-
responding to some player. The β-term of the cost function
for this node equals βni where ni is the total number of
nodes in the other components. If i creates an edge to each
of the ni nodes, we will argue that the cost decreases and
thus reach a contradiction. The β-term of i’s cost function
becomes 0 whereas the α-term increases by αni for creating
the edges. Additionally, the distance term increases by ni.
In summary, i’s cost decreases by ni(β − (α + 1)) > 0.

Theorem 3.2. For β > α+1, a network is at equilibrium
in our model if and only if it is an equilibrium graph in the
old model for the same α and n.

Proof. We know from (3.1) that equilibrium graphs in
this region are connected and hence viable outcomes for a



(α,∞, n) configuration. When β < ∞, the strategies of a
node in an equilibrium graph are more than those available
when β = ∞. No node can thus decrease its cost, so this
network is also at Nash equilibrium for β = ∞.

Suppose that there is a Nash equilibrium in the an (α,∞, n)
configuration that is not a Nash equilibrium in for (α, β, n)
for any β > α + 1. This implies that some player i in our
model can improve her cost by disconnecting parts of the
network. Assume that after doing this, there are ni nodes
are in other connected components. We will prove that i
can improve her situation in both models, which contra-
dicts the assumption of Nash equilibrium in the β = ∞.
The lack of connectivity to the ni vertices costs the player
βni, whereas by building edges to each of them and end up
with a connected graph, she would be charged (α + 1)ni.
Since β > α + 1 by assumption, the latter option is prefer-
able and the contradiction is reached.

The following corollary is immediate.

Corollary 3.3. The price of anarchy is equal for (α,∞, n)
and (α, β, n) for any β > α + 1.

3.2 Region B

Lemma 3.4. Let β ≤ α+1. A connected component C of
size k in an equilibrium graph for (α, β, n) is an equilibrium
graph for (α,∞, k).

Proof. Suppose that some equilibrium graph N contains
a connected component C of size k, such that C is not an
equilibrium for the (α,∞, k). Then there is at least one
player i in C who can deviate from his strategy to another
that does not alter the connectivity of the graph in any way
(and hence the β-term of his cost), but improves his overall
cost. Hence, N is not an equilibrium graph for (α, β, n)
either and we’re done.

We will now give a rather technical lemma that holds for
regions B and C.

Definition 2. Given a configuration (α, β, n) of our game
we define S to be the set of all component sizes that occur
in equilibria in the game. More specifically, k ∈ S iff there
exists a component of size k in some equilibrium graph of
game.

Lemma 3.5. Let (α, β, n) be a configuration such that the
parameters are within regions B or C. The price of anarchy

ρ is O

„

ρ′ +
βn(n − 1)

costβ(OPT)

«

where ρ′ is the maximum price

of anarchy for (α,∞, n′) where n′ ∈ S.

Proof. Let OPT denote the optimum network on n nodes
and N be an equilibrium graph. N is the union of compo-
nents N1, . . . , Nk, each of which is at Nash equilibrium for
(α,∞, ni) where ni is the size of Ni as was seen in (3.4).

When α ≥ 2 the optimum is a star, so by ignoring β-terms

(considering cost0(·)) we obtain

k
X

i=1

cost0(OPTi) =
k
X

i=1

2(ni − 1)2 + α(ni − 1)

= 2
k
X

i=1

n2
i + (α − 4)

k
X

i=1

ni +
k
X

i=1

(2 − α)

≤ 2

 

k
X

i=1

ni

!2

+ (α − 4)n + k(2 − α)

≤ 2n2 + (α − 4)n + 2 − α = costβ(OPT).

When α < 2 the optimum is a clique, so cost0(OPTi) =
(α + 2)

`

ni

2

´

and thus

k
X

i=1

cost0(OPTi) =
α + 2

2

 

k
X

i=1

n2
i −

k
X

i=1

ni

!

≤ α + 2

2
(n2 − n) = costβ(OPT).

Since costβ(N) ≤ βn(n−1)+
Pk

i=1 cost0(Ni) we now deduce
that the price of anarchy ρ in the region is bounded by

ρ = max
N

costβ(N)

costβ(OPT)

≤ max
N

Pk
i=1 cost0(Ni) + βn(n − 1)

costβ(OPT)

≤ max
N

Pk
i=1 cost0(Ni)

Pk
i=1 cost0(OPTi)

+
βn(n − 1)

cost0(OPT)
.

We conclude that

ρ ≤ max
N

cost0(Ni)

cost0(OPTi)
+

βn(n − 1)

costβ(OPT)
= ρ′ +

βn(n − 1)

costβ(OPT)
.

Theorem 3.6. The price of anarchy in region B is O(1).

Proof. We have already proven that in region B the op-
timum is the complete graph. Since α ≤ 2 we know from
earlier work [11] that the price of anarchy in this region is
at most constant, namely 4

3
. Using the previous lemma we

can now deduce that

ρ ≤ ρ′+
βn(n − 1)

costβ(OPT)
≤ 4

3
+

βn(n − 1)

(α + 2)n(n − 1)/2
=

4

3
+

2β

α + 2
.

However, we have that β ≤ α + 1 and α ≤ 2 in this region,
so we find that

ρ ≤ 4

3
+

2α + 2

α + 2
≤ 4

3
+

3

2
=

17

6
.

Moving on to region C, we apply different results to the
region.

Lemma 3.7. The price of anarchy ρ in the C region is
bounded from below by βn/(2n + α − 2).

Proof. The empty graph is trivially an equilibrium graph
in the region since β ≤ α + 1. The cost of an empty graph
is βn(n−1), whereas the cost of the optimum, a single star,



is α(n − 1) + 2(n − 1)2. Therefore the price of anarchy is
bounded from below by

max
N

costβ(N)

costβ(OPT)
≥ βn(n − 1)

α(n − 1) + 2(n − 1)2
=

βn

2n + α − 2
.

An immediate corollary of (3.5) is an upper bound on the
price of anarchy in this region. Indeed, merely applying the
cost of the optimum graph (the star) to the lemma we obtain
the following bound.

Corollary 3.8. For any configuration (α, β, n) in region
C, the price of anarchy ρ in region C is O(ρ′+ βn

α+2n−2
) where

ρ′ is the maximum price of anarchy for (α,∞, n′) where n′ ∈
S.

Combining this corollary with the previous lemma gives a
tight characterization of the price of anarchy in the area
where α > 12n⌈log n⌉ in the C region.

Theorem 3.9. The price of anarchy in the part of region

C where α > 12n⌈log n⌉ is Θ
“

βn
α+2n−2

”

.

Proof. Lemma (3.7) provides the desired lower bound
for the price of anarchy. Hence, in order to complete the
proof we need a corresponding upper bound of O( βn

α+2n−2
).

However, according to lemma (3.4), any Nash equilibria in
this area will consist of connected components which in iso-
lation would be Nash equilibria for β = ∞. Since α >
12n⌈log n⌉, and the size ni of any such connected component
is less than n, we immediately get that α > 12ni⌈log ni⌉.
The price of anarchy for any such component is constant, as
was seen in the introduction, and thus ρ′ as defined in (3.5)
will be constant. This fact, along with the corollary above,
implies the upper bound and the proof is complete.

3.3 Region D
Before we delve into the specifics of the price of anarchy

for the remaining region where the empty graph is optimal,
we point out that the β-term in the cost function does not
alter the price of anarchy significantly. In fact, it contributes
at most 1 to it because the β-term is at most equal to the
cost of the optimum graph.

Upper Bounds
Lemma 3.10. Given (α, β, n) in region D, the price of an-

archy is

O

„

ρ∞
costβ(OPT∞)

βn(n − 1)

«

,

where ρ′ is the price of anarchy for the same (α,∞, n) α
and n, and β = ∞.

Proof. As mentioned above, the β-term of the cost func-
tion contributes at most 1 to the price of anarchy in this re-
gion. Hence, we can disregard it altogether in this analysis
since it will not cause differences in the asymptotical charac-
teristics of the system. Instead we focus on identifying the
equilibria that maximize the other two terms of the cost,
the α-term and the sum of distances. Naturally, both are
maximized when the equilibrium graph has a single compo-
nent, so it suffices to explore connected equilibria to bound
the price of anarchy. We will denote by OPT the optimum

graph for the given instance of the game and by OPT∞

the optimum graph for the the instance of the game with
(α,∞, n). As usual, N denotes any connected equilibrium
graph for the given instance of the model. By definition, we
can bound the the price of anarchy ρ as follows.

ρ ≤ max
N

costβ(N)

costβ(OPT)
+ 1 = max

N

costβ(N)

βn(n − 1)
+ 1

= max
N

costβ(N)

costβ(OPT∞)
· costβ(OPT∞)

βn(n − 1)
+ 1

= ρ′ cost
β(OPT∞)

βn(n − 1)
+ 1.

We have shown that for α ≤ 2, the optimum when β =
∞ is the complete graph, and therefore costβ(OPT∞) =
α+2

2
n(n−1), whereas the price of anarchy ρ′ is at most 4/3.

Combining these bounds with the previous lemma gives an
upper bound on the price of anarchy.

Corollary 3.11. The price of anarchy in the part of re-
gion D where α ≤ 2 is O(1/β).

Similarly, we have shown that for α > 2, the optimum
when β = ∞ is the star, and hence costβ(OPT∞) = α(n −
1) + 2(n − 1)2 in this case. As far as the price of anarchy
ρ′ is concerned, it is constant for 2 < α <

√
n, whereas for√

n < α < 12n⌈log n⌉ the best known upper bound for it is

O(1 + (min{α2

n
, n2

α
})1/3). Hence, by using (3.10) we obtain

the following bounds.

Corollary 3.12. The price of anarchy in the part of re-
gion D, where 2 < α <

√
n is O(1/β). In the same re-

gion for
√

n ≤ α < 12n⌈log n⌉ the price of anarchy is

O((1 + (min{α2

n
, n2

α
})1/3)α+2n−2

βn
).

The following lemma gives some insight into the structural
characteristics of the equilibrium graphs in this area.

Lemma 3.13. The connectivity of equilibrium graphs in
the D region is resilient to any move by a single player.
Namely, if a node removes any number of the edges it bought,
the number of components will remain the same.

Proof. Suppose that some player could by delete k of
the edges he bought and split his component into two, E
and E′. We can assume he stays in E′, and that none of
the k edges are redundant, i.e. E and E′ remain connected
if k − 1 or fewer edges are removed. Note that these edges
all stretch from E′ into E.

Now, after deleting his edges, the player will incur a cost
of β|E| due to the lack of connectivity to the E component.
However, before the move his he was paying at least kα +
k + 2(|E| − k) for his connections to E. By the definition of
the D region, we have that β < k

|E|
(α − 1) + 2, so β|E| <

kα+k+2(|E|−k). This means that the player can profitably
deviate from his strategy, which in turn implies that the
original graph was not an equilibrium.

One immediate implication of the above lemma is that
equilibrium graphs in this area are resilient to the removal of
any single edge. It is obvious that some graphs, for instance
non-trivial trees (i.e. trees with at least 2 nodes), do not
have this property. Hence we deduce the following.



Corollary 3.14. An equilibrium graph contains no non-
trivial trees.

Theorem 3.15. In region D where α ≥ 12n⌈log n⌉ the
price of anarchy is 1.

Proof. According to lemma (3.4), any Nash equilibrium
graph in this area consists of connected components which,
if viewed in isolation, would be equilibria for β = ∞. Since
α > 12n⌈log n⌉, and the size of any such connected com-
ponent ni is less than n, we immediately get that α >
12ni⌈log ni⌉ and thus any component in the equilibrium
graph has to be a tree. However, by corollary (3.14) above
we conclude that the only equilibrium graph is actually the
empty graph, which happens to be optimal. The result fol-
lows.

Lower Bounds
It will be useful in the following analysis to have handy
notation for determining the owner of an edge. We will thus
give edges direction such that a directed edge (v, u) indicates
that player v built an edge to u.

Lemma 3.16. In the D region for α <
p

n/2, the price of
anarchy is Ω( 1

β
).

The proof is given in the appendix.
Combining propositions (3.11), (3.12) and (3.16) yields

the following theorem.

Theorem 3.17. The price of anarchy is Θ
“

1
β

”

in region

D for α <
p

n/2.

The graph described in the proof of (3.16) has several
interesting properties. It is a strict Nash equilibrium graph
in our model, even when there is no incentive (β = 0) which
follows easily from the proof. It has diameter of 2, a unique
shortest path between pairs of vertices [1] and is resilient to
the removal of edges owned by a single player.

4. FURTHER EXTENSIONS
The network formation game that was defined by Fab-

rikant et al. and which we have extended was unable to han-
dle networks that consist of multiple components. As men-
tioned earlier, this drawback deprives it of the opportunity
to express interesting dynamical procedures and phenomena
which are inherent in the process of network formation. In
this section, we will attempt a shallow exploration of these
deep waters.

4.1 Coalitions
Moving back to our model, we have the luxury of being

able to consider every possible configuration as a starting
configuration. The starting position of the empty graph
has special significance though, since it actually simulates
the birth of a network. Given α and n we have that for
any β > α + 1, the network creation process starts off and
the Nash equilibria that it reaches are not only connected
but also coincide with the equilibria of the old model where
essentially β = ∞. Although this is interesting in its own
right as it suggests an incentive threshold (that we express
by β), above which there are no new properties of the final
stable network, the region below the β = α + 1 is really
interesting.

For β ≤ α + 1, the starting configuration of the empty
graph is not only a valid strategy profile for our players but
also a Nash equilibrium. Basically, the game gets stuck in
the initial, empty network due to the selfish behavior of the
players. Although this kind of behavior is not only desired
but optimal in region D and its effects are insignificant in
region B since it only increases the total social cost by a
constant, it severely deteriorates the social welfare of the
network in the C region.

As we have already seen, the cost of the empty graph in
this region can become arbitrarily worse than the cost of
the optimal graph, the star. Hence we can have a number of
short-sighted selfish players who basically force themselves
into paying arbitrarily higher cost than the optimal. In real-
life scenarios, this would be the ideal setting to start talking
to your neighbors and this is what we will examine next by
introducing coalitions to the game.

We will model coalitions in our game based on a collu-
sion framework that is closely related to the one used by
Hayrapetyan et al. in [12]. In essence, the members of a
coalition cooperate so as to selfishly maximize their collec-
tive welfare. In other words, the coalitions may be viewed as
super-players that control all of the members of their respec-
tive coalitions and choose strategies for them. Their cost
function is the aggregate cost of all members of its coalition.
The purpose of the super-player is naturally to maximize
his utility, i.e. minimize his cost. Lastly, the coalitions are
static and defined as a part of the description of the game.
In our specific model of network creation, we start from an
empty graph and all the costs and incentives are uniform.
It is evident that all players within a coalition are isomor-
phic, so all we need to define are the respective sizes of the
coalitions. We will partition the players into coalitions of
equal sizes for our purposes, although allowing differently
sized coalitions would produce similar results.

Returning to the specific problem in region C where in-
dividual selfish players are trapped in a setting where they
can be be forced to pay arbitrarily higher costs than they
optimally would. A rather natural question that arises asks
whether we can overcome this deadlock situation by allowing
coalitions which are not large. The answer to this question
is negative.

Theorem 4.1. Even if S ∈ o(
√

n) players collude, there
are instances in the network formation model where the price
of anarchy remains unbounded in region C.

Proof. We will prove that even if we allow coalitions of
size o(

√
n), then we can still get equilibria of this new game,

where the price of anarchy is unbounded. Specifically, we
can set the parameters of the model α, β and n such that its
price of anarchy can be bounded from below by any k where
k is a positive number k ≥ 1.

Let’s examine the outcome of the game where the only
edges that are bought are between nodes in the same coali-
tion and every coalition forms a star. We will prove that we
can set the parameters of the model α, β and n such that
this outcome constitutes an equilibrium graph then its cost
could become arbitrarily worse than the cost of the optimum
in the C region.

We start by setting α big enough so that it is too expensive
for any super-player to buy more than one edge towards an-
other component. Once an edge is bought towards another
component, any other edge towards the same component has



an effect only on the distance-term of the cost to that super-
player. In order to make sure that α would be too expensive
for any super-player to buy more than one edges towards an-
other component all we need to do is set α to be greater than
improvement that can be caused to the distance-term of his
cost by the creation of a single edge. A trivial lower bound
of α that would achieve this would be n3. Now, we want to
be the case that the super-player has no incentive to actu-
ally create any edges towards other components. However,
the cost that a disconnected components force upon him is
P

all his nodes βS = βS2. Now, we want this cost to less than
the smallest possible cost that the super-player would pay
if we actually created that single edge to him. Naturally,
the super-player would build that edge towards the center
of the other star-component. In this case the cost to this
player would be at least

α +
X

members i

j in other components

dist(i, j) ≥ α + 3S2 − 2S

which is the cost if the super-player’s component was a star
and bought an edge connecting the two centers. We want
the cost of being disconnected to any component to be less
(or equal) to the minimal cost of being connected to that.
By the analysis above however it is sufficient to have βS2 =
α + 3S2 − 2S or in other words to set β equal to

β =
α

S2
+ 3 − 2

S
.

However, since S = o(
√

n), for any positive number k ≥ 1
we can find a big enough n such that β ≥ 2k(α−2

n
+ 2).

Regardless of what is the exact relation of S to n, since S =
o(
√

n), for big enough n the slope of the line β = 2k(α−2
n

+2)
for any given k will become less than the slope of the line
β = α

S2 + 3− 2 1
S
, which in turn is less than the slope of the

line β = α + 1. If this price of n is less than 2S we set it
equal to 2S. Given, the fact that we have only a lower bound
on α we can finally set α big enough, such that the α, β, n
parameters of our model are such that α > 2, β ≤ α+1 and
β ≥ α−2

n
+ 2). In other words, we have created an instance

of a network creation game in the C region of our new model
(with collusions) such that the graph that we defined earlier
and in which every coalition formed a star and no other
edges were formed is a Nash equilibrium.

All we need to prove in order to finish the proof of this
theorem is that the cost of this graph is at least k times the
cost of the optimum graph which in this region is the star.
However, the social cost of the graph we have described is
βn(n−S)+ n

S
(α(S−1)+2(S−1)2) and the cost of the star

is α(n − 1) + 2(n − 1)2. Hence, we conclude that

costβ(Nash graph)

costβ(OPT)
=

βn(n − S) + n
S
(α(S − 1) + 2(S − 1)2)

α(n − 1) + 2(n − 1)2

≥ (β/2)n(n − 1)

α(n − 1) + 2(n − 1)2

=
βn/2

α + 2n − 2
≥ k

and the proof is complete.
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APPENDIX
Proof of Lemma 3.16. Suppose α ≤ 1.
We will prove that in this area a clique can be built from

the players participating in it in such a manner that it is
a Nash equilibrium for every α ≤ 1. Indeed, consider a
directed n-cycle where each player has bought exactly one
edge to his neighbor. Convert this construct into a complete
graph by filling in the remaining edges at random. This
yields an equilibrium graph. Truly, no player can disconnect
himself from the graph or partition it in any way by dropping
some of his edges. The only possible deviation is for him to
destroy some of his edges, but by dropping any of his edges
he faces the penalty of paying for the extra distance cost of 1
for every edge. However, we have that α ≤ 1, and therefore
the specific clique with the orientation that we described
above constitutes a Nash equilibrium. This in turn implies
the desired bound.

ρ =
costβ(worst Nash)

costβ(OPT)
≥

α+2
2

n(n − 1)

βn(n − 1)
=

α + 2

2β
≥ 1

β
.

Now suppose 1 < α <
p

n/2.
We will use the following construction of Albers et al. [1]

to prove this claim. It yields a connected graph that we
will show is a Nash equilibrium in our model. The distance
between distinct nodes is at least 1, so the sum of distances
over all nodes is at least n(n − 1)/2. The optimum in this
region is the empty graph, so we can bound the price of

anarchy trivially by ρ ≥ n(n−1)/2
βn(n−1)

= 1
2β

.

Let q be a prime power, and F denote the finite field of q
elements. Set A = F × F and let L =

S

a,b∈A{a + bi | i ∈
F, b 6= 0} denote the set of

`

q2

2

´

/
`

q
2

´

= q(q + 1) lines. (A,L)
defines an affine plane of order q. Two lines are parallel
if they are disjoint or equal, and so parallelism defines an
equivalence relation on the lines in L. Each of the q + 1
equivalence classes contains q lines that in turn contain q

points each.
The simple graph G = (V, E) that we construct contains

a vertex for each point and every line, that is V = A ∪ L.
There is an edge in E between every pair of parallel lines,
and between a line and each vertex it contains. These are
the only edges in the graph.

We will now determine who constructed what edge. Firstly,
since all parallel lines are interconnected G has a q-clique for
every equivalence class of lines. It is possible to orient the
edges in each of the cliques so that the difference between
the out-degree and in-degree of every line in the clique is
0 if q is odd and 1 if q is even. Secondly, to orient edges
between points and lines, we start by letting L0, . . . , Lq de-
note representatives from each of the equivalence classes.
We arbitrarily order the lines in the equivalence class of Lq

as Lq
0, . . . , L

q
q−1. Edges between a line Lq

i for some i and its
points are bought by the points. When 0 ≤ i ≤ q − 1, each
line L in the equivalence class of Li builds edges towards the
point in which L intersects with Lq

i , and the point in which
it intersects with Lq

i+1 mod q. The remaining edges are pur-
chased by the points. From the point’s point of view, it is
contained in Lq

j for exactly one j, and had to buy all of its
edges except for two – the edges to the unique lines in the
equivalence classes of Lj and Lj−1 mod q that pass through
the point.

Note that for q = 2 this construction yields the Petersen
graph.

Albers et al. prove that this construction is an equilibrium
graph for the old model for the aforementioned values of α
and n. The only case where it would fail to be an equilibrium
graph for our model is if some player could break the graph
up into smaller components by removing some of his edges.
Without going into detail as this can be easily verified by the
avid reader, Albers et al. argue in their proof that no player
can increase the number of components even if he removes
all of his edges. The scenario above is thus impossible and
the proof is complete.


