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The conduct of coupled oscillators has long beguiled scientists. Here we study

two models of such oscillators. The first is Peskin’s integrate-and-fire model. We

focus on the transitory behavior, showing that in its infancy, synchrony looks

much like aggregation. In the second model, we consider oscillators which ad-

just their positions in space as well as their phases. We show the coaction of

these two effects produces novel spatiotemporal patterns, which we study both

analytically and numerically.
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CHAPTER 1

INTRODUCTION

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of

things.

Isaac Newton

In my first year of grad school, Prof Chris Henley told me Ising was an average

student. I was shocked – the Ising model is famous in physics, one of the cor-

nerstones of statistical mechanics. It was originally introduced as a toy model

of ferromagnetic materials, where the magnetic spin of the constituent particles

was idealized to be either ’up’ or ’down’ (in reality the spin can point in any di-

rection). But its full importance came later, when it was used to understand gen-

eral critical phenomena, universality, and ultimately the renormalization group;

well known triumphs of modern physics. Since then, it has found application

in fields ranging from social dynamics to neurobiology.

I was curious how such a successful model could have such a humble origin. I

found out that the supposedly modest ability of its progenitor was just one of

the quirks of its curious history [2]. For instance, it was Ising’s advisor, Lenz,

who conceived the model, whereas Ising just carried out the calculations (to his

credit, Ising tried to re-christen it the ”Lenz-Ising” model, but it didn’t stick [3]).

Furthermore, Ising’s original paper had a mistake! He correctly showed that in

one dimension there was no ferromagnetic transition, but wrongly concluded

that this result would hold in three dimensions.
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But perhaps the most significant quirk is that the model wasn’t taken seriously.

The physicist Stephen Brush writes ”it was scorned or ignored by most scien-

tists” for being ”greatly over simplified” [2]. They believed that idealizing the

spin vector to a binary value, which made the model solvable, was too unre-

alistic. The Nobel prize winner Chen Yang said it was ”considered an arcane

exercise[s], narrowly interesting, mathematically seducing, but of little conse-

quence” [4]. Amusingly, this view was shared by Ising, who was said to have

been so disenchanted with the model’s relevance that he gave up research [2]!

Yet over time this view changed, as the broad utility of the model, stemming

from its simplicity, was gradually realized.

I was fascinated that something as important as the Ising model had been so

misjudged, and wondered if other scientific work had been too. In my third

year, when I became interested in synchronization, I found out it had.

Collective synchronization occurs when a large population of oscillators spon-

taneously lock their cycles, in spite of dissimilarities in their natural frequencies.

This can be thought of as a temporal analogue of the ferromagnetic phase transi-

tion in the Ising model. This effect spans many disciplines. In biology, it is seen

in discharging pacemaker cells, in chemistry in metabolic cycles of yeast cell

suspensions, and in physics in arrays of superconducting Josephson junctions.

There are many other examples, too numerous to list here.

Art Winfree first discovered this sync phenomenon when studying biological

rhythms [5]. In a seminal, eloquent, and inspiring paper he posited that various

physiological rhythms are the product of ’the mutual synchronization of myri-
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ads of individual oscillatory processes’. However, the individual oscillators he

was imagining weren’t of the usual, linear variety. Instead they were nonlinear,

which made them oscillate with a preferred amplitude and waveform called a

limit cycle. How a population of nonlinear oscillators behaved was unknown.

Mathematically, this group behavior would be determined by a large system of

nonlinear differential equations – a formidable challenge immune to the usual

tools.

But Winfree wasn’t deterred. Like Ising – or rather Lenz – his approach was to

write down an extremely idealized model in the hope of capturing the essential

features of the sync phenomenon. It worked. Simulations showed a transition

to ”striking community synchronization”, which due to the simplicity of the

model he was able to partially analyze. Kuramoto later made Winfree’s model

even simpler, resulting in his famous, eponymous model. In a beautiful analysis

he solved the model exactly, ultimately leading to the plenitude of attention

the model enjoys today. However, similar to the Ising story, both Kuramoto

and the rest of the community were initially rather under-enthused with his

results.

In my fourth year, I attended a conference organized in Kuramoto’s honor. He

was unable to travel in person, so instead recounted his model’s tale via video

[6]. He told us that when he developed the model he was new to nonlinear

science, and so was unsure of its worth. He thus sought expert opinion before

publishing his results. With endearing honesty and trademark understatement,

he said the feedback was ”not so encouraging”. The experts ”showed little in-

terest in his [my] work, and were even critical”. They said his results ”didn’t
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seem new at all” and that ”there were many similar works in mechanical and

electrical engineering”.

Dispirited by this negativity, Kuramoto didn’t work on the model for five years.

He didn’t even publish the work beyond a two page article in a conference pro-

ceedings. Serendipitously however, this article was seen by Winfree who recog-

nized its importance and described it in his famous book on biological rhythms

[5]. This gave the Kuramoto model much exposure, ultimately leading to the

wide popularity it enjoys today.

I love both this story and the Ising story. I like that Ising blundered when analyz-

ing his model in three dimensions – it’s encouraging that famous scientists make

mistakes too – and I’m amused that Lenz didn’t get titular credit. I also like that

the experts’ disdain made Kuramoto so reluctant to publish; it humanizes him,

while also showing that importance can be gravely mismeasured. But what I

love most is that the stories illustrate the power of minimal models. Stripping

a model down to its barest features really can work. Simplicity makes things

tractable, and tractability makes things understandable. Then, like an inverse

series of Russian dolls, greater realism can be added to make things quantita-

tive.

This thesis is an homage to this style of work. It explores minimal models of

coupled oscillators. It consists of three projects, each of which is an autonomous

publication with its own introduction and conclusion. The first two are about

the transient behavior of pulse-coupled oscillators. These are idealizations of

relaxation oscillators, which communicate with each other by firing sudden
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pulses. They are often collectively referred to as the Peskin model, since Charlie

Peskin first introduced them when studying cardiac pacemaker cells. Since then

however they have found application in low-powered radios, sensor networks,

and earthquakes dynamics.

As is typical is nonlinear dynamics, traditional research on the Peskin model fo-

cuses on the steady state – usually some form of synchrony. But the approach to

the steady state is less studied. Our work focuses on this part of the dynamics:

the prelude to synchrony. We show that this looks like an aggregation process,

a link which gives us access to new mathematical tools. In spite of this, the

nonlinearities in the system make progress difficult. In a barefaced attempt to

mimic the minimalism credo, we eliminate these difficulties by making two ide-

alizations. This makes the model exactly solvable, and its analysis constitutes

Chapter one.

In the second Chapter, we show that our idealized model captures the essence

of the original problem. This insight, along with the exact analysis of our ideal-

ized model, lets us derive good approximations to the transient behavior of the

Peskin model, our original goal.

Chapter three is more ambitious. It seeks to wed two similar, but largely sep-

arate, fields: swarming and synchronization. In synchronization, the units are

characterized by their phases, whose influence on each other promotes tempo-

ral order. In swarming systems, the degrees of freedom are the units’ positions,

whose influence on each other triggers spatial order. But what happens if these

two effects interact? In what ways can units with both temporal and spatial
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degrees of freedom organize themselves?

To answer this question, we study a generalized Kuramoto model where now

the elements are free to move around in space as well as in phase. Further, there

is a bidirection coupling between their spatial and phase dynamics. We call

these entities ’swarmalators’ since they swarm and oscillate.

The original motivation for this work was Janus particles [7]. These are microm-

eter sized particles which can be induced to oscillate about their centers of mass

using magnetic fields. When in suspension, they are also free to move around in

space. The dynamics of the phase (of oscillation about the center of mass) and

position of each particle are coupled to each other, and so Janus particles satisfy

our proposed definition of swarmalators.

As detailed in [7], populations of Janus particles display novel collective behav-

ior. We first considered trying to model Janus particles directly. The equations

of motions were however complicated, making analysis seem unlikely. Numer-

ically solving them was an obvious alternative. But as pointed our by my com-

mittee member Chris Myers, the complexity of the governing equations would

likely obscure the core phenomenology that we wanted to study, namely the in-

teraction between synchronization and swarming. He made the key suggestion

that we instead follow the minimalism principle. Thus we developed a mini-

mal model, whose simplicity, as we show, lets us study some of the states of our

system analytically.

* * *
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A final word on minimal modeling. This approach to science, of course, is far

from perfect. Not all phenomena are simple, or expressible with elementary

mathematics, and so it will often fail. Of course another danger is that the mod-

eler, in his zealotry for simplicity, will over do it. No one would remember even

seeing a baby, it having been discharged so feverishly with the dishwater. Yet as

as evidenced by my heroes Ising, Winfree, and Kuramoto, it pays to be daring.

The skillful modeler therefore strikes a balance between intrepitude and over-

confidence. As Emanuel Derman puts it, ”A little north of common sense, but

south of idolatry, lies the wise use of models”.
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CHAPTER 2

SYNCHRONIZATION AS AGGREGATION: CLUSTER KINETICS OF

PULSE-COUPLED OSCILLATORS

One does not discover new continents without consenting to lose sight of the shore for

a very long time .

Andre Gide

2.1 Introduction 1

In one of the first experiments on firefly synchronization, the biologists John

and Elisabeth Buck captured hundreds of male fireflies along a tidal river near

Bangkok and then released them at night, fifty at a time, in their darkened hotel

room [8]. They observed that “centers of synchrony began to build up slowly

among the fireflies on the wall. In one area we would notice that a pair had

begun to pulse in unison; in another part of the room a group of three would be

flashing together, and so on.” Synchronized groups continued to emerge and

grow, until as many as a dozen fireflies were blinking on and off in concert. The

Bucks realized that the fireflies were phase shifting each other with their flashes,

driving themselves into sync.

Here we study stylized models of oscillators akin to the fireflies, in which syn-

1This chapter is reproduced from: O’Keeffe, Kevin P., Pavel L. Krapivsky, and Steven H. Stro-
gatz. ”Synchronization as aggregation: Cluster kinetics of pulse-coupled oscillators.” Physical
review letters 115.6 (2015): 064101.
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chrony builds up stepwise, in expanding clusters. By borrowing techniques

used to analyze aggregation phenomena in polymer physics, materials science,

and related subjects [9, 10], we give the first analytical description of how these

synchronized clusters emerge, coalesce, and grow. We hasten to add, however,

that the models we discuss are not even remotely realistic descriptions of fire-

flies; they are merely intended as tractable first steps toward understanding how

clusters evolve en route to synchrony.

Our work is part of a broader interdisciplinary effort [11, 12]. Oscillators cou-

pled by sudden pulses have been used to model sensor networks [13–17], earth-

quakes [18, 19], economic booms and busts [20], firing neurons [21, 22], and

cardiac pacemaker cells [23]. Diverse forms of collective behavior can occur in

these pulse-coupled systems, depending on how the oscillators are connected

in space. Systems with local coupling often display waves [24, 25] or self-

organized criticality [18, 26, 27], with possible relevance to neural computation

[22] and epilepsy [28]. In contrast, systems with global coupling, where every

oscillator interacts equally with every other, tend to fall into perfect synchrony.

Rigorous convergence results have been proven for this case [27, 29–32]. But the

techniques used previously have not revealed much about the transient dynam-

ics leading up to synchrony—the opening and middle game, as opposed to the

end game. Aggregation theory offers a new set of tools to explore this prelude

to synchrony.

Exact results for the transient dynamics can be obtained in at least two cases. In

the Supplemental Material [33], we apply aggregation theory to the determin-

istic Peskin model [23], assuming the oscillators rise linearly to threshold and
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fire pulses of size 1/N, where N � 1 is the number of oscillators. A simplified

stochastic version of this model yields similar results, but because it illustrates

the main ideas more clearly we present it here in the main text. This toy model,

which we call scrambler oscillators, consists of N identical integrate-and-fire os-

cillators coupled all to all. Each oscillator has a voltage-like state variable x

that increases linearly according to ẋ = 1, rising from a baseline value of 0 to

a threshold value of 1. Whenever any oscillator reaches threshold, it fires and

does three things. (i) It kicks every oscillator (and every synchronous cluster

of oscillators) to a new random voltage, independently and uniformly—in this

sense, it scrambles the other oscillators. However, no scrambling occurs within

a cluster; all oscillators at the same voltage get kicked to the same new volt-

age. Thus, clusters never desynchronize; once formed they are preserved by

the scrambling procedure. (ii) The firing oscillator then “absorbs” any scram-

bled oscillators that lie within a distance 1/N of threshold, by bringing them

to threshold and thereby synchronizing with them. To avoid the complications

that would be caused by chain reactions of firings, we assume that the oscilla-

tors being brought to threshold do not get to fire until the next time they reach

threshold. (iii) The oscillator that fired resets to x = 0 along with the oscillators

it absorbed.

If a cluster of j oscillators does the firing, the same rules apply, except that now

any oscillators within a distance j/N of threshold get absorbed. The assumed

proportionality to j is natural, if each member of the cluster contributes to the

pulse strength. We study other plausible coupling rules in [33].

The motivation for this scrambler model is that it leads to the simplest possi-
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ble mean-field approximation. In the infinite-N limit, we would like clusters of

every size to be uniformly distributed in voltage at all times. This convenient

property would greatly ease the derivation of the rate equations for the cluster

kinetics. As we will see below, the predictions that follow from this approxima-

tion agree reasonably well with simulations. (For finite-N, these assumptions

break down at large times and for large clusters, limitations that we analyze in

[33].)

Assume the initial voltages xi, for i = 1, . . . ,N, are independent and uniformly

distributed. At first, nothing interesting happens. The oscillators increase their

voltages without interacting. But then one oscillator reaches threshold and fires.

The remaining oscillators get scrambled, and perhaps some get absorbed. Then

another oscillator fires, and so on. After a while, the system has formed clusters

of various sizes.

Let N j(t) denote the number of clusters of size j at time t. Thus there are N1(t)

singleton oscillators, N2(t) pairs of synchronized oscillators, N3(t) triplets, and

so on. The N j are correlated random quantities. They are correlated because

oscillators belonging to clusters of one size are unavailable to clusters of an-

other size, and they are random because of the randomness in the initial condi-

tions and the scrambling procedure. It does not seem feasible to understand the

time-evolution of the N j unless they are so large that their fluctuations from one

random realization to another are negligible.

So assume from now on that N j � 1 for all j and replace these random quantities

by their ensemble averages. Let c j = N−1〈N j〉 denote the average cluster densi-
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ties. One hopes that relative fluctuations are small; more precisely, N−1N j =

c j + O(N−1/2). An even stronger assumption is that the densities of different sub-

populations are asymptotically uncorrelated: N−2NiN j = cic j + O(N−1/2).

These c j allow us to define a natural disorder parameter, given by the total den-

sity c(t) =
∑

j c j(t). It measures the extent of the system’s fragmentation. To see

this, note that at t = 0 each oscillator is alone; only clusters of size 1 exist. Ac-

cordingly c1(0) = 1 and all other c j(0) = 0 for j > 1. Hence c(0) = 1, correctly

indicating that the system starts out maximally fragmented. At the opposite ex-

treme, as t → ∞ only one giant cluster of synchronized oscillators exists. The

system is then minimally fragmented: c(t) = 1/N → 0 as N → ∞.

To derive a rate equation for the decline of c(t), let Ri be the rate at which clus-

ters of size i fire, for i = 1, . . . ,N, and let Li be the number of clusters lost to

absorption in each such firing. Then ċ = −
∑

i RiLi.

To find Li, recall that when a cluster of size i fires, all the other clusters get as-

signed a new voltage uniformly at random. Moreover, any clusters assigned to

the interval [1− i/N, 1) get brought to threshold and absorbed. Since the voltages

of these other clusters are uniformly distributed on [0, 1], a fraction i/N of them

will be absorbed. There are
∑

j N j clusters in total. Hence the number absorbed

is Li = (i/N)
∑

j N j = i
∑

c j = ic.

The rate Ri takes more work to calculate. Since some clusters get absorbed,

not every cluster gets the chance to fire. We must account for this depletion

when calculating Ri. First consider the background rate of firing of clusters of
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size i in the absence of absorptions. In other words, pretend for a moment that

when an i-cluster fires, it simply scrambles every other cluster and restarts its

own cycle without absorbing anyone. Call this background rate R0
i . Since all

oscillators move with velocity vi = ẋi = 1, and since the cluster density is ci,

the corresponding background rate of firing is R0
i = civi = ci. Next, to find the

actual Ri, we must subtract from R0
i the rate at which clusters of size i are being

absorbed and hence deprived of their chance at firing. Call this absorption rate

Ra
i . Clusters of size i are absorbed when clusters of size j fire, for j = 1, . . . ,N,

taking a fraction j/N of the uniformly distributed i-clusters along with them.

Since there are Ni clusters of size i and the j-clusters fire at rate R j, the total rate

at which i-clusters are being absorbed is given by Ra
i =

∑
j( j/N)NiR j =

∑
j jciR j =

ci
∑

jR j.

Putting all this together gives Ri = R0
i − Ra

i = ci − ci
∑

j jR j = ci(1 −
∑

j jR j). Let

β = 1−
∑

j jR j. Note that β is the same for all i, which enables it to be determined

self-consistently, as follows. From Ri = βci we obtain β = 1−
∑

j jR j = 1−
∑

j(βc j).

Now invoke the identity
∑

j jc j = j(N j/N) = 1, which expresses conservation of

oscillators. Solving for β then gives β = 1/2 and therefore Ri = ci/2.

Next, plug the expressions derived for Ri and Li into the rate equation ċ =

−
∑

i RiLi. The result is ċ = −
∑

i(ci/2)(ic) = −(c/2)
∑

i ici = −c/2. Recalling that

c(0) = 1, we conclude that

c(t) = exp(−t/2). (2.1)

Figure 2.1 shows this result matches simulations.

How do the individual cluster densities ci behave? To derive their rate equa-
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Figure 2.1: Theoretical and simulated c(t) and c1(t). Solid lines show theo-
retical curves obtained analytically (see text). Data points show
simulation results for N = 104 oscillators.

tions, note that since the voltage space is the interval [0, 1], a segment of length

N−1 contains on average Nc×N−1 = c clusters. In fact, the probability that it con-

tains n clusters (of any sizes) is given by the Poisson distribution: Πn = cne−c/n!.

This is the mathematical expression of the assumption that clusters are dis-

tributed randomly without correlations.

With this in mind, let us solve for c1(t), the density of singletons. It is the easiest

c j(t) to analyze, since it can only decrease. Two mechanisms decrease c1(t): (i)

The loss of a firing singleton when it absorbs a cluster of any size, and (ii) the

loss of p > 1 absorbed singletons, when a cluster of any size fires.

Consider mechanism (i). Since Ri = ci/2 as shown above, singletons fire at a rate

R1 = c1/2. When they fire, they absorb any cluster lying in the voltage segment

[1 − 1/N, 1). The probability that this segment contains one or more clusters is,

according to the Poisson distribution, 1 − e−c. In this case, the firing singleton

is lost by its absorption of a cluster, thus decreasing N1 by 1. Otherwise N1
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is unchanged. Hence singletons are lost by mechanism (i) at an expected rate

(c1/2)
[
1 × (1 − e−c(t)) + 0 × e−c(t)

]
= (c1/2)

[
1 − e−c(t)

]
. Note: we only account for the

loss of the firing singleton here; any singletons it absorbs are accounted for in the

following mechanism (ii).

Suppose p singletons lie in the interval [1 − j/N, 1) when a cluster of size j fires,

for j = 1, . . . ,N. This event happens with probability e− jc1( jc1)p/p!, and when it

does, it consumes p singletons. (If a singleton did the firing, the loss would be

p+1. However the loss of the firing singleton was already counted in mechanism

(i). So the consumption factor of p for each firing j-cluster is valid even for

j = 1.) As before, j-clusters fire at a rate R j = c j/2. Hence singletons are lost by

mechanism (ii) at a rate ∑
j≥1

c j

2
×

∑
p≥1

p
( jc1)pe− jc1

p!
= c1/2. (2.2)

Summing the loss rates from (i) and (ii) gives

dc1

dt
= −

c1

2
(2 − e−c(t)). (2.3)

This equation has a closed-form solution in terms of exponential integrals:

c1(t) = exp(−t + Ei(−1) − Ei(−e−t/2)), (2.4)

where we have used the initial condition c1(0) = 1. Figure 1 shows good agree-

ment between the theoretical and numerical c1(t).

For i > 1, the rate equation for ci includes gain terms as well as loss terms.

Clusters of size i > 1 can be created when two or more smaller clusters coa-

lesce, or destroyed when they themselves coalesce with at least one other clus-
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ter. The loss term is a straightforward generalization of that for c1, and is given

by (ci/2)
[
2 − e−ic(t)

]
.

To find the gain term, imagine that a cluster of size k fires. The segment [1 −

k/N, 1) may contain a1 clusters of size 1, a2 clusters of size 2, etc. This event

happens with probability (kc1)a1

a1! e−kc1 ×
(kc2)a2

a2! e−kc2 × . . . (where we are using the

assumption that clusters of different sizes are independent as well as Poisson

distributed). If the segment contains a combination of clusters such that k +

a1 + 2a2 + 3a3 + · · · = i, then a cluster of size i will form. We sum over all such

combinations for a cluster of size k firing, and then sum over all k, to get the rate

at which clusters of size i are created:

i−1∑
k=1

ck

2
e−kc

∑
a1+2a2+···=i−k

∏
p≥1

(kcp)ap

ap!

 . (2.5)

Combining the loss and gain terms, and transferring cie−ic into the gain term,

we finally obtain

ċi = −ci +

i∑
k=1

ck

2
e−kc

∑
∑

pap=i−k

∏
p≥1

(kcp)ap

ap!

 . (2.6)

We see from the sum that the equations (3.29) are recursive. They can be solved

one by one, though not analytically, so we resort to numerical integration. Fig-

ure 2.2 shows that the theoretical and simulated ci agree.

Although we cannot find all the ci(t) explicitly, we can get their moments

Mn(t) =
∑

j jnc j(t) through the use of a generating function. We already know

two moments: M0(t) = c(t), given by Eq. (1), and M1 = 1. A few of the higher
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Figure 2.2: Theoretical and simulated cluster densities c2(t) through c5(t).
Solid lines show theoretical predictions computed from numer-
ical integration of Eq. (3.29). Data points show simulation re-
sults for N = 5 × 104 oscillators.

moments are

M2(t) = e3t/2

M3(t) = 7e7t/2 − 6e3t

M4(t) =
448
5

e5t − 128e9t/2 +
217
5

e15t/4 − 4e27t/8.

(2.7)

These and further results are discussed in [33].

We also studied two modifications of the scrambler model. For example, sup-

pose that when a cluster of size j fires, it absorbs all oscillators within a distance

k j/N of threshold, where k > 0 is a tunable coupling strength. Or suppose that

the pulse strength is k/N, independent of the size j of the firing cluster. We

discuss both cases in [33]. In the latter case the disorder parameter c(t) decays

algebraically rather than exponentially. This makes sense physically: by assum-

ing that larger clusters no longer fire larger pulses proportional to their size, we

cut the positive feedback loop underlying the exponential growth of synchrony

in the original scrambler model.
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The stochastic scrambler model approximates the deterministic models studied

by Peskin [23] and Mirollo and Strogatz [29]. In those models, when a cluster

of size j fires it adds a voltage pulse jε to every other oscillator, or pulls it up to

threshold, whichever is less. For the case where ε = 1/N and the charging curve

is linear, we show in [33] that these deterministic systems can also be analyzed

by the methods above. The main new feature is that c(t) and the cluster densities

ci(t) become piecewise linear. But their overall shapes still resemble those seen

in the scrambler model.

Intuitively, the piecewise linearity in the deterministic case arises because the

speed of each oscillator, and the effect of a pulse on each oscillator, is the same.

Hence the oscillators, or clusters of oscillators, maintain their initial ordering;

they all march forward through [0, 1] in a line with no passing. This property

then implies, in a mean-field sense discussed in [33], that the oscillators con-

dense into clusters whose size doubles periodically. At the end of the first pe-

riod, all oscillators synchronize into pairs spaced equally apart. At the end of

the second period, those pairs merge into clusters of size 4, and so on. More-

over, the clusters begin each period evenly spaced from each other (again, in a

mean-field sense where fluctuations are neglected), which yields the piecewise

constant firing rate mentioned above.

One limitation of our analysis, for both the scrambler and deterministic mod-

els, is that each oscillator obeys ẋi = 1 between firings. Such linear sawtooth

waveforms are reasonable for the oscillators used in sensor networks [15], but

not for neurons or cardiac pacemaker cells. In [33] we show that our results

for the deterministic model are robust to the addition of small concavity in the
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charging curve. But large concavity introduces new effects, not yet understood

theoretically. The analysis becomes more difficult because clusters are no longer

uniformly distributed as we have assumed throughout.

There are many avenues to explore in future work. It would be interesting to

study cluster kinetics in oscillator systems with local coupling, network struc-

ture, heterogeneity, delays, and other realistic features. Several of these features

would break clusters apart, and so would require including fragmentation pro-

cesses in the analysis. By incorporating suitable new loss and gain terms in the

rate equations, one could perhaps derive useful estimates for synchronization

speeds in more complex but random networks where synchronization is guar-

anteed but speed estimates are lacking [34].

Another possible application concerns the detection of network topology. Are-

nas et al. showed that in the Kuramoto model, the time course of cluster for-

mation en route to synchronization can be used to shed light on a network’s

topology [35] and community structure [36]. While the mean-field approach

used above is suitable for homogenous topologies, extensions of our approach

using degree distributions might prove useful in probing a network’s hidden

structure.
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2.2 Supplemental Material

Section I presents additional analytical results for the Scrambler model. These

include asymptotic results about the long-time behavior of the individual clus-

ter densities ci described in the main text, as well as an exact solution for the

time-dependence of the moments of the ci.

Section II modifies the Scrambler oscillator model to allow alternative couplings

between oscillators. Specifically, we change how close to threshold an oscillator

has to be in order to be absorbed by a firing cluster. This only modestly changes

the analysis.

Section III examines a more substantial alteration of the model, in which we

change its character from stochastic to deterministic. Now, when an oscillator

reaches threshold, it no longer scrambles every other oscillator to a new, ran-

dom, voltage. Instead, it kicks every other oscillator up by a constant amount,

or up to threshold, whichever is less. This deterministic resetting rule is in

line with the simplest traditional models of pulse-coupled oscillators. As will

be shown, this change makes for a more involved analysis, but the results are

qualitatively similar to those obtained in the main text. This qualitative agree-

ment is what originally motivated our use of the Scrambler model in the first

place.

Section IV explores how some of our results break down if we relax the assump-

tion N j � 1 made in the main text.
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2.3 I. Analytical Results

2.3.1 Asymptotic Behavior

In this subsection we investigate the long-time behavior of the cluster densities

ci(t). For large t, we find that about 45% of all clusters in the system are single-

tons, while about 14% are doublets. Indeed, it seems likely that for any cluster

size k, the fraction ck(t)/c(t) tends to a nonzero constant as t → ∞. We were quite

surprised by these results, since usually in aggregation the fraction of singletons

decays to zero as the time grows (and the same holds true for all other species

of clusters).

To derive these results, we begin by analyzing c1(t). Figure 1 in the main text

indicates that c1(t) decays at a rate comparable to that of the disorder parameter

c(t). Thus it is natural to study their ratio c1(t)/c(t) for large t. Equations (1) and

(4) of the main text showed that

c(t) = exp(−t/2)

and

c1(t) = exp[−t + Ei(−1) − Ei(−e−t/2)],

where Ei denotes the exponential integral. If one expands Ei(−e−t/2) in the large-t

limit, one finds that

lim
t→∞

c1(t)
c(t)

= exp[Ei(−1) − γ] = 0.45 . . . ,

where γ is the Euler constant. Thus, asymptotically about 45% of all clusters are

singletons.
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To calculate the asymptotic fraction of doublets, we rewrite Eq.(6) of the main

text as

ċ2 = −c2

(
1 −

1
2

e−2c

)
+

1
2

c2
1 e−c. (2.8)

Next we solve this equation subject to c2(0) = 0. The resulting expression for

c2(t) is cumbersome, but it looks slightly simpler if we use c rather than t as the

independent variable:

c2

c
= exp

(
−

∫ 1

c
dx

1 − e−2x

x

)
E(c) (2.9)

with

E(c) ≡
∫ 1

c
dy exp

[
−y −

∫ 1

y
dx

(1 − e−x)2

x

]
.

Finally, since c(t) → 0 as t → ∞, we replace the c’s in the lower limits of the

integrals with c = 0 and thereby obtain (after numerical quadratures)

lim
t→∞

c2(t)
c(t)

= 0.14 . . . ,

which shows that asymptotically, about 14% of all clusters are doublets.

Figure 2.3 shows that these predictions agree reasonably well with simula-

tions.

2.3.2 Moments

In the main text, we derived the following rate equation for the individual clus-

ter densities ci:

ċi = −ci +

i∑
k=1

ck

2
e−kc

∑
∑

pap=i−k

∏
p≥1

(kcp)ap

ap!

 . (2.10)
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Figure 2.3: Relative fraction of singletons and doublets, c1(t)/c(t) and
c2(t)/c(t), for N = 104 oscillators. Red dotted lines show pre-
dicted asymptotic values, derived above.

Only c1 and c2 had closed-form solutions, so we resorted to numerical integra-

tion for the higher ci. While we cannot analytically solve for all these higher ci,

we can solve for their moments, defined as

Mn(t) =
∑

j

jnc j(t).

The first two moments are trivial: M0 =
∑

j c j(t) = c(t) and M1(t) =
∑

j jc j(t) = 1,

from conservation of oscillators. The higher moments can be obtained from a

generating function. Let G(z, t) =
∑

k≥1 ck(t)ekz. Then the infinite set of differential

equations (3.29) transforms into

∂G(z, t)
∂t

+ G(z, t) =
1
2

G[z − c(t) + G(z, t), t]. (2.11)

This equation looks neat, but it is far from trivial, as the right-hand side involves

G in a very nonlinear manner. Using the identity Mn(t) = ∂nG
∂zn |z=0, we can however
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derive the following equations for the moments:

Ṁ2 =
3
2

M2

Ṁ3 =
7
2

M3 + 3(M2)2

Ṁ4 =
15
4

M4 + 16M2M3 +
3
2

(M2)3.

(2.12)

Like the ci equations (Eq. (6) in the main text), these moment equations are re-

cursive and can be solved in succession, except that here it is possible to do so

explicitly. We find

M2(t) = e3t/2

M3(t) = 7e7t/2 − 6e3t

M4(t) =
448
5

e5t − 128e9t/2 +
217
5

e15t/4 − 4e27t/8.

(2.13)

Figure 2.4 plots theoretical and simulated values of the Mi. The agreement is

good for M2 but worse for M3 and M4. This is to be expected. Each ci(t) is a

stochastic process, subject to fluctuations dominated by the chance formation of

big clusters. Since Mn(t) =
∑

j jnc j(t), the higher moments amplify these fluctua-

tions more and are therefore noisier themselves.

2.4 II. Alternative Couplings

We first restate the dynamics of the original Scrambler model, and then describe

the variations.
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Figure 2.4: Log plot of the first three nontrivial moments M2,M3,M4. Black
curves, theoretical predictions obtained from (2.12); red dots,
average simulation results for 100 realizations of N = 104 oscil-
lators.

Recall that in the main text we considered a population of N � 1 integrate-

and-fire oscillators coupled all-to-all. Each oscillator was characterized by a

voltage-like state variable x, which increased linearly according to ẋi = 1. When

a cluster of j oscillators reached a threshold value set to 1, they fired and then

instantly did three things: (i) they reassigned every other oscillator (or cluster of

oscillators) a new voltage uniformly at random (they scrambled the oscillators)

(ii) they absorbed any oscillators within a distance j/N of threshold and (iii) they

reset their voltage to 0 along with any oscillators they absorbed.

We now modify event (ii) in either of two ways: when a cluster of size j fires,

it either absorbs all oscillators within a new distance of threshold given by (a)

k j/N or (b) k/N. Modification (a) generalizes the original model by including an

adjustable coupling k. Modification (b) assumes that the absorption region is

independent of j, the size of the firing cluster.
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These generalizations change the analysis of the Scrambler model only slightly.

For instance, to find the disorder parameter c(t), we again use the rate equation

ċ = −
∑

i RiLi, where Ri denotes the rate at which a cluster of size i fires, and Li

denotes the number of oscillators absorbed when a cluster of size i fires. In the

original model, to find Li and Ri, we made liberal use of the fact that all oscilla-

tors on the interval [1− j/N, 1) were captured when a cluster of size j fired. With

the generalized couplings (absorption distances), this interval simply changes

to [1 − k j/N, 1) and [1 − k/N, 1). This change propagates through the analysis

straightforwardly. Hence, we state the results in the following table without

derivation. (In the table, W(x) refers to Lambert’s W function.)

j/N k j/N k/N
Li ic kic kc
Ri ci/2 ci/(1 + k) ci/(1 + kc)
c(t) e−t/2 e−

k
k+1 t 1/(kW(k−1e(k−1+t)))

The rows of the table give the results for Li,Ri and c(t); the columns show how

the results vary for the three coupling schemes: original, (a), and (b). For cou-

pling scheme (a), where the absorption distance is k j/N, the exponential decay

constant in c(t) is predicted to be −k/(k + 1). To test this, we simulated c(t) for

various k, and found the exponents of best fit. Figure 2.5 shows the results along

with the theoretical curve.

We find similarly good agreement between theory and simulations for coupling

scheme (b), as shown in Figure 2.6. The chief difference in this case is that the

disorder parameter c(t) decays algebraically as opposed to exponentially. To see
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Figure 2.5: Magnitude of the decay constant in c(t) for coupling scheme (a).
Black curve, theoretical prediction k/(k+1); red dots, simulation
results for N = 5000 oscillators.

this, consider the Taylor expansion of c(t) for large t and k = 1:

c(t) = 1/(W(1−1e(1+t))) ≈
1
t

+ O
(

1
t2

)
(2.14)

as t → ∞.

Intuitively, the physical reason for the non-exponential decay is that model (b)

assumes that large clusters fire with the same strength as small ones. In con-

trast, the original model displayed exponential growth of synchrony (or equiv-

alently, exponential decay of the disorder parameter c(t)) because it assumed

that clusters fire with strength proportional to their size, which sets up a posi-

tive feedback loop in which the big clusters get bigger at the expense of smaller

ones (because they fire more strongly and therefore absorb other oscillators in a

snowballing fashion). That is why the level of synchrony grows exponentially

fast in the original model, but not in the modified model.

27



Figure 2.6: Decay of the disorder parameter c(t) for coupling scheme
(b), which assumes a fixed absorption distance k/N. Black
curves, theoretical predictions; red dots, simulation results for
N = 5000 oscillators. Plots for k = 1 and k = 10 are shown.

Having solved for c(t) in models (a) and (b), we could now go on to solve for the

individual cluster densities ci and the moments Mi. Nothing qualitatively new

happens (compared to what we saw in the main text for the original model), so

we omit the details.

2.5 III. Deterministic Oscillators

The Scrambler model is a toy model. We introduced it to give the simplest

possible mean-field model of pulse-coupled oscillators. Specifically, it was the

random shuffling of oscillators during each firing event that simplified their

analysis. It conveniently kept the voltages of all oscillators (and all clusters of

oscillators) uniformly distributed on [0, 1] at all times.
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The extreme randomness of this resetting rule, however, is contrived. Tradi-

tional models of pulse-coupled oscillators, such as those analyzed by Peskin [23]

and Mirollo and Strogatz [29], obey deterministic resetting rules, much as real

biological oscillators obey deterministic phase-response curves. As we will

show in this section, models with deterministic resetting can be reasonably ap-

proximated within the framework developed here.

For simplicity, we will restrict attention to an almost absurdly idealized model

of pulse-coupled oscillators, even more idealized than the models discussed in

Refs. [23, 29]. It consists of what we will refer to as Firefly oscillators. (Fictional

Firefly oscillators would be a more apt description, given that essentially every-

thing about the model is unrealistic for real fireflies.)

The equations of motion for the Fireflies are the same as for the Scramblers:

ẋi = 1 (in between firing events). The initial voltages are again drawn from

a uniform distribution. However, when a cluster of j synchronized Fireflies

reaches the threshold value of 1, that cluster does just two things: (i) it imparts a

voltage pulse of size j/N to all other oscillators. Any subsequent oscillators that

reach threshold by virtue of this extra j/N, and hence get absorbed by the firing

cluster, do not fire until the next time they reach threshold. As before, this is to

avoid complications that would be caused by chain reactions of firings. (ii) The

cluster resets to x = 0 along with any oscillators it absorbed.

Firefly oscillators of this type can be viewed as a special case, in two respects,

of the oscillators studied by Peskin [23] and Mirollo and Strogatz [29]. First, the

oscillators of Refs. [23, 29] have a nonlinear charging curve rather than a linear
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one; their voltage dynamics are governed by ẋi = S 0−γxi, where the parameters

S 0 > 0 and γ ≥ 0. Second, when an oscillator fires in the models of [23, 29], it

imparts a voltage pulse of size ε to all other oscillators. The long-term behavior

of the system then depends on the values of ε and γ.

Thus, the Firefly model studied here corresponds to the case S 0 = 1, γ = 0,

and ε = 1/N. For these parameters, the system almost always achieves global

synchrony [27]. Our goal, then, is not to establish how the long-term behavior

depends on parameters, since we already know that synchrony is inevitable for

this simple model. Rather, the goal is to quantify how synchrony builds up over

time. To put it another way, we want to predict the kinetics of cluster formation,

growth, and coalescence as the system evolves toward synchrony.

2.5.1 Fireflies vs. Scramblers

Will the deterministic Fireflies behave (as hoped) like the stochastic Scramblers?

There are two differences between them that complicate the analysis of the Fire-

flies.

The first difference has to do with how their speed ẋ evolves as the system

moves toward complete synchrony. The average speed of the Fireflies doesn’t

remain constant at unity, as it does for the Scramblers. This is because when a

cluster of size j fires, all the other oscillators receive a pulse of size j/N which

boosts them up on their voltage curve (whereas the Scramblers were just ran-

domly reassigned on [0, 1], and so keep the same speed vi = 1 on average).
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The speeds of the Fireflies are thus vi = 1 + vpulse, where vpulse must be deter-

mined.

A second difference is that the firing rate of the Fireflies is piecewise constant

(unlike that of the Scramblers, which as shown in the main text is a smooth

function of time: Ri(t) = ci(t)/2.) To see why the firing rate for the Fireflies is

piecewise constant, first define ∆xi as the distance between the ith and (i + 1)th

oscillators (or cluster of synchronized oscillators). Second, divide the temporal

evolution into periods {Tn}, where each period is the time taken for the full pop-

ulation to complete a full cycle. Then ask, how does ∆xi behave during the first

period, the time taken for the first wave of oscillators to complete their first cy-

cle? Since all oscillators receive the same number of pulses and have the same

speed, we see that each ∆xi won’t change while the oscillators complete their

virgin ascent through [0,1]. This implies a constant firing rate during this first

period.

We will later show that this is not unique to the first period: the firing rates will

take different, but constant, values during each period; they will be piecewise

constant. This is in stark contrast to the Scramblers, where each ∆xi is constantly

changing as the oscillators get reshuffled on [0, 1] during each firing event.

2.5.2 Intuitive Picture of the Dynamics

With these differences in mind, we begin with a qualitative description of the

dynamics. As mentioned, the speed of each oscillator, and the effect of a pulse
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on each oscillator, is the same. This means that the initial ordering of oscillators,

or clusters of oscillators, will be invariant throughout the dynamics. They all

march forward through [0, 1] in a line with no passing.

Then we consider the average behavior as N → ∞. In this limit, the average

spacing between oscillators 〈∆xi〉 approaches N−1. Now, what happens when the

first oscillator fires? It captures all oscillators on the interval [1 − 1/N, 1). Since

〈∆xi〉 = N−1, there will be exactly one oscillator on this interval, on average, and

so one oscillator will be captured. This procedure will repeat itself for the next

oscillator that fires, and the oscillator after that, such that every oscillator that

fires captures the one behind itself. In this mean-field sense, then, the first wave

of oscillators will be an orderly sequence of fire/capture/fire/capture, so that

at the end of the first period, all oscillators will have synchronized into pairs

spaced equally apart.

Of course, ∆xi will have fluctuations about the mean value of N−1. For the oscil-

lators spaced such that ∆xi < N−1, no captures will take place. For ∆xi > N−1, at

least one capture will take place, and possibly more. So, at t = T1 there will be

a number of clusters of different sizes. It is not clear how these clusters are dis-

tributed on [0, 1]. Say, for example, that mostly clusters of size 2 and 3 formed,

while a cluster of size 4 was the first capture, and a cluster of size 6 was the last

capture. Then the clusters of sizes 2 and 3 will be approximately uniformly dis-

tributed in voltage, while the distribution of those of sizes 4 and 6 will be more

sharply peaked.

Nevertheless we assume that the clusters of size i are uniformly distributed on
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[0, 1] for each i. We recognize that this won’t be accurate for each i for all values

of t. It will however be accurate for those values of i which contain most of the

oscillator “mass” and less so for those with less of the mass. So, our assump-

tion will be imprecise for those ci which are small, but since they are small, the

inaccuracy won’t matter, to first order.

Now that we understand the first period, how will the second period proceed?

We again consider the average behavior as N → ∞. In this mean-field descrip-

tion, we earlier concluded that at the end of the first period, all oscillators would

have synchronized into pairs spaced equally apart on [0, 1]. When the first pair

fires, therefore, there will again be exactly one pair of synchronized oscillators

behind them, and so as before, the second period will be an orderly sequence of

fire/capture/fire/capture, resulting in all oscillators having synchronized into

clusters of size 4.

Continuing this logic, we see the size of clusters will double during each period.

Moreover, we observed that the clusters of oscillators will begin each period

evenly spaced from each other. This implies the aforementioned piecewise con-

stant firing rate. The mean-field dynamics are therefore trivial: there is a train-

like progression of clusters of the same size through [0, 1], with each cluster that

reaches threshold doubling in size by absorbing the cluster behind it.
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2.5.3 Mean-field Analysis

With this picture in mind, we analyze the rate equation for our disorder param-

eter: ċ = −
∑

i RiLi.

To calculate Li, we again find all oscillators in the interval [1− i/N, 1). It is tempt-

ing to write down Li(t) =
∑

j(i/N)N j(t). This isn’t strictly true however, because

as we observed, ∆xi will be constant during each period, which means we must

evaluate N j at the start of said period. To make this clear, define x̃(t) = x(t = Tn−1)

for Tn−1 < t < Tn. The tilde notation signifies that throughout the nth period the

quantity x is fixed at its value at the start of that period. In terms of this tilde

notation, the desired result is Li =
∑

j(i/N)Ñ j(t) = ic̃.

To find the firing rate, we follow the procedure used in the main text for the

Scramblers: we decompose the firing rate into two parts: Ri = R0
i − Ra

i . The

rate of firing in the absence of absorption will be R0
i = c̃ivi = c̃i(1 + vpulse). The

absorption rate will again be Ra
i =

∑
j( j/N)ÑiR j = c̃i

∑
j jR j.

We next determine vpulse. The “pulse velocity” due to a cluster of size j will be

(absolute number of pulses per sec) × (distance per pulse). Since R j is the rate

of firing of ci, R jN will give the absolute number of fires. The distance per pulse

is j/N. The total pulse velocity is thus vpulse =
∑

j(NR j)( j/N) =
∑

j jR j. This gives

R0
i = c̃i(1 +

∑
j jR j). Putting all this together, we find

Ri = c̃i(1 +
∑

j

jR j) − c̃i

∑
j

jR j (2.15)

which reduces to Ri = c̃i.
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Substituting our expressions for Ri and Li into the rate equation for c then

yields

ċ = −
∑

i

LiRi = −
∑

i

ic̃c̃i = −c̃
∑

i

ic̃i = −c̃ (2.16)

and hence ċ = −c̃. Thus, we see that ċ will be a piecewise linear function.

To solve for this function, we need to determine the periods {Tn}. The average

speed is v = 1 + vpulse = 1 +
∑

j jR j = 1 +
∑

j jc j = 2. This gives {Tn} = {0, 0.5, 1, . . . }.

For these values of {Tn} and the initial condition c(0) = 1, the solution of Eq. (3.2)

is the piecewise linear function

c(t) =
p + 2 − 2t

2p+1 for
p
2
< t <

p + 1
2

, (2.17)

where p = 0, 1, 2, . . . . Hence, for the Firefly model, the disorder parameter c(t) is

a series of line segments of length 0.5, with slopes that are sequentially reduced

by a factor of 2.

Figure 2.7: Piecewise linear behavior of the disorder parameter c(t) for the
Firefly model. Black curve, theoretical prediction (2.17); red
dots, simulation results for N = 5000 oscillators.

We stress however that our results for Li,Ri, vpulse, and c(t) are only leading-
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order approximations, based on mean-field arguments. We expect fluctuations

around these values. Our hope is that these will be small.

Figure 2.7 shows the simulated behavior of c(t) against the mean-field predic-

tion (2.17). As can be seen, there is reasonable agreement until late times.

Now that we have c(t), the next target is ci(t). Carrying out the same analysis as

for the Scramblers, we find

ċi = −2c̃i +

i∑
k=1

c̃k e−kc̃
∑

∑
pap=i−k

∏
p≥1

(kc̃p)ap

ap!

 . (2.18)

Since the quantities on the right hand side are held fixed over each period, solv-

ing for each ci is straightforward. Figure 2.8 shows the resulting solutions along

with simulated values. Reasonable agreement is evident. We restate that our re-

sults are mean-field equations, so some discrepancy is expected. The moments

Mi(t) will also be piecewise linear, and can be obtained in a similarly straightfor-

ward manner, following the methods shown in the main text.

2.5.4 Nonlinear charging curve

Until now in our treatment of the deterministic Firefly model, we have assumed

that the oscillators rise linearly to threshold. This assumption is valid for the

electronic oscillators used in sensor networks, but for neurons and cardiac pace-

maker cells, a nonlinear rise to threshold is more appropriate. For this reason,

and also on mathematical grounds, it is natural to ask how a nonlinear charging

curve would affect the transient dynamics.
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Figure 2.8: Time evolution of the cluster densities c1 through c4 for the
Firefly model with uniformly random initial conditions. Black
curves, theoretical predictions derived from Eq. (2.18); red
dots; simulation results for N = 3 × 104 oscillators. The dis-
crepancies are due to finite-N effects.

To do so, we return to the traditional Peskin model [23, 29]. Its voltage dy-

namics are governed by ẋi = S 0 − γxi, where the parameters S 0 > 0 and γ ≥ 0.

When an oscillator fires, it kicks all other oscillators up by ε or up to threshold,

whichever is less. For γ strictly greater than zero, the system is guaranteed to

end up with all oscillators firing in unison, as proven in Ref. [29], but almost

nothing is known about the model’s cluster dynamics en route to synchrony.

The analysis becomes much more diffult when concavity is included, for rea-

sons discussed in the main text; in short, one can no longer assume that the

oscillators are uniformly distributed in voltage at all times. Hence we numeri-

cally explore the effect of concavity. We find that for small nonlinearity γ > 0, the

cluster dynamics are similar to what we have already discussed for the Scram-

bler and linear Firefly models.
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Figure 2.9: Time evolution of the disorder parameter c for the Firefly
model with uniformly random initial conditions and concave-
down charging curve, for three values of the concavity param-
eter γ. Simulation results are shown for N = 104 oscillators and
pulse size ε = 1/N.

Figure 2.9 shows that for the lowest value of γ, the decay curve for c closely

resembles that shown in Figure 2.7 for the linear Firefly model. The same is

true for the individual cluster densities; compare, for example, the curves for

c2 in Figure 2.10 and Figure 2.8. For higher values of γ, the cluster dynam-

ics show new effects, not yet understood theoretically. Although these results

are preliminary, they suggest that the simplified Scrambler and linear Firefly

models are insensitive to small amounts of concavity in the charging curve. In

this sense, these models provide reasonable approximations to systems with

charging curves that are concave down, the case most often studied in the liter-

ature.
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Figure 2.10: Time evolution of c2, the density of 2-clusters, for the Firefly
model with uniformly random initial conditions and concave-
down charging curve, for three values of the concavity param-
eter γ. Simulation results are shown for N = 104 oscillators
and pulse size ε = 1/N.

2.6 IV. Breakdown of approximations

When deriving the rate equations for ci, we made the assumption that Ni � 1

for all i (recall that Ni denotes the number of clusters of size i). This assumption

let us define ci in terms of ensemble averages, ci := 〈Ni〉/N, which in turn let us

use probabilistic arguments in our analysis. This assumption clearly cannot be

satisfied for all cluster sizes i. For instance, when t → ∞, we know just one giant

cluster of size N remains: NN = 1 and Ni = 0 for all other i.

It is not entirely clear how to estimate the time T at which our assumptions

break down, but one can obtain an upper bound based on when c(T ) ≈ 1/N,

at which time almost the whole system has coalesced into a giant synchronized

cluster. Combining this criterion with our chief result that c(t) = exp(−t/2), we
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Figure 2.11: Simulated N j versus j for N = 5000 oscillators at various times.
N j decreases (roughly) monotonically with increasing cluster
size j at every t.

get T < 2 ln(N). Thus the breakdown time scales at most logarithmically with

the size of the system.

What effect does this breakdown of our assumptions have on the predicted

cluster kinetics? We examine this issue by simulating the Scrambler model for

N = 5000 oscillators, and computing N j for j ≤ 20 at various times. The results

are shown in Figure 2.11.

The first observation is that N j decreases (roughly) monotonically with increas-

ing cluster size at every t. Smaller clusters are more abundant than larger ones

for the times shown; N j � Nk for j � k. Our assumption that N j � 1 therefore

gets worse as the cluster size j increases.

The second observation is that the above is true for much of the synchronization
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process. For systems of size N = 5000, the total time elapsed until complete

synchronization occurs is typically t ≈ 10. But c(t) has typically fallen to ≈ 0.1

by t = 5, and to ≈ 0.01 by t = 7. So for t < 7 approx, our assumption that N j � 1

is good for small clusters, and gets worse for larger clusters. This means our

analytical results for c j should correspondingly worsen for increasing j. As can

be seen in Figure 2.12, this is indeed the case.

Figure 2.12: Theoretical and simulated cluster densities c3(t) through c8(t).
Solid line show theoretical predictions computed from nu-
merically integration of equation (3.29). Data points show
simulation results for N = 5000 oscillators. As expected, the
agreement between theory and simulation gets steadily worse
with increasing cluster size.

These observations explain why the mean-field approximation for c(t) is good

for so long. By definition, c(t) =
∑

i ci(t). Because c j � ck for j � k (which follows

from N j � Nk for j � k),
∑

i ci is dominated by small cluster sizes i, for which
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the theory is most accurate.
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2.6.1 Final stages of synchronization

For t > 7 (again, for a system of size N = 5000), only a few large clusters remain.

Our assumption N j � 1 is then clearly violated, and so the mean-field results no

longer apply. In the final stages of the synchronization process, then, we expect

large deviations from the mean-field results. To verify this, we calculated the

relative errors shown in Figure 2.13 below.

Figure 2.13: Relative error between mean-field prediction and simulated
c(t), for N = 5000 oscillators.

Around t ≈ 7 the error starts to climb. In particular, we see cMF > csim, meaning

the synchronization of the simulated system is faster than the mean-field pre-

diction. As t → ∞ the process becomes more and more stochastic, whereby csim

oscillates noisily around c, until it drops stochastically to zero, as we show in

Figure 2.14.
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Figure 2.14: Mean-field prediction (red curve) and simulated c(t) (blue
curve) for N = 5000 oscillators. As can be seen in the inset,
the simulation results get noisy for large t.
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CHAPTER 3

TRANSIENT DYNAMICS OF PULSE-COUPLED OSCILLATORS WITH

NONLINEAR CHARGING CURVES

Bionn gach tosach lag.

(You have to learn to crawl before learn to walk) – Irish proverb

3.1 Introduction 1

During each heartbeat, thousands of pacemaker cells discharge in concert. This

collective firing causes the contraction of cardiac muscles, which pump blood

around the body. Should these firing fall out of step, heartbeats can become

erratic, which inhibits blood flow. In order to maintain healthy heart function,

the pacemaker cells must maintain their synchronous firing.

In 1975, Peskin gave the first mathematical analysis of the pacemaker as a self-

synchronizing system [37]. He modeled the pacemaker cells as leaky ’integrate-

and-fire’ oscillators that communicate with each other by firing sudden im-

pulses. He then conjectured that a population of identical leaky oscillators with

all-to-all pulsatile coupling would self-organize into synchrony for all N ≥ 2

and for almost all initial conditions. Mirollo and Strogatz [38] later proved this

conjecture.

1This chapter is reproduced from: O’Keeffe, Kevin P. ”Transient dynamics of pulse-coupled
oscillators with nonlinear charging curves.” Physical Review E 93.3 (2016): 032203.
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Since then, pulse-coupled oscillators have been used as models in many other

contexts, for example, sensor networks [13], low-powered radio transmission

[14], firing neurons [39, 40], earthquakes [41], and economic booms and busts

[42]. For greater realism, the associated theoretical work relaxes Peskin’s orig-

inal assumptions, by allowing for example local coupling in lattices [43–45]

or networks [46–49]. These effects lead to new phenomena, such as traveling

waves, self-organized criticality, partial synchrony, and coexistence. The inclu-

sion of interactions with delays and different sign [50–52] have also been con-

sidered, which give rise to multi-stable clustering, transient clustering, phase-

lagged synchronization.

Yet even within the simplified context of Peskin’s all-to-all model, unanswered

theoretical questions remain. In particular, little is known about transient dy-

namics: in a self-synchronizing system, what does the buildup to synchrony

look like? A first step in this direction was presented in [53]. It was shown

that synchrony developed through clustering; oscillators start to synchronize in

small groups, which grow steadily larger over time. Using tools from aggrega-

tion theory [10], this clustering was described quantitatively. In the analysis, it

was assumed that each oscillator had a linear charging curve. This idealization

is appropriate for electronic oscillators such as those in sensor networks, but not

for biological oscillators, like the aforementioned cardiac pacemaker cells or fir-

ing neurons. We here extend the analysis in [53] to explore the manner in which

these more complicated oscillators achieve synchrony.
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3.2 The model

We consider N � 1 identical oscillators coupled all-to-all. Each oscillator is

characterized by a voltage-like state variable xi, which increases from a baseline

value of 0 to a threshold set to 1, according to

ẋi = S 0 − γxi. (3.1)

When an oscillator reaches threshold it does two things: (i) It fires a pulse of

size 1/N. This pulse is received by all other oscillators instantaneously, caus-

ing them to discontinuously raise their voltage from x j to min(x j + 1/N, 1). This

way, oscillators never exceed the threshold value of 1. To avoid complications

with chain reactions of firing oscillators, we assume any oscillators which reach

threshold by receiving a pulse, do not themselves fire until the next time they

reach threshold. (ii) The firing oscillator then resets its voltage to 0, along with

any secondary oscillators that were brought to threshold. These oscillators then

begin their next cycle synchronized.

If j > 1 oscillators reach threshold together, each one fires, so that the pulse has

total size j/N (although we later consider other types of pulse).

We note that there is some parameter redundancy, since by rescaling time we

could set S 0 = 1 without loss of generality. For reasons that will become clear

later, a different choice of S 0 is more convenient, so we leave it as a free pa-
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rameter for now. We remark however that S 0 must be chosen so that ẋi > 0 for

0 ≤ xi ≤ 1.

3.3 Results

Assume the initial voltages of the oscillators are drawn uniformly at random.

How will the dynamics unfold? At the beginning, the oscillators simply in-

crease their voltage according to ẋi = S 0 − γxi. Then the first oscillator reaches

threshold, fires a pulse, and perhaps brings some other oscillators to thresh-

old. As described, these oscillators begin their next cycle in step. The primary,

firing oscillator, and the secondary oscillators it incited to threshold, form a syn-

chronous cluster.

As time goes on, other oscillators start firing pulses and start absorbing oscil-

lators which are close enough to threshold. More clusters of synchronized os-

cillators emerge. In turn, these clusters start reaching threshold and absorbing

other clusters, growing progressively larger. We note that clusters can only ever

increase in size. They can never break apart because (a) the oscillators are iden-

tical, and therefore sync’d oscillators have the same speed, and (b) all oscillators

receive the same number of pulses (thanks to the global coupling).

The picture is now clear; the system synchronizes through an aggregation phe-

nomenon. Clusters of sync’d oscillators form and get steadily bigger by coalesc-

ing with each other. At any time t therefore, there are clusters of various sizes.
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Let N j(t) denote the number of clusters of size j at time t: N1 is the number of sin-

gletons, N2 is the numbers doublets, and so on. These N j are correlated random

quantities. They are correlated because oscillators belonging to clusters of one

size are unavailable to clusters of another size, and they are random because of

the initial conditions.

To analyze the system’s dynamics, we imagine N j � 1 so that fluctuations from

different realizations of the system are small. Of course, this condition cannot

be satisfied for every j, at all t. For example, at the final stages of the process,

there will be a small number of very large clusters. We therefore restrict our

attention to the portion of the process where N j � 1 is approximately true – the

opening and middle game, as opposed to the end game.

But how does the end game play out? That is, how does the process terminate?

Strogatz and Mirollo [38] showed that for γ > 0 and pulse size > 1/N, then full

sync is guaranteed for all IC except for a set of measure zero; the clustering

continues until there is one giant cluster of size N. For other values of γ and

other pulse sizes, full sync is possible, but not certain to occur.

In this work, we focus only on the transient dynamics, the evolution to syn-

chrony. So from now on we implicitly assume we in the early and middle stages

of the process, where N j � 1 is a valid approximation. We then use ensemble

averages to define the individual cluster densities,

c j := 〈N j〉/N. (3.2)
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We then make the following strong assumptions: (i) fluctuations about the en-

semble averages are small, N−1N j = c j + O(N−1/2), and that (ii) different cluster

densities are asymptotically uncorrelated, N−2NiN j = cic j + O(N−1/2).

We can use these c j to define a disorder parameter for our system. This is the

total cluster density,

c =

N∑
j=1

c j (3.3)

where the index runs over all cluster sizes, which range from 1 to N. This density

is a measure of the total fragmentation of the system, which we interpret as a

kind of disorder. To see this, consider that at t = 0, there are N singletons, so

c1 = 1, and c j = 0, ∀ j , 1. This means that c(0) = 1, correctly identifying that the

system begins maximally disordered. At the other extreme as t → ∞, we know

there is one giant cluster of size N, so c = 1/N ≈ 0 for large N. Hence c decreases

from 1 to 0 as the system evolves from complete disorder to full synchrony.

3.3.1 Total Cluster Density

We first analyse c. It obeys the following rate equation, where Ri is the rate at

which clusters of size i fire, and Li is the number of clusters absorbed during

such a firing, for i = 1, . . . ,N (i.e. over all cluster sizes):
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ċ = −
∑

i

Ri(t)Li(t) (3.4)

To find Li(t), we first define the ’voltage-density’ ρ j(x, t)dx to be the number of j-

clusters with voltage between x and x + dx at time t. This has the normalization

condition
∫ 1

0
ρ j(x, t)dx = N j. Now, when an i-cluster fires, all clusters on the

interval [1 − i/N, 1) will be absorbed. This means,

Li(t) =
∑

j

∫ 1

1−i/N
ρ j(x, t)dx. (3.5)

We digress briefly to comment on difficulties imposed by voltage density ρ j(x, t).

The nonlinearities in the oscillators’ charging curves make ρ j(x, t) behave non-

trivially. It is this key fact which makes nonlinear charging curves much harder

to analyze than linear ones. In the linear case, (i.e. when γ = 0), as considered

in [53], ρ j(x, t) is well approximated by a uniform density. This substantially

simplified the calculation of Li and Ri, and in turn the remainder of the analysis.

For instance, (3.5) reduces to simply Li =
∑

j(i/N)N j = ic. But when γ , 0,

ρ j(x, t) is an unknown quantity which obeys a complicated PDE. Approximately

solving this PDE is a key result of the paper.

We now return to our calculation of Li. To proceed, we make an approximation.

As stated earlier, we are only interested in transient time scales – the opening

and middle game. In this regime, most clusters will be small relative to the

system size: j � N. This lets us approximate the integral above,
∫ 1

1−i/N
ρ j(x, t)dx ≈
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(i/N)ρ j(x = 1, t). Of course, this approximation will get worse as time goes on.

We discuss this further in Section 3.4. Our expression for Li is then

Li(t) =
i
N

∑
j

ρ j(x = 1, t). (3.6)

To continue the analysis, we need to find ρ j(x, t). As mentioned, its behavior

is complicated so we defer its calculation, and instead find the firing rate Ri.

Naively, one might think that this is simply the flux of i-clusters at threshold:

N−1(ρiv)|x=1 (where N−1 is required, since Ri measures the rate of firing of ci, not

Ni). However not every cluster that reaches threshold gets the chance to fire,

since some will be absorbed. To account for this effect, we decompose the rate

into

Ri = R0
i − Ra

i . (3.7)

The term R0
i is a ’background’ firing rate, where we pretend all oscillators get

to fire even if they are absorbed. Ra
i is the rate at which i-clusters are being ab-

sorbed by other clusters of various sizes, and hence deprived of their chance to

fire.

We start with R0
i . To be clear, by background firing rate, we mean the rate i-

clusters would fire at, if every oscillator fired a pulse when it reached thresh-

old. That is, imagine relaxing our imposition that any secondary oscillators that

reach threshold by virtue of a pulse do not fire. In that case,
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R0
i = N−1(ρiv)

∣∣∣
x=1
. (3.8)

The speed v of each cluster is non-trivial. This is because in addition to its nat-

ural speed v0 = ẋ = S 0 − γx, each oscillator receives a steady stream of pulses

from firing clusters which increase its voltage:

v(x, t) = v0(x) + vpulse(t). (3.9)

This ”pulse velocity” due to the firing of just j-clusters will be (absolute number

of pulses per sec) × (distance per pulse). Since R j is the firing rate of c j, R jN is

the absolute number of pulses, while the distance per pulse is j/N. To find the

total pulse speed we then sum over all j-clusters:
∑

j(NR j)( j/N), giving

vpulse(t) =
∑

j

jR j(t). (3.10)

Our next target is the absorption rate Ra
i . The calculation is similar to finding Li,

and is given by Ra
i =

∑
j R j

∫ 1

1− j/N
ρi(x, t)dx, which after approximating the integral

as before gives,

Ra
i =

∑
j

R j( j/N)ρi(x = 1, t). (3.11)
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Substituting R0
i and Ra

i into (3.7) finally gives

Ri =
S 0 − γ

N
ρi(x = 1, t). (3.12)

We now analyze ρ j(x, t). In principle, it satisfies the the continuity equation

with appropriate terms for the absorption of j-clusters at threshold, and the

formation of j-clusters from smaller clusters:

ρ̇ j + ∂x(vρ j) + Absorption + Gain = 0 (3.13)

∂x(vρ j)|x=0 = ∂x(vρ j)|x=1 (3.14)

Solving this PDE is the hardest part of the analysis. The absorption and gain

terms are the main problem, because they couple the voltage densities; through

them, ρ j(x, t) depends all the other ρk(x, t). This is because a j-cluster can be cre-

ated or absorbed by the action of various combinations of other clusters. Enu-

merating these combinations is by itself difficult, not to mention understanding

how they affect the PDE. On top of all that, there is also the non-smoothness

of the oscillators’ velocity at threshold (which discontinuously jumps from

ẋ = S 0 − γ at x = 1, to ẋ = S 0 at x = 0 ) to deal with.

We can however make progress by observing that the evolution of the system

naturally divides into periods {Tn}. We define a period to be the time take for

the full population of oscillators to complete a voltage cycle. More carefully, Tn
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is earliest time when every oscillator has completed n cycles.

We then solve the continuity equation during a given period, not worrying

about what happens before or after. This lets us avoid the complication of the

aforementioned non-smoothness of the oscillators’ behavior at the boundaries.

We also neglect the absorption term. As previously discussed, when an i-cluster

fires, only oscillators on (1 − i/N, 1] get absorbed. This is a small interval for the

’opening’ and ’middle’ game we are considering. Hence the absorption term is

0 on most of [0, 1] and so we omit it.

But we still have to compute the gain term. As previously discussed, this is

combinatorially intensive (we explicitly compute this term later, when calculat-

ing the individual cluster densities). However, we can neglect this cumbersome

term entirely, by making the following key observation.

Looking at equations (3.6), (3.12), we see our desired quantities R j and L j de-

pend only on the density of clusters at threshold: ρ j(x = 1, t). Therefore, during

each period, Ri and Li are only affected by j-clusters which existed at the start

of that period, which we call ’original’ j-clusters. This is because any ’new’ j-

clusters won’t reach threshold until the next period. By ’new’, we mean (a)

j-clusters that fired during a period, didn’t absorb any other clusters, and so

returned to threshold, and (b) any j-clusters that were created by the firing and

absorption of other smaller clusters.

So for the purposes of calculating ρ j(x = 1, t) during a given period, there is a

’lightcone’ between original and new j-clusters. We therefore need to solve the
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continuity equation for the original j-clusters only, for which the gain term is

zero. The problem is then given by (3.15) below, where v(x, t) is given by (3.9),

f0(x) is the initial distribution of ρoriginal
j , and the Heaviside functions H(x),H(1 −

x) are included to confine the I.C. to the interval [0, 1].

ρ̇ j
original + ∂x(vρ

original
j ) = 0

ρ
original
j (x, 0) = f0(x)H(x)H(1 − x) (3.15)

We don’t yet know the speed v(x, t). However its structure, v(x, t) = v0(x) +

vpulse(t), lets us derive an approximate solution for ρoriginal
j (x, t) given by (3.16)

below. The derivation of this key result and the definition of Γ(x, t) are shown in

the Appendix.

ρ
original
j (x, t) = eγt f0

(
Γ(x, t)

)
H

(
Γ(x, t)

)
H

(
1 − Γ(x, t)

)
. (3.16)

What all this means is, if we known ρ
original
j (x, t) at the start of a period, then

we know how it will evolve until that period ends. For later convenience, we

introduce the following notation. Let x̃ denote that during a period, x is held

fixed at its value at the start of that period: x̃ = x(t = Tn) for Tn < t < Tn+1.

We next make the strong assumption that clusters of all sizes are distributed

uniformly in voltage on [0, 1) at the start of each period: ρ j(x, t = Tn) = Ñ j. Then

in (3.16), f0(x) = Ñ j. We discuss the legitimacy of making this assumption in
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Section 3.4.

The Heaviside functions make (3.16) look complicated. But really, they only

enforce that the ρoriginal
j is zero behind the final j-cluster (cluster with smallest

voltage), and ahead of the first j-cluster (cluster with largest voltage). We re-

mark that as it stands, the solution (3.16) propagates into the unphysical x ≥ 1

regime. But we of course restrict our attention to just x ∈ [0, 1].

The behavior of ρoriginal
j (x, t) during each period is therefore simple. The density

at each point x simply grows at rate eγt until it drops discontinuously to 0, as the

final ’original’ j-cluster passes by. This behavior is shown in Figure 3.1.

Figure 3.1: Evolution of voltage density of original j-clusters during a pe-
riod, with initial condition ρoriginal

j (x, 0) = 1.

Now that we have an expression for ρ j(x = 1, t), which we have argued is

ρ
original
j (x = 1, t), we can complete our expressions for Li and Ri given by (3.6)

and (3.12). We then plug the results into (3.4) to obtain our sought after rate

equation for the disorder parameter c(t),
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ċ = −(S 0 − γ)e2γtc̃. (3.17)

which has solution,

c(t) =
c̃

2γ

(
S 0 + γ + e2γt(γ − S 0)

)
. (3.18)

We restate that equations (3.17) and (3.18) are only valid during a given period.

We can however use (3.18) to find c(t) for all t, by stitching solutions during

successive periods together.

But we still don’t know the periods {Tn} themselves. To find them, we need

the speed v as per (3.9). Recalling v0 = S 0 − γx, and substituting Ri from (3.12),

gives

v(x, t) = (S 0 − γx) + (S 0 − γ)eγt. (3.19)

We see that v is the same during each period (i.e. there are no ’tilde’ quantities,

we denote different values during different periods.). This means that the length

of each period is the same: Tn = nT0. We can find T0 from T0(S 0, γ) =
∫ 1

0
v(x)dx.

To compare the effects of different amounts of concavity on equal footing, we

want T0 = 1 for every γ. We can achieve this by selecting an appropriate value

for S 0, which we have strategically left as a free parameter until now. Doing the
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integral, this value for S 0 is

S 0 =

(
e2γ + 2eγ − 1

)
γ

(eγ − 1) (eγ + 3)
. (3.20)

We must be careful when using (3.20). This is because for sufficiently negative

γ, S 0 can become negative. While this choice of S 0 ensures the total speed v =

v0 + vpulse is positive, the natural speed v0 = ẋ = S 0−γx can become negative if S 0

is too negative. This means that the oscillators decrease in voltage in the absence

of coupling. We avoid this unphysical regime by requiring v0 > 0 for 0 ≤ x ≤ 1,

which leads to γmin ≈ −0.881.

Figure 3.2 shows the agreement between theory and simulation for c(t) when

γ < 0 and γ > 0. For comparison, we also show when γ = 0, which corresponds

to the linear charging curve studied in [53]. In the linear case, c(t) is a series of

line segments whose slope decreases by a factor of 2 from period to period. But

when γ , 0, c(t) has more complicated behavior; it no longer decays linearly

during each period.

As can be seen, c(t) declines faster and slower when γ > 0 and γ < 0 respectively.

This makes physical sense. When γ > 0, oscillators slow down as they increase

in voltage, which makes them clump closer together near x = 1. When γ < 0,

the opposite happens; clusters spread further apart closer to threshold. Now

suppose a j-cluster fires. When γ > 0 the interval [1 − j/N, 1) is more likely to

contain oscillators than when γ < 0, thanks to the ’clumping’ and ’spreading

out’, which in turn makes an absorption more likely. The case of zero concavity
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then interpolates between these two regimes, as evidenced by Figure 3.2.

Figure 3.2: (Color online) Theoretical and simulated c(t) for γ = 2, γ = 0,
and γ = −0.8 . Solid lines show theoretical prediction (3.18),
while data points show simulated results for N = 5 × 104 oscil-
lators.

We can use (3.18) for c to estimate the timescale of the transient dynamics. We

say transience ends when a cluster of size ∼ N has formed, so that c ∼ 1/N. Our

assumptions will likely break down before this, so this is best interpreted as an

upper bound. Looking at (3.18), we see that after one period, c decreases by a

factor of,

B :=
1

2γ

(
S 0 + γ + e2γ(γ − S 0)

)
=

2
eγ + 3

. (3.21)

After n periods, it decreases by Bn. After some algebra, and rounding Ttrans to

the nearest period, we get,

Ttrans ∼ log N/ log B−1 (3.22)
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3.3.2 Individual Cluster Densities

How do the individual densities ci evolve? We begin with the 1-clusters, whose

density is c1. They are the easiest density to analyze, since they can only de-

crease. There are two ways this can happen: (i) the loss of a firing singleton,

when it absorbs other clusters of any size, and (ii) the loss of absorbed singletons,

due to the firing of another cluster:

ċ1 = L
f iring
1 +Labsorbed

1 . (3.23)

We begin with L f iring
1 . From (3.12) we know singletons fire at rate R1 = (S 0 −

γ)eγtc̃1. During such a firing, an absorption will take place if there is at least

one cluster on [1 − 1/N, 1). This interval contains on average Nc × 1/N = c(t) =

c̃eγt clusters. Further, the probability that it contains n clusters is given by the

Poisson distribution: Πn =
(c̃eγt)n

n! e−c̃eγt . This is the mathematical statement that

the clusters are distributed randomly without correlations. The probability that

[1−1/N, 1) is occupied by at least one cluster is therefore 1−e−c̃eγt . If an absorption

takes place, N1 decreases by 1, since we’re only considering the loss of the firing

oscillator here. The expected loss rate is then (S 0−γ)eγtc̃1[1×(1−e−c̃eγt
)+0×e−c̃eγt

],

leading to,

L
f iring
1 = (S 0 − γ)eγtc̃1(1 − e−c̃eγt

). (3.24)
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To calculate Labsorbed
1 , imagine a j-cluster fires and absorbs all the singletons on

the interval [1− j/N, 1). As before, this interval will have on average Nc1(t)× j/N =

jc̃1eγt such singletons. Multiplying this by R j and summing over j then gives∑
j(1 − γ)c̃ jeγt × jc̃1eγt, which leads to

Labsorbed
1 = (1 − γ)e2γtc̃i (3.25)

Substituting L f iring
1 and Labsorbed

1 into (3.23) gives,

ċ1 = −(S 0 − γ)c̃1

[
(1 + eγt) − e−c̃eγt]

. (3.26)

This looks intimidating, but since the quantities c̃i are held constant over each

period, the R.H.S. is a function of only t. It therefore has an analytic solution,

which we show plotted in Figure 3.3.

Will larger clusters behave similarly? They differ from the singletons in that

they can be created as well as absorbed, which makes them harder to calculate.

Their absorption rate is easily generalized from that of the singletons:

L
f iring
i +Labsorbed

i = (S 0 − γt)c̃i

[
(1 + eγt) − e−ic̃eγt]

. (3.27)

Their gain rate is calculated as follows. An i-cluster is created when a cluster
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of size k < i fires, and absorbs the right combination of other clusters. Suppose

there are a1 1-clusters, a2 2-clusters, . . . , on the interval [1 − k/N, 1). If a1 + 2a2 +

· · · + k = i, then an i-cluster will be created. Such a combination occurs with

probability (kc1)1a
1

a1! e−kc1×
(kc2)1a

2
a2! e−kc2× . . . . Summing first over all such combinations,

and then over all k, gives an expected rate gain of

i−1∑
k=1

(S 0 − γ)c̃keγte−kc̃eγt
∑

a1+2a2+···=i−k

∏
p≥1

(kc̃peγt)ap

ap!

 (3.28)

After combining the loss and gain terms, and some algebraic manipulation, we

finally obtain the desired rate equation for i-clusters,

ċi = −(S 0 − γ)eγt(1 + eγt)c̃i+

i∑
k=1

(S 0 − γ)c̃keγte−kc̃eγt
∑

∑
pap=i−k

∏
p≥1

(kc̃peγt)ap

ap!

 (3.29)

This is a set of recursive equations, and so we can solve them successively. As

with c1, the R.H.S. is a pure function of t, so analytic solutions are findable.

Figure 3.3 shows theoretical predictions versus simulation results for c1 through

c4 when γ = 0.9. We remark that the effect of a nonlinear versus linear charging

curve on the ci is the same as that for the disorder parameter c: it causes them

to no longer decay/grow linearly during each period (note we do not show ci

for the linear charging curve, γ = 0, for illustrative purpose. See Fig. 6 in the

supplemental materials of [53])
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Figure 3.3: (Color online) Theoretical and simulated cluster densities c1

though c4 for γ = 0.9. Solid black lines show analytic solutions
to (3.29). Red data points show simulation results for 5 × 104

oscillators.

3.3.3 Alternate Coupling Rules

We thus far assumed an i-cluster fired a pulse of size i/N. We now consider

two alternatives. The first is simply the original pulse strength with a tunable

strength K: (Ki)/N. The second is a fixed pulse strength of K/N regardless of the

size of the firing cluster. These alterations only modestly change the analysis,

so we simply list the results for Li,Ri, vpulse and c in the table below, where S 0 is

given by (3.20). For illustrative purposes we do not include a formula for ci, but

its calculation is straightforward.

Variable Pulse: K j/N Fixed Pulse: K/N
Li Kic̃eγt Kc̃eγt

Ri (S 0 − γ)c̃ieγt (S 0 − γ)c̃ieγt

vpulse K(S 0 − γ)eγt K(S 0 − γ)eγtc̃
ċ −K(S 0 − γ)e2γtc̃ −K(S 0 − γ)e2γtc̃2

c(t)
c̃
(

K(γ−S 0)(e2γt−1)+2γ
)

2γ

c̃
(

c̃K(γ−S 0)(e2γt−1)+2γ
)

2γ

As can be seen, there are mostly only minor differences between the two cases.
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The first thing to note is that c(t) decays more slowly with a fixed pulse strength

K/N. Intuitively, this is because large and small clusters now fire with the same

strength, which means they absorb all clusters on the fixed interval [1 − K/N, 1).

In contrast, for a pulse strength K j/N, bigger clusters fire bigger pulses, and

therefore absorb clusters on an interval proportional to their size: [1 − K j/N, 1).

This is mathematically manifested as Lvariable pulse
i being bigger than L f ixed pulse

i by

a factor of i, which leads to ċvariable pulse being bigger than ċ f ixed pulse by a factor of

c̃−1 (remember, 0 ≤ c ≤ 1). In turn, this means c(t) f ixed pulse decays more slowly

than c(t)variable pulse

Also note that vpulse depends on c̃ for the fixed pulse case. The mechanism dis-

cussed above is also at play here: since there are fewer clusters in successive

periods, and the pulse per cluster is constant, the total ’current’ per period will

get smaller. This is in contrast to the pulse = K j/N case, where there are fewer

clusters per period also, but larger clusters fire larger pulses, keeping the total

’current’ per period constant. A consequence of this decrease in vpulse is that the

periods won’t be constant for pulse = K/N, as there are for K j/N. They will get

longer as vpulse decreases from period to period.
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3.4 Breakdown of Approximations

3.4.1 Uniformity Assumption

We now discuss the approximations and assumptions we made in our analysis.

The first of these was that each cluster density was distributed uniformly in

voltage at the start of each period, ρ j(x, t) = Ñ j. From this, we derived equations

(3.6) and (3.12) for Li and Ri, which in turn led us to our disorder parameter

c.

This uniformity assumption clearly cannot be satisfied for each i, at every t. For

instance, consider the end of the first period. Perhaps mostly clusters of size < 5

were formed, with only a few larger clusters of size > 10. Then, ρ j<5(x, t = 1) will

be approximately uniform, but ρ j(x, t = 1) will be more sharply peaked. So the

uniformity assumption is inaccurate for large clusters, which are few in number.

This explains why (3.18) approximates c(t) well. Since c(t) =
∑

j c j, we see that

the sum will be dominated by those ci which are large, for which the uniformity

assumption is accurate.

The fact that the uniformity assumption worsens for larger clusters also means

that our results for ci should get worse for larger i. Figure 3.4 below shows that

this is indeed the case.
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Figure 3.4: (Color online) Theoretical and simulated cluster densities c5

though c8 for γ = 0.9. Solid black lines show analytic solu-
tions to (3.29). Red data points show simulations results for
5 × 104 oscillators. As can be seen, theory and simulation start
to disagree

3.4.2 Final stages of process

Throughout our analysis, we assumed N j � 1. As discussed, this cannot be

true ∀ j, at every t. This assumption is most blatantly incorrect at the end of the

process, where there are a small number of macroscopic clusters. Our results

should thus substantially disagree with simulation for large t, as is evidenced

by Figure 3.5.

3.5 Conclusion

We have studied the transient dynamics of pulse coupled oscillators with non-

linear charging curves. We derived approximations for the total cluster density
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Figure 3.5: (Color online) Theoretical and simulated total cluster density
c(t) for γ = 0.9 and t > 3. Solid black lines show analytic solu-
tion (3.2). Red data points show simulation results for N = 104

oscillators. There is a significant disagreement between theory
and simulation for later times, when the approximations we
made in the analysis breakdown.

c(t) and individual cluster densities ci(t). These approximations were good up

to the final stages of the process, where the assumptions made in the analysis

breakdown.

Our work could be used to understand clustering in other systems of pulse-

coupled oscillators. For instance, Ernst et al [50] reported multi-stable clusters

for all-to-all, inhibitory coupling with delays. They found the average number

Nc of clusters obeyed Nc ∼ τ
−1, where τ is the delay. Perhaps adjustments to our

analysis could analytically recover this result; the pulse velocity (3.10) could be

made negative to account for the inhibitory coupling, and ’delayed’ versions of

equations (3.5), (3.7) for the firing and loss rates Ri, Li could be derived.

Furthermore, Mauroya and Sepulcher [49] studied the long term behavior of

the system (3.1) with γ > 0: the complement to our ’opening’ and ’middle’

game. They analytically determined the final number of synchronized clusters

formed (we remind the reader that when γ > 0, full synchrony is not guaranteed
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to occur, and so multiple, stable clusters are possible). Perhaps our transient

analysis could be united with their steady state results to characterize the full

evolution of the Peskin model.

Another possible application of our results is in network detection. Gomez-

Gardenes et al [54] showed that transient clustering in the Kuramoto model can

be used to approximate the underlying network structure. Could our results

could be used to the same effect in networks of pulse-coupled oscillators? Local

coupling would however mean that clusters could break apart as well as coa-

lesce. One could account for this by including additional loss terms in our rate

equations for c and ci, (3.4), (3.29).

Our model has several idealizations that could be relaxed in future work.

For example, local coupling, delayed coupling, and heterogeneity in oscillator

speeds and pulse size could be studied. Another modification would be to al-

low chain reactions, by permitting any clusters that are brought to threshold by

another firing cluster, to fire themselves.
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3.7 Appendix

We here approximate the density ρoriginal
j (x, t). For convenience, we drop the su-

perscript ’original’. As shown in the main body of the text, the density solves

equation (3.30) below,

ρ̇ j + ∂x(vρ j) = 0

ρ j(x, 0) = f0(x)H(x)H(1 − x) (3.30)

where, f0(x) = Ñ j (since we are assuming a initial uniform distribution),

and

v(x, t) = v0(x) + vpulse(t). (3.31)

While we know v0(x) = S 0 − γx, we don’t yet have a complete expression for

vpulse(t). In the main text, we derived vpulse =
∑

j jR j, which using (3.12) for Ri

gives

vpulse(t) =
∑

j

S 0 − γ

N
j ρ j(x = 1, t) (3.32)

This is the source of our difficulty. Our PDE for ρ j(x, t) depends on vpulse, which
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in turn depends on the voltage density for every other cluster size ρk(x, t). To

overcome this difficulty, we use a technique similar to the ’leap-frog’ or ’split’

method used in certain numerical schemes. This involves making a series of

recursive approximations for vpulse and ρ j:

vpulse =
(
v(0)

pulse, v
(1)
pulse, v

(2)
pulse, . . .

)
(3.33)

ρ j =
(
ρ(0)

j , ρ
(1)
j , ρ

(2)
j , . . .

)
(3.34)

Graphically, our scheme is given by the following, where we have placed the

labels of equations used to make the approximations over the arrows.

v(0)
pulse

(3.30)
−−−−→ ρ(0)

j

(3.32)
−−−−→ v(1)

pulse

(3.30)
−−−−→ ρ(1)

j

(3.32)
−−−−→ + . . . (3.35)

We begin by setting v(0)
pulse = 0. The speed is then,

v(x, t)(0) = v0(x) + 0 = S 0 − γx. (3.36)

We plug this into (3.30) and solve for resulting PDE for ρ(0)
j (x, t). This has solu-

tion,

ρ(0)
j (x, t) = eγtÑ jH

(
Γ0(x, t)

)
H

(
1 − Γ0(x, t)

)
. (3.37)
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with Γ0(x, t) = γ−1[S 0 − (S 0 − γx)eγt]. We then use ρ(0)
j to find v(1)

pulse using (3.32),

which gives

v(1)
pulse = (S 0 − γ)eγtc̃. (3.38)

This completes the first step of our scheme. We then repeat the process to find

ρ(1)
j and v(2)

pulse. We use v(1)
pulse to update the speed,

v(x, t)(1) = v0(x) + v(1)
pulse

= (S 0 − γx) + (S 0 − γ)eγtc̃.
(3.39)

and then plug this into (3.30) to obtain a PDE for ρ(1)
j , which we solve to get,

ρ(1)
j (x, t) = eγtÑ jH

(
Γ1(x, t)

)
H

(
1 − Γ1(x, t)

)
(3.40)

where Γ1(x, t) =
[

3S 0−γ

2γ + eγt

2γ (2γx − 2S 0) + e2γt

2γ (γ − S 0)
]
.

Looking at (4.78) and (3.40), we see that ρ(0)
j and ρ(1)

j have the same functional

form. They only differ in the arguments of the Heaviside function: Γ0(x, t) ,

Γ1(x, t). This remarkable similarity between ρ(0)
j and ρ(1)

j has an important con-

sequence: it ’closes’ our approximation scheme. We see this by substituting ρ(1)
j

into (3.32) to find,
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v(2)
pulse = (S 0 − γ)eγtc̃ = v(1)

pulse, (3.41)

which implies that ρ(2)
j = ρ(1)

j , which in turn implies our scheme terminates

at (vpulse, ρ j) = (v(2)
pulse, ρ

(1)
j ). Our final approximations for vpulse and ρ j(x, t) are

then,

vpulse(t) ≈ (S 0 − γ)eγtc̃ (3.42)

ρ j(x, t) ≈ eγtÑ jH
(
Γ(x, t)

)
H

(
1 − Γ(x, t)

)
(3.43)

with Γ(x, t) =
[

3S 0−γ

2γ + eγt

2γ (2γx − 2S 0) + e2γt

2γ (γ − S 0)
]
.

This concludes our analysis. We state bluntly that our approach is not rigorously

justified. Its legitimacy is supported only by the agreement between our analytic

results and numerical simulation. We hope future work will elucidate the cause

of its efficacy.
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CHAPTER 4

SWARMALATORS: OSCILLATORS THAT SYNC AND SWARM

Truth is error burned up.

Norman O Brown

4.1 Introduction 1

This year marks the fiftieth anniversary of a breakthrough in the study of syn-

chronization. In 1967, Winfree proposed a coupled oscillator model for the cir-

cadian rhythms that underlie daily cycles of activity in virtually all plants and

animals [55]. He discovered that above a critical coupling strength, synchroniza-

tion breaks out spontaneously, in a manner reminiscent of a phase transition.

Then Kuramoto simplified Winfree’s model and solved it exactly [56], leading

to an explosion of interest in the dynamics of coupled oscillators [12, 57, 58].

Kuramoto’s model in turn has been generalized to other large systems of bio-

logical oscillators, such as chorusing frogs [59], firing neurons [60–63], and even

human concert audiences clapping in unison [64]. The analyses often borrow

techniques from statistical physics, such as mean-field approximations, renor-

malization group analyses [65, 66], and finite-size scaling [67, 68]. There has also

been traffic in the other direction, from biology back to physics. For example, in-

sights from biological synchronization have shed light on neutrino oscillations

1This chapter is reproduced from: O’Keeffe, Kevin P., and Steven H. Strogatz. ”Swarmala-
tors: Oscillators that sync and swarm.” arXiv preprint arXiv:1701.05670 (2017).
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[69], phase locking in Josephson junction arrays [70], the dynamics of power

grids [71, 72], and the unexpected wobbling of London’s Millennium Bridge on

opening day [73].

A similarly fruitful interplay between physics and biology has occurred in the

study of the coordinated movement of groups of animals. Fish schools, bird

flocks, and insect swarms [74–78] have been illuminated by maximum entropy

methods [79], agent-based simulations [80], and analytically tractable models

based on self-propelled particles [81], and continuum limits [82–85].

Studies of swarming and synchronization have much in common. Both involve

large, self-organizing groups of individuals interacting according to simple

rules. Both lie at the intersection of nonlinear dynamics and statistical physics.

Nevertheless the two fields have, by and large, remained disconnected. Studies

of swarms focus on how animals move, while neglecting the dynamics of their

internal states. Studies of synchronization do the opposite: they focus on oscil-

lators’ internal dynamics, not on their motion. In the past decade, however, a

few studies of “mobile oscillators,” motivated by applications in robotics and

developmental biology, have brought the two fields into contact [86–90]. Even

so, the assumption has been that the oscillators’ locations affect their phase dy-

namics, but not conversely. Their motion has been modeled as a random walk

or as externally determined, without feedback from the oscillators’ phases.

We suspect that somewhere in nature and technology there must be mobile os-

cillators whose phases affect how they move. For instance, many species of

frogs, crickets, and katydids call periodically, and synchronize in vast choruses
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[59, 91–93]. When the individuals hop around, do they tend to move toward or

away from others, depending on the relative phases of their calling rhythms? If

so, what spatiotemporal patterns would we expect?

A clue comes from the physics of magnetic colloids [7, 94, 95] and microfluidic

mixtures of active spinners [96, 97], both of which show rich collective behav-

ior. In these systems, the particles or spinners attract or repel one another, de-

pending on their orientations. Given that orientation is formally analogous to

the phase of an oscillation (both being circular variables), a similarly rich phe-

nomenology is expected for mobile oscillators whose phases affect their motion.

We call these hypothetical systems swarmalators because they generalize swarms

and oscillators.

One possible instance of a swarmalator system is a population of myxobacte-

ria, modeled in 2001 by Igoshin and colleagues [98]. The movements of these

bacteria in space are thought to be influenced by an internal, biochemical de-

gree of freedom, which appears to vary cyclically. Igoshin et al. [98] modeled

it as a phase oscillator. Experimental evidence suggests that the evolution of

this phase is influenced by the spatial density of neighboring cells; thus there

appears to be a bidirectional coupling between spatial and phase dynamics, as

required of swarmalators.

Tanaka and colleagues also made an early contribution to the modeling of swar-

malators [99, 100]. They analyzed a broad class of models in the hope of find-

ing phenomena which were not system-specific. They considered chemotactic

oscillators, whose movements in space are mediated by the diffusion of a back-
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ground chemical. The oscillators’ consumption of this chemical depends on

their internal states, thereby completing the bidirectional space-phase coupling.

Tanaka et al. [99, 100] began with a general model with these ingredients, from

which they derived a simpler model by means of center manifold and phase-

reduction methods.

Here we take a bottom-up approach. We propose a simple model of a swar-

malator system which lets us study some of its collective states analytically. We

hope our work will draw attention to this class of problems, and stimulate the

discovery and characterization of natural and technological systems of swar-

malators.

4.2 The model

We consider swamalators free to move in the plane. The governing equations

are

~̇xi = ~vi +
1
N

N∑
j=1

[
~Iatt(~x j − ~xi)F(θ j − θi) − ~Irep(~x j − ~xi)

]
, (4.1)

θ̇i = ωi +
K
N

N∑
j=1

Hatt(θ j − θi)G(~x j − ~xi) (4.2)

for i = 1, . . . ,N, where N is the population size, ~xi = (xi, yi) is the position of

the i-th swarmalator, and θi, ωi and ~vi are its phase, natural frequency, and self-

propulsion velocity. The functions ~Iatt and ~Irep represent the spatial attraction

and repulsion between swarmalators, while the phase interaction is captured by

Hatt. The function F in equation (4.1) measures the influence of phase similarity
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on spatial attraction, while G in equation (4.2) measures the influence of spatial

proximity on the phase attraction.

Consider the following instance of this model:

~̇xi = ~vi +
1
N

N∑
j,i

[
~x j − ~xi

|~x j − ~xi|

(
A + J cos(θ j − θi)

)
− B

~x j − ~xi

|~x j − ~xi|
2

]
(4.3)

θ̇i = ωi +
K
N

N∑
j,i

sin(θ j − θi)
|~x j − ~xi|

. (4.4)

For simplicity, we chose power laws for Iatt, Irep and G along with analytically

convenient exponents. The sine function in Hatt was similarly motivated, in the

spirit of the Kuramoto model [56]. We first consider identical swarmalators so

that ωi = ω and ~vi = ~v. Further, we assume propulsion with constant magnitude

and direction ~v = v0n̂ where n̂ is a constant vector (we relax these simplifications

later). Then by a choice of reference frame we can set ω = v0 = 0 without loss of

generality. Finally, by rescaling time and space we set A = B = 1. This leaves us

with a system with two parameters (J,K).

The parameter K is the phase coupling strength. For K > 0, the phase coupling

between swarmalators tends to minimize their phase difference, while for K < 0,

this phase difference is maximized. The parameter J measures the extent to

which phase similarity enhances spatial attraction. For J > 0, “like attracts

like”: swarmalators prefer to be near other swarmalators with the same phase.

When J < 0, we have the opposite scenario: swarmalators are preferentially

attracted in space to those with opposite phase. And when J = 0, swaramalators

are phase-agnostic, their spatial attraction being independent of their phase. To
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keep Iatt(x) > 0, we constrain J to satisfy −1 ≤ J ≤ 1.

Before stating our results, we pause to discuss our model’s features. As men-

tioned above, the model’s purpose is to study the interplay between synchro-

nization and swarming. But what precisely do we mean by swarming? While,

to our knowledge, there is no unanimous classification, elements of a swarming

system typically (i) attract and repel each other, leading to aggregation, and (ii)

align their orientations so as to move in the same direction. Succinctly then, a

swarming system models aggregation and/or alignment.

Our model accounts for aggregation, but not for alignment: the spatial dynam-

ics (4.1) model phase-dependent aggregation, while the phase dynamics (4.2)

model position-dependent synchronization. There are no alignment terms. In-

deed, the particles of our system do not have an orientation so there is nothing

to align! We chose to neglect an orientation state variable, and thus alignment,

for two reasons. The first was simply because we believe there are swarmala-

tor systems in which orientation does not play a role, such as the Japanese tree

frogs [59, 93] or chemotactic oscillators [99, 100]. The second was that mod-

eling orientable swarmalators adds an additional layer of complexity; it gives

each swarmalator an orientation β, increasing the number of state variables per

swarmalator from three (a two-dimensional position (x, y) and an internal phase

θ) to four.

In the interest of minimalism we wished to avoid this complication for now.

Hence as it stands our model applies only to swarmalators without an orien-

tation. However we later show that our results are robust to the inclusion of
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simple alignment dynamics, indicating their potential to hold for systems of

orientable swarmalators as well.

4.3 Results

We performed numerical experiments to probe the behavior of our system.

Unless otherwise stated, the simulations were run using python’s ODE solver

‘odeint’. We initially positioned the swarmalators in a box of length 2 and drew

their phases from [−π, π], both uniformly at random. We found the system set-

tles into five states (Supplementary Movies 1-5). In three of these states, the

swarmalators are ultimately static in space and phase. In the remaining two,

the swarmalators move. However in all states, the density of swarmalators

ρ(~x, θ, t) is time-independent, where ρ(~x, θ, t) d~x dθ gives the fraction of swarmala-

tors with positions between ~x and ~x+d~x, and phases between θ and θ+dθ at time

t. In Fig. 4.1 we show where these states occur in the (J,K) parameter plane. We

next discuss these five states.
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Figure 4.1: Phase diagram for the model defined by equations (4.95) and
(4.96) with A = B = 1 and ~vi = ωi = 0. The straight line sepa-
rating the static async and active phase wave states is a semi-
analytic approximation given by (4.92). Black dots show simu-
lation data. These were calculated by finding where the order
parameter S bifurcates from zero, defined by where its second
derivative is largest. Similarly, the red dots separating the ac-
tive phase wave and splintered phase wave states were found
by finding where the order parameter γ bifurcates from 0. The
red dashed line simply connects these points and was included
to make the boundary clearer.
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Figure 4.2: Scatter plots of three states in the (x, y) plane, where the swar-
malators are colored according to their phase. Simulations
were for N = 1000 swarmalators for T = 100 time units and
stepsize dt = 0.1. Supplementary Movies 1-3 correspond to
panels (a)-(c). (a) Static sync state for (J,K) = (0.1, 1). (b)
Static async state (J,K) = (0.1,−1). (c) Static phase wave state
(J,K) = (1, 0)
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Figure 4.3: Distributions in (φ, θ) space corresponding to different states,
where φ = tan−1(y/x). Simulations were run with N = 1000
swarmalators for variable numbers of time units T and stepsize
dt = 0.1. (a) Static async state for (J,K) = (0.1,−1) and T =

100. (b) Static phase wave state (J,K) = (1, 0) and T = 100.
(c) Splintered phase wave state (J,K) = (1,−0.1) and T = 1000.
(d) Active phase wave state (J,K) = (1.0,−0.75) and T = 1000.
Black arrows indicate the shear flow motion of swarmalators.
Supplementary Movies 6 and 7 correspond to panels (c) and
(d).
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1. Static synchrony. The first state is shown in Fig. 4.2(a). The swarmalators

form a circularly symmetric, crystal-like distribution in space, and are fully

synchronized in phase, as indicated by all of them having the same color in

Fig. 4.2(a). Since the swarmalators are ultimately stationary in ~x, and they all

end up at the same phase θ, we call this the static sync state. It occurs for K > 0

and for all J, as seen in Fig. 4.1.

In the continuum limit, this state is described by ρ(r, φ, θ, t) = 1
2πg1(r)δ(θ − θ0),

where φ is the spatial angle φ = tan−1(y/x), and the final phase θ0 is determined

from the initial conditions. In [1] we use a technique used by Kololnikov et al

[101] when studying swarms to derive the following pair of integral equations

for g1: ∫ R

0

[
(s − r)K

(
4rs

(r + s)2

)
+ (r + s)E

(
4rs

(r + s)2

)
+
π2

2J
(r − s)

]2Js
r

g1(s) ds = 0 (4.5)

g1(r) =
2(1 + J)

π

∫ R

0
K

(
4sr

(r + s)2

)
g1(s)
s + r

s ds, (4.6)

whereK ,E are the complete elliptic integral of the first and second kinds, and R

is the radius of the disk in the (x, y) plane which must be determined. We were

unable to solve these equations for g1(r) and R, so instead solve them numeri-

cally in [1]. Analytic progress can however be made if a linear attraction kernel

Iatt(~x) = ~x, is used instead of the unit vector kernel we are currently consider-

ing. Then, as shown in Kolokolnikov et al. [101], the radial density becomes

g1(r) = 1, i.e swarmalators are uniformly distributed. In this special case we can

also calculate R analytically,

Rsync = (1 + J)−1/2. (4.7)
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We show a full derivation in [1]. In dimensionful units, this reads R =

√
B/(A + J). Thus the radius is determined by the ratio of the strengths of the

attractive to the repulsive forces Iatt, Irep (in the static sync state, the effective at-

traction force is A + J cos(θ j − θi) = A + J, since all swarmalators have the same

phase). Figure 4.4(a) shows the prediction (4.7) agrees with simulation results.
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Figure 4.4: Radii of stationary states for N = 800 swarmalators for a linear
attraction kernel Iatt(~x) = ~x. Red dots show simulation data,
while black curves show theoretical predictions. (a): Radius of
crystal formed in static sync state (for K = 1) and static async
state (for K = −2) versus J. (b): Inner and outer radii of annulus
in static phase wave state versus J.

2. Static asynchrony. Swarmalators can also form a static async state, illustrated

in Fig. 4.2(b). At any given location ~x, all phases θ can occur, and hence all

colors are present everywhere in Fig. 4.2(b). This is seen more clearly in a scatter

plot of the swarmalators in the (φ, θ) plane, depicted in Fig. 4.3(a). Notice that

the swarmalators are distributed uniformly, meaning that every phase occurs

everywhere. This completely asynchronous state occurs in the quadrant J < 0,

K < 0, and also for J > 0 as long as J lies in the wedge J < |Kc| shown in the
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phase diagram in Fig. 4.1. As for the static sync state, we were able to calculate

the radius of the circular distribution when a linear attraction kernel ~I(~x) was

used. In [1] we show this radius is given by

Rasync = 1 (4.8)

which agrees with simulation as shown in Fig. 4.4(a).

3. Static phase wave. The final stationary state occurs for the special case K =

0 and J > 0. This means the swarmalators’ phases are frozen at their initial

values. How, then, does the population evolve? Since J > 0, ‘like attracts like’:

swarmalators want to settle near others with similar phase. The result is an

annular structure where the spatial angle φ of each swarmalator is perfectly

correlated with its phase θ, as seen in Fig. 4.2(c) and 4.3(b). Since the phases run

through a full cycle as the swarmalators arrange themselves around the ring,

we call this state the static phase wave.

In density space, this static phase wave state is described by ρ(r, φ, θ) = g2(r)δ(φ±

θ+C1) where the ± and the constant C1, are determined by the initial conditions.

In [1] we again consider the linear attraction kernel, and find that g2(r) can be

obtained analytically,

g2(r) = 1 −
ΓJ

r
, R1 ≤ r ≤ R2 (4.9)

with ΓJ = 2J(R3
2 − R3

1)
(
3J(R2

2 − R2
1) + 12

)−1
. This in turn lets us calculate the inner
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and outer radii R1,R2 of the annulus:

R1 = ∆J
−
√

3J − 3
√

12 − 5J
√

J + 4 + 12
√

3
12J

, (4.10)

R2 =
∆J

2
√

3
(4.11)

with ∆J =

√
3J−
√

36−15J
√

J+4−12
J−2 . Figure 4.4(b) shows agreement between these pre-

dictions and simulation.

4. Splintered phase wave. Moving from K = 0 into the K < 0 half-plane, we

encounter the first non-stationary state, shown in Fig. 4.5(a) and Fig. 4.3(c). As

can be seen, the static phase wave splinters into disconnected clusters of distinct

phases. Accordingly we call this state the splintered phase wave. It is unclear what

determines the number of clusters. Fewer are found when smaller length scales

for the interaction functions ~Iatt, ~Irep,G are used. However the parameters J,K

also play a role, although how precisely has not yet been determined. Within

each cluster, the swarmalators “quiver,” executing small amplitude oscillations

in both position and phase about their mean values.

5. Active phase wave. As K is further decreased, these oscillations increase in

amplitude until the swarmalators start to execute regular cycles in both spatial

angle and phase. This motion is best illustrated in Fig. 4.3(d), in which shear

flow about the φi = θi ± C axis is evident. This type of flow follows from a

conserved quantity in the model: 〈φ̇〉 = 〈θ̇〉 = 0, which can be seen by averaging

equations (4.95) and (4.96) over the population. There are also oscillations in the

radial position, where each swarmalator travels from the inner rim to the outer
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Figure 4.5: Two non-stationary states for N = 1000 swarmalators for T =

1000 time units and stepsize dt = 0.1. In all cases, swarmalators
were initially placed in a box of length 2 uniformly at random,
while their phases we drawn from [−π, π]. (a) Splintered phase
wave (J,K) = (1,−0.1). Note, there is a long transient until this
state is achieved. See Supplementary Movie 4. (b) Active phase
wave (J,K) = (1,−0.75). See Supplementary Movie 5.

rim and back, in one orbit around the annulus.

This new, and final, state is similar to the double milling states found in biolog-

ical swarms [102], where populations split into counter-rotating subgroups. It

is also similar to the vortex arrays formed by groups of sperm [103], where the

angular position φ of each sperm is correlated with the phase θ associated with

the rhythmic beating of its tail.

At the density level, the state is like a blurred version of the static phase wave,

insofar as the spatial angle and phase of a given swarmalator are roughly corre-

lated, as evident in Fig. 4.3(d). However unlike the static phase wave, the swar-

malators are non-stationary. To highlight this difference, we name this state the

active phase wave.
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Order parameters. Having described the five states of our system, we next dis-

cuss how to distinguish them. We define the following order parameter,

W± = S ±eiΨ± =
1
N

N∑
j=1

ei(φ j±θ j), (4.12)

where φi := tan−1(yi/xi). As shown in Fig. 4.6, the magnitude S ± varies from 1

to 0 as we decrease K from 0, passing through all the states in the upper left

quadrant of the (J,K) plane. (Note that all states except for static sync occur in

this part of parameter space, so we hereafter confine our attention to just this

region.)

To see why S ± varies in this manner, recall that in the static phase wave, the

spatial angle and phase of each swarmalator are perfectly correlated, φi = ±θi+C1

(recall that the ± and C1 are determined by the initial conditions. This means

either S + or S − is non-zero). Therefore S ± = 1 at K = 0, where the static phase

wave state is realized. Moving into the K < 0 plane we encounter the splintered

phase wave. Here the correlation between φi and θi is not perfect, and so S ± < 1.

As K is decreased the decay of this correlation is non-monotonic, which induces

a dip in S ± as seen in Fig. 4.6. Once the active phase wave is reached however

this non-monotonicity disappears. As a result S ± declines uniformly until it

finally drops to zero when the static async state is reached, in which φi and θi

are fully uncorrelated.

To sum up, S ± is zero in the static async state, bifurcates from zero at a critical

coupling strength Kc, is non-zero in the non-stationary splintered and active

phase wave states, and is one in the static phase wave state.
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Figure 4.6: Asymptotic behavior of the order parameter S := max(S +, S −)
(black dots) and γ (red dots) for J = 0.5 and N = 800. Note
the bifurcation of S from at K ≈ −0.53 near the approxima-
tion (4.92) Kc = −1.2J = −0.6. Data were collected using
Heun’s method for T = 1000 time units with stepsize dt = 0.01,
of which the first half were discarded as transients. Each
data point represents the average of one hundred realizations.
Swarmalators were initially placed in a box of length 2 uni-
formly at random for all values of K with a common seed,
while their phases we drawn from [−π, π].

Notice however that since S ± is non-zero for both the splintered and active

phase wave, it cannot distinguish between these states. To do this, we use an-

other order parameter γ. We define this to be the fraction of swarmalators that

have executed at least one full cycle in phase and position, after transients have

been discarded. Then γ is zero for the splintered phase wave, and non-zero for

the active phase wave. Using γ in concert with S ± then allows us to discern all

the macroscopic states of our system as illustrated in Fig. 4.6.
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Stability analysis. To calculate the critical coupling strength Kc at which the

static async state loses stability, we consider perturbations η in density space

defined by

ρ(~x, θ, t) = ρ0(~x, θ) + εη(~x, θ, t) (4.13)

where ρ0(~x, θ, t) = (4π2)−1g1(r) is density in the static async state. In [1], we sub-

stitute this ansatz into the continuity equation, expand η in a Fourier series,

η(~x, θ, t) =
∑

n=0 bn(~x, t)einθ + c.c., and derive the following expressions for the har-

monics:

ḃ1(~x, t) = −
J
2
~∇ρ0(~x).

∫
~̃x − ~x

|~̃x − ~x|
b1(~̃x, t) d~̃x + (4.14)

(J + K)
2

ρ0(~x)
∫

1

|~̃x − ~x|
b1(~̃x, t)d~̃x,

ḃn(~x, t) = 0, n , 1. (4.15)

Similar equations are obtained for the complex conjugates b̄n(~x, t). We see the

first Fourier harmonic b1(~x, t) is distinguished. To study its stability we expand

it in a Fourier series b1(~x, t) =
∑∞

m=0 fm(r, t)einφ + c.c.. Substituting this ansatz into

(4.88) leads to a evolution equation for each mode fm(r, t). We then set fm(r, t) =

eλmtcm(r) and derive the following eigenvalue equation:

λmcm(r) =

∫ R

0
Hm(r, s)cm(s)s ds (4.16)

where R is the radius of the support of the density in the static async state. We

focus first on the zeroth mode f0 for which we can compute H0(r, s) analyti-

cally:

λ0c0(r) =

∫ R

0
H0(r, s)c0(s)s ds, (4.17)

H0(r, s) =
J(r2 − s2)g′(r) + 2rg(r)(J + K)

4π2r(r + s)
K

(
4rs

(r + s)2

)
+

J(r + s)g′(r)
4π2r

E

(
4rs

(r + s)2

)
(4.18)
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where K ,E are the complete elliptic integral of the first and second kinds. We

were unable to solve (4.17) for λ0 analytically. Instead, we found it numerically

by approximating the integral using gaussian quadrature. This reduces (4.17)

to the form λ′ci = Mi jc j where Mi j = H0(ri, r j)w j, w j are gaussian quadrature

weights, ri = i ∗ (R/N′) and i = 1 . . .N′. The eigenvalues λ′0(N′) of Mi j, which de-

pend on the number of grid points N′ used in the quadrature, then approximate

λ0.

The eigenvalues λ′0(N′) have unexpected properties. The real part of the most

unstable eigenvalue, denoted λ∗0
′(N′), is positive for all J,K. This tells us that

f0 is always unstable, which in turn tells us that the static async state is always

unstable! In Fig. 4.13 we plot λ∗0
′(N′) versus K for J = 0.5 and N′ = 200 grid

points. As can be seen it is small but positive for sufficiently negative K. Note

however that there is a transition-like point K∗0 ≈ −0.5 beyond which λ∗0
′(N′)

increases sharply. Figure 4.13 also shows λ∗m′(N′) for m = 1, 2, 3, 4, which have

the same behavior as λ∗0
′(N′): they are small but positive for K < K∗m, and grow

sharply for K > K∗m.

Small but positive eigenvalues for K < K∗m were a surprise. We were expect-

ing them to be negative, since simulations show the static async state is stable.

We were thus suspicious of these results, and doubted the accuracy of the ap-

proximation λ∗0
′(N′) to the true λ∗0. We therefore repeated the calculation for

different values of N′ up to N′ = 1600 in [1]. Contrary to our expectations, we

found that while the λ∗m(N′) got smaller, they consistently remained positive for

K < K∗m.
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Figure 4.7: The real part of the most unstable eigenvalue λ∗m′ of the first five
modes fm calculated from equation (4.90) for J = 0.5. Notice
that they are all is positive for all K. Each λ∗m′ was calculated by
approximating the integral of the R.H.S. of (4.90) using gaus-
sian quadrature with N′ = 200 grid points and diagonalizing
the resulting matrix. The upper limit of integration R = 1.15
was measured from simulations. The radial density g(r) was
determined numerically as discussed in [1]. The kernels Hm

in equation (4.90) for m > 1 were calculated numerically. The
dashed line marks the approximation to the critical coupling
strength (4.92).

We also crudely investigated the N′ → ∞ limit by (i) fitting our data to curves

of the form a + b(N′)c and (ii) using Richardson extrapolation. Due to the small

magnitudes of the λ∗m′(N′) however, the results were rather unconvincing. Typi-

cal values for the best fit parameter a, which represents the limiting behavior of

λ∗m, were a ∼ 10−6. The confidence interval for this parameter also contained pos-

itive and negative values. On top of that the approximations from methods (i)

and (ii) gave inconsistent results. Hence we were unable to reliably determine

the sign of λ∗m′ when K < K∗m and N′ → ∞, which preventing us from accurately

ascertaining the stability of the static async state. We restate however that the
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fact that λ∗m′ > 0 for the large but finite value of N′ we used is significant evidence

that the unanticipated instability of the static async state is genuine.

While a rigorous determination of the sign of λ∗m′ when K < K∗m remains elusive,

our analysis certifiably shows its magnitude is very small. Hence, whatever the

stability or instability of the m-th mode fm turns out to be, it must be weak. In

turn, then, the static async state has weak stability properties for K < Kc, where

Kc = minm K∗m (i.e., at the point the most unstable fm loses stability). How can we

find this Kc? In Fig. 4.13 we see the f1 becomes unstable first. There are of course

an infinite number of modes, but as can be seen, λ∗m appears to decrease with

increasing m. Thus we assume minm K∗m = 1. In [1] we approximate K∗1 =
d2λ∗1

′

dK2 ,

calculate it for different J, and find the following linear relation:

Kc ≈ −1.2J. (4.19)

Summarizing our main result: in the continuum limit N → ∞, the static async

state is unstable for K > Kc, and either (i) weakly stable, (ii) neutrally stable,

or (iii) weakly unstable for K < Kc. Further, numerical evidence suggests that

(iii) is the most likely. While this result is perhaps unsatisfying from a technical

perspective, in practice it has utility. For example as shown in Fig. 4.1, the ap-

proximation (4.92) for Kc agrees reasonably well with finite N simulations.

Genericity. Our analysis so far has been for the instance (4.95), (4.96), of the

model defined by (4.1), (4.2). This begs the question: are the phenomena we

found generic to the model? Or specific to this instance of the model? To answer

this question, we ran simulations for different choices of the functions ~Irep, ~Iatt
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and G; see [1].

In all but one case, we found the same phenomena. The exception is when a

linear attraction kernel ~Iatt(~x) = ~x is used. Here we found new states, which we

call non-stationary phase waves. They are similar to the active phase wave, except

now the phase Ψ± of the order parameter W± begins to rotate, reminiscent of the

traveling wave states found in the Kuramoto model with distributed coupling

strengths [104, 105]. We further discuss this and other properties in [1].

4.4 Extensions to the model

Noise and disordered natural frequencies. The swarmalators previously con-

sidered were identical and noiseless. We now relax these idealizations. Then

the governing equations are

~̇xi =
1
N

N∑
j,i

[
~x j − ~xi

|~x j − ~xi|

(
1 + J cos(θ j − θi)

)
−

~x j − ~xi

|~x j − ~xi|
2

]
+ ξ~xi (t), (4.20)

θ̇i = ωi +
K
N

N∑
j,i

sin(θ j − θi)
|~x j − ~xi|

+ ηi(t), (4.21)

where ωi are random variables drawn from a Lorentzian g(ω) = (σ/π)
[
(ω − µ)2 +

σ2
]−1

. By a change of frame we set µ = 0 leaving just σ which quantifies the

strength of the disorder. We choose white noise variables ηi(t) and ξ~xi (t) with

zero mean and strengths Dx,Dy,Dθ characterized by 〈ξx
i (t)ξx

j (t
′)〉 = 2Dxδi jδ(t − t′),

etc.
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Simulations show that when just phase noise Dθ is turned on, noisy versions of

all the states are realized. The splintered phase wave however degenerates into

the active phase wave for all but the smallest noise Dθ & 10−3. In the remaining

states, the spatial densities remain compact supported with the same radii, ex-

cept now the swarmalators have noisy phase motion (this induces some spatial

movement, which disappears when N → ∞ as we show in [1]). Hence the fol-

lowing states, where we have swapped the descriptor ‘static’ with ‘noisy’, are

robustly realized when Dθ > 0: (i) noisy phase wave, (ii) active phase wave, (iii)

noisy async.

Frequency disorder σ > 0 has a more serious effect. Since g(ω) is symmetric

about zero, there are equal numbers of swarmalators with oppositely signed

natural frequencies. This turns the static/noisy phase wave into the active phase

wave, in the sense that counter-rotating groups develop. This is not seen in the

async state. Here, there are noisy spatial movements which vanish as N → ∞,

as in the noisy async state. In contrast however, the swarmalators execute noisy,

but full, phase cycles. To highlight this distinction, we rename the state the

active async state. The states realized are then: (i) active phase wave, (ii) active

async.

Finally spatial noise Dx,Dy > 0 simply blurs the spatial densities of the states.

No other phenomena are induced. Hence when Dθ, σ,Dx,Dy > 0, we again get

the (i) active phase wave, and (ii) active async states.

In Fig. 4.8 we plot the order parameter S (K) for different amounts of noise and

frequency disorder. As for the original model, S simply declines to zero as K is
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decreased, with the noise and disordered frequencies changing just the shape of

the curves and the value of Kc. Note the disappearance of the dip in S for small

K, which indicates the absence of the splintered phase wave state. Note also we

do not plot the second order parameter γ which discerns the splintered phase

wave since this state does not robustly exist when σ,Dθ , 0.
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Figure 4.8: Order parameter S = max(S +, S −) versus K for J = 0.5 and
different amounts of disorder as quantified by the width of the
distribution of natural frequencies σ and the noise strengths,
Dθ, Dx, and Dy. As can be seen, greater amount of disorder
stabilize the async state, as indicated by −Kc becoming smaller
and smaller. Note also the disappearance of the dip in the S (K)
curve, which tells us the splintered phase wave state does not
exist in the presence of noise of this strength. Simulations were
run for N = 500 swarmalators using Heun’s method for T =

1000 time units with stepsize dt = 0.01, the first half of which
were discarded. Each data point represents the average of 10
realizations.

Swarmalators in 3D. So far we have considered swarmalators moving in two di-
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mensions. While there are physical systems where this approximation is valid,

such as certain active colloids [106] or sperm, which are often attracted to two

dimensional surfaces [107], this restriction was mostly for mathematical conve-

nience. Here we explore the more physically realistic case of motion in three

spatial dimensions (in [1] we also explore motion in one dimension). For sim-

plicity we consider the case of identical swarmalators with no noise, although

we relax these idealizations in [1]. Our system is then

~̇xi =
1
N

N∑
j,i

[
~x j − ~xi

|~x j − ~xi|

(
1 + J cos(θ j − θi)

)
−

~x j − ~xi

|~x j − ~xi|
3

]
, (4.22)

θ̇i =
K
N

N∑
j,i

sin(θ j − θi)
|~x j − ~xi|

, (4.23)

where ~xi = (xi, yi, zi). These are the same as equation (4.95) and (4.96), except the

exponent of the hard shell repulsion is now 3 (we choose this because it yields

simple formulas for the radii of certain states).

Simulations show that analogues of the states found in 2D are realized. We show

these as scatter plots in the (x, y, z) plane in Fig. 4.9. We also provide movies of

the evolution to these states in [1]. The static sync and async states become

spheres (note we do not plot the static sync state due to space limitations) as

seen in panel (a). As in the 2D case, we can calculate their radii when a linear

attraction kernel is used,

Rsync = (1 + J)−1/3, (4.24)

Rasync = 1, (4.25)

which agree with simulation as shown in [1].
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In panel (b) we show the static phase wave becomes a sphere with a cylindrical

hole through its center. The orientation of this cylinder is determined by the

initial conditions. The phase and azimuthal angle φ = tan−1(y/x) are correlated

in the same way for each value of the polar angle α = cos−1(z/
√

x2 + y2 + z2)

(when the azimuthal and polar angles are measured relative to the axis of the

cylindrical hole). We show this more clearly in a scatter plot in the (θ, φ) plane

in [1].

As in the 2D model, this correlation between φ and θ persists for the splintered

phase waves and active phase wave states as can be seen in panels (c) and (d)

of Fig. 4.9. The motion of the swarmalators in these states are as before: in the

splintered phase wave they ‘quiver’, executing small oscillations in space and

phase, while in the active phase wave they execute full rotations (note the spa-

tial component of these rotations are in the azimuthal direction φ̂ only, not in

the polar direction α̂). In [1] we show how the order parameters S ±, γ can also

be used to differentiate these 3D states.

Alignment and self-propulsion. Up to now we have considered the trivial case

of swarmalators that propel themselves with constant magnitude and direction,

in a manner uninfluenced by their neighbors. This allowed us to set this term to

zero via a change of reference. In many real systems, however, such behavior is

unrealistic: individuals often adjust the direction of their motion to align with

that of their neighbors. Vicsek studied this alignment effect in a seminal work

[81].

99



Figure 4.9: Scatter plots of four states in the (x, y, z) plane, where the swar-
malators are colored according to their phase. Data were col-
lected for J = 0.5 and N = 1000 swarmalators for T = 5000
time units with stepsize dt = 0.001 using Heun’s method. (a)
Static async state for K = −1. (b) Static phase wave for K = 0 (c)
Splintered phase wave for K = −0.05. (d) Active phase wave
state for K = −0.6. Supplementary movies 9-12 correspond to
panels (a)-(d).

We here partially explore the effect of alignment on swarmalator systems. Ac-

cordingly we endow each swarmalator with an orientation β, which character-

izes the direction of its self-propulsion. The inclusion of alignment makes our
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model complicated; there are now four state variables (x, y, θ, β) per swarmala-

tor, which could interact with each other in potentially many ways. Further-

more, there are six parameters (J,K, σ,Dθ,Dx,Dy), not to mention any additional

parameters governing the evolution of β. An exhaustive study of orientable

swarmalators is thus beyond the scope of the present work. Hence, we restrict

ourselves to answering a simple question: are the states of our swarmalator

system robust to the inclusion of simple alignment dynamics?

To this end, we study the simplest possible extension to our current model: we

choose Vicsek type interactions between ~x and β, and leave β and the phase θ

uncoupled (although they are indirectly coupled through the position ~x). Our

system then reads

~̇xi =
1
N

N∑
j,i

[
~x j − ~xi

|~x j − ~xi|

(
1 + J cos(θ j − θi)

)
−

~x j − ~xi

|~x j − ~xi|
2

]
+ ξ~xi (t) + v0n̂, (4.26)

θ̇i = ωi +
K
N

N∑
j,i

sin(θ j − θi)
|~x j − ~xi|

+ ηi(t), (4.27)

β̇i = −βi +
1
|Λi|

∑
j∈Λi

β j + ζi(t), (4.28)

where n̂ = (cos β, sin β), Λi is the set of swarmalators within a distance δ of the

i-th swarmalator, and |Λi| is the number of such neighbors. The ζi(t) is a white

noise variable with zero mean and strength Dβ characterized by 〈ζi(t)ζ j(t′)〉 =

2Dβδi jδ(t − t′).

Simulations show that for certain parameter values aligned versions of all our

states persist. We plot two of these in panels (a) and (b) of Fig. 4.10, where each

swarmalator is depicted as a colored arrow, oriented according to β, and colored
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according to phase. As can be seen the swarmalators are aligned, with their

space-phase distributions being the same as before. In contrast to the original

model, however, the center of mass of each distribution now moves (in a direc-

tion determined by the initial conditions). In this sense the states are mobile.

They are however equivalent to their static versions via a change of reference

frame, ~x → ~x + ~v0t. For larger Dβ, the unaligned versions of the same states are

realized, as illustrated in panels (c) and (d) of Fig. 4.10.

We have demonstrated that the phenomena of our system are insensitive to

the inclusion of simple alignment dynamics. We restate however that we

have not comprehensively explored the space defined by the other parameters

(J,K, σ, v0,Dx,Dy) given its large size. Thus it remains to be seen if new states

will be found.

4.5 Discussion

We have examined the collective dynamics of swarmalators. These are mobile

particles or agents with both phase and spatial degrees of freedom, which lets

them sync and swarm. Furthermore, their phase and spatial dynamics are cou-

pled. By studying simple models, we found this coupling leads to rich spa-

tiotemporal patterns which we explored analytically and numerically. These

patterns were robust to modifications to the model, namely motion in one, two,

and three spatial dimensions, distributed natural frequencies, noisy interac-

tions, and alignment dynamics. We thus believe they could be realized in nature
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Figure 4.10: Scatter plots of four states in the (x, y) plane where the swar-
malators are depicted as colored arrows, whose orientation
represents β, and whose color represents the phase θ. Data
were collected for N = 300 swarmalators for T = 5000 time
units with stepsize dt = 0.01 using Heun’s method. In each
panel, parameter values were J = δ = 0.5, σ = Dθ = Dβ = 0.01,
Dx = Dy = 0 and v0 = 0.001. (a) Aligned active async for
(K,Dβ) = (−1.0, 0.01). (b) Aligned noisy phase wave for K =

(−0.1, 0.01). (c) Unaligned active async for (K,Dβ) = (−1.0, 1.0).
(d) Unaligned noisy phase wave for (K,Dβ) = (−0.1, 1.0).

or technology.
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A pertinent future goal, then, is to investigate the behavior of real-world sys-

tems of swarmalators. As mentioned in the introduction, colloidal suspensions

of magnetic particles [7, 94, 95] or active spinners [96, 97] are promising candi-

dates. For example, structures equivalent to the static phase wave state have

been experimentally realized by Snezhko and Aranson, when studying the be-

havior of ferromagnetic colloids at liquid-liquid interfaces [94] (the particles

comprising the colloids can be considered swarmalators if we interpret the an-

gle subtended by their magnetic dipole vectors as their phase). As shown in

Fig. 4 of [94], the colloids can form asters. These are structures composed of

radial chains of magnetically ordered particles, which “decorate slopes of a self-

induced circular standing wave” [94], analogous to the annular pattern of cor-

related phases and positions of the static phase wave shown in Fig. 4.2(c).

Could colloidal equivalents of the splintered and active phase wave states also

be realized? Aside from being theoretically interesting, the ability to engineer

these states could have practical application. For instance, Snezhko and Aran-

son also show that asters can be manipulated to capture and transport target

particles. Perhaps the non-stationary behavior of the splintered and active wave

states could also have locomotive utility. Tentative evidence for this claim is

provided by populations of cilia, whose collective metachronal waves, similar

to the motion of swarmalators in the aforementioned states, are known to facil-

itate biological transport [108–110].

Other plausible systems of real-world swarmalators are biological microswim-

mers, self-propelled micro-organisms capable of collective behavior [111]. One

such contender is populations of spermatoza, which exhibit rich swarming be-
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havior such as trains [112, 113] and vortex arrays [103], the latter of which is

reminiscent of the active phase wave state, as mentioned in the Results section.

The phase variable for each sperm is associated with the rhythmic beating of the

sperm’s tail, which can synchronize with that of a neighboring sperm [114, 115].

It has been theorized that this can induce spatial attraction [116], leading to clus-

ters of synchronized sperm, consistent with experimentally observed behavior

[117].

There are also theoretical avenues to explore within our proposed model of

swarmalators. For instance the curious stability properties of the static async

state deserve further study. Another route would be to include more real-

ism by including heterogeneity in the coupling parameters K, J, or by choos-

ing more complicated interaction functions Iatt, Irep,G,H. For example we chose

H(θ) = sin(θ) to mimic the Kuramoto model, but as we saw, it led to just the

trivial static sync state when K > 0. Perhaps choosing the more realistic Win-

free model for the phase dynamics, which gives rise to richer collective behav-

ior, would lead to more interesting swarmalator phenomena in this parameter

regime.

Perhaps the most important direction for future work is to more fully explore

the interplay among aggregation, alignment, and synchronization—or put an-

other way, to explore the collective behavior of particles with a position ~x, an

orientation β, and an internal phase θ. The primary goal of our work is to draw

attention to this class of problems, which we believe define a wide landscape of

new emergent behavior. In this work, we have started to map out this landscape

by studying a simple model that contains a subset of these three effects, namely
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aggregation and synchronization.

Others have considered the remaining subsets. For example, Leon and Liv-

erpool have explored the interaction between alignment and synchronization

[118]. They introduced a new class of soft active fluids whose units have an

orientation and phase. They found this mixture can either enhance or inhibit

the transition from disordered states to states with polar and/or phase order.

The latter states are roughly similar to the (un)aligned static (a)sync states.

Yet counterparts of the static, splintered, and active phase waves were not re-

ported.

The final combination, aggregation and alignment, is perhaps the most well

studied, in both new models and old. For instance, Starnini et al. [119] recently

introduced a model of mobile particles capable of aggregating and aligning their

opinions, and found the emergence of echo chambers. Even in the classic Vicsek

model and its numerous extensions, new phenomena are still being found. For

instance, Kruk et al. found that delayed alignment in the Vicsek model produces

self-propelled chimeras [120]; perhaps delayed phase interactions could lead

to similar states for swarmalators. Liebchen and Levis [121] considered units

with an intrinsic rotation, and found phase separated droplets: clusters of rotation-

synchronized particles surrounded by a sea of incoherent particles (multiple

droplets are also possible). These droplets are similar to our static sync states,

but they differ in the crucial respect that the entire population is synchronized

in our static sync state. Here too, the counterparts of our static, splintered, and

active phase waves were not seen.
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Thus, to the best of our knowledge, no other models display states analogous to

the splintered phase waves and active phase waves found in our swarmalator

model. In that sense, those two states are unprecedented.
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4.7 Supplemental Materials

4.8 Properties of static sync and async states

We here use techniques used by Fetecau et al. [101] when studying swarm dy-

namics to study the static sync and static async states. We start with the async

state whose density is

ρ(r, φ, θ, t) =
1

4π2 g(r), 0 ≤ r ≤ R. (4.29)

We wish to solve for the radial density g(r) and the radius R of its support. In

this state the swarmalators are at rest and their phases are unchanging, so v ≡ 0,

where v = (vx, vy, vθ). As we will show, it is also useful to consider the divergence
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of the velocity, which must also be zero (from the continuity equation for the

conservation of swarmalators, and by applying the assumptions that the density

for the static async state is stationary and the velocity is zero). This gives us a

pair of simultaneous equations,

v ≡ 0, (4.30)

∇.v ≡ 0. (4.31)

We begin with divergence term (4.31). In cartesian coordinates the velocity

reads

~v~x(~x, θ, t) =

∫ ((
~̃x − ~x

)(
1 + J cos(θ̃ − θ)

)
− (4.32)

~̃x − ~x

|~̃x − ~x|2

)
ρ(~̃x, θ̃, t) d~̃x dθ̃,

vθ(~x, θ, t) =

∫
sin(θ̃ − θ)

|~̃x − ~x|
ρ(~̃x, θ̃, t)d~̃x dθ̃. (4.33)

The divergence has a spatial and phase component: ∇.v = ∇~x.~v~x +∂θvθ. The phase

component ∂θvθ is trivially zero, since the swarmalators’ phases are uniformly

distributed in phase in the static async state. We find the spatial component by

applying ∇~x to (4.32):

∇~x.~v~x =

∫
−2

(
1 + J cos(θ̃ − θ)

)
ρ(~̃x, θ̃, t)d~̃x dθ̃ (4.34)

+ 2πδ(~̃x − ~x)ρ(~̃x, θ̃, t) d~̃x dθ̃. (4.35)

Here we have used the identity (expressed most cleanly in cartesian coordi-

nates)

∇~x.
~̃x − ~x

|~̃x − ~x|2
= −2πδ(~̃x − ~x). (4.36)

Simplifying this, and substituting ∂θvθ = 0 gives the full divergence

∇.v = 2πρ(~x, θ) − 2
∫ (

1 + J cos(θ̃ − θ)
)
ρ(~̃x, θ̃, t) d~̃x dθ̃. (4.37)
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By (4.31) we require this to be zero, which gives a self-consistent equation for

ρ:

ρ(~x, θ, t) =
1
π

∫ (
1 + J cos(θ̃ − θ)

)
ρ(~̃x, θ̃, t) d~̃x dθ̃. (4.38)

Finally substituting the ansatz (4.29) into this and performing the integration

over φ gives

g(r) = 2
∫ R

0
g(r̃)r̃ dr̃ = M = const. (4.39)

This tells us ρ is constant inside a disc of radius R. The radius R can be deter-

mined via self-consistency: M =
∫ R

0
rg(r)dr =

∫ R

0
rMdr ⇒ R = 1. By normalizing

ρ as per (4.29) we find M = 1 which means g(r) = 2. Putting this all together

gives

ρasync(r, φ, θ, t) =
1

2π2 , 0 ≤ r ≤ Rasync (4.40)

Rasync = 1. (4.41)

We must now check if the solutions (4.40), (4.41) imply v ≡ 0 as required by

(4.30). We do this in cartesian coordinates, in which

ρ(~x, θ, t) =
1
πR2 δ(θ − θ0), |~x| ≤ R, (4.42)

where θ0 is the final, common phase of each swarmalator. Substituting this into

equations (4.32) and (4.33) for v~x, vθ and performing the integration gives

~v~x(~x, θ, t) =
1

4πR2

(
R2 − [1 + J cos(θ − θ0)]

)
~x, (4.43)

vθ(~x, θ, t) = 0, (4.44)

where we have used the identity∫
|~̃x|<R

~̃x − ~x

|~̃x − ~x|2
= π~x, |~x| < R. (4.45)

We see that ~v~x = 0 at θ = θ0 if R = 1, as required. Hence we have shown that the

solutions (4.40), (4.41) satisfy equations (4.30) and (4.31).
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Carrying out the same analysis for the static sync state leads to

ρsync(r, φ, θ, t) =
1
π2 δ(θ − θ0), 0 ≤ r ≤ Rsync (4.46)

Rsync = (1 + J)−1/2, (4.47)

where θ0 is the final common phase of the swarmalators in the static sync state.

Unit vector attraction kernel. We now carry out the same analysis for static

async state for the unit vector attraction kernel ~Iatt(~x) used in the main text. This

amounts to solving the pair of equations

v ≡ 0, (4.48)

∇.v ≡ 0, (4.49)

where the velocity is

~v~x(~x, θ, t) =

∫ (
~̃x − ~x

|~̃x − ~x|

(
1 + J cos(θ̃ − θ)

)
− (4.50)

~̃x − ~x

|~̃x − ~x|2

)
ρ(~̃x, θ̃, t) d~̃x dθ̃,

vθ(~x, θ, t) =

∫
sin(θ̃ − θ)

|~̃x − ~x|
ρ(~̃x, θ̃, t)d~̃x dθ̃. (4.51)

And the density ansatz is the same as (4.29). After calculations we get the fol-

lowing pair of simultaneous equations for the unknown radial density g(r) and

radius R, ∫ R

0

[
(s − r)K

(
4rs

(r + s)2

)
+ (r + s)E

(
4rs

(r + s)2

)
+
π2

2J
(r − s)

]2Js
r

g1(s) ds = 0, (4.52)

g1(r) =
2(1 + J)

π

∫ R

0
K

(
4sr

(r + s)2

)
g1(s)
s + r

s ds, (4.53)
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where K ,E are the complete elliptic integrals of the first and second kinds, and

R is the radius of the disk in the (x, y) plane which must be determined. We were

unable to solve these equations for g1(r) and R.

Equation (4.53) is however easily solved numerically by discretizing the interval

[0,R], which leads to

gi =Mi jg j, (4.54)

Mi j =
2(1 + J)

π
K

(
4r jri

(ri + r j)2

)
r j

r j + ri
w j. (4.55)

where i = 1, . . .Ngrid, ri = i ∗ h = i ∗ (R/Ngrid), gi = g(ri) and w j are gaussian

quadrature weights. We see that gi is simply an eigenvector of the matrix Mi j

with eigenvalue 1. This lets us find the unknown radius R by computing the

eigenvalues of Mi j for a selection of trial radii, and finding the R which corre-

sponds to the eigenvalue 1. In practice this is the largest eigenvalue. In Fig. 4.11

we do this for a variety of grid sizes Ngrid. As can be seen, the value of R = 1.16

produces an eigenvalue closest to 1. This is in reasonable agreement with radius

of Rsim ≈ 1.15 as measured from simulation data (for simulation parameters, see

the caption of Fig. 4.11). Also shown in Fig. 4.11 is eigenvector gi which approx-

imates the radial density g(r).

Determining R and g(r) this way satisfies Eq. (4.53). Equation (4.52) must also

be satisfied, which we checked by substitution.

Radii with unit vector attraction kernel. While we were unable to calculate the

density of the static sync and async states analytically, we were able to partially
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Figure 4.11: Determination of radius R of spatial density of static async
state. The largest eigenvalue of the matrix Mi j as defined by
Eq. (4.55) is plotted versus R for different Ngrid. The black,
dashed lines show that the eigenvalue closest to 1 is achieved
for a radius of R = 1.16. This is in reasonable with the ra-
dius Rsim measured from simulation data for N = 1000 swar-
malators for (J,K) = (0,−2) using python’s solver ‘odeint’ for
T = 500 time units and a stepsize of dt = 0.1. The inset shows
the eigenvector gi for Ngrid = 800.

calculate the radii of its support using dimensional analysis. We assume that

the radii are determined when the magnitudes of attractive and repulsive forces

balance. For the sync state

Iatt(Rsync)F(θ) ∝ Irep(R), (4.56)

(1)(1 + J) ∝ 1/Rsync,

Rsync = C(1 + J)−1,

where C is an unknown constant. Note the effective spatial attraction force is

Iatt(~x)F(θ), and F(θ) = 1 + J cos(0) = 1 + J in the static sync state (since all swar-

malators have the same phase). In the static async state the calculation is the
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same with F(θ) = 1 giving

Rasync = C. (4.57)

We cannot find the radii directly because of the unknown constant C. Their ratio

is however given by
Rsync

Rasync
=

1
1 + J

(4.58)

which agrees with simulation as shown in Fig. 4.12.

0.0 0.2 0.4 0.6 0.8 1.0J

0.5

0.6

0.7

0.8

0.9

1.0

Rsync / Rasync

Figure 4.12: Ratio of radius of static sync (for K = 1) and async states (for
K = −2) versus J for N = 800 swarmalators for a unit vector
attraction kernel Iatt(~x) = ~x/|~x|.

4.9 Static phase wave state

Here we calculate the density of swarmalators, and inner and outer radii R1,R2

of the annulus, in the static phase wave state, when a linear attraction kernel is
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used.

Density. The calculation is the same as for the static sync and async states: we

assert

v ≡ 0, (4.59)

∇.v ≡ 0. (4.60)

The density of the static phase wave state is

ρ(r, φ, θ, t) = (2π)−1g(r)δ(φ − θ), R1 < r < R2. (4.61)

We first calculate the divergence, which in polar coordinates is given by

∇.v =
1
r
∂(rvr)
∂r

+
∂(rvφ)
∂φ

+
∂vθ
∂θ
. (4.62)

The velocity v = (vr, vφ, vθ) is given by

vr =

∫ (
r̃ cos(φ̃ − φ) − r

)(
1 + J cos(θ̃ − θ)

−
1

r̃2 − 2rr̃ cos(φ̃ − φ) + r2

)
ρ(r̃, φ̃, θ̃)r̃ dr̃ dφ̃ dθ̃,

(4.63)

vφ =

∫
r̃
r

sin(φ̃ − φ)
(
1 + J cos(θ̃ − θ)

−
1

r̃2 − 2rr̃ cos(φ̃ − φ) + r2

)
ρ(r̃, φ̃, θ̃)r̃ dr̃ dφ̃ dθ̃,

(4.64)

vθ =

∫
sin(θ̃ − θ)

r̃2 − 2rr̃ cos(φ̃ − φ) + r2
ρ(r̃, φ̃, θ̃)r̃ dr̃ dφ̃ dθ̃. (4.65)

Taking the derivatives on these, plugging in Eq. (4.61) for ρ, and substituting

the result into (4.62), gives

∇.v = −2 + g(r) +
J
2r

∫ R2

R1

r̃2g(r̃)dr̃. (4.66)
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Setting this to zero, we see g(r) satisfies

g(r) = 2 −
J
2r

∫ R2

R1

r̃2g(r̃)dr̃, (4.67)

which means it can be determined self-consistently in terms of R1 and R2. The

result is

g(r) = 1 −
ΓJ

r
, R1 ≤ r ≤ R2 (4.68)

with ΓJ = 2J(R3
2 − R3

1)
(
3J(R2

2 − R2
1) + 12

)−1
.

Inner and outer radii. Next we use the result (4.68) in v = 0 to compute the

inner and outer radii R1,R2. We first evaluate vr by substituting (4.68) into (4.63).

Performing the integration we get

vr(r) = Cr +
D
r

(4.69)

with

C = −R2
1 +

4JR1(R3
2 − R3

1)

3J(R2
2 − R2

1) + 12
, (4.70)

D = 1 +
R2 − R1

6

[
− 6(R2 − R1) +

8JR1(R3
2 − R3

1)

3J(R2
2 − R2

1) + 4

]
. (4.71)

Since v ≡ 0, the coefficients C,D must be zero. This yields two equations for

R1,R2, with solutions

R1 = ∆J
−
√

3J − 3
√

12 − 5J
√

J + 4 + 12
√

3
12J

, (4.72)

R2 =
∆J

2
√

3
, (4.73)

with

∆J =

√
3J −

√
36 − 15J

√
J + 4 − 12

J − 2
(4.74)
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and small-J expansion given by

R1 =
J
3

+ O
(
J2

)
, (4.75)

R2 = 1 +
J
6

+ O
(
J2

)
. (4.76)

4.10 Stability of static async state

Analytic derivation. We calculate the stability of the static async state by con-

sidering a linear perturbation η in density space,

ρ(x, t) = ρ0(x) + εη(x, t), (4.77)

where

ρ0(x) = (4π2)−1g(r), |~x| < R (4.78)

is the unperturbed density. The decomposition (4.77) of the density induces a

decomposition in v,

v = v(0) + εv(1) = εv(1), (4.79)

where v(0) ≡ 0 since swarmalators are motionless in the static async state. By

normalizing (4.77) we require ∫
η(x, t)dx = 0. (4.80)

We substitute the ansatz (4.77) into the continuity equation for ρ(x, t) to derive

an evolution equation for η. Collecting terms at O(ε) gives

η̇ + ρ0∇.v(1) + v(1).∇ρ0 = 0. (4.81)
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We first calculate the divergence ∇.v(1) = ∂~x~v~x + ∂θvθ. Recalling that

∇~x.
~̃x − ~x

|~̃x − ~x|
= −

1

|~̃x − ~x|
, (4.82)

we see the terms on the LHS are given by

∂~x~v~x(~x, θ, t) = −

∫ (
1

|~̃x − ~x|

(
1 + J cos(θ̃ − θ)

)
(4.83)

− 2πδ(~̃x − ~x)
)
η(~̃x, θ̃, t) d~̃x dθ̃,

∂θvθ(~x, θ, t) = −K
∫

cos(θ̃ − θ)

|~̃x − ~x|
η(~̃x, θ̃, t)d~̃x dθ̃. (4.84)

We simplify these by expanding η(~x, t) in a Fourier series over θ,

η(~x, θ, t) =

∞∑
n=1

bn(~x, t)einθ + c.c., (4.85)

where ‘c.c.’ denotes the complex conjugate. Notice the zeroth harmonic b0 = 0,

which follows from the normalization condition (4.80). Plugging this ansatz

into (4.83) and (4.84) and performing the integration over θ leads to

∇.v(1) = −eiθ J
2

∫
1

|~̃x − ~x|
b1(~̃x, t) d~̃x (4.86)

− eiθ K
2

∫
1

|~̃x − ~x|
b1(~̃x, t) d~̃x.

Note the appearance of the 1/|~̃x−~x| in the first term of Eq. (4.83) and in Eq. (4.84).

This tells us that the divergence of the spatial attraction and phase attraction

have the same length scale. This is a convenient property, which results from

our careful choosing of the unit vector attraction Iatt(~x) = ~x/|~x|, so that ∇.Iatt(~x) =

H(~x) = 1/|~x|.

We next calculate the third term, v(1).∇ρ0 , in the ODE for η given by Eq. (4.81).

Note that since ρ0 = (4π)−1g(r) for r < R, then the gradient is purely in the spatial

direction ∇ρ0 = ~∇ρ0 + ∂θρ0 = ~∇ρ0, which we leave in cartesian coordinates. Thus
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we only need to calculate the spatial components of v(1) = ~v(1)
~x + vθ. Plugging the

Fourier ansatz into the expression for ~v(1)
~x and simplifying gives

~v(1)
~x = eiθ

∫
~̃x − ~x

|~̃x − ~x|
b1(~̃x, t) d~̃x. (4.87)

Putting our results (4.86) and (4.87) into the ODE (4.81) for η and collecting first

harmonic terms eiθ leads to

ḃ1(~x, t) = −
J
2
~∇ρ0(~x).

∫
~̃x − ~x

|~̃x − ~x|
b1(~̃x, t) d~̃x + (4.88)

(J + K)
2

ρ0(~x)
∫

1

|~̃x − ~x|
b1(~̃x, t)d~̃x,

ḃn(~x, t) = 0, n , 1. (4.89)

To study the stability of b1(~x, t) we expand it in a Fourier series b1(r, φ, t) =∑∞
m=0 fm(r, t)einφ + c.c.. Substituting this ansatz into Eq. (4.88) and doing some

algebra leads to an evolution equation for each mode fm(r, t). We then set

fm(r, t) = eλmtcm(r) which leads to the following eigenvalue equation for each

mode:

λmcm(r) =

∫ R

0
Hm(r, s)cm(s)s ds, (4.90)

where the R is the radius of the support of the density in the static async state.

This is the equation that appears in the main text. There, we also plot the real

parts of the eigenvalues λ∗m′(K) for the five most unstable modes, for J = 0.5. For

convenience we replot this in Fig. 4.13 below.

Finite-size scaling of eigenvalues. As can be seen, λ∗m′(K) are small but positive

for K < Kc. But are these positive values genuine? They could be artifacts of

the discretization scheme used to approximate λ∗m(K), which has a parameter
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Figure 4.13: The real part of the most unstable eigenvalue λ∗m′ of the first
five of the modes fm calculated from Eq. (4.90) for J = 0.5.
They are all small but positive for all K, indicating the static
async state is unstable as N → ∞. The dashed line marks
the approximation to the critical coupling strength as per
Eq. (4.92). The spectra for each mode were calculated by ap-
proximating the integral of the RHS of (4.90) using a Gaus-
sian quadrature scheme with N′ = 200 grid points and diag-
onalizing the resulting matrix. The upper limit of integration
R = 1.15 was measured from simulations. The radial density
g(r) was determined numerically, as described in the opening
section. The kernels Hm in Eq. (4.90) for m > 1 were calculated
numerically.

N′ representing the number of grid points used to approximate the integral in

(4.90). There is no reason to believe that λ∗m′ remain positive as N′ → ∞; they

could become zero, or negative, giving rise to different stability properties.

Hence we perform a finite-size scaling analysis of λ∗m′(K). In Fig. 4.14 we show

λ∗0
′(K) for K < Kc for different N′. As N′ is increased, λ∗0

′ gets progressively

smaller while remaining positive, supporting the claim that the modes fm are
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unstable. We next used two crude approaches to probe the N′ → ∞ limit. First,

we fit the data to a function of the form a + bhc, where h = 1/N′. In Fig. 4.15 we

show the results of this procedure for K = −0.5 and K = −0.8. As shown λ∗0(h→

0) attains small but negative values. Second, we used Richardson extrapolation, a

method used to estimate the limiting value of a converging sequence. Using the

values of λ∗0
′ at h = 1/400, 1/800, 1/1600 it gave the approximation λ∗0 = +2× 10−8

for K = −0.5 and λ∗0 = −4 × 10−5 for K = −0.8.

N' = 200

N' = 400

N' = 800

N' = 1600

-0.8 -0.7 -0.6 -0.5 -0.4 K

0.0005

0.0010

0.0015

λ0
*'

Figure 4.14: The real part of the most unstable eigenvalue of the first mode
λ∗0
′ calculated from Eq. (4.90) for J = 0.5 for various N′. As can

be seen, λ∗0
′ diminishes in magnitude for increasing N′, but

remains positive.

Confusingly, the two methods give approximations with different signs for

K = −0.5. Furthermore, the magnitudes of the estimates are very small. These

two facts make the results rather unconvincing. We thus declare the finite-size
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Figure 4.15: Finite scaling behavior of λ∗0
′ with respect to the h = 1/N′ for

J = 0.5. Red dots are for K = −0.5 and blue dots are for K =

−0.8. To obtain the h → 0 limit the data were fit to curves of
the form a + bhc using Mathematica. The best fit parameters
a, b, c are illustrated in the plot. As can be seen λ∗0

′ approaches
small but negative values as h → 0. Note also the different
exponents of h for K − 0.5,−0.8.

scaling analysis inconclusive; we have not been able to satisfactorily determine

the sign of λ∗m′ as N′ → ∞. This prevents us from determining the stability prop-

erties of the static async state. The only thing we can say with confidence is that

there is a parameter regime K < Kc where the state has weak stability properties,

since here, their signs notwithstanding, the magnitudes of the eigenvalues are

very small. For K > Kc, however, the eigenvalues become unambiguously posi-

tive, explicitly indicating the instability of static async state in this regime.
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Critical coupling Kc. In the main text we approximated the critical coupling

separating these two regimes as Kc = minm K∗m = K∗2 , where K∗m marks the point

where λ∗m
′ starts to increase significantly. For example K∗1 ≈ −0.6 as seen in

Fig. 4.13. We use the following definition:

K∗m =
d2λ∗m

′

dK2 . (4.91)

We calculated Kc using Eq. (4.91) for various values of J and plot the results in

Fig. 4.16. As can be seen the results fall on the straight line

Kc = −1.2 J. (4.92)

To test this prediction we calculated Kc from simulation data by finding the

-1.0 -0.8 -0.6 -0.4 -0.2 K

0.2

0.4

0.6

0.8

J

K = -1.2 J

Figure 4.16: Critical coupling Kc = K∗1 defined by (4.91) (red dots) versus
J. The line of best fit is also shown.

point at which the order parameter S = max(S +, S −) bifurcates from zero. We

define this Kc to be the midpoint of the interval (Ki,Ki+1) over which the deriva-

tive of S with respect to K is largest. We did this over a range of J, the results of
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which are the black dots in the phase diagram in the main text Fig. 1. As can be

seen, the straight line approximation (4.92) is reasonably accurate.

Finite-size scaling of S . Measuring Kc this way is dependent on the population

size N. To get a feel for the scale of this dependence, and to see if any scaling

laws are present, we here perform a finite-size scaling analysis of S and Kc.

Given the computational cost of each simulation, and the necessity of collecting

many realizations at each parameter value, the quality of the data we collected

was limited. Hence, our analysis is preliminary.

In Fig. 4.17 we show S (K) for different N. The qualitative shape of the curves do

not change, but the bifurcation point Kc increases with N. In Fig. 4.18 we show

Kc(N). No trend is evident. We tried to fit the data to a curve of the form a + bhc,

but the fitting algorithms failed. This is not too surprising given the sparsity

and quality of the data. Next we tried a + bh1/2, which gave the black curve

shown in the Figure. The parameter of best fit a, representing Kc = N → ∞, has

confidence interval (−0.47,−0.59).

4.11 Noisy async state

As discussed in the main text, when white noise is added to the phase dynamics,

the static async state is no longer static in the sense that the swarmalators are

no longer motionless. They oscillate in space and phase, and thus we call the
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Figure 4.17: Behavior of order parameter S = max(S +, S −) versus K for J =

0.5 for increasing population sizes N. The critical coupling
strength Kc at which S bifurcates from zero decreases with
increasing N. Data were collected for T = 1000 time units with
stepsize dt = 0.01. Each data point represents the average of
200 realizations.

new state the noisy async state. In the continuum limit, the spatial movements

should vanish. In Fig. 4.19 we demonstrate this by plotting the time-averaged,

mean population spatial velocity, 〈vx〉 = 〈 1
N

∑
j

√
ẋ2

j + ẏ2
j〉t where 〈.〉t is the time

average, as a function of K for J = 0.5 and Dθ = 0.06. As can be seen, there

is a sharp drop in the velocity at a critical value of K indicating the transition

to the active phase wave state. In this state, the spatial velocity decays to zero

with increasing population size like N−1/2, as indicated by the downward arrow.

We show 〈vx〉 versus N for a fixed value of K in Fig. 4.20, in which the N−1/2

dependence is clear. We have fitted the data to a curve of form a + bN−c, plotted

along with the data.
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Figure 4.18: Behavior of the critical coupling strength Kc at which the or-
der parameter S bifurcates from 0 for increasing population
sizes. Red dots show simulation results. The black curve has
form Kc ≈ a + bN−1/2, where the parameters of best fit a, b were
determined using Mathematica.

4.12 Genericity of phenomena

The model we introduced in this work is

~̇xi =
1
N

N∑
j,i

~Iatt(~x j − ~xi)F(θ j − θi) − ~Irep(~x j − ~xi), (4.93)

θ̇i = ωi +
K
N

N∑
j,i

H(θ j − θi)G(~x j − ~xi). (4.94)

We studied the following instance of this model:

~̇xi =
1
N

N∑
j,i

~x j − ~xi

|~x j − ~xi|

(
1 + J cos(θ j − θi)

)
−

~x j − ~xi

|~x j − ~xi|
2
, (4.95)

θ̇i =
K
N

N∑
j,i

sin(θ j − θi)
|~x j − ~xi|

. (4.96)
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Figure 4.19: Finite-size scaling of the asymptotic spatial velocity 〈vx〉 ver-
sus K for J = 0.5 and Dθ = 0.06 for increasing population sizes
N. Simulations were run for 105 timesteps of size 0.01 using
Heun’s method. For sufficiently negative K, there is a drop in
〈vx〉 indicating the transition to the active async state. In this
state, the velocity decays as 〈vx〉 ∼ N−1/2.

To check if the phenomena we found are generic for the model, as opposed to

being specific to the instance of the model, we ran simulations for the different

choices of the Iatt(~x), Irep(~x),G(~x) in equations (4.97)-(4.101):

Iatt(~x), Irep(~x), G(~x) =
~x
|~x|2

,
~x
|~x|4

,
1
|~x|3

(4.97)

=
~x
|~x|2

,
~x
|~x|4

,
1
|~x|

(4.98)

=
~x
|~x|2

,
~x
|~x|4

, exp(−|~x|2/ν) (4.99)

= ~x exp(−|~x|2/ν),
~x
|~x|2

,
1
|~x|

(4.100)

= ~x,
~x
|~x|2

,
1
|~x|

(4.101)
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Figure 4.20: Finite-size scaling of the asymptotic spatial velocity 〈vx〉 ver-
sus population size N for J = 0.5, Dθ = 0.06 and K = −0.4.
Red dots shown simulation results for runs with 105 timesteps
of size 0.01 using Heun’s method. The solid black curve has
form a + bN−c, where a, b, c are the best fit parameters to the
data. The Kc ∼ N−1/2 behavior is evident.

In all these cases, we found the same phenomena, as evidenced by the behav-

ior of the order parameters for these new instances of the model, shown in

Fig. 4.21.

The first two changes were to check if our phenomena were dependent on

length scale. In modification (4.97) we replaced the physically unrealistic unit

vector attraction kernel with one that spatially decays. We chose a power law

with exponent −1. To keep the length scale of Irep(~x) shorter than that of Iatt(~x),

we changed the latter’s exponent to −3. Further, to keep the length scale of the

phase dynamics (captured by the function G(~x)) the same as that of Irep(~x), as it

is in the original model, we changed the exponent of G(~x) to −3. In the modifica-

tion (4.98), we matched the exponents of Iatt(~x) and G(~x), so that the length scale
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of the phase dynamics was the same as that of spatial attraction. As displayed

in panels (a) and (b) of Fig. 4.21, these changes led to no new behavior.

The purpose of the next two modifications (4.99) and (4.100) was to check if the

phenomena were independent of specific functional forms. To this end, we re-

placed the power-law choices for Iatt(~x) and G(~x) with exponentials with tunable

length scales ν. For modification (4.99) we varied ν from 0 to 1 and found the

same phenomena. For the modification (4.100), we found that for σ & 1, the

same phenomena were realized. However when σ . 1, only the static sync and

static async states were found. The theoretical reasons for this are not yet un-

derstood, and are left for future work.

Non-stationary phase waves. The final modification (4.101) corresponds to the

original model with the unit vector attraction kernel replaced by a linear kernel.

While a linear function is somewhat unrealistic, physically speaking, it has the

advantage of being much easier to analyze. In particular, in combination with

the newtonian repulsion, it leads to swarmalators being confined to disks of

uniform density in the static sync and static async states. As we showed in the

preceding sections, this let us solve for the radii of the support disks in these

states, as well as letting us solve for the density of the static phase wave state,

along with its inner and outer radii.

The disadvantage of the linear attraction kernel is that it has non-generic behav-

ior, which we why we chose not to present it in the main text. Its non-genericity

is such that it leads to extra states not found in other instances of the swarmalator
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Figure 4.21: Behavior of the order parameters S = max(S +, S −) and γ for
different choices of interactions functions. Unless otherwise
stated, simulations were run for N = 100 swarmalators with
J = 1.0 for T = 1000 time units with a stepsize of dt = 0.5 using
python’s ‘odeint’ solver. In all cases, the same qualitatively
behavior was found, indicating the same states as the original
model were realized. Panels (a) through (d) correspond to
equations (4.97), through (4.100). In panel (c), σ = 0.1 and in
panel (d) σ = 3.0. In panel (a) a longer time of T = 2000 was
used.

model. We call all these new states non-stationary phase waves, since (in contrast

to states we have studied so far) they correspond to non-stationary densities of

the swarmalators. As K is decreased, the non-stationary phase waves bifurcate

from the active phase wave, before ultimately morphing into the static async

state, as shown in a plot of the order parameters in Fig. 4.24. During this transi-

tion, the phase Ψ± of the order parameter W± = S ±eiΨ± = N−1 ∑
j ei(φ j±θ j) changes

from being constant to being time-dependent. For values of K near the active

phase wave, W± rotates uniformly, so that Ψ = Ωt, as shown in Fig. 4.22(b).
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At the swarmalator level, this means the correlation between the spatial angle φ

and phase θ becomes periodic, namely θ ≈ ±φ+C(t), as illustrated by the moving

bands in (φ, θ) space shown in Fig. 4.23 and in Supplementary Movie 8.
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Figure 4.22: Time series of the order parameters W− in the complex plane
for different values of K. In all panels, simulations were run
for N = 1000 swarmalators with (dt,T ) = (0.5, 500) and J = 0.5.
(a) K = −0.3. Both the phase and amplitude of W− approach
constant values, indicating the active phase wave state. (b)
K = −0.4. W− rotates with constant velocity and amplitude,
indicating the non-stationary phase wave state. (c) K = −0.5.
Both the amplitude and phase of W− oscillate irregularly, indi-
cating another version of the non-stationary phase wave state.
(d) K = −0.8. Both the amplitude and phase of W− are zero (up
to finite effects), indicating the static async state.

For more negative K, wilder versions of the traveling phase wave are encoun-

tered. Here, both S ± and Ψ± start to oscillate irregularly, as shown in Fig. 4.22(c).

The precise nature of this irregularity is not yet understood theoretically, and is

left for future work. As K is further decreased, the average amplitude of S

smoothly decreases to zero, at which point the static async state is achieved, as

shown in Fig. 4.22(d).
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θ

Figure 4.23: Scatter plots of the swarmalators’ spatial angles φ and phases
θ in the non-stationary phase wave state. Simulations were
performed for N = 800 swarmalators with dt = 0.01 and
(J,K) = (0.9,−0.11). As illustrated by the arrows, the offset of
the correlation between φ and θ changes uniformly between 0
and 2π.

To distinguish between the active, and non-stationary, phase wave states, we

define the order parameter Γ. This is 1 if Ψ± has executed at least one cycle, after

transients have been discarded. In conjunction with the order parameters S ±

and γ, this lets us discern all the macroscopic states as K is varied, as shown in

Fig. 4.24.

4.13 Swarmalators in 3D

In the main text we explored the behavior of our model in three dimensions for

identical swarmalators with no noise. We plotted four of the five states in the
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Figure 4.24: Order parameters for N = 1000 swarmalators with (dt,T ) =

(0.5, 1000) and J = 0.5. The first 50% of data were discarded
as transients. Angled brackets 〈.〉 denote time average. Plots
are qualitatively similar for other values of J.

(x, y, z) plane, where each swarmalator was colored according to its phase. Here

we show these same four states as scatter plots in (φ, θ) plane, where φ is the az-

imuthal angle of swarmalators φ = tan−1(y/x). Fig. 4.25 shows the results, where

the points have been colored according to their polar angle α = cos−1( z√
x2+y2+z2

).

As can be seen, the plots look qualitatively the same as those obtained for the 2D

model. We also show the states in the (θ, α) plane, and color particles according

to their polar angle, depicted in Fig. 4.26.

The 3D analogues of the order parameters S and γ also have the same qualitative

behavior as their 2D versions, as seen in Fig. 4.27.
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Figure 4.25: Scatter plots of four states in the (φ.θ) plane, where the swar-
malators are colored according to their polar angle α. Data
were collected for N = 1000 swarmalators for 5×105 timesteps
of width dt = 0.001 using Heun’s method. The first 50%
of data were discarded as transients. Parameter values were
(J, σ,Dθ,Dx,Dy,Dz) = (0.5, 0, 0, 0, 0, 0). (a) Static async state for
K = −1. (b) Static phase wave for K = 0. (c) Splintered phase
wave for K = −0.05. (d) Active phase wave state for K = −0.6.

The same is true of the radii of the spherical densities of the static async and

static async states, which in the main text we showed were Rasync = 1 and

Rsync = (1 + J)−1/3. Prohibitively large population sizes would be needed to con-

firm these predictions in detail. To get around this, we instead investigated the

finite-size scaling behavior of the radii. In Fig. 4.28(a) we show Rasync for progres-

sively larger population sizes N. As can be seen, the data appear to converge to

the theoretical value of 1. We confirmed this convergence by fitting the data to a

curve of the form a + bN−c using Mathematica, which returned a best fit param-
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Figure 4.26: Scatter plots of four states in the (α.θ) plane, where the swar-
malators are colored according to their polar azimuthal angle
φ. Parameter and simulations details are the same as for Fig-
ure 4.25

eter of a = 0.998. In Fig. 4.28(b), we plot Rsync versus J. As before, for each each

value of J, the radius Rsync(N) was calculated for increasing population sizes N,

from which the N → ∞ limit was found by fitting the data to a curve a + bN−0.5,

and identifying a = Rsync. As can be seen there is good agreement between sim-

ulation and theory.

We next checked robustness to noise. As in two dimensions, all but the splin-

tered phase wave state persist in the presence of noise and distributed natural

frequencies. We show these states in Fig. 4.29 below.
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Figure 4.27: Behavior of 3D versions of the order parameters W± =

N−1 ∑
j ei(φ j±θ j) and order parameter γ when J = 0.5. The same

qualitative behavior of the as the 2D case is evident. Simula-
tions have been run for N = 500 swarmalators using Heun’s
method for 5 × 105 time steps of width 0.001. One hundred
realizations were computed for each value of K, the average
of which is plotted.

4.14 Swarmalators in 1D

In our work so far, swarmalators have been confined to the (x, y) plane. Our

motivation for this was physical realism. However, as we discovered, the steady

states of our system were often one dimensional, displaying circular symmetry.

This raises the question: could we recover the same phenomena by confining

swarmalators to move on a circle? In this section, we show that we can.
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The 1D governing equations are

ẋi =
1
N

N∑
j=1

Iatt(x j − xi)F(θ j − θi) − Irep(x j − xi), (4.102)

θ̇i = ωi +
K
N

N∑
j=1

Gatt(θ j − θi)H(x j − xi), (4.103)

where xi is an angle parameterizing the position of swarmalator i on the unit

circle, and the various functions are as described in the main text. We consider

the following instance of this model:

ẋi =
A
N

N∑
j=1

sin(x j − xi)
[
B + J cos(θ j − θi) (4.104)

−C
(1 + cos(x j − xi)

2

)n]
,

θ̇i = ω +
K
N

N∑
j=1

sin(θ j − θi)
(1 + cos(x j − xi)

2

)n
. (4.105)

The parameters J,K are the same as those in the main text. We choose the sine

function for Gatt, Iatt for simplicity, again in the spirit of the Kuramoto model.

The function H(x) = 2−n(1 + cos x)n represents a smooth pulse of unit strength. It

contains the parameter n, a positive integer that controls the width of the pulse.

Increasing n decreases the width, as shown in Fig. 4.30. The function F(θ) is also

shown for convenience.

The remaining parameters are A, B,C and the natural frequency ω. By rescaling

time and going to a co-rotating frame with θi → θi + ωt, we can set A = 1 and

ω = 0 respectively, without a loss in generality. To keep our model minimal, we

wish to fix B,C, which control the strength of the attractive and repulsive spatial

forces. We want Irep to mimic hard-shell repulsion. To this end, we need C > B.

By experimenting numerically, we find B = 1 and C = 10 produced the desired

behavior. For smaller values of C, swarmalators collapse to a single point x.
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Lastly, our simulations also indicate that the phenomena do not depend on the

spatial length scale n. We therefore also fix n = 1, unless otherwise stated.

Phenomena. To investigate the behavior of our system, we again performed

numerical experiments using python’s ODE solver ‘odeint’. We selected the ini-

tial positions and phases of the swarmalators uniformly at random from [−π, π].

We find the system settles into 1D versions of the five states found in 2D. Fig-

ure 4.31 shows the phase diagram, which is qualitatively the same as the Fig. 1

in the main text. The 1D stationary states are shown in Fig. 4.32 and panels (a)

and (b) of Fig. 4.33, and are direct analogues of their 2D versions.

The non-stationary states are shown in Fig. 4.34 and panels (c) and (d) of

Fig. 4.33. These are different from their 2D analogues, in that the density

ρ(x, θ, t) is now non-stationary: in the splintered phase wave state, the clusters

of similarly-phased swarmalators gently expand and contract in time. These

contractions are also present in the active phase wave state, but are now more

violent, as indicated in Fig. 4.33(d).

Analysis. As before, the order parameters S ± and γ together let us discriminate

between all the states of our systems, as illustrated in Fig. 4.35. At K = K1(J),

we see a sharp transition in γ, identifying the change from the splintered phase

wave to the active phase wave. At K = K2(J), we see both γ and S ± drop to

zero, signaling the transition to the static async state. After the following sub-

section, we again perform a linear stability analysis in density space to find K2
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analytically,

K2(n, J) = −

√
π

2
Γ(n)

Γ(n + 1/2)
(n + 1) J (4.106)

which for n = 1 reduces to the line K2 = −2J drawn in Fig. 4.31.

Genericity. To check if our phenomena are generic, we ran simulations for dif-

ferent choices of the functions Irep(x), F(θ),H(x), summarized below:

Irep(x) =
1

C − cos(x)
, (4.107)

F(θ) = exp(−
sin(θ/2)2

2σ
), (4.108)

H(x) = exp(−
sin(x/2)2

2σ
). (4.109)

In all cases, the phenomena we found were the same. In contrast to the 2D swar-

malators, we could not find a 1D realization of the traveling phase wave states.

Figure 4.36 below shows the order parameters S , γ for the H(x) given by (4.109).

As can be seen, their behavior is qualitatively the same as that in Fig. 4.35 above.

Stability of static async state in 1D. We investigate the stability of the static

async state by performing a linear stability analysis in density space. The anal-

ysis is the same as for the 2D case. Let

ρ(x, θ, t) = ρ0(x, θ, t) + εη(x, θ, t) (4.110)

as before, except now ρ0 is given by

ρ0(x, θ) =
1

4π2 . (4.111)
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Substituting the ansatz (4.110) into the continuity equation and collecting terms

at O(ε) gives

η̇ + ρ0∇.v(1) = 0. (4.112)

We expand η(x, θ, t) in a Fourier series,

η(x, θ, t) =
∑

m=0,l=0

αm,l(t) cos(mx) cos(lθ) (4.113)

+ βm,l(t) sin(mx) sin(lθ)

+ γm,l(t) cos(mx) sin(lθ)

+ δm,l(t) sin(mx) cos(lθ).

Note the zero modes α0,0, β0,0 . . . are zero via the normalization condition∫
η(x, θ, t)dx dθ = 0 (but the α0,1, α1,0 . . . aren’t necessarily). Computing the di-

vergence, and plugging the result into (4.112), and projecting onto the various

basis vectors cos(mx) cos(lθ), . . . leads to the ODEs for the Fourier components

αm,l, βm,l, γm,l, δm,l. The calculation is difficult to achieve for a general n, so we

instead tabulate the results for n = 1, 2, . . . ). The results for n = 1 are
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α̇0,1 + 1
2 (B − 2)α0,1 = 0 δ̇1,0 −

1
2 Kδ1,0 = 0

γ̇0,1 + 1
2 (B − 2)γ0,1 = 0 8α̇1,1 − α1,1(2J + K) = 0

α̇0,2 + 1
2 Bα0,2 = 0 8β̇1,1 − β1,1(2J + K) = 0

γ̇0,2 + 1
2 Bγ0,2 = 0 8γ̇1,1 − γ1,1(2J + K) = 0

α̇1,0 −
1
2 Kα1,0 = 0 8δ̇1,1 − δ1,1(2J + K) = 0

(4.114)

where we have omitted all equations of the form α̇l,m = 0, β̇l,m = 0, etc . Looking

at the α0,1, γ0,1 modes, we see the static async is stable when

B > 2. (4.115)

We remind the reader that B is the strength of the spatial repulsion. So this

condition is telling us that B needs to be sufficiently large for the static async

state to exist. From the α1,0, δ1,0 and α0,2, γ0,2 modes, we see we also require K < 0,

and B > 0 respectively for the static async to be stable. These conditions are

trivially satisfied in the parameter regime of interest.

Looking at the α1,1, β1,1, . . . modes finally gives us the desired critical coupling

strength:

K2(n = 1) = −2J. (4.116)

We next repeated the calculation for n = 2, 3 . . . , and then using Mathematica’s
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”FindSequenceFunction”, found the critical coupling K2 for a general n:

K2(n) = −

√
π

2
Γ(n)

Γ(n + 1/2)
(n + 1) J. (4.117)
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Figure 4.28: Testing predictions for the support radii. (a) Finite-size scal-
ing of the radius of static async state for J = K = 0. Red
dots show simulation results, the dotted black line shows the-
oretical prediction Rasync = 1, and the solid black line shows
the curve a + bN−c where the parameters of best fit have been
found using Mathematica. As can be seen, the data approach
the theoretical prediction as N−1 → 0, as confirmed by the best
fit parameter a = 0.998. (b) Radius of static sync state as a
function of J for K = 1. The solid black line shows the theo-
retical prediction Rsync = (1 + J)−1/3. For each each value of J,
the radius Rsync(N) was calculated for N = 100, 200, 500, 1000
swarmalators, from which the N → ∞ limit was found by fit-
ting the data to a curve a + bN−0.5, and identifying a = Rsync. In
both panels, simulations were run for T = 500 time units with
a stepsize of 0.5 using python’s solver ‘odeint’.
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Figure 4.29: Scatter plots of four states in the (x, y, z) plane, where the swar-
malators are colored according to their phase. Data were col-
lected for N = 1000 swarmalators for 5 × 105 timesteps of
width dt = 0.001 using Heun’s method. Parameter values
were (J, σ,Dθ,Dx,Dy,Dz) = (0.5, 0.01, 0.01, 0.01, 0.01, 0.01). (a)
Active sync state for K = 1. (b) Active async state K = −1.
(c) Active phase wave state for K = 0. (d) Active phase wave
state for K = −0.6.
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Figure 4.30: Pulse functions. (a) F(θ) = 1 + J cos(θ) for J = 0,−1, 1. (b) The
pulse function 2−n(1 + cos x)n for n = 1, 20, showing a decrease
in width for increasing n.
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Figure 4.31: Phase diagram for the model on a one-dimensional ring. The
line separating the static async and active phase wave states
was calculated analytically and is given by Eq. (4.106). The
line separating the active phase wave and splintered phase
wave states was calculated numerically, where black dots
show simulation results.
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(a) (b)

⋯

(c)

Figure 4.32: Three steady states for N = 1000 swarmalators with a time
step of 0.1. Swarmalators’ initial phases and positions were
drawn uniformly at random from [−π, π]. Swarmalators are
positioned on the unit circle and are colored according to their
phase. (a) Static sync state for (J,K) = (1, 1). (b) Static async
state for (J,K) = (1,−1.2). (c) Static phase wave state (J,K) =

(1, 0).
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Figure 4.33: Distributions of different states in (x, θ) space. In all pan-
els, simulations were run with N = 1000 swarmalators for
500 time units with a step of dt = 0.1. (a) Static async state
for (J,K) = (1, 1). (b) Static phase wave state (J,K) = (1, 0).
(c) Splintered phase wave state (J,K) = (1,−0.25). Note the
clusters gently pulsate. (d) Active phase wave state (J,K) =

(0.1,−1). Blue dots, distribution during a trough (when the
mean population speed 〈v〉 is minimum). Red dots, distribu-
tion during a peak (when 〈v〉 is a maximum). The peak distri-
bution has been shifted by −π in the x direction for clarity.
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(a) (b)

Figure 4.34: Two non-steady states for N = 1000 swarmalators with a time
step of 0.1. In all cases, swarmalators’ initial phases and posi-
tions were drawn uniformly at random from [−π, π]. (a) Splin-
tered phase wave for (J,K) = (1,−0.25) and n = 3 (as opposed
to n = 1). (b) Active phase wave for (J,K) = (1,−1.5).
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Figure 4.35: Time average of order parameter S , and γ for J = 1.0 and
N = 500 swarmalators. Data was collected for T = 3000 time
units, of which the first 50% of data were discarded as tran-
sients. As can be seen γ bifurcates from 0 at K ≈ −0.8, sig-
naling the transition from the splintered, to the active, phase
wave states. At Kc = −2J = −2, S − bifurcates to zero indi-
cating the transition to the static async state, as predicted by
equation (4.106).
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Figure 4.36: Time averaged of order parameter S , and γ for J = 1.0 and
N = 500 swarmalators for H(x) given by (4.109). Data was
collected for T = 3000 time units, of which the first 50% of data
were discarded as transients. Notice the order parameters for
this choice of H(x) have the same qualitative behavior as that
for the original model (4.104), (4.105) as seen in Fig. 4.35.
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