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Thiamin (Vitamin B1) is made from a coupling a thiazole and a pyrimidine unit, 

which are assembled separately. Studies have shown that the biosyntheses of thiazole 

and pyrimidine are different in prokaryotes versus eukaryotes. Understanding of 

thiamin biosynthesis is still incomplete and a lot of new discoveries relating to the 

enzymes in its biosynthesis have been explored in depth revealing new mechanisms 

and enzymology. 

 

In prokaryotes, five different enzymes are known to be directly involved in thiamin 

thiazole biosynthesis. The in vitro reconstitution of this enzymatic pathway has been 

achieved and detailed insights have been obtained, however, the very small quantity of 

product produced in this in vitro reconstitution prevented direct characterization of its 

structure. We were able to study the last few steps on the prokaryotic thiamin thiazole 

pathway in greater detail, and elucidate the structure of the final product of the 

thiazole synthase to be the thiazole tautomer phosphate. We were also able to assign 

function to a gene involved in aromatization of the unstable thiazole tautomer 

phosphate to the thiazole carboxylate phosphate.  

 

We also knew that a single gene product ThiC converts amino-imidazole 



 

ribonucleotide, an intermediate in the purine nucleotide biosynthesis, to HMP, using a 

complex rearrangement reaction. This enzyme had been very difficult to isolate and 

study biochemically because it was air-sensitive and its cofactors were unknown. We 

recently were able to show that it was a [4Fe-4S] cluster containing enzyme, and 

belonged to the radical SAM family. The 4Fe-4S cluster binding motif (CX2-CX4-C) 

of ThiC is different from the motif (CX3-CX2-C) conventionally used by the other 

established members of this family. With the pure protein with a well-reconstituted 

Fe-S cluster, we were able to achieve remarkable enhancement in activity in vitro, in a 

defined biochemical system. True products of this reaction were thus identified to be 

HMP-phosphate and 5’-deoxyadenosine. We were also able to establish the fate of all 

the C atoms of the substrate, and have other insights into the mechanism of this 

complex enzyme with regard to the unprecedented rearrangement it brings about. 

Further mechanistic characterization of the remarkable rearrangement reaction 

catalyzed by ThiC is in progress. 
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CHAPTER 1 

 

Exploring prokaryotic thiamin biosynthesis: mechanistic studies on thiamin 

thiazole synthase and pyrimidine synthase. 

1.1 Introduction: 

Thiamin-pyrophosphate is a very important coenzyme in living systems with a 

fundamental role in cellular metabolism1. Prokaryotes and some eukaryotes can 

biosynthesize thiamin, while humans cannot and have a required dietary allowance of 

1.4 mg/ day.  It serves as an indispensable coenzyme in enzymatic cleavages of 

carbon-carbon bonds in α,β-dicarbonyl compounds and α-hydroxycarbonyl 

compounds and is involved in the functioning of many enzymes involved in basic 

metabolism like pyruvate decarboxylase, α-ketoacid dehydrogenase complexes, 

transketolase, pyruvate oxidase, acetolactase synthase and pyruvate oxidoreductases2. 

A deficiency of thiamin in the human diet causes the disease states known as Beri-Beri 

or Werninke-Korsakoff syndrome, both of which can be fatal3 and is also a frequent 

complication of alcoholism. Thiamin was the first vitamin to be identified in the late 

nineteenth century4. The chemical mechanism of action of thiamin pyrophosphate was 

discovered in the mid-twentieth century by R. Breslow when he observed the rapid 

exchange of the C2-hydrogen of the 3,4-dimethylthiazolium salt by deuterium in 

neutral D2O5. The formation of a ylide-like species on the thiazole ring of thiamin 

pyrophoshate facilitates the stabilization of a negative charge on the molecule with 

which the C2-carbanion forms an adduct, thus playing the role of an electron sink.  

 

Considering its fundamental cellular functions, it was surprising that the mechanistic 

understanding of thiamin biosynthesis was at its infancy even a decade earlier. 
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However, recent advances in the mechanistic understanding of the biosynthesis of 

thiamin reveal a spectacular collection of novel and unique biochemical strategies 

employed by Nature in the production of this seemingly simple molecule6, which 

explains the decades of effort that was involved in the process.  

 

1.2 Background 

1.2.1 Proteins and pathways of prokaryotic thiamin biosynthesis: Thiamin is made 

from a thiazole ring and a pyrimidine ring which are coupled in the final step (Figure 

1.1). Each of the two components are made by separate pathways in prokaryotes and 

eukaryotes, thus vastly increasing the diversity of chemical biology involved in the 

biosynthesis of thiamin in living systems.  

 

Figure 1.1: The pyrimidine and thiazole rings of thiamin are biosynthesized 

separately and then coupled together enzymatically to form thiamin phosphate, and 

further phosphorylated to form thiamin pyrophosphate, the active form of the cofactor.  

 

The two rings are coupled in a penultimate step in the biosynthesis of the cofactor to 

form 3 by thiamin phosphate synthase (ThiE7 in prokaryotes, THI6p8 in eukaryotes), 

which is then pyrophosphorylated in the final step to form the active form of thiamin 

in vivo – thiamin pyrophosphate 4.  

The bacterial thiamin biosynthesis and metabolism pathway involves many enzymes 

which have interesting roles and novel chemistry. The genes involved in thiamin 
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biosynthesis, salvage, and transport are scattered throughout the chromosome. Thus 

far, genes that have been identified in E. coli and in S. typhimurium comprise three 

operons and four single gene loci. The components of the pathway by which thiamine  

pyrophosphate is biosynthesized in B. subtilis and E. coli are shown in Figure 1.2. The 

two routes are mostly the same, except glycine is used in B. subtilis and tyrosine is 

used in E. Coli. for making the dehydroglycine. 

 

Figure 1.2: Thiamine biosynthetic proteins and their precursors in B. subtilis and E. 

Coli. 

 

1.2.2 Prokaryotic thiamin thiazole biosynthesis: The biosynthetic pathway of the 

thiazole in prokaryotes utilizes 1-deoxy-D-xylulose-5-phosphate (DXP), glycine and 
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cysteine as its precursors. DXP synthase (Dxs) catalyzes the condensation of 

glyceraldehyde 3-phosphate (G3P) and pyruvate to give DXP and interestingly utilizes 

thiamin pyrophosphate as a cofactor9,10. DXP or DX is also required for the 

biosynthesis of pyridoxal11 and for the biosynthesis of terpenes by the nonmevalonate 

pathway12,13.  

 

Thiazole biosynthesis requires five essential protein14,15 – a small sulfur carrier protein 

ThiS16 , an acyl adenylation protein ThiF, a cysteine desulfurase NifS 17, a glycine 

oxidase ThiO18 and a thiazole synthase ThiG which brings together all the components 

to make the 5-membered ring.  

Figure 1.3: Mechanism of thiazole biosynthesis in B. subtilis 

 

As shown in Figure 3, DXP 1 forms an imine with lysine 96 of the thiazole synthase. 

This imine then tautomerizes to aminoketone 3. Addition of ThiS-thiocarboxylate 6, 
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formed separately by reactions catalyzed by ThiF and NifS, to the ketone of 3 gives 7, 

which undergoes an S/O acyl shift to 8 followed by loss of water to give 9. 

Elimination of ThiS gives 12. Addition of the thiol of 12 to the glycine imine, formed 

by ThiO-catalyzed oxidation of glycine, gives 13. Cyclization via a transimination 

gives 14, which could then aromatize by protonation/deprotonation to give 16 or by 

decarboxylation to give 15.  

 

1.2.3 Scope of research in thiazole biosynthesis: The late steps (12 to product) in the 

biosynthesis have not yet been experimentally characterized. This is mainly because 

the amount of thiazole produced in this complex reaction is very small. Reliable 

characterization has to be done by converting it to thiamin phosphate and then by 

oxidation to the fluorescent compound thiochrome phosphate which can then be easily 

detected. We attempt to address these steps in prokaryotic thiazole biosynthesis – to 

characterize the final product of the thiazole synthase ThiG and investigate whether 

there are other other steps that we have not been able to probe because our method of 

analysis of thiazole was indirect and relied on derivatization to thiochome phosphate.  

 

1.2.4 Prokaryotic thiamin pyrimidine biosynthesis: The biosynthesis of the pyrimidine 

moiety of thiamin occurs by a complex enzymatically catalyzed rearrangement of 

aminoimidazole ribotide. This remarkable reaction had been observed and has existed 

in literature for quite a while19,20,21, but the mechanistic analysis had not been explored 

thus far in great detail. Only a single gene has been identified by mutagenesis studies 

(ThiC). The reaction was reconstituted in cell free extract at low levels. Yield of this 

reaction was enhanced by SAM, reduced nicotinamide and by the addition of cell free 

extract from wild type E. coli, suggesting additional proteins may be involved19. The 
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results of a comprehensive carbon and hydrogen labeling studies, carried out using this 

system, are shown in Figure 1.4.  

 

  

 

 

 

 

 

Figure 1.4: Summary of the labeling studies on the biosynthesis of thiamin 

pyrimidine, catalyzed by ThiC.  (a) C-labeling pattern of HMP-P derived from AIR (b) 

H-labeling pattern of HMP-P derived from AIR and solvent 

 

Although these results clearly established this reaction as the most complex unsolved 

rearrangement in primary metabolism, its mechanistic details remained unclear. 

Recently, successful reconstitution of this reaction using purified ThiC enzyme has 

been carried out in a defined biochemical system and its cofactor requirements and 

reaction products have been established with clarity. It was further structurally 

characterized by solving a crystal structure for the protein with imidazole ribose, a 

substrate analog bound in the active site. ThiC is a radical SAM enzyme has a 

conserved tri-cysteine motif (CX2-CX4-C), requires anaerobic conditions for robust 

(a) 

(b) 
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activity and utilizes SAM as a substrate rather than a cofactor, producing 

5’deoxyadenosine in a 1:1 ratio with the product HMP-P22. 

 

1.2.5 Scope of research in pyrimidine biosynthesis: Though we have established a 

robust reconstitution system for HMP-P biosynthesis using ThiC, we have yet to delve 

into detailed mechanistic questions. The radical-induced rearrangement is 

unprecedented and many questions remain to be answered. The fate of C1 and C3 of 

the ribose ring has to be established. The catalytic role of the 5’deoxyadenosyl radical 

produced by SAM and the [4Fe-4S] cluster in the reaction that initiates the reaction by 

H-abstraction needs to be established. Whether this is from the protein or substrate is 

yet to be determined. With the protein active site being determined by the crystal 

structure, identification of conserved active site residues has enabled us to do 

mutational analysis. Different active site mutants may be made to probe the reaction 

being carried out to varying extents. Studying of these mutants to trap intermediates 

on the biosynthetic pathway and identify the mechanistic pathway of ThiC remains to 

be carried out.  

 

Interestingly, biosynthesis of the pyrimidine moiety is different in S. cerevisiae and 

other fungi and is greatly unexplored yet. The gene product THI5p that has been 

identified to be responsible for making the thiamine pyrimidine is found to exist in one 

to five copies in organisms, each gene varying very slightly from the other in primary 

sequence. Preliminary in vivo research indicates histidine and pyridoxal phosphate 

(PLP) are used as substrates by the gene product THI5p (Figure 1.5)23. The activity of 

this protein has not been reconstituted in vitro and the mechanism of the reaction is not 

understood. 
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Figure 1.5: HMP biosynthesis in S. cerevisiae from PLP and histidine. 

 

Some of these directions of thiamin biosynthesis have been addressed in the following 

chapters of this thesis. 
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CHAPTER 2 

 

Biosynthesis of the thiamin thiazole in Bacillus subtilis: Identification of the 

product of the thiazole synthase-catalyzed reaction* 

 

2.1 Introduction 

Thiamin pyrophosphate (TPP) is an essential cofactor in all living systems1,2. Most 

prokaryotes and eukaryotes biosynthesize TPP, but humans cannot and require it 

(1.4mg/day) from dietary sources3. TPP consists of a thiazole ring attached to a 

pyrimidine ring. The biosynthesis of TPP involves separate enzymatic routes for 

producing each of these heterocycles. Furthermore, these enzymatic routes for 

production of the thiazole ring and the pyrimidine ring are different in prokaryotes and 

eukaryotes. The early steps in the biosynthesis of the thiamin thiazole in B. subtilis 

have been studied extensively and the mechanism outlined in Figure 1 now has 

substantial experimental support.4-11 In this mechanism, DXP 1 forms an imine with 

lysine 96 of the thiazole synthase. This imine then tautomerizes to aminoketone 3. 

Addition of ThiS-thiocarboxylate 6, formed separately by reactions catalyzed by ThiF 

and NifS, to the ketone of 3 gives 7, which undergoes an S/O acyl shift to 8 followed 

by loss of water to give 9. Elimination of ThiS gives 12. Addition of the thiol of 12 to 

the glycine imine, formed by ThiO-catalyzed oxidation of glycine, gives 13. 

Cyclization via a transimination gives 14, which could then aromatize by 

protonation/deprotonation to give 15 or by decarboxylation to give 16. The late steps 

(12 to product) in the biosynthesis have not yet been experimentally characterized. 

 
*Reproduced with permission from [Amrita Hazra, Abhishek Chatterjee and Tadhg P. Begley, J. 

Am.Chem.Soc. 2009 131 (9) 3225-3229)]. Copyright [2009] American Chemical Society 
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Figure 2.1: Currently proposed mechanism for the formation of the thiamin thiazole 

in B. subtilis. The steps in the mechanism have been validated by MS and NMR 

analysis till intermediate 12. The later steps of the reconstitution (13 to thiazole 

product) have not been validated.  

 

It was not possible previously to directly characterize the final product of thiazole 

biosynthesis because our initial reconstitution yielded very low levels of thiazole and 

required a highly sensitive but indirect assay for product detection. This assay 

involved alkylation of the thiazole product with 4-amino-5-hydroxymethyl-2-

methylpyrimidine pyrophosphate (HMP-PP) 17, followed by the oxidation of the 

resulting thiamin phosphate 18 to the highly fluorescent thiochrome phosphate 19 

(Figure 2.2). 

Since thiazole phosphate 15 was, at that time, the only identified substrate for the 

well-characterized thiamin phosphate synthase, it seemed reasonable to assume that 
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Figure 2.2:  Alkylation of the thiazole product with pyrimidine 17, followed by the 

thiochrome assay to form thiochrome phosphate. 

 

thiochrome phosphate formation was a reliable way to measure the formation of this 

thiazole.7 The amount of thiazole formed in a reconstitution reaction was measured by 

quenching the reaction at increasing timepoints and converting the thiazole formed to 

thiochrome phosphate (Figure 2.3) 

 

However, the possibility remained that 14 or 16 could also be substrates for thiamin 

phosphate synthase, thus leaving unresolved the true identity of the reaction product of 

the bacterial thiazole synthase. Here we describe an improved reconstitution procedure 

which enables us to directly characterize the product of the bacterial thiazole synthase 

as the thiazole tautomer 14. 
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Figure 2.3: A) HPLC chromatogram showing the time-course for the thiazole 

reconstitution reaction using the thiochrome assay. (Reaction times = 0min, 1 min, 2 

min, 10 min and 30min). B) Plot of product formation (as measured by peak area from 

the chromatogram) versus time.  

 

The unexpected stability of 14 permits its characterization by 1-D and 2-D NMR 

studies and clarifies the later steps of the thiazole biosynthetic pathway in B. subtilis.  

 

2.2 Results/ Discussion 

2.2.1 The product of thiazole biosynthesis is not thiazole phosphate.  

The previously reported reconstitution procedure was optimized and scaled up to 

produce larger quantities of the thiazole product. His-tagged proteins ThiF, NifS, ThiO 

and ThiSG were overexpressed in E. coli BL21(DE3). ThiS-COOH (in complex with 

ThiG), NifS and ThiF were incubated with L-cysteine 5 in the presence of 

dithiothreitol and ATP to form ThiS-COSH 6. This was then added to DXP 1 and 

glycine 10 in the presence of ThiO and ThiG to produce the product of the thiazole 
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synthase-catalyzed reaction. The resulting reaction mixture was heat denatured, 

filtered and analyzed by reverse phase HPLC (Figure 2.4).  

 

Figure 2.4: HPLC analysis of the product of the bacterial thiazole synthase reaction 

mixture. A - The enzymatic reaction mixture, B - Thiazole phosphate 15, the 

previously assumed reaction product. 

 

The product of the reconstitution (peak A) was readily detected and did not comigrate 

with an authentic sample of thiazole phosphate 15 (peak B). The peak A compound 

had a UV absorption maximum at 300 nm and when treated with the pyrimidine 17 in 

the presence of thiamin phosphate synthase followed by thiochrome derivitization 

(Figure 2.2) produced a fluorescent product, which comigrated with an authentic 

sample of thichrome phosphate 19 (Figure 2.5). This experiment clearly demonstrates 

that the product of the thiazole reconstitution is not the anticipated thiazole phosphate 

16. 

15 
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Figure 2.5: HPLC analysis showing the conversion of the peak A compound to 

thiochrome phosphate (red trace). 

 

2.2.2 Isolation and characterization of the Peak A compound 

The most direct way to identify the Peak A compound was to compare its 

chromatographic behavior with that of authentic samples of thiazoles 14 and 16, the 

two most likely alternative products of the bacterial thiazole synthase-catalyzed 

reaction. Access to these compounds was greatly facilitated by our recent 

demonstration that species 24 and 25 copurify with the Saccharomyces cerevisiae 

thiazole synthase, an enzyme that catalyzes very different chemistry.12,13 Release of 

these metabolites from the S. cerevisiae thiazole synthase by heat denaturation, 

followed by purification by reverse-phase HPLC and treatment of these metabolites 

with nucleotide pyrophosphatase, generated authentic samples of the required 

reference compounds (Figure 2.6). 
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Figure 2.6: Procedures for the production of reference compounds 14 and 16 

 

HPLC analysis, by strong anion-exchange, clearly demonstrated that the Peak A 

compound comigrated with 14 (Figure 2.7 a).  

 

 

 

 

 

 

 

 

 

Figure 2.7: (a) - HPLC analysis of the thiazole synthase product (pink) and reference 

compounds 14 (orange) and 16 (blue). (b) - HPLC analysis of the dephosphorylated 

product of the thiazole synthase (pink) catalyzed reaction and reference compounds 22 

(green) and 23 (orange).  

 

16
16
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To further confirm this identity, 14, 16 and the Peak A compound were 

dephosphorylated by treatment with alkaline phosphatase and the resulting alcohols 

were reanalyzed by reverse phase HPLC. Again, the dephosphorylated Peak A 

compound comigrated with 22, the dephosphorylated product of 14 (Figure 2.7 b).  

The thiazole tautomer 14 (Peak A compound) is difficult to isolate in quantities 

suitable for NMR analysis because it has to be purified out by HPLC, buffer 

exchanged into a volatile buffer, and then the buffer has to be lyophilized to obtain 

sufficient quantities of 14. However, 14 decomposes extensively during the later 

stages of lyophilization presumably due to pH changes that occur during the 

lyophilization process. No cryoprotectants 18 could be used during lyophilization as 

added components would interfere with the NMR signals. The dilute samples of 14 

used for the HPLC analysis however did not show this decomposition. Hence, alcohol 

22 which is relatively stable during lyophilization, could be isolated in sufficient 

quantities and was used for spectroscopic analyses. 1D 1H- and 2D-1H-dqf-COSY 

spectra were collected, which are fully consistent with structure 22, Figure 2.8.  

 

Optimization of the complex reaction catalyzed by the bacterial thiazole synthase 

allowed for the unequivocal identification of the reaction product as the thiazole 

tautomer 14 rather than the thiazole 16. This identification underscores the problem of 

identifying trace metabolites by enzyme-catalyzed derivatization, even when the 

derivatizing enzyme has been very well-studied. The stability of compounds 14 and 22 

is surprising, as thiazole tautomers should readily aromatize. However, 22 is stable in 

the experimental time scale of purification and buffer- exchange by HPLC over 10 

hours and lyophilization over 48 hours. This stability suggests that an as yet 

unidentified enzyme may be involved in the catalysis of this aromatization reaction.  
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Figure 2.8: (a) 1H-NMR analysis of the dephosphorylated Peak A compound 22. The 

DXP sample used was labeled with 13C on the methyl group (unrelated reasons) hence 

the additional splitting of the H2/H3/H4 protons. (b) Cross-peak for H1 (6.02 ppm) and 

H2/H3/H4 (2.2 ppm and 2.4 ppm) observed in the 2-D dqf-COSY experiment. (c) 

Cross-peak for H1 (6.02 ppm) and H5 (6.22 ppm) observed in the 2-D dqf-COSY 

experiment. (d) Cross-peak for H1 (6.02 ppm) and H5 (4.24 ppm) observed in the 2-D 

dqf-COSY experiment. 

(a) 

(b) 
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Figure 2.8 (Continued): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

(d) 
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2.3 Conclusions 

The structure of the product of the bacterial thiazole synthase had remained elusive to 

us because of its indirect detection by thiochrome derivatization. We were able to 

obtain conditions for the direct detection of the product of the thiazole biosynthesis 

reaction by UV-Vis while separating it out by HPLC and showed that the product of 

bacterial thiazole synthase was not the thiazole phosphate. Further characterization of 

the product revealed a very unusual molecule, the tautomer form of the thiazole 

carboxylate phosphate. This molecule is surprisingly stable, as it would be expected to 

easily tautomerize by loss of a proton or the carboxy group to form the thiazole 

carboxylate phosphate or the thiazole phosphate respectively. But it survives on the 

purification and characterization timescale. This opens up questions about the stability 

and aromaticity of heterocycles, and scope for the synthesis of this novel molecule. It 

also reiterates the importance of direct detection of biosynthetic metabolites to identify 

each step on the pathway. The stability of the 14 suggests the presence of another 

enzyme for its aromatization to either 15 or 16 
 

2.4 Experimental Methods 

2.4.1 Source of Chemicals: 

All chemicals and snake venom nucleotide pyrophosphatase were purchased from 

Sigma-Aldrich Corporation (USA) unless otherwise mentioned. Calf intestinal 

phosphatase was obtained from New England Biolabs. LB medium was obtained from 

EMD Biosciences. Kanamycin, ampicillin and IPTG were purchased from 

LabScientific Inc. NTA resin was the NTA superflow by Qiagen. The microcon 

membrane filters were from Millipore. Analytical HPLC (Agilent 1100 instrument) 

was carried out using a Phenomenex Gemini C18 110A (150x4.6 mm, 5 μm ID) 
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reverse phase column and a Phenosphere Strong Anion-Exchange (SAX) 80A 

(250x4.6 mm, 5 μm ID) column. HPLC purifications were carried out using a semi-

prep Supelco LC-18-T (250x10 mm, 5 μm ID) column. HPLC grade solvents were 

obtained from Fisher Scientific. Previously synthesized stock of [1-13C]-DXP 14 was 

used as the substrate of the thiazole reconstitution reactions. 

 

2.4.2 Overexpression and purification of enzymes:  

ThiSG, ThiF, NifS, ThiO and ThiE: E. coli BL21(DE3) containing the ThiSG 

overexpression plasmid (ThiG is co-purified with ThiS for stability) in pET16b was 

grown in LB medium containing ampicillin (40 μg/mL) with shaking at 37 °C until the 

OD600 reached 0.6. At this point, protein overexpression was induced with isopropyl-

β-D-thiogalactopyranoside (IPTG) (final concentration = 2 mM) and cell growth was 

continued at 15 °C for 16 h. The cells were harvested by centrifugation and the 

resulting cell pellets were stored at -80 °C. To purify the protein, the cell pellets from 

1L of culture were resuspended in 25 mL lysis buffer (10 mM imidazole, 300 mM 

NaCl, 50 mM NaH2PO4, pH 8) and lysed by sonication (Heat systems Ultrasonics 

model W-385 sonicator, 2 s cycle, 50% duty). The resulting cell lysate was clarified 

by centrifugation and the ThiSG protein was purified on Ni-NTA resin following the 

manufacturer’s instructions. After elution, the protein was desalted using a 10-DG 

column (BioRad) pre-equilibrated with 50 mM Tris-HCl buffer, pH 7.8. The 

remaining proteins ThiF (pET22), NifS (pET16), ThiO (pET22) ThiE (pQE32 and 

pREP4) were overexpressed and purified in a similar manner.15,16 NifS, ThiO and ThiE 

were stored in aliquots at -80 °C in 20% glycerol. ThiSG and ThiF were purified 

immediately before use. 
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2.4.3 Reconstitution of the thiazole synthase catalyzed reaction on an analytical scale: 

All solutions were made with 50 mM tris buffer, pH 8. Final concentrations of the 

reactants are given in parentheses. Cysteine (0.35 mM), DTT (0.70 mM), ATP (0.60 

mM) and MgCl2 (3.5 mM) were incubated with purified ThiSG (1.25 μM), ThiF (1.24 

μM)  and 70 μL NifS (1.38 μM) for 1.5 hours. Total volume of this solution was 425 

μL. Glycine (6.50 mM), DXP (0.33 mM), MgCl2 (3.5 mM) and ThiO (6.8 μM) were 

then added to this reaction mixture and the final volume of the reconstitution mixture 

now was 610μL. This mixture was incubated for an additional 2 hours. The reaction 

mixture was then analyzed for product formation using the thiochrome assay (see 

below). In this reconstitution, 16% of the DXP was converted to product. This is a 3-

fold improvement over our previously reported reconstitution, and corresponds to 

about 12 turnovers by the thiazole synthase. 

 

2.4.4 Thiochrome Assay:  

The thiochrome assay involves conversion of the thiazole product of the reconstitution 

to thiamin phosphate (18) and further to thiochrome phosphate. The product of the 

thiazole reconstitution is reacted with HMP-PP (17) (0.5 mM) in the presence of 

thiamin phosphate synthase (ThiE) (1.00 μM). The reaction is allowed to stand at 

room temperature for 2 hours and then quenched with an equal volume of 10% TCA. 

Potassium acetate (50 μL of 4M) is added to 100 μL of the quenched reaction 

followed by oxidative cyclization to thiochrome phosphate (10) using 50 μL of a 

saturated solution of K3Fe(CN)6 in 7M NaOH. The oxidation reaction is neutralized 

after 1 minute with 6M HCl and analyzed by reverse phase HPLC with fluorescence 

detection (excitation at 365 nm, emission at 450 nm). The following linear gradient, at 

a flow rate of 1 mL/min, was used. Solvent A is water, solvent B is 100 mM K2HPO4, 

pH 6.6, solvent C is methanol. 0 min: 100% B; 2 min: 10% A, 90%B; 10 min:  25% 
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A, 15% B, 60% C; 12 min: 25% A, 15% B, 60%; 15 min: 100% B; 17 min: 100%B.  

A time-course for the thiazole reconstitution is shown in supplementary Figure 2.3. 
 

2.4.5 Reconstitution of the thiazole synthase-catalyzed reaction on a preparative 

scale: 

All solutions were made with 50 mM tris buffer, pH 8. Cysteine (0.35 mM), DTT  

(0.70 mM), ATP (0.60 mM) and MgCl2 (3.5 mM) were incubated with purified 

ThiSG  (1.25 μM), ThiF (1.24 μM) and NifS (1.38 μM) for 1.5 hours. Total volume of 

this solution was 1.3 mL. Glycine (6.50 mM), DXP (0.33 mM), MgCl2 (3.5 mM) and 

ThiO (6.8 μM) were added to this reaction mixture and the reconstitution solution now 

had a final volume of 1.8mL. This mixture was incubated for an additional 2 hours. 

The reaction mixture was then analyzed for product formation by reverse phase HPLC 

analysis, with UV detection. The following linear gradient, at a flow rate of 3 mL/min, 

was used: Solvent A is water, solvent B is 100 mM KPi, pH 6.6, solvent C is 

methanol. 0 min: 100% B; 5 min: 10% A, 90% B; 12 min: 25% A, 15% B, 60% C; 18 

min: 25% A, 15% B, 60% C; 22 min: 100% B; 25 min: 100%B. A product, eluting at 

2.8 min was observed. This product did not comigrate with thiazole phosphate (16) 

(Figure 2.4). The compound eluting at 2.8 min was collected and buffer exchanged 

into a low concentration of volatile ammonium acetate buffer by HPLC. The following 

linear gradient was used at a flow rate of 3 mL/min: Solvent A is water, solvent B is 

25 mM NH4OAc, pH 6.6, solvent C is methanol.  0 min: 100% B; 2 min: 10% A, 

90%B; 6 min: 15% A, 20% B, 65% C; 8 min: 15% A,  20% B, 65%; 11 min: 100% B; 

14 min: 100%B. The collected fractions were then pooled and lyophilized to 

successfully obtain the product of the bacterial thiazole synthase. 
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2.4.6 1D-1H NMR and 2D-dqf-COSY NMR analyses 

To prepare the thiazole tautomer alcohol 22 for 1D-1H NMR and 2D-dqf-COSY 

NMR studies, the product 14 that eluted out from the HPLC purification at 2.8min was 

collected and treated with 1 unit of calf intestinal phosphatase for 20 min at room 

temperature to form 22. This was then buffer exchanged into a low concentration of 

volatile ammonium acetate buffer by HPLC. The following linear gradient was used at 

a flow rate of 3 mL/min: Solvent A is water, solvent B is 25 mM NH4OAc, pH 6.6, 

solvent C is methanol.  0 min: 100% B; 2 min: 10% A, 90%B; 6 min: 15% A, 20% B, 

65% C; 8 min: 15% A,  20% B, 65%; 11 min: 100% B; 14 min: 100%B. The collected 

fractions were then pooled and lyophilized to obtain the thiazole tautomer alcohol 22, 

which was then used for 1D-1H NMR and 2D-dqf-COSY NMR studies. A Shigemi 

NMR tube (susceptibility-matched for D2O) was used for all the experiments, which 

were carried out on a Varian INOVA 600 MHz instrument equipped with a 5 mm 

triple gradient inverse-detection HCN probe. 

 

2.4.7 Preparation of HPLC standards of  14, 22, 15 and 23: 

Compound 14 was obtained by the following procedure - S. cerevisiae THI4p 

(thiazole synthase) plasmid was overexpressed in BL21(DE3) cells grown in LB 

media with shaking at 37 °C until the OD600 reached 0.3. At this point, protein 

overexpression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) (final 

concentration = 2 mM) and cell growth was continued at 15 °C for 16 h. The cells 

were not allowed to grow till OD600 reached 0.6, as larger quantities of adenylated 14 

are obtained from THI4p at lower OD’s of the cell culture. The protein was then 

purified by Ni-NTA chromatography at a lower temperature (4°C). It was not desalted 

as the process of desalting results in the loss of the bound small molecules out of the 

protein. As we were interested in higher yields of the small molecules bound, the 
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protein was only eluted by elution buffer and further denatured as follows: THI4p 

from 4 L of culture (~200 mg, 10 mL) was divided into twenty 500 μL aliquots and 

heat denatured (100 °C, 2 minutes). The precipitated protein was removed by 

centrifugation and the supernatants were combined and filtered through a 10 kDa MW 

cut off microcon filter to obtain the stock of small molecules free of all proteins. 

Adenylated 14 was purified by HPLC by observing its absorbance at 254nm and 

300nm using the following linear gradient at a flow rate of 3 mL/min:  solvent A is 

water, solvent B is 100 mM KPi, pH 6.6, solvent C is methanol. 0 min:  100% B; 3 

min: 10% A, 90%B; 17 min: 34% A, 60% B, 6% C; 21 min: 35% A, 25% B, 40% C; 

23 min: 100%B and the collected fractions were pooled. A second HPLC purification, 

using a low concentration of volatile ammonium acetate buffer, was performed on the 

pooled fractions using the following linear gradient at a flow rate of 3 mL/min: 

Solvent A is water, solvent B is 25 mM NH4OAc, pH 6.6, solvent C is methanol.  0 

min: 100% B; 2 min: 10% A, 90%B; 6 min: 15% A, 20% B, 65% C; 8 min: 15% A,  

20% B, 65%; 11 min: 100% B; 14 min: 100%B. The collected fractions were then 

lyophilized to yield micromolar quantities of adenylated 14. The quantity of 14 

obtained could be estimated by quantifying the AMP that would be released in an 1:1 

ratio with the thiazole tautomer phosphate 14 upon treatment with nucleotide 

pyrophosphatase. 14 was then treated with 1 unit nucleotide pyrophosphatase at pH 

7.2 to yield 14 (Figure 2.6) and further with 1 unit calf intestinal phosphatase in 

phosphate buffer, pH 7.8 for 20 min. to yield 22. Adenylated compound 15 is also 

found bound to S. cerevisiae THI4p and 15 was obtained by the same purification 

procedure as described above for the preparation of compound 14.  Compound 23 was 

synthesized by carboxylation of thiazole alcohol 26 using the reported literature 

procedure17. 
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CHAPTER 3 

 

Biosynthesis of the thiamin thiazole in Bacillus subtilis: TenI aromatizes the 

thiazole tautomer generated by B.Subtilis thiazole synthase 

 
3.1 Introduction 

Thiamin is an important cofactor in prokaryotes, lower eukaryotes and plants via a 

complex pathway. The biosynthesis of thiamin in microorganisms has been studied 

extensively and most of the genes involved have been characterized. (Figure 1.1) 

Detailed mechanistic studies have shown that the thiazole ring and the pyrimidine ring 

are biosynthesized by two separate unique mechanisms in bacteria and S. cerevisiae.  

In Bacillus subtilis, the thiazole moiety is formed by an oxidative condensation of 

glycine, 1-deoxy-D-xylulose-5-phosphate (DXP) and cysteine (Figure 2.1)1-3 and 

HMP-PP 17 is produced by rearrangement of aminoimidazole ribonucleotide followed 

by phosphorylation4-6. Thiamin phosphate 18 is then formed by the coupling of the 

pyrimidine and the thiazole heterocycles (Figure 3.1).  

 

Figure 3.1: Product of ThiG 14 is converted to either 15 or 16 and coupled to HMP-

PP to form thiamin phosphate 18 
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A final phosphorylation gives thiamin pyrophosphate, the biologically active form of 

the cofactor. 

 

In B.subtilis and many other bacteria, the genes tenA and tenI were found clustered 

together or fused with the genes involved in thiamin thiazole biosynthesis7. Studies 

indicated the involvement of TenA and TenI in regulation of extracellular enzyme 

production, though both these genes were not essential for the cell growth or 

extracellular enzyme production8. Neither tenA nor tenI  shared any homology with 

any known regulatory proteins. Also, both TenA and TenI are known to be strongly 

Figure 3.2: Gene neighborhood of TenI and ThiE in B. subtilis. In many organisms, 

TenI clusters with the thiamin biosynthesis genes and is found closely associated with 

TenA, which has been annotated as thiaminase II. 

 

repressed by thiamin9. Subsequently, TenA was functionally10 and structurally11 

characterized to be a thiaminase II involved in salvaging 4-amino-5-aminomethyl-2-

methylpyrimidine to HMP-OH. However, no enzymatic role for TenI has been 

reported to date.  

 

Orthologs of TenI have been detected in bacilli, clostridiae and various other classes 

of bacteria but it is found to be less widely distributed than TenA. B. subtilis TenI is a 

22,783 Da protein8 and interestingly, it shares a very strong primary sequence 
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homology with ThiE, the thiamin phosphate synthase particularly in the active site 

region. This strongly suggested that TenI may bind thiamin phosphate or one of the 

heterocyclic components of thiamin, though no thiamin phosphate synthase -like 

coupling activity was seen for TenI12.  A crystal structure for TenI exists with a 

thiazole phosphate modeled into the active site, but the role of thiazole phosphate or 

its association with TenI was stated to be unclear11. In the following chapter, we 

functionally characterize TenI and describe its role in the prokaryotic thiazole 

biosynthesis pathway.  

 

3.2 Results/ Discussion 

3.2.1 TenI accelerates the rate of thiazole formation 

The in-vitro reconstitution of B. subtilis thiazole pathway13 was performed in the 

presence and the absence of TenI. Two sets of reconstitution reactions were set up, 

each one containing His-tagged proteins ThiF, NifS, ThiO, ThiSG and TenI 

overexpressed in E. coli BL21(DE3). ThiS-COOH (in complex with ThiG), NifS and 

ThiF were incubated with L-cysteine in the presence of dithiothreitol and ATP. At this 

point, to one reaction TenI was added, and to the other an equal volume of buffer was 

added. This reaction was allowed to incubate for 1.5 h to form ThiS-COSH. To each 

of the reactions, glycine and ThiO were added.  To quantitate the thiazole, thiochrome 

phosphate would need to be produced which would involve making thiamin 

phosphate, hence HMP-PP and the thiamin phosphate synthase ThiE were added. DXP 

was added to initiate the reaction.  50 μL aliquots of each of the reactions were 

quenched with 10% TCA at time points of 0 min, 1 min, 2 min, 5 min, 10 min, 20 

min, 60 min and 120 min.  

 

 



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Thiochrome analysis of the thiazole reconstitution reaction in the presence 

and absence of TenI. (a), (b), (c) The red trace shows the thiochrome formed in the 

presence of TenI and blue trace shows the formation of thiochrome in the absence of 

TenI at different time points. (d) The rate of formation of thiazole in the presence of 

TenI is higher at initial timepoints of the reconstitution, however the final amount of 

thiazole formed is the same. 

 

The thiamin phosphate formed at each of these timepoints for both the reactions was 

then oxidatively modified in the presence of basic K3Fe(CN)6 to thiochrome 

phosphate, neutralized, filtered and analyzed by fluorescence detection using RP-

HPLC. It could be seen that in the absence of TenI, the initial rate of production of 

thiazole was slower than in the presence of TenI, but the total amount produced at the 

(a) 
(b)

(c) 
(d)



34 

 

end of 60 min was the same (Figure 3.3). Hence, TenI is not necessary for the 

production of thiamin, but its presence accelerates the rate of its production. 

 

3.2.2 TenI does not affect the rate of glycine oxidase ThiO or thiamin phosphate 

synthase ThiE but does affect the rate of the thiazole synthase ThiG reaction 

To analyze TenI’s role in the thiazole reconstitution, the effect of addition of TenI was 

studied on different parts of the reaction. The glycine oxidase activity of ThiO was 

probed in the presence and absence of TenI by monitoring hydrogen peroxide 

formation as previously described14. It was seen  the rate of formation of hydrogen 

peroxide with increasing concentrations of glycine in the presence of TenI was 

identical to the rate in the absence of TenI (Figure 3.4 a).  

 

 

 

 

 

 

 

 

 

Figure 3.4: Blue trace is the reaction in the absence of TenI and pink trace is the 

reaction in the presence of TenI. (a) The presence of TenI does not affect the rate of 

glycine oxidase ThiO. (b) The rate of coupling of HMP-PP and thiazole phosphate by 

thiamin phosphate synthase ThiE is not affected (c) The rate of the thiazole synthase 

ThiG is affected by the presence of TenI 

 

(a) (b) 
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Figure 3.4 (Continued): 

 

 

 

 

 

 

 

 

 

The possible involvement of TenI in the thiazole-HMP-PP coupling reaction by ThiE 

was similarly probed in the presence and absence of the enzyme using the thiochrome 

reaction1. The two reactions were quenched at different time points and the amount of 

thiochrome was quantified by measuring its fluorescence.  TenI was seen to have no 

effect on the rate of coupling of thiazole phosphate to HMP-PP (Figure 3.4 b).  

 

TenI was then added to the reconstitution reaction after formation of ThiS-COSH and 

after addition of glycine and ThiO, right before the step where the thiazole synthase 

ThiG gets involved in the reaction, and the formation of thiazole product was 

monitored by quenching the reaction at time points and monitoring the thiamin 

phosphate formed by the thiochrome assay. A clear increase in the rate of production 

of thiochrome could be seen at the initial stages of the reaction in the presence of TenI 

(Figure 3.4 c). 

 

 

(c) 
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3.2.3 ThiE couples the thiazole phosphate (Thz-P) 15, thiazole carboxylate phosphate 

(Thz-C-P) 16 and the thiazole tautomer phosphate (Thz-T-P) 14 but the coupling is 

fastest for the Thz-C-P 

As mentioned previously, TenI is not required for the formation of thiamin phosphate 

in the in vitro reconstitution system. This would mean that the thiamin phosphate 

synthase, ThiE can couple the Thz-P, Thz-C-P as well as the Thz-T-P with the HMP-

PP to form thiamin phosphate. Also, we noted that the reconstitution in the presence of 

TenI is faster than in its absence and the total amount of thiamin phosphate formed at 

the end of the reconstitution reaction is the same. The effect of the rate difference can 

be explained by the fact that even though ThiE can couple the all three forms of 

thiazole substrate with HMP-PP to form thiamin phosphate and subsequently 

thiochrome phosphate, the rate of coupling of the three substrates varies. To compare 

the rates of coupling for the three thiazole substrates, three separate reaction with 

HMP-PP, MgCl2 and purified ThiE was set up with Thz-T-P 14, Thz-P 15 and Thz-C-

P 16 instead of the Thz-T-P 14 were set. All three reactions were quenched at time 

points of 0, 1, 2, 5,15, 30, 180 min and the thiamin phosphate formed was converted to 

thiochrome phosphate for fluorescence analysis. It could be clearly seen that the 

formation of thiamin phosphate occurred fastest with the Thz-C-P, followed by Thz-P 

and then Thz-T-P during the initial time points and then became equal at 180 min. 

(Figure 3.5). Thus TenI helps to convert the thiazole tautomer phosphate to either 

thiazole carboxylate phosphate or thiazole phosphate, after which ThiE takes this up 

with HMP-PP and makes thiamin phosphate. 
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Figure 3.5: Relative rates of coupling of Thz-T-P 14, Thz-P 15 and Thz-C-P 16 with 

HMP-PP by ThiE 

 

3.2.4 TenI aromatizes the thiazole tautomer to thiazole carboxylate phosphate 

We have shown previously that the product of the B.subtilis thiazole synthase is the 

thiazole tautomer 14 (Figure 2.1)13, which is an unstable molecule with a half life of 

5.3 days at room temperature (unpublished results). As this molecule does not 

spontaneously aromatize to give either Thz-C-P 16 or thiazole phosphate 14, TenI was 

thought to be involved in this aromatization. To test this hypothesis, we needed 

substantial quantities of the substrate 14. However, attempts to synthesize the thiazole 

tautomer 14 have been unsuccessful till date.  

 

 

 

 

Figure 3.6: Making Thz-T-P 14 from 24 
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Our source for 14 yet relies on 24, one of the metabolites that copurifies out with the 

Saccharomyces cerevisiae thiazole synthase, an enzyme that catalyzes very different 

chemistry15,16. Release of these metabolites from the S. cerevisiae thiazole synthase by 

heat denaturation, followed by purification of 24 by RP-HPLC and further treatment 

with nucleotide pyrophosphatase, generated small amounts of an authentic sample of 

the required Thz-T 14 (Figure 3.6).   

 

This was then incubated with TenI, and the UV-Vis profile of the reaction mixture was 

analyzed by RP-HPLC to observe the disappearance of the Thz-T-P (Figure 3.7, Peak 

A) to produce a new peak (Figure 3.7, peak B) that migrated very close to it.   

 

 

 

 

 

 

 

 

 

Figure 3.7: Thz-T-P 14 (peak A) converts to peak B in the presence of TenI 

 

Peak B was confirmed to be Thz-C-P 16 and not Thz-P 15 by comigration 

experiments on the HPLC using synthetically prepared standards of 15 and 16. To 

show that TenI can actually aromatize the product of the thiazole reconstitution 

reaction, a set of reconstitution reactions were performed where TenI was added to 

one reaction and not to the other. The reaction mixtures were analyzed by strong anion 
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exchange HPLC at 295nm. It could be seen that the product of the reconstitution 

reaction without TenI comigrated with the Thz-T 14 standard, whereas the product for 

the reconstitution reaction with TenI comigrated with the Thz-C-P 15 standard (Figure 

3.8). 

 

.  

 

 

 

 

 

 

 

Figure 3.8: Comigration of the product of thiazole reconstitution in the absence of 

TenI (green) with the standard for Thz-T-P (pink) and comigration of the product of 

thiazole reconstitution in the presence of TenI (purple) with the standard for Thz-C-P 

(orange) 

 

To further confirm the reaction product, standards of 14, 15 and the two above 

reconstitution reactions were dephosphorylated by treatment with alkaline phosphatase 

and the resulting alcohols were reanalyzed by reverse phase HPLC. Again, the 

dephosphorylated product of the reconstitution reaction without TenI comigrated with 

dephosphorylated thiazole tautomer alcohol 22 standard, whereas the product for the 

reconstitution reaction with TenI comigrated with thiazole carboxylate alcohol 28 

standard (Figure 3.9).  

 

14 16



40 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Comigration of alkaline phosphatase treated reconstitution reaction 

products - the product of thiazole reconstitution in the absence of TenI (green) with 

the standard for Thz-T-OH 22 (pink) and the product of thiazole reconstitution in the 

presence of TenI (purple) with the standard for Thz-C-OH 28 (orange) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Negative mode ESI-MS of (a) Thz-T-P and (b) Thz-C-P 
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This conversion was verified by a negative mode ESI-MS analysis of the Thz-T-P and 

then of the product when Thz-T-P was treatd with TenI. It can be seen that the starting 

material and the product have the same m/z of 265.9, but the fragmenting pattern is 

different, and the fragmenting pattern of the product matches with that of synthesized 

Thz-C-P (Figure 3.10). 

 

3.2.5 Thiazole carboxylate phosphate associates with TenI and has a dissociation 

constant of 32 μM  

To study the affinity of TenI with Thz-C-P 15, the Kd of the ligand-protein complex 

was determined by isothermal titration calorimetry. 4mM thiazole carboxylate 

phosphate was titrated in using an injector over 25 injections into the calorimeter 

reservoir containing 212 μM TenI and the heat of binding was determined for each 

titration (Figure 3.11 a). From the curve for the heat of binding after the ligand 

saturated the enzyme, the KD was calculated to be 32 μM (Figure 3.11 b). 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: (a) Data showing the heat of binding of the ligand Thz-C-P to the active 

site of TenI and (b) a plot to obtain the dissociation constant of the Thz-C-P with TenI 

(a) (b) 

Kd                               32.83 +/- 5.78

Enzyme Conc.             123.76 +/- 11.78 

Y-intercept                                -49.98 +/- 16.05 

Total binding energy             868.71 +/- 30.98 
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3.2.6 Crystallization of TenI-Thz-C-P Complex (performed by Ying Han and Yang 

Zhang, Ealick group) 

There previously existed a crystal structure for TenI with no small molecule bound to 

the active site (PDB: 1YAD REF). In order to analyze the active site of TenI and to 

look for residues that participate in this aromatization reaction, a crystal structure of 

TenI with the thiazole carboxylate phosphate bound to it was obtained. Crystals of 

ligand free TenI were grown from 1.65 – 1.75 M ammonium sulfate, 100 mM bicine, 

pH 8.7 – 9.6, 2% PEG400 (w/v), and 8 mM L-cysteine by hanging drop vapor 

diffusion method as previously described (1), and were used to obtain the product 

complex by soaking experiments. In order for the product thiazole carboxylate 

phosphate (TCP) to bind, the crystals were first dialyzed into 2.38 M sodium malonate 

(pH 7.0) (Hampton Research) to remove the sulfate ions, by gradually increasing 

sodium malonate concentration and decreasing ammonium sulfate concentration in 30 

steps with 5 min incubation for each step. Subsequently the crystals were soaked 

overnight in 2.38 M sodium malonate, 21.5 mM Bicine (pH 9.0), 0.01% PEG400 

(w/v), 0.5 mM L-cysteine, 4% glycerol and 11.5 mM TCP, followed by flash freezing 

in liquid nitrogen. 

 

X-ray Data Collection and Processing: The X-ray intensity data of the TenI-TCP 

complex were measured at A1 beamline of the Cornell High Energy Synchrotron 

Source (CHESS) using a Quantum 210 CCD detector (Area Detector Systems Corp.). 

Data were collected over 180° using a 10 s exposure time and 1° oscillation per frame 

with a crystal to detector distance of 200 mm. The data were integrated and scaled 

using HKL2000 (2) and the structure was determined and refined (Experimental 

methods). The data processing statistics and refinement statistics are summarized in 

Table 3.1.  
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Structure Determination and Refinement:. The structure of TenI-TCP complex was 

determined by fourier synthesis using previously reported TenI structure (PDB: 

1YAD) as the starting model. First round of rigid-body refinement with the starting 

model by REFMAC5 (3) reduced the R-factor to 0.286 (Rfree 0.294). TCP was 

modeled in based on clear electron density. The model was refined through iterative 

cycles of restrained refinement by REFMAC5 and PHENIX (4), and manual 

rebuilding in Coot (5). Refinement statistics are shown in Table 3.1. 

 

It can be seen that the asymmetric unit contains four monomers of TenI (Figure 3.12). 

The TenI momoner has a (βα)8 barrel fold (REF). Also, as previously reported, the 

most similar structural alignments by DALI search are with proteins from the FMN-

dependent oxidoreductase and phosphate binding enzymes (FMOP) superfamily. The 

FMOP superfamily is characterized by a conserved phosphate binding pocket. The 

highest alignment of TenI was to the B. subtilis thiamin phosphate synthase ThiE, 

however it differs structurally from ThiE because of a critical substitution of Leu119 

in ThiE for Gly119 in TenI, which does not permit the binding of substrates in the 

right conformation for coupling to form the thiamin phosphate. 
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Table 3.1: TenI crystal structure parameters 

Data collection  

Space group C2221 

Cell dimensions    

    a, b, c (Å) 98.05, 105.42, 219.26 

    a, b, g  (°)  90, 90, 90 

Resolution (Å) 50 – 2.23 (2.23 – 2.31)* 

I / sI 18.9 (4.8) 

Completeness (%) 99.8 (100) 

Redundancy 6.1  

Refinement  

Resolution (Å) 50 – 2.23 (2.23 – 2.31) 

No. reflections 55266 

Rwork / Rfree 0.206 (0.247) 

No. atoms  

    Protein 6142 

    Ligand/ion 50 

   Water 427 

B-factors  

    Protein 20.0 

    Ligand/ion 26.7 

    Water 31.5 

R.m.s deviations  

    Bond lengths (Å) 0.010 

    Bond angles (°) 1.4 

*Values in parantheses are for the highest resolution shell  
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Figure 3.12: Assymetric unit of TenI structure contains four monomers  

 

In the active site of the enzyme where the thiazole carboxylate phosphate is bound, 

two histidine residues, His102 and His122 are visible (Figure 3.13).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Stereoview of the active site of the apoenzyme TenI (pink) overlaid with 

the TenI structure with Thz-C-P 16 bound. 
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Upon overlaying the active site of the Thz-C-P bound protein with that of the 

apoenzyme crystal structure, we can see that almost all other residues in the active site 

remain at the same position, except the His122 residue. Also, a water molecule can be 

seen close to the Thz-C-P. It has been observed that His122 has slightly different 

conformations in the four chains of the crystals indicating flexibility of that residue 

inside the active site. This H122Q residue may be responsible for the deprotonation at 

the C-2 position of the thiazole tautomer phosphate and further protonation can occur 

either by water or by the phosphate group of the Thz-T-P16. Site-directed conserved 

mutants of His102 to glutamine (H102Q) and His122 to glutamine (H122Q) were 

made. Both the proteins were purified out using Ni-NTA chromatography and were 

soluble. The mutant H102Q showed activity of conversion of thiazole tautomer to 

thiazole carboxylate phosphate, but the H122Q mutant was mostly dead, as the 

thiazole tautomer was unaffected. The mutants H102A and H122A were also made, 

and H102A shows conversion of thiazole tautomer phosphate to thiazole carboxylate 

phosphate however, the H122A mutant does not show any conversion activity of the 

thiazole tautomer. Further biochemical and kinetic characterization of the protein TenI 

or the mutant H102Q could not be further characterized due to the lack of substrate.  

Thus, the mechanistic proposal for the reaction by TenI is as shown in Figure 3.14. 

We propose that His 122 acts as a base to abstract the H+ from the C-2 position of the 

Thz-T-P 14.  

 

 

 

 

Figure 3.14: Mechanistic proposal for TenI aromatization  
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From the position of His122 and its apparent flexibility in the active site, it seems that 

the His122 residue further provides the proton for reprotonation at the methylene 

position of the thiazole ring (C6 in Figure 3.14). The active structure shows the 

presence of both the His residues, His102 and His122 in the vicinity of Thz-C-P (16) 

which is bound in the active site (Figure 3.15).  

 
  

 

 

 

 

 

 

 

 

 

 

Figure 3.15: His102 and His122 in active site of TenI 

 

If the abstraction of the proton at C2 position has to be done by the His residue(s), it 

appears that the Thz-T-P has an R-stereochemistry at the C2 center.  This is consistent 

with observation for the S. cerevisiae thiazole tautomer-ADP is bound in the active 

site in a configuration such that the His237 (Figure 3.16). The His122 also appears in 

the vicinity of C6 and may be the residue to provide the product with the proton on 

aromatization. However, many structured water molecules appear in the active site 

too, which may be a likely proton donors too as they are spatially closer to the C6. 
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Figure 3.16: Determination of the absolute stereochemistry at C2 of the thiazole 

tautomer. a) Crystal structure of ADT bound to the active site of THI4p. The Arg301 

residue of THI4p interacts with the carboxylate functionality of ADT. b) Proposed 

model for thiazole tautomer-ADP at the active site of THI4p, showing Arg301 

interacting with the carboxylate functionality. In the proposed R configuration of 

thiazole tautomer-ADP, His237 and the beta phosphate of the ADP moiety are suitably 

positioned to catalyze the deprotonation/protonation reactions required for the 

aromatization of thiazole tautomer-ADP ( as observed by A. Chatterjee and C. 

Jurgenson).  

 

3.3 Conclusions 

The functional role of the enzyme TenI has been elusive in thiamin biosynthesis even 

though the gene has been found associated with the thiamin biosynthetic cluster in 

many organisms. We have shown that TenI is the aromatase that takes the product of 

ThiG and aromatizes it to thiazole carboxylate phosphate, which is then further 

coupled to form thiamin phosphate. Further detailed characterization is unfortunately 

limited by the availability of the substrate.  Structural characterization of TenI with the 

product, thiazole carboxylate phosphate bound helped identification of the active site 

and residues that may be involved in the aromatization reaction. Assignment of the 
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role of TenI reveals another interesting step in the complex biosynthesis of thiamin in 

prokaryotes. 

 

3.4 Experimental Methods 

3.4.1 Source of Chemicals: 

All chemicals and snake venom nucleotide pyrophosphatase were purchased from 

Sigma-Aldrich Corporation (USA) unless otherwise mentioned. Calf intestinal 

phosphatase was obtained from New England Biolabs. LB medium was obtained from 

EMD Biosciences. Kanamycin, ampicillin and IPTG were purchased from 

LabScientific Inc. NTA resin was the NTA superflow by Qiagen. The microcon 

membrane filters were from Millipore. Analytical HPLC (Agilent 1100 instrument) 

was carried out using a Phenomenex Gemini C18 110A (150x4.6 mm, 5 μm ID) 

reverse phase column for thiochrome analysis, a Supelco LC-18-T (150x4.6 mm, 3 μm 

ID) column for thiazole reconstitution analysis and a Phenosphere Strong Anion-

Exchange (SAX) 80A (250x4.6 mm, 5 μm ID) column for the anion exchange 

chromatography. HPLC purifications were carried out using a semi-prep Supelco LC-

18-T (250x10 mm, 5 μm ID) column. HPLC grade solvents were obtained from Fisher 

Scientific. Previously synthesized stock of [1-13C]-DXP 14 was used as the substrate of 

the thiazole reconstitution reactions and and Thz-C-P and Thz-C-OH (synthesized by 

Dr. David Hilmey, Begley lab) were used as the reference for TenI product . 

 

3.4.2 Overexpression and purification of enzymes for reconstitution:  

ThiSG, ThiF, NifS, ThiO, ThiE and TenI: E. coli BL21(DE3) containing the ThiSG 

overexpression plasmid (ThiG is co-purified with ThiS for stability) in pET16b was 

grown in LB medium containing ampicillin (40 μg/mL) with shaking at 37 °C until the 
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OD600 reached 0.6. At this point, protein overexpression was induced with isopropyl-

β-D-thiogalactopyranoside (IPTG) (final concentration = 2 mM) and cell growth was 

continued at 15 °C for 16 h. The cells were harvested by centrifugation and the 

resulting cell pellets were stored at -80 °C. To purify the protein, the cell pellets from 

1L of culture were resuspended in 25 mL lysis buffer (10 mM imidazole, 300 mM 

NaCl, 50 mM NaH2PO4, pH 8) and lysed by sonication (Heat systems Ultrasonics 

model W-385 sonicator, 2 s cycle, 50% duty). The resulting cell lysate was clarified 

by centrifugation and the ThiSG protein was purified on Ni-NTA resin following the 

manufacturer’s instructions. After elution, the protein was desalted using a 10-DG 

column (BioRad) pre-equilibrated with 50 mM Tris-HCl buffer, pH 7.8. The 

remaining proteins ThiF (pET22), NifS (pET16), ThiO (pET22) ThiE (pQE32 and 

pREP4) and TenI (pET28b) were overexpressed and purified in a similar manner.15,16 

NifS, ThiO and ThiE were stored in aliquots at -80 °C in 20% glycerol. ThiSG, TenI 

and ThiF were purified immediately before use. 

 

3.4.3 Reconstitution of the thiazole synthase catalyzed reaction on an analytical scale 

(in the presence or absence of TenI): 

All solutions were made with 50 mM tris buffer, pH 8. Final concentrations of the 

reactants are given in parentheses. Cysteine (0.35 mM), DTT (0.70 mM), ATP (0.60 

mM) and MgCl2 (3.5 mM) were incubated with purified ThiSG (1.25 μM), ThiF (1.24 

μM) and 70 μL NifS (1.38 μM) for 1.5 hours. Total volume of this solution was 425 

μL. Glycine (6.50 mM), DXP (0.33 mM), MgCl2 (3.5 mM) and ThiO (6.8 μM) were 

then added to this reaction mixture and the final volume of the reconstitution mixture 

now was 610μL. TenI was added in the reconstitution reaction to a final concentration 

of 10 μM to check for the acceleration of rate of thiazole formation. In the control 

reaction, the same volume of buffer was added into the reaction. This mixture was 
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incubated for an additional 2 hours. For reactions where timepoints for the formation 

of thiazole were being measured, the reaction was quenched at various timepoints like 

0 min, 1 min, 2 min, 5 min, 10 min, 20 min, 60 min and 120 min. The reaction mixture 

was then analyzed for product formation using the thiochrome assay (see below). In 

this reconstitution, 16% of the DXP was converted to product. This is a 3-fold 

improvement over our previously reported reconstitution, and corresponds to about 12 

turnovers by the thiazole synthase. 

 

3.4.4 Thiochrome Assay:  

The thiochrome assay involves conversion of the thiazole product of the reconstitution 

to thiamin phosphate (18) and further to thiochrome phosphate. The product of the 

thiazole reconstitution is reacted with HMP-PP (17) (0.5 mM) in the presence of 

thiamin phosphate synthase (ThiE) (1.00 μM). The reaction is allowed to stand at 

room temperature for 2 hours and then quenched with an equal volume of 10% TCA. 

Potassium acetate (50 μL of 4M) is added to 100 μL of the quenched reaction 

followed by oxidative cyclization to thiochrome phosphate (10) using 50 μL of a 

saturated solution of K3Fe(CN)6 in 7M NaOH. The oxidation reaction is neutralized 

after 1 minute with 6M HCl and analyzed by reverse phase HPLC with fluorescence 

detection (excitation at 365 nm, emission at 450 nm). The following linear gradient, at 

a flow rate of 1 mL/min, was used. Solvent A is water, solvent B is 100 mM K2HPO4, 

pH 6.6, solvent C is methanol. 0 min: 100% B; 2 min: 10% A, 90%B; 10 min:  25% 

A, 15% B, 60% C; 12 min: 25% A, 15% B, 60%; 15 min: 100% B; 17 min: 100%B.   

 

3.4.5 Assay for ThiO activity in the presence and absence of TenI:  

25 mL of assay solution containing 4mM phenol, 100mM 4-amino-antipyrene and 

2units/mL HRP) was made. To 500 uL of the assay solution, 10mM, 5mM, 1mM, 500 
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μM, 250 μM and 100 μM glycine was added and the volume each time was adjusted to 

the 505 uL. To each reaction was added ThiO to a final concentration of 6.6 uM and 

TenI to a final concentration of 10uM to initiate the reaction. A parallel set of 

reactions were similarly done where only ThiO was added to a concentration of 6.6 

uM and buffer was added in place of TenI to initiate the reactions. The rate of ThiO 

was measured with regard to the concentration of glycine in the presence and absence 

of TenI by measuring 500nm constant visible wavelength for 600sec for each sample 

and data for the rate of ThiO for different concentrations of glycine was generated.  

 

3.4.6 Assay for ThiE activity in the presence and absence of TenI: 

437 uM of Thz-P and 485uM HMP-PP were mixed with 10uM ThiE and 10uM TenI  

in a 500uL reaction solution with 2mM MgCl2 . A parallel reaction was set up with 

437 uM of Thz-P and 485uM HMP-PP were mixed with 10uM ThiE and buffer 

instead of TenI  in a 500uL reaction solution with 2mM MgCl2. 100 uL of the two 

solutions were quenched at time points 0min, 0.5min, 1min, 2 min, 5min, 10min and 

20min, thiochrome oxidation of the product was carried out and then fluorescence was 

analyzed by HPLC.  

 

3.4.7 Assay for ThiE activity in the presence and absence of TenI: 

Two sets o thiazole reconstitution reaction as mentioned previously was carried out. In 

one reaction, TenI was added to the reaction just before adding the DXP and in the 

other reaction, same volume of buffer was added to the reaction just before adding the 

DXP. Timepoints were taken at 0min, 1min, 2min, 5min and 10min. 
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3.4.8 Making Thz-T-P 14 and Thz-T-OH 22 from 24: 

Compound 14 was obtained by the following procedure - overexpressed S. cerevisiae 

THI4p (thiazole synthase) protein was denatured as follows: THI4p from 4 L of 

culture (~200 mg, 10 mL) was divided into twenty 500 μL aliquots and heat denatured 

(100 °C, 2minutes). The precipitated protein was removed by centrifugation and the 

supernatants were combined and filtered through a 10 kDa MW cut off microcon 

filter. Adenylated 14 was purified by HPLC using the following linear gradient at a 

flow rate of 3 mL/min:  solvent A is water, solvent B is 100 mM KPi, pH 6.6, solvent 

C is methanol. 0 min:  100% B; 3 min: 10% A, 90%B; 17 min: 34% A, 60% B, 6% C; 

21 min: 35% A, 25% B, 40% C; 23 min: 100%B and the collected fractions were 

pooled. A second HPLC purification, using a low concentration of volatile ammonium 

acetate buffer, was performed on the pooled fractions using the following linear 

gradient at a flow rate of 3 mL/min: Solvent A is water, solvent B is 25 mM NH4OAc, 

pH 6.6, solvent C is methanol.  0 min: 100% B; 2 min: 10% A, 90%B; 6 min: 15% A, 

20% B, 65% C; 8 min: 15% A,  20% B, 65%; 11 min: 100% B; 14 min: 100%B. The 

collected fractions were then lyophilized to yield micromolar quantities of adenylated 

14. This was then treated with 1 unit nucleotide pyrophosphatase at pH 7.2 to yield 14 

and further with 1 unit calf intestinal phosphatase in phosphate buffer, pH 7.8 for 20 

min. to yield 22 

 

3.4.9 HPLC conditions for separation of Thz-T-P and Thz-C-P using analytical strong 

anion exchange column chromatography 

The following linear gradient at a flow rate of 1 mL/min on the Phenosphere Strong 

Anion-Exchange (SAX) 80A (250x4.6 mm, 5 μm ID) column was used:  solvent A is 

water, solvent B is 100 mM (Et)3NHOAc, pH 7.8. 0 min:  100% A; 1 min: 100% A; 4 

min: 100% B; 7 min: 100% A; 10 min: 100%A. 
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3.4.10 HPLC conditions for separation of Thz-T-OH and Thz-C-OH using the 

analytical reverse column chromatography 

The following linear gradient at a flow rate of 1 mL/min on the Supelcosil LC-18-T 

(150x4.6 mm, 3 μm ID) was used: solvent A is water, solvent B is 100 mM KPi, pH 

6.6, solvent C is methanol. 0 min:  100% B; 2 min: 100% B; 4min 10% A, 90%B; 9 

min: 10% A, 25% B, 65% C; 14 min: 10% A, 25% B, 65% C; 16 min: 100%B; 20min 

100%B. 

 

3.4.11 ITC experiment to measure dissociation constant of TenI and its product Thz-

C-P 

A solution containing 50 mM tris, pH 7.6, 100mM NaCl, 8mM MgCl2, 2mM TCEP 

and 123 µM TenI was prepared. A similar solution containing 50 mM tris, pH 7.6, 

100mM NaCl, 8mM MgCl2, 2mM TCEP and 4mM Thz-C-P was made. The TenI 

solution was pre-equilubrated to a stable temperatue in the calorimeter of the 

instrument and subsequently, the product (Thz-C-P) was added in increasing amounts 

into the enzyme TenI in 25 runs, 4 µL injections with 240 sec. intervals.  

 

3.4.12 For crystallography: Expression and Purification of Bacillis subtilis  

The recombinant plasmid TenIpET28a was transformed to the E. coli BL21(DE3) 

competent cells (Invitrogen). The transformed cells were grown at 37 °C with 

vigorous agitation (200 rpm) in Luria broth (LB) containing 30 μg/mL kanamycin to 

an OD600 of 0.7, at which point the cells were induced with 500 μM IPTG (Gold 

Biotechnology, Inc.) and allowed to incubate overnight at 22 °C under conditions of 

mild mixing (180 rpm). The cells were harvested by centrifugation (6,000 g) for 15 

min at 4 °C and stored at -80 °C for later use. All purification steps were carried out at 
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4 °C. The cell pellet was suspended in 50 mL binding buffer (50 mM sodium 

phosphate, pH 7.0 and 300 mM NaCl), and lysed by sonication. The crude extract was 

centrifuged at 4 °C for 30 min at 50,000 g and the resulting supernatant was 

augmented with 5 mM imidazole and loaded onto a column containing 2 mL of 

TALON metal affinity resin (BD Biosciences) equilibrated with 50 mL binding buffer. 

The column was washed with 20 column volumes of binding buffer plus 5 mM 

imidazole, followed by 5 column volumes of binding buffer plus 10 mM imidazole. 

The six-His-tagged TenI was eluted from the column with elution buffer (50 mM 

sodium phosphate, pH 7.0, 300 mM NaCl and 300 mM imidazole). The recombinant 

TenI was further purified by a Superdex 200 gel-filtration column (Pharmacia) and 

eluted in the storage buffer (25 mM Tris-HCl, pH 8.5, 150 mM NaCl, and 1 mM 

thiamin-phosphate). The fractions containing pure TenI were combined and 

concentrated to 12 mg/mL using a 10 kDa cutoff concentrator (Amicon) and stored at 

-80 °C. Protein concentration was determined by the Bradford method with bovine 

serum albumin as the standard. The purity of TenI was determined by SDS-PAGE 

analysis and found to be greater than 99%. 
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CHAPTER 4 

 

Biosynthesis of the thiamin thiazole in Bacillus subtilis: Reversibility of ThiG 

4.1 Introduction 

In Chapter 2, we were able to show that the product of ThiG is the Thz-T-P 14, and is 

not the Thz-P 15 or the Thz-C-P 16. Thz-T-P 14 was interestingly very stable and was 

characterized extensively by HPLC, NMR and MS to reveal its structure1. We then 

observed that in the overall reconstitution reaction, the rate of thiamin formation in the 

presence of TenI is faster than in the absence of TenI. From the sequence homology 

and structural information we had about TenI, we hypothesized that it is required to 

aromatize Thz-T-P to a stable product, either Thz-P 15 or Thz-C-P 16. We used 

purified Thz-T-P 14 to prove that TenI was the enzyme responsible for converting it to 

Thz-C-P 16. The Thz-C-P is further taken up by ThiE along with HMP-PP to form 

thiamin phosphate (unpublished results) (Figure 4.1).  

 

Figure 4.1: TenI aromatizes the product of ThiG to Thz-C-P 16, which is further 

coupled by ThiE with HMP-PP 17 to form thiamin phosphate 18. 

It was seen that ThiE can non-selectively take up Thz-T-P, Thz-C-P and Thz-P and 

couple it with HMP-PP to make thiamin phosphate. However, it is interesting to note   

that the rate of coupling is lowest for Thz-T-P, followed by Thz-P and is fastest for 
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Thz-C-P (Figure 3.4). This reiterates the role of TenI to convert Thz-T-P 14 to Thz-C-

P 16, hence accelerating the rate of formation of thiamin phosphate in vivo. In an 

effort to probe the stability of Thz-T-P 14, it was added back to ThiG. On examination 

of the reaction, there appeared to be a reversible reaction of Thz-T-P with ThiG. This 

reversibility is discussed in this chapter. 

 

4.2 Results/ Discussion: 

In our attempts to characterize the role of TenI further, we decided to examine the 

reactivity of 14 with TenI in the presence and absence of ThiG (pure 14 was obtained 

as indicated in Figure 3.5). We wanted to measure the rate of conversion of thiazole 

tautomer to thiazole carboxylate phosphate by TenI in the presence and absence of 

ThiG. In this reaction, the purified enzymes ThiSG and TenI were obtained. In two 

separate reactions, Thz-T-P 14 was treated with TenI and ThiSG, and only TenI 

respectively. The concentration of the enzymes was approximately equal to the 

amount of Thz-T-P 14 present in the reactions. The components of the reaction were 

allowed to incubate and time points were obtained for 0min, 2min and 5min by 

quenching. The proteins were then filtered off and the filtrate was analyzed on a RP-

HPLC column for the UV-Vis absorbance of its components. It was seen that when 

Thz-T-P was added in the absence of ThiG, some of it had converted to the Thz-C-P 

16 (Figure 4.2 a). However when ThiG was present along with Thz-T-P and TenI, the 

thiazole tautomer disappeared and no other chromophoric signal was seen in the 

chromatogram (Figure 4.2 b).  
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Figure 4.2: (a) The fate of Thz-T-P in the presence of TenI only (b) The fate of Thz-

T-P in the presence of TenI and ThiG. 

 

This reaction was performed multiple times varying the denaturing conditions by 

using 8M urea and quenching at shorter timepoints like 1 min, and each time, the 

thiazole tautomer peak disappeared without the formation of another product when 

ThiG was present. 

This could either mean that ThiG was reacting with the Thz-T-P to produce a 

nonchromophoric species or that ThiG was binding irreversibly to the thiazole 

tautomer phosphate. In the case that the thiazole tautomer phosphate was irreversibly 

bound to ThiG, it would have to be an enzyme bound intermediate as it would have 

been released when the enzyme was heat denatured or treated with 8M urea. So the 

species formed by the reaction of ThiG with thiazole tautomer phosphate must be 

enzyme bound. 
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Thinking about the problem mechanistically, the thiazole tautomer is an unstable 

intermediate on the pathway of thiazole formation in B. subtilis. If ThiG was added 

back into the system, there is a possibility that the enzyme catalyzes the reversible 

reaction from thiazole tautomer phosphate to the previous intermediate 27, a late 

intermediate on the well-studied thiazole biosynthesis pathway2 (Figure 4.3). This can 

then further break down to release the glycine imine and form intermediate 28, which 

will be bound to the protein. Interestingly, in all the bound intermediate structures, the 

phosphate group remains intact, and hence it is a functional group that can be used as a 

probe to test our hypothesis.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Putative reversibility of Thz-T-P with ThiG 
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The reversible imine bond in both the plausible intermediates would have to be 

reduced so as to stabilize it on the protein (species 29 and 30) and then further analysis 

can be done. This hypothesis of ThiG-Thz-T-P reversibility was tested by analyzing 

for phosphates bound to the protein. This would be done initially by running a gel for 

the protein after reaction and staining it with a phosphate specific stain. If labeling of 

the intermediate bound ThiG protein was seen, that would indicate the presence of a 

phosphate somewhere on the protein. This protein could then be subjected to mass 

spectrometric analysis to reveal the increase in mass of the protein due to the bound 

adduct and then the site of phosphorylation.  

His-tagged ThiSG protein was purified out by Ni-affinity chromatography. Thiazole 

tautomer phosphate was obtained as discussed previously and quantified by comparing 

the amount of AMP released by treatment with nucleotide pyrophosphatase with a 

known AMP standard (Figure 4.4).  

Figure 4.4: Quantitation of Thz-T-P by quantitating the AMP released on nucleotide 

pyrophosphatase treatment of 24.  
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The Thz-T-P and ThiG were mixed in 1:1.2 ratio and kept at room temperature for 

10min in 50mM Tris-HCl buffer, pH 7.4.  A small aliquot of this was filtered off to 

analyze by HPLC to make sure that the Thz-T-P had disappeared. To the remaining 

reaction mixture was added 10mM NaBH4 and this was allowed to react for 5 minutes. 

The NaBH4 was then washed out from the ThiG protein by desalting the protein twice 

into 50mM NH4OAc buffer, pH 7.4. Two other control reactions with no thiazole 

tautomer phosphate added and neither thiazole tautomer phosphate nor NaBH4 added 

were also set up and washed similarly as the above mentioned sample. The filtrate of 

the main reaction as well as the control reactions were analyzed by UV-Vis 

absorbance on a RP-HPLC and the proteins were subjected to gel electrophoresis 

using a 12% Tris-Glycine gel. The proteins on the gel were then treated with 

phosphate-labeling stain, ProQ Diamond (Molecular Probes, Invitrogen) following the 

exact protocol for labeling phosphate labeled proteins and the gel was visualized by 

fluorescence scan (excitation 532nm, emission 580nm). 

After the fluorescence scan, the gel was visualized by Coomassie stain and the two 

gels were compared for their protein content versus phosphate content by the two 

stains (Figure 4.5). It is quite clear that the phosphate stain in the lanes 3 and 4 are 

much darker as compared to the lanes 1 and 2. If one compares the corresponding 

Coomasie staining lanes, it can be clearly seen that the concentration of protein in 

lanes 3 and 4 are comparable to that in the lanes 1 and 2. So there is more phosphate 

bound to protein in lane 3 and 4 as compared to lanes 1 and 2. Another interesting 

point to note is that lane2, which has ThiG reduced with NaBH4, has more phosphate 

staining as compared to lane A. This result has been seen consistently, and it indicates 

the presence of a phosphate bound species to the native protein ThiG, that gets fixed 

when treated with NaBH4. This correlates very well with the finding that when the 
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Figure 4.5: Coomassie stained and phosphostained gel of ThiG with Thz-T-P and 

other controls. Lane 1 in both gels indicates the pure ThiG protein without NaBH4 

reduction. Lane 2 indicates pure ThiG protein with nothing added, but reduced by 

NaBH4. Lanes 3 and 4 are both the same full reaction sample where ThiG has been 

allowed to react with Thz-T-P 14 and then reduced with NaBH4.  

thiazole reconstitution reaction was done with all the reconstitution proteins and 

components without adding in DXP, the amount of thiazole formed, measured by 

thiochrome formation was greater than the basal levels of thiochrome observed in the 

remaining controls3. This also explains why ThiG in all the lanes gets labeled to some 

extent with the phosphostain, but is more in lane 2 and even more in lane 3 and 4. So 

there may be some advanced phosphorylated intermediate of DXP bound in the active 

site of ThiG, which causes the protein to be phosphostained, and forms thiazole and 

1        2            3            4 1        2            3            4 
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consequently thiochrome on treatment with the other thiamin reconstitution 

components. 

To verify this phosphostain result for ThiG, the ThiG mutant K96A which cannot 

form the imine bond with DXP4 was used for a comparative study for phosphostaining 

along with the wtThiG protein. As we did not have a pure stock of the ThiG K96A 

mutant, ThiSG-K96A was used and in parallel, wtThiSG was used.  

 

 

 

 

 

 

 

 

 

Figure 4.6: Fluorescence quantitation of the amount of ThiG in ThiSG using pure 

ThiG to make a standard curve by densitometry analysis. (a) Pure ThiG was run at 

various concentrations on a 12% Tris-glycine gel and the concentration of the protein 

in each lane was correlated by densitometry analysis to give the plot (b). In gel (c), the 

protein ThiSG was run at different concentrations along with the pure protein ThiG to 

correlate the amount of ThiG present in the ThiSG sample. 

(a) 

(c) 

(b) 
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The amount of ThiG in the ThiSG was quantitated by densitometry analysis using a 

standard of pure ThiG and making a standard curve for the comparison (Figure 4.6). 

Again, each of the wtThiG and the mutant K96A ThiG were set up in reactions with 

the thiazole tautomer phosphate as described previously, along with the controls a 

shown in Figure 4.7 for each.  

 

 

 

 

 

 

 

 

 

Figure 4.7: Coomassie stained and phosphostained gel of ThiG and ThiGK96A with 

Thz-T-P and other controls. The lanes on the gels from left to right are: 1,2-the 

ThiSGK96A and wtThiG respectively treated with Thz-T-P 14 and with NaBH4 3,4-

the ThiSGK96A and wtThiG respectively treated with DXP without reduction 5,6 the 

ThiSGK96A and wtThiG respectively with reduction by NaBH4 and 7,8 the 

ThiSGK96A and wtThiG respectively without reduction  

1    2         3     4           5   6           7     8 1    2         3     4           5   6           7     8
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As expected, the ThiG K96A mutant (lane 1) shows much less staining or non-specific 

staining than the wtThiG (lane 2), which clearly shows the presence of phosphate. 

This can be visualized clearly from the Coomassie stain that shows that the relative 

amounts of protein in each lane is comparable, even though a large difference can be 

seen in the phosphostained version of the gel (Figure 4.7)  

Unfortunately, the phosphate stain is not very specific for phosphate residues only and 

non-specifically stained the ThiG protein in the control lanes even though the exact 

protocol of labeling was followed. As the manufacturer does not reveal the 

composition of the stain due to intellectual property issues, there is no way to even 

detect how this staining may be made more specific. 

Preliminary top-down positive mode ESI-TOF MS analysis was performed on the pure 

ThiG samples treated with the thiazole tautomer and NaBH4 comparing it to the 

control sample, where no thiazole tautomer was added to the reaction mixture. The 

expected molecular weight for ThiG is 29,440 Da. The expected molecular weight of 

the reduced species 29 is 29,710 Da and that of reduced species 30 is 29,636 Da 

(Figure 4.8).  

 

 

 

 

 

Figure 4.8: Molecular weight of the ThiG protein and ThiG-thiazole tautomer adduct 

29 and 30 species expected to be observed by mass spectrometric analysis. 
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Both the reduced ThiG-thiazole tautomer sample and the control reduced ThiG sample 

sprayed very well on the ESI-TOF mass spectrometer and charged states could be 

clearly seen for both the samples (Figure 4.9 Inset a) and Inset b)). The deconvoluted 

mass spectrum for the reduced ThiG-thiazole tautomer (Figure 4.9 a)) showed a major 

peak at 29,636 Da corresponding to the adduct 30. The deconvoluted mass spectrum 

for the reduced control ThiG sample showed a peak at 29,440 Da (Figure 4.9 b)) and 

that for the reduced ThiG-thiazole tautomer shows a peak at 29,636 Da.  

 

 

 

 

 

 

 

 

 

Figure 4.9: Positive mode ESI-TOF MS of the reduced thiazole tautomer treated ThiG 

reaction and the reduced conrol ThiG sample. (a) Deconvoluted mass spectrum of the 

reduced thiazole tautomer treated ThiG reaction. (Inset Figure a) Charged states for 

the reduced thiazole tautomer treated ThiG reaction. (b) Deconvoluted mass spectrum 

of the control reduced ThiG reaction. (Inset Figure b) Charged states for the control 

reduced ThiG reaction. 

(a) 



69 

 

Figure 4.9 (Continued):  

 

 

 

 

 

 

 

 

 

 

Other species are also visible on the mass spectrum and may be other interesting 

adducts of the protein ThiG. We will to investigate these species in further 

experiments. 

 

4.3 Conclusions:  

The product of ThiG 14 is a non-aromatized tautomeric form of thiazole carboxylate 

phosphate 16. It has a half-life of 5 days and requires TenI to aromatize it to the 

thiazole carboxylate phosphate 16. When 14 is added back to ThiG, it seems to 

disappear and gets attached irreversibly to the protein. The phosphate group on 14 

(b) 
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remains bound on the protein, hence we could probe it using phosphate-staining 

reagent. Top down ESI-TOF MS has been done on the ThiG protein-intermediate 

bound samples to find out the mass of the modified protein. Further fragmentation 

analysis of the protein will reveal the amino acid that has been modified by the 

thiazole tautomer. 

 

4.4 Experimental methods 

4.4.1 Source of Chemicals: 

All chemicals and snake venom nucleotide pyrophosphatase were purchased from 

Sigma-Aldrich Corporation (USA) unless otherwise mentioned. Calf intestinal 

phosphatase was obtained from New England Biolabs.. The microcon membrane 

filters were from Millipore. The Gel-fluorescence scanner Typhoon Trio imager was 

from GE healthcare life sciences (Piscataway, NJ). The Pro-Q® Diamond 

phosphoprotein gel stain was obtained from Invitrogen. Thz-T-P 14 was obtained as 

previously described in Chapter 3. Previously synthesized stock of [1-13C]-DXP 14 was 

used for analysis with ThiG.  

 

4.4.2 Overexpression and purification of enzymes for gel assays 

ThiG, ThiSG and ThiSGK96A : E. coli BL21(DE3) containing the ThiG/ThiSG 

overexpression plasmid in pET16b was grown in LB medium containing ampicillin 

(40 μg/mL) with shaking at 37 °C until the OD600 reached 0.6. At this point, protein 

overexpression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) (final 

concentration = 2 mM) and cell growth was continued at 15 °C for 16 h. The cells 

were harvested by centrifugation and the resulting cell pellets were stored at -80 °C. 

To purify the protein, the cell pellets from 1L of culture were resuspended in 25 mL 
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lysis buffer (10 mM imidazole, 300 mM NaCl, 50 mM NaH2PO4, pH 8) and lysed by 

sonication (Heat systems Ultrasonics model W-385 sonicator, 2 s cycle, 50% duty). 

The resulting cell lysate was clarified by centrifugation and the ThiSG protein was 

purified on Ni-NTA resin following the manufacturer’s instructions. After elution, the 

protein was desalted using a 10-DG column (BioRad) pre-equilibrated with 50 mM 

Tris-HCl buffer, pH 7.8. 

 

4.4.3 HPLC method for analysis of Thz-T-P and AMP 

The following linear gradient at a flow rate of 3 mL/min:  solvent A is water, solvent 

B is 100 mM KPi, pH 6.6, solvent C is methanol. 0 min:  100% B; 3 min: 10% A, 

90%B; 17 min: 34% A, 60% B, 6% C; 21 min: 35% A, 25% B, 40% C; 23 min: 

100%B 

 

4.4.4 Gel Phosphoprotein staining 

Fix the gel. Immerse the gel in ~100 mL of fix solution (prepared in step 1.1) and 

incubate at room temperature with gentle agitation for at least 30 minutes. Repeat the 

fixation step once more to ensure that all of the SDS is washed out of the gel. Gels can 

be left in the fix solution overnight. 

Wash the gel. Incubate the gel in ~100 mL of ultrapure water with gentle agitation for 

10 minutes. It is important that the gel be completely immersed in water in order to 

remove all of the methanol and acetic acid from the gel. Residual methanol or acetic 

acid will interfere with Pro-Q® Diamond phosphoprotein staining. Repeat this step 

twice, for a total of three washes. 

Stain the gel. Incubate the gel in a volume of Pro-Q® Diamond phosphoprotein gel 

stain equivalent to 10 times the volume of the gel (e.g., 60 mL for Novex® precast 

minigels), with gentle agitation in the dark for 60–90 minutes. If directly comparing 
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multiple gels, it is important that the incubation time be the same for each gel. DO 

NOT stain overnight, as this will result in higher background staining. 

Destain the gel. Destaining is important to reduce the gel background signal and to 

reduce the signal from nonspecific staining. Incubate the gel in 80–100 mL of destain 

solution (see step 1.2) with gentle agitation for 30 minutes at room temperature, 

protected from light. Repeat this procedure two more times. The optimal total 

destaining time is about 1.5 hours. 

Wash the gel. Wash twice with ultrapure water at room temperature for 5 minutes per 

wash. If the background is high or irregular, the gel may be left in the second wash for 

20–30 minutes and re-imaged. 

Imaging the gel. Typhoon Trio (GE Healthcare) excitation 532nm, emission 580nm 
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CHAPTER 5 

 

The remarkable rearrangement reaction catalyzed by 4-amino-5-hydroxymethyl-

2-methylpyrimidine phosphate synthase: tracking the fate of C’s and H’s of the 

substrate AIR 

 

5.1 Introduction: 

The biosynthesis of thiamin pyrophosphate involves separate syntheses of the thiazole 

and the hydroxymethyl pyrimidine (HMP) precursors, which are then linked together 

and pyrophosphorylated to form the cofactor.  Mechanistic details of thiamin-thiazole 

biosynthesis are well understood in prokaryotes (detailed in Chapter 2 and 3) and 

analysis of the eukaryotic system is well underway. In prokaryotes, 1-deoxy-D-

xylulose-5-phosphate, cysteine and glycine or tyrosine are utilized by five proteins to 

construct the thiazole moiety, whereas in S. cerevisiae, just one gene product converts 

NAD and glycine to thiazole, obtaining sulfur from a source yet unknown1-7. In 

comparison, the mechanistic understanding of thiamin-pyrimidine biosynthesis in both 

prokaryotes and eukaryotes is still at its infancy. In yeast, a single gene product THI5p 

is implicated in HMP biosynthesis from PLP and histidine (Figure 5.1 b)8-9, however 

attempts at reconstituting its acitivity in a purified system remain largely unsuccessful.  

In bacteria and some plants, the HMP-P synthase ThiC converts aminoimidazole 

ribonucleotide (AIR 1), an intermediate in the purine nucleotide biosynthesis pathway, 

to hydroxylmethyl pyrimidine phosphate (HMP-P 2)10 (Figure 5.1 a). The thiC gene is 

found to cluster with thiamin biosynthetic genes in many prokaryotes and 

complements all HMP requiring mutants in E.coli, S.typhimurium and B.subtilis11-12.  
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A careful analysis of the primary structure of ThiC across various species of bacteria 

and plants revealed the presence of a C561SMC564GPKFC569 motif near the N-terminal 

of the protein, indicating the likely presence of an Fe-S cluster (5.1 c). Previous 

studies had shown that in the C561A, C564A and C569A mutant proteins in 

Salmonella enterica were unable to biosynthesize the thiamin pyrimidine, suggesting 

that HMP-P synthase contained an Fe-S cluster13. Also, when the Fe-S cluster 

biosynthesis genes were disrupted in Salmonella enterica, the organism became 

thiamine requiring12. In vivo and clarified lysate studies in the past using labeled AIR 

lead to the localization of atoms from the substrate that were incorporated into the 

product HMP-P. The results pointed towards a very unusual rearrangement; however 

the cofactor requirements and the fate of all atoms of AIR could not been elucidated 

owing to the complexities of dealing with in vivo systems or clarified lysates14. 

 

 

 

 

 

 

 

 

Figure 5.1: HMP biosynthesis in (a) E. coli and (b) S. cerevisiae. (c) Primary 

sequence alignment for ThiC protein of various origins shows a conserved Fe-S 

cluster motif C-X-X-C-X-X-X-X-C near the N-terminal of the protein 
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Figure 5.1 (Continued): 

 

 

 

 

 

 

 

 

 

Recently, active wtThiC enzyme was obtained by cloning the thiC gene from C. 

cresentus into a pET16b plasmid, cotransforming this plasmid into B834(DE3) along 

with the pDB1282 (Fe-S cluster chaperone proteins, gift from Dennis Dean) and 

overexpressing the protein in minimal media containing Fe and S. 

 This protein was His-tagged and was purified under anaerobic conditions using Ni-

NTA chromatography. The activity of ThiC was reconstituted in a defined 

biochemical system and in vitro studies on the reaction catalyzed by ThiC using 

labeled AIR has revealed the involvement of a rearrangement reaction of 

unprecedented complexity (Figure 5.2)15. 

The protein has an absorbance typical of Fe-S cluster proteins and was also found to 

be incredibly sensitive to oxygen. 

(c) 
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Figure 5.2: The complex rearrangement catalyzed by ThiC 

 

 

 

 

 

 

Figure 5.3: (a) SDS-PAGE analysis of ThiC protein that was purified anaerobically 

and quenched anaerobically or aerobically. A new band appears close to the anaerobic 

wtThiC when it is exposed to air (b) Appearance of ThiC-cleavage product on 

exposure to air (c) UV-Vis spectral traces of ThiC exposed to air over time. ThiC 

seems to change the Fe-S cluster state on exposure to air. 

 

(a) (b) 



78 

 

Figure 5.3 (Continued): 

 

Purification in aerobic conditions lead to fragmentation (Figure 5.3 a) and inactivation 

of the protein (Figure 5.3 b). Spectroscopic, structural and biochemical studies 

established ThiC as a unique member of the 4Fe-4S cluster dependent radical-SAM 

superfamily of enzymes14-16. 

 

5.2 Results/ Discussion: 

5.2.1 Determining the fate of the C1 atom of AIR: 

Prior to the successful reconstitution of the ThiC catalyzed reaction15, labeling studies 

could only elucidate the fates of the atoms of AIR that are incorporated into HMP-P 

(Figure 5.2)14. The low efficiency of conversion coupled with the complexity of the 

cell free extract, in which such assays were performed, precluded the fate 

determination of the substrate atoms that did not get incorporated in the product (C1 

and C3 of the ribose moiety of AIR). With the defined ThiC reconstitution system, it 

was now possible to ascertain the reaction products originating from the C1 and C3 

atoms of AIR. Also, enzymes belonging to the radical-SAM superfamily of proteins 

(c) 



79 

 

initiate catalysis by generating the reactive 5-dAd radical (4), via the reductive 

cleavage of SAM 3 (Figure 5.2)18-20. Demonstration of ThiC as a radical-SAM protein 

raised the question regarding the precise mechanistic role of the 5-dAd radical to 

catalyze this remarkable rearrangement reaction. 

To evaluate the fates of C1 and C3, corresponding singly 13C-labeled AIR molecules 

were synthesized. 2Using these as substrates, reactions were set up with ThiC, SAM  
 

 

 

 

 

 

 

 

 

Figure 5.4: Studies with C1-13C AIR. A) NMR analysis of the reaction mixture using 

C1-13C AIR as the substrate of ThiC reveals: 13C signal of C1 of AIR (88 ppm), intact 

in the control reaction with no SAM (i); a new signal at 171 ppm along with the C1 of 

unreacted AIR (ii). Addition of 30 mM sodium formate to the reaction mixture 

enhances the intensity of the new peak at 171 ppm (iii). B) An expanded view of the 

NMR spectra around the formate peak for (ii) and (iii). 

 

*, ** All work appearing in between * and ** has been performed by Abhishek Chatterjee 
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and dithionite. Upon the removal of the protein, the reaction mixtures were subjected 

to 13C NMR analysis. A control reaction, where the cofactor SAM was omitted, was 

also analyzed for comparison. HPLC analysis showed approximately 45% conversion 

of AIR to HMP-P in the first reaction, while in the control it remained intact. The 13C 

NMR analysis of the reaction mixture for the C1-13C-AIR (Figure 5.4 a and b) 

revealed the generation of a large singlet carbon signal at 170 ppm, which was absent 

in the control. Doping the sample with sodium formate resulted in the appropriate 

enhancement in the intensity of the new signal, which suggests that C1 of AIR is 

converted to a formic acid**.  

5.2.2 Determining the fate of the C3 atom of AIR: 

Interestingly, no new signal was observed when similar experiments were performed 

with C3-AIR, even though significant conversion of AIR to HMP-P (40-50%) was 

confirmed by HPLC analysis. The reaction was also analyzed by 13C NMR without 

removing the protein as previously described32, in case a protein bound species is 

generated but evidence for no such species was found. Attempts were then made to 

detect formaldehyde in the reconstitution mixture, should this be the reaction product 

of C3, either by directly detecting the 13C-NMR or using various trapping agents like 

hydroxylamine, dimedone22-23 and Purpald24.None of the trapping agents showed any 

significant changes in between the full reaction and the control reactions of the ThiC 

reaction mixture, where dithionite, AIR or SAM had been omitted. Thus, generation of 

formaldehyde during ThiC reaction was not detected. The other possibility was that 

C3 could leave as carbon dioxide (CO2). However, CO2 is highly soluble in water, and 

so we should have seen it in the NMR experiment as a bicarbonate signal. 

Subsequently, an anaerobic carbon monoxide (CO) trapping assay25, which involves a 

specific change in the soret-region absorbance of hemoglobin (Figure 5.5 a, b) as a 
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result of its association with CO to form carboxyhemoglobin, was adapted to observe 

production of CO in the ThiC reconstitution assay. Interestingly, the generation of CO 

during the ThiC catalyzed conversion of AIR to HMP-P was clearly observed (Figure 

5.5 c) and the change in the signal was proportional to the concentration of AIR used 

in the reaction mixture. Since the fates of all the other carbon atoms of the substrate 

have conclusively been ascertained previously by 13C NMR and CO is sparingly 

soluble in aqueous solutions, it is reasonable to conclude that the C3 of AIR is 

converted to CO.   

Many other methods to trap CO for direct detection were subsequently tried. Most 

conventional methods to trap CO require large CO pressure in the presence of a metal 

catalyst or non-aqueous solvents for facile reaction. Neither of these two conditions 

was achievable in the experiment we were performing. Hence, we set up the ThiC 

reconstitution reaction using 13C-3C-AIR and bubbled out the CO gas generated in the 

ThiC reconstitution reaction using Argon, and then trapping it by various metal 

catalyzed reactions using tryptamine, benzylamine and iodobenzene26-29. We used 
13C3-AIR in the reconstitution so we could analyze the products by mass spectroscopy 

or NMR, however we could not conclusively form any of the CO-trapped compounds. 

An attempt to trap the labeled CO gas by bubbling it into hemoglobin and doing a 13C-

NMR on the protein-CO complex was made30 but no significant signal for CO bound 

to the hemoglobin could be seen. The failure of these strategies can possibly be 

attributed to the fact that the amount of CO being generated is at best low micromolar 

quantities and the trapping efficiency of these methods29 is very low (~10%). In the 

process of bubbling it out of an enzymatic reaction vial, incomplete trapping as well as 

transfer may occur. 
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Figure 5.5: (a) Visible range absorbance of reduced anaerobic hemoglobin (green) 

and hemoglobin treated with CO saturated buffer (black). (b) Difference spectrum of 

the two hemoglobin traces shown in (a) (c) Change in the soret region spectrum of 

hemoglobin on addition of different amounts of AIR into the ThiC reaction mixture, 

subsequently releasing different quantities of CO. 

Additionally, trapping of CO is not quantitative in any of the methods, so the final 

amount of CO that is trapped is not within detectable limits. Hence, none of these 

trapping strategies worked successfully.  

5.2.3 Determining the chemistry of the 5’deoxyadenosyl radical in the rearrangement 

reaction 

Having established the fates of the C1 and C3 atoms of AIR, we went on to investigate 

the role of the 5-dAd radical in the reaction. As a member of the radical-SAM  
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Figure 5.6: Studies with deuterated AIR. ) Site-specifically deuterium labeled AIR 

molecules synthesized for this study. b) 1H NMR signal for the 5′-methyl group 5-

dAD isolated from ThiC reactions with labeled substrates. Incorporation of D in the 

methyl group for 4D and 5,5’D2 AIR is noted by the presence of the additional, upfield 

shifted broader doublet. c) Rate of formation of 5-dAd and HMP-P measured over 5 

hours reveal a 1:1 product ratio. d) MS analysis of 5-dAd produced in the early phase 

of the reaction reveal predominant mono-deuteration (m/z=253) with 4D and 5D and 

50% di-deuteration (254 Da) with UD. 

(a) 

(d) 

(c) 

(b) 
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superfamily, the generation of the 5-dAd radical from SAM plays an intimate role in 

initiating catalysis.  The radical may directly react with the substrate or, alternatively, 

abstract a hydrogen atom from the protein to generate a protein-bound radical, which 

in turn reacts with the substrate. When it directly reacts with the substrate, the 5-dAd 

radical may be used as a co-substrate or as a catalyst, in which case it is regenerated at 

the end of the reaction. Site-specifically D-labeled AIRs molecules were synthesized 

(by Sameh Abdelwahed and David Hilmey, Begley lab) and further enzymatically 

phosphorylated to produce labeled AIR (Figure 5.6 a). 

*The reconstitution reaction with ThiC was performed with the five different AIR 

substrates, 5-dAd was HPLC purified and was then analyzed by 1H-NMR. 

Incorporation of a deuterium atom at the 5′ position of 5-dAd has been shown to result 

in a small upfield shift of the 5′-H NMR signal21. Thus, 1H NMR analysis of the 

isolated 5-dAd was initially used to identify possible deuterium incorporation at the 5′-

position of 5-dAd**. Flavodoxin/flavodoxin reductase and NADPH was used to 

reduce the Fe/S cluster of ThiC, since the use of dithionite as the reducing agent was 

associated with high levels of uncoupled 5-dAd production. Surprisingly, we observed 

robust deuterium incorporation, when either of 5′-D2 and 4′-D-AIR was used as the 

substrate, while no D incorporation was associated with 1′, 2′ or 3′- labeled substrates 

(Figure 5.6 b).  

To understand whether both of these deuterium incorporation reactions are 

mechanistically relevant, we determined the product ratio (HMP-P:5-dAd) of the ThiC 

reaction with the flavodoxin/flavodoxin reductase and NADPH over a period of 5 

hours using both D labeled substrates. A product ratio of nearly 1:1 was observed 

throughout the course of the reactions (Figure 5.6 c). This experiment was repeated  

*,** All work appearing in between * and ** has been performed by Abhishek Chatterjee 



85 

 

using methyl viologen as a reducing agent33 rather than flavodoxin/flavodoxin 

reductase and NADPH, which forms quantitative amounts of 5’deoxyadenosine as  

compared to HMP-P and again a product ratio of nearly 1:1 was observed throughout 

the reaction. 

This product ratio is consistent with the use of 5-dAd radical as a co-substrate rather 

than a catalyst. Simultaneous inline ESI-MS analysis of the product 5-dAd revealed 

mono-deuterated 5-dAd as the predominant product in both cases (Figure 5.6 d). 

These results suggest that the transfer of the deuterium label from AIR to 5-dAd, 

observed for either of the deuterated substrates, occur as a direct consequence of the 

ThiC catalyzed conversion of AIR to HMP-P and not via an uncoupled reduction of 

SAM.  

*To further demonstrate the transfer of the deuterium labels from two different 

positions of AIR to the same 5-dAd, we needed a substrate which is deuterium labeled 

both at 4 and 5 positions. Since the appropriately D-labeled ribose, the starting 

material for the synthesis of AIR, was commercially unavailable, we attempted its 

synthesis using catalytic H/D exchange of ribose. The resulting ribose molecule was 

mostly deuterated (>98%) 31 at 2, 3 and 5 positions and only partially deuterated at 

positions 4 (50%) and 1 (<1%). AIR was synthesized using this preparation of ribose 

as the starting material and the 5-dAd produced in a ThiC reaction, where it was used 

as a substrate, was analyzed by HPLC coupled ESI-MS analysis. As expected from the 

abundance of the deuterium labels in the substrate, a 1:1 distribution of mono:bis-

deuterated 5-dAd (m/z=253 and 254 respectively) was observed (Figure 5.6 d)**. 

These results confirm that one hydrogen atom each from the 4 and 5 positions of AIR 

is incorporated in the 5′-position of 5-dAd in the course of the ThiC catalyzed 

*, ** All work appearing in between * and ** has been performed by Abhishek Chatterjee 
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reaction. The initial 5′-dAd radical must be regenerated after it abstracts the first 

hydrogen atom from the substrate, and catalyze a second abstraction event, to explain 

this observation. Such a novel reaction pattern involving back and forth hydrogen 

atom abstraction and the use of 5-dAd 5 as a “radical shuttle” is unprecedented in the 

literature. 

5.2.4 Stereochemistry of H-abstraction by 5’deoxyadenosyl radical at the 5’5’’H2-

AIR: 

Another interesting observation was that only one H was being abstracted from the 5’ 

ribose position of AIR by the 5’deoxyadenosyl radical (Figure 5.2). It would be 

interesting to know which H i.e. whether the pro-R or the pro-S H at the 5’ position 

(Figure 5.7 a) of was being abstracted with regard to the position of the AIR in the 

 

 

 

 

 

 

 

Figure 5.7: (a) One H atom from 5,5’-AIR is abstracted in the rearrangement (b) [5’S-
2H]AIRs and [5’R-2H]AIRs were synthesized and further enzymatically 

phosphorylated to form the respective AIR. 
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active site of the crystal structure. Also, it would enable us to think about the position 

of the SAM with respect to the AIR and the residues involved in the catalytic  

mechanism of the reaction. To answer these questions, the [5’R-2H]AIR and [5’S-
2H]AIR (Figure 5.7 b) were synthesized (by Sameh Abdelwahed, Begley lab).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Positive mode ESI-MS of 5’deoxyadenosine from ThiC reaction with 

[5’S-2H]AIR and [5’R-2H]AIR. 

Using these as substrates, reactions were set up with ThiC, SAM and methyl viologen. 

Upon the removal of the protein, the 5’deoxyadenosine in each reaction was purified 

by reverse-phase HPLC and analyzed by positive mode ESI-MS. A control reaction, 
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where the methyl viologen was omitted, was also analyzed for comparison and the 

5’deoxyadenosine region was collected and analyzed by positive mode ESI-MS just to 

make sure no uncoupled product was being formed. The ESI-MS positive mode data 

clearly showed the incorporation of a D from the [5’S-2H]AIR to form the 

monodeuterated 5’deoxyadenosine (m/z = 253) and incorporation of the H from the 

[5’R-2H]AIR to form the unlabeled 5’deoxyadenosine (m/z = 252) (Figure 5.8). 

Analysis of the corresponding HMP-P showed the presence of a deuterium derived 

from the 5’R-2H-AIR and unlabeled HMP-P from the 5’S-2H-AIR. 

5.2.5 Which H is abstracted from AIR first – the 4’H-AIR or the 5’H-AIR? 

The fact that two H’s of the AIR ring are found on the 5’deoxyadenine indicates the 

involvement of a “back-and-forth-radical shuttle” in the ThiC mechanism by the 

5’deoxyadenosyl radical (Figure 5.9). This is an unprecedented reaction of the 

deoxyadenosyl radical and it may happen in the following manner - one H had to be 

abstracted from the AIR, followed by a rearrangement reaction within the radical-

intermediate. After the rearrangement, the radical will be transferred, either directly or 

mediated by the protein to the 5’deoxyadenosine to regenerate the 5’deoxyadenosyl 

radical. This 5’deoxyadenosyl radical then abstracts an H again to make a second 

radical-intermediate, which completes the rearrangement to form the HMP-P and 

subsequently the 5’ deoxyadenosine which contains two of the AIR H’s - the [4’-

H]AIR and the [5’-H]AIR.  
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Figure 5.9: ThiC reaction pathway including the two radical abstractions by 

5’deoxadenosyl radical. 

A question one may ask in this regard is the order of abstraction of the two H atoms 

from the AIR i.e. does the 4-H get abstracted in the first step or does the 5-H get 

abstracted. This turns out to be mechanistically very important as the order of H atom 

abstraction can lead us to formulate a plausible mechanism for the rearrangement and 

then look for interesting intermediates on the pathway. To figure out the order of 

abstraction, one needs to either be able to: i) Rapid quench - set up a ThiC 

reconstitution reaction individually for AIR substrate labeled at the 4-H and the 5-H 

position,  stop the reaction at a point where only the first H abstraction by the 



90 

 

5’deoxyadenosyl radical has occurred for the substrate and check for which D was 

abstracted by analyzing the 5’deoxyadenosine produced or ii) Competition experiment 

- compare the rate at which a substrate labeled with D at either at the 4-H or 5-H 

position is taken up as compared to the unlabeled substrate by ThiC in a competition 

experiment.  

We proceeded to answer the question about the order of abstraction using the 

competition experiment. For this, we assume that the first step of radical abstraction is 

essentially irreversible and is the first ‘committed’ step in the rearrangement reaction. 

Figure 5.10 illustrates the predicted reaction pathway of the ThiC rearrangement 

where we see that the step involving H-atom abstraction by a radical to form ‘Radical 

Intermediate “a”’ will be relatively high energy and the backward reaction may be 

very low, thus making the reaction essentially ‘irreversible’.  

 

 

 

 

 

 

 

 

Figure 5.10: Predicted progess of the ThiC rearrangement reaction and energy of the 

intermediates formed on the pathway. 
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A known ratio of unlabeled AIR substrate and D-labeled AIR substrate at a specific 

position (4’ or 5’S on the ribose ring) is taken. The ThiC reconstitution reaction is set 

up with this AIR mixture along with methyl viologen and SAM. The 5’dAdo radical 

formed by the enzyme can be predicted to choose to pick up the H-substrate over the 

D-labeled substrate in the first committed step in the reaction. Once the substrate is 

‘committed’ to the reaction in the active site of the enzyme as it cannot go back after 

the first H-atom abstraction, the enzyme then has to take the substrate to completion 

and hence the second radical abstraction from the substrate follows along. 

Subsequently, the products HMP-P and 5’deoxyadenosine are released. The 5’dAdo 

was analyzed by inline-LC-ESI-MS and the ratio of labeled to unlabeled  

Table 5.1: Experimental parameters for the isotope effect ‘competition’ experiment 

for [4’-2H] AIR and [5’S-2H] AIR 

(a) 

Reaction 
number 

     Ratio 
of           
H-AIR: 
[4’-2H] 
AIR 

Volume 
of 
~30mM 
AIR 
mixture  
uL 

20mM 
SAM       
ul 

Methyl 
viologen  ul 

Volume 
of 
~150uM 
ThiC  uL 

Ratio of  
kH/ kD 

Isotope 
effect 
value 

1.              1.01 6 3.5 5.5  350 1.55  

1.56 +/-
0.30 

2 1.63 6 3.5 5.5 350 1.86 

3. 1.46 6 3.5 5.5 350 1.27 

Final 
conc 

   N/A 493 uM 192 uM Determined 
by color 

144 uM N/A 
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Table 5.1 (Continued): 

(b) 

Reaction 
number 

     Ratio of  
H-
AIR:[5’S-
2H] AIR 

Volume 
of 
~30mM 
AIR 
mixture  
uL 

20mM 
SAM 

Methyl 
viologen 

Volume 
of 
~150uM 
ThiC  uL 

Ratio 
of  kH/ 
kD 

Isotope 
effect 
value 

1.              0.804494 6 3.5 5.5 350 5.98  

5.13 +/- 
0.92 

2. 2.216052 6 3.5 5.5 350 4.15 

3. 2.000785 6 3.5 5.5 350 5.24 

Final 
conc 

   N/A 493 uM 192 
uM 

Determined 
by color 

144 uM N/A 

 

5’deoxyadenosine was measured. Each LC-ESI-MS detection was performed five 

times and three different ratios of unlabeled AIR substrate and 2H-labeled AIR 

substrate were used to validate this experiment and generate the isotope effect number. 

If the ratio of 2H-labeled 5’dAdo to unlabeled 5’dAdo is the same as that of the 

substrate ratio of [4’-2H] AIR and [5’S-2H] AIR that was provided to the enzyme, that 

ribose-H was abstracted second. If the ratio of 2H-5’dAdo to H-5’dAdo is significantly 

lower than that of the substrate ratio of [4’-2H] AIR and [5’S-2H] AIR, that ribose-H 

was abstracted first.  
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Figure 5.11: Isotope effect for (a) [5’2H-AIR] versus (b) [4’2H-AIR] with ThiC. Blue 

= unlabeled AIR, red = labeled AIR, green = unlabeled 5’dAdo, red = labeled 5’dAdo. 

The relative amount of unlabeled to labeled substrate is shown in each bar graph 

against the amount of unlabeled to labeled 5’dAdo produced. 

Hence, if there is a significant isotope effect seen in a labeled and unlabeled substrate 

mixture, we can determine the first step for the reaction. It is important for our 

analysis to first of all ensure that the amount of HMP-P and 5’deoxyadenosine are 

stoichiometrically produced, ensuring no uncoupled production of unlabeled 

5’deoxyadenosine. All the reactions that were performed for the competition 

experiment are shown in Table 5.1 (a) and 5.1 (b). For each reaction, an HPLC 

analysis was done after removing the methyl viologen to quantitate the amount of 

HMP-P produced versus the amount of 5’deoxyadenosine produced. The ratios of D-

labeled to unlabeled 5’deoxyadenosine were found to be ~1:1. The ratio of the 

unlabeled to labeled substrate AIR (Column 2, Table 5.1 (a) and (b) ) and the 

(a) 

(b) 
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corresponding ratio of unlabeled to labeled 5’deoxyadenosine (Column 7, Table 5.1 

(a) and (b)) indicates that there is a H/D isotope effect for the [5-2H]AIR but not for 

the [4-2H]AIR i.e. the unlabeled AIR substrate is specifically picked up over the [5-
2H]AIR substrate by the enzyme, but there is no such preference in the case of the [4-
2H]AIR substrate as compared to the unlabeled AIR. This can be seen from the values 

showing a clearly significant isotope effect of 5.13 +/- 0.92 for the [5-2H]AIR in the 

reaction (Column 8, Table 5.1 (b)) and a very small isotope effect of 1.56 +/- 0.30 for 

the 4D-AIR in the reaction (Column 8, Table 5.1 (a)) (Figure 5.11).  

Thus, when the 5’dAdo radical in the enzyme ThiC encounters a choice between 

abstraction of a H or a D (because we have a mixture of [5-2H]AIR and 5H-AIR), the 

enzyme chooses to pick up the H-labeled AIR preferentially, and continue its reaction. 

Hence, the amount of unlabeled 5’deoxyadenosine is greater. In the case of the 4D-

AIR and H-AIR mixture, 5’dAdo radical in the enzyme ThiC encounters a H at the 5-

position for both the [4-2H]AIR and the [5-2H]AIR. It picks up the 5-H non-selectively 

from either of these molecules, and then the molecule, whether labeled or unlabeled at 

the 4-position is committed to the reaction. Hence, when the next H abstraction from 

the 4-H position happens, an equal amount of labeled and unlabeled 5’deoxyadenosine 

is formed.  

The small isotope effect for 4D-AIR can be attributed to the leaking out of 

intermediates from the ThiC active site as the reaction proceeds, the 5’deoxyadenosine 

doing only the first H-abstraction and not completing the second abstraction. This is a 

possibility especially when the second radical abstraction has to occur and there is a 

significant isotope effect to abstract a D over a H from the 4-H-AIR position Both of 

these reasons can explain the small isotope effect observed for the 4D-AIR for the 

5’deoxadenosine measurement.  
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5.3 Conclusion: 

We have been able to determine the fate of the C1 and C3 atoms of AIR. We showed 

that C1 leaves as formate by 13C-NMR and that C3 leaves as carbon monoxide by a 

spectrophotometric assay with reduced hemoglobin in anaerobic conditions. Further, 

we were able to show that the 5’deoxyadenosyl radical formed from SAM can abstract 

two H’s from the substrate, and that the H at 5-H-AIR is abstracted first, followed by 

the H at 4-H-AIR. Another interesting point to note is that the cleaving of the protein 

that is observed only occurs on exposure to air, and is nonspecific with regard to the 

reaction. Gel analysis of the protein after the reaction in anaerobic conditions did not 

show any cleaving of the protein. All these observations are essential data to help us to 

formulate a plausible mechanism for this complex rearrangement reaction. 

5.4 Experimental Methods 

All chemicals were purchased from Sigma-Aldrich Co. unless otherwise 

mentioned. HPLC analysis was performed using an Agilent 1100 instrument equipped 

with a diode array detector. LB medium was obtained from EMD Biosciences.  

Ampicillin and isopropyl β-D-thiogalactoside (IPTG) were purchased from 

LabScientific Inc.  Chloramphenicol was purchased from USB (Ohio).  Deuterated 

ribose was purchased from Omicron Biochemicals (South Bend, IN). AIR and HMP-P 

were synthesized as previously described14. A 150x4.6 mm Supelco LC-18-T column 

was used for analytical purposes, whereas a 250x10 mm semi-prep Supelco LC-18 

column was used for the isolation of 5-deoxyadenosine. ESI-MS coupled HPLC 

analysis was performed on an Agilent 1100 instrument equipped with an in line 

Micromass Quattro ESI-mass spectrometer. For the isotope effect experiments, ESI-

MS coupled HPLC analysis was performed on a Hewlett Packard 1100 HPLC 

equipped with a ThermoFisher DecaXP ion trap mass spectrometer. 
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5.4.1 Protein expression and purification for ThiC: 

A full length clone of Caulobacter crescentus ThiC in pET28 vector was co-

transformed with pDB1282, a plasmid encoding genes responsible for the Fe/S cluster 

biogenesis machinery, into E. coli B834(DE3) cell line. A 10 mL overnight culture of 

the resulting strain in LB was used to inoculate 1.5 L of sterilized M9 minimal 

medium, supplemented with 100 mg/L ampicillin and 40 mg/L kanamycin, and it was 

allowed to grow at 37 °C till the OD600 reached 0.1-0.2. At this point, ferrous 

ammonium sulfate, L-cysteine and L-arabinose were added to the final concentrations 

of 100 µM, 500 µM and 0.2% (w/v) respectively and the growth was allowed to 

continue with slow shaking (50 rpm). Once the OD600 reached 0.6, the cultures were 

cooled with ice-water and IPTG was added to a final concentration of 10 µM. The 

protein overexpression was continued at 15 °C with slow shaking for 18 hours and 

subsequently the cells were cooled again to 4 °C for 2-3 hours before harvesting and 

storing under liquid nitrogen till future use. 

For protein purification, the cell pellet (~10 g) was transferred to an anaerobic 

chamber (Coy Laboratories) and allowed to thaw. The pellet was resuspended with 50 

mL loading buffer (200 mM Tris-HCl, 1 mM DTT, pH 7.6) and 25 mg lysozyme and 

1000 U of benzonase were added to it. After two hours of incubation at room 

temperature with continuous mixing (magnetic stir-plate/bar) the resuspended cells 

were further lysed by sonication (Misonic XL-2000; 5x1 min cycles at the highest 

power setting) on ice. The crude lysate was clarified by centrifugation and the clarified 

lysate was loaded onto two 5 mL HisTrapTM (GE healthcare) column (arranged in 

tandem) pre-equilibrated with the loading buffer.  The column was then washed with 

50 mL wash buffer (loading buffer with 20 mM imidazole).  The bound protein was 

eluted with elution buffer (loading buffer with 300 mM imidazole).  The colored 
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fractions were desalted into the storage buffer using a Bio-Rad 10 DG desalting 

column (200 mM Tris-HCl, 4 mM DTT, 40% glycerol, pH 7.6). Aliquots of this 

protein preparation were stored under liquid nitrogen till further use. Protein 

concentration, iron and sulfide content were measured as described previously15. 

5.4.2 Protein expression and purification for AIRs kinase, Flavodoxin and flavodoxin 

reductase: 

Overexpression plasmids for the 6xHis tagged recombinant proteins were transformed 

in E. coli BL21 (DE3) cell strain. 10 mL overnight cultures of the resulting strain in 

LB was used to inoculate 1.5 L LB medium supplemented with 100 mg/L ampicillin 

(flavodoxin) or 40 mg/L kanamycin (flavodoxin reductase). Protein expression was 

induced with 1 mM IPTG at OD600 of 0.6 and the culture was supplemented with 100 

uM riboflavin (for flavodoxin and flavodoxin reductase). After 16 hours of 

overexpression at 15 C, cells were harvested, frozen and stored at -80 C.  

To purify the protein, the cell pellets were resuspended in 25 ml lysis buffer (10mM 

imidazole, 300mM NaCl, 50mM NaH2PO4, pH 8) and lysed by sonication on ice 

(Heat systems Ultrasonics model W-385 sonicator, 2s cycle, 50% duty). The resulting 

cell lysate was clarified by centrifugation and the protein was purified on Ni-NTA 

resin following the manufacturer’s (Qiagen) instructions. After elution, the protein 

was desalted using a 10 DG column (GE Healthcare) pre-equilibrated with the 50mM 

potassium phosphate buffer, 2 mM DTT and 30% glycerol, pH 8.0. Aliquots of both 

proteins were frozen with liquid nitrogen and stored at -80 C for future use. 

5.4.3 Preparation of AIR from AIRs:  

A typical reaction mixture consisted of 25 µL 100 mM AIRs, 10 µL 400 mM ATP, 5 

µL 1 M MgCl2, 900 µL 25 mM KPi (pH 7.5) and 100 µL of the AIRs kinase stock. 
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The reaction mixture was allowed to incubate at room temperature for 1 hr and was 

lyophilized till dry. The residue was transferred into the glove box and resuspended in 

degassed water to a final volume of 100 µL (final AIR concentration of ~25 mM). 

This AIR stock was directly used for ThiC reactions. 

5.4.4 NMR experiments with deuterated AIR: 

A typical 2 mL reaction mixture consisted of 80 uM flavodoxin, 40 uM flavodoxin 

reductase, 3 mM NADPH, 300-500 uM ThiC (depending on the protein preparation), 

500 uM AIR and 1 mM Sam-Cl. The reaction was allowed to proceed for 16 hours 

anaerobically and heat quenched subsequently. The product 5-dAd was analyzed and 

isolated by HPLC as previously described. Isolated 5-dAd was subjected to 1H NMR 

analysis (Varian 600 MHz; only the 5-dAd resulting from 5,5′-D2 AIR was analyzed 

using a Varian 500 MHz instrument).  

To monitor the time dependent formation of the 5-dAd from 4-D and 5,5′-D2 AIR, 100 

µL aliquots were removed at desired time intervals from the reaction mixture, heat 

quenched and filtered using 10 kDa MW cut-off membrane filters (microcon). The 

filtrate was analyzed by HPLC-coupled ESI-MS to obtain the product ratio as well as 

the mass of 5-dAd.  

5.4.5 NMR experiment with C1-13C AIR and C3-13C AIR: 

A typical reaction mixture (1 mL) consisted of 600 µM ThiC + 600 µM AIR + 2 mM 

SAM-Cl + 10 mM dithionite. The reaction mixture was allowed to incubate for 30 

minutes at room temperature anaerobically and was heat quenched. Precipitated 

protein was removed by centrifugation and to the supernatant was added D2O 

(Cambridge Isotope Laboratories) to a final concentration of 10 % (v/v). It was 

transferred to a Shigemi NMR tube, susceptibility matched for D2O and was analyzed 
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by 13C NMR (Varian 500 MHz). A control reaction, where SAM-Cl was omitted, was 

also set up and processed in parallel, identical to the reaction mixture. 

5.4.6 LC-MS analysis of deuterated 5-dAd from ThiC reaction mixture: 

Reactions were set up as described in section D. However, only 100 µL reaction 

mixture was set up with each individual deuterated substrate. Upon the completion of 

the reaction, the protein was heat denatured and the precipitated mass was removed by 

centrifugation. The supernatant was filtered through a 10 KDa MW cut-off filter and 

the filtrate was used directly for LC-MS analysis. A different HPLC protocol was used 

for these experiments. Following program was used with a linear gradient at 0.5 

mL/min: Solvent A: H2O, solvent B: Methanol. 0 min: 100% A; 5 min: 100% A; 25 

min: 35% A, 65% B; 30 min: 100% B; 35 min: 100% A.    

5.4.7 Standard curve for hemoglobin-CO detection: 

All buffers and reaction solutions were made using degassed water and inside the 

anaerobic chamber. 3.5  μM hemoglobin solution was made in 10mM MOPS, 0.9% 

NaCl buffer, pH 7.2 and 2mM final concentration of dithionite was added to it to 

convert all oxy hemoglobin to hemoglobin and to convert any methemoglobin (ferric) 

to the reduced (ferrous) species25. The solution was then allowed to stand for 1 hour. A 

saturated carbon monoxide(CO) standard solution was made by bubbling in CO gas 

(99% pure) into a sealed round-bottomed flask containing 10mM MOPS, 0.9% NaCl 

buffer, pH 7.2. This standard saturated solution of CO was then added in increasing 

volumes (0, 1,2,5,10, 20,50, 100  μL) to 8 fractions of 1mL each of the reduced 

hemoglobin solution and the total volume was made up to 1100 μL in each case by 

adding the required volume of the MOPS-NaCl buffer. The difference profile of the 
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hemoglobin-CO was taken with respect to the hemoglobin with no hemoglobin added 

to it and a change in the soret region of the absorbance is observed (Figure 5.4.1). 

 

 

 

 

 

 

 

 

 

Figure 5.4.1: (a) Change in absorbance in the soret region of the spectrum of 

hemoglobin when bound to increasing amounts of saturated CO buffer. (b) Graphical 

representation of (a) plotting the difference in absorbance values i.e |419-431| with 

respect to the volumes of saturated CO buffer added. (c) Plot of the linear region of the 

difference spectrum with volume to obtain the linear equation to quantify the amount 

of CO bound to hemoglobin. 

5.4.8 Detection of CO released in ThiC catalyzed reconstitution reaction:  

A typical reaction mixture (100 mL) consisted of 100 µM ThiC + 12.5 µM AIR + 1 

mM SAM-Cl + 10 mM dithionite. An identical control reaction with all components 

except AIR was also set up. The reaction mixtures was allowed to incubate for 30 

(a)

(b)

(c)
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minutes at room temperature anaerobically and 1mL of reduced hemoglobin was 

added to each - the full reaction mixture as well as to the control reaction mixture. The 

two solutions were then transferred into air-tight UV-Vis cuvettes in the anaerobic 

chamber and sealed before measuring the absorbance of the full reaction using a Cary 

300 Bio double beam UV-Vis spectrophotometer, where the control reaction was used 

as the background. The same procedure was repeated for increasing concentrations of 

AIR in the full reaction mixture - 16.6 μM and 25μM of AIR and the UV-Vis 

absorbance profile for the change in the soret region of hemoglobin die to binding 

with CO was recorded. 

5.4.9 Attempts at detection of formaldehyde as a product of the ThiC reaction by 4-

amino - 5 - hydrazino - 3 - mercapto - 1,2,4 –triazole (Purpald): 

 

 

 

 

 

 

 

 

Figure 5.4.2: (a) Scheme for reaction of dimedone with formaldehyde and Purpald 

with formaldehyde (b) UV-Vis absorbance profile of full ThiC reaction and the 

control ThiC reaction with Purpald.  
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Purpald is a reagent that reacts with formaldehyde and is further oxidized to form an 

intense purple color with characteristic absorbance at 355nm and 550nm (Figure 5.4.2 

(a)). A standard solution of 5mM formaldehyde was reacted with 10mM Purpald and 

further oxidized with 10mM NaIO4 to form the Purpald-formaldehyde adduct which 

has maxima at 355nm and 550nm. A typical reaction mixture (100 mL) consisted of 

200 μM ThiC, 400 μM SAM, 200 μM AIR and 500 μM dithionite and a control 

reaction consisted of ThiC without SAM. Both these reactions were then treated with 

10mM of the reagent Purpald, an aldehyde-trapping agent, followed by oxidation by 

10mM NaIO4
 .  It was observed that for the ThiC reactions, the absorbance profile of 

Purpald looked identical in the case of the control reaction as well as the full 

reconstitution reaction as shown in Figure 5.4.2 (b). Also, no significant peak was seen  

at 355nm. This reaction was repeated twice with other controls for the ThiC reaction, 

yielding identical results.  

Hence, we can see there is no formaldehyde being produced in the ThiC reconstitution 

reaction. However, as observed from the absorbance of the reaction-Purpald adduct, 

some other aldehyde seems to be forming, as Purpald is showing an absorbance for 

complexing with an carbonyl-aldehyde group which has to be investigated further. 
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CHAPTER 6 

 

The remarkable rearrangement reaction catalyzed by 4-amino-5-hydroxymethyl-

2-methylpyrimidine phosphate synthase: Mutagenesis studies on ThiC and 

studies on the activity of the mutants  

6.1 Introduction 

After having investigated the fate of every C from AIR, and establishing the two H-

atom radical shuttle done by the 5’deoxyadenosyl radical, it was yet difficult to 

establish a mechanism for the rearrangement of ThiC without knowing the structures 

of any of the intermediates on the pathway. Additionally, ThiC is a very fast enzyme, 

hence observing any intermediate steps of the reaction is also not currently feasible. 

One of the strategies to look for intermediates is to create important site directed 

mutants of the protein. This strategy has many advantages – i) active site mutants may 

not be able to convert the substrate fully to the product but may be partially active. 

This is very useful for getting the reaction to stop at a particular step in the reaction, 

thus identifying intermediates on the pathway1-2 ii)  It has been observed in the past 

that active site mutants come bound with relevant metabolites which can be purified 

and analyzed for their structure. These metabolites may be intermediates of the 

reaction or relevant molecules associated with the physiological role of the protein and 

can give us an idea of the functioning of the enzyme. iii) It has been observed that 

mutants of enzymes may be able to do the entire reaction but at a much slower rate. 

This would help in enzymatic characterization of the reaction. 
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6.2 Results/ Discussion 

 With these possibilities in mind, site directed mutants were created for the 

C.cresentus ThiC protein at C474S, E413Q, Y440F, Y277F, double mutant H417A-

H481A, M248L, R377K and C333A. The mutants are as shown in Figure 6.1. Of 

these, mutants C474S, E413Q, Y277F and H417A-H481A were taken up for the 

present analysis.  

 

 

 

 

 

 

 

 

 

Figure 6.1: Active site residues of ThiC that have been mutated for mechanistic 

investigation. 

The mutant plasmids C474S, E413Q, Y277F and H417A-H481A were cotransformed 

into B834(DE3) along with the pDB1282 plasmid (Fe-S cluster chaperone proteins) 

and were subsequently overexpressed in minimal media. The proteins were purified 
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and analyzed by gel electrophoresis (Figure 6.2). It can be seen that the H417A-

H481A mutant does not cleave when exposed to air.  

All of the mutants were then analyzed for reconstitution activity. Each of the five 

mutants was set up for a reconstitution reaction with AIR, SAM and dithionite or  

 

 

 

 

 

 

 

Figure 6.2: SDS-PAGE analysis of mutants of ThiC in anaerobic and aerobic 

conditions  

methyl viologen. All appropriate controls with AIR, SAM and the reducing agent 

missing were performed. HPLC analyses of all these reactions were done to look for 

the formation of HMP-P and 5’deoxyadenosine. 

Interestingly, two of the mutants Y277F and C474S showed the production of 

5’deoxyadenosine but no formation of HMP-P by RP-HPLC analysis (Figure 6.3). 

The 5’deoxyadenosine peaks were collected and analyzed by ESI-MS to confirm their 

identity. One of the possibilities for observing production of 5’deoxyadenosine is that 

the reaction was being carried on to some extent in the enzyme, but not to completion. 

M.Wt.       C474S    C474S      E413Q      E413Q      M.Wt.       H-H         H-H       Y277F      Y277F 

Markers    Anaer        Aer         Anaer          Aer       Markers     Anaer      Aer          Anaer        Aer 
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Figure 6.3: HPLC chromatogram showing production of 5’deoxyadenosine in the 

reconstitution reaction by the mutants (a) C474S and (b) Y277F 

These mutants would be of great value in finding interesting intermediates on the 

pathway. The other possibility is that there is uncoupled production of 

5’deoxyadenosine in these mutants, as they were both in the active site. The mutations 

could have perturbed the active site adequately to produce uncoupled 

5’deoxyadenosine. To distinguish between these two possibilities, the reconstitution 

reaction was carried out using the two mutants Y277F and C474S and the two labeled 

AIR molecules, [4’-2H] AIR and [5’-2H]AIR.  

(a) 

(b) 
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In the case of the C474S mutant, we could clearly see the production of 

5’deoxyadenosine in the case of both [4’-2H]AIR and [5’-2H]AIR substrates by HPLC.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: ESI-MS of labeled 5’deoxyadenosine of (a) C474S with [4’-2H]AIR and 

(b) C474S with [5’S-2H]AIR and (c) Y277F with [5’S-2H]AIR and (d)Y277F with [4’-
2H]AIR . 

(a) 

(b) 
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Figure 6.4 (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 5’deoxyadenosine peak was collected in both the reactions and analyzed by 

positive mode ESI-MS. The MS analysis showed the incorporation of 2H from the [4’-
2H]AIR and [5’-2H]AIR into the 5’deoxyadenosine (Figure 6.4).  

(d) 

(c) 
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In the case of the Y277F mutant, we could clearly see the production of 

5’deoxyadenosine in the case of both [4’-2H]AIR and [5’-2H] AIR substrates by 

HPLC, however the quantity produced is lesser than in the C474S mutant.  The ESI-

MS results show that the D is being abstracted from the [5’-2H -AIR] (Figure 6.4) as 

well as the [4’-2H]AIR. Interestingly, the amount of uncoupled 5’deoxyadenosine 

(mass of 252.10 Da) is consistently greater in the case of the [4’-2H] AIR as compared 

to the [5’-2H] AIR. The ratio of labeled to unlabeled 5’deoxyadenosine when [4’-2H ] 

AIR was used was  2.8 whereas the ratio when [5’-2H] AIR was used was 8.4.  

This result leads us to an interesting corollary of which H is abstracted first from the 

AIR by the 5’deoxyadenosyl radical. As we have shown, the 5-H is abstracted first. 

This is proved here, as in the case of the [5’-2H] AIR, the D is being abstracted first. 

So if there is any leaking out of 5’deoxyadenosine as the reaction goes forward, only 

the labeled 5’deoxyadenosine will be observed. In the case of the [4’-2H] AIR, the H is 

abstracted first to form the unlabeled 5’deoxyadenosine. So, if there is any leaking out 

of 5’deoxyadenosine as the reaction goes forward, only the unlabeled 

5’deoxyadenosine will be leaked out. Clearly, in the case of this mutant, there is 

leaking out observed, clarified by the reaction done with the [4’-2H] AIR. Further 

work needs to be done on this mutant to establish the extent to which it has catalyzed 

the rearrangement. 

 

6.3 Conclusion 

The ThiC rearrangement reaction is not only complex but also very fast, hence 

difficult to track. No intermediates have yet been successfully trapped from the wt 

ThiC protein reaction. Hence, we made active site mutants for ThiC, hoping to make a 
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mutant that was either partially active, or very slow at doing the reaction. In the 

process, we were able to identify the three mutants E413Q, C474S and Y277F that 

have interesting biochemical properties. The mutant E413Q has small molecules 

bound in its active site which have been isolated and their structural characterization is 

in progess. The mutants C474S and Y277F appear to be partially active, doing the 

ThiC rearrangement reaction till a particular step of the mechanism, without actually 

going to completion. Further analysis of these mutants and other active site mutants 

not yet been tested for activity may be able to provide us with a snapshots of the 

complex mechanism of the ThiC reaction. 

 

6.4 Experimental Methods 

6.4.1 Materials: All chemicals were purchased from Sigma-Aldrich Co. unless 

otherwise mentioned. HPLC analysis was performed using an Agilent 1100 instrument 

equipped with a diode array detector. LB medium was obtained from EMD 

Biosciences.  Ampicillin and isopropyl β-D-thiogalactoside (IPTG) were purchased 

from LabScientific Inc. Deuterated ribose was purchased from Omicron Biochemicals 

(South Bend, IN). AIR and HMP-P were synthesized as previously described14. A 

150x4.6 mm Supelco LC-18-T column was used for analytical purposes, whereas a 

250x10 mm semi-prep Supelco LC-18 column was used for the isolation of 5-

deoxyadenosine. ESI-MS coupled HPLC analysis was performed on an Agilent 1100 

instrument equipped with an in line Micromass Quattro ESI-mass spectrometer. For 

the isotope effect experiments, ESI-MS coupled HPLC analysis was performed on a 

Hewlett Packard 1100 HPLC equipped with a ThermoFisher DecaXP ion trap mass 

spectrometer. 
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6.4.2 Analysis of mutant ThiC protein in anaerobic versus aerobic conditions: 

The protein was removed from -80 oC and allowed to come to room temperature 

inside the anaerobic chamber (Coy laboratories). Two separate microcentrifuge tubes 

were taken with 5 µL of the protein in each. One tube was taken out of the glove box 

and exposed to air for 4 hours. The other one kept inside the anaerobic chamber for the 

same time. After 4 hours, each sample was quenched with gel sample buffer 

containing 50mM β-mercaptoethanol. The sample inside the anaerobic chamber was 

heat-quenched inside the anaerobic chamber and the sample exposed to air was 

quenched outside the chamber. The two samples for each mutant protein were then 

analysed by SDS-PAGE by running on a 12% Tris-glycine gel. 

6.4.3 Reconstitution of the ThiC reaction and analysis of the 5’deoxyadenosine peak 

A typical reaction mixture (100 mL) consisted of 100 µM ThiC + 12.5 µM AIR + 1 

mM SAM-Cl. Methyl viologen was added till the blue color of the reagent could be 

seen i.e. in slight excess after complete reduction of the cluster had occurred. An 

identical control reaction with all components except AIR was also set up. The 

reaction mixtures were allowed to incubate for 30 minutes at room temperature 

anaerobically. The reactions were then analyzed using RP-HPLC and after identifying 

the production of 5’deoxyadenosine in the full reaction, and its absence in the control 

sample, the 5’ deoxyadenosine was collected and subject to ESI-MS analysis. This 

reaction was done for the [5’S-2H]AIR and the [4-2H]AIR 
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CHAPTER 7 

Summary and Outlook 

7.1 Summary   

The advances in the detailed investigation of thiamin biosynthesis presented in this 

thesis increase to a larger extent the mechanistic puzzle involved in thiamin 

biosynthesis. Even though prokaryotic thiamin thiazole biosynthesis already had a lot 

of detailed work done and a strong foundation already had been established, we 

stumbled upon many surprises at various points in our research. ‘Unstable’ 

intermediates, reversibile enzymatic pathways, clustered enzymes similar to known 

ones but with unexplored functions and much more was encountered, and we studied 

them in detail and learnt an immense amount of very novel chemistry. The thiamin 

pyrimidine biosynthetic pathway had a lot to explore with regard to absolutely 

unprecedented radical chemistry, handling of air sensitive proteins and rigorous and 

detailed investigation of each glimpse that the reaction conditions have allowed us till 

date. There are many ways of advancing the research discussed in this thesis, and we 

discuss them here: 

 

7.2 Thiamin thiazole biosynthesis: 

7.2.1 Product of B. subtilis thiazole synthase:  

We established that the product of the thiazole synthase from the thiazole 

reconstitution reaction was the thiazole tautomer phosphate. We characterized it by 

HPLC and detailed 1D and 2D-NMR analysis.  
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7.2.2 TenI 

 The thiazole tautomer phosphate molecule is surprisingly stable, however, did not 

convert by itself to the thiazole carboxylate phosphate or thizole phosphate on being in 

buffer at room temperature, instead it degraded to an uncharacterized product. Hence, 

we suggested the involvement of an enzyme TenI to specifically take up the thiazole 

tautomer phosphate and convert it to thiazole carboxylate phosphate. TenI was a 

protein found clustered with thiamin biosynthesis proteins in prokaryotes, but without 

an assigned role yet. Its curious similarity to the protein sequence of ThiE, the thiamin 

phosphate synthase, but its inability to bind thiamin phosphate had provided us 

adequate evidence that it is involved in the pathway at some later stage. We 

characterized the activity of TenI using limited amount of thiazole tautomer phosphate 

substrate that we could get by isolation from the S. cerevisiae thiazole synthase THI4. 

A crystal structure was then obtained for TenI bound to the product of the 

aromatization reaction (Ying Han, Yang Zhang, Steven E. Ealick), and basic 

mutational analysis studies revealed the putative involvement of a His residue in the 

active site for the deprotonation-protonation chemistry. 

7.2.3 Reversibility of B. sublitis thiazole synthase ThiG 

We were able to show that when thiazole tautomer phosphate was added back to ThiG, 

it disappeared, and preliminary evidence showed that a phosphorylated molecule is 

bound to the protein. This reversibility is yet to be explored further to assign the exact 

locus of attachment of the thiazole tautomer phosphate to the ThiG. We are predicting 

the reversible reaction to be happening at the Lys96 residue in ThiG as that is the 

active site residue that catalyzes thiazole biosynthesis. A Lys96Ala mutant has been 

used to show that the reversible reaction product, which is phosphorylated, may not be 

bound to this protein. 
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7.2.4 Thiamin pyrimidine biosynthesis 

In the past, we were able to successfully reconstitute in vitro, the process of thiamin 

pyrimidine formation. With a systematic procedure in hand to produce pure and active 

protein, we established the fate of the C1 and C3 atoms of AIR in the complex 

rearrangement, the abstraction of 4’-H-atom and the 5’-H-atom from AIR by the 

5’deoxyadenosyl radical, the order of abstraction of these two H-atoms and further the 

stereochemistry of abstraction of H from the 5’-position of the ribose ting of the AIR. 

We also investigated active site mutants of ThiC for interesting intermediates and 

activity and have established partial activity in two if the mutants. 

 

7.3 Outlook 

7.3.1 Kinetics of TenI 

Due to the lack on large amounts of substrate, the kinetic characterization of TenI and 

its mutants have not been adequately done. Also, further mutational analysis of the 

protein to see whether any other residues seem to play a role in the enzymatic 

mechanism  and change the rate of TenI could be done. The limiting factor for all 

further work on TenI is the synthesis of the thiazole tautomer phosphate. Attempts 

have been made for its synthesis, and they have been largely unsuccessful. In the 

future, if the synthesis is accomplished, we can have systematic and rigorous 

characterization of TenI and its mutants. 

7.3.2 Reversibility of ThiG 

The reversibility of the thiazole synthase ThiG of reacting with the unstable thiazole 

tautomer phosphate and producing a phosphate bound species has many interesting 
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consequences. Till date, a crystal structure of ThiG with any molecule bound in the 

active site has been elusive to us. If we can conclusively prove that the thiazole 

tautomer phosphate is reversibly being bound to Lys96, we may try to crystallize this 

protein bound with this intermediate, thus allowing us a glimpse into the active site of 

this protein. Also, being able to track a reversible reaction in a protein will be quite 

interesting in a complex 6-enzyme reconstitution. Again, obtaining the thiazle 

tautomer phosphate is the limiting step, but as the amount required is small, we can 

purify it out from S. cerevisiae THI4.  

7.3.3 Role of the mononuclear metal center in ThiC.  

We have seen the presence of a conserved mono-nuclear zinc binding site in the active 

site cavity in ThiC in the crystal structure. We have no clear role for this mono-nuclear 

Zn center or alternately, Fe-binding center in our understanding of ThiC as of now. 

Mutants of ThiC lacking the one or both of the two histidine residues, used to co-

ordinate the metal, could be characterized to unveil the role of this metal binding site. 

7.3.4 Kinetics of ThiC.  

ThiC catalyzed reaction is very fast and is complete within ~30s. This makes it 

difficult to characterize the protein without rapid-kinetics set up. Anaerobic stopped 

flow and rapid quench experiments could allow kinetic characterization of this 

reaction, which will be valuable towards validating different mechanistic hypotheses.  

7.3.5 Characterization of ThiC mutants. 

 7.3.5.1 Intermediates on the pathway: As discussed in Chapter 6, we have been 

able to identify two mutants C474S and Y277F which appear to be doing the partial 

reaction. We proved this 5’deoxyadenosine was not uncoupled and was relevant to the 
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reaction, by doing the reaction with labeled AIR substrates and showing label 

incorporation into the 5’deoxyadenosine. These mutants can be of high relevance in 

isolating an intermediate on the reaction pathway. A hypothesis we have for the 

intermediate that we may produce is that it may have a phosphate on it. If so, we can 

probe for the phosphate group by various techniques – neutral ion loss tracking of 

phosphate in the reaction mixture, phosphate NMR analysis, radioactively labeled AIR 

substrate etc., we may identify interesting intermediates on the reaction pathway for 

the protein.  

7.3.5.2 Carbon monoxide formation in mutants: In addition, we will probe for 

the production of carbon monoxide for the mutants, to see the extent to which the 

reaction has occurred in both of the mutants. 

7.3.5.3 H-abstraction from desamino-AIR: To check for the involvement of the 

amino group of the AIR in the rearrangement reaction, we will try the ThiC 

reconstitution reaction with desamino-AIR. 

 

 

 

 

 

 


