Erratum: Probabilistic Models for
Linear Programming

M. J. Todd *
October 28, 1997

In this paper, published in Mathematics of Operations Research, Vol. 16,
No. 4, pp. 671-693, I proposed various models for generating random linear
programming problems and investigated several properties of these models,
including the probability that the feasible region is bounded, the distribution
of the distance from a particular interior point to each constraint hyperplane,
and some properties of the vertices of the feasible region. Unfortunately, one
of the results about these vertices is incorrect, and this affects some of the
corollaries. Here I describe what is invalid, and explain where the difficulty
arises in the proof.

Theorem 3.6 of the paper claims to give the distribution of the com-
ponents of a vertex of the feasible region of a linear programming prob-
lem generated according to Model 1. This feasible region has the form
{r € R" . Ax = AZ, x > 0}, where each entry of the m X n matrix A
is independently distributed as a standard normal variable. For the theo-
rem, | assumed & = e, the vector of ones. The proof examined a particular
basic solution, and found the distribution of its components conditioned on
its being feasible. However, this distribution unfortunately does not agree
with that of a random vertex, defined as one drawn from the uniform distri-
bution on the vertices of the feasible region, because of subtle conditioning
difficulties.

Consider the situation in the theorem with m = 1 and n = 2. Then
the feasible region is {(z1,%2) : a1 + asxs = a1 + ag, 1 > 0,25 > 0}.
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Both a;’s are standard normal, so nonzero with probability one, and they
are independent. Geometrically, the feasible region is the intersection of the
nonnegative orthant in R? with a line which goes through (1, 1) and has angle
uniformly distributed in [0, 27]. Suppose we want to calculate the probability
that a random vertex has norm at most one.

Let us argue as in the proof of Theorem 3.6. Then we choose a basic
solution, say that with x; basic. This has x; = 1+ as/a;. It is feasible
if either a; and as have the same sign (probability 1/2), in which case its
norm is greater than one, or they have different signs (probability 1/2) and
ay is smaller in absolute value than a; (probability 1/2, independent, giving
a probability for this case of 1/4), in which case its norm is at most one, for a
total probability of 3/4. Conditioned on this being a basic feasible solution,
its norm is at most one with probability 1/3.

Next suppose we consider a random vertex. With probability 1/2; aq
and as have the same sign, and then there are two vertices, each with norm
greater than one. If not, then there is just one vertex, with norm less than
one. Thus the norm of a random vertex is at most one with probability
1/2, which is different from the result obtained before! Hence considering
a particular basis and conditioning on its being feasible conditions the sign
patterns of A, making it twice as likely to have two entries of the same sign,
and therefore decreasing the probability that the norm of the basic solution
is at most one.

This error in Theorem 3.6 luckily does not have too many consequences.
Corollary 3.7 remains true, since the “proof” of the theorem shows that every
basic solution, hence a fortiori every vertex, is nondegenerate with probability
one. Corollary 3.8, concerning the expected distance of a vertex from e, is now
unproved, and quite possibly false, and similarly for the analogous statement
at the end of the second paragraph of Section 4, corresponding to a slightly
modified model. However, the subsection on the expected number of vertices
remains valid, since here we only need the probability that a given basic
solution is feasible, and this is computed correctly.

Theorem 6.1, which is concerned with Model 3 and random linear pro-
gramming problems on the simplex, relevant to Karmarkar’s algorithm, is
likewise unproved and probably false. The remarks following the theorem,
which suggest that there are likely to be circumscribing and inscribing balls
around e whose radii are in the ratio O(y/n) to 1, are still valid if one in-
terprets Z as a particular basic solution, conditioning on its being feasible,
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rather than as a random vertex. Thus the argument, while not rigorous, still
provides some indication of why Karmarkar’s algorithm tends to work much
better than the worst-case analysis guarantees.



