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This dissertation investigates fine-grained traffic management in computer net-

works. Traffic management can effectively help networks to achieve higher

Internet reliability, efficiency, and performance. As today’t Internet traffic is

growing rapidly and more dynamically, traffic management technologies that

perform in fine grained become increasingly appealing because they manage

and control network resources dynamically and adapt to the real-time traffic

and condition changes. In this dissertation, we investigate fine-grained traffic

management in three different dimensions: time, space, and application.

In the time dimension, we explore high-frequency traffic engineering. There

exists an intrinsic performance tradeoff between responsiveness and stability

for adaptive traffic engineering that performs in high frequency. We analyze it

from a feedback control perspective, and derive a model that characterizes the

system parameters’ effects on the performance of the dynamic routing system.

This allows quantitative analysis of adaptive TE algorithms and their design

parameter choices. We then specialize the general framework in two represen-

tative network topologies and derive the stability conditions for their dynamic

routing systems. Together they provide systematic insights on the relations

among several network factors and the intrinsic tradeoff among different net-

work control objectives.

In the space dimension, we investigate fine-granularity traffic split. For

given traffic split ratios calculated mathematically by routing algorithms in the



routing engine, the routing realization mechanisms in the data plane implement

such splits without breaking flows. Treating all flows equally, the state-of-the-

art approaches deployed in switches do not provide enough accuracy especially

when facing non-uniform flow size distribution. To accurately realize given

traffic split ratios in switches with small performance degradation, we instead

propose a dynamic load distribution scheme based on the collected load shar-

ing statistics and incorporate such tradeoff in a weighted sum optimization. It

finds the most accurate traffic splits with minimum route changes.

In the application dimension, we focus on per-application end-to-end path

selection. The standard way to obtain end-to-end SLAs by creating private net-

works through business contracts is costly and takes lots of time to realize. We

propose a platform that selects end-to-end path based on application specific

performance need in real time through overlay networks. With the knowledge

the network topology and conditions, it strives to achieve the optimal end-to-

end performance by exploring the last-mile diversity. It allows the flexible and

responsive per-application or per-end-user selection of the edge node for the

overlay networks, and thus can fast recover from network failures and per-

formance degradation. We present our design of the end-to-end throughput

optimization system with detailed discussion of each component including dy-

namic routing engine, performance monitor and information exchange.
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CHAPTER 1

INTRODUCTION

Computer networks such as the Internet have been undergoing significant

changes over the past decades. As the computer network technologies in hard-

ware and software continuously evolve, starting with packet switching [56] and

the ARPANET [40, 55], the horizons of the infrastructure have been expanded

along several dimensions including performance, scale, and functionality.

At the same time, traffic over the Internet keeps growing rapidly in volume,

pattern and diversity. Increasing nearly nine times from 400 million in 2000 to

3.5 billion users in 2017 [2], the annual global IP traffic will reach 3.3 ZB 1 by

2021 at a Compound Annual Growth Rate (CAGR) of 24 percent starting from

2016 according to a recent white paper by Cisco [8]. Aside from the increase in

volume, network traffic is varying more dynamically, while it is known to cycle

through periods of both high and low demand. Busy-hour Internet traffic is in-

creasing 46 percent each year, more rapidly than the 32-percent growth in aver-

age Internet traffic [8]. Additionally, network traffic is fast growing in diversity.

Today’s Internet is so much more than just the home of email, static webpages

and discussion boards. Video currently accounts for more than two-thirds of all

Internet traffic in the world, and people accessing the Internet via a mobile de-

vice now outnumber those connecting from a computer [2]. Moreover, various

applications come with their specific Quality of Service (QoS) metrics and user

perception requirements. For example, web browsing applications require short

response time, file transfer service expects high bandwidth, and video confer-

encing desires the real-time stream to have low latency and low jitter, etc.

11 ZB = 1000 Exabytes (EB)
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The rapidly growing and more dynamic Internet traffic makes it more and

more challenging for the Internet Service Providers (ISPs) to meet various Ser-

vice Level Agreements (SLAs) that are offered to customers and business such

as restrictions on latency, jitter, loss, etc. In the face of variable and unpredictable

traffic demand, networks are often over-provisioned in order to accommodate a

wide range of possibilities that include both normal and worst-case conditions.

Naturally, this conservative approach minimizes the work of reactively manag-

ing the traffic and network resource. However, it results in low average utiliza-

tion with many network links typically running at around 30% capacity [41],

which is not only costly but also unsustainable. As network operators strive

to lower cost and stay competitive, they are passionately seeking for more effi-

cient approaches that can be responsive to the fast growth and dynamic of the

traffic. With the introduction of Software Defined Networking (SDN) and its

related technologies that enable the programmability of network devices and

flexibility of technique deployment, fine-grained traffic management and net-

work resource control solutions which adapt to the real-time traffic and network

changes become increasingly appealing [48, 42, 41, 60, 69, 70]. The scope of this

dissertation is to investigate the following research questions: to which extent

can we exploit traffic management in fine-grained manner, and how much po-

tential benefit can we obtain from that?

In this dissertation, we focus on fine-grained traffic management in three

different dimensions: time, space, and application. More explicitly, we explore

how to manage traffic routing in high frequency, how to manage traffic split in

fine granularity, and how to manage end-to-end path selection per-application.

In each dimension, we quantitatively study the benefit and cost of performing

fine-grained traffic management, develop algorithms and architectures that re-

2



alize the vision, and implement the solutions to emulators or real networks for

evaluation.

1.1 Traffic Management: A Control System

In today’s computer network, ISPs strive to achieve a variety of goals in net-

work provisioning, operation and management: the network is expected to be

available at all times, to be efficient in resource usage, to be able to expand to

large scale, to maintain low cost, to ensure different SLAs that are provided to

customers and business, etc. However, as the Internet traffic is growing rapidly

and more dynamically, it is nontrivial for the ISPs to meet these and other re-

quirements. Besides, the known problems of today’s Internet including sudden

outages and unpredictable peering relationship changes [16, 12, 5, 1] make the

tasks even more challenging without dynamically managing the traffic.

Traffic management technologies could potentially help networks to achieve

the goals of offering higher Internet reliability, efficiency, flexibility and perfor-

mance. They are widely used to monitor, test, analyze and control the network

and element resources, in the deployment, integration, and coordination of the

hardware, software and human elements. Despite varying in functionalities

and realization methods, traffic management in general controls the network

resources reactively by making adjustments in response to the changes within

the network. They target at meeting some specific requirements at a reasonable

cost.

Generally speaking, any real-time traffic management can be viewed as a

feedback control system. Therefore, fundamental knowledge and rich research

3



Measurement
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Control Realization

Input

Controller

1
Figure 1.1: Block diagram of a closed-loop control system.

work in dynamic systems and control theory would facilitate our in-depth un-

derstanding, systematic design and performance analysis of traffic manage-

ment. Figure 1.1 shows the block diagram of a classic closed-loop control sys-

tem, as known as a feedback control system. The control loops that make up

control systems are made themselves of measurement, controller, and control

realization. In a feedback control system, the controller is responsible for mak-

ing the plant behave in a desired manner by controlling given variables that

would effectively affect the plant. The output of the plant is measured by some

measurement mechanism, and the measured information is fed back to the con-

troller. The controller computes the desired values for control variables based

on specific algorithm or logic, and forwards them to the control realization com-

ponent to actually adjust the controlled variables which influence the plant’s

behavior.

Real-time traffic management is essentially a feedback control system (as is

illustrated in Figure 1.2): the network itself is the plant which evolves with vary-

ing traffic demand input, as well as the control variable input being adjusted by

the control realization mechanism; periodically some specific network states are

measured and fed back to the controller; the traffic management engine as the

4
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Figure 1.2: Block diagram of traffic management for computer networks.

controller is usually designed for particular traffic management functions (e.g.

routing, congestion control, rate limiting, etc.) and it computes the desired val-

ues of the control variables in either distributed or centralized fashion; based

on the computed values, the traffic management realization mechanism adjusts

the actual variables being controlled to affect the network. Taking traffic engi-

neering (TE), one of the main traffic management technologies, as an example.

The measurement output could be any network state of TE’s interest such as

packet loss or latency. With the measured information obtained, the traffic man-

agement engine computes the TE routing solutions based on the TE objectives.

Then the new routing strategies are configured by the TE realization component

to control the routing in the network. In this way, the feedback control loop is

formed and the system keeps repeating the process at a certain rate to make the

network behave in a desired manner.

The performance of a feedback control system is largely affected by various

factors from different dimensions. For example, the frequency that feedback

loop takes place determines how fast the plant is adjusted and how long it takes

5



for the system to stabilize. The granularity of the control variables defined in the

control system influences how much the plant is controlled and to which level

the plant can be actuated. Given the desired value of the control variables com-

puted by the controller, the accuracy that the actual variables can be adjusted

by the control realization mechanism affects how far the plant deviates from

the ideal behavior. In this dissertation, we investigate traffic management in

fine-grained manner from three different dimensions. In temporal dimension,

we focus on the high frequency of routing update that performs in the traffic

management engine block. In spatial dimension, we explore the fine granular-

ity of traffic split that operates in the traffic management realization block. In

application dimension, we define per-application control variables and develop

end-to-end path selection solutions based on application-specific performance

metrics.

1.2 Challenges for Fine-grained Traffic Management

The challenges for fine-grained traffic management come from either the fun-

damental limitation of critical practical factors or the tradeoff between different

requirements. In this section, we describe the challenges for managing traffic

routing in high frequency, managing traffic split in fine granularity, and manag-

ing end-to-end path selection based on application-specific needs.

6



1.2.1 Temporal Dimension: Traffic Engineering in High Fre-

quency

Traffic Engineering (TE) is of great importance for network management and

optimization and has attracted much attention over the years, see [35, 34, 73, 67,

68, 22, 31, 21, 49] for a non-exhaustive example list. TE methods effectively map

the traffic demand onto the network topology in order to optimize the use of

network resources in computer networks. Unlike the static TE approach which

computes and configures the optimal routing at one time, adaptive TE solutions

dynamically adjust the routing decisions to gradually change the proportion of

traffic on each path according to the network loads and conditions. In recent

years, the rise of SDN [54] makes it more feasible to change routing frequently,

and thus motivates the adaptive TE that operates at short timescale [17, 18].

Fast adaptive TE solutions [31, 44, 33, 42, 19, 57] become increasingly attractive

because of their potential ability to react fast to the time-varying traffic demand

as well as network failures and better utilize the network resources.

Adaptive TE techniques introduce an intrinsic performance tradeoff be-

tween responsiveness and stability when performing in high frequency. On one

hand, adaptive TE is desired to update routing solutions as quickly as possi-

ble so that it can react to any network changes and traffic fluctuations in real-

time; on the other hand, we wish to prevent routing oscillation and guarantee

the stability of the network all the time. Intuitively, being responsive benefits

from frequent update, whereas maintaining stability requires cautious steps.

Too fast routing update makes the system too sensitive to the noise and distur-

bance which may result in over-reacting and routing oscillation. Update at low

frequency, however, slows down the convergence speed in response to demand

7



changes, especially when a demand peak suddenly occurs which may poten-

tially lead to packet loss if the routing update is not able to react in time.

Therefore, the challenge for adaptive TE in high frequency is mainly about

how to strike the tradeoff between stability and responsiveness. In the real net-

works, the stability and responsiveness are affected by multiple factors, from

design parameters in the control system to engineering facts such as propaga-

tion delay, measurement noise. Moreover, a systematic understanding of how

the factors interact with each other is nontrivial. As a result, it is challenging to

quantitatively analyze the impacts of the system parameters on the performance

metrics for a given adaptive TE solution, let alone to best strike the performance

tradeoff. These days, lacking of the comprehensive insights, the network de-

signers and operators choose the tuning parameters involved empirically based

on massive experiments [44, 19].

In this dissertation, we derive a framework for the analysis of adaptive TE

solutions. We form a feedback control model that characterizes critical param-

eters and engineering factors. By properly modeling the feedback system, we

are able to analyze the stability constraints of the steady state, as well as the dy-

namic response of transient behavior. We investigate the intrinsic interactions

of the critical parameters and provide insightful observations of their effects

on the network performance, which can be used to seek for the best parameter

choices so as to optimize the performance of responsiveness while guaranteeing

the stability of the system.

8



1.2.2 Spatial Dimension: Traffic Split in Fine Granularity

Traffic management that aims at managing routing typically works in the fol-

lowing fashion, as we have shown in Figure 1.2. Based on demand information,

measurement outputs of the network state and other operational constraints,

routes are computed periodically by the routing engine in either centralized or

distributed manner according to certain routing algorithms. The solutions are

then realized in the management realization component, usually on the data

plane by properly updating routing tables in routers and switches. Among

all kinds of routing techniques, multipath routing strategies that allocate traffic

among multiple paths are widely used to provide better load balancing across

the network. The multipath routing solution usually defines how to split the

traffic among the available paths in the form of a set of split ratios, each of which

is associated with one path or outgoing interface. Once the optimal solution is

determined, the routing tables are updated to realize the corresponding desired

split ratios.

Multipath routing algorithms normally solve the mathematical optimization

problems assuming traffic can be split arbitrarily. However, in practice, indi-

vidual flows are not split over multiple paths in order to avoid potential out-

of-order arrivals which can cause significant performance degradation such as

TCP goodput drop. Therefore, an important question raises in the above de-

scribed picture: how well can a router realize the target traffic split ratios? Treat-

ing all flows equally, the state-of-the-art approaches deployed in routers do not

provide enough accuracy especially when facing non-uniform flow size distri-

bution. As traffic demand rapidly grows in both volume and variation, such

inaccurate load distribution deviating from desired routing solutions can result
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in negative effects such as network performance degradation due to imbalanced

resource utilization or even link capacity violation.

To cope with the inaccurate traffic split problem, load-aware schemes have

been proposed [45, 27, 52] that collect the traffic load information and dynam-

ically adjust the existing paths assignment in real time to make the actual split

ratios close to the target ones. Such schemes require extreme caution because

path adjustment requires traffic migration to a different path, which could po-

tentially lead to packet reordering when those two paths have different latency.

In fact, in the design of a load distribution mechanism, the requirements of re-

alizing accurate split ratios and producing minimum flow path update are of

competing nature since updating to new traffic splits more precisely usually

needs to shuffle more flows.

Therefore, we investigate the following research problem in this disserta-

tion: how to achieve high accuracy of split ratios realization while the existing

path assignment remains unchanged as much as possible? We incorporate such

tradeoff in a weighted sum optimization. We develop a dynamic load distri-

bution scheme based on the collected load sharing statistics. It finds the most

accurate traffic splits with minimum route changes.

1.2.3 Application Dimension: End-to-end Path Selection in

Fine Application

Although ISPs offer various SLAs to guarantee the average Internet perfor-

mance in long term, most individual users and enterprises still suffer from
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performance degradation from time to time such as low speed, large delay

and high packet loss rate. In fact, managing the end-to-end user experience

has been a non-trivial and highly complex issue in the Internet, for two rea-

sons. First, the current Internet is an aggregation of a large number of networks

owned by many ISPs with different economic interests [28]. The standard way

to obtain end-to-end SLAs is to create private networks through business con-

tracts among them. This obviously is costly and takes lots of time to realize.

Second, the management and configuration complexity of Internet hardware

routers produced by major vendors is substantial. The flexibility, availabil-

ity and cost efficiency is increasingly limited by those hardware routers. The

prevailing routing protocols being used in today’s Internet such as the Bor-

der Gateway Protocol (BGP) [62] are known to have limitations in realizing

any performance-aware dynamic routing solution. BGP routing neither incor-

porates the information of path performance or link capacity, nor allows fine-

grained overriding of BGP-specified forwarding behavior [24]. With these two

severe constraints, network providers and operators face great difficulties in re-

alizing reliable, high-performance end-to-end path management, let alone pro-

viding good per-application user experience.

In face of the above mentioned challenges in the Internet infrastructure,

overlay network architecture, which has been designed and developed for dif-

ferent purposes since a few decades ago [20, 39, 32], can be adopted as an en-

abler of achieving flexible control of routing. It places a virtual network over

the physical infrastructure, thus leveraging the dynamic control of network re-

sources on an abstraction layer. Although there exist various overlay-based

techniques of application-aware routing on fast timescale [74, 63], they focus

on controlling the routes inside the overlay network whereas the performance
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of the upstream and downstream path in the last mile for the end users is be-

yond their control. In the case where the communication between the end user

and the edge node is through the public Internet, the end-to-end performance

can still be largely affected by any unpredicted delay and congestion over the

Internet. Conceptually, if there exists diversity and flexibility in selecting the

edge node, it is possible to achieve more reliable end-to-end performance.

Therefore, we investigate the following research question in the dissertation:

can we explore the diversity of the last mile and flexibly manage per-application

end-to-end path? In this dissertation, we take an alternative approach and pro-

pose the design of a platform that allows the exploration of the geographical

and physical diversity in the last-mile. We develop a path selection scheme

which makes the end-to-end path decisions dynamically for the specific appli-

cations with consideration of the jointly real-time traffic conditions in both the

core network and the last-miles.

1.3 Contributions

We have introduced the challenges for achieving fine-grained traffic manage-

ment in different aspects. In this dissertation, we explore fine-grained traffic

management in time, space and application dimensions. In each dimension, we

analyze the benefit and cost of performing fine-grained traffic management, and

develop algorithms and architectures that realize the vision. In particular, we

present the following three contributions: high-frequency traffic engineering,

fine-granularity traffic split and per-application end-to-end path selection.

High-frequency traffic engineering
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There exists an intrinsic performance tradeoff between responsiveness and

stability for adaptive TE that performs in high frequency. We analyze it from a

feedback control perspective, and derive a model that characterizes the system

parameters’ effects on the performance of the dynamic routing system. This

allows quantitative analysis of adaptive TE algorithms and their design param-

eter choices. We then specialize the general framework in two representative

network topologies and derive the stability conditions for their dynamic rout-

ing systems. Together they provide systematic insights on the relations among

several network factors and the intrinsic tradeoff among different network con-

trol objectives.

Fine-granularity traffic split

For given traffic split ratios calculated mathematically by routing algorithms

in the routing engine, the routing realization mechanisms in the data plane im-

plement such splits without breaking flows. Treating all flows equally, the state-

of-the-art approaches deployed in switches do not provide enough accuracy es-

pecially when facing non-uniform flow size distribution. To accurately realize

given traffic split ratios in switches with small performance degradation, we in-

stead propose a dynamic load distribution scheme based on the collected load

sharing statistics and incorporate such tradeoff in a weighted sum optimization.

It finds the most accurate traffic splits with minimum route changes.

Per-application end-to-end path selection

The standard way to obtain end-to-end SLAs for enterprises branch-to-

branch Internet service by creating private networks through business contracts

is costly and takes lots of time to realize. We propose a platform that selects
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end-to-end path based on application specific performance need in real time

through overlay networks. With the knowledge the network topology and con-

ditions, it strives to achieve the optimal end-to-end performance by exploring

the last-mile diversity. It allows the flexible and responsive per-application or

per-end-user selection of the edge node for the overlay networks, and thus can

fast recover from network failures and performance degradation. We present

our design of the end-to-end performance optimization system with detailed

discussion of each component including dynamic routing engine, performance

monitor and information exchange.
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CHAPTER 2

TEMPORAL MANAGEMENT: HIGH-FREQUENCY ADAPTIVE TRAFFIC

ENGINEERING

2.1 Introduction

Traffic Engineering (TE) methods effectively map the traffic demand onto the

network topology in order to optimize the use of network resources in IP net-

works. Static TE approaches compute the optimal routing solutions off-line for

a given traffic demand matrix. They fail to react to unpredicted traffic and net-

work condition changes if operating on a large timescale, but updating too fre-

quently will lead to routing oscillations. To overcome these challenges, adaptive

TE solutions have been proposed. Instead of computing and configuring the

optimal routing at one time, they dynamically adjust the routing decisions to

gradually change the proportion of traffic on each path according to the network

loads and conditions [31, 44, 33, 42, 19, 57]. In recent years, SDN [54] makes it

more feasible to change routing frequently, and thus motivates the adaptive TE

that operates at short timescale [17, 18].

Any fast adaptive TE technique introduces more than one system parame-

ters into their design. This is mainly due to the consideration of the intrinsic per-

formance tradeoff between stability and responsiveness. On one hand, adaptive

TE is expected to react to any network changes and traffic fluctuations as quickly

as possible; on the other hand, it is supposed to keep the system stabilized in

the steady state to prevent routing oscillation. In the real networks, the stability

and responsiveness are affected by multiple factors, from design parameters in

the control laws to engineering factors such as propagation delay, measurement
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noise. Moreover, a systematic understanding of how the factors interact with

each other is nontrivial. Therefore, it is challenging to quantitatively analyze

the impacts of the system parameters on the performance metrics for a given

adaptive TE solution, let alone to best strike the performance tradeoff.

In this chapter we provide a framework for analyzing the performance of

any given adaptive TE solutions. We take a comprehensive approach and form a

model that characterizes three critical parameters: (i) the step size in the TE con-

trol law which determines how much to move along the descending direction at

each iteration; (ii) the update interval of the routing computation which defines

how frequently the routing strategy changes; and (iii) the physical propagation

delays on the network. Being reactive benefits from large step size and frequent

update, whereas maintaining stability requires cautious steps and small system

noise which is sensitive at high frequency. We analyze the intrinsic interac-

tions of these parameters in two representative case studies. Experiments from

Mininet [50] emulations are carried out to further provide insightful observa-

tions of their effects on the network performance.

2.2 Model

In this section, we propose the model that is used to analyze the fast adaptive

TE system. In general, any real-time adaptive TE solutions can be viewed as

a feedback control system (as is illustrated in Figure 2.1): the network itself is

the plant which evolves with varying traffic demand input d(t) as well as the

routing strategy u(t) being updated by some routing engine as the controller;

periodically the metrics of the network state x(t) is measured and fed back to
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the routing engine; the routing engine then computes the TE routing solutions

based on the state information obtained and configures the new routing strategy

to the network.

Measurement

x(t)

Network

Dynamics of the network: x(t) = g
(
u(t), d(t)

)

Routing Realization

u(t)

Demand: d(t)

Routing computation

Control law: u̇(t) = f
(
x(t), u(t)

)

1Figure 2.1: Adaptive TE control diagram.

Suppose a network consists of a set of users (pairs of ingress-egress nodes)

I, and a set of links L. Each link l has a capacity cl. We assume the packets

are routed based on source routing, meaning that the ingress router of a packet

determines the specific path for the packet among all pre-defined paths. Each

user i ∈ I has demand di to send from source to destination via a set of paths P

where a subset Pi ⊆ P consists of all feasible paths that belong to user i. Each

path k ∈ P is composed by a set of directed links, denoted as Lk. Suppose the

number of paths and links in the network is K and L respectively. We further

denote an L × K matrix R0 = (rlk) to represent the link composition of each path

such that

rlk =


1, if l ∈ Lk,

0, otherwise.

For the traffic belonging to user i, the routing engine deployed in its ingress

router decides on how much percentage of di is routed to each path k ∈ Pi. The

routing decisions are made according to the path metrics and the control law
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defined by the adaptive TE algorithm. Let the state vector be x ∈ RK×1 where

the component xk represents the path metric for path k. The control vector is

denoted as u ∈ RK×1 where the component uk is the split ratio for path k. The

split ratios of paths for user i satisfy that
∑

k uk(t) = 1,∀k ∈ Pi. The control law

for adaptive TE follows some function f (·) such that

u̇(t) = f
(
x(t), u(t)

)
.

The path metrics can be defined as, for example, the aggregated utilization of

all links on the path, the maximum link utilization on the path, or the total

latency along the path, etc, depending on the performance objectives of TE. The

performance of a link is affected by the aggregated traffic from different user’s

paths that share the same link, which in turn determines the path metrics. Thus

the path metrics can be expressed as a function g(·) of the split ratios for each

path and the current demand denoted as d(t):

x(t) = g
(
u(t), d(t)

)
.

We consider the path metric to be the maximum utilization of all the links along

a path, which is a widely used metric in TE algorithms with the objectives of

load balancing or avoiding congestion. In the delay-free case, the utilization of

link l at time t, denoted as wl(t), is given by

wl(t) =

∑
j:l∈L j

u j(t)di(t)

cl
, i : j ∈ Pi,

where user i is the owner of path j. So the metric for path k is given by

xk(t) = max
l∈Lk

wl(t)
cl

.

We further consider a specific control law as follows

u̇k(t) = α
(∑

j∈Pi
x j(t)

Ki
− xk(t)

)
,∀k ∈ Pi, (2.1)
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where α is the step size as a tunable parameter, and Ki is the number of paths

that belong to user i. It is easy to justify that Eq 2.1 guarantees the split ratios of

paths for an user add up to 1 with the satisfied initial set of split ratios:∑
k∈Pi

u̇k(t) = α
∑
j∈Pi

x j(t) − α
∑
k∈Pi

xk(t) = 0.

To express the system in matrix form, let P0(t) = (pk,l(t)) be the K × L matrix

of the path metric function, with pk,l(t) = 1 if utilization of link l is the maximum

along path k, and 0 otherwise. Furthermore, let Di(t) ∈ RKi×Ki be the Ki × Ki

diagonal matrix of demand for user i’s paths, i.e. Di(t) := diag(di(t)), and D(t) ∈

RK×K be the K × K diagonal matrix of demand for all users’ paths, i.e. D(t) :=

diag(Di(t)). Let Mi = (mi
j,k) denote the Ki × Ki symmetric matrix for user i such

that

mi
j,k =


1 − 1

Ki
, if j = k,

− 1
Ki
, otherwise.

Finally, let M := diag(Mi) ∈ RK×K , C := diag( 1
cl

) ∈ RL×L. Then the state space

equations are in the following form:

u̇(t) = −αMx(t),

x(t) = P0(t)CR0D(t)u(t).

To compute the path metrics, the ingress node of each user need to collect the

information of link states by periodically sending the probing packets through

all its paths. When the probing packet travels through each node along the path,

the router will push the link states (the link utilization in our case) information

in the probing packet. The destination router of the path then sends it back to

the source router once receiving the probing packet. In real network, it takes a

round-trip time (RTT) for the probing packet to come back, and thus we here
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incorporate delay into the model. Let δl
k denote the propagation delay from the

source of path k to link l, and let βl
k denote the backward delay from link l back

to the source of path k for probing packets. The utilization of link l at time t is

wl(t) =

∑
j:l∈L j

u j(t − δl
j)di(t − δl

j)

cl
. (2.2)

The path metric for any path k ∈ P at time t is determined by the feedback link

utilization collected from each link, i.e.

xk(t) = max
l∈Lk

wl(t − βl
k), ∀k ∈ P. (2.3)

2.3 Analysis

In this section, we analyze the stability of the model, and specialize the general

methodology in two representative network topologies [31], single bottleneck

link and shared links.

2.3.1 Stability analysis

One common feature for any adaptive TE method is that it can only be imple-

mented in discrete time. This fact imposes an important factor into the practical

system that the continuous-time model does not capture: the update interval

of routing computation. In the following, we discretize the system and study

the effect of step size, update interval and system delay, as well as their internal

relations.

Let τ be the update interval of the routing computation that defines how fre-

quently the routing strategy changes. We assume the link utilization values be-
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ing collected at each router is measured during the period of τ. In Section 2.3.2,

we deeply investigate the internal relations of update interval τ and round-trip

time T , and derive the stability condition for arbitrary value of τ/T in the case

of single user with single bottleneck link. However, for the general network,

we simplify the discrete-time model by assuming that βl
k = nl

β,kτ and δl
j = nl

δ, jτ,

where nl
β,k and nl

δ, j are integers. We assume the synchronization of all ingress

nodes for each update at each time stamp nτ, n = 0, 1, 2, · · · . Furthermore, be-

cause we are interested in the question whether a given fast adaptive TE can

stabilize and how fast it converges in the presence of any level of demand, we

focus on the stability analysis in the steady state such that the demand matrix

D(t) is not changed within the timescale of our interest, i.e. di(t) = di,∀t.

Discretizing Eq. 2.2 and Eq. 2.3, we have

wl(n) =

∑
j:l∈L j

u j(n − nl
δ, j)di

cl
, (2.4)

xk(n + 1) = max
l∈Lk

wl(n − nl
β,k), ∀k ∈ P. (2.5)

Taking the z transform of Eq. 2.4 and Eq. 2.5 yields

xk(z) = max
l∈Lk

∑
j:l∈L j

z−(nl
δ, j+nl

β,k)u j(z)
di

cl
, i : j ∈ Pi.

The control law follows from discretizing Eq. 2.1:

uk(n) = uk(n − 1) + α
(∑

j∈Pi
x j(n)

Ki
− xk(n)

)
,∀k ∈ Pi.

Thus the discrete-time model with feedback delays in frequency domain is

given by

u(z) = z−1u(z) − αMx(z), (2.6)

zx(z) − zx(0) − x(1) = P(z)CR(z)Du(z), (2.7)
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where the matrices R(z) and P(z) in frequency domain are written as:

(R(z)) jl :=


z−nl

δ, j , if the path j uses link l,

0, otherwise,

(P(z))kl :=


z−nl

β,k , if l is the bottleneck link for path k,

0, otherwise.

The stability condition can be developed based on basic control theory. The

system is stable if the poles of the closed-loop transfer function have magnitude

less than 1, i.e. the roots of det
(
(z − 1)(I + G(z))

)
= 0 have magnitude less than 1,

where

G(z) =
αMP(z)CR(z)D

z − 1
.

Intuitively, the larger step size α and the smaller update interval τ make the

system more responsive. However, the stability condition is also dependent of

the value of α, as well as the relation of τ and delays. As a result, it is critical

to determine the region of the parameter choices under the constraint of the

stability condition so that the stability is guaranteed when seeking for the best

solutions of achieving responsiveness.

2.3.2 Case study I: single bottleneck link

In the first case study, we consider a topology consisting of a single pair of

ingress-egress nodes with two paths as shown in Figure 4.3. The demand from

ingress node I0 to egress node E0 is D. We assume all links are identical with

the same capacity C and the same forwarding and backward delays. Suppose
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the link between the source host and ingress node I0 is also restricted by capac-

ity C, then we have D ∈ [0,C]. We further assume initially all traffic are routed

through the upper path l1 → l2, which we denote as path 1 and thus path 2 is the

lower path. Either l1 or l2 can be viewed as the bottleneck link. In our following

discussion, l2 is assumed as the bottleneck link before the load on the two paths

are balanced.

I0 E0
l1

l3

l2

l4

1

Figure 2.2: Single user with two paths.

Delay-free

In the ideal case, the propagation delay and backward delay are negligible. In

the discrete-time model, we still use α for the step size, while it is worthwhile

noting that the step size α in continuous-time model is equivalent to ατ when

we discretize the system. Considering the fact that u1(n) + u2(n) = 1, the system

can be simplified as

x(n + 1) =
D(n)u(n)

C
,

u(n) = u(n − 1) + α(
D(n)
2C
− x(n)),

where we let x(n) and u(n) be the state and control variable for path 1. For a

given demand D ∈ [0,C], the state evolution is given by
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x(n + 1) = (1 − α
D
C

)x(n) +
α

2
(
D
C

)2.

To ensure that the closed-loop system is stable, the following condition need to

hold:

|1 − α
D
C
| < 1,∀

D
C
∈ [0, 1].

When 0 < α < 2, the system can be stablized and will converge to the state x̄ =

D/2C, ū = 1/2. In the single bottleneck link case, when the delay is negligible,

the stability constraint for the system is independent of any parameters other

than the step size.

With delay

We now consider the delay of the closed-loop system. When the link propaga-

tion delay is not negligible, one significant variation from the ideal model is the

fact that once the control decisions (i.e. the new split ratios) are updated at the

source node, the state variables (the link utilization) in the downstream nodes

do not change with the new update instantaneously. In other words, the link

utilization measured by the nodes at each step within the measurement period

τmay be affected by both the current and historical control variables. This fact is

not reflected by the previous analysis of delay-free case. Furthermore, since any

adaptive TE solution is implemented in discrete time, the effect of propagation

delay on the system also depends on the update interval.

Let δ be the identical propagation delay from ingress node to link l2. Let β be

the identical backward delay that takes for the ingress node to receive the latest

state information from link l2. The instantaneous link utilization at time t for
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link l1 and l2 are given by

w1(t) =
u(t)D(t)

C
,

w2(t) = w1(t − δ) =
u(t − δ)D(t − δ)

C
.

Since we assume the measurement time interval for the link utilization is τ,

the actual link utilization of l2 that is fed back to the ingress node is the averaged

value w̄2(t) over the past time period τ, i.e.

w̄2(t) =
1
τ

∫ t

t−τ
w2(η)dη =

1
τ

∫ t−δ

t−τ−δ
u(η)

D(η)
C

dη.

To implement the control law in discrete time, we sample the state variable

and compute the control law every τ, starting from t = 0. Once the control law is

updated, the control variable u(t) keeps unchanged within time interval τ until

the next update is triggered, i.e.

u(t) = u(nτ), n = b
t
τ
c.

As the bottleneck link, l2’s actual measured link utilization w̄2 will be the path

metric. Since it takes β for the feedback message to travel back to the routing

engine, the path metric at time nτ is w̄2(nτ − β), n = 0, 1, 2, · · · , is given by

x(nτ) = w̄2(nτ − β)

=
1
τ

∫ nτ−δ−β

(n−1)τ−δ−β
u(η)

D(η)
C

dη

=
1
τ

u
(
(n − 2 − b

T
τ
c)τ

) ∫ (n−1)τ−b T
τ cτ

(n−1)τ−T

D(η)
C

dη

+
1
τ

u
(
(n − 1 − b

T
τ
c)τ

) ∫ nτ−T

(n−1)τ−b T
τ cτ

D(η)
C

dη,

where T = δ + β is the RTT of the path.

In the steady state where D(t) is a constant value D, we derive the discrete

time state space equations with feedback delays and update interval:
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x(n) =
D
C

[(k − bkc)u(n − 2 − bkc)

+ (1 + bkc − k)u(n − 1 − bkc)], (2.8)

u(n) = u(n − 1) + α(
D
2C
− x(n)), k =

T
τ
. (2.9)

Figure 2.3a shows the block diagram, where we define

H(z) =
αz

z − 1
,

G(z) =
D
C

(k − bkc
z2+bkc +

1 + bkc − k
z1+bkc

)
,R =

D
2C

.

The transfer function of the closed-loop system follows that

Q(z) =
H(z)G(z)

1 + H(z)G(z)
.

To ensure that the system is stable, all the roots of the following equation should

have magnitude less than 1:

z2+bkc − z1+bkc + α
D
C

(1 + bkc − k)z + α
D
C

(k − bkc) = 0.

Figure 2.3b shows the Nyquist plot of G(z)H(z) for some values of τ/T . Fig-

ure 2.3c shows the range of α as the value of τ/T varies when D/C ∈ [0, 1]. One

way to understand why the stability region of step size changes in this form is to

consider the effect of averaging state variables with different levels of historical

states. When τ is much larger than T meaning that propagation delay is negligi-

ble, x(n) depends on u(n − 1) only, so the region of α is independent of τ. This is

also consistent with the result we have derived in the ideal delay-free case. With

a certain level of averaging, the state variables are smoothed, thus enlarging the

range of α. When τ = T , the state variables obtained are out dated relying com-

pletely on historical data u(n − 2). As T becomes much larger than τ, i.e. τ/T

becomes much smaller than 1, the system relies on older data. Therefore, it is

more likely to oscillate and the stability region for α is narrower.
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Figure 2.3: Stability analysis.

2.3.3 Case study II: shared links

I1

I2

E1

E2

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

1
Figure 2.4: Multiple users with shared links.

In the following section, we study the case in which links are shared by mul-

tiple users. Consider the network topology shown in Figure 2.4, there are 4

users, namely I1 − E1, I1 − E2, I2 − E1, I2 − E2. Each user has two paths. The
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bottleneck links are l5 and l6 which are the common links for four paths. x(n) and

u(n) are 8 × 1 vectors. The state space equations of the system are described in

Eq. 2.6 and Eq. 2.7, where the matrix M and P(z) are specifically in the following

forms:

M =
1
2



1 −1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 −1 1



,

P(z) =



0 0 0 0 z−n5
β,1 0 0 0 0 0

0 0 0 0 0 z−n6
β,2 0 0 0 0

0 0 0 0 z−n5
β,3 0 0 0 0 0

0 0 0 0 0 e−n6
β,4 0 0 0 0

0 0 0 0 z−n5
β,5 0 0 0 0 0

0 0 0 0 0 e−n6
β,6 0 0 0 0

0 0 0 0 z−n5
β,7 0 0 0 0 0

0 0 0 0 0 z−n6
β,8 0 0 0 0



.
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The 1th to 4th column of R(z), as an example due to the space limitation, is

R j,1−4(z) =



z−n1
δ,1 0 z−n1

δ,3 0

0 z−n2
δ,2 0 z−n2

δ,4

0 0 0 0

0 0 0 0

z−n5
δ,1 0 z−n5

δ,3 0

0 z−n6
δ,2 0 z−n6

δ,4

z−n7
δ,1 0 0 0

0 0 z−n8
δ,3 0

0 z−n9
δ,2 0 0

0 0 0 z−n10
δ,4



.

According to the multivariable Nyquist criterion [30], the stability condition

is equivalent to the following statement: the eigenvalues of G(e jω), for ω from 0

to 2π, should not encircle the point −1. Let λ
(
G(e jω)

)
denote any eigenvalue of

G(e jω). Suppose the RTT for all paths are identical so that nl
δ, j + nl

β,k = nT for all

users sharing link l, then the eigenvalues of G(e jω) is given by

λ
(
G(e jω)

)
= λ

(
αMP0CR0D

) e− jωnT

e jω − 1

= αλ(H)
e− jωnT

e jω − 1
,

where H = MP0CR0D. H has all eigenvalues of real number. Let ||A||∞ denote

the matrix ∞- norm ||A||∞ = maxi
∑

j |Ai j| which is the maximum row sum. The

magnitude of any eigenvalue of H is upper-bounded by

|λ(H)| ≤ ||H||∞ ≤ ||M||∞||P0CR0||∞||D||∞. (2.10)

Note that

||M||∞ = 2 −
2

Kmax , ||D||∞ = dmax,
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||P0CR0||∞ ≤
Nmax

cmin ,

where Kmax ≥ 2 and dmax are the maximum values of Ki and di among all users

i, Nmax ≥ 1 is the maximum number of users sharing a link, and cmin is the mini-

mum link capacity.

Furthermore, when Im{ e
− jωnT

e jω−1 } = 0, Re{ e
− jωnT

e jω−1 } is lower bounded by

Re{
e− jωnT

e jω − 1
} ≥

( e− jωnT

e jω − 1

)
ω=π/(2nT +1)

=
sin ω

2

cosω − 1
= −

1
2 sin ω

2

= −
1

2 sin π
4nT +2

.

Therefore the sufficient condition for the closed-loop system stability with ho-

mogeneous RTT is given by

α <
sin π

4nT +2 Kmaxcmin

(Kmax − 1)dmaxNmax .
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Figure 2.5: The upper bound of step size.

Figure 2.5a shows the theoretical upper bound of α derived from the suffi-

cient condition above in homogeneous RTT case as nT varies from 0 to 9, and the
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numerical results computed for the necessary condition of stability. In the theo-

retical computation, we set cmin = 20Mbps, dmax = 5Mbps, Nmax = 4 and Kmax = 2.

In the numerical computation of homogeneous RTT case, we set the demand for

all users to be 5Mbps, all links capacity to be 20Mpbs except c5. When c5 = c6,

the numerical results are exactly the same as our theoretical derivation because

|λ
(
H

)
| =

2(Kmax−1)dmaxNmax

Kmaxcmin . When c5 > c6 = 20Mbps, as is shown in the case of

c5 = 2c6 and c5 = 3c6, cmin = 20Mbps still holds, but |λ
(
H

)
| becomes strictly less

than its upper bound. So in these two cases we can see α’s upper bound derived

from sufficient condition is less than the numerical computation for necessary

condition.

We further show the step size upper bound for some heterogeneous RTT

cases in Figure 2.5b. In the computation, we ignore all the backward delay and

make the forwarding propagation delay identical for all the links from any path

using this link, i.e. np
δ,l = nδ,l,∀p ∈ Ll. We set nδ,6 = 1 and vary nδ,5 to obtain

the upper bound of α as the propagation delay difference between two bottle-

neck links changes. Comparing with Figure 2.5a, the theoretical result for suf-

ficient condition will also hold for heterogeneous RTT cases with nT being the

maximum nT , while the sufficient condition of stability for heterogeneous RTT

remains to be further studied.

2.4 Evaluation

In this section, we describe our emulation setup, and demonstrate the validation

results for our model and analysis.
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2.4.1 Validating the model
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Figure 2.6: Model validation.
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Figure 2.7: Validation of stability region for single-link.

A four-node topology, as is shown in Figure 4.3, is set up on Mininet for

model validation. Each node is associated with an Open vSwitch [11]. The two

paths are pre-configured in the network so that the switches forward the packets

accordingly. A customized controller with our control law 2.1 is deployed on

the ingress node. The routing computation is triggered every τ and then the
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updated routing rules will be installed to the ingress switch. The ingress switch

uses group table to realize the multi-path routing with unequal weights. The

switch in each node measures the link throughput within a measurement period

τ. A probing packet is created and sent along each path to collect the link states

every τ. We set C = 100Mbps for all links.

In the model validation experiments, 100 Mbps traffic destined to E0 are gen-

erated at I0 via iPerf. The initial routing strategy is configured to be forwarding

all traffic through the upper path. Adaptive TE implemented in the controller

collects the statistics of path metrics and dynamically adjusts the split ratio for

each path. The actual evolution of transmission rate on link l1 shown in Fig-

ure 2.6 validates the predictions from our model. With different values of the

step size,the experimental curves for the measured link rate of l1 in both time

domain and frequency domain show good agreement with the ideal curve pre-

dicted by the model. On the experimental curve, the noise effect produced by

the measurement can also be observed.

2.4.2 Validating the analysis

Our analysis is validated with respect to single bottleneck link and shared links

topologies. Two representative adaptive TE control laws are considered in the

experiments: the general form specified in Eq. 2.1 and a particular routing strat-

egy proposed by TeXCP [44].

On the testbed with four-node topology, we introduce 60Mbps background

traffic on link l4, and generate 100 Mbps traffic for user I0 − E0. Therefore, the

split ratios for user I0 − E0 are expected to be stabilized around 0.8 and 0.2 for
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the upper path and the lower path respectively. To judge whether the system

is stabilized, we record the measured transmission rate of link l1. Since our

analysis in Section 2.3.2 indicates that the stability is dependent of the step size,

feedback delay and update interval, experiments are carried out with different

values of the three parameters. The results in Figure 2.7a and Figure 2.7b show

the agreement on the stability region of α with the theoretical results for single-

link in Figure 2.3c. When α = 1.3, the throughput of l1 is stable in the case of

T = 20ns. The oscillation is larger for τ/T = 2 than τ/T = 4. In Figure 2.7b,

α = 1 is not within the stability region of τ/T = 1 (T = 100 ms). In both of the

experiments, we fix the value of τ which is large enough to maintain the effect

measurement noise input small and identical when T varies.
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(c) nT = 2, c5 = c6 = 20 Mbps.
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(d) nT = 0.1, c5 = 3c6 = 60 Mbps.
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(e) nT = 1, c5 = 3c6 = 60 Mbps.

10 12 14 16 18 20

time (s)

0

5

10

15

20

25

30

L
in

k
 r

a
te

 f
o
r 

l 5
 (

M
b
p
s
)

=0.9

=0.7

=0.5

(f) nT = 2, c5 = 3c6 = 60 Mbps.

Figure 2.8: Validation of stability region for shared-link with identical RTT =

60 ms.

We proceed to validate our analysis for shared-link case with multi-user

(Section 2.3.3) by setting up an eight-node topology shown in Figure 2.4 on the
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(c) m = 0, c5 = 2c6 = 40 Mbps.
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Figure 2.9: Validation of stability region for shared-link with heterogeneous
RTT.

same testbed. A centralized controller is implemented which controls the rout-

ing update for all users. Each user starts a session of 5 Mbps traffic transfer to

its destination asynchronously. The capacity for each link except l5 is fixed at

20 Mbps. In the case of homogenous RTT, the RTT for each path is 60 ms. To jus-

tify the stability region in Figure 2.5a with different nT , we consider three values

of the update interval τ (600 ms, 60 ms and 30 ms) and two values of link capacity

c5 (20 Mbps and 60 Mbps). Figure 2.8 shows in each case, when the transmission

rate of l5 exhibits periodic oscillation, the corresponding value of the step size is
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outside the stability region predicted in Figure 2.5a. For the experiments with

heterogenous RTT, the paths using link l6 have RTT = 60 ms, and the paths using

link l5 have RTT of either 0 or 120 ms. The update interval is configured to be

τ = 60 ms so that m is either 0 or 2 with nδ,6 = 1. We consider two values of m

(0 and 2) and two values of c5 (20 Mbps and 40 Mbps). Figure 2.9 provides the

validation for the stability region in Figure 2.5b.

We finally validate the stability region analysis of TeXCP [44] using our pro-

posed methodology. TeXCP mainly consists of two layers of control functions:

the outer layer is the adaptive TE update, and inside there is a feedback conges-

tion control loop operating at least 5 times within one TE update. We simplify

the process by ignoring the inner loop of congestion control and only consider

the feedback loop of TE updates. Since the congestion control strategy guar-

antees the state variables x(n) obtained have been stabilized to at least 95% of

the latest control variables u(n), we wait for long enough time to make sure the

transmission rates have become stable. Therefore, we set τ = 5T in all of the

following experiments. According to the method of routing computation de-

scribed in TeXCP, its TE control law for path k ∈ Pi is in the following form

uk(n) = uk(n − 1) + uk(n − 1)[
∑
j∈Pi

u j(n − 1)x j(n) − xk(n)].

In the single-link case, the routing rule can be written as

u(n) = u(n − 1) + 2u(n − 1)
(
1 − u(n − 1)

)( D
2C
− x(n)

)
.

Compared with Eq. 2.9, the step size of TeXCP follows that α = 2u(n)(1 − u(n)),

which is a varying number in the range of [0, 0.5] because u(n) ∈ [0, 1]. Based on

the stability region we derived in Figure 2.3c, the range of step size [0, 0.5] will

guarantee the stability regardless of the feedback delay and update interval, as
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is shown in Figure 2.10a. By imposing an additional parameter a on the TE

control law such that

u(n) = u(n − 1) + a · 2u(n − 1)
(
1 − u(n − 1)

)( D
2C
− x(n)

)
,

we can investigate the impact of step size on stability. In this case, the step size is

written as α = a·2u(n)(1−u(n)) and it is easy to compute its boundary α ∈ [0, 0.5a].

Note that with the parameter a adding in the control law, the original design in

TeXCP is a special case where a = 1. In Figure 2.10b, when a = 4 indicating that

the step size could be as large as 2, the system becomes unstable. It is consistent

with our analysis in Figure 2.3c that when τ/T = 5, the upper bound of step size

is less than 2.

In the shared-link case, the specific control law for the given network topol-

ogy in Figure 2.4 follows that

u(n) = u(n − 1) − 2U(n − 1)
(
I − U(n − 1)

)
Mx(n),

where U(n) := diag(uk(n)) ∈ RK×K . Note that the step size in the control law

is considered as a scalar in Eq. 2.6, whereas TeXCP attaches a specific step

size αk(n) = 2uk(n)
(
1 − uk(n)

)
to each control variable uk. We run a set of ex-

periments on the testbed with 8-node topology, including the cases of homoge-

neous/heterogenous RTT and link capacities. δ5 and δ6 are defined as the RTT of

the paths that use link l5 and l6 respectively. The update interval remains to be

τ = 5δ5, so that nT = 0.2 holds in homogeneous RTT case, while in heterogenous

RTT case nδ,5 = 0.2, nδ,6 = 1. Figure 2.10c demonstrates that the original TeXCP

control law ensures the routing update to be stabilized in all cases. We again

impose the parameter a on the original control law and experimentally seek for

the new stability region by tuning the value of a. Figure 2.10d shows that with

homogeneous RTT, a = 4 makes the system unstable, which validates the upper
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Figure 2.10: Validation of stability region for TeXCP.

bound of step size for nT = 0.2 in Figure 2.5a. Furthermore, it also provides

justification of the stability region for heterogeneous RTT in Figure 2.5b when

m = 0.2 and c5 = 2c6.

2.4.3 Stability versus responsiveness

Our comprehensive experiments above have shown that the critical system pa-

rameters and their internal relations play significant roles on the system sta-
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bility. Figure 2.10 for single-link case and Figure 2.11 for shared-link case are

good examples of illustrating how the choices of step size α, update interval τ

and feedback delay T affect the performance tradeoff between stability and re-

sponsiveness. Observation from Figure 2.10a indicates that the system is more

responsive when the feedback delay is smaller. Figure 2.10b shows that a larger

step size leads to faster convergence to the set point, however, too large a step

size will cause the routing oscillation. In Figure 2.11a, more frequent update can

make the system respond and converge more quickly, while it turns out in Fig-

ure 2.11b that smaller update interval may result in a smaller stability region for

choices of the step size. Our quantitative analysis for the model helps to restrict

the boundary of the parameters based on stability condition, and thus facilitates

the systematic evaluation of parameters’ effects on the performance.
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Figure 2.11: Tradeoff between stability and responsiveness.
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2.5 Summary

In this chapter we proposed a control theoretical model for fast adaptive traffic

engineering. The model incorporates several important factors including phys-

ical propagation delay, routing update interval and step size. In particular, it

formalizes the intrinsic tradeoff between being reactive, hence tending to use

large step size and frequent sampling, and maintaining stability, which bene-

fits from adopting more cautious steps as well as larger measurement duration

to better filter out the high frequency noise. We analyze the model to provide

guiding insight for network operators to set those parameters. Furthermore,

experiments are carried out to quantitatively verify the predictions from the

model. Our model covers related existing work as special cases and therefore

can serve as a basis for further combination with different traffic models.

40



CHAPTER 3

SPATIAL MANAGEMENT: FINE-GRAINED ACCURATE TRAFFIC SPLIT

3.1 Introduction

Multipath routing technologies that allocate traffic among multiple paths are

widely used to provide better load balancing across the network. The multi-

path routing solution usually defines how to split the traffic among the avail-

able paths in the form of a set of split ratios, each of which is associated with

one path or outgoing interface. Once the routing algorithm determines the opti-

mal paths for each commodity flow 1, the corresponding split ratios associated

with each outgoing interface at each switch are then set to split the traffic over

multiple paths as the solution requires.

The general process of forwarding traffic over multiple paths is shown in

Fig. 3.3, which mainly comprises of two key components: traffic division and

path selection. The arrival packets are first classified into traffic units in the

traffic division module. The outgoing interface for each traffic unit are then

determined independently by the path selection module, while all packets from

the same traffic unit follow the path identically.

The aggregated traffic are divided into units at a certain level of granularity

[61]. The smallest scale of division is a single packet. Since the path for each

packet is determined independently, packet-level division achieves the finest-

grained splitting but will cause the packet-reordering problems that severely

1The exact meaning of commodity depends on the granularity of the routing schemes. Usu-
ally each commodity corresponds to traffic with the same source-destination pair, or just with
the same destination subnet.
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degrades the throughput of transport layer protocols such as TCP. To preserve

packet ordering, flow-level traffic division is widely used. In flow-level divi-

sion, packets that share the same value of some fields in IP packet header are

grouped together as a flow with a unique identifier. The granularity of flow

unit depends on the fields to be matched in the packet header. Packets from a

particular flow can be further grouped into subflows, referred to as flowlets, by

considering the inter-arrival time of the packets [45].

The path selection module selects the path for each traffic unit indepen-

dently. The path is determined based on the target split ratios with or with-

out additional information of the traffic load. Being unaware of the traffic load

information, the path selector either selects the path in a round robin manner

for individual packets which is not desirable due to packet reordering issues,

or performs the hash-based path selection for flows/subflows assuming a uni-

form flow size distribution. This type of path selection schemes in general has

low computational complexity and overhead. It is, however, not able to control

the actual split ratios when the flow size distribution is skewed. The other type

of schemes collects the traffic load information and dynamically adjusts the ex-

isting paths assignment in real time to make the actual split ratios close to the

target ones. In many today’s commodity routers, equal-cost-multipath (ECMP)

is implemented which splits traffic evenly over each path. Weight-equal-cost-

multipath (WCMP) is offered by some type of routers with a coarse granularity

of split ratios being supported. Those models being implemented nowadays do

not collect the information on traffic or network condition in the path selection

process, and therefore cannot provide accurate traffic splitting over multiple

paths.
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There are two critical problems involved in the above described picture.

First, how well can a switch realize given traffic split ratios? TE algorithms

usually take commodity traffic demand or aggregate link loads as input and

then solve certain mathematical optimization problems assuming traffic can be

split arbitrarily. However, in practice, individual flows are not split over multi-

ple paths to avoid potential issues of packet out-of-order as mentioned above.

This flow-level granularity constraint can well force the actual split ratios devi-

ate from the ones that are demanded by TE. This is particularly true when flows

have vastly different rates while current solutions treat all flows equally when

it comes to decide which flows should be moved to another path.
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Figure 3.1: Example of inaccurate splitting.

Such inaccurate load distribution deviating from target TE solutions can re-

sult in negative effects such as network performance degradation due to im-

balanced resource utilization or even link capacity violation. We here illustrate

such consequences with a simple example (Fig. 3.1). The demand matrix con-

sists of two commodities of traffic: 60 units from node 1 to node 4 and 20 units

from node 3 to node 4 (Fig. 3.1a). Considering the objective of TE as to minimize

the maximum link load, one optimal routing scheme (Fig. 3.1b) is to forward 2/3

of the traffic from node 1 to node 4 through the upper path and 1/3 through the

lower path. Suppose the traffic are divided into three individual flows based
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on 5-tuple hash. Being unaware of the flow sizes, path selection module may

assign 2 flows with size 10 to the upper path (Fig. 3.1c). The resulting link load

imbalance deviates from the objective of TE and can violate the link capacity

constraint if the capacity is no more than 60 units.

1

2

3

4

1 to 4

1

2

3

4

(a) t = t0 (b) t = t0+10ms

1

2

3

4

(c) t = t0+30ms

Figure 3.2: Example of out-of-order packets.

Second, how much performance cost does realizing traffic splits incur? Here

we are not discussing the cost that are caused by the control plane, such as tran-

sient loops, but focusing on the cost that is associated with moving a flow from

one path to another in the data plane, which can lead to out-of-order packet

arrivals when those two paths have different latency. Fig. 3.2 demonstrates an

example of such packets reordering. Initially at time t = t0, packets starting

with sequence number 1 were forwarded through the lower path from node 1

to node 4 (Fig. 3.2a). After 10 ms, its routing path was changed from the lower

path to the upper one. Packets with sequence number 1 to 1000 were already

sent out during the past 10 ms and were traveling on the lower path (Fig. 3.2b).

It took around 20 ms for the first packet on the upper path with sequence num-

ber 1001 to reach the destination. At time t = t0 + 30 ms, the packets with smaller

sequence number were still on the way between node 2 to node 4 (Fig.3.2c), so

out-of-order packets were encountered at the receiver.
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Figure 3.3: Multipath forwarding system

As traffic demand rapidly grows in both volume and variation, to meet with

the Quality of Service (QoS) requirements at high data rates, TE techniques need

to become finer, both in terms of adjustment precision as well as update fre-

quency. These in term directly require better solutions in the data plane to deal

with the above mentioned two issues, i.e., load balancing mechanisms that can

produce traffic splits that are close to what TE algorithms demand with small

update cost. Finally, it is worth noting that these two requirements are of com-

peting nature since updating to new traffic splits more precisely usually needs

to shuffle more flows. In this chapter, we propose a load distribution scheme

that incorporates such tradeoff in a weighted sum optimization. It aims to find

the most accurate traffic splits with minimum route changes based on the col-

lected load sharing statistics.

3.2 Design

In this section, we discuss our design choices in detail. Those then become the

constraints of our mathematical formulation. An algorithmic solution to the for-
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mulation is provided and will be mapped back to the system in the next section.

We focus on the flow-level path reassignment problem for one commodity and

assume that there are multiple paths available with corresponding target split

ratios provided by TE.

3.2.1 Key Features

Hash 
Function H Modulo-MTraffic

Bin 0

Bin 2

Bin 3

Bin M-1

Bin M-2

Bin 1

Path 0

Path 1

Path L-1

Path L-2

Path 2

Path 3

Table-Based Hashing Path Selection

Figure 3.4: Design of traffic splitting.

Fig 3.4 illustrates our design of traffic splitting mechanism. In this subsec-

tion, we first present some important design decisions and key features.

Table-based hashing: Our flow-level traffic splitting approach bases on

table-based hashing. A flow is first identified by five-tuple in the hash func-

tion H and then assigned to a bin among M bins according to its hash value.

Each bin is mapped to one of the L paths. We choose table-based hashing for

three main reasons: 1) It provides the flexibility of remapping between bins and

paths; 2) Path reassignment is scalable because the number of bins is limited
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and does not change as the number of flows increases; 3) Table-based hashing

makes it possible to separate traffic with different routing rules required by dif-

ferent classes of service of priorities. For example, if the high priority traffic

are required to be forwarded strictly through the single shortest path, then they

need to be excluded from the multipath routing process. It can be realized by

assigning this particular type of traffic to a dedicated set of bins which do not

allow bin-path remapping.

Rate-aware dynamic path reassignment: The path selection process deter-

mines the remapping between bins and paths. Dynamic remapping is proposed

to minimize the real-time error between the actual load distribution and the tar-

get split ratio for each path. We effectively reassign some of the bins to different

paths with the knowledge of the current load sharing statistics.

Direct control of reassignment level: In order to quantitatively control the

degree of packets reordering caused by path reassignment, we consider a limit

for the amount of traffic that are shifted to a different path.

Valuable reassignment only: In addition to the limited level of reassign-

ment, we also consider a weighting parameter to evaluate the tradeoff between

splitting error and the reassignment level. A certain level of remapping is

adopted only if it is valuable. We target at finding the best strategy to minimize

the error of splitting with only necessary and worthwhile path reassignments.

47



3.2.2 Problem Formulation

We now formulate the problem of bin-path remapping. Suppose there is a set

M of M bins being assigned to a set L of L different paths. Let ri be the traffic

arrival rate of bin i. Let αl be the target split ratio of path l that is provided by

TE solution. xl
i denotes the mapping decision between bin i and path l, and we

have xl
i = 1 if bin i is assigned to path l and 0 otherwise. We further define the

overflow fraction ρl to be the difference between actual load fraction and the

target split ratio for path l, given by ρl =

∑
i∈M

ri xl
i∑

i∈M
ri
− αl. Therefore the maximum

overflow fraction among all available paths is ρ = maxl∈L{ρl}. Assuming the

current assignment strategy is determined by a set of {xl
i,0}, we aim at finding

the optimal {xl
i} that minimizes the weighted sum of the maximum overload

fraction ρ and the degree of reassignment fraction. The weighting parameter is

denoted as λ. We propose two options to quantify the degree of reassignment

fraction. The first option is to consider the number of bins being remapped. We

add an additional constraint on the number of bins that can be reassigned from

the current path to a different one. If the number of reassigned bins is limited

by K, then the problem formulation is given by
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min ρ + λ∆ (3.1)

s.t.
∑
i∈M

rixl
i ≤ (ρ + αl)

∑
i∈M

ri ∀l ∈ L (3.1a)

∑
l∈L

xl
i = 1 ∀i ∈ M (3.1b)

xl
i ∈ {0, 1} ∀i ∈ M, l ∈ L (3.1c)

M −
∑
l∈L

∑
i∈M

xl
ix

l
i,0 = ∆ (3.1d)

∆ ≤ K (3.1e)

In the objective function, the parameter λ determines the tradeoff between

maximum overflow and the number of bins being reassigned. Condition 3.1a

defines the maximum overflow fraction ρ such that the overflow fraction for

each path should not exceed. Condition 3.1b and 3.1c require that one bin can

only be assigned to one path. Condition 3.1d describes the number of bins that

are selected to be remapped. Condition 3.1e restricts the number of bins to be

remapped. One underlying rule based on the objective function is if the ini-

tial maximum overflow ρ0 satisfies ρ0 ≤ λ, then the optimal value is opt∗ = ρ0

with ∆∗ = 0, meaning that we prefer to not reassign any bins because any path

change costs more price than benefits. Another intuitive rule following that is

any optimal solution of ∆∗ satisfies ∆∗ ≤ ρ0/λ.

Our problem formulation differs from the canonical bin-packing problem in

two main aspects. Firstly, we consider the price of the bin reassignment, and the

solutions are constrained by the number of bins being reallocated. Furthermore,

overflow is mostly possible in our reallocation strategy while it is not allowed

in the original bin-packing problem.
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The second option of quantifying the degree of reassignment is the fraction

of traffic load that are shifted. If the fraction of traffic load that can be reassigned

is limited by δ, then the problem is formulated in the following form:

min ρ + λ∆+ (3.2)

s.t.
∑
i:∈M

rixl
i ≤ (ρ + αl)

∑
i:∈M

ri ∀l ∈ L

∑
l:∈L

xl
i = 1 ∀i :∈ M

xl
i ∈ {0, 1} ∀i ∈ M, l ∈ L∑
i:∈M

(1 −
∑
l:∈L

xl
iη

l
i)ri = ∆+ (3.2a)

∆+ ≤ δ
∑
i:∈M

ri (3.2b)

Only condition 3.2a and condition 3.2b are different from problem 3.1, which

states the limit of traffic load fraction that are reassigned.

3.2.3 Algorithm

In this subsection, we propose an efficient algorithm that computes the approx-

imate reassignment solutions to the optimization problem. The idea behind the

algorithm is to first estimate a lower bound of the maximum overflow fraction,

to position the goal of accuracy at an achievable and reasonable level with the

limit on the reassignment degree. Based on the lower bound, we then select the

set of bins from a candidate pool and reassign them to new paths.
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Lower bound of the maximum overflow

We obtain a lower bound of the maximum overflow fraction by finding the op-

timal solution to the following Linear Programming (LP) relaxation:

min ρ (3.3)

s.t.
∑
i∈M

rixl
i ≤ (ρ + αl)

∑
i∈M

ri ∀l ∈ L

∑
l∈L

xl
i = 1 ∀i ∈ M

xl
i ∈ [0, 1] ∀i ∈ M, l ∈ L∑
i∈M

(1 −
∑
l∈L

xl
ix

l
i,0)ri ≤ δ

∑
i∈M

ri

δ in problem (3.3) is the limitation of load reassignment provided by problem

(3.2), and we set δ = K/M if the reassignment is constrained by the limited

number of reassigned bins K in problem (3.1). Let ρ0
l be the initial overflow

fraction for path l, i.e., ρ0
l =

∑
i∈M

ri xl
i,0∑

i∈M
ri
− αl. Assuming the paths are sorted in the

descending order of ρ0
l , we then have the following

Theorem 1. The optimal value ρ∗ of the LP relaxation (3.3) is

ρ∗ = max{
∑l̂

l=1 ρ
0
l − δ

l̂
, 0}, (3.4)

where l̂ is defined as

l̂ = min{i ∈ L :
∑i

l=1 ρ
0
l − δ

i
≥ ρ0

l+1}. (3.5)

Proof. First note that the sum of overflow fraction for all paths is zero because∑
l∈L
ρl =

∑
l∈L

∑
i∈M

ri xl
i∑

i∈M
ri
−

∑
l∈L
αl = 0. Hence by definition ρ∗ is nonnegative. Let L+ be the

set of paths being overloaded initially, i.e. ρ0
l > 0,∀l ∈ L+, and assume L+ is

a sorted set in the descending order of ρ0
l . Similarly, let L− be the sorted set of

paths being underloaded initially.
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a) If
∑

l∈L+ ρ0
l ≤ δ, then

∑l̂
l=1 ρ

0
l −δ

l̂
≤ 0 for ∀l̂ ∈ L. In this case, Eq. 3.4 results in

ρ∗ = 0. This can be easily achieved with total reassignment fraction no larger

than δ by moving exactly ρ0
l load fraction on each path l ∈ L+ to paths in L−.

b) If
∑

l∈L+ ρ0
l > δ, then by Eq. 3.5, l̂ is no less than the last-indexed path in L+.

So Eq. 3.4 results in ρ∗ =
∑l̂

l=1 ρ
0
l −δ

l̂
> 0. It can be achieved by shifting load from

each path l = 1, · · · , l̂ to paths in L− with the amount of ρ0
l − ρ

∗. We prove its

optimality by contradiction. Suppose there exists a feasible solution resulting

in ρ′ < ρ∗, then the reassigned load fraction is

l̂∑
l=1

ρ0
l − l̂ρ′ >

l̂∑
l=1

ρ0
l − (

l̂∑
l=1

ρ0
l − δ) = δ.

This contradicts the constraint of reassigned load limit δ. Therefore, in this

case ρ∗ =
∑l̂

l=1 ρ
0
l −δ

l̂
is the optimal value.

Overall, the optimal value is ρ∗ = max{
∑l̂

l=1 ρ
0
l −δ

l̂
, 0}.

�

We here present a procedure to construct a set of reassigned bins and show

that it leads to an optimal solution to the LP relaxation (3.3).

Procedure 1:

(i) Starting from the first path l in L+, we define a critical bin sl for path l such

that sl = min{i ∈ Bl :
∑i

j=1 r j > (ρ∗ + αl)
∑

i∈M ri}, where Bl is the set of bins

initially assigned to path l.
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(ii) For ∀i ∈ Bl, we set the variable xl
i to be

xl
i =



1 if i < sl,

(ρ∗+αl)
∑

i∈M ri−
∑sl−1

j=1 r j

rsl
if i = sl,

0 otherwise.

(iii) Repeat Step (i) and (ii) for each l ∈ L+ until l̂. Define a set D for partially or

completely disconnected bins such that D = {i ∈ Bl : xl
i < 1, l = 1, · · · , l̂}.

Theorem 2. The set of reassigned bins obtained by Procedure 1 results in the optimal

value ρ∗ of the LP relaxation (3.3).

Proof. The current load for path l = 1, · · · , l̂ after Procedure 1 is exactly (ρ∗ +

αl)
∑

i∈M
ri, and thus we have that the current overflow fraction ρl = ρ∗ for l =

1, · · · , l̂. According to Eq. 3.5, ρ0
l ≤ ρ

∗ for l = l̂ + 1, · · · , L. Given that
∑
l∈L
ρ0

l = 0 and

the reassignment fraction is no larger than δ, we have

∑
l∈L−

ρl ≤
∑
l∈L−

ρ0
l + δ ≤ −

l̂∑
l=1

ρ0
l + δ = −

l̂∑
l=1

ρl = −l̂ · ρ∗ ≤ 0

Hence there always exists a remapping solution between the bins in D and paths

inL− such that ρl ≤ 0 for all l ∈ L−. So the maximum overload fraction among all

path l ∈ L is ρ∗. Based on Theorem 1, ρ∗ is the optimal value of the LP relaxation

(3.3). Therefore, the set of reassigned bins following Procedure 1 leads to the

optimal value of (3.3). �

Bins selection and reassignment

The optimal value ρ∗ provides a lower bound for the optimization problem (3.1),

guiding us to target at the reasonable level of accuracy without unnecessary
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reassignment. Let D∗ be the set of bins that we select to be remapped. We follow

the procedure described above to find the set of disconnected bins D and put the

items from D into D∗ excluding the sets of critical bin sl for each path l = 1, · · · , l̂.

Then we compute the current overflow fraction ρl for path l = 1, · · · , l̂ and sort

the set of path in descending order in terms of ρl. We select one bin from each of

these paths to be further put into D∗ until the number of reassigned bins exceeds

K. Once D∗ is complete, we use Best Fit algorithm to reconnect the bin set D∗.

Algorithm 1 illustrates the pseudocode of our algorithm.

Input: {xl
i,0}, {αl}, {ri}, ρ0, λ, K, ∀i ∈ M,∀l ∈ L

Output: {xl
i}

begin
opt = ρ0, D∗ ← ∅
for j = 1toK do

δ← j/M;
Find ρ∗ and l̂ using Eq. 3.4 and Eq. 3.5;
Get D and {sl} by following procedure (i) - (iii);
D∗ ← D \ {sl};
Compute {ρl} for l = 1, · · · , l̂;
foreach l ∈ {ρl} sorted in descending order do

Find bin bt in path l such that |ρl − ρ
∗ − rt/

∑
i∈M

ri| is minimum;

if S izeo f (D∗) + 1 ≤ K then
D∗ ← D∗ ∪ bt;

else
Break;

end
end
Reassign bins in D∗ among all paths in L using Best Fit algorithm;
Compute {xl

i} j and ρ j;
if ρ j + λ · S izeo f (D∗) < opt then

opt ← ρ j + λ · S izeo f (D∗);
{xl

i} ← {x
l
i} j;

end
end

end
Algorithm 1: Pseudocode.
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Complexity

The time complexity of sorting set L with L paths is O(LlogL). For a set of M

with M bins and K maximum number of reassigned bins, the runtime complex-

ity of bins selection and reassignment is O(M + KlogK). So the worst-case time

complexity of our proposed algorithm is O
(
LlogL+ K(M + KlogK)

)
. Note that the

computation complexity is not increased with the amount of flows, and thus

the splitting scheme is scalable. L is determined by the number of available

paths in the network. The value of M and K affect the granularity of the traffic

splitting. With the reasonable values of M and K to achieve desired accuracy in

practice, both the computation complexity and the implementation complexity

of the algorithm is marginal.

3.3 Implementation

Open vSwitch (OVS) is used here as the platform for implementation. We will

first explain how traffic splitting is done in OVS including why it cannot pro-

vide accurate splits even when all flows are of the same size (Section 3.3.1).

Implementation details are provided in Section 3.3.2.

3.3.1 Splitting Approach in OVS

The weighted traffic splitting is realized in group table in OVS. Multiple buck-

ets with corresponding weights can be added to one entry of the group table.

Buckets are associated with specific actions such as forwarding the packets to
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a particular output port, so that the traffic splitting among multiple outgoing

links/paths is realized by the bucket selection process. The bucket selection in

OVS group selects the bucket on flow level identified by the 5-tuple.

The algorithm of flow-level weighted splitting implemented in OVS is the

following. Suppose one group table entry contains L buckets. Let bi and wi de-

note the bucket id for the ith bucket and its corresponding weight, i = 1, 2, · · · , L.

When processing one packet pk belonging to this group, it first obtains its hash

value ak = H(pk) by applying hash function H with 5-tuple as the input; then

gets a hash value associated with each bucket βk
i = M(bi, ak) via hash function

M; finally selects the bucket with the highest hash value of βk
i .

It’s worth to point out that the OVS’s approach cannot produce accurate

ratios, regardless of the quality of hashing function, the amount and heteroge-

neous of flows. To see that, consider the case of two buckets. Assuming there

are enough amount of flows, the hash function M(·) for the two buckets can be

viewed as choosing two independent integer random variables from the inter-

val [0, 232− s]. We now compute the probability that the value of β̂k
1×w1 is greater

than the value of β̂k
2 ×w2. Let X and Y be the two independent random variables

from the interval [0, a] and [0, b] respectively with uniform probability density.

The problem to be solved becomes computing Prob(X − Y > 0), the probability

that X is larger than Y . Let fX(x), fY(y), fZ(z) denote the density functions for X,

Y , and Z = X − Y respectively. We have

fX(x) =


1
a 0 ≤ x ≤ a,

0 otherwise.
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fY(y) =


1
b 0 ≤ y ≤ b,

0 otherwise.

fZ(z) =

∫ +∞

−∞

fX(z + y) fY(y)dy =
1
b

∫ b

0
fX(z + y)dy

Because fX(z + y) is 0 unless 0 ≤ z + y ≤ a, i.e. −z ≤ y ≤ a − z, assuming a > b,

we have

fZ(z) =



1
ab

∫ b

−z
dy = b+z

ab −b ≤ z ≤ 0,

1
ab

∫ b

0
dy = 1

a 0 ≤ z ≤ a − b,

0 otherwise.

We can easily compute Prob(X − Y > 0) = Prob(Z > 0) = 2a−b
2a , which is not equal

to a
a+b unless a = b. We illustrate an example of the density function in Fig ??.

Figure 3.5: Example of density function fZ(z).

One optional revision with minimum modifications of the code is to select

bI such that I = i : max j(
∑ j

l=1 wl∑N
l=1 wl

< αk
232−1 ), which will be considered as a compared

scheme in Section 3.4.
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3.3.2 Implementation

The implementation of the traffic splitting mechanism is broken down into three

components: initial path assignment, load statistics update and bin realloca-

tion. Our implementation is based on the original mechanism of group table’s

weighted buckets in OVS with minimum modification in user space. Under the

structure of a group, we insert a list of 32 bins. Each bin is associated with a bin

id, a counter and a bucket.

Initial path assignment: When the first packet of a flow arrives, it is assigned

to a specific bin. If the bin is already mapped to a bucket, then packets from

this flow are forwarded through the path specified in the bucket. Otherwise, a

bucket having the largest underload will be assigned to the bin.

Load statistics update: Our dynamic traffic splitting relies on the updated

statistics from each bucket and bin. In OVS the datapath in user space polls the

accumulated number of bytes information for each flow from the kernel space

once every 0.5s. Our load statistics update requires the minimum implementa-

tion complexity by only additionally updating the counter of each bin according

to the flow’s statistics information. Then the rate (bytes per second) for each bin

and each bucket are calculated.

Bin reallocation: The function of bin reallocation can be triggered by two

events. A timer fires the bin reallocation process once every T seconds. It aims

at improving the accuracy of splitting for existing flows. In addition, it can be

triggered immediately by any reconfiguration of target split ratios caused by TE

routing re-computation. Once the bin reallocation process is triggered, it first

collects the load information from bins and buckets, as well as the current bin
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assignment. Then either the ILP problem (3.1) is structured and solved by the

GLK solver, or the implemented algorithm described in Section 3.2.3 will be

called. The output as the new assignment strategy will be configured.

3.4 Evaluation

3.4.1 Evaluation Environment

Testbed setup: We build a network topology in Mininet consisting of two source

subnets S 1 and S 2, one destination subnet D1 and four paths between them as

shown in Fig. 4.3. Each subnet represents multiple hosts. The propagation delay

(millisecond) is labeled on the corresponding link. The bandwidth of each link

is 100 Mbps. OVS with the implementation of our traffic splitting mechanism is

used as the virtual switch.

S1

S2

D1

5

35

15

15

15

25

15

15

1

(a)

Figure 3.6: Network topology.

Traffic trace: To study the flow-level Internet traffic characteristics, we ana-

lyze the statistics of traces collected from CAIDA [6] and WIDE [15]. We select

three destination subnets and extract the corresponding packets for 60 seconds.

Before the performance evaluation, we would like to verify, based on the traces,
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Table 3.1: Flow-Level Profile of Traffic Traces

Trace
ID

#
total
flows

Flow size
(Kbytes) Mean

through-
put
(Mbps)

Flow arrival
rate (Kbps)

# flows having
arrival rate
larger than

Mean Min. Max. Mean Min. Max.

5% of
mean
through-

put

10%
of

mean
through-

put
1 6611 4.96 0.044 10655 4.37 5.46 0.016 5483 9 5
2 8403 128 0.06 233869 143.45 133.7 0.021 95946 19 6
3 3993 166.5 0.06 52069 88.67 163.2 0.017 17039 55 22

that the inaccuracy of splitting indeed exists and there is enough room to im-

prove the accuracy. It was noted in [25, 66] that the skewness of flow size dis-

tribution is the main cause of splitting inaccuracy. The three traffic traces have

different mean flow size and mean throughput as illustrated in Table 3.1, but

their flow size distribution and flow arrival rate distribution follow a similar

pattern. Fig. 3.7a shows that for each of the trace, over 70% of the flows have

size less than the mean flow size, while the maximum flow size could be as large

as 2000 times of the mean (for trace 1 and 2). The small portion of super large

flows makes it hard for static traffic splitting to perform accurately. We also plot

the cumulative distribution function of flow’s arrival rate in Fig. 3.7b. The x-axis

shows the ratio of the flow arrival rate to the mean throughput. Note that the

mean throughput of a trace is the aggregated arrival rates for all flows over 60

seconds, and thus it is possible for a particular flow’s arrival rate to exceed the

mean throughput. We observe that for each trace there exists a small number of

flows having arrival rates higher than 5% of the mean throughput.

We replay the traffic trace using the tool tcpreplay which reproduces the
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packet-level synthetic traffic of the collected trace, both in terms of packet arrival

time and packet size. We use tcprewrite to overwrite the IP Address and Ether-

net Address of the packet’s header with the appropriate addresses in our emu-

lation network. The port numbers on the transport layer are kept unchanged in

order to maintain the entire flow characteristics of the original trace. The traffic

replay are injected into the network from the source host.

Testing scenarios: Our experiments are conducted in two scenarios. The

path reassignment is necessary and valuable in either of the two cases: 1) when

facing non-uniform flow size distribution, or 2) when the target split ratios are

changed. In the first scenario, we assume the target split ratios are not updated

so that our reassignment process dynamically improves the accuracy of splitting

caused purely by the existing flows in the network. In the second scenario,

we take into account the update of target split ratios which is reconfigured by

dynamic TE and evaluate how our scheme reacts in real time.

Compared splitting schemes: We consider 5 splitting schemes in our evalu-

ation.

RA-alg: the algorithmic approach to our rate-aware traffic splitting proposed in

3.2.3.

RA-opt: the approach that finds the optimal solution by solving the optimiza-

tion problem (3.1).

OVS: the original weighted-splitting mechanism in group table implemented in

OVS.

OVS-revised: the revised algorithm for OVS we described in Section 3.3.1.

MBD-/ADBR: a representative scheme of dynamic traffic splitting based on the

load statistics [52]. It first disconnects multiple bins in the order of decreasing

61



size from each overloaded path until all paths are underloaded, and then recon-

nects each of the disconnected bins to the path with the largest underloaded.

Performance metrics:

The maximum overflow ρ and reassignment fraction ∆ are considered as the

two primary performance metrics. ρ is obtained by finding the maximum over-

flow fraction among the four paths. The reassignment fraction ∆ is measured

by summing up the fraction of traffic being shifted to a different path at each

time when the reassignment is triggered. We also consider goodput and packet

re-ordering fraction to evaluate the network performance. Goodput measures

the application-level throughput that excludes retransmitted packets. Packet re-

ordering fraction is the percentage of packets that do not advance the sequence

number when arriving at the destination.
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Figure 3.7: CDF of flow size and flow arrival rate for packet traces.
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3.4.2 Results

Equal splitting: We first evaluate the performance for equal splitting which

targets at splitting the traffic among the four available paths evenly. The desired

split ratio for each path is 0.25. We replay the three 60-second traces and send

all traffic from the source host subnet S 1 to the destination host subnet D1. In

RA-opt and RA-alg, we set λ to be 0.05 and K to be 6. The update time interval

for RA-opt, RA-alg and MBD-/ADBR are all 1 second.

Fig. 3.8 shows the maximum overflow fraction and reassignment fraction

over time for trace 1. The average performance of accuracy among all three

traces are shown in Fig. 3.10. OVS and OVS-revised do not readjust the paths

for existing flows. Due to the flow dynamics and skewed flow size distribution,

the maximum overflow in these two schemes can be up to 0.4, as shown in Fig.

3.8a. The other three schemes dynamically readjust the path assignment based

on the current load statistics, so the maximum overflow is significantly reduced

when they are used. Fig. 3.8b shows the fraction of load being reassigned to

different paths for MBD-/ADBR, RA-opt and RA-alg. MBD-/ADBR reassigns

as much as 4.51% of total load on average because it redistributes the traffic

load in a greedy manner and involves unnecessary reassignment. RA-opt redis-

tributes the load based on the optimal solution, so it minimizes the maximum

overflow with only around 2.11% load being reassigned. Compared to the op-

timal solution provided by RA-opt, RA-alg is more conservative and shows the

least reassignment fraction of 1.95%. It still achieves similar level of accuracy as

RA-opt and MBD-/ADBR but moves much fewer flows to different paths than

MBD-/ADBR.

Unequal splitting: We next consider unequal splitting amongst the four
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Figure 3.8: Equal splitting.

paths with split ratio 0.1: 0.2: 0.3: 0.4. As we discussed in Section 3.3.1, the

current splitting algorithm implemented in OVS fails to perform correctly for

weighted splits even when the flow sizes are homogeneous. This is verified in

Fig. 3.9a and Fig. 3.10 which show much larger maximum overflow and split

ratio deviation (measuring the sum of the load fraction’s deviation from each

path’s target split ratio) for OVS than OVS-revised in the case of unequal split-

ting. We observe the similar performance comparison results as the equal split-

ting case: RA-opt achieves the lowest maximum overflow with around 1.87%

reassignment fraction; the splitting accuracy for MBD-/ADBR is close to RA-

opt but causes 3.15% reassignment on average; RA-alg has the lowest degree

of reassignment which is about 1.75% and a bit larger maximum overflow and

deviation of load distribution than RA-alg and MBD-/ADBR.

Impact of parameters: Two parameters in our model play important roles

in the tradeoff between accuracy and reassignment degree: the reassignment

time interval T and the weighting parameter λ. We evaluate their effects on the

performance by tuning one parameter while fixing the other. The experiments

are based on unequal splitting scenario with RA-opt and the traffic trace replay.
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Figure 3.9: Unequal splitting.
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Figure 3.10: Performance comparison summary.

The parameter λ quantitatively determines how much price the reassign-

ment pays when reducing the level the overflow. λ = 0 means we do not con-

sider any cost of reassignment. The larger λ, the more cautions to pay when

making changes to the original assignment. Table 3.2 shows that as λ increases,
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the average maximum overflow and thus the deviation of average load distribu-

tion become larger because it is more expensive to change the assignment. The

average reassignment fraction consequently is decreased. The splitting accuracy

and reassignment fraction is also affected by the reassignment time interval T ,

as is demonstrated in Table 3.3. Higher frequency helps to achieve smaller split-

ting errors at the price of causing more load to be reassigned.

Table 3.2: Impact of λ when T = 1 s

λ 0.01 0.05 0.08 0.1
Average maximum overflow

(%) 2.02 6.23 7.31 8.75

Average deviation of load
distribution (%) 0.63 1.5 2.76 3.21

Average reassignment fraction
(%) 8.56 1.87 1.14 0.76

Table 3.3: Impact of T when λ = 0.05

T 0.5s 1s 5s 10s
Average maximum overflow

(%) 3.75 6.23 8.52 9.34

Average deviation of load
distribution (%) 0.84 1.5 2.97 3.35

Average reassignment fraction
(%) 5.46 1.87 0.66 0.29

Dynamic splits: We further evaluate the end-to-end performance when dy-

namic TE is adopted. We consider the objective of dynamic TE as to balance the

loss rate among multiple paths. To simplify the dynamic TE behavior, we use

two paths with 40 ms and 100 ms round-trip time (RTT) in Fig. 4.3. Trace-driven

experiments capture the characteristics of Internet traffic, but do not suffice to

show the end-to-end network performance of traffic splitting schemes. We gen-

erate 50 TCP flows via iPerf from different hosts at the host subnet S 1 to the
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destination subnet D1. Additional delays ranging from 0 to 20 ms are randomly

added for these flows in order to make the TCP flows heterogenous. Each buffer

size is 3000 bytes. We further inject a 60 Mbps UDP flow as the background traf-

fic at the host subnet S 2 with the dynamic pattern shown in Fig. 3.4.2. Dynamic

TE collects the packet loss information for each interface and updates the target

split ratios every 2 seconds via the group table API supported by OVS.

Fig. 3.11b and Table 3.4 show the end-to-end performance when dynamic

TE works with different traffic splitting schemes. We also compare with static

TE which does not react to the real-time loss to verify that dynamic TE indeed

brings benefits. The static TE configures constant target split ratios 0.5:0.5 to be

realized by OVS-revised in data plane. It is observed in Fig. 3.11b that when the

large background flow is injected, the goodput under static TE scheme shows

considerable degradation because it does not move away any TCP flows from

the congested path. With dynamic TE, the goodput also drops as soon as the

background traffic is added, but is able to climb up gradually since dynamic

TE tries to maintain the loss fairness by changing the split ratios. It is further

verified in Table 3.4. The aggregated loss rate sums up the loss rate of the buffer

associated with each interface. The static TE has a much larger aggregated loss

rate than the dynamic TE. The nonzero packets reordering rate for static TE

shown in Table 3.4 is due to the multicore design of OVS.

When new target split ratios are configured by dynamic TE, OVS-revised

redistributes the flows accordingly but the error between the actual load distri-

bution and the target ones is not controlled. Therefore, the actual behavior that

dynamic TE observes deviates from expected. This triggers the dynamic TE to

further adjust the load distribution which makes the target split ratios possibly
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fluctuate in a large range. That is mainly why the goodput of OVS-revised is

lower and its loss rate and packets reordering rate is higher than other split-

ting approaches, as is shown in Table 3.4. RA-opt performs the most accurate

splitting so the aggregated loss rate is the minimum and it achieves the highest

goodput among all schemes. RA-alg has the minimum packets reordering rate,

but its goodput is slightly lower than RA-opt because its splitting is not as accu-

rate as RA-opt. MBD-/ADBR invokes more path reassignment than necessary,

so high packets reordering rate is the main cause of its goodput degradation.
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Figure 3.11: Goodput when background traffic are added.

Table 3.4: End-to-end Performance

Static
TE

OVS-
revised

MBD-
/ADBR RA-alg RA-opt

Average goodput
(Mbps) 86.2 95.6 98.5 102.6 103.4

Aggregated loss (%) 1.837 1.225 1.051 0.998 0.963
Reordering packets

(%) 0.374 1.252 1.143 0.805 0.829
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3.5 Related Work

We classify the existing traffic splitting models into two categories based on

whether the current load information are required in their path selection meth-

ods.

Load-Unaware:

Packet-By-Packet Round-Robin: The simplest model of info-unware traffic

splitting is packet-by-packet load balancing that selects individual packets

amongst the alternative paths in round-robin [72] and weighted round-robin

fashion [59].

Fast Switching: Cisco proposed fast switching [51] which restricts the size of

lookup table by only storing recently seen flows in a cache. When the cache is

used up, the oldest entry is deleted in favor of the new one. The performance of

splitting varies depending on the size of the cache.

Hash-based: Hash-based approaches identify flow by applying hashing func-

tion to packets such that packets from the same flow have an identical hashing

value. With the packet’s hashing value, direct hashing approaches select the

path taking modulo of the number of multiple paths [25]. Its main limitation

occurs when a path is added or removed from the original path set, then a cer-

tain amount of flows are redistributed.

Masking Operations: [46] and [71] both exploit the bit-masking operations to

achieve traffic splitting with finer granularity, relying on the the matching entry

feature of OpenFlow.
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Load-Aware:

Flowlet Aware Routing Engine (FLARE): [45] proposed FLARE that split a flow

into flowlets based on the inter-arrival time of the flow. The timeout of a flowlet

forwarding rule is set on the level of path RTT. The amount of traffic being real-

located mainly depends on the parameter of time threshold. In wide area net-

works, the inter-arrival timeout need to be large enough to maintain low risk of

packet reordering, resulting in limited quantity of flowlets and limited room to

adjust the load distribution.

Table-based Hashing with Reassignments: [27] performs adaptive load realloca-

tion based on the table-based hashing. The redistribution decision is made by

considering both the traffic load information and the inactive time for each bin.

Only one bin being remapped at each time interval restricts the improvement of

splitting accuracy.

Single/Multiple Bin Disconnection and Reconnection: [52] considers the bin dis-

connection and reconnection process separately. A set of greedy algorithms are

proposed and evaluated that dynamically adjust the load distribution by bin

disconnection and reconnection for single or multiple bins either in progressive

or conservative manner.

3.6 Summary

In this chapter we propose a dynamic load distribution scheme that aims to

accurately realize given traffic split ratios in switches with small performance

degradation based on the collected load sharing statistics. It finds the most ac-
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curate traffic splits with minimum route changes. Trace-driven and end-to-end

experiments demonstrate that 1) our approach effectively adjusts load distribu-

tion in real time to mitigate the inaccuracy of splits caused by the variation of

flow size distribution, 2) it outperforms the existing approaches with respect to

both higher accuracy and lower level of route changes, and 3) it requires path

changes for less flows when routing strategies are reconfigured, hence leads to

better flow experience such as higher goodput.
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CHAPTER 4

APPLICATION MANAGEMENT: PER-APPLICATION END-TO-END

PATH SELECTION

4.1 Introduction

Although Internet Service Providers (ISPs) offer various Service Level Agree-

ment (SLA) to guarantee the average internet performance in long term, most

individual users and enterprises still suffer from performance degradation from

time to time. Those performance degradations include low speed, large de-

lay and high packet loss rate. Besides the known problems of today’s Inter-

net including sudden outages and unpredictable peering relationship changes

[16, 12, 5, 1], the Internet traffic growing rapidly and more dynamically makes it

more challenging for the ISPs to meet various Quality of Service (QoS) and user

perception requirements for applications at all times. To improve the reliability

of user’s network experience, the very first question is how to realize the end-

to-end control without which any effort to seriously boost network performance

is bound to fail.

In the existing network infrastructure, to control the end-to-end user expe-

rience is non-trivial and highly complex because the Internet is an aggregation

of a large number of networks owned by many ISPs with different economic

interests [28]. One standard way to obtain end-to-end SLAs is to create private

networks through business contracts among them. This obviously is costly and

takes lots of time to realize. Alternatively, more and more companies today are

considering simply using the Internet as the backbone for their WAN solutions

[7, 13, 14], with dynamic management of multiple end-to-end paths established
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by diverse providers. For example, enterprises would purchase Internet service

from both AT&T and Comcast as the transport to build up their site-to-site con-

nections. They can select the preferred connection dynamically based on the

real-time SLA performance results monitored for both connections. This effec-

tively enables the flexible selection among multiple alternatives, but the perfor-

mance still relies on the Internet quality offered by each given ISP. The flexibil-

ity, availability and cost efficiency of improving the Internet performance is in-

creasingly limited by the management and configuration complexity of Internet

hardware routers produced by major vendors. The prevailing routing protocols

being used in today’s Internet such as the Border Gateway Protocol (BGP) are

known to have limitations in realizing any performance-aware dynamic routing

solution. BGP routing neither incorporates the information of path performance

or link capacity, nor allows fine-grained overriding of BGP-specified forward-

ing behavior. With these severe constraints, network providers and operators

face great difficulties in realizing reliable, high-performance end-to-end path

management, let alone providing good per-application user experience.

In face of the above mentioned challenges in the Internet infrastructure,

overlay architecture, which has been designed and developed for different pur-

poses since a few decades ago [20, 39, 32], can be adopted as an enabler of

achieving flexible control of end-to-end routing. It places a virtual network

over the physical infrastructure, thus leveraging the dynamic control of net-

work resources on an abstraction layer. Although there exist various overlay-

based techniques of performance-aware routing on fast timescale [74, 63], they

focus on routing inside the overlay network whereas the performance of the up-

stream and downstream path in the last mile for the end users is beyond their

control. In the case where the communication between the end user and the
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edge node is through the public Internet, the end-to-end performance can still

be largely affected by any unpredicted delay and congestion over the Internet.

If there exists diversity and flexibility in selecting the edge node, it is possible to

achieve more reliable end-to-end performance.

In this chapter, we propose the design of a platform that allows flexible and

responsive control of the end-to-end path per-application for enterprises’ site-

to-site Internet service. We present that exploring the geographical and physical

diversity in the last-mile can effectively avoid the failure and congestion in the

last-mile once being detected, and thus to a large extent provide end-to-end reli-

ability and high performance. Furthermore, the application-based performance

can be jointly optimized if we combine the real-time traffic conditions of both

the core network and the last-miles to make the end-to-end routing decisions.

4.2 Design

4.2.1 Overlay

Figure 4.1 shows an example of the end-to-end path through an overlay net-

work. The Point of Presence (PoP), as the interface point in each location be-

tween the overlay network and the end users, is responsible for assisting the

application traffic to enter or leave the overlay core network. Traffic from end

users are directed into the ingress PoP, forwarded through the virtual overlay

networks to the egress PoP, and ultimately delivered to the destination. Natu-

rally, we break down the end-to-end path into three parts: the virtual overlay

network and the two last-miles referring to the connections between the edge
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Ingress	PoP 

egress	PoP 

Figure 4.1: End-to-end path through an overlay network.

PoPs and the end users on both sides.

In the overlay network, routing within the core network is managed by the

routing protocols implemented in the overlay networks, whereas the routes for

the last-mile are beyond the control of the overlay network. Therefore, even if

the core network performs application-aware routing management, it is non-

trivial for the overlay network to react to the congestion or failure occurred in

the last-mile and guarantee the end-to-end performance. For example, if the end

user in Figure 4.1 experiences much lower throughput for a file downloading

service and the congestion is detected to be in the last-mile connection between

the ingress PoP and the end user, then changing the last-mile path may possibly

improve the end-to-end performance. Therefore, we aim at developing a plat-

form through overlay network that allows the flexible selection of the ingress

and egress PoP among all available ones such that the end-to-end application-

based performance can be optimized by jointly considering the performance of

the last miles and the core.
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4.2.2 Goals and Assumptions

Our design goal is to optimize the end-to-end application-based performance

among the last-mile diversity. In particular, when the application-specific per-

formance of the current path becomes consistently lower than some other path,

the system is expected to quickly detect it and switch to the better path no matter

the issue is caused by the core network or the last mile. This requires the sys-

tem to have the ability of fine-grained performance monitoring, flexible routing

control, and highly responsiveness to performance degradation.

We make the following assumptions in our design. First of all, we assume

there are multiple end-to-end paths that satisfy the customer’s performance re-

quirement. Without this assumption, it is not possible to explore the last-mile

diversity to guarantee reliable performance when the initial path fails. Secondly,

the routing for the last mile between the end user and a given ingress/egress

PoP is via the Internet which is beyond our control. Furthermore, we assume

the connection of any application is through the domain name. The application

of the traffic is not limited by web content, but arbitrary application such as file

transfer, remote login, and real time streaming.

4.2.3 Application-based End-to-end Routing

Consider a core network with a set P of PoPs worldwide. For a given user with

a pair of source s and destination d, we define a set of ingress PoP candidates

Is ∈ P for the source s and a set of egress PoP candidates Ed ∈ P for the destina-

tion d. The end-to-end path denoted as ps,d is a composition of three subpaths

ps,i, pi,e and pe,d. We assume that inside the overlay network the route between

76



any ingress and egress PoP is controlled by specific performance-aware routing

algorithm deployed. Note that the route of the last mile is beyond the control

of the overlay network, so controlling the end-to-end routing turns to be deter-

mining the ingress PoP and egress PoP for a given source-destination pair.

The performance cost from s to d is dependent of the choice of the ingress

PoP i and egress PoP e, denoted as wi,e
s,d. The optimal path is selected by finding

the optimal ingress and egress PoP, denoted as i∗ and e∗, that result in the least

path cost:

wi∗,e∗

s,d = min
i∈Is,e∈Ed

wi,e
s,d.

We aim to ensure reliable performance per-application and dynamically up-

date the routing to react to any performance degradation or failures in the cur-

rently selected path. Because applications come with their specific QoS and

user perception requirements, the end-to-end routing decisions need to be made

based on the performance metrics defined for the particular application. Here

we discuss about the performance metrics for three different types of applica-

tions. The design could be easily expanded to applications that have other per-

formance need.

Delay: For delay-sensitive applications, we consider the aggregated latency

of the end-to-end path as the performance cost. Let T i,e
s,d denote the latency of

the end-to-end path given the ingress PoP i and egress PoP e, and tx,y denote

the latency that is actually measured between any arbitrary node x and y. The

latency metrics T i,e
s,d are additive on the end-to-end path in the following form:

T i,e
s,d = ts,i + ti,e + te,d.
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Therefore, for delay-sensitive applications, the performance cost from source

s to destination d through ingress PoP i and egress PoP e is given by wi,e
s,d =

T i,e
s,d. The delay in the last miles are monitored from the source and destination

end hosts. They use active probing to measure the latency in real time for each

ingress/egress PoP candidate.

Loss: For loss-sensitive applications, we take the aggregate loss rate of the

end-to-end path as the performance cost. Let Li,e
s,d denote the loss rate of the end-

to-end path given the ingress PoP i and egress PoP e, and lx,y denote the loss rate

between node x and y. Similarly, the loss rate in the last miles is measured via

active probing from the end hosts. The aggregated loss rate Li,e
s,d on the end-to-

end path is in the following form:

Li,e
s,d = 1 − (1 − ls,i)(1 − li,e)(1 − le,d).

Therefore, for loss-sensitive applications, the performance cost from source s to

destination d through ingress PoP i and egress PoP e is given by wi,e
s,d = Li,e

s,d.

Throughput: For throughput-sensitive applications, we aim to ensure reli-

able performance of available TCP throughput. It is known that TCP exhibits

complex behavior under window control and congestion control. The available

bandwidth is affected by multiple factors including buffer limits, physical ca-

pacity and link characteristics. In path selection, only link conditions of latency

and loss rate vary among multiple paths while holding all the physical condi-

tions to be identical. As a result, the performance metrics we use in path selec-

tion for TCP throughput-o application is the relative evaluation of the available

bandwidth given the current delay and loss conditions in each path. The per-

formance metrics are based on the following well-known Mathis model [53]

Throughput =
MS S ×C

RTT ×
√

loss
,
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where C is a constant that incorporates the loss model and the acknowledg-

ment strategy. The throughput is linearly proportional to 1/RTT ×
√

loss in the

presence of packet loss. Here we only evaluate the TCP relative performance

to compare among candidate paths, rather than computing the precise value.

To find the optimal path that achieves highest TCP throughput, we consider

RTT ×
√

loss as the cost estimation for each end-to-end path.For any i ∈ Is and

e ∈ Ed, the end-to-end path cost from s to d is given by

wi,e
s,d = T i,e

s,d

√
Li,e

s,d.

Note that a limit exists in the granularity of loss rate being measured. If the in-

terval of each probing is τ, then the loss rate that can be detected during probing

time period ∆p is no smaller than τ/∆p, which we denote as σ. As a result, any

loss rate below σ is reported as 0. Since the throughput is linearly proportional

to 1/RTT in the case of zero packet loss, we set a lower bound for the end-to-end

aggregated loss rate to characterize the cost evaluation for zero loss:

Li,e
s,d = max{1 − (1 − ls,i)(1 − li,e)(1 − le,d), σ}.

4.3 Implementation

4.3.1 Overall Architecture

Figure 4.2 shows the overall architecture of our end-to-end path selection sys-

tem. It consists of two critical components: the end-user agent and the edge

server. The edge server distributed in each PoP monitors the performance of

the core and shares the statistics with the end-user agent. It also performs data
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Figure 4.2: End-to-end path selection system architecture.

forwarding on the overlay network. The end-user agent is deployed in the

end user’s device, responsible for controlling the route, monitoring the last-mile

performance, and communicating with the core network. The last-mile perfor-

mance statistics monitored at the destination agent is propagated backward to

the source end-user agent. As the end-user agent communicates with the edge

server, decisions on which ingress and egress PoP to select can be made by the

source agent based on the real-time understanding of the network.

Routing in the core relies on the specific implementation of the overlay net-

works which is independent of the selection of ingress and egress PoPs for end-

to-end path routing. Being unaware of how traffic is routed in the core network,

the end-user agent at the source determines the ingress and egress PoP based

on the three sets of statistics collected. We separate the performance monitor-

ing into three segments for the following reasons: it requires less overhead for

performance monitor in the core network because the edge server only need to

measure the performance per overlay link but not per flow in the core; it takes
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less time to respond to outage and performance failure occurred in between the

end user and the ingress PoP; it does not impose any limitations on the rout-

ing in the core, so routing in the core network can be flexibly controlled and

customized by the overlay network.

4.3.2 End-user Agent

End-user agent is the key component for realizing flexible fine-grained routing

control and real-time monitoring in the last mile of the end-to-end path. The

agent is deployed in the end user’s device, performing mainly three functions:

end-to-end path selection, last-mile performance monitor, and communication

with edge servers. We here describe each of the functions in detail.

Path Selection: The agent in the source end user controls the route for the

end-to-end path, excluding the sub-route between the ingress PoP and egress

PoP which is controlled within the core network independently. The routing

control on the end-user agent involves three steps: determining the ingress and

egress PoP, directing traffic to the correct ingress PoP and notifying the core

network with the correct egress PoP. The ingress and egress PoP are determined

by consulting the solutions for the optimal application-specific path described

in Section 4.2.3. The source agent stores the delay and loss rate metrics collected

for each subpath, as are required in the routing computation. Table 4.1 shows

an example of the routing table maintained by the source agent with an update

interval of ∆r. It contains the Current Route being used with respect to the ingress

and egress PoP, as well as the Proposed Route that has the least end-to-end path

cost. In order to avoid path flipping, the new routing decision is made in a
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conservative and cautious way such that the Proposed Route becomes the Selected

Route only if either of the two conditions holds: it has a cost below 80% of the

Current Route’s cost; or it is consistently the Proposed Route for the last three

update cycles. Otherwise the Selected Route remains to be the Current Route.

Furthermore, we insert the Backup Route into the routing table which represents

the best egress PoP for each given ingress PoP other than the one associated

with the Selected Route.

Table 4.1: Routing table maintained in the end-user agent.

Ingress
PoP

Egress
PoP

Cost Current
Route

Proposed
Route

Selected
Route

Backup
Route

i1 e1 wi1,e1 × × × ×

i1 e2 wi1,e2 X × × X
i2 e1 wi2,e1 × X X
i2 e2 wi2,e2 × × ×

If an update of Selected Route involves the change of the ingress PoP, the

end-user agent in the source will modify the local DNS hosts file with the corre-

sponding ingress PoP IP address so that any traffic destined to the given desti-

nation are redirected to the ingress PoP provided. Besides attracting traffic to the

correct ingress PoP, the agent need to notify the selected ingress PoP about the

selected egress PoP, and notify each alternate ingress PoP about its correspond-

ing Backup Route to have a default route installed. This notification messages are

transmitted through the communication channels between the agent and edge

servers.

Performance Monitor: End-user agent uses active probing to measure the

RTT and loss rate between the source and ingress PoP, and between the desti-

nation and egress PoP. Originating the probing packets at the end-user agent
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for the last-mile measurement prevents the probing from being blocked by the

firewall in the end user. The edge server deployed in ingress and egress PoP

is responsible for replying to the received probing packets. The probing packet

is sent once every τ time interval. By checking the sequence numbers, the end-

user agent measures the RTT and the round-trip loss rate based on the reply

packets every ∆p time period. ts,i and te,d are computed by averaging the RTTs

among all probing packets. ls,i and le,d are viewed as the fraction of lost probing

packets over all sent packets. Since we set symmetric routing for the forward

and backward paths, it is reasonable to estimate the loss rate for the round trip.

Communication: The communication between the end-user agent and the

edge servers include three types of control messages: handshake messages,

measurement statistics and notification of egress PoP selection. At the startup

stage of the end-user agent, the source agent discovers the alive edge servers

via ping packets and selects the K closest PoP into the ingress PoP set Is based

on the RTTs of the ping packets. Similarly, the destination agent selects the set

of egress PoP Ed. The relationship of source and ingress PoP is confirmed by

handshake messages exchange between the end-user agent and the edge server

of the selected PoP. Once the control channel is established in the last miles, the

source agent periodically pulls the measurement statistics of the core network

from the edge servers of the ingress PoPs, and pushes notification of egress PoP

selection to the corresponding edge servers. The last-mile performance statistics

measured by the destination end-user agent are propagated back to the source

end user via the current returning path.
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4.3.3 Edge Server

The edge server is distributed in each edge PoP of the core network.

Performance Monitor: In the core network, edge servers do not measure the

performance metrics for a particular user pair or application, but rather the per-

formance of the overlay link between two PoPs which is determined by the cur-

rent aggregated traffic. The edge server in each edge PoP monitors the latency

and loss rate between itself and each other PoP using active probing. Because

the underlying physical infrastructure is invisible for the overlay network, it is

even more important to be responsive to failures or changes in the network con-

ditions. The performance of the overlay link between any two PoPs is expected

to be measured on fast timescale. Once receiving pull request from the source

ingress PoP, the edge servers immediately reply back with the latest statistics.

Packet Forwarding: The other job of the edge servers is to perform data for-

warding. Various techniques exist in realizing data forwarding through overlay

networks. One approach being widely adopted is to encapsulate the IP pack-

ets with an overlay header that contains the address information of the overlay

node. Another way is to manipulate the IP addresses in the original packet

without inserting additional header. By changing the destination IP address

of the original packet to the proper edge nodes, the traffic from end users are

directed to the overlay network. Since the original destination is missing in

the packet header, this approach requires a mapping between the source and

the edge nodes to be stored in the edge nodes before user’s traffic arrive. We

use the latter mechanism in our experiments to avoid the additional overhead

caused by encapsulation and decapsulation.
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4.4 Evaluation

In this section, we evaluate our design of end-to-end path selection system. We

describe the testbed setup and testing scenarios in Section 4.4.1, and present the

experimental results in Section 4.4.2 that show the performance improvements

achieved.

4.4.1 Evaluation Environment

Testbed setup: We set up a cross-continental overlay network shown in Figure

4.3 on Global Net [9], an ISP that offers commercial Internet service. The overlay

network topology consists of 6 PoPs in different geographical locations, being

connected via vxlan tunnel. Software switch is running in each of the PoP, and

Open Shortest Path First (OSPF) is implemented as the routing protocol within

the core network. As we mentioned above, routing inside the core network

is invisible to the end-user agent. The end-user agent is deployed in the end

users located in Oregon and London, and the edge server is running in each

PoP. The link capacity is 100 Mbps for each link on the overlay network, less

than the available bandwidth 200 Mbps in the last miles. We set probing interval

τ to be 10ms, and both the measurement duration ∆p and the agent’s routing

update interval ∆r to be 30 seconds. Therefore the minimum detectable loss rate

σ is 1/3000. We further choose the size of both the ingress PoP set and the egress

POP set to be 2, to reasonably bound the last-mile delay. At the startup stage, the

source agent discovers its ingress PoP set Is to be {San Francisco, Chicago}. The

destination agent discovers its egress PoP set Ed to be {London, Amsterdam}.
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Figure 4.3: Network topology.

Testing scenarios: We conducted the evaluation from three aspects. First,

we evaluated how our system reacts to network condition changes in the last

mile and in the core by introducing emulated loss into the network. We used

iPerf to send a single TCP flow from the source host in Oregon to the destination

host in London, and measure the throughput. Our evaluation of the end-to-end

throughput optimization considered network condition changes in either the

last mile or the core network. We compared the throughput of our routing solu-

tions against the throughput over a static path which selects the geographically

closest ingress and egress PoP which is San Francisco and London respectively.

Secondly, we evaluated how much improvement our system makes by opti-

mizing the end-to-end performance compared to optimizing the last miles and

the core separately. We added disruptor into the core network with either a loss

increase or a node failure, and let the core network react to the network condi-

tion changes. In the case that the last miles and the core network are optimized

separately, the ingress and egress PoP selection is only affected by the network
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condition changes in the last mile, but does not rely on the disruptor we added.

We compared its behavior and performance results with the end-to-end opti-

mization in our system.

Thirdly, we evaluated how the system improves the user’s application ex-

perience. We considered service of file uploading and take the transfer speed

and transfer time as the performance metrics of interest. Multiple file trans-

fer sessions were ensured to be running concurrently and sharing the network

so that we could test how the path selection system responds to the current

end-to-end path conditions and how much it could improve the file uploading

performance.

Lastly, we evaluated the system’s behavior when there are diverse applica-

tions sharing the network. We repeated the experiments of file transfer and ad-

ditionally injected three video streams into the network from the source host to

the destination host. We considered the video streams as latency-sensitive traf-

fic which desire the path with smallest end-to-end latency. Therefore, the initial

ingress and egress PoP for the video streams were San Francisco and London.

4.4.2 Results

Loss increase in the network:

We evaluate the effectiveness of our system when facing loss in the current

last mile. Internet is possible to suffer from loss at any point of the last mile,

but here we simplify the testing scenarios by simulating the loss at the interface

of the edge PoP to present the proof of concept. The loss is simulated using
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(a) TCP throughput. (b) Selection of ingress PoP.

Figure 4.4: End-to-end throughput in the presence of 0.1% loss between the
source and San Francisco PoP.
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(a) TCP throughput. (b) Selection of egress PoP.

Figure 4.5: End-to-end throughput in the presence of 0.1% loss between London
PoP and the destination.

the netem [10] functionality provided by Linux tc tool. The measurement of

TCP throughput for the current selected path is sampled every hour by running

iPerf for 200 seconds.

In the first scenario we imposed loss onto ingress PoP. Figure 4.4a shows the

throughput results of each measurement sampling. At the beginning, the se-
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Figure 4.6: End-to-end throughput in the presence of 0.1% loss in New York
PoP.

lected ingress PoP was consistently San Francisco. 0.1% loss was added to San

Francisco at time 6:00. In the presence of loss, the throughput of the original

path significantly dropped down to less than 10 mbps. With the ability of mon-

itoring the real-time performance and exploring the route diversity, our system

changed the ingress PoP from San Francisco to Chicago, as is shown in Figure

??. The performance degradation after the path change was mainly caused by

the delay increase in the new path. We removed the simulated loss rate at time

12:00 and the throughput after that went up because the path was changed to

the original one. So Figure 4.4a further demonstrates that our system is also able

to improve the performance by finding better path if existing.

In the second scenario, we considered adding 0.1% loss on the current egress

PoP (London) between time 6:00 and 12:00. As illustrated in Figure 4.5a, the

above 70% throughput drop for the static path is similar to that in the first sce-

nario. The destination agent detected the loss in the last mile within 30 seconds.

With the knowledge of the loss increase in the current path, the source agent se-
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Figure 4.7: End-to-end throughput compared to independent optimization in
the presence of 0.1% loss in New York PoP.

lected an alternate path with San Francisco as the ingress PoP and Amsterdam

as the egress PoP (in Figure 4.5b), resulting in around 10% throughput decrease

on average due to the delay growth.

In the third scenario, we considered the loss increase in the core network.

Although the routing inside the core network is uncontrollable and invisible

for the end-user agent, it strives to select the best pair of ingress and egress

PoP among all candidates, with the real-time information of latency and loss

rate between each pair collected from the edge servers. Figure 4.6a shows the

throughput results when we simulated 0.1% loss in New York PoP from time

6:00 to 12:00. Our end-user agent in the source learned about the loss increase

in the subpath and selected an alternate path with Chicago as the ingress PoP

and London as the egress PoP (in Figure 4.6b).

End-to-end optimization versus separate optimization:

Our system achieves the end-to-end optimization by jointly considering the
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Figure 4.8: End-to-end throughput compared to independent optimization in
the presence of failure in New York PoP.

last miles and the core network rather than optimizing them separately. We

evaluate the performance improvement made by the end-to-end optimization

over the independent optimization in the last miles and the core. Our evaluation

in this part involves scenarios of unexpected loss increase and link failure in

the core network. We assumed the routing strategy implemented in the core

network was able to detect loss and failures, and reroute to the optimal path

inside the core network. In the case of independent optimization, the selection

of ingress and egress PoP is purely determined by performance in the last miles,

and thus remains the same as long as no significant condition changes occur in

the last miles.

When we added 0.1% loss in New York PoP, the original route between

San Francisco PoP and London PoP via New York PoP is no longer the opti-

mal. Therefore, the core network reroutes the traffic through Chicago. With

the knowledge of the updated performance metrics for each candidate pair of

ingress and egress PoP, the end-user agent in the source selects the optimal pair
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Figure 4.9: Performance of file transfer as the number of sessions changes.

to be Chicago and London (in Figure 4.7b). Since the ingress and egress PoP

remained to be San Francisco and London for independent optimization, the

throughput is more than over 20% lower than that of the end-to-end optimiza-

tion, as is shown in Figure 4.7a. When we failed New York PoP, the core network

again rerouted the traffic from San Francisco PoP to London PoP via Chicago to

avoid the failed node. For the end-to-end optimization, the source agent up-

dated the ingress PoP to be Chicago once finding this path had a smaller end-

to-end path cost (in Figure 4.8b). Similarly, Figure 4.8a shows that the new path

selected by the agent outperforms the independent optimization solution by

around 20% higher throughput.

Multiple file transfer sessions:

We next evaluated how the system improves the user’s experience of file

transfer service. In order to evaluate the application-level performance-based

path selection, we continuously initiated a new session for uploading a file of

size 2 Gbits from the source host to the destination host every 20 seconds while
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the previous sessions are still in progress. Figure 4.9 demonstrates that for both

the case of static path and dynamic path, as more sessions were running concur-

rently and competing the bandwidth, the transfer speed for each session would

become lower and it would take longer time for each session to complete. In

the case of static path, being unaware of the link condition, the new flows con-

tinued using the initial path with San Francisco and London as the ingress and

egress PoP. Therefore as new flows entered the bottleneck link, all existing ses-

sions would suffer from significant performance degradation triggered by loss

increase. However, with the knowledge of the end-to-end loss increase on the

initial path, our system would avoid selecting that path for the new flows and

find the best ingress and egress PoP with least path cost. Therefore, our sys-

tem offered much higher file uploading speed and less uploading time than the

static path solution shown in Figure 4.9a and Figure 4.9b.

We also show in Figure 4.10 the average transfer speed and the average

transfer time per session when there are six sessions running concurrently. We

repeated the test every 2 hours for one day, and the results in Figure 4.10a show

that the average transfer speed achieved by our system is around 30% higher

than the static path. Similarly, each transfer session would take around 30%

less time to complete with our dynamic path selection, as is shown in Figure

4.10b. Figure 4.10b demonstrates the number of file transfer sessions that were

routed through San Francisco as the ingress PoP for each test, and the others

were routed through Chicago PoP.

Diverse applications:

Lastly, we added diverse applications into the network. We started three

video streaming via VLC from the source to the destination host, and repeated
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Figure 4.10: Performance of six concurrent file transfer sessions.

the file uploading tests. The total transmission rate for the three video streams

were varying in real time but keeps below 15 Mbps. Latency was chosen as

the performance metrics for the video streams. During the tests, the end-user

agent dynamically selected the end-to-end path for the two applications inde-

pendently based on their corresponding performance metrics, whereas in the

case of static path all flows used the San Francisco and London as the ingress

and egress PoP. As is shown in Figure 4.11, with the time-varying video traffic
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Figure 4.11: Performance of six concurrent file transfer sessions and video
streams when sharing the bandwidth.

additionally sharing the bandwidth of the overlay links, the average file transfer

speed per session slowed down and the average transfer time increased for both

the case of static path and dynamic path compared to the results in Figure 4.10.

However, our system made the path decisions by exploring the per-application

costs for all the available paths so that the resource competition among the ap-

plications and multiple sessions was mitigated. Figure 4.11d shows that our sys-

tem routed only 2 or 3 file transfer sessions through San Francisco as the ingress

95



Pop, and the rest of them were routed through Chicago to avoid the congestion.

As a result, both the file transfers and video streams experienced significantly

better performance in terms of higher average transfer speed (Figure 4.11a), less

transfer time (Figure 4.11b) and lower standard deviation of video stream delay

(Figure 4.11c) than the static path solution.

4.5 Related Work

Overlay networks: various overlay networks have been developed for differ-

ent purposes since a few decades ago [20, 39, 32]. [20] proposed the Resilient

Overlay Network (RON) that could fast recover from failures and performance

issues of the Internet by taking advantage of underlying Internet redundancy.

Although the overlay network is well developed, the existing performance-

aware routing techniques via the overlay network are mostly dedicated to the

core network without jointly considering the last miles. As overlay network is

widely used particularly in Content Delivery Networks (CDN) such as [3, 4],

end-to-end reliable performance is a major design goal that most CDNs focus

on. However, their techniques are not applicable to the end-to-end performance

problem with a pair of end users, because the servers under this context belong

to a part of the CDNs which are controlled within the core networks rather than

end hosts outside. Furthermore, the solutions to CDNs only apply to web-based

applications traffic.

Routing within the core network is managed by the routing protocols im-

plemented in the overlay networks, whereas the routes for the last-mile are be-

yond the control of the overlay network. [74] and [63] explore the diversity of
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the routes, provided by multiple ISPs, between the end user and a fixed PoP in

peering edge architecture. For example, they can select the preferred the routes

Our approach selects the route among multiple PoPs and jointly considers the

performance of the last miles and the core, which is not only different but also

complimentary with their solutions. Moreover, it is applicable to other architec-

tures without multiple routes options between the end user and one PoP.

Attracting traffic to the core: the state-of-art approaches to attracting end-

user traffic to the core network include DNS [58, 36] and Anycast [47, 23]. Most

DNS services do not consider the real-time performance when deciding the

ingress PoP. Even for those who consider performance metrics such as latency,

the measurement is done on coarse scale in both temporal and spatial dimension

(at most once per day, only measure latency between regions). Furthermore, the

DNS service is not aware of the end-user rather than the local DNS resolver on

behalf of the end user which could be geographically far away or experience

completely different performance. The server will make decision on the ingress

PoP for each resolver rather than the actual clients, so the performance infor-

mation for the client is not possible to be mapped to the resolver. One solution

is the EDNS client-subnet-prefix standard (ECS) [29] that allows the resolver to

specify a prefix of the client’s IP when requesting domain name translations on

behalf of a client. This enables the end-user mapping on the level of client sub-

net, but it does not consider the specific end-to-end performance for each end

user [26]. Moreover, the proposed protocol is far from being adopted by all ISPs.

Anycast approach makes the end user’s IP address to be transparent. However,

it lacks the flexibility of performance-aware routing control because the perfor-

mance metrics used in BGP protocol do not represent the real-time performance

information.
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SDN and cloud networking: [38, 37] designed an architecture for traffic

forwarding among multiple autonomous systems. Their design of SDN-based

exchange points provides innovative solutions to applications such as inbound

traffic engineering, wide-area server load balancing, application-specific peer-

ing and redirection through middlebox. We both exploit the benefit of SDN

specifically from the aspect of route efficiency improvement, but for different

use cases. They provide a way for IXP participants to compose general policies

and forward traffic between autonomous systems. However, we aim at facilitat-

ing a particular carrier to optimize the route by selecting the preferable ingress

and egress edge routers.

[65, 43, 64] proposed the cloud-based middlebox infrastructure for middle-

box service providers that offer services in the cloud such as HTTP proxies, SIP

proxies, WAN optimization, deep-packet-inspection, content caching, and con-

tent transcoding. Similarly they take DNS-based redirection approach to bring

traffic to cloud provider PoPs. Unlike the application-specific metrics we de-

fine based on performance requirements and user experience, they generically

choose latency as the metric for PoP smart selection. Their architecture aims at

facilitating middlebox service providers to outsource enterprise middlebox pro-

cessing to the cloud which mainly involves the traffic between enterprise and

the cloud applications, whereas we focus on providing platform for the carriers

to deliver the enterprises’ site-to-site traffic.
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4.6 Summary

We propose a platform for end-to-end path selection in overlay network archi-

tecture. With the knowledge the network topology and conditions, it strives

to achieve the optimal end-to-end application-based performance by exploring

the last-mile diversity. It allows the flexible and responsive per-end-user se-

lection of the edge node for the overlay networks, and thus can fast recover

from network failures and performance degradation. We present our design of

the end-to-end per-application performance optimization system with detailed

discussion of each component including dynamic routing engine, performance

monitor and information exchange. Our experimental results demonstrate that

the application-based end-to-end performance can be significantly improved in

face of network condition changes in both loss and latency.
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CHAPTER 5

FUTURE WORK

In this dissertation, we explored traffic management in time, space and ap-

plication dimension. We described how to realize and analyze adaptive traffic

engineering in high frequency, how to split traffic accurately in fine granular-

ity, and how to achieve end-to-end path optimization per application. Further,

there remains many interesting research topic along these directions.

5.1 Responsive Traffic Engineering

We provided the framework for analyzing the adaptive traffic engineering that

performs in high frequency and studied the tradeoff between stability and re-

sponsiveness. A TE algorithm performing at fast timescale benefits from be-

ing responsive to varying traffic demand and network conditions, but it also

means frequent routing changes. Any update in routing strategy with respect

to a given commodity flow requires certain portion of traffic to be moved from

their original paths to new ones. Under the stability condition, the TE solutions

are guaranteed to eventually stabilize and converge to the optimal set point with

finite steps. However, different trajectories that the TE solutions follow lead to

different convergence time and degree of path changes. As moving traffic from

one path to another can potentially cause packets reordering and thus perfor-

mance degradation, it is ideal to keep existing traffic stick to their original paths

unless changing is indeed inevitable or worthwhile. The future direction here

is to design responsive TE algorithms that adaptively converge to the optimal

routes in response to the current network states while effectively minimize the

path changes for traffic involved in the routes update. With the goal of achiev-
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ing the responsiveness to the dynamics of the networks and fast convergence,

over-reacting can easily occur if the route update is not cautious enough. In

face of the changes in network states, the TE algorithm is expected to set the

best trajectory from the old set point to the new one based on the convergence

speed as well as the overshoot. The goal of the design is to avoid overshoot

of traffic amount for each path and unnecessary path oscillations over multiple

steps, instead of merely optimizing convergence speed.

5.2 Fine-grained Accurate Traffic Split

We proposed a rate-aware flow-level traffic split mechanism for the data plane.

Our design assumes that the target multipath routing solution for each com-

modity flow is given as the input, which is computed by TE algorithms in the

control plane. The goal is to split the traffic accurately following the given split

ratios for every commodity flow with small cost of flow route changes. Due to

the fact that traffic are aggregated into the pipe, the deviation from target split

ratios for different commodities may well possibly complement each other from

the perspective of the aggregate link load, which is what ultimately matters. In

other words, we may not need to get per commodity flow split very accurately

but still achieves accurate aggregate load balancing. Therefore another future

direction along this line is to answer the question of when it is necessary to

achieve accuracy for split ratios per commodity flow. With the ultimate goal

of mitigating the load balancing degradation and congestion caused by inac-

curate traffic split, it is equivalently effective to realize aggregated split ratios

accurately for each link, under the constraint that the QoS requirements are sat-

isfied for each commodity flow. Moreover, the overall performance should be
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even better because the routes adjustment is further minimized while the level

of accuracy for the fraction of traffic on each aggregated link retains.

5.3 End-to-end Optimization for Cloud Applications

We presented our design of the end-to-end performance optimization system

that mainly focuses on branch-to-branch traffic for enterprises. It allows per-

application selection of the ingress and egress PoPs which are the edge nodes

for the overlay network. The design has assumed that the end-user agent can be

implemented in the enterprise end users at each branch. Another major type of

Internet traffic is cloud application traffic, in which case the servers are usually

hosted in the network of the cloud service providers while the clients are the

remote end users. With such feature, the cloud application traffic gains more

flexible control and management for the routing and monitoring than branch-to-

branch traffic. As the cloud applications are growing rapidly, it is an interesting

research direction to investigate how the platform can be extended to perform

in the cloud network and optimize the performance of the cloud application

traffic, especially how it can be applied to the prevailing infrastructure of cloud

service providers such as Google, Facebook, etc. In such large-scale networks

with diverse applications, scalability of routing and packet forwarding scheme

requires great attention in the design.
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