LANGUAGES FOR PATH-BASED NETWORK
PROGRAMMING

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Shrutarshi Basu

August 2018

© 2018 Shrutarshi Basu

ALL RIGHTS RESERVED

LANGUAGES FOR PATH-BASED NETWORK PROGRAMMING
Shrutarshi Basu, Ph.D.

Cornell University 2018

The notion of a path is an important abstraction for reasoning about and managing
computer networks. By thinking of network configuration in terms of paths (instead
of individual devices), network administrators can reap significant benefits in terms
of usability, performance and correctness. Paths themselves can be specified and rea-
soned about using foundational computational tools such as regular expressions and
Kleene Algebras. Furthermore, path-based abstractions can express key network be-
havior such as isolation requirements and bandwidth constraints, while supporting
heterogeneity in terms of devices, physical substrates and administrative domains.

This dissertation shows that it is possible to use specifications of network paths,
extended with constraints on traffic classes, bandwidth, and the capabilities of net-
work devices, to enable flexible management of modern networks. This is realized
by developing path-oriented domain-specific languages to express network policies.
These languages show that by starting with abstractions for network paths, it is possi-
ble to specify route and bandwidth requirements for classes of traffic, delegate policy
management to trusted parties, and enable high-level management of heterogenous
networks.

Furthermore, by leveraging techniques and tools such as mixed-integer program-
ming, SAT solvers and SDN controller frameworks, we have built practical compilers
and runtimes for these languages. These compilers take high-level specifications of
network policies and generate efficient configurations for a range of network devices
including packet and optical switches, middlebox frameworks and end-hosts. We have
tested these implementations by building and benchmarking a range of practical ap-

plications on real-world networks.

BIOGRAPHICAL SKETCH

Shrutarshi Basu was born and raised in Calcutta, India, with a few years in the United
Kingdom. He attended St. Xavier’s Collegiate School in Calcutta, where a number of
excellent teachers helped him discover and cultivate a love of science and technology,
as well as literature and public speaking. From 2007 to 2011 he attended Lafayette
College in Easton, Pennsylvania, where alongside degrees in Electrical and Computer
Engineering and Computer Science he picked up an appreciation of Renaissance and
modern art, craft beers, and summer barbeques. In 2011 he enrolled as a PhD student
in the Computer Science department at Cornell University. Through the course of
his PhD he conducted research on programming languages and software-defined net-
works, interned at GrammaTech Inc. and Fujitsu Labs of America, started investigating
the connections between the study of computation and the study and practice of law,
and learned how to swim. After graduating from Cornell he will be a Post-Doctoral
Research Scholar at Harvard University where he hopes to continue acquiring useful

skills and mildly eccentric interests.

1ii

This document is dedicated to my grandmother, Lily Ghosh, without whose selfless

dedication to my well-being I would not be here today.

iv

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisor Nate Foster for many years of support,
mentorship, guidance and advice. During my time at Cornell he has taught to be a
curious researcher, a deep thinker, an effective communicator, a better programmer
and engineer, and a more capable human being.

I will always be grateful to my committee members for their advice and support
over the years. I would like to thank Robert Kleinberg for many fruitful conversations
and for pointing me in new and useful directions. Dexter Kozen has been an inspiration
and guide, both in my work and as a wonderful and kind human being. Finally, my
discussions with Cynthia R. Farina have been a source of important insights, and she
has helped me gain confidence in pursuing new and interesting future directions.

The work described in this document has been made possible by the help and advice
of many collaborators. At Cornell University, Robert Soulé, Robert Kleinberg and Emin
Giin Sirer not only aided the development of early work, but helped me grow and
progress as a researcher and new graduate student. I owe a special debt to Paparao
Palacharla and Xi Wang at Fujitsu Labs of America for introducing me to a new line
of work and helping me understand the problems tackled in the latter half of my PhD.
Further thanks are due to Hossein Hojjat, Christian Skalka, Parisa Jalili Marandi and
Fernando Pedone for their advice and support. I would also like to thank Praveen
Kumar, Steffen Smolka and Han Wang for numerous clarifying conversations.

Prior to starting my PhD, Chun Wai Liew, Ed Kerns and Barbara Ryder helped me
find my footing as a computer scientist and researcher. I would not have embarked on
this path without their guidance and encouragement. Thanks to Aruni Roy Chowd-
hury, Scott Stinner, Gregory Earle, Michael Handzo, Alex Smith, Alex Beeman, Scott
Blonde, Susan Grunewald and Jenn Bell for being the best of friends during those for-

mative years.

There are many people in Ithaca and Cornell who deserve thanks for their sup-
port over the years. The members of the Computer Science department at Cornell,
especially the Programming Languages Discussion Group and Systems Lunch group,
provided me an environment which was both supportive and challenging and shaped
me as a researcher. Many thanks are due to my officemates over the years, includ-
ing Molly Q Feldman, Zhiyuan Teo, Adith Swaminathan, Stavros Nikolaou, Joshua
Gancher, Justin Hsu, and Abhishek Anand, for being supportive sounding boards,
and for opening my eyes to interesting problems and far-flung areas of computer sci-
ence. To my good friends in the department, Vlad Niculae, Eleanor Birrell, Jonathan
Dilorenzo, Ethan Cecchetti, Andrew Hirsch, Tobias Schnabel, Sydney Zink, Natacha
Crooks, Rahmtin Rohtabi, Edward Tremel, and Ross Tate, thank you for much help
and support, both professional and personal. To my roommates over the years, Sean
Bell, Tom Magrino, Francisco Mota and Shreesha Srinath, thanks for putting up with
me, and always making me feel happy to come home. Finally, to Sandra Wayman,
Heidi Vanden Brink, Quitterie Gounot, Amelia Hall, Noelle Yaeger, Anna Waymack
and Nathaniel Stetson, thank you for opening your homes and hearts to me. I wouldn’t
be here without each and every one of you.

Last but certainly not least, to my parents, Sukla Ghosh and Alok Basu, thank you
for instilling in me a love of science and learning, a respect for both kindness and
knowledge, for your unquestioning support over the years, and for always believing
in me, even when I didn’t believe in myself.

This work has been made possible by NSF Grant CCF-1422046: “Practical Synthe-
sis of Network Updates” and NSF Grant CNS-1413972: “Programmable Inter-Domain

Observation and Control”.

Vi

TABLE OF CONTENTS

Biographical Sketch Lo L
Dedication
Acknowledgments
Table of Contents
Listof Tables
Listof Figures e

Introduction
1.1 The Challenges of Programming Modern Networks
1.2 Contributions and Outline

Specifying Network Paths using Regular Expressions

2.1 Regular Expressions and Deterministic Finite Automata
2.2 A Network Policy Example
2.3 Design of the Merlin Network Programming Language
24 Compiling Path Expressions
2.4.1 Building a Logical Topology
242 PathSelection
243 CodeGeneration, .
25 Summary e e

Bandwidth Allocation

3.1 A Bandwidth Allocation Example
3.2 Compiling Bandwidth Allocations
3.21 Localization
3.2.2 Provisioning Bandwidth Allocations
33 Summary e

Delegation and Verification

41 Negotiators

4.1.1 Negotiator Overlays
42 ValidRefinements Lo Lo

42.1 Refinement Example
43 Verification
44 Overhead
45 Summary e

Heterogeneous Networks

5.1 Properties of Optical Networks
5.2 The Challenges of Programming Optical Networks
53 Circuit NetKAT
54 SUmMmary e e e e

vii

8]

NeREN N

12
16
18
20
21
22

23
23
24
25
26
31

32
33
33
35
37
38
39
39

6 Edge Programming

6.1 An Edge Programming Example
6.2 CompilationtotheEdge
6.2.1 Forwarding Decision Diagrams and Dyads
6.2.2 Basic Edge Compilation
6.3 Extensions to Edge Compilation
6.3.1 Segmented Path Compilation
6.3.2 Compilation With Path Constraints

6.4 Summary

7 Implementation and Evaluation
7.1 Implementation of the Merlin System
7.2 Evaluation of the Merlin System
7.2.1 EXpressiveness
7.2.2 Application Performanceo L.
7.23 Compilation and Verification

7.2.4 Summary

7.3 Implementation of the EdgeNetkAT System
7.4 Evaluation of the EdgeNetkar System
7.4.1 Topologies, Fabrics, and Policies
7.4.2 Dyad Generation Scalability
743 Dyad Matching Scalability
7.4.4 Path Constraint Scalability

7.4.5 Summary
8 Related Work
9 Conclusion

Bibliography

viil

51
53
56
57
59
63
63
65
66

68
68
69
70
72
75
81
82
83
33
84
85
86
88

89

93

95

LIST OF FIGURES

2.1 Constructing Finite Automata from Regular Expression Constants

2.2 Constructing Finite Automata using Regular Expression Operations .
24 MerlinSyntax.
2.5 Example logical topology and a possible solution.

3.1 Pathselection heuristics
4.1 Broker-based and peer-to-peer re-negotiation.

5.1 Optical Fork topology
5.2 NetkAT abstract syntax and semantics.
5.3 Circuit NetKAT syntax and validity rules.

6.1 A Hybrid Network with a Optical Core and a Packet Edge
6.2 Example NetkaT program, FDD, anddyads.
6.3 Dyad selection as an linear programming problem.

6.4 Dyad selection with path constraints as a linear programming problem.

7.1 Merlin expressiveness with policies for the Stanford campus topology.
7.2 ETTM-inspired Merlin Policy
7.3 Compilation times for Internet Topology Zoo.
7.4 Compilation times for traffic classes in a balanced tree topology
7.5 Compilation times for traffic classes in a fat tree topology
7.6 Compilation times for traffic classes with guaranteed rates
7.7 Verification time for a delegated Merlin program
7.8 (a) AIMD and (b) MMFS dynamic adaptation.
7.9 CORONET 60-node optical topology [6].
7.10 Dyad conversion scalability.0
7.11 Scalability of linear programming and graphical dyad matching.
7.12 Scalability of matching with path constraints.

CHAPTER 1

INTRODUCTION

Network operators today must deal with a wide range of challenges from complex
policies to a proliferation of heterogeneous devices to ever-growing traffic demands.
In recent years there has been a surge of activity centered around Software-Defined
Networks (spNs). The core idea behind sDN is to separate the data plane (that is re-
sponsible for forwarding packets) from the control plane (that enforces network-wide
policies and enables network management). Ideally, this allows commoditization and
optimization of the hardware devices that implement they data plane, while enabling
experimentation and innovation in frameworks, languages and APIs for the control
plane. Together, sDN would enable networks that combine fast, efficient switching
hardware with flexible management software capable of implementing a broad range
of administrative policies.

However, there remain many barriers to the goal of full network programmability.
One of the key benefits of spn allowing networks to quickly react to changes in net-
work conditions. However, on current sbN switches, updating a forwarding table can
take several seconds, limiting the ability to quickly adapt to changing conditions. Ex-
isting sDN APIs and tools are often not expressive enough to implement the full range
of desired network-wide policies. For example, programming languages for spNs often
focus on packet forwarding and cannot express policies requiring, say, bandwidth allo-
cation or richer functionality, such as deep-packet inspection and intrusion detection.
These additional functions must be implemented using middleboxes or custom hard-
ware, and controlled via tools outside the spN framework [25, 54, 78, 5, 58]. Although
there are frameworks for handling broader concerns, such as middlebox placement and
traffic engineering [27, 40, 64, 67], they either fail to provide a programmable Ap1, or

expose APIs that are extremely simple.

Additionally, many existing SDN frameworks assume that the network comprises a
collection homogenous devices that can be reconfigured as policies or network condi-
tions change. Unfortunately, this assumption is unrealistic in many situations. Many
large organizations deploy thousands of network devices that are supplied by multiple
different vendors, not all of which support spN. There is also a fundamental mismatch
between the capabilities of sDN switches, which allow packets to be transformed in
essentially arbitrary ways at each hop, and legacy devices such as 1p routers, MPLS LSRs
(Multiprotocol Label Switching Label Switching Routers), and optical RoaApMs (Recon-
figurable Optical Add-Drop Multiplexers), which simply forward packets to their des-
tinations. A realistic network management solution must contend with the limited
capabilities of heterogenous collections of devices.

The above issues suggest that a fundamentally different approach for network pro-
gramming is needed. Fortunately, there has been increasing interest in treating the net-
work as a programmable system using well-defined abstractions, rather than as groups
of individual devices. One fruitful avenue of research has been the development of
network programming languages that enable network behavior to be described as pro-
grams in domain specific languages, with well-defined semantics, and compilers for
real network devices. In particular, languages like FatTire [65] and Netkat [5] have
developed the notion of using paths through the network as a building block for spec-
ifying network policies. In particular, FatTire allows for writing fault-tolerant spN
programs using networks paths as a core language construct. Meanwhile, one of the
applications of the NetkAaT language is specifying high-level policies in terms of links
in a virtual topology that can be mapped to paths in a physical network.

This dissertation presents novel language designs and associated compilation tech-
niques that expand path-oriented network programming to include support for band-

width constraints, delegation of policies to network users (and verification thereof),

and support for networks composed of heterogenous devices. For example, to support
bandwidth constraints, we have leveraged mixed integer programming (m1p) solvers
to efficiently allocate the available resources of a network. Support for heterogenous
networks requires mapping abstract network functionality to specific physical devices,
and analyzing legacy network configurations for forwarding routes that can be lever-
aged by high-level policies. Finally showing the viability of these languages and their
implementations has required implementing and benchmarking a variety of applica-
tions on realistic networks. The remainder of this chapter outlines our approach to

dealing with the challenges of modern networks.
1.1 The Challenges of Programming Modern Networks

As described above the challenges of managing networks using high-level, spn-like
tools remain unmet. As a result, there is widespread interest, both in academia and
in industry, in higher-level languages and application-facing interfaces that provide
convenient control over network resources. Any framework or language that wishes

to improve the state of network management must address the following concerns.

High-level Management. Modern networks can be composed of hundreds or thou-
sands of devices. It is infeasible to manage such networks without abstractions that
allow for implementing network-wide policies without configuring devices individu-
ally. We address this in the Merlin language which allows a group of permissible paths
through the network to be expressed as a regular expression. Paths may be composed
of physical network devices such as switches, but also abstract functions like deep

packet inspection which may be performed on multiple devices in the network.

Bandwidth Control. Controlling packet flows according to bandwidth usage, and

not just header characteristics, is a key component of modern network management.

A modern framework must support policies in terms of bandwidth, and ideally be able
to manage allocation of available bandwidth to traffic classes. This too is tackled in the
Merlin language: paths are associated with a class of network traffic, and are subject to
user-specified bandwidth constraints (either a minimum guarantee of bandwidth, or a

maximum cap on bandwidth usage).

Multiple Administrative Domains. In the age of cloud computing and virtual net-
works, a single physical network may be shared between multiple tenants, each with
their own policies and requirements. Managing such a network requires balancing
the needs and priorities of the tenants. Policies in the Merlin language may also be
delegated to tenants, who may refine them according to their needs. However, the
compiler ensures that any modifications made by tenants do not violate the adminis-

trator’s original policy.

Legacy Devices. sDN deployments, where they exist, tend to be partial in nature.
Any framework for real-world network programming must be able to implement high-
level policies in the presence of legacy devices. The compiler for the Merlin language
generates configurations for sbN switches supporting the OpenFlow protocol, for pro-
grammable middleboxes using the Click framework, and for Linux end-hosts. Separate
from Merlin, we have also developed the EdgeNetkAT compiler for NetkAT programs,

which supports configuring optical RoaDM devices as well as OpenFlow switches.

Heterogeneous Functionality. While sbN packet switches allow packets to be
transformed in essentially arbitrary ways at each hop, many devices operate at the
granularity of entire flows of traffic between endpoints. spN-like programming frame-
works often assume a homogeneous collection of switches, and it is not immediately
clear how to incorporate these devices and their limitations. One common example of

heterogeneous networks are packet-optical hybrid networks, composed of a core of op-

tical devices connected to traditional packet networks on the edge. To program such
networks, we have developed the Circuit NetkAaT subset of the NetkaT language for
programming optical circuit networks, and the EdgeNetkaTt compiler which translates
global programs for such a hybrid network into NetkAT programs which only affect

the packet switches on the edge.

Performance Limitations: Existing frameworks tacitly assume that it is possible
to rapidly reconfigure devices in response to policy updates, traffic shifts, topology
changes, and other changes. However, current sbN switches can take several seconds
to update a forwarding table. Non-packet switching devices, such as optical ROADMS,
can take even longer. The EdgeNetkaT compiler described earlier tackles this issue
by enabling changes to global network policy to be implemented via configuration
changes to only the edge switches. Thus, as long as the edge devices are capable of fast
configuration switching, it is possible to quickly implement changes to policy, even if

the core of the network only supports slower changes.

1.2 Contributions and Outline

Overall, the contributions of this work are as follows:

+ The design of path-based network management abstractions realized in an ex-
pressive policy language that model packet classification, forwarding, and band-

width allocation.

+ Novel compilation algorithms that compute forwarding paths and allocate band-

width using a mixed-integer program formulation.

+ Techniques for dynamically adapting policies using negotiators and related ver-

ification techniques, made possible by the language design.

« A practical framework for implementing high-level network policies, supporting
heterogeneous devices, focusing on networks with optical circuit cores and spN-

enabled packet switches at the edge.

« Techniques to analyze and transform policies into equivalent edge configura-

tions using the NetkaT framework and off-the-shelf linear programming solvers.

« Extensions to the above framework to support (i) multi-segment paths for ap-
plications like service chaining and network function virtualizaion, and (ii) path

constraints for finer-grained control over fabric utilization.

The following chapters describe each of the contributions in detail. Chapter 2 cov-
ers how Merlin uses regular expressions to describe network paths and maps network
functionality to particular devices. Chapter 3 covers the use of linear programming
to allocate the bandwidth requirements as expressed in Merlin policies. Chapter 4 de-
scribes how the Merlin policy language enables the delegation of policy refinement to
tenants of a shared network. Chapter 5 describes how spN technologies can be ap-
plied to heterogeneous networks, focusing on optical networks. Chapter 6 continues
the discussion of heterogenous networks by describing how the NetkAT programming
language can be used to enable flexible programming of networks with an edge and
fabric distinction. Chapter 7 describes the implementation and evaluation of the Mer-
lin and EdgeNetkAT systems. Chapter 8 covers related work and finally Chapter 9
summarizes and concludes.

This document is based on material published previously in conference proceed-
ings. Chapters 3 and 4 are based on work published in [71, 72] with Robert Soulé,
Robert Kleinberg, Emin Giin Sirer, Nate Foster, Parisa Jalili Marandi and Fernando Pe-
done. Chapters 5, 6 and 7 are based on work published in [10] with Nate Foster, Hossein

Hojjat, Paparao Palacharla, Xi Wang and Christian Skalka.

CHAPTER 2

SPECIFYING NETWORK PATHS USING REGULAR EXPRESSIONS

2.1 Regular Expressions and Deterministic Finite Automata

Traditionally, regular expressions (“regexes” for short) specify a pattern which is, typ-
ically used to match some text for a searching or parsing operation. When applied
to strings of characters, the regular expression defines a set of strings, or a language.
Regular expressions are defined using constants (which denote sets of strings), and op-
erator symbols defining operations over those sets. For each regular expression F, we
can also define the language it accepts as L(FE).

Starting with a finite alphabet of characters Y, we can start defining regular ex-

pressions with the following constants:

() denotes the empty set. That is, L(f)) is 0.

¢ denotes the set containing only the “empty string”, i.e., a string with no char-

acters. That is, L(e) = {€}.

A literal character a € ¥ denotes the set containing only the character a. That
is, L(a) = {a}.
« For convenience, capital letters (R or S) are variables denoting a language. We

will use the same letters to mean the regular expressions specifying the language.

The following operations are used to combine regular expressions and the lan-

guages they denote:

+ R|S denotes the union of the sets denoted by R and S.

+ RS denotes the set of strings obtained by concatenating a string from R with a

string from .S.

0 O D (=)

a) Empty Set () b) Empty String € c) Character a € X

Figure 2.1: Constructing Finite Automata from Regular Expression Constants

Gtekeo Rl ekello

a) Concatentation

(b) Union (c) Closure

Figure 2.2: Constructing Finite Automata using Regular Expression Operations

+ Rx* denotes the Kleene closure of R, i.e., the set of strings created by concatenat-

ing, possibly with repetition, a finite number of strings in R.

The class of languages expressed by regular expressions are the regular languages:
exactly the same class of languages as accepted by finite automata. In fact, it is possible
to convert a regular expression defined using the above constructs to an e — NF A using
Thompson’s Construction (as shown in Figure2.2). First, the constants are converted to
the equivalent automata according to the rules shown in Figure 2.1. The operators for
regular expressions can then be used to combine automata as shown in Figure 2.2.

The language defined by a regular expression is composed of all strings matching
the pattern. Automata built from regular expressions can be used to check if a par-
ticular string matches the corresponding expression: if after an automaton consumes

a string it is in an accepting state, then the string is in the language denoted by the

regular expression.

Practical implementations of regular expressions often extend the formal defini-
tions given above. In particular, the POSIX standard extends the above with the charac-
ter . (dot) to match any single character, parentheses () to delimit sub-expressions and
brackets [] to match a single occurence of the characters in the brackets. Adding these
constructs does not change the theoretical underpinning of regexes or their automata
equivalents. For the remainder of this document, we will consider regular expressions
to include these constructs.

A key insight is that paths in a network are similar to strings of characters, if we
think of the alphabet Y to be composed not of abstract characters, but of network
locations. In that case, a regular expression denotes not a set of strings, but a set of
paths through the network. For example, the expression (hl .* h2) denotes all paths
that start at h1 and end at h2, with any other network locations in between. Similarly,
the expression (hl .* (ml|m2|m3) .* h2) describes all paths starting at h1 and ending
at h1, and passing through any one of m1, m2 or m3 at some point.

The remainder of this chapter describes the Merlin network programming language
and how it uses the notion of regular expression as sets of network paths to define a

high-level abstraction for managing modern networks.

2.2 A Network Policy Example

The Merlin policy language offers constructs for specifying the intended behavior of the
network at a high level of abstraction. At the core of the language is the path expression:
aregular expression composed of physical network locations (1) and abstract functions
(t). Each path expression denotes a set of paths through the network, and is associated
with a predicate that specifies which packets should be sent along those paths.

For example, consider a network policy in which all HTTP traffic from one network

location (h1) to another (h2) must be logged by sending it through a network logging

function (log). This policy is expressed by the following Merlin language program:

(ip.src = hl and ip.dst = h2 and tcp.dport = 80) ->

hl .* log .* h2 ;

If the policy also requires logging in the opposite direction, we can extend the Merlin

program accordingly:

(ip.src = hl and ip.dst = h2 and tcp.dport = 80) —->
hl .* log .* h2 ;
(ip.src = h2 and ip.dst = hl and tcp.dport = 80) ->

h2 .* log .* hl ;

Furthermore, if the network in question carries many different classes of traffic, the pol-
icy may cap the amount of bandwidth available to HTTP traffic. This can be expressed
in the program by assigning a variable to each class of traffic, and then writing a Pres-
burger formula over those variables specifying the bandwidth limitation. For example,

if the combined HTTP traffic should be at most 1Gb/s, we can write the following:

[x: (ip.src = hl and ip.dst = h2 and tcp.dport = 80) —->
hl .* log .* h2 ;
y: (ip.src = h2 and ip.dst = hl and tcp.dport = 80) ->

h2 .* log .* hl ; 1],

max(x + y, 1Gb/s)

Given such a program, the compiler generates configurations for specific network
devices that together implement the specified policy. To do so, the compiler needs to
know the network topology, and how to implement network functions such as log.

The Merlin compiler takes as input a Merlin program, a network topology specified
in the DOT graph description language, and a mapping from abstract functions to the

specific network devices that may implement them.

10

For example, a network that might implement the above-mentioned policy is
shown in Figure 2.3a. This network consists of the two hosts, connected by an spn-
capable packet switch s1. The switch sl is also connected to two network devices 11
and 12 that are capable of implementing the logging function log. These could be ded-
icated hardware for logging, or a programmable middlebox configured to implement

logging. This mapping is communicated to the Merlin compiler as log:={11, 12}.

hi[host]; h2[host]; sl[switch];
11[middlebox]; 12[middlebox];

graph g {

(h1) —- (s1) ;
hl —@— h2 (h2) —- (s1) ;
(11) -- (sD)

(12) -- (s1) ; }

log:={11, 12}

(a) Example network for HTTP logging (b) DOT specification of example network

With this network and mapping the Merlin compiler is free to choose either of 11
or 12 to implement log. If they are configurable middleboxes, the compiler is capable
of generating the configurations required for logging behavior. To satisfy the path
expression (hl .* log .* h2), the compiler can choose any of the paths that start at
h1, go through s1 to 11 or 12, and then back through s1 to h2. This requires generating
the appropriate forwarding rules for s1 (assuming that 11 and 12 simply reflect back
logged packets). Finally, to satisfy the bandwidth requirements, the compiler generates
configurations for the network stacks on the end-hosts to cap HTTP traffic.

The following section describes in detail the Merlin policy language and following

chapters describe the compilation process.

11

Metavariables

Network locations [Values v

Abstract functions t Variables x

Header fields f Traffic Rates n
Syntax

f =wv]|true | false
pyand p, | pyorpy |!1p

Predicates p ::

Path expressions r AUt rr|rele e e
Bandwidth expressions e = nl|z|e+e
Presburger formulas ¢ ::= max(e,n) | min(e,n) | ¢, and ¢,
Statements s = x:p—7T
Programs m = [sy;...;8,],¢

Figure 2.4: Merlin Syntax.
2.3 Design of the Merlin Network Programming Language

The design of the language is based on two observations. First, network policies are in-
tuitively expressed by separating network traffic based on the contents of header fields.
Second, paths in a network, and their associated bandwidth capacities, are key network
resources and network policies often require dividing these resources between traffic
classes. Thus, the Merlin language allows network traffic to be divided into named
classes using predicates on packet headers. Each such class can then be assigned a set
of paths that all traffic in that class is allowed to take. These sets of paths are defined
using path expressions, as shown in the previous section. Finally, bandwidth resources
may be divided among these classes using formulas expressed using Presburger arith-
metic.

The syntax of the Merlin policy language is defined by the grammar in Figure 2.4.
High-level network policies can be expressed as Merlin programs. A Merlin program m
is a set of statements, each of which specifies the handling of a subset of traffic, together
with a logical formula that expresses a global bandwidth constraint. For simplicity,

we require that the statements in a particular program have disjoint predicates and

12

together match all packets. These requirements are enforced by the Merlin compiler.

Statements Each program statement is composed of several components: a variable,
a logical predicate, and a path expression. The variable identifies the set of network
packets matching the predicate, and the path expression specifies the forwarding paths
and packet-processing functions that should be applied to matching packets. These
abstractions allow administrators a great deal of flexibility in specifying their policies.

Administrators can start by treating the entire network as a single switch that for-
wards traffic between its external ports (i.e., a “big switch” [41]). This can be written
as true -> (src .* dst), where src and dst denote source and destination locations.
This program can be refined by either dividing the predicate into finer traffic classes, or

by reducing the set of permissible paths by further constraining the path expression.

Logical predicates Merlin supports a predicate language for classifying packets.
Atomic predicates of the form f = v denote the set of packets whose header field
fis equal to v. Predicates can be combined using conjunction (and), disjunction (or),
and negation (!).

For instance, a predicate such as (ip.src = hl and tcp.dport = 80) matches
packets with the same ip source address as hl and tcp destination port 80. Merlin pro-
vides a number of conveniences for writing predicates. The compiler recognizes atomic
predicates for a number of standard protocols including Ethernet, 1p, TCP, and upP, and
a special predicate for matching packet payloads. Also, if a topology specifies 1p and
MAC addresses for network locations, the compiler will use the corresponding values
when the locations are used in predicates. For example, if h1 has 1p address 10.0.1.1,

the above predicate will be interpreted as (ip.src = 10.0.1.1 and tcp.dport = 80).

Path expressions Merlin programmers specify forwarding paths using a syntax

similar to regular expressions. Rather than matching strings of characters, as with stan-

13

dard regular expressions, path expressions match sequences of locations (1) or network
functions (t), as described below. As with PosIx regular expressions, the dot symbol (.)
matches an arbitrary path element. The compiler is free to select any matching path,
provided the other constraints in the program are satisfied. We assume that the set of

locations is finite and is a subset of the network topology supplied during compilation.

Network functions Path expressions may contain names of network functions that
transform the headers and contents of packets—e.g., deep packet inspection, logging,
network address translation, content caching, proxying, traffic shaping, etc. The com-
piler determines the locations where each function can be enforced, using a mapping
from function names to possible locations supplied as an input.

Network functions must take a single packet as input and generate zero or more
packets as output, and they must only access local state. The restriction to local state
allows the compiler to freely place functions without accounting for global state.

Network functions may modify packet headers—e.g., a network address translation
NAT function may rewrite 1p addresses and port numbers. To allow such functions to
coexist with predicates on packet headers that identify sets of traffic, Merlin uses a tag-
based routing scheme: all traffic matching a particular predicate gets attached with a
VLAN (Virtual Local Area Network) tag that is then used as the matching predicate in

the interior of the network.

Bandwidth constraints Merlin programs use logical formulas to specify constraints
that either limit (max) or guarantee (min) bandwidth. In addition to conjunction (and),
disjunction (or), and negation (!), Merlin supports an addition operator. The addition
operator can be used to specify an aggregate cap on traffic, such asmax(x + y, 1Gb/s).
By convention, programs without a rate clause are unconstrained—programs that lack

aminimum rate are not guaranteed any bandwidth, and those that lack a maximum rate

14

may send traffic at rates up to line speed. Bandwidth constraints are expressed formally
using first-order logic with addition—a fragment known as Presburger arithmetic. Note

that excluding multiplication ensures decidability.

Syntactic sugar Merlin supports several forms of syntactic sugar that simplify the
expression of complex policies such as set comprehensions. For example, the following

program is equivalent to the example program used previously in Section 2.2.

hosts := {hl, h2}

forall (s,d) in cross_distinct(hosts,hosts):
ip.src = s and ip.dst = d and tcp.dport = 80 ->
s .* log .* d

at max(1Gbps)

The notation hosts := {hl, h2} defines a set of network locations composed of hl
and h2. The cross_distinct operator takes the cross product of these sets, removing
elements where both components are the same ((h1,h1) and (h2,h2) in this case).
The forall statement iterates over the resulting set, and generates a fresh state-
ment for each pair where the elements of the pair replace the source s and destination
d. Two such statements would be generated in this case, one each for (h1,h2) and
for (h2,h1) and each would be associated with a unique variable (say x and y). A
bandwidth expression is generated by summing over the variables and limiting that
sum with the bandwidth term specified above: max(x + y, 1Gbps). Thus the above

program generates the same program as in Section 2.2:

[x: (ip.src = hl and ip.dst = h2 and tcp.dport = 80) ->
hl .* log .* h2 ;
y: (ip.src = h2 and ip.dst = hl and tcp.dport = 80) —>

h2 .* log .* hl ; 1,

max(x + y, 1Gb/s)

15

There is also a foreach construct that has the same effect, except that each variable
is constrained separately. In this case, using foreach would generate a bandwidth term

max(x, 1Gbps) and max(y, 1Gbps).

Limitations While the Merlin language can express a wide range of policies, there
are some key limitations. First, network functions are treated as abstract and required
to use only local state. Thus, complicated network functions which may have multiple
components, such as a distributed intrusion detection system, must be placed manually
in a network by specifying the locations of individual physical devices. Since Merlin
does not model changes to headers a network function may make (such as a NAT box),
users must ensure that such changes do not interfere with whatever tagging scheme
that Merlin uses. Finally, bandwidth constraints must be expressed using only min,
max and addition operators. This makes it difficult to express complicated regulations
between the bandwidth usage of different classes (eg., that one class use only a certain

fraction of another class’ usage).

Summary Merlin enables direct expression of high-level network policies. Program-
mers write policies as though they were centralized programs executing on a single
device. In reality, a variety of distributed devices collaborate to collectively enforce the

policy. The next section presents Merlin’s compilation techniques for path expressions.

2.4 Compiling Path Expressions

Implementing Merlin program atop a physical network requires the Merlin compiler

to perform three key tasks:

1. Localization: A Merlin program describes the global behavior of the network.

This behavior must be translated into per-device, locally-enforceable policies.

16

2. Path selection and bandwidth allocation: The Merlin language provides ad-
ministrators two facilities for controlling what paths through the network cer-
tain classes of traffic may take: path expressions and bandwidth allocation. Fur-
thermore, each statement has its own requirements that might affect what paths
are available to traffic mentioned in other statements. It is up to the compiler to

balance these requirements and allocate paths to traffic classes (if possible).

3. Code generation: Finally, once a suitable set of paths has been determined, the
compiler must generate low-level configuration instructions for network devices
and end hosts. Since networks might be composed of a variety of devices, the

compiler must support multiple backends.

The input to the compiler is the Merlin program, physical topology, and a mapping
from network functions to possible placements. These are used to build a logical topol-
ogy incorporating the structure of the physical topology and the constraints encoded
by the program statements. The compiler analyzes this logical topology to assign paths
to traffic classes and allocate bandwidth on those paths. Finally, the path information is
used to generate low-level configurations for sbN-capable switches, middleboxes, and
end hosts.

Note that localization is only an issue when multiple traffic classes share a band-
width allocation. Without a bandwidth constraint, the compiler is only required to
satisfy the path expression for each statement. The compiler checks that the traffic
classes described by the predicates in a program are disjoint, and so there is no possi-
bility of conflict between different statements. The remainder of this section focuses
on handling path expressions. The techniques described here are extended to include

bandwidth constraints in the following chapter.

17

2.4.1 Building a Logical Topology

Each program statement contains a predicate and a path expression. The path expres-
sion constrains the set of forwarding paths that packets satisfying the predicate might
take. To compute paths satisfying these constraints, the compiler constructs a logical
topology as a directed graph G in which each path corresponds to a physical path that
satisfies the path expression for some statement in the program. The overall graph G
for the program is a union of disjoint components G, one for each statement.

The first step in constructing G, is to ensure that the corresponding path expression
is over network locations only. Each statement 7 has a regular expression r; over the
set of both locations and packet-processing functions. Each such r; is transformed into
a path expression 7, over the set of locations only using a simple substitution. Since
the compiler takes an auxiliary input that maps functions to network locations, each
such function is replaced with the union of all locations that function could be mapped
to. For example, if h1, h2, and m1 are the three locations capable of running a Deep
Packet Inspection function (dpi), then the regular expression (.* dpi .*) would be
transformed into (.* (h1|h2|ml) .%*).

The next step is to transform the regular expression 7, into a deterministic finite
automaton (DFA), denoted .A4,, that accepts the set of strings in the regular language
given by a,. The transformation is performed using the standard algorithms [1] de-
scribed in Section 2.1 and depicted in Figures 2.1 and 2.2. With this .4, we can now
construct §,.

Let L denote the set of locations in the physical network and O, denote the state
set of A,. The vertex set of G, is the Cartesian product L x O, together with two
special vertices, s, and t;, respectively representing a universal source and sink for
paths generated for statement <.

Between two states (u, q) to (v,q") of G, the graph G, has an edge iff:

18

1. u = vor (u,v) is an edge of the physical network, and

2. there is a transition in A4, from ¢ to ¢’ labeled with v

Likewise, there is an edge from source state s, to (v,q’) iff (¢°,¢’) is a valid state
transition of .4, labeled with v (where ¢° denotes the start state of .4,). Finally, there
is an edge from (u, q) to the sink state ¢, iff ¢ is an accepting state of A,.

G, has been constructed such that paths in G, correspond to paths in the physical
network that satisfy the path constraints of statement 7. This property is captured in

the following lemma:

Lemma 1. A sequence of locations uy, us, ... , u,, satisfies the constraint described by the
path expression 7, iff G, contains a path of the form s, (uy,q,), (Us,qs), -y (Ug, @x), t;

for some sequence of states q, ... , q,.. A path of this form is a “lifting” of uy, U, ... , Uy.

Proof. The construction of G, ensures that

Sis <u1>q1)7 (u27q2)7 I (ukvqk)7ti

is a path in the graph iff (i) the sequence u,, ..., u,, represents a path in the physical
network (possibly with vertices of the path repeated more than once consecutively
in the sequence), and (ii) the automaton .4, has an accepting computation path for
Uy, ..., u, through the sequence of states ¢", ¢', ..., ¢*. The lemma follows from the
fact that a string belongs to the regular language defined by 7, if and only if there is a

path through 4, that accepts that string,. O]

Figure 2.5 shows the construction of the graph G, for a statement with path ex-
pression (hl .* dpi .* nat .* h2), on an example network. For this example, deep
packet inspection (dpi) can be performed at h1, h2, or m1, but network address trans-
lation (nat) can only be performed at m1. The thick, red path illustrates one lifting of

an accepting path in 4, to G,. Notice that the physical network also contains other

19

my, hy, hy, sy

my, hy, hy

my, h1, h2, Sy

my

2

my, hy, hy, sy

©)

Physical topology Statement DFA LP Graph

with vertices V with states Q; G;

Figure 2.5: Example logical topology and a possible solution.

paths (such as h1-s1-h2) that do not satisfy the path expression. These paths do not
lift to any path in G,. For instance, consider the rows of nodes corresponding to states
q° and ¢> of the NFA. All edges between these rows lead into node (m,,¢>). Thus, any

path avoiding m1 in the physical network cannot be lifted to an s,~¢, pathin G,.

2.4.2 Path Selection

The logical topology G, for each statement has the property that each path from s, to
t, through it satisfies the corresponding path expression r,. To find a path through
the network for the corresponding traffic class, the Merlin compiler computes G, as
described above, and then performs a breadth-first search over the resulting graph.
For statements whose path expressions differ only in the end-hosts (such as the
example in Section 2.2) we can perform an optimization. Instead of generating an G,

for each such statement, the compiler generates a single G, from a network topology

20

that includes only switches, and a path expression without the end-hosts. Then the
compiler computes an optimal sink tree for each egress switch—a tree rooted at the
egress switch and containing only the edges required for shortest-length paths from
all the ingress switches to that egress switch. Based on the predicates, the compiler
adds instructions to forward traffic from hosts to ingress switches and then from the
egress switches to the hosts during code generation. Using sink trees, the solution

can be computed in O(|V||E

), where |V is the number of switches rather than the

number of hosts.

2.4.3 Code Generation

Merlin enables network administrators to write high-level programs without worry-
ing about how those policies are implemented. The Merlin compiler uses program
partitioning to transform the program into separate programs, instructions, and con-

figurations that are deployed across the following classes of devices.

« Switches. Merlin generates configurations for spN-capable network switches us-
ing the OpenFlow [53] libraries provided by the Frenetic spn Controller [24]. For
bandwidth enforcement, Merlin uses the min-rate queues defined in OpenFlow

specification version 1.0, and device-specific port queue configurations.

« Middleboxes. For functionality such as deep packet inspection, load balancing,
and intrusion detection, Merlin generates configuration scripts for Click [45] that
define the sequence of packet-processing functions to apply. Other approaches
are possible—e.g., Merlin could generate Puppet [63] scripts to provision and

manage virtual machines instead.

« End hosts. Traffic filtering and rate limiting are implemented using standard

Linux utilities (iptables and tc).

21

Tag-based routing Because Merlin controls forwarding paths but also supports
packet-processing functions that may modify headers (such as NAT boxes), the com-
piler must use a forwarding mechanism that is robust to changes in packet headers. The
current implementation uses one VLAN tag per sink tree to encode paths to destination
switches. All packets destined for a given destination are tagged with a tag when they
enter the network. Subsequent switches simply examine the tag to determine the next
hop. At the egress switch, the tag is stripped off and replaced with a unique identifier
for the host (e.g., the MAc address). Similar approaches are used in other systems for
combining programmable switches and middleboxes such as FlowTags [22].

The Merlin compiler is designed with flexibility in mind and can be easily extended
with additional backends that capitalize on the capabilities of the carious devices avail-
able in the network. Although the expressiveness of policies is bounded by the capa-

bilities of the devices, Merlin provides a unified interface for programming them.

2.5 Summary

Regular expressions are a well-studied formalism for specifying sets of strings of char-
acters. In the context of network programming, they denote paths through a network.
These path expressions form the basis of the Merlin network programming language.
With Merlin, administrators express network policies as programs in a high-level lan-
guage that uses logical predicates to identify sets of packets, regular expressions to
encode forwarding paths, and arithmetic formulas to specify bandwidth constraints.
Path expressions are interpreted as finite automata, that the compiler uses to build
a logical topology, whose paths correspond to paths through the network that satisfy
the path expression. This logical topology is used to derive paths that different classes
of traffic may take through the network. Finally, the compiler generates code that can

be executed on the network elements to enforce the policies.

22

CHAPTER 3

BANDWIDTH ALLOCATION

The previous chapter describes how Merlin uses predicates on packet headers and
path expressions over network locations and abstract functions to give network ad-
ministrators a great deal of flexibility in how traffic traverses their network. However,
modern network administration involves more than just deciding what traffic takes
what routes. In particular, network bandwidth is a limited resource that must be man-
aged carefully and allocated between different traffic classes, paths and users. The
discussion of Merlin syntax in Section 2.3 showed briefly how network administrators
can assign a bandwidth constraint to groups of statements using Presburger arithmetic
formulas. This chapter discusses how Merlin’s bandwidth constraints may be used in

practice and expands the discussion of compilation techniques in Section 2.4.
3.1 A Bandwidth Allocation Example

For the purposes of this example, assume a network where hosts can communicate
with each other via both HTTP and FTP protocols. The HTTP protocol uses TCP port 80,
while FTP uses Tcp port 20 for transferring data and Tcp port 21 for control commands.
In such a network, HTTP may be used for real-time website traffic and must always
have some minimum share of the network bandwidth to process requirements in a
reasonable amount of time. On the other hand, FTp may be used for long-running
backup processes. These jobs do not have a strict timing requirement, and so should
never take up more than a certain amount of bandwidth, in order to not degrade the
website performance. These requirements constitute a policy that can be implemented
as a Merlin program.

To implement the above policy, we can place a bandwidth cap on rrp traffic, and

provide a bandwidth guarantee to HTTP traffic. Each statement in the program be-

23

low consists of a variable that represents the bandwidth used by matching packets, a
predicate on packet headers that identifies the set of matching packets, and a regular

expression that describes the set of legal forwarding paths:

[x : (ip.src = 10.0.1.1 and ip.dst = 10.0.1.2 and
tcp.dport = 20) -> .* ;
y : (ip.src = 10.0.1.1 and ip.dst = 10.0.1.2 and

tcp.dport = 21) -> .* ;
z : (ip.src = 10.0.1.1 and ip.dst = 10.0.1.2 and
tcp.dport = 80) -> .* dpi *. nat .*],

max(x + y,100Mb/s) and min(z,900Mb/s)

The first two statements (for variables x and y) assert that rrp traffic (both control and
data) can travel from the host at 1p address 10.0.1.1 to the host at address 10.0.1.2
across any available network path. The statement for variable z identifies and con-
strains HTTP traffic between the same hosts. However, for HTTP traffic, the set of paths
are restricted to those that include both a deep-packet inspection function (dpi, pos-
sibly to check for malicious traffic) and a network address translation (nat) function.
Finally, the formula at the end declares a joint bandwidth cap (max) for the FrP traffic,
and a bandwidth guarantee (min) for the aTTP traffic. The amounts are chosen such

that they add up to the capacity of a 1Gb/s physical link.

3.2 Compiling Bandwidth Allocations

As described in Section 2.3, Merlin programs use logical formulas to specify bandwidth
constraints that limit (max) or guarantee (min) bandwidth. Individual classes of traffic
may be given a joint allocation by using the addition operator (+) to sum over their
respective variables, and then constrain the result. Allocations may be combined using

conjunction (and), disjunction (or), and negation (!).

24

A formula specifies the rate at which sources of various types of traffic may emit
packets. Formally, the universe of rates is [0, MAX] where MAX is the line speed depen-
dent on physical constraints. max(x, 100Mbps) constrains the rate of x traffic to be in
the interval [0, 100Mbps], whereas min(x, 100Mbps) constrains rate of x traffic to be
within [100Mbps, MAX], (assuming the source is transmitting at 100Mbps or higher).

Bandwidth constraints differ from locations and functions in one important as-
pect: they represent an explicit allocation of global network resources. The first step
in enforcing the bandwidth allocations is to translate the global requirements to local
requirements that can be enforced on individual devices The first step in enforcing the
bandwidth allocations is to translate the global requirements to local requirements that

can be enforced on individual devices.

3.2.1 Localization

Global bandwidth constraints are expressed as Presburger arithmetic formulas. How-
ever, implementing them leads to several challenges: aggregate guarantees can be
enforced using shared quality-of-service queues on network switches, but aggregate
limits are more difficult, since they require distributed state in general. To solve this
problem, Merlin adopts a pragmatic approach. The compiler first rewrites the formula
so that bandwidth constraints apply to packets at a single location. Given a formula
with one term over n identifiers, the compiler produces a new formula of n local terms
that collectively imply the original. By default, the compiler divides bandwidth equally
among the local terms, although other schemes are permissible.

For example, the formula in the previous section uses x and y to refer to Frp traffic

and to z refers to HTTP traffic, and requires the following guarantees:
max(x + y,100Mb/s) and min(z,900Mb/s)

The Merlin compiler first rewrites this to a form where x and y have separate guarantees

25

that can be enforced independently:
max(x,50Mb/s) and max(y,50Mb/s) and min(z,900Mb/s)

Rewriting programs in this way involves a tradeoff: localized enforcement increases
scalability, but risks underutilizing resources. Merlin navigates this tradeoff via run-
time mechanisms called negotatiors that allow users of a network to dynamically adjust
allocations to their needs. For example, a negotiator for an Frp-based network backup
service might know that FTp control traffic (associated with y above) requires much less
bandwidth than rTp data traffic (associated with x). Such a negotiator could decide that

a better split for the rrp allocation would be:

max(x,99Mb/s) and max(y,1Mb/s) and min(z,900Mb/s)

Chapter 4 describes how the design of the Merlin programming language allows ne-
gotatiors to refine Merlin programs and allows the compiler to verify that a refined

program does not violate the guarantees of the original.

3.2.2 Provisioning Bandwidth Allocations

Once global guarantees in a Merlin program have been localized, the next step is to
provision for the required bandwidth allocation. To do this, the Merlin compiler en-
codes the input program and the topology into a constraint problem whose solution

can be used to determine device configurations.

Logical Topology The first step in this process is the same as described in Sec-
tion 2.4.1: creating a logical topology from the input Merlin program, physical net-
work topology and function mapping. Recall that this logical topology is a graph G
that is the union of several smaller graphs §,, one for each statement ¢ in the original

Merlin program. Each G, is a cross product of the physical network topology and the

26

NFA derived from the expanded path expression r; from the statement i, with a distin-
guished source and sink nodes s, and ¢,. This cross product construction ensures that
each path from a source s, to a sink ¢, corresponds to a path in the physical topology
that satisfies the corresponding path expression 7,. Such a path in G, is called a lifting

of the corresponding path in physical topology.

Path selection Next, the compiler determines an assignment of paths that satisfy the
bandwidth constraints encoded in the policy. The problem is similar to the well-known

multi-commodity flow problem [2], with two additional types of constraints:

1. integrality constraints specify that only one path is selected per statement; and

2. path constraints as determined by the corresponding path expressions

Since the logical topology gives us a way to encode path constraints, we formulate the
problem in the graph G = UZ G, described above, rather than in the physical network.
Unfortunately, incorporating integrality constraints renders the problem nNp-complete
in the worst case. However, several practical approaches have been developed, rang-
ing from approximation algorithms [13, 16, 19, 44, 46], to specialized algorithms for
expanders [11, 26, 43] and planar graphs [60], to the use of mixed-integer program-
ming [9]. The following technique is based on the mixed-integer programming ap-
proach.

The compiler generates a Mixed-Integer Program (m1p) having a {0, 1}-valued deci-
sion variable =, for each edge e of . Selecting a route for each statement corresponds
to selecting a path from s, to ¢, for each ¢ and setting ., = 1 on the edges of those

paths. For all other edges in G, x, = 0. These variables are required to satisfy the

27

following flow conservation equations:

1 ifv=s;
Yve g Z T, — Z To=94—1 ifv=t, (3.1)
e€dt(v ecd(
0 otherwise

\

0% (v), d~(v) denote the sets of edges exiting and entering v, respectively. The m1p also
has real-valued variables 7, for each physical network link (u, v), representing what
fraction of the link’s capacity is reserved for statements whose assigned path traverses
(u,v). Finally, there are variables .. and R, representing the maximum fraction
of any link’s capacity devoted to reserved bandwidth, and the maximum net amount
of reserved bandwidth on any link, respectively.

We can now write down the equations and inequalities that govern the behavior
of these additional variables. For each statement 4, 7’ . denotes the minimum amount
of bandwidth guaranteed in the corresponding bandwidth clause. If the statement has

no bandwidth guarantee:

A p if statement ¢ has bandwidth guarantee p
rt.o= (3.2)

min

0 otherwise

For any physical link (u,v), ¢, denotes its capacity and F,(u,v) denotes the set
of all edges in G, that connect nodes corresponding to the physical nodes v and v.
(Formally, edges of the form ((u,q), (v,q")) or ((v,q),(u,q")) in G,.) The relevant

constraints can be formalized as:

v<u7 /U) T’LL’UC’U,’U = Z Z mll’l 6 (3‘3)

T ecB,(u)
V(U V) Toax = Tuw (3.4)
V(u,v) Ronx = TuwCuo (3.5)

Tmax < 1 (3.6)

28

(a) Shortest-Path (b) Min-Max Ratio (c) Min-Max Reserved

Figure 3.1: Path selection heuristics. The edge labels in the graphs indicate the remain-
ing capacities after path selection.

Constraint 3.3 defines r,, to be the fraction of capacity on link (u,v) reserved for

(respectively, R

bandwidth guarantees. Constraints 3.4 and 3.5 ensure that r masc)

max
is at least the maximum fraction of capacity reserved on any link (respectively, the
maximum net amount of bandwidth reserved on any link). Constraint 3.6 ensures that

the path assignment will not exceed the capacity of any link, by asserting that the

fraction of reserved capacity does not exceed 1.

Path selection heuristics There may be multiple assignments that satisfy the path
and bandwidth constraints. The Merlin compiler provides network administrators with

three heuristics to guide the path selection process:

« Weighted shortest path minimizes the total number of hops in selected paths
weighted by bandwidth guarantees: min}> >° o > en.) ri . x.. This

heuristic is for minimizing latency:.

+ Min-max ratio minimizes the maximum fraction r . of capacity reserved on

any link. This heuristic is appropriate for balancing load across links.

29

o Min-max reserved minimizes the maximum amount of bandwidth reserved on

any single link (i.e., R,). This heuristic guards against failures, since it limits

the maximum amount of traffic that may be disrupted by a single link failure.

Figure 3.1 shows the differences between these heuristics. The figure depicts a net-
work with hosts h1l and h2 connected by two disjoint paths. The left path has three
edges of capacity 400MB/s while the right path has two edges of capacity 100MB/s.
Suppose that two statements each request 50MB/s of guaranteed bandwidth (i.e.,
min(x1, 50MB/s) and min(x2, 50MB/s)). The mip solver will either select two-hop
paths (weighted shortest path), reserve no more than 25% of capacity on any link (min-
max ratio), or reserve no more than 50MB/s on any link (min-max reserved).

The integrality constraint specified above forces the Merlin compiler to produce
solutions that use a single path for each traffic class. While there exist approaches to
multi-commodity flow that take advantage of multiple paths, we leave this extension

as a topic for future work.

Code generation The output from the MmIP solver can be interpreted as a single path
through for each class of traffic (if a solution to the problem can be found). Also, recall
that the localized version of the Merlin program associates each statement (or rather,
its corresponding variable) with a single bandwidth allocation. Thus the final step in
the compilation process is to match up the solution paths with the requested bandwidth
allocation in the Merlin program.

Concretely, a careful selection of variable names in the mip allows the compiler to
match up selected edges in the solution with the corresponding variable and statement
in the localized Merlin program. The compiler then refers to the program to determine
the bandwidth allocation for those edges.

Finally the compiler generates instructions for all network devices on a path that

enforces the required bandwidth allocation. Minimum allocations must be enforced on

30

each spN-capable switch on a path. Merlin uses the min-rate queues defined in version
1.0 of the OpenFlow specification version, and generates device-specific instructions
to configure the relevant queues and ports. For maximum caps, rate limits are enforced

directly on the end-hosts using standard Linux utilities such as iptables and tc.

3.3 Summary

The Merlin language allows administrators to write global network policies that dis-
tribute the bandwidth resources of a network between various traffic classes. In order
to implement such allocations, the Merlin compiler must localize such policies so that
they can be implemented efficiently on individual devices, and then select paths for the
relevant traffic classes such that all requested allocations are satisfied.

The previous chapter detailed how a logical topology can be used to satisfy the path
expressions in a Merlin program. This chapter shows how the compiler uses that logical
topology, and a set of intuitive constraints and heuristics, to craft a mip whose solution
is a selection of paths that satisfy both the path expressions and bandwidth constraints.
Finally, the compiler matches these selected paths with the required allocation in the
original Merlin program to generate relevant configurations for the network devices
that must enforce the bandwidth allocations.

A key component of this process is the transformation of global constraints such
as “max(x + y, 10Mb/s)” to equivalent local constraints such as “max(x, 10Mb/s) and
max(y,5Mb/s)”. The compiler uses a simple equal division strategy to perform such
localization in the general case. However, it is possible that such a division will be
inefficient and that some domain knowledge can be applied to improve the efficiency
tradeoff. The next chapter describes how Merlin policies can be safely delegated to
network users who can then refine them according to their individual needs, without

breaking any guarantees provided by the original.

31

CHAPTER 4

DELEGATION AND VERIFICATION

The first step in the compilation process described in the preceding chapter is to
translate global Merlin programs into local programs. However, a naive localization
process (say by just distributing bandwidth allocations evenly) is clearly inefficient.
Such an allocation may underutilize resources by giving too much of a share to some
traffic classes, and too little to others. Additionally, in the dynamic environment of a
network, a localization that was originally adequate may become stale and inefficient
as traffic demands evolve over time.

Moreover, in a shared environment, such as a campus network or a shared data-
center, users may wish to customize global policies to suit their needs. These users—
tenants henceforth—might have particular desires for how to divide their share of net-
work bandwidth, imposing constraints on how the localization process occurs. They
may also wish to constrain what paths their own traffic takes, perhaps to enforce se-
curity policies, or isolation between different services and traffic classes.

The realities of managing a modern network suggest that in addition to a well-
defined language for expressing network policy, we require some mechanism for dy-
namism and adaptation, both to changing network conditions, as well as to differing
administrative and application domains. A suitable mechanism should support both
delegation and verification. As noted earlier, in a shared network, tenants might have a
better understanding of their network needs, and a desire to enforce their own policies.
This suggests a need for delegation: tenants should be able to manage their own share
of the network, as long as they do not affect other tenants or the network owner. En-
forcing that condition requires verification: the ability to check that a Merlin program
that has been refined by a tenant does not violate any guarantees of the original.

This chapter first describes the notion of negotiators—run-time components that fa-

32

cilitate program delegation to tenants—and then details how the properties of the Mer-

lin language support verification of the resulting refined programs against an original.
4.1 Negotiators

To support dynamic modification of programs, Merlin uses small run-time components
called negotiators, which transform and verify programs. Negotiators allow program
refinement to be delegated to tenants and they provide mechanisms for verifying that
choices made by tenants do not lead to violations of the original program. Nego-
tiators depend critically on Merlin’s language-based approach—the abstractions used
to express network policies (i.e., predicates, regular expressions, and bandwidth con-

straints), also make it easy to support verifiable program transformations.

4.1.1 Negotiator Overlays

Negotiators are distributed throughout the network in a tree, forming a hierarchical
overlay over network elements. Each negotiator is responsible for the network ele-
ments in the subtree for which it is the root. Parent negotiators impose programs on
their children. Since a negotiator cannot affect programs upwards in the tree, it is lim-
ited to either refining its inherited program for its children, or negotiated specifics of
the inherited program with its siblings.

Children may refine their own programs, as long as the refinement implies the
parent program. This involves either more finely subdividing traffic classes, constrain-
ing the set of usable paths, or redistributing a bandwidth allocation amongst its own
children. The following section describes the possible refinements in greater detail.

A more interesting case is that of multiple sibling negotiators jointly modifying a
policy inherited from its shared parent. Particularly, siblings may renegotiate resource

assignments cooperatively, as long as they do not violate parent programs. For exam-

33

y =0.5GB
z=1.5GB

Negotiator

f\ y =0.5GB y =0.5GB

. z=1.5GB z=1.5GB
y =0.5GB Renegotiation 7= 1.5GB

Negotiator S Negotiator \\g_/(

(a) Broker-based. (b) Peer-to-peer.

Figure 4.1: Broker-based and peer-to-peer re-negotiation.

ple, siblings may dynamically adjust bandwidth allocations between themselves to fit
particular deployments and traffic demands. The allocations can be adjusted in two
ways: a central negotiator (possibly the parent) can act as a broker (Figure 4.1a), or be-
tween themselves in a peer-to-peer fashion (Figure 4.1b). Knowledge revealed during
negotiation is limited to information about the participants and the global program.
Choosing between the broker and peer-to-peer strategies is a tradeoff between perfor-
mance and privacy. The broker approach is privacy-preserving (siblings cannot know
about each others’ allocations), but adds the overhead of working through the broker.
By contrast, peer-to-peer negotiations avoid the need of a broker, but requires siblings
to revealing information to each other.

Merlin does not specify protocols for reaching agreement on new allocations as
the details of such a protocol depend on a variety of factors, such as the trust relation-
ships between tenants, and the tolerance for time spent reaching a consensus. These
are exogenous concerns better handled outside of the core system. The system evalu-
ation in Chapter 7 uses a peer-to-peer negotiator, and a simple protocol that assumes

cooperative peers requesting reallocations in the collective best-interest.

34

4.2 Valid Refinements

With negotiators, tenants can transform global network programs by refining the del-

egated programs to suit their demands. Tenants may modify programs in three ways:

1. The traffic class for one statement may be partitioned into finer classes.

2. The set of forwarding paths that a particular class of traffic may take may be

further constrained.

3. The bandwidth allocations may be reduced or redistributed.

Traffic class partitioning Merlin programs classify packets into sets using predi-
cates that combine matches on header fields using logical operators. These sets can be
refined by introducing additional constraints to the original predicate. For example,
consider a statement that matches all 1p and sends it from one host to another, while

pasing through one of a number of middleboxes (m1 through m3):
x: eth.proto = ip -> hl .* (m1|m2|m3) .* h2

An example of a valid refinement is one that separates out upp and Tcp traffic and

sends the matching through separate middleboxes:

x1: eth.proto = ip and ip.proto = tcp -> hl .* ml .* h2 ;

x2: eth.proto

ip and ip.proto = udp -> hl .* m2 .* h2 ;
x3: eth.proto = ip and ip.proto != tcp and ip.proto != udp

-> hl .* m3 .* h2 ;

A refinement of this form is valid if the refined program meets two criteria: First,
the partitioning must be total—all packets matched by the original predicate must be
matched by some combination of new predicates. Second, the set of paths allowed
by the partitioned classes must be a subset of the set of paths allowed by the original

traffic class.

35

Constraining paths Merlin programmers constrain what paths through a network
a certain class of traffic may take by using path expressions over network locations or
packet processing functions. There are two ways to constrain the path expression that
reduces the set of paths that the corresponding class of traffic may take. First, if there
is an alteration between a number of locations in the original expression, a refined
expression may pick a subset of those locations for the same position in the expres-
sion. In the previous example, the refined statements constrain the paths allowed by
specifying one middlebox out of an original set of three.

A second way to constrain the path set is by adding more functions or locations
in sequence. For example, an expression that sends all packets through a traffic logger

(1og) function,
.* log .*

can be further constrained by adding a pp1 function in sequence:
.* log .* dpi .*

This disqualifies all paths that include the log function, but not the dpi function later.
For a path constraint to be valid, the set of paths denoted by the new expression
must be a subset of the paths denoted by the original. This ensures that all traffic stays

within the bounds set by the original program.

Bandwidth Redistribution Merlin’s limits (max) and guarantees (min) constrain al-
locations of network bandwidth. After a program has been refined, these constraints
can be redistributed to improve utilization. To be valid, the sum of allocations in the re-
fined program must not exceed the original allocation. The subtlety for redistribution
is that only min expressions reserve bandwidth, while max expressions cap bandwidth

usage. Therefore, it is always valid to reduce existing caps or place additional caps on

36

bandwidth allocation with more max expressions, but the sum of min expressions must

not increase.

4.2.1 Refinement Example

As an example that illustrates the use of all three transformations, consider the follow-

ing program. The original program caps all traffic between two hosts at T00MB/s:

[x : (ip.src = 10.0.1.1 and ip.dst = 10.0.1.2) -> .*],

max(x, 700MB/s)

This program can be refined to separate out HTTP and ssH traffic and to distribute

bandwidth accordingly.

[x : (ip.src = 10.0.1.1 and ip.dst

10.0.1.2 and tcp.dport = 80)

o

-> .* log .* ;

y : (ip.src = 10.0.1.1 and ip.dst 10.0.1.2 and tcp.dport = 22)
-> _:': ’

z : (ip.src = 10.0.1.1 and ip.dst 10.0.1.2 and

! (tcp.dport=22|tcp.dport=80))
-> *dpi .*],

max(x, 500MB/s) and max(y, 100MB/s) and max(z, 100MB/s)

The refined program gives 500MB/s to HTTP traffic, but requires it to flow through a
log box that monitors requests. 100MB/s are given to ssH traffic, and the remaining
100MB/s to all remaining traffic, which must flow through a dpi box. Note that since
the original program does not contain a min expression, it would be invalid to add a

min allocation in the refined program.

37

4.3 Verification

In order to allow for maximum flexibility, Merlin does not place any direct limitations
on the negotiators, which perform refinements to Merlin programs. However, allowing
tenants to make arbitrary modifications to programs would not be safe. For example,
a tenant could lift restrictions on forwarding paths, eliminate transformations, or allo-
cate more bandwidth to their own traffic—all violations of the original global program.
Fortunately, the design of the Merlin language facilitates checking program inclusion,
which the compiler uses to establish that refinements implemented by untrusted ten-
ants do not violate the original policy.

Intuitively, a valid refinement of a program is one that makes it only more restric-
tive. To verify that a program modified by a tenant is a valid refinement of the original,
the compiler has to check that for every statement in the original program, the set of
paths allowed for matching packets in the refined program is included in the set of
paths in the original, and the bandwidth constraints in the refined program imply the
bandwidth constraints in the original.

These conditions can be decided using an algorithm that performs a pair-wise com-
parison of all statements in the original and modified programs and checks two con-
ditions. First, the compiler checks for language inclusion between the regular expres-
sions in statements with overlapping predicates. This can be performed using standard
algorithms as described in [34]. Second, the compiler checks that the sum of the band-
width constraints in all overlapping predicates implies the original constraint.

Placing a verification step in between the negotiators and the compilation process,
decouples program refinement from their compilation to network devices. This allows
tenants to implement negotiators however is convenient, while ensuring that there is

no chance of implementing invalid programs that violate the terms of the original.

38

4.4 Overhead

If a refined program only re-allocates bandwidth as compared to the original, does not
require the original program to be recompiled. Only the switch queue configurations
and end-host tc commands need to be changed, and thus bandwidth re-allocation can
happen quite rapidly.

Changes in path constraints or traffic classes require global recompilation. At a
minimum, they require solving a fresh mip problem and updating forwarding rules
on the switches. Depending on how network functions are implemented, changing
path constraints may also require regenerating middlebox configurations. However,
in a realistic network deployment, changes to paths are likely to occur less frequently
than changes to bandwidth allocations. For example, racks of machines in a datacenter
might be tasked to a single function, but bandwidth requirements may change based
on time of day. Web servers servicing requests may require more bandwidth during

the day, while backup servers may get a higher allocation at night.

4.5 Summary

The design of the Merlin language allows programs to be refined by network tenants to
better suit there purposes. Tenants may refine programs by partitioning traffic classes,
constraining the set of allowed forwarding paths, or by reallocating available band-
width. These refinements are performed by runtime components called negotiators
that can refine inherited programs, and by coordinate with sibling negotiators. Before
compiling a refined program, the compiler ensures that the guarantees of the original

program are respected by checking straightforward properties of the refined program.

39

CHAPTER 5

HETEROGENEOUS NETWORKS

The previous chapters have described the use of a high-level programming lan-
guage to manage a modern network. The Merlin programming language uses a nota-
tion similar to regular expressions to denote sets of paths through the network. These
path expresssions are combined with predicates on packet headers to select classes of
network traffic and with Presburger arithmetic formulas that allows administrators to
specify bandwidth requirements.

Compiling Merlin programs to working network configurations requires the com-
piler to target a number of different devices: sDN-capable packet switches, pro-
grammable middleboxes, and end-hosts using the Linux network stack. This approach
acknowledges the realities of a modern network environment: such a network is a
collection of heterogeneous devices with differing capabilities and interfaces.

However, the Merlin approach is still very much spN-centric. Recall from Chap-
ter 1 that the core concept of SDN is to separate the data plane (tasked with forwarding
packets at individual network locations) from the control plane (tasked with imple-
menting overall network policy). The developments of the previous chapters depend
on having a network of devices that have the follow properties:

1. Devices operate on invidual network packets and have access to the contents of

packet headers.

2. Packets may be redirected by devices at every hop of the network, based on the

contents of the packet headers.

3. Devices may be reconfigured as necessary with minimal latency.

Unfortunately, these assumptions do not hold uniformly across all classes of net-
works. In fact, realistic network deployments often break these assumptions in multi-

ple ways:

40

1. Legacy Devices: Large organizations often deploy network devices supplied by
multiple different vendors. sbn deployments, where they exist, tend to be partial
at best. Hence, any framework for real-world network programming must be

able to implement high-level policies in the presence of legacy devices.

2. Heterogeneous Functionality: There is a fundamental mismatch between the
capabilities of sSDN switches, which allow packets to be transformed in essentially
arbitrary ways at each hop, and devices such as IP routers, MPLS LSRs, and

optical RoaDMs, which simply forward packets to their destinations

3. Performance Limitations: Existing frameworks tacitly assume that it is pos-
sible to rapidly reconfigure devices in response to change in network state such
as policy updates, traffic shifts or topology changes. However, on current sbn
switches, updating a forwarding table can take several seconds, limiting the net-

work’s adaptability.

These differences are particularly relevant in optical circuit networks that are used
to connect traditional packet networks. In these networks, traffic is transported us-
ing optical channels which provide very high bandwidth (on the order of upto terabits
per second) but which take on the order of several seconds to set up or reconfigure.
Furthermore, unlike packet networks, where the header fields of each packet can be
used to control forwarding, optical forwarding devices typically can only forward ac-
cording to the frequency range occupied by a channel. Looking at the headers of the
transported packets requires converting the optical signal to electronic packets and
then back to an optical signal for retransmission. This optical-electronic-optical (OEO)
conversion process is extremely time consuming. Naively recovering the flexibility of
packet networks would require performing this slow OEO conversion at every hop,
severely negating the performance advantages of using an optical transport.

Given the importance of optical networks, both in wide-area-networks, and in-

41

creasingly in datacenter networks, having flexible, high-level tools for programming
optical networks is of utmost importance. The remainder of this chapter explains the
properties and challenges of optical networks, and lays the foundation for enabling

their high-level programmability.

5.1 Properties of Optical Networks

Modern optical networks are often used to provide high-bandwidth connectivity be-
tween traditional packet switching networks connected at their edges. For example,
a cross-country optical network can be used to provide connectivity between urban
networks, or between datacenters in different geographical regions. On smaller scale,
recent advances in datacenter deployments have included using optical transports to
connect top-of-rack switches, with each rack acting as a packet network.

In the optical core of such networks, nodes are connected to each other via optical
fibers. Information is transmitted using a technique known as wave-division multiplex-
ing wpM. Using wbpM, multiple beams of light can be transmitted simultaneously along
a single physical fiber. Each such beam has a unique peak frequency, but may stretch
across a number of frequency slots. The peak frequencies are spaced far enough apart
that each such beam forms a separate channel. This wpM technique allows for massive
amounts of information to be transported on each fiber. As of 2010, experimental wpm
systems are capable of carrying up to 640 channels, each at a capacity of 107 Gbit/s.
Commercial systems of 16 channels with 100 Gbit/s per channel are common.

Wave division multiplexing requires a multiplexer at the source to combine multi-
ple optical channels and a demutiplexer at the destination to separate them back out.
These functions can be combined into a single physical device called an optical add-drop
multiplexer (0ADM). 0ADMs typically have multiple ports, each connecting an optical

fiber to the oaApm. On reconfigurable optical add-drop multiplexers (ROADMs), the opti-

42

cal channels that are demultiplexed from a particular port can be directed to different
outgoing ports, via software reconfiguration. The rest of this document assumes the
presence of RoaDMs throughout the optical network.

An optical network is typically connected to multiple packet networks on the edge.
These packet networks are composed of electrical switches connected to ROADMs via
transceiver ports. When an edge packet switch sends data to the optical network, the
transceiver converts the incoming electrical signals to an optical signal, occupying a
single optical channel. The multiplexer on the ingress ROADM combines several such
single channels and emits the resulting signal on a physical optical fiber. Conversely, on
the receiver side, the egress RoADM’s multiplexer separates out the optical signal from
a physical fiber into the constituent channels, and emits each channel to a transceiver
on a particular port. The transceiver converts the optical signal to an electrical signal
for transmission to the receiving host.

Unlike flows of packets (which may copied, scheduled, dropped and routed with
impunity), the optical channels and lightpaths are far more restrictive. In particular,

they have the following 4 constraints:
1. Optical continuity: an incoming channel can be dropped or forwarded to an
outgoing port, without changing the frequency slots the channel occupies.

2. Split restriction: an incoming channel cannot be forwarded to more than one

outgoing ports.

3. Merge restriction: channels occupying overlapping frequency slots coming

from multiple incoming ports cannot be merged to the same outgoing port.

4. Transponder restriction: a transponder port (that converts between electrical

and optical signals) cannot input or output on more than one optical channel.

The optical channel connecting an ingress and egress RoADM is called a lightpath—a

single-source, single-sink channel that may span multiple contiguous fiber links, but

43

must occupy the same set of frequency slots on each such link. Each RoapM in a multi-
link lightpath demultiplexes incoming optical signals, routes the separated channels
to possibly different ports and then multiplexes the signals for each port on to the
connected optical fiber.

Crucially, reconfiguring an optical lightpath may take several seconds, as opposed
to packet switches which can be reconfigured in milliseconds. This has important
repercussions for network management, especially for latency critical applications and
fault tolerance. To quickly respond to policy changes, a network management solution

must minimize reconfigurations of optical lightpaths.

5.2 The Challenges of Programming Optical Networks

As an example of an optical core network connected to a packet-based edge, consider
the topology in Figure 5.1. It consists of a core of RoOADMs (diamonds), sDN-enabled
packet switches on the edge (circles) and end-hosts connected to the switches (squares).
The hosts can be considered to be standing for separate packet networks.

There are a number of challenges in properly utilizing such a network. First, the
ROADMs need to be configured to set up optical channels connecting points on the
edge. This requires management tools that understand the properties and limitations
of optical networks (as discussed in the previous section). These tools should reject
policies that cannot actually be implemented given the limitations of optical networks.

Second, the edge (the packet switches and the hosts) might be in a different admin-
istrative domain from the optical core. For example, the edge may consist of corporate
datacenters with the core being the 1sp connecting them. Since the core may connect
to many different entities on the edge, the administrator responsible for it may wish to
minimize the information that needs to be shared with these edge entities. Conversely,

entities operating the edge networks should not need to be bothered about the man-

44

Host 2

Host 1

Host 3

Figure 5.1: Optical Fork topology

agement of the core: it should suffice to give them some guarantee that the core will
provide connectivity between relevant points on the edge.

Third, setting up and reconfiguring optical channels can be expensive, especially
in comparison to reconfiguring packet switches. A programming paradigm for optical
networks should acknowledge that they are likely to be connected to flexible packet
switches at the edge, and leverage this fact to provide maximum programmability,
while reducing the amount of churn in the optical network itself.

The first issue can be tackled with a path-based approach. The key building block of
an optical network is the optical channel: essentially a path through the network, com-
bined with some way to identify the channel. With this observation, optical channels

could be configured using programs such as that shown below in Listing 5.1.

if roadm=4 and port=2 then

channel:=1; (r4:1 => r7:1); (r7:2 => r5:1); port:=2

Listing 5.1: Optical Configuration NetkAT Program

45

This program implements the optical channel between port 2 on RoADM 4 to port 2 on
ROADM 5. The program first checks for a starting RoaApMm and port, selects an optical
channel (denoted by the integer 1), describes the path taken by this channel as a series
of links, and finally specifies an output port. Statements of the form s1:p1 => s2:p2
correspond to a network link between port p1 on node s1 and port p2 on node s2. Note
that neither the internal forwarding behavior of r7 nor the final RoaADM location need
to be specified, as they can be inferred from the rest of the program. The language used
by this program can be formalized as Circuit NetkAT, as described in the next section.

The difference in administrative domains and the performance limitations of optical
channels can be jointly tackled by making use of the distinction between “edge” devices
at the perimeter of the network and the optical “fabric” devices in the core that connect
edge devices. The idea of implementing network programs in terms of an edge-fabric
distinction is not new: the term “fabric” is borrowed from a paper by Casado et al.
that is motivated by some of the same issues identified above [12]. This distinction is
used in systems such as Felix, which analyzes the paths used by the fabric and pushes
monitoring tasks to the edge of the network [14]. Generating edge configurations that
correctly implement a high-level network policy in the presence of an existing fabric

requires solving a number of technical challenges. This is the focus of the next chapter.

5.3 Circuit NetKAT

The first step in increasing the programmability of optical networks is to develop a lan-
guage for specifying optical channels in a network. To do so, we can use the NetkAT
programming language as a starting point. NetkAT is a programming language for
SDN-capable networks based on Kleene Algebras with Tests (KAT) extended with prim-
itives for matching against and modifying packet headers [5]. A NetkAT program ex-

presses network forwarding behavior as functions on packets. These programs are im-

46

Syntax Semantics
Naturals n==0]1].. [p] € pk — {pk}
Fields f== fi [~ |f; [true] pk = {pk}
Packets pk == {fi =nqy,,f =ni} A
Predicates a, b ::= true Identity [false] pk = {} (k)
alse Dro s, JiPk} ifpk.f=n
} :;zn Testp Lf=nlpk = {} otherwise
| a+b Disjunction [=a] pk = {pk} ([a] pk)
% el ph £ (gl =]}
Programs p,q ::=a Filter [[p + q]] pk = [[p]] pk U [[q]] pk
| f<n Modification [p - ql k= ([p] ® [4]) Pk
| p+gq Union . [p] pk A Uz Fipk
} P-4 Sequencing where FY pk = {pk}
P Iteration it1 A i
| dup Duplication and 5 pk = ([p] ® F*) pk

Figure 5.2: NetkAT abstract syntax and semantics.

plemented in the network by compiling them to flowtables for spN-capable switches
(eg., switches supporting the OpenFlow protocol).

NetkAT treats a packet as a record of fields f ranging over standard headers such as
Ethernet and 1p source and destination, as well as logical fields such as swand pt. These
logical fields keep track of the switch and port where the packet is currently located
in the network and are useful for representing packet forwarding and for program
analysis. Atomic terms in the language are predicates on, or modifications to, packet
fields. Each predicate behaves like a filter on packets—packets that do not match the
boolean condition encoded in the predicate are dropped. Predicates include primitive
tests on field values (f = n), as well as standard boolean operators (+, -, and —).
Modifications (f — n) update the field f with the value n. The union operator (p + p’)
copies the input packet, processes one copy using p and the other copy using p’, and
takes the union of the resulting sets of packets.

Note that some operators are overloaded and can be applied to predicates and

policies—e.g., + is meant to represent disjunction on predicates and union on poli-

47

cies. The behavior specified in the denotational semantics in Figure 5.2 captures both
cases. The sequential composition operator (p - p’) processes the input packet using
p and then feeds each output of p into p’. Iteration p* behaves like the union of p
composed with itself zero or more times. To make authoring programs easier, links
(swl : pt1l — sw2 : pt2) and conditionals (if-then-else) are encoded as follows:

swl:ptl = sw2: pt2 =

sw = swl - pt=ptl-sw:=sw2 - pt:=pt2

ifathenp;elsep, = (a-p;)+ (—a-py)
Although Netkat allows the specification of behaviors such as forwarding paths, it
cannot be directly applied to programming optical fabrics. First, Netkat allows pro-
grams to match and modify a full range of packet headers. But a RoaApM would only be
able to match against network location and optical channel identifiers (unless resort-
ing to expensive optical-electrical-optical conversions, which we want to avoid). Also,
as noted in Section 5.1 optical networks have their own set of constraints that are not
enforced by default in Netkat. To recap, these are: optical continuity, split and merge
restriction and transponder restrictions.

Enforcing these constraints requires a restricted subset of Netkar, called Circuit
NetkAT. As its name suggests, a Circuit NetkAT program is a set of circuits, where
each circuit is defined by a starting switch and port, a channel identifier, a list of hops
and a final egress port, where each switch is an optical RoaApM. The syntax is given in
Figure 5.3a.

Circuit NetkAT programs are valid if they satisfy the validity conditions outlined
in Figure 5.3b. Each circuit can be viewed as an allocation (A) from (switch, port) pairs
to a channel identifier. The first condition (CONTINUITY) states that all points on the
path defined by the circuit are allocated the same channel identifier. This satisfies the
optical continuity restriction. The second condition (DISJOINTNESS) states that if two

circuits use the same channel identifier, then their paths must be disjoint, i.e., at each

48

Allocation A € (sw,pt) — channel
Channel C € circuit — channel
Path P € circuit — {(sw,pt)}
Channel w ::= channel :=n w = channel = n
Links [== sw:pt— sw' : pt’ c=f-w- - port:=pt
LA last(c) = (sw’, pt’)
Circuit ¢ == f- w- [- port:=n V(sw, pt) € P(c). A(sw,pt) =n
Programs =c
AFc
| p+p
Di1SjOINTNESS
(a) Circuit NetKAT syntax. AF ¢ AFc,
C(c;) = C(cy) = P(e) NP(cy) =0
AFc +c
(b) Circuit NetKAT validity rules.

Figure 5.3: Circuit NetKAT syntax and validity rules.

port, a particular channel comes from, and is forwarded to, at most one destination.
This condition satisfies the split, merge and transponder restrictions above.

A compiler takes a Circuit NetkaT program and checks if the program is valid ac-
cording to the above conditions. If the program is valid, it is converted into a standard
NetkAT program, otherwise it is rejected. This conversion simply involves inserting
port assignments in between the links to properly forward signals from ingress to
egress ports on each RoaADM. The resulting program can then be compiled to flowtables
that implement an optical forwarding fabric, by leveraging an optical extension to the

OpenFlow protocol that supports optical devices.

5.4 Summary

Modern networks are increasingly heterogeneous systems composed of a variety of de-

vices with differing abilities and interfaces. While technologies like sDN bring greater

49

programmability to a certain class of networks and devices, other important types of
networks are left behind by the assumptions of current sbn standards and implementa-
tions. In particular, optical networks have several properties and limitations that make
it difficult to simply adopt technologies developed for packet-based networks.

This chapter described the specific properties and challenges of bringing increased
programmability to optical networks and their interplay with traditional packet net-
works. The Circuit NetkAT language is developed as an approach for programming op-
tical networks, based on the insight that optical channels are essentially paths through
the network. This lays the groundwork for the next chapter where the edge/fabric dis-
tinction between modern deployments of packet and optical networks is leveraged to
address the challenges of flexibility and performance inherent to these heterogeneous

networks.

50

CHAPTER 6

EDGE PROGRAMMING

The previous chapter looks at the heterogeneous nature of modern networks, fo-
cusing on optical networks are connected to traditional packet networks at the edges.
As described in Section 5.2, these hybrid networks pose a number of challenges to pro-
grammability: heterogenous devices with differing capabilities and interfaces, multiple
administrative domains, and non-trivial and inherent performance costs. One way to
address these challenges is to distinguish the “edge” devices at the perimeter of the
network from the “fabric” devices in the core that connect between edge points. So
long as the edge devices provide spn-like functionality, it is possible to implement a
broad set of policies. Meanwhile the constrained fabric devices (such as RoADMs), only
need to implement the “plumbing” to carry packets across the network.

This chapter presents a practical framework—EdgeNetkaT—for implementing
high-level policies at the edge, using a fixed fabric to provide connectivity through
the core of the network. The main approach is to (unravel) a high-level program rep-
resenting the behavior of an entire network, into a program that describes only the
configuration of edge devices, by utilizing an existing fabric to provide connectivity
between the edge devices. This involves overcoming a series of technical challenges in
building our framework for “unraveling” policies into configurations:

+ Analysis: Generating configurations for the devices at the edge, requires knowl-
edge of how the fabric forwards traffic between end points. EdgeNetkAt builds
on advances in data plane verification, and the NetkaT framework [5, 70], to
compute the both requirements of the policy and the forwarding functionality

provided by the fabric.

« Adaptation: To faithfully implement a high-level policy using a fixed fabric, we

need to check that the transformations on packets performed in the fabric are not

51

in conflict with the transformations performed at the edge. Sometimes it is pos-
sible to co-opt “spare” bits in the header field to encode the high-level policy, but
more generally it is necessary to rely on some form of tunneling. Conveniently,

optical networks provide a form of tunneling via their optical channels.

« Expressiveness: Certain policies can be expressed in terms of a “one big switch”
abstraction, in which only input-output behavior matters [41]. But other poli-
cies, such as network function virtualization and middlebox service chaining re-
quire paths with multiple segments, or require that paths traverse certain nodes.
EdgeNetkAaT naturally supports policies based on the “one big switch” abstrac-

tion, and can be extended to support segmented paths and path constraints.

The remainder of this chapter presents an example of programming a heterogenous
network by utilizing the edge/fabric distinction, and then describes the EdgeNetxkAT

framework and the techniques used to unravel global programs into edge programs.

Host 2

Host 1

Host 3

Figure 6.1: A Hybrid Network with a Optical Core and a Packet Edge

52

6.1 An Edge Programming Example

As an example, consider the hybrid network shown in Figure 6.1. This is the same
network as used in Section 5.1, but with an optical core composed of two two opti-
cal channels: one connecting port 2 on ROADM 4 to port 2 on ROADM 5, and another
connecting port 3 on ROADM 4 to port 2 on ROADM 6.

Recall that Section 5.3 describes Circuit NetkaT—a programming language capa-
ble of describing optical channels. The required channels can be implemented with a

Circuit NetkAT program as shown in Listing 6.1 below.

if roadm=4 and port=2 then

channel:=1; (r4:1 => r7:1); (r7:2 => r5:1); port:=2
else if roadm=4 and port=3 then

channel:=2; (r4:1 => r7:1); (r7:3 => r6:1); port:=2
else if roadm=5 and port=2 then

channel:=1; (r5:1 => r7:2); (r7:1 => r4:1); port:=2

else if roadm=6 and port=2 then

channel:=2; (r6:1 => r7:3); (r7:1 => r4:1); port:=3

Listing 6.1: Optical Channel Configuration in Circuit NetkAT

Note that as with NetkAT, the if-then-else construct can be encoded as:
ifathenp;elsep, = (a-p;)+ (—a-py)

One plausible scenario for such a network is that Host 1 represents a front-end for
the network, with Host 2 representing web servers (HTTP) and Host 3 representing
email (sMTP) servers. In that case, the network policy would send all HTTP traffic (Tcp
destination port 80) from Host 1 only to Host 2, and all smTp traffic (Tcp destination
port 25) from Host 1 only to Host 3.

To express this policy, we need a concise way of specifying predicates on packet

header fields, and forwarding paths through the network. Fortunately, the NetkAT

53

programming language (also described in Section 5.3), allows us to do just so [5]. A
NetkAT program expresses network behavior in terms of functions on packets. that are
compiled to flowtables for spN-capable switches. The intended forwarding behavior is

concisely expressed as a NetkAT program in Listing 6.2.

if switch=1 and port=1 and tcpDst=80 then
(sl:1 => s2:1);

else if switch=1 and port=1 and tcpDst=25 then
(sl:1 => s3:1);

else if switch=2 and port=1 then
(s2:1 => sl1:1);

else if switch=3 and port=1 then

(s3:1 => s1:1)

Listing 6.2: User Policy as a NetkAT Program

Implementing this policy on the given topology presents several challenges. Since
reconfiguring the optical channels incurs a large time penalty, we should avoid chang-
ing the existing core configuration if possible. In that case, even though the user is only
concerned with end-to-end behavior, they would have to understand the details of the
optical fabric configuration. Then, instead of the clean policy shown in Figure 6.2, the
user would have to manually match up packet switch ports to the optical transceiver
ports and the channels they connect to. Finally, the user would need to write another
program—either in NetkArt or directly as a forwarding table—that operates on the edge
switches and correctly implements the desired forwarding behavior. Although doing
all this is feasible in principle, it is quite tedious and error prone process—moreover, it
would need to repeated every time the policy changes.

Fortunately, in addition to allowing us to specify network behavior, the NetkaT

language and its compiler provides the tools required to automate this rewriting. Us-

54

ing the optical fabric program (shown in Listing 6.1), we can unravel the user policy
into ingress and egress NetkAT programs that affect the edge switches only (as shown
in Listings 6.3 and 6.4 respectively). Section 6.2 describes how NetkAT compiler trans-
forms programs into dyads—pairs of predicates on packet header fields and modifica-
tions to apply to packets. The EdgeNetkAT extension then matches dyads from the

policy to those in the fabric.

if switch=1 and port=1 and tcpDst=80 then
vlanId := 1; port := 2

else if switch=1 and port=1 and tcpDst=25 then
vlanId := 2; port := 3

else if switch=2 and port=1 then
vlanld := 3; port := 2

else if switch=3 and port=1 then

vlanId := 4; port := 2

Listing 6.3: Generated NetkAt Ingress Program

if vlanId=1 and switch=3 and port=2 then
strip vlan; port := 1

else if vlanld=2 and switch=2 and port=2 then
strip vlan; port :=1

else if vlanld=3 and switch=1 and port=2 then
strip vlan; port := 1

else if vlanld=4 and switch=1 and port=3 then

strip vlan; port := 1

Listing 6.4: Generated NetkAaT Egress Program

This unraveling of a global program into a pair of edge programs has several ben-

efits. First, the user can ignore the specific configuration of the core fabric and instead

55

treat it as “one big switch” that connects the edge locations. Instead, the user can write
a high-level, global program and let the EdgeNetkaT compiler match optical channels
in the fabric to paths implicitly required by the global program. This abstraction means
that different entities can be in charge of managing the core and the edge. For example,
the Hosts in the example could be datacenters under the control of some kind of web
service while the fabric is controlled by a cross-country 1sp.

Second, as part of the unraveling process, any predicates (eg., tcpDst=80) or modi-
fications specified in the policy are relocated to the edge. Whenever a policy changed,
only the edge switches need to be updated. This reduces the overheads associated with
implementing policy changes, since the spN-capable switches can be updated faster
than the RoADMs in the core.

Edge compilation embraces the unique features of hybrid networks to increase their
programmability while providing important benefits. This approach crucially depends
on the path-oriented properties of the NetkaT and Circuit NetkAT programming lan-

guages, as described in the next section.

6.2 Compilation to the Edge

Unraveling global network programs into edge programs makes use of the features of
the NetkAT programming language and the intermediate data structures of the NetkAT
compiler. As described in Section 5.3, NetkAT programs are combinations of predicates
on, or modifications to, packet fields. By treating the packet’s location in the network
(switch, roadm or port) as a logical packet header, NetkAT can be used to model links
or paths through the network.

NetkAT programs are compiled to intermediate representations called Forwarding
Decision Diagrams (FpDs), which are used to generate forwarding tables for switches

running the OpenFlow protocol [70]. By analyzing the FDD representation of the pro-

56

gram we can pair up each predicate used to distinguish traffic classes, and the cor-
responding modifications made to matching packets. We call each such pair a dyad.
Since switch and port location are logical fields in packet headers, the collected predi-
cates include the starting location, and modifications include the destination location.
Thus each dyad denotes the source and sink of a particular traffic class.

Performing this analysis on the user policy gives us the required sources and sinks
of each traffic class. The same analysis on the fabric gives us sources and sinks of each
path provided by fabric. The required end-points can be matched to the provided paths
using a number of methods, including a simple graph algorithms or a translation to a
linear programming problem.

Once policy end-points are matched to fabric paths, we need to distinguish multiple
policy traffic classes that are sent across the same fabric paths. At the destination,
we may need to separate them out again, either to forward out different ports, or to
modify header fields in different ways. To do this, the ingress program uses the policy’s
predicates to match incoming traffic and applies a unique tag (either vLAN or MPLS) to
each packet before forwarding to ports that match suitable paths in the fabric (as in
Listing 6.3). Conversely, the egress program matches on the tag at edge locations to

perform policy-specified modifications and final forwarding (as in Listing 6.4).

6.2.1 Forwarding Decision Diagrams and Dyads

NetkAT programs can be compiled to an intermediate representation called a Forward-
ing Decision Diagram (FDD) [70]. FDDs are generalizations of structures called binary
decision diagrams [3]. They are trees where internal nodes represent tests on packet
headers, each with a “true” and a “false” branch. Leaf nodes are sets of modifications to
packet headers. Figure 6.2 shows an example NetkAT program and the FDD it generates.

A leaf node in the FDD is a set of actions, denoted {a, ..., a,}. An action a maps

57

src=11.1.1.1
if src=11.1.1.1 then /

(if dst=10.0.0.1 then port:=1 // dst=10.0.0.1
else if dst=10.0.0.2 then port:=2 RN
else false)) Q{dst 10.0.0.2
else /,'/
false o o o
drop pt2 pte-1l
o p
—src=11.1.1.1 drop
src=11.1.1.1 A =dst=10.0.0.2 A =dst=10.0.0.1 | drop
src=11.1.1.1 A dst=10.0.0.1 pt«1
src=11.1.1.1 A dst=10.0.0.2 A —dst=10.0.0.1 | pt<-2

Figure 6.2: Example NetkAT program, FDD, and dyads.

fields to values: {f,<nq,..., fr<—n,} with each field occuring at most once. An in-
ternal node, written (f=n"7d, : d,), is specified by a test f =n and two sub-diagrams.
If the packet satisfies the test, the true branch (d,) is evaluated, otherwise the false
branch (d,) is evaluated. FDDs also satisfy well-formedness judgments ensuring that
tests appear in a consistent order and do not contradict previous tests to the same field.

The NetkAT primitives true, false, and f<—n all compile to simple leaf nodes. The
empty action set {} drops all packets, while the singleton action set {{}} contains
the identity action {}, which copies packets unchanged. NetkAT tests f=n compile
to a conditional whose branches are the ¥pps for true and false respectively. The
union operator (d, + d,) traverses d; and d,, and takes the union of the action sets at
the leaves. Sequential composition (d; - d,) merges two packet-processing functions
into a single function. The ¥pD Kleene star operator d* is defined using a fixed-point
computation, and the well-formedness conditions on FDDs ensure that such a fixed
point exists. The compilation process, including the well-formedness conditions, is
described in detail in the original paper on the NetkaT compiler [70].

A depth-first search over the rDD lets us collect up pairs of predicates (the con-

junction of internal nodes, denoted «) and corresponding modifications (a leaf node,

58

denoted () that encode the input-output behavior of the program. That is, by com-
piling a NetkAT program to an FDD, we can easily produce a compact representation
of its forwarding behavior that can be used for further analysis. We call each pair of
a predicate « and its corresponding modifications 5 a dyad. Since the analysis form
includes the topology and ingress and egress predicates, o includes the starting switch
and port, and [includes the destination switch and port. Thus a dyad captures the
source and sink of all traffic satisfying a given predicate.

Figure 6.2 shows a simple NetkAT program, the corresponding FpD and the gener-
ated dyads. There are four paths from the root node of the FpD to a leaf. The two left-
most paths lead to a drop node. The rightmost path checks the source 1p src=11.1.1.1
and destination 1P dst=10.0.0.1 and forwards out port 1. The remaining path checks
the source and destination 1p addresses, must also check for the negation of the previ-
ous destination 1P address.

Performing this analysis on the user policy gives us the required sources and sinks
of each traffic class. The same analysis on the fabric gives us sources and sinks of each
path provided by fabric. The EdgeNetkAT compiler leverages the FDD structure and the
dyads derived from them to determine how required functionality can be mapped onto

an existing fabric.

6.2.2 Basic Edge Compilation

The EdgeNetkAT compiler starts with a network policy and generates edge configu-
rations that leverage the fabric for connectivity. The compiler takes as inputs a net-
work policy and a forwarding fabric (both expressed as NetkAT programs), and a set of
edge switches to target. Additionally, the compiler assumes knowledge of the physical
topology, such as the ingress/egress predicates for both the policy and fabric. From

these inputs, the compiler generates ingress and egress NetkAT programs, with the

59

following properties:

1. Edge implementation: Both programs can be implemented entirely on edge
switches—i.e., any switch predicates in the generated programs only match edge

switches.

2. Ingress classification: The ingress program implements the same traffic clas-
sification as the user policy—i.e., the union of all the as derived from the user

policy’s FDD.

3. Egress modification: The egress program implements the same modifications
to packet header fields as the user policy—i.e., for each o implemented by the
ingress program, the egress program must apply the corresponding /3 to the same

traffic class.

4. Fabric transit: From each («, 3) pair derived from the policy’s FDD, the fabric

forwards from the source location in « to the sink location in .

Together, these properties ensure a “one big switch” abstraction [41]—a combina-
tion of edge program and fabric is equivalent to a policy program if they produce the
same input/output behavior. Formally, if f and p are the NetkAT programs for the fab-
ric and policy, then ¢, = [f], ¢, = [p] denotes the corresponding packet forwarding
functions according to the NetkAT semantics in Figure 5.2. The desired edge forward-
ing functions are given by ¢, (for ingress), and ¢, (for egress). We claim that the
correctness condition for a compiler implementing the “one big switch” abstraction is

captured by the following equivalence:

P;®Pred, =0,

Our compiler computes programs i and o such that ¢, = [i] and ¢, = [i], or fails if

no such programs exist.

60

The NetkAaT compiler generates Forwarding Decision Diagrams for both the fabric
and uers programs. By iterating through the FpD, we convert each program to a set of
dyads—pairs of predicates (o) and modifications (). Recall from Section 6.2.1 that «
includes the starting switch and port (sources), and 3 includes the destination switch
and port (sinks). In order to correctly implement a policy using an existing fabric, the
sources and sinks required by the policy’s dyads need to be matched to those provided
by the fabric. The compiler uses two approaches to solving this selection problem.

The first approach is based on simple graph algorithms. The compiler constructs
a connectivity graph G where the nodes are the sources and sinks of the user policy.
There is an edge between two nodes if they are connected via a path in the fabric.
We determine this by iterating through the («, 5) pairs for the fabric, and adding an
edge to G if the o contains (or is one hop away from) a source and the corresponding
f contains the sink (or is one hop away from it). To connect a source and sink, the
compiler checks whether there is an edge between them in G.

The second approach is based on a formulation as a linear programming problem
whose solution selects a fabric dyad to implement each policy dyad. The compiler
generates a sequence of variables V; ; denoting the possibility of policy dyad i using the
fabric dyad j. If the endpoints of policy dyad ¢ and the fabric dyad j are not identical
(or adjacent), then there is a constraint limiting V; ; = 0. In the basic case, a single
fabric dyad is chosen to implement each policy dyad. This is enforced by a constraint
. > V;; = 1foreach policy dyad j. The full linear programming formulation is given
irelf?irgure 6.3.

Using a linear programming formulation is more powerful than is strictly needed,
but it allows for better extensibility. To include additional features such as path con-
straints, simply requires adding more variables and constraints to the linear program-

ming problem. Without it, the compiler would need custom analyses over the dyads or

61

Element | Definition

P Policy dyads, indexed by ¢
Input . . :
F Fabric dyads, indexed by j

src(d) A function (Dyad — switch)
dst(d) A function (Dyad — switch)
Generated | V] ;

Output |V,

g

Policy dyad 7 possibly implemented by fabric dyad j

1 | Policy dyad ¢ implemented by fabric dyad j

Minimize 1 since we are not performing any optimization
such that Vi e P > Vii=1
jEF
Vi eP,VjEF sre(P;) # sre(F;) V dst(P;) # dst(F)):

Vi, = 0 (or drop Vl j from the problem)

Figure 6.3: Dyad selection as an linear programming problem.

the connectivity graph for the same functionality. Note also that the generic objective
function used here could be replaced with network-specific objectives.

After a suitable fabric dyad is found for each policy dyad, the final step is to generate
ingress and egress programs that implement the policy using the fabric. Each « in the
policy is used as the predicate for a forwarding rule on the source switch, and generate
output actions for the rule in two steps. At the source, since more than one stream of
traffic may take the same path through the fabric, the ingress program attaches a tag
(eg, a VLAN tag) unique to this « to each packet. The collection of these forwarding
rules form the required ingress program. Similarly,the corresponding £ is installed on
the corresponding sink, modified to act only on traffic matching the tag attached by

the source. These modified s form the egress program.

62

6.3 Extensions to Edge Compilation

6.3.1 Segmented Path Compilation

The “one big switch” abstraction allows network administrators to specify the end-
points of a particular class of traffic. A natural extension is to allow specifying an
entire path, (e.g., s; = s, = s3) instead of just a source-sink pair. Such a segmented
path connects intermediate nodes that are part of the user-controlled edge. For each
neighboring pair of nodes in the chain, the compiler would have to find a connecting
segment through the fabric. The segments are then chained together to construct the
whole path. Just as in dyad matching, a unique tag (e.g., a vLAN tag) differentiates
traffic classes and track them across segments. An ingress program that matches the
policy’s a and attaches the appropriate tag is installed at the start of the path. At each
intermediate node, traffic is sent from the fabric to the edge switch, and install bounce
programs that examine the tag and return traffic to the fabric. Finally, an egress pro-
gram at the end matches the tag and applies modifications according to the policy’s 5.
Note that rules are installed only on the relevant edge switches, without modifying the
fabric connecting them. Thus the core of the network can remain static, reducing the
overhead in changing network policy.

Segmented paths are simply an extended form of dyad matching. The compiler
finds a fabric dyad to carry the traffic in between each consecutive pair of points. The
LP back-end is extended with some additional bookkeeping to reuse the same tag across
each segment, and then apply the proper modifications at the end. NetkAT can already
describe paths by specifying each hop, as shown in our motivating example in Listing
6.1. This extension allows us to to describe general paths while letting the compiler
determine the specific hops. Such policies are useful for applications involving ser-

vice chaining and middleboxes—e.g., network functions such as firewalls and intru-

63

if dst=backend and tcpDst=80 then
frontend ==> firewall ==> backend

else if dst=backend and tcpDst=22 then
frontend ==> backend

else if dst=frontend then
backend ==> frontend

Listing 6.5: Multi-segment program for applying a firewall.

if switch=2 and port=1 and dst=frontend then
vlanld := 3; port := 2
else if switch=1 and port=1 and
tcpDst=22 and dst=backend then
vlanld := 2; port := 3
else if switch=1 and port=1 and
tcpDst=80 and dst=backend then
vlanId := 1; port := 2

if vlanld=3 and switch=1 and port=3 then

strip vlan; port := 1

else if vlanld=2 and switch=3 and port=2 then
strip vlan; port :=1

else if vlanId=1 and switch=2 and port=2 then
strip vlan; port :=1

else if vlanld=1 and switch=3 and port=2 then
strip vlan; port := 1

Listing 6.6: Ingress and egress program for firewall application.

sion detection are implemented on nodes at various points in the network, and simpler
switches in the core of the network move traffic to the required processing nodes.
For example, Listing 6.5 shows a NetkAT program that directs Web requests from a
front-end to a back-end through the firewall, but ssH traffic and traffic from back-end to
front-end can pass directly through. An optical fabric similar to that in Figure 6.1 could
support this program, with the firewall, front-end and backend replacing the hosts. The
tabric program would be similar to Listing 6.1. Listing 6.6 shows generated ingress and
egress programs. VLAN tags are used to separate different traffic classes. We assume
that the intermediate nodes require the original traffic, without tags. Therefore tags

are removed and reapplied at the end of every segment.

64

6.3.2 Compilation With Path Constraints

Element | Definition
P Policy dyads, indexed by
F Fabric dyads, indexed by j
src(d) Function: Dyad — source switch
Input . . .
dst(d) Function: Dyad — sink switch
path(d) | Function: Fabric dyad — nodes on path
pes(d) Function: Policy dyad — path constraints
N, ; Fabric nodes n used by dyad j
Generated | V; , Dyad 7 possibly implemented by dyad j
Output | V;, =1 | Dyad i implemented by dyad j
Minimize 1 since there is no
optimization
such that
Vi eP Y Vii=1
jEF
VieP,VjeF >, N, <l|pcs(i)]: V,;=0
nepes(i)
VieP,VjeF sre(P;) # sre(F;)
V dst(P;) # dst(F)) : V,;=0

Figure 6.4: Dyad selection with path constraints as a linear programming problem.

Segmented paths allow the policy to direct traffic across multiple points on the edge.
However they do not provide any control over how the fabric is utilized—the compiler
chooses any available fabric dyad with matching end-points. Finer-grained control
can be exposed by incorporating path constraints—i.e., instead of allowing arbitrary
intermediate nodes on the path that implements a policy, we allow the programmer to
specify a number of additional points on the paths that traffic must pass through. To
find a matching fabric dyad, we need to consider the entire path represented by the
dyad, not just the endpoints. Only the fabric dyads whose paths contain the required
number of intermediate nodes can be used to carry the policy traffic. This form of

path constraint is particularly useful in the optical domain—optical signals need to be

65

regenerated after being transmitted for a certain distance. But since regenerators are
more expensive, only a certain number of nodes in each path can be regenerators.
By specifying that the appropriate regenerators must be visited as points on the path,
a policy can ensure that traffic will reach its destination after being regenerated the
appropriate number of times.

Starting from the linear programming formulation described in Section 6.2.2, the
EdgeNetkAT compiler adds more constraints to capture the fabric’s provided paths and
the policy’s required intermediate nodes. First, we use the NetkAT compiler framework
to produce a mapping from fabric dyads to paths (the path(d) function in Figure 6.4).
This can be done by symbolically executing the NetKAT program with respect to the
given dyad. The policy also produces a mapping from policy dyads to the intermediate
nodes required for each dyad. This is represented by the pcs(d) function in Figure 6.4

Each dyad j, and node n in the fabric is represented as a variable IV, ;. Recall that
in the original linear programming formulation includes variables V; ; representing
the possibility of policy dyad i being implemented using fabric dyad j. We constrain
V, ; = Ounless the dyad endpoints are the adjacent. If policy dyad 7 also specifies nodes
ng ... Ny as intermediates, we generate further constraints that set V; ; = 0 unless all of
N, N, ;are 1. The extended linear programming formulation is shown in Figure

nOvj.“ n

6.4.

6.4 Summary

This chapter tackles the problem of deploying high-level user policies to heterogenous
networks. Assuming an optical core network, surrounded by flexible, spN-enabled
edge switches, the EdgeNetkaT compiler unravels high-level global NetkAT programs
into programs that only affect edge switches, leveraging the fabric to provide connec-

tivity. To do this, EdgeNetkAT exploits the properties of the NetkaT language and its

66

compiler data structures such as rpps. This basic compilation to the edge can be ex-
tended to allow users greater flexibility in how the fabric paths are used to implement
the global program. EdgeNetkAT provides a practical way to reap the benefits of high-

level network programming languages, while operating on realistic hybrid networks.

67

CHAPTER 7

IMPLEMENTATION AND EVALUATION

This chapter describes the implementation and evaluation of two systems: the
Merlin system for programming networks with bandwidth constraints, and the Ed-

geNetkAT compiler for compiling global NetkAaT programs to edge programs.
7.1 Implementation of the Merlin System

The Merlin system is implemented in three parts: a compiler that takes Merlin pro-
grams and network topology descriptions and generates configurations for network
devices, and a spN-like controller that installs said configurations on network devices,
and a negotiator framework for delegating and verifying Merlin programs.

The compiler component is implemented in about 4000 lines of OCaml. This in-
cludes parsers for the Merlin language and network topology descriptions, a represen-
tation of the logical topology described in Section 2.4.1, an interface to a M1P problem
solver and a code generation engine that converts the results of the mip solution to
specific device configurations.

As described in Section 3.1, solving a MIP problem is a core part of the bandwidth al-
location process. For this, compiler uses an external solver: the Gurobi Optimizer [31]
to solve constraints, converting the generated problem to Gurobi syntax, and the so-
lution back to a form usable by the code generation engine. However, any MIP solver
could be used instead.

The controller component consists of about 100 lines of OCaml and leverages
the Frenetic spN [24] framework to install forwarding rules on OpenFlow switches.
The code generator generates Click router [45] to manage software middleboxes, and
ipfilter and tc configurations to control bandwidth on Linux end hosts. The con-

troller also supports installing these scripts on the respective machines. Note that the

68

design of Merlin does not depend on these specific systems. The code generation and
controller components provide clean interfaces for incorporating different backends,
allowing for others to instantiate Merlin with alternative device managers.

The Merlin negotiator and verification mechanisms uses standard algorithms for
transforming and analyzing predicates and regular expressions. To delegate a policy,
Merlin intersects the predicates and regular expressions in each statement with those in
the original policy to project out the policy for the sub-network. To verify implications
between policies, Merlin uses the Z3 SMT solver [56] to check predicate disjointness,

and the DprLE library [33] to check inclusions between regular expressions.

7.2 Evaluation of the Merlin System

The Merlin system has been evaluated on three criteria:

1. The expressiveness of the Merlin policy language.
2. The ability of Merlin to improve end-to-end performance for applications.

3. The scalability of the compiler and negotiator components with respect to net-

work and policy size.

The experiments were run on a cluster of Dell r720 PowerEdge servers with two 8-core
2.7GHz Intel Xeon processors, 32GB raM, and four 1GB NICs. The cluster used a Pica8
Pronto 3290 switch to connect the machines. To test the scalability we ran the compiler
and negotiator frameworks on various topologies and policies.

The experiments show that Merlin can effectively provision and configure real-
world datacenter and enterprise networks. Merlin concisely expresses rich network
policies and can be used to obtain better performance for big-data processing applica-

tions, replication systems.

69

3500

Queues =x=E=m
tc &=XXXX
—
3000 OpenFlow
2500
c
9
©
2
£ 2000
=
S
@ 1500
o]
€
=}
Z
1000
500
0

Baseline Bandwidth Firewall Monitoring Combination
11
Merlinloc Merlinloc Merlinloc Merlinloc Merlin loc

Figure 7.1: Merlin expressiveness with policies for the Stanford campus topology.

7.2.1 Expressiveness

The expressiveness of the Merlin policy language was evaluated by developing sev-
eral network policies for the 16-switch Stanford campus backbone topology [7]. 24
hosts were added to each of the 12 edge switches in the topology with each pair-
wise exchange of traffic between hosts identified as a separate traffic class, producing
82, 656'total traffic classes. We then implemented a series of policies in Merlin, and
compared the sizes of the Merlin source policies and the outputs generated by the com-
piler. This comparison measures the degree to which Merlin is able to abstract away
from hardware-level details and provide effective constructs for managing a network.

The Merlin policies implemented are as follows:

1. Baseline. This policy creates pair-wise forwarding rules for all hosts in the net-

'With 24 hosts for each of 12 switches: (24 x 12)2 — (24 x 12) = 82, 656.

70

work. The policy is restricted to only forwarding, and does not use network
functions or specify bandwidth constraints. It therefore provides a baseline mea-
surement of the number of low-level instructions that would be needed in almost
any non-trivial application. The Merlin policy is only 6 lines long and compiles

to 145 OpenFlow rules.

. Bandwidth. This policy augments the basic connectivity by providing 10% of traf-
fic classes a bandwidth guarantee of 1Mbps and a cap of 1Gbps. Such a guarantee
could be useful, for example, to prioritize emergency messages sent to students.
This policy required 11 lines of Merlin code, but generates over 1600 OpenFlow
rules, 90 Tc rules and 248 queue configurations. The number of OpenFlow rules
increased dramatically due to the bandwidth guarantees, which required provi-

sioning separate forwarding paths for a large collection of traffic classes.

. Firewall. This policy assumes the presence of a middlebox that filters incom-
ing web traffic. The baseline policy is altered to forward all packets matching
a particular pattern (e.g., tcp.dport = 80) through the middlebox. This policy

requires 23 lines of Merlin code, but generates over 500 OpenFlow instructions.

. Monitoring. This policy attaches middleboxes to two switches and partitions the
hosts into two sets of roughly equal size. Hosts connected to switches in the
same set may send traffic to each other directly, but traffic flowing between the
sets must pass through a middlebox. This policy is useful for filtering traffic from
untrusted sources, such as student dorms. This policy required 11 lines of Merlin

code but generates 300 OpenFlow rules, roughly double the baseline.

. Combination. This policy augments the baseline with a filter for web traffic,
bandwidth guarantees for some traffic classes, and a monitoring policy for some
hosts. This policy is expressed in only 23 lines of Merlin code, but generates

over 3000 instructions for network devices, including OpenFlow and tc rules,

71

and queue configurations.

The results of this experiment are depicted in Figure 7.1. Overall, using Merlin
significantly reduces the effort, in terms of lines of code, required to provision and

configure network devices for a variety of real-world management tasks.

7.2.2 Application Performance

The second set of experiments explore Merlin’s ability to express policies beneficial
for real-world applications. Specifically, they show that bandwidth provisioning and
function placement improves the performance of data center applications. They also

provide a proof-of-concept that Merlin can effectively manage datacenter networks.

Hadoop Hadoop is a popular open-source implementation of MapReduce [17] is
widely-used for data analytics. A Hadoop computation proceeds in three stages: the
system (i) applies a map operator to each data item to produce a large set of key-value
pairs; (ii) shuffles all data with a given key to a single node; and (iii) applies the re-
duce operator to values with the same key. The many-to-many communication used
in the shuffle phase often results in heavy network load, making Hadoop jobs sensi-
tive to background traffic. In practice, this background traffic can come from a variety
of sources. For example, some applications, such as system monitoring tools [75, 74],
network overlay management [37], and even distributed storage systems [75, 18], use
uDP-based gossip protocols to update state. A sensible network policy would be to

provide guaranteed bandwidth to Hadoop and best-effort service to upp traffic.

[x : (ip.src = 192.168.1.1/16 and ip.dst = 192.168.1.1/16 and
ip.proto = 0x06 and tcp.dst = 50060)

-> .*], min(x,100MB/s)

Listing 7.1: Merlin Program for Hadoop Application.

72

The Merlin program used to implement the guarantee for Hadoop traffic is shown
in Listing 7.1. To show its impact, we ran a Hadoop job that sorts 10GB of data from a
corpus of open source texts (e.g., Shakespeare’s plays, etc.), and measured the time to
complete it on a cluster with four servers. The cluster was configured so that all servers

could act as mappers or reducers. The experiment ran under three configurations:

1. Baseline. Hadoop had exclusive access to the network.
2. Interference. The iperf tool injects UDP packets, simulating background traffic.

3. Guarantees. We again injected background traffic, but guaranteed 90 percent of

the capacity for Hadoop.

With exclusive network access, the Hadoop job finished in 466 seconds. With back-
ground traffic causing network congestion, the job finished in 558 seconds, a roughly
20% slow down. With bandwidth guarantees, the job finished in 500 seconds, corre-

sponding to the 90% allocation of bandwidth.

Deep Packet Inspection Merlin programs can also improve application perfor-
mance through the careful placement of network functions. To demonstrate how place-
ment can impact performance, we designed an experiment inspired by recent work on
moving middlebox functionality to end-hosts [20]. We measured traffic latency for a
network under two possible configurations: one in which all traffic is routed through
a Deep Packet Inspection (DP1) middlebox, and one in which ppifunctionality is imple-
mented on end hosts. We implemented the prifunctionality using Click [45].

The experiment network consisted of five machines connected to a single switch.
Two machines were used to generate traffic for which we measured latency. Two ma-

chines were used to generate background traffic. The final machine acted as the pp1

middlebox.

73

Middlebox ———

@ 6l End-Host = |
£
o
s 5 |
(0]
g 4y :
>
2
§ 3| :
s
5 27 f
o

O' ___________ e o B

0 100 200 300 400 500 600 700 800
Throughput (Mbits/s)

Figure 7.2: A Merlin policy inspired by ETTM [20] showing that a centralized mid-
dlebox implementation of deep packet inspection has higher latency than an end-host
implementation.

We measured the latency for sending traffic under increasing network load. To
place load on the network, we used the two background traffic machines. The client
side forked n processes, each continually sending data to the server. We increased the
amount of traffic by increasing the number of processes running concurrently. We
computed the traffic throughput on these machines, and increased the load until we
were unable to measure an increase in throughput. Traffic was generated using the
datacenter traffic distribution identified by Greenberg et al. [29]. To measure latency,
we used a second pair of machines. The client side sent 1000-byte probes to the server,
and the server sent them back.

For each step of increasing load, we took 1000 latency measurements, and com-
puted the 90th percentile. This eliminates extreme outliers due to packet loss and re-
transmission. We ran each experiment three times, and report the average results.

The results are shown in Figure 7.2. When the network is lightly loaded, the per-

74

formance of both systems are comparable. This is as expected, since the computation
performed by end-hosts and the middlebox element are the same. The extra overhead
for the middlebox case, about 0.25ms, is due to the extra hops (to and from the mid-
dlebox) that each packet needs to travel. When the network is heavily loaded, at about
800 Mbits/second, the effects of the middlebox bottleneck become manifest. The la-
tency spikes to over 6 milliseconds, and we see an increasing number of packet drops
and retransmissions. In contrast, the latency for the end-host setup stays constant
at around 0.26 milliseconds. This is a 95% reduction in latency when the network is
heavily loaded.

The results are exactly as one would expect, since one configuration suffers from a
central bottleneck, while the other network configuration distributes the computation.
However, in this case, using the shortest-path heuristic, Merlin compute an optimal

placement for the network function.

Summary

7.2.3 Compilation and Verification

The scalability of the Merlin compiler and verification framework depends on both
the size of the network topology and the number of traffic classes. Our third set of

experiments evaluate the scalability of Merlin under a variety of scenarios.

Compiler The compilation time of the Merlin compiler was measured on three dif-

ferent sets of network topologies.

1. Topology Zoo. The Internet Topology Zoo [35] dataset contains 262 topologies
that represent a large diversity of network structures. We treated each node in

the Topology Zoo graph as a switch, and attached one host to each switch. The

75

Time to Solve (s)

700

600

500

300

Time to solve (ms)

200

100

B

0©
o o
o
[]

100

150

Switches

200

Figure 7.3: Compilation times for Internet Topology Zoo.

15 ¢

1 L

05 ¢t

0

1M

50M 100M 150M 200M
Traffic Classes

(a)

1000
2
S 750 |
>
o
@ 500
e
[}
£ 250 |
l_

0

10K 50K 100K 150K 200K
Traffic Classes

(b)

Figure 7.4: Compilation times for an increasing number of traffic classes in a balanced
tree topology for (a) all pairs connectivity, (b) 5% of the traffic with guaranteed priority.

topologies have an average size of 40 switches, with a standard deviation of 30

switches. We measured the compilation time needed by Merlin to determine

pair-wise forwarding rules for all hosts in each topology. In other words, the

program provides basic connectivity for all hosts in the network. The results are

shown in Figure 7.3.

. Balanced Trees. We used the NetworkX Python software package [59] to gen-

erate balanced tree topologies. In a balanced tree, each node has n children,

except the leaves. We treated internal node as switches, and leaf nodes as hosts.

We varied the depth of the tree from 2 to 3, and the fanout (i.e., number of chil-

dren) over a range of 2 to 24, to give us trees with varying numbers of hosts and

switches. We identified each pair-wise exchange of traffic between hosts as a

76

80 |

2500 [
w w
> 60| o 2000
= =
UO) 40 | UO) 1500 +
= 2 1000 }
e 20| £
E = 500
0 : : : 0 : :
M 50M 100M 150M 200M 10K 50K 100K 150K 200K
Traffic Classes Traffic Classes
(a) (b)

Figure 7.5: Compilation times for an increasing number of traffic classes in a fat tree
topology for (a) all pairs connectivity, (b) 5% of the traffic with guaranteed priority.

separate traffic class. We measured the compilation time for two different pro-
grams for an increasing number of traffic classes. Figure 7.4 (a) shows the time
to provide pair-wise connectivity with no guarantees, and Figure 7.4 (b) shows
the time to provide connectivity when 5% of the traffic classes receive bandwidth

guarantees.

3. Fat Trees. Finally, we used the NetworkX package to generate fat tree topolo-
gies [4]. A fat tree contains a set of pods. Each pod of size n has two layers of
n/2 switches. To each switch in a lower layer, we attached two hosts. Each pair-
wise exchange of traffic between hosts is a separate traffic class. We increased
the pod size n to create larger numbers of traffic classes. Figure 7.5 (a) shows the
compilation time to provide pair-wise connectivity with no guarantees, and Fig-
ure 7.5 (b) shows the time to provide connectivity when 5% of the traffic classes
receive bandwidth guarantees. To provide more detail for fat tree topologies,
Figure 7.6 shows a sample of topology sizes and solution times for various traffic

classes, along with a finer-grained accounting of compiler time.

The results in Figure 7.3 show that for providing basic connectivity, Merlin scales

well on a diverse set of topologies. The compiler finished in less than 50ms for the

77

Traffic Classes | Hosts | Switches | LP cons. (ms) | LP soln. (ms) | Best-Effort (ms)

870 30 45 25 22 33

8010 90 80 214 160 36
28730 170 125 364 252 106
39800 200 125 1465 1485 91
95790 310 180 13287 248779 222
136530 370 180 27646 1200912 215
159600 400 180 29701 1351865 212
229920 480 245 86678 10476008 451

Figure 7.6: Number of traffic classes, topology sizes, and details of compilation time
for fat tree topologies with 5% of the traffic classes with guaranteed bandwidth.

majority of topologies, and less than 600ms for all but one of the topologies. To improve
the readability of the graph, we elided the largest topology, which has 754 switches
and took Merlin 4 seconds to compile. In practice, we expect that this task would be
computed offline.

Figures 7.4 and 7.5 show the impact of bandwidth guarantees on compilation time.
As expected, the guarantees add significant overhead. The worst case scenario that we
measured, shown in Figure 7.5 (b), was a network with 184,470 total traffic classes,
with 9, 224 of those classes receiving bandwidth guarantees. Merlin took around 41
minutes to find a solution. Merlin finds solutions for 100 traffic classes with guarantees
in a network with 125 switches in under 5 seconds.

Figure 7.6 shows more detail about where the compiler time is spent. The linear
programming construction column measures how long it takes to create the linear
programming problem. Our prototype implementation writes the problem to a file on
disk before invoking the solver in a separate process. So, much of this time is attributed
to string allocations and file I/O. The LP solution column measures how long it takes
the solver to find a solution to the linear programming problem. As expected, this
is where most of the time is spent as we increase the problem size. The Best-Effort
solution column measures how long it takes to find paths with best-effort guarantees

for the remaining traffic. The compiler spends little time finding paths that do not

78

Time (ms)

21

20

Time (ms)

4000

3000

2000

1000

Time (ms)

21

20

17

| A

e

H

0
0 2000 4000 6000 8000 10000 0 200 400 600 800 1000 0
Number of Statements Number of Regular Expression Nodes

2000 4000 6000 8000 10000
Number of Allocations

Figure 7.7: Time taken to verify a delegated program for an increasing number of
delegated predicates, increasingly complex path expressions, and an increasing number
of bandwidth allocations.

provide guaranteed rates.

Verifying negotiators Delegated Merlin programs can be modified by negotiators
in three ways: by changing the predicates, the path expressions, or the bandwidth al-
locations. We ran three experiments to benchmark our negotiator verification runtime
for these cases. First, we increased the number of additional predicates generated in the
delegated program. Second, we increased the complexity of the path expressions in the
delegated program. The number of nodes in the path expression’s abstract syntax tree
is used as a measure of its complexity. Finally, we increased the number of bandwidth
allocations in the delegated program. For all three experiments, we measured the time
needed for negotiators to verify a delegated program against the original program. We
report the mean and standard deviation over ten runs.

The results, shown in Figure 7.7, demonstrate that program verification is extremely
fast for increasing predicates and allocations. Both scale linearly up to tens of thou-
sands of allocations and statements and complete in milliseconds. This shows that
Merlin negotiators can be used to rapidly adjust to changing traffic loads. Verification
of path expressions has higher overhead. It scales quadratically, and takes about 3.5

seconds for an expression with a thousand elements. However, since path expressions

denote paths through the network, it is unlikely that we will encounter path expres-

79

sions with thousands of nodes in realistic deployments. Moreover, we expect path

constraints to change relatively infrequently compared to bandwidth constraints.

Dynamic adaptation Merlin negotiators support a wide range of resource man-
agement schemes. We implemented two common approaches: additive-increase, mul-
tiplicative decrease (AIMD), and max-min fair-sharing (MmMFs). Both implementations
required two components: a negotiator which ran on the same machine as the sbN con-
troller, and end-host software, which monitors per-host bandwidth usage, and sends
requests to the negotiator.

With A1Mmb, the end-host components send requests to the negotiator to incremen-
tally increase their bandwidth allocation. The negotiator maintains a mapping of hosts
to their current bandwidth limits. When the negotiator receives a new request, it at-
tempts to satisfy the demand. If, however, satisfying the demand violates the global
program, it then exponentially reduces the allocation for the host. After computing the
new allocations, the negotiator generates updated Merlin programs, which are pro-
cessed by the compiler to generate new tc commands that are installed on the end-
hosts.

With mmFs, the end-host components declare resource requirements ahead of time
by sending demands to the negotiator. The negotiator maintains a mapping of hosts to
their demands. When the negotiator receives a new demand, it re-allocates bandwidth
for all hosts. It does this by attempting to satisfy all demands starting with the smallest.
When there is not enough bandwidth available to satisfy any further demands, the left-
over bandwidth is distributed equally among the remaining tenants. Once the new
allocations are computed, the negotiator generates a new program that reflects those
allocations. The new program is processed by the compiler to generate new queue
configurations for switches, and tc commands for end hosts. The queue configurations

ensure that satisfied demands are respected, and the tc commands ensure that the

80

600 \ \ \ \ \ \ 500
550 & 1
500 r d e 400 r
450 | C "

400 |
350 [| |
500 | [
250 [~
200 + |
150 [~
100

300

200

Throughput (Mbits/s)
Throughput (Mbit/s)

100 [=mmnmmnoan g™

(a) (b)

Figure 7.8: (a) AIMD and (b) MMFS dynamic adaptation.

remaining traffic does not exceed the allocation specified by the original policy.
Figure 7.8 (a) shows the bandwidth usage over time for two hosts using the AIMD

strategy. Figure 7.8 (b) shows the bandwidth usage over time for four hosts using the

MMFs negotiators. Host h1l communicates with h2, and h3 communicates with h4. Both

experiments were run on our hardware testbed.

7.2.4 Summary

Overall, these experiments show that the Merlin language can concisely express real-
world programs, and that the Merlin system is able to generate code that achieves the
desired outcomes for applications on real hardware. Merlin can provide connectiv-
ity for large networks quickly and our mixed-integer programming approach used for
guaranteeing bandwidth scales to large networks with reasonable overhead. Negotia-
tors allow the network to quickly adapt to changing resource demands, while respect-
ing the global constraints imposed by the policy. Thus, Merlin strikes a good balance

between expressivity and performance on real-world networks and applications.

81

7.3 Implementation of the EdgeNetraT System

We have developed a prototype implementation of our edge compilation framework
as well as a supporting simulation and testing system. The dyad matching algorithm,
segmented paths and path constraint extensions are implemented atop the Netkar
compiler. The iteration over FDDs to produce dyads is implemented as a 400-line OCaml
module. A 300-line OCaml module serializes the linear programming problems to a
format understood by the Gurobi solver. This serialization module is used by both the
dyad matching back-end (100 lines of OCaml) and the path constraints back-end (115
lines). Syntax extensions to support Circuit NetkAT and segmented paths are another
300 lines of OCaml.

We also develop a simulator for hybrid packet-optical networks as in Section 5.1.
The open-source Linc-OE software switch simulates RoADMs, and supports an API
based on the OpenFlow 1.3 protocol to set up the optical channels. The packet switches
are simulated using the Mininet simulator [49], and we developed a 200-line Python
extension to embed Linc-OE switches in Mininet. To control the switches in the net-
work, we developed a packet-optical OpenFlow controller in Java using the OpenFlow]
library (500 lines of Java). The controller accepts switch forwarding tables as emitted
by compiler and installs them on the simulated switches. The examples in Sections 5.2
and 6.1 have been tested using this simulator.

Finally, we developed a set of tools to generate optical fabrics and test policies based
on network topologies. We use these tools to perform scalability tests on EdgeNetkaT

using a real-world topology, as described in the next section.

82

Figure 7.9: CORONET 60-node optical topology [6].
7.4 Evaluation of the EdgeNetkaT System

We evaluate the EdgeNetkAT compiler on CORONET (Figure 7.9), a real-world optical
topology with 60 nodes that is representative of current carrier networks [6]. The
network stretches across the continental United States with three link-diverse cross-
continental paths. We use this topology to generate realistic optical fabrics and policies
and measure the compiler’s performance on a variety of inputs. All experiments were
run on Dell r620 servers, equipped with two eight-core 2.60 GHz E5-2650 Xeon CPUs

and 64 GB of RAM running Ubuntu 14.04.1 LTS.

7.4.1 Topologies, Fabrics, and Policies

To generate the optical topology, we place a ROADM at each node in the physical

topology. Then we attach packet switches to the ROADMs on the two coasts, using

83

a configurable number of transponder ports. The packet switches constitute a flexible
edge network to use as the target for the generated edge programs. Given this topology,
we generate a range of fabrics and edge policies.

To generate the fabric, we choose a subset of ROADM nodes located along either
coast. From this subset, we randomly choose pairs of nodes (R, R,,), such that each
is on an opposite coast. We then find three paths between R, and R, such that each
path goes over a different physically disjoint cross-continental path. For each such
path, we create a unique optical channel between R, and R,,. Using these channels,
we generate a NetkAT program to implement the fabric. The program matches traffic
incoming on the transponder ports (connected to the packet switches) and places them
on an appropriate channel. The channels are forwarded across the network using the
appropriate paths. At the egress, the program matches optical channels and outputs
them to a transponder port. By increasing the number of coastal ROADMs that we
connect via optical channels we can scale the size of the fabric. Using this fabric, we
can generate policies to test the various parts of the EdgeNetkAT system.

To test the scalability of the basic dyad matching functionality, we generate policies
to provide cross-country connectivity. We start with pairs of nodes (P,, P,) such that
each is a packet switch on opposite coasts. We use NetkAT predicates (as described in
Section 5.3) to separate out and forward a number of traffic classes between each P,
and P, . By connecting increasing number of edge nodes, we can increase the size and

complexity of the policy.

7.4.2 Dyad Generation Scalability

The first step in producing the required edge programs is to convert the fabric and the
policy from NetkAT programs into dyads for the later stages. This computation is the

same irrespective of how the dyads are matched. Figure 7.10(a) shows the time taken

84

3,000 -

— % 150

z g

8 g

EQ,OOO 5 8 <

= £ 100 | :

51,000 - } 2

= g 50 8

: :

© o

O L 1 1 1 1] 0 L 1 1 1 1 }

5 10 15 20 5 10 15 20
Number of edge nodes Number of edge nodes

(a) NetKAT Fabric to Dyad conversion. (b) NetKAT Policy to Dyad conversion.

Figure 7.10: Dyad conversion scalability.

to convert the fabric into dyads using the NetkAT compiler framework. Figure 7.10(b)
shows the time taken to convert the policy into dyads.

The time taken to produce the dyads for the fabric is the largest—nearly an hour
for the largest fabrics. This time dominates the conversion time for the policy (less
than 200 ms). However, one of the motivating constraints is that the fabric is rigid and
changes infrequently, while the policy may change often. Thus the dyad conversion for
the fabric could easily be performed just once and then cached for subsequent changes
to the policy. Moreover, we believe its performance can be further improved by adding

further optimizations to the NetkAT compiler.

7.4.3 Dyad Matching Scalability

The results of running the dyad-matching back-end on increasing fabric and policy
sizes is shown in Figure 7.11. Each graph plots the number of coastal nodes on the X-
axis, and the time taken to complete each stage of the matching process on the Y-axis.
Figures 7.11(a-c) show the time taken to generate the matching problem, the time to
solve the problem, and the time to generate the NetkaT edge programs to implement
the found matching respectively.

The graphical matching approach completes in microseconds, while generating the

85

80| 1 250 |- 1
—e> Graphical —e> Graphical
60 |- = LP i 200 = LP a
& E 150 :
E 40t . £
£ £ 100| 1
= Sl
20 50l |
0f | 0 |
L L L L L L
5 10 15 20 5 10 15 20
Number of edge nodes Number of edge nodes
(a) Time to create matching problem. (b) Time to solve matching problem.
T

—e> Graphical
— LP

- 100 J
3
g
T
g
& 50f 1

L L
5 10 15 20

Number of edge nodes

(c) Time to generate edge programs.

Figure 7.11: Scalability of linear programming and graphical dyad matching.

linear programming problem and solving it takes only hundreds of milliseconds. In ei-
ther case, even very complex changes to the policy across the entire topology can be
handled in a small amount of time. The time penalty paid for the linear programming
approach is made up for by flexibility—generating the extra linear constraints for im-

plementing path constraints takes only 10 lines of OCaml.

7.4.4 Path Constraint Scalability

We can now extend the basic matching evaluation with path constraints. Starting from

the same fabric and policy setup, we add an increasing number of intermediate nodes

86

Time(in s)

to the policy. For each bicoastal pair of nodes (P,, P,) we add an increasing number
of intermediate points drawn from one of the physical paths connecting them. Figures
7.12(a-c) show the time taken to generate the matching problem, the time to solve the
problem, and the time to generate the NetkAT edge programs to implement the found

matching respectively. The baseline case (0 intermediate nodes) is the dyad matching

e
B

I
o

(a) Time to create matching problem.

-0 —o>0
- 2 - 2
—e>4) —e>4
—> 6 2 1r —> 6
8 & 8
51
i g
E 051
il oL
| | | | | | | |
5 10 15 20 5 10 15 20

Number of edge nodes

Number of edge nodes

—o> 0
1,000 | —— J
- —e>4
g —> 6
]
£ 500 1
=
0l |
| | | |
5 10 15 20

(c) Time to generate edge programs.

Number of edge nodes

Figure 7.12: Scalability of matching with path constraints.

approach described in the previous section.

adding more variables and constraints. However, adding this functionality consider-
ably increases the size of the linear programming problems, increasing the time taken

to generate, solve and recover the solution. Though the time penalty is significant in

Using a linear programming solver allows us to support path constraints by simply

87

(b) Time to solve matching problem.

going from the basic to the smallest number of constraints, there are no additional
penalty to increasing the number of intermediate nodes. This is to be expected, since
the majority of the linear programming problem is composed of variables and con-

straints representing the fabric paths, rather than the policy’s intermediate nodes.

7.4.5 Summary

The process for generating edge programs from NetkAT fabric and policy programs can
be broken down into four stages—preprocessing the programs into dyads, formulating
the matching problem, solving the matching problem and finally generating edge pro-
grams from the solutions. The preprocessing step converts the programs into their
dyad representation. Applying this step to the fabric takes the longest amount of time
(on the order of multiple minutes to an hour). However, since our use cases are net-
works where the core fabric is meant to be rigid and change rarely, this step would only
be performed infrequently. Formulation and solution takes on the order of milliseconds
for the basic case, and less than a second if we include path constraints. Generating
the final edge programs takes even less time.

These experiments suggest that EdgeNetkAT could be used to generate edge pro-
grams from network policies, provided the fabric is stable for a relatively long period
of time. This is a reasonable assumption for both the optical circuit networks as well as
other fabrics involving legacy, non-spnN devices [50, 12]. Thus, EdgeNetkAT provides a

practical method for flexible management of heterogeneous networks.

38

CHAPTER 8

RELATED WORK

The preliminary design for Merlin in a workshop paper [71], and then described
the approach in more detail, including an experimental evaluation, in a conference pa-
per [72]. An expanded journal with an expanded discussion of the optimization prob-
lem and negotiator design, additional examples, and more evaluation is under review,
and has been used as the basis of the Merlin-related sections in this document.

The EdgeNetkAT system leverages a number of theoretical advances made in previ-
ous work on NetkAT [5]. In addition we rely on the existing compiler infrastructure for
NetkaT to produce the FDDs that our analysis takes as input [70]. This work has been
published as conference paper that has been the basis for the text on heterogeneous

networks and the description and evaluation of the EdgeNetkAT system.

SsDN controller frameworks oNix was an influential early spbN controller that of-
fered a number of features including slicing and virtualization [48]. These features are
also realized in more recent work on VMware Nsx [47]. Exodus translates sbN poli-
cies into configurations that can be installed on legacy devices [57]. Fibbing developed

approaches for implementing spN-like control using distributed routing protocols [76].

Middleboxes and Packet Processing Functions sIMPLE [64] is a framework for
controlling middleboxes. SIMPLE attempts to load balance the network with respect to
TCcAM and cpuU usage. Like Merlin, it solves an optimization problem, but it does not
specify the programming interface to the framework, or how policies are represented
and analyzed.

The ApLOMB [68] system allows network operators to specify middlebox processing

services that should be applied to classes of traffic. The actual processing of packets is

89

handled by virtual machines deployed in a cloud-based architecture. Merlin is similar,
in that policies allow users to specify packet-processing functions. However, Merlin
does not directly target cloud-services. Moreover, Merlin allocates paths with respect
to bandwidth constraints, while ApLoMB does not.

E2 [61] is a framework that implements common functionality for packet-
processing applications. Similar to Merlin, it provides a declarative policy-language
for traffic management. E2 differs from Merlin, though, in that it is focused on Net-
work Function (NF) management. Users provide NF descriptions, which allow the E2

software to handle tasks such as placement, scaling, and service interconnection.

Bandwidth Control Systems A number of systems in recent years have investi-
gated mechanisms for providing bandwidth caps and guarantees [8, 69, 62, 38], imple-
menting traffic filters [36, 66], or specifying forwarding policies at different points in
the network [25, 28, 55, 32]. Merlin builds on these approaches by providing a unified

interface and central point of control for switches, middleboxes, and end hosts.

Network programming languages There is a large body of work on domain-
specific programming languages for SDN. Examples include Frenetic [25], Nettle [77],
Pyretic [54], NetCore [55], NetKAT [5], Maple [78], and FlowLog [58], among others.
The compilers for these languages translate high-level programs into switch-level for-
warding rules—i.e., they assume that the network consists of sSDN switches that can be
frequently reprogrammed in response to changing conditions.

However, these languages are limited in that they do not allow programmers to
specify middlebox functionality, allocate bandwidth, or delegate policies. An excep-
tion is the PANE [23] system, which allows end hosts to make explicit requests for net-
work resources like bandwidth. Unlike Merlin, PANE does not provide mechanisms for

partitioning functionality and delegation is supported at the level of individual flows,

90

rather than entire policies.
The Merlin compiler implements a form of program partitioning. This idea has
been previously explored in a variety of other domains including secure web applica-

tions [15], and distributed computing and storage [52].

Optical networks The flexibility of sDNs is attractive for optical networks as well.
Recent work has identified a set of challenges that are different from that in packet net-
works [30]. In particular, signal attenuation at long distances is a significant problem
that requires the careful placement of regenerator nodes. Our path constraints exten-
sion finds paths connecting the required regenerator, while previous work has tackled
the problem of where in a network to place these regenerators in the first place [42].
A number of recent efforts have developed architectures and control abstractions
for hybrid packet-optical networks. REACToR incorporates optical circuits into data
center network with the goal of improving performance without sacrificing con-
trol [51]. Another system, OWAN jointly manages the optical and packet layers to
optimize bulk data transfers in wide-area networks [39]. Our work, which focuses on

mechanisms for implementing programs at the edge, is complementary to these efforts.

Edge-fabric distinction Several existing systems are also based on an edge-fabric
distinction. An early paper by Casado et al. [12] proposed an architecture based on a
fabric service model. The same paper discussed the problem of mapping policies to the
edge but did not propose a solution. Panopticon addresses incremental deployment
of SDNs using data structures called Solitary Confinement Trees, which are similar to
our fabrics [50]. However, Panopticon focuses on L2/L3 packet networks in small to
medium scale enterprises, rather physically heterogenous deployments. As mentioned
above, Felix is also based on an edge-fabric distinction and adopts a similar approach

based on NetkAT and FDDs [14].

91

Software synthesis for networks Several recent systems have applied ideas from
program synthesis to networks. Software synthesis is attractive because it offers the
promise of finding general solutions to a wide class of problems, rather than relying
on ad-hoc and possibly brittle solutions to particular problems. Genesis and SyNet
synthesize device-level configurations from high-level policies that incorporate path
and traffic engineering constraints [73, 21]. The EdgeNetkAT approach is also based on
synthesis, but we exploit domain-specific knowledge to produce dyads by analyzing
NetkAT programs, that are then fed to a solver to compute a matching. By doing so,

we cut down the space of possible solutions that a solver has to investigate.

92

CHAPTER 9

CONCLUSION

This dissertation describes the development of a series of domain-specific lan-
guages for managing modern networks based on treating paths through the network
as the core construct for describing network-wide policies. This expands on work on
path-based network programming languages such as FatTire and NetkAT to support
network policies involving bandwidth constraints, heterogenous network devices, and
multiple administrative domains. These languages include Merlin (supporting band-
width and delegation), Circuit NetkAaT (supporting optical circuit networks) and the
EdgeNetkAT compiler for NetkaT (supporting hybrid packet-optical networks). The
compilers and runtimes for these languages have been tested by implementing a vari-
ety of modern applications on realistic networks. Together these languages show that
it is possible to manage modern networks and specify realistic policies using path-
centric, high-level, domain-specific languages.

There are a number of avenues for future work. The Merlin compiler currently uses
an integrality constraint in the generated linear programming problem to produce so-
lutions with a single path for each traffic class. Future work could leverage approaches
to multi-commodity flow that take advantage of multiple paths. Though the Merlin
language is designed to support delegating policies from administrators to tenants, the
compiler under the control of the administrator must verify such refined policies before
they are installed on the network. Using new hardware advances such as Intel’s SGX,
it may be possible to remove dependence on a central compiler by allowing tenants to
run a hardware-attested compiler that verifies and installs refined policies.

For EdgeNetkAT, there are a number of interesting extensions: fault tolerance, load
balancing and more path constraints such as node or edge disjointness. Implementing

these extensions will undoubtedly require further development of the linear program-

93

ming based back-end, or exploring techniques based on counter-example guided induc-
tive synthesis (CEGIS). Finally, the compiler could generate more than just the NetkAT
edge programs. There may be cases where an existing fabric cannot be used to imple-
ment a given policy. In such cases, the compiler could suggest minimal extensions to
the fabric required to support the policy, or conversely, precisely locate portions of the

policy that the fabric cannot support.

94

[1]

2]

[11]

BIBLIOGRAPHY

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Com-
piling, volume 1. Prentice Hall, June 1972.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc., 1993.

S. B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6):509-516, June
1978.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Com-
modity Data Center Network Architecture. In Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, pages 63-74,
August 2008.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic Foundations for
Networks. In Symposium on Principles of Programming Languages, pages 113-126,
January 2014.

Monarch Network Architects. Coronet optical topology. Available at http://
www.monarchna.com/topology.html, October 2006.

Automatic test packet generation. https://github.com/eastzone/atpg.

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards
Predictable Datacenter Networks. In Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 242-253, August
2011.

Cynthia Barnhart, Christopher A Hane, and Pamela H Vance. Using Branch-and-
Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Prob-
lems. Operations Research, 48(2):318-326, March 2000.

Shrutarshi Basu, Nate Foster, Hossein Hojjat, Paparao Palacharla, Christian
Skalka, and Xi Wang. Life on the edge: Unraveling policies into configurations.
In Proceedings of the Symposium on Architectures for Networking and Communica-
tions Systems, ANCS 17, pages 178-190, Piscataway, NJ, USA, 2017. IEEE Press.

Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Static and Dynamic Path Selection
on Expander Graphs: A Random Walk Approach. In Symposium on Theory of
Computing, pages 531-539, May 1997.

95

[12]

[13]

Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric:
A Retrospective on Evolving SDN. In HotSDN, pages 85-90, August 2012.

Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approx-
imation Algorithms for the Unsplittable Flow Problem. In International Work-
shop on Approximation Algorithms for Combinatorial Optimization, pages 51-66,
September 2002.

Haoxian Chen, Nate Foster, Jake Silverman, Michael Whittaker, Brandon Zhang,
and Rene Zhang. Felix: Implementing traffic measurement on end hoses using
program analysis. In ACM SIGCOMM Symposium on Software-Defined Networking
Research (SOSR), March 2016.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and
Xin Zheng. Secure Web Applications via Automatic Partitioning. In Symposium
on Operating Systems Principles, pages 31-44, October 2007.

[16] Julia Chuzhoy and Shi Li. A Polylogarithmic Approximation Algorithm for Edge-

Disjoint Paths with Congestion 2. In IEEE Symposium on Foundations of Computer
Science, pages 233-242, October 2012.

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

[21]

[22]

Large Clusters. In Symposium on Operating Systems Design and Implementation,
pages 137-150, December 2004.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value Store. In
Symposium on Operating Systems Principles, pages 205-220, October 2007.

Yefim Dinitz, Naveen Garg, and Michel X. Goemans. On the Single-Source Un-
splittable Flow Problem. Combinatorica, 19(1):17-41, January 1999.

Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane Brandon, Thomas An-
derson, and Arvind Krishnamurthy. ETTM: A Scalable Fault Tolerant Network
Manager. In Symposium on Networked Systems Design and Implementation, pages
7-21, March 2011.

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T. Vechev.
Network-wide configuration synthesis. CoRR, abs/1611.02537, 2016.

Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C.

96

[23]

(27]

[31]

[32]

Mogul. Enforcing Network-wide Policies in the Presence of Dynamic Middlebox
Actions Using Flowtags. In Symposium on Networked Systems Design and Imple-
mentation, pages 533-546, April 2014.

Andrew Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krish-
namurthi. Participatory Networking: An API for Application Control of SDNs. In
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 327-338, August 2013.

Nate Foster, Arjun Guha, et al. The Frenetic Network Controller. In The OCaml
Users and Developers Workshop, September 2013.

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A Network Programming Lan-
guage. In International Conference on Functional Programming, pages 279-291,
September 2011.

Alan M. Frieze. Disjoint Paths in Expander Graphs via Random Walks: A Short
Survey. In Workshop on Randomization and Approximation Techniques in Com-
puter Science, pages 1-14, October 1998.

Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella. Toward
Software-Defined Middlebox Networking. In Workshop on Hot Topics in Networks,
pages 7-12, October 2012.

P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet Rout-
ing. SIGCOMM Computer Communication Review, 39(4):111-122, August 2009.

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: a scalable and flexible data center network. In Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication,
pages 51-62, 2009.

Steven Gringeri, Nabil Bitar, and Tiejun J. Xia. Extending software defined net-
work principles to include optical transport. [EEE Communications Magazine,
51(3):32-40, March 2013.

Gurobi Optimization Inc. The Gurobi optimizer. http://www.gurobi. com.

T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker. Practical Declarative

97

(33]

[34]

[35]

[36]

(38]

[39]

[41]

[42]

Network Management. In Workshop: Research on Enterprise Networking, pages
1-10, 2009.

Pieter Hooimeijer. Dprle decision procedure library. http://www.cs.virginia.
edu/~ph4u/dprle/.

John Hopcroft and Jeftfrey Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

The Internet Topology Zoo. http://www.topology-zoo.org.

Sotiris Ioannidis, Angelos D. Keromytis, Steven M. Bellovin, and Jonathan M.
Smith. Implementing a Distributed Firewall. In Conference on Computer and Com-
munications Security, pages 190-199, November 2000.

Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-Man: Gossip-based Fast
Overlay Topology Construction. Computer Networks, 53(13):2321-2339, January
2009.

Vimalkumar Jeyakumar, Mohammad Alizadeh, David Maziéres, Balaji Prabhakar,
Albert Greenberg, and Changhoon Kim. EyeQ: Practical Network Performance
Isolation at the Edge. In Symposium on Networked Systems Design and Implemen-
tation, pages 297-312, April 2013.

Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and
Jennifer Rexford. Optimizing bulk transfers with software-defined optical WAN.
In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference, pages
87-100, August 2016.

Dilip Antony Joseph, Arsalan Tavakoli, Ion Stoica, Dilip Joseph, Arsalan Tavakoli,
and Ion Stoica. A Policy-aware Switching Layer for Data Centers. In Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, pages 51-62, August 2008.

Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimizing
the "One Big Switch” Abstraction in Software-defined Networks. In International
Conference on Emerging Networking Experiments and Technologies, pages 1324,
December 2013.

Inwoong Kim, Paparao Palacharla, Xi Wang, Qiong Zhang, Daniel Bihon, Mark D.
Feuer, and Sheryl L. Woodward. Regenerator predeployment in cn-roadm net-

98

works with shared mesh restoration. j. Opt. Commun. Netw., 5(10):A213-A219,
Oct 2013.

[43] Jon Kleinberg and Ronitt Rubinfeld. Short Paths in Expander Graphs. In IEEE

Symposium on Foundations of Computer Science, pages 86—95, October 1996.

[44] Jon M. Kleinberg. Single-Source Unsplittable Flow. In IEEE Symposium on Foun-

[49]

[50]

[51]

dations of Computer Science, pages 68—77, October 1996.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The Click Modular Router. Transactions on Computer Systems, 18(3):263-297, Au-
gust 2000.

Stavros G. Kolliopoulos and Clifford Stein. Approximation Algorithms for Single-
Source Unsplittable Flow. SIAM Journal on Computing, 31(3):919-946, June 2001.

Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,
Bryan Fulton, Jesse Gross Igor Ganichev, Natasha Gude, Paul Ingram, Ethan Jack-
son, Andrew Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin
Pettit, Ben Pfaff, , Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Strib-
ling, Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Net-
work virtualization in multi-tenant datacenters. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2014, pages
203-216, April 2014.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, and Scott Shenker. Onix: A distributed control platform for large-scale
production networks. In 9th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2010, pages 351-364, October 2010.

Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, page 19. ACM, 2010.

Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann.
Panopticon: Reaping the benefits of incremental sdn deployment in enterprise
networks. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14, pages
333-345. USENIX Association, June 2014.

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.
Voelker, George Papen, Alex C. Snoeren, and George Porter. Circuit switching
under the radar with REACToR. In NSDI pages 1-15, 2014.

99

[52] JedLiu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers.

[53]

[62]

Fabric: A Platform for Secure Sistributed Computation and Storage. In ACM
SIGOPS European Workshop, pages 321-334, October 2009.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. SIGCOMM Computer Communication Review,
38(2):69-74, March 2008.

Christopher Monsanto et al. Composing Software-Defined Networks. In Sympo-
sium on Networked Systems Design and Implementation, pages 1-13, April 2013.

Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A Compiler
and Run-time System for Network Programming Languages. In Symposium on
Principles of Programming Languages, pages 217-230, January 2012.

Leonardo De Moura and Nikolaj Bjerner. Z3: An Efficient SMT Solver. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337-340, 2008.

Tim Nelson, Andrew D. Ferguson, Da Yu, Rodrigo Fonseca, and Shriram Krish-
namurthi. Exodus: Toward automatic migration of enterprise network configu-
rations to sdns. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR 15, pages 13:1-13:7. ACM, June 2015.

Tim Nelson, Michael Scheer, Andrew D. Ferguson, and Shriram Krishnamurthi.
Tierless Programming and Reasoning for Software-Defined Networks. In Sympo-
sium on Networked Systems Design and Implementation, April 2014.

NetworkX. https://networkx.github.io.

Haruko Okamura and Paul D. Seymour. Multicommodity Flows in Planar Graphs.
Journal of Combinatorial Theory, Series B, 31(1):75-81, 1981.

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. E2: A framework for nfv applications. In
Symposium on Operating Systems Principles, pages 121-136, October 2015.

Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. FairCloud: Sharing the Network in Cloud Com-
puting. In Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 187-198, August 2012.

100

[63]

[64]

[66]

[67]

Puppet. http://puppetlabs.com.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Min-
lan Yu. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, pages 27-38, August 2013.

Mark Reitblatt, Marco Canini, Nate Foster, , and Arjun Guha. FatTire: Declarative
Fault Tolerance for Software Defined Networks. In HotSDN, August 2013.

Martin Roesch. Snort—Lightweight Intrusion Detection for Networks. In Confer-
ence on System Administration, pages 229-238, November 1999.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
Design and Implementation of a Consolidated Middlebox Architecture. In Sympo-
sium on Networked Systems Design and Implementation, pages 24-38, April 2012.

[68] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-

[71]

[72]

nasamy, and Vyas Sekar. Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service. In Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, pages 13—-24, August 2012.

Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall:
Performance Isolation for Cloud Datacenter Networks. In Workshop on Hot Topics
in Cloud Computing, pages 1-8, June 2010.

Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. A fast compiler
for NetKAT. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, pages 328-341. ACM, September 2015.

Robert Soulé, Shrutarshi Basu, Robert Kleinberg, Emin Giin Sirer, and Nate Fos-
ter. Managing the Network with Merlin. In Workshop on Hot Topics in Networks,
November 2013.

Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Giin Sirer, and Nate Foster. Merlin: A Language for Provisioning
Network Resources. In International Conference on Emerging Networking Experi-
ments and Technologies, December 2014.

Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Genesis: Synthesizing
forwarding tables in multi-tenant networks. In POPL, pages 572-585, 2017.

101

[74]

[75]

[76]

[77]

(78]

Rajagopal Subramaniyan, Pirabhu Raman, Alan D. George, Matthew A. Radlin-
ski, and Matthew A. Radlinski. GEMS: Gossip-Enabled Monitoring Service for
Scalable Heterogeneous Distributed Systems. Cluster Computing, 9(1):101-120,
January 2006.

Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A Ro-
bust and Scalable Technology for Distributed System Monitoring, Management,
and Data Mining. Transactions on Computer Systems, 21(2):164-206, February
2003.

Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rexford. Cen-
tral Control Over Distributed Routing. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM 2015, pages 43-56.
ACM, August 2015.

Andreas Voellmy and Paul Hudak. Nettle: Taking the sting out of programming
network routers. In 13th PADL, volume 6539 of LNCS, pages 235-249, 2011.

Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.
Maple: Simplifying SDN Programming Using Algorithmic Policies. In Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, pages 87-98, August 2013.

102

