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t . . . e. g - ,.,. F � g2 ' �P 
We may also put: 

G 
__

F ✓2 h..:.. ("' F)i _ G f2g hG g . 

PRISMATIC VESSELS. 

CHAP'f ER V. 
ON THE EFFLUX OF \VATER UNDER VARIABLE PRESSURE. 

§ 345. Prismatic Vessels.-If a cistern from which water flows through an orifice at the side or bottom, has no influx to it from any other side, a gradual sinking of the surface of ,vater will take place, and the cistern at last empty itself. If, further, the quantity of influx 
Q, be greater or less than the quantity of efflux ,.,. F ✓ 2 g '1., the 
sttrface of water will then rise or fall until the head of water 
h = _!__ ( Q ) 

2 
, and after this the head of water and the velocity of2g ,.,. Fefflux will remain unaltered. Our problem, then, is to find how thetime, the rise and fall of the water, and the emptying of vessels ofgiven form and dimensions, depend on each other. 

The efflux from a prismatic vessel presents the most simple case 
when it takes place through an opening in the bottom, and when 
there is no efflux from above or below. If x is the variable head of 
water FG1, F the area of the orifice, and G the transverse section of 
the vessel .11.C, Fig. 473, we have then the theo-
retical velocity of efflux v = ✓ 2 g x, the theo• Fig. 479. 
retical velocity of the falling surface of the water 

F F= G v = G ✓ 2 gx, and the effective velocity 
"' Fv1 = ✓ 2 gx. At the commencement: G 

x = FG = h, and at the end of the efflux x = O,therefore, the initial velocity is: 

c = � ✓ 2 gh, and the final velocity c1 = 0. 
2It is seen from the formula v1 

= J 2 ("':) g x, that the motion 
of the surface is uniformly retarded, and the measure of the retarda-
fion p = ("' p)

2 g, hence we also know (§ 14), that this velocity =0,
Gand the discharge ceases, when _

t _ 2G✓h
- ,...F✓2g

t = .2 G h 2 G h == 
,,_ F ✓ .2g'1.. 

_
Qand, according to this, assume that double the time is required for the 
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2.14.t,l4.2 2.14 ✓ 4 t 800-t · 

-✓ 11✓ ht = 0,249 - 2)· ( l µF 
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efflux of the discharge Gli through the orifice at the bottom F, under 
a head of ,vater decreasing from h to O, than under a uniform pres­
sure.

As the co-efficient of efflux µ, is not quite constant, but is �eater 
fo� a ?iminution of pressure, we 1nust, therefore, in ca1cu1ahons of
this kind, substitute a mean value of this co-efficient. 

Example. In what time will a reonu1gulw- cistern, of 14 square feet section, e1npty 
itself through a round orifice at the bottom, of 2 iuchc:i witlth, if tho original hcac.1 of 
water amount to..'.!_feet'! The ti1ue of c!Uux ,vould be thcorutically: 

S,02 •tr
---.;..._- = ----

8,02.tr 
= <>Oec

.3,,...,0''t .:=., uun. ... = s 
8,02 . ..!.. (J)'

4 =1 ft.At the end of Jmlf tl1e time of efilwc, the head of water \\•ill be = (½)'. h= ¼.4 
No,v the co-efficient of etllux, ,vliith corre:;ponds to the head of water= I foot is 0,013, •
hence ilie elfective ti1ne of dillCharge will be= 320'' = 521" = 8 minutes, 41 s ·conds. 

O,013 

§ 346. Vessels of Communication.-Since for an initial head of 
water h1, the time of efflux t1 = 2G ✓ Iii, and for an initial head of 

,,, F ✓2g 
water h2 this time t2 = 2 G ✓�, it then follows by subtraction, that 

µF,✓2g 
the time within which the bead of ,vater passes from /,1 to l12, and the
surface of water sinks li1 - ll" is : 

2Gt = -----== ( ✓ h1 - ✓ h,,), or for the English foot measure:
,,,F.✓2g

G --

Inversely, the depression of the surface corresponding to a given
time of efflux is s = h1 

- h2, and is given by the formula: 
- ,,, ✓ 2g . F 

)
" 

lt2 = (✓Ii1 - t , or,
2 G 

- "'✓2g. Ft 
(✓-h r,,. ✓2g t)S- '"' G 1 4G . . 

The same formulre are further applicable, ,vhen a vessel CD, Fig.
474, is filled by another JlB in ,vhich the 

Fjg. 474. ,vater maintains a uniform height. If 
the transverse section of the tube of com­
munication, or of the orifice = F, the 
transverse section of the vessel to be
filled =G, and the original level GG1
of the t,vo surfaces of water= h, we have
then, since here the surface of waterG1
in the second vesse1 is uniformly retard­
ed, the time of filling like,vise, or the 
time ,vithin which the second surface of 
,vater comes to the ]eve] HR of the first: 
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' F t ther, ,.,. = 0,605 ( • i t  follows then h,, = ✓ :.! g , ✓ h1 - ) ,-,. • 

"')
2 = 2,393 feet, and the de-

, l20) 5 , .,, = (2 _ ' · ·· · (2 -0 605. 8,02 • 0 605 8 02 
1

VESSELS OF COMMUNICATION. 

t = !:_G ✓!:_'
,,,,F. ✓2g

and likewise the time in which the height of level h1 passes into h2,
and, therefore, the snrface of water ascends to : 

GGl = s = hl - h'J..2Gt = -----=-c ( ✓ hl - ✓ h2)·p,F. ✓2g 
E:camplu. 1.-How much will the surface of ,vater in the vessel of the last example 

sink in two minutes? h1 =4, t = 2 . 60 = 120, F = and if we assume, rur-
G 14 .144 

'fr • 

2G 

2 .14, 144 168
pression sought is ,=4 - 2,393 = 1,607 feet. 

2. What time does the water in the 18 inch wide Fig. 475.tube CD, Fig. 475, require to ru_n over if it communi­
cates with a vessel ..i.13 by a short 1½ inch wide tube, 
and the rising surface of ,vater G stands, at  the begin­
ning, G feet below the unjform sU1·face of ,vater .11., and
4! feel below the head O of the tube. It is: 

t = 2 G 
(✓ha - ✓h,),

,-,. v"2g . F 
h, = 6, h2 =6-4,5 =1,5, �

G• = ( 18 )!t= 144 and 
115 

,.,. = 0.81, ,vbence it follo,vs that:
2 .  144 (✓6 _ 288. 1,2248t = ✓1,5 ) = 0,81 . 8,02 0,81 . 8,02 = 54,3 sec. 

If the first vessel .llB, Fig. 476, from which the water runs into
the other, has no influx, and its section G1

also not to be considered as indefinitely Fig. 476. 

great compared with the section G of the
subsequent vessel CD, we have then to 
modify the condition. If the variable dis­
tance G1 

01 of the first surface of water
from the level HR at which both surfaces 
stand at the end of the efflux = x, and the
distance GO of the second surface of water
from this same plane = y, '\Ve have then
the variable head of water = x + y, and 
the c?rresponding velocity of efflux: v = ✓2g (x + JI), and the 
quantity of water: 

G1x = Gy, v = .J2g ( 1 + :,)JI·
The velocity ,vith which the surface of ,vater in the second vessel 
ascends is now: 

p. F 
1.'1 = --:::-:-- -G V -



1 + � 
Gl 

µ F J 2 g ( 1 + ;) 

Ii , an<l the time in which the t"·o surfaces of 

t = 

The time ,rithin which the level falls from IL to h1, is, on the other 
hand: 

§ 348. 

477, to which there is no influx the 

- - - - -

water come to a level : 
. 
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consequently the retardation: 

(>':)p = ' (1 + i)g,
1

and the time of efflux: 
t = ": J2g ( I + �) y + (":r ( 1 + �) g 

2G✓y= ------========= 

substitute for x and y, the initial height of level I,, and 

•· 

Let us
therefore put : 

x + y =- h, or ( 1 + �) y = h, 
and we then obtain: 

y = 

2 G✓ h = 2 GG1 ✓ /1 _

,,. F( 1 + :,) ✓2g ,i F(G + G 1) ✓�g 

t .2 G G1 (✓h-✓--\).= 
µ✓2g F(G + G1)

Example. Ir the section of a c+itern fro,n which ,vater fio,vs i l0 f'IIJUl\rc feor, nnd the 
sectionG of the recipient cistern .t squnre ltiet; if, further, t.he luitial lcvcl h vf the two 
snrfilces runoun� to ,1 fl.!ot, and tho cyJimltic-al tubo or co1n1nu11icu1ion is 1 inclJ ,vido•
then Ute ti1ne iu \\·bicL t.he ·water t.-ornes in 001.h vcssel:.i ttJ the Btuue lovul is: 

2.10t.4.t✓3 320.72 .. /Jt = ---------- = --=-==-.,,....,,.,_v_.__= 27r.i>9
1 suo.

0,82 • 8,02 . 7 1r
0, 82 . 8,02 . � . � 

4 1-1·1 

Notches in a Side.-If water flo\\'s through the notch or cut
DE of a prismatic cistern .IJBC, .F'ig..Fig. 477. 

------ - . ...:-.· · · · - - - - --· 

time of efflux may then be estimat�d in
the follo,ving manner. Let us represent 
the trans\·erse section of the cistern by
G, the breadth EF of the notch by b
and the depth DE by h, and divide th�
,vhole aperture of efflux by horizontal 
lines into small slices, each of the .. - - . . . . - - . 

breadth b and depth Ii. At a constant 
n

pressure the discharge per second "'ill 



--r 

419 

which we may write : 

t = 3 G h [(mh)-! + (m + 1 h)- 1+ . . .  + (nh)- !] 

✓2g b "" 

_ and therefore also an 1n-- oo ; t 

-/ I I . .  . - ... - .
- . - . . ) ' ",. \,.,. .' ,.. 

") l,. I ·  � j '; =: 
,•' ' - ...... 

NOTCHES IN A SIDE. 

be, Q = i I" b ✓2g h3, if we divide this into the ·area G h of a stra­
n 

Ghtum ofwater, we shall then obtain the time of efflux -r == , . t "'nb ✓2g h3 

3 Gho -= . h o ! .2 "" n h ✓ 2 og
Now, to obtain the time of efflux t for a quantity of water G

( h -:- h1), or to determine the time in which the head of water above 
the line DE == h sinks to DE1 == h1, let us make h1 -= m h, andn 

Itherefore h1 to consist of m parts, and let us now substitute for h - ?i, 

successively : 

( � h )- •. ("'t1 h )- ; , ("' t2 � )- ! . . .  (�)- 1, 
and finally add the results obtained. In this manner we shall obtain
the time required : 

n n2 1" n b ✓ 2 g  n 

a a h  h- 1 
( 

a = =----=---== . - - m- � + (m + 1) - :s + . . .  + n- s
2 1& n b ✓ 2 og n- 1 , . , ) 

== 3�1,- ½  
[(1- !  + 2- !  + a- 1 +. . .+ n- !)_2 "' n l b ✓2g 

(i- 1 + 2- ! + a- ! + . . . m- 1 )J,- ,
or, from the "Ingenieur,'' Arithmetic, § 28 : 

t == 3 Gh- t n- 1 + 1 m-l+ l 
2 ,. n- ½ b ✓2g (_ ! + 1 -- ! + 1) 

a GAl 
=- =----=:---=== . 2 (m l - n-l) -2 ,.. b ✓ 2 gh 

3 G  - l  
- I' b ✓ 2 g  h [(:) - l J 

1:_) .[(!!!.. ")-l_,,-l]-
✓ h ( 

1 _
✓ /,1 

a G 

O, we have then 

·a G== 

et h1 

""b  ✓2g
I 

✓ h '  

_ 
n 

L -

definite time, therefore, is requi� for the water to run down to 
the sill. 

, 



�-
n 

� f,,. 
✓ 

�
g 

= 3 .  1 1 0 .40 
( 9800 

(✓:i - ✓T) t 11 I _ ) = 

l ,. J.-
4 b l h h = ---=-_t ½ -= .2. 1 ½ _ .2. 

>' F ✓ 2 g It "' F  ✓ 2 g 

itinl veJo_city of efflux. Here the water, therefore, requires l more i�
hme than if the velocity of etllux c were uniform. 

' 

• 

I4.20 \VEDGE AND PYRAMIDAL-�HAPED VESSEL 
, 

.Eramplt. If the \\rater flo,vs lhrougb a notcb in n siJo, of 8 inches in brerulth, front 11 
reseryoir 1 10 feet long nnd 40  feet broad, ,vhat limo wiJl it require to pnsa fro1n a. h t.l 
or  water of 1 5  inches to one of t3 jnches I 

,,. . , ,02 

. 0,5108 = 1 283 19800t
"' . ! . s,02 ✓ o,� ✓ 1,25
1 9  00 _ = (l,4 142 018944) = sec. ., 
8,02 /4 8,0:.? /4 /4

If we nssume the co-efficient ,,_ = 0,601 the effcct i ve time of eillux will bo 
1283t = -- = 2138 sec. = 35 min. 38 sec. 
016

Ronark. We 1nay put for o. rectangular latcml opening, approximnth•ely : 

1 = 2Gt
_ [ (✓T. _ ✓Ji;) - a• (✓ h1 -:s - ✓ h.-3) ] ,  

,-,. F ✓2g 288 
anti F 1lrul G repre3ent the tmnsver�e sec1ions of the openin!( o.nd of the Ycasol, tJ the
depth of lhe opening, lt1 r.he head of ,vnter at  the c.'01nn1onccrnent, h1 thnt at tht' end of 
the efflux. If. h1 = � the opeoing becomes a notch, nnJ ,vo must then apply the pro-

per formula. 

§ 349. JVedge and Pyramidal-shaped Vessels.-If the cistern of 
discharge .llBF, Fig. 478, forms a horizontal triangular prism, the

time of efflux may be found in the follow-
Fig. 478. ing 1nanner. Let us diYide the height

l1E = h into n equal parts, an<l carry hori­
zontal planes through the points of divi­
sion ; let us then decompose the ,vhole 
quantity of water into equalJy thick strata 
of equal length .llD = l, and of breadths 
diminishing do\\'nwards. If the breadth
of the upper stratum BD = b, we have
then the breadth of another stratum D1 B1 ,which stands about CE1 

= x above the orifice F, lying at the lower 
x . 

l h b l xedge, b1 = - b, and its volume = b1 • - = -- . But now the
IL n n 

discharge referred to a unit of time is : Q = ,-. F ✓ 2 g :r, hence 
then the small time in which the surface of water sinks about � 

h l 
n 

is " = !!!:.. x+� F ✓ 2 g x = _ .x. Finally,osinceothesum 
n n ,. F ✓2g ' hof all the x½ from x = h to x = � areo= ( )½ • � - J n Ii½,

n n n lwe haYe the time for the discharge of the entire prism of water:
b l"!3. ---== . ,i:i = 

= 
. � n IL -

� � p c , 1f V represents the ,vhole quaotity of ,vater and c the 



. � 
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the principal sections 

• 
h = Gxstratum of water = G1 . 

for its discharge : 

or if ¼ Gh be put = V, then will V = f t . . 

remained uniform. 

WEDGE AND PYRAltfIDAL.SHAPED VESSELS. 4.:21 

If the vessel .IJ.BF, Fig. 479, forms an 
erect paraboloid, we then have for the ratio Fig. 479. 

of the radii KM = y and 

CD = b : : = �;, and hence the ratio of 

quent]y G1 

G1 '!! == z, conse-
G b?. h 

= �x and the contents of a 

n n 
The perfect accordance of this 

expression with that found for the triangular prism, admits of our here 
Gh.putting t = j . ½ , or, as V = ½ G h (§ 118), a]so

,,.F ✓ 2gh 
l = j e. V .  

,,.Fe
The formula may be used in 1nany other cases for the approximative 

determination of the time of efflux, especially for that of the emptying
of reservoirs. It is especially true in all cases where the horizontal 
sections increase as the distances from the bottom. 

If, lastly, a vessel .llBF be pyramidal, Fig. 480, then G1 : G =- xt :  h?, 
and hence G1 = G:r:2 further the contents of Fig. 480./i?. 

Gthe stratum H1 R1 : 1h = Gr, and the time 
n nh 

F G !✓ 2 gx =Gx2 
" = nh : ,,. • •x 

nI' Fh ✓2g
But as the sum of ail the x ! taken from x 

li nh n
5

!! 2
3(h) � 

= - to x = _ = - 2 • - = f n h ,
11 n n f 

it foJlo\vs that the time for the emptying of the whole pyramid is : 

t _ G 2 h ½ _ - 2 Gh½ • ½ Gh - -----===- • 1, n o • ----== = T • -...!:--::::=' 
n"' Fh ✓ 2 g ,,_ F ✓ 2g ,,. F✓ 2 gl, 

As in this efflux the initial velocity of flow decreases gradually from 
c to zero, the time of efflux is then !th greater than if the Yeloc1ty c 

,.,, Fe 

Exa,�ph. � what time will a poncl, "'·hoso surface has an area of 765000 square feet, 
ern�ty itself, if there be a conduit 15 feet below the surface, nnd at �be deepe5t• place,
which forms a channel 15 inches wide and 50 feet long1 Theoreucally, the time of 

36 

I 

• 



µF✓:2g/,, 
the time also of the emptying of a spherir.al segment. 

T�e above formula may be likewise npplied to the case of an c,behsk or pontoon.shaped vessel .llCD
1, .li'ig. 482, since this is com. posed of a parallelopipe<l, two prisms, and a pyramid. Let b be the 

SPHERICAL AND OBELISK-SHAPED VESSELS.422 

effh:x is t = ! . V = ! . ! 765000 . l5 .
Fv' 2 g h  11'

4
. (!)11 

• 8,02 ✓15 

)9584000 __ _ - 2008"8.. sec. 
,r.  8,02 ✓15 

But now the co-efficient of l'esistance for entrance into the chnnnol, inclined about 45° ,is, � =  0,505 + 0,32? (,et § 323) = 0,832, and the resistance of lho con<luii duo \O 
friction5= 0,025 !... . v' = 0,025.  � . �= tr ; hence, the complete co-efficient of efflux

d 2g { 2g �K
for the channel is:

1 1= = 0,504, aocl tho time of efflu.\'. tle,nnndc<l :14 = ✓1 + 0.832 + 1 ✓ 2,832
t = 200848 + 0,594 = 338128 = 93 hours, 55 minute!!, 28 seco11tls. 

§ 350. Spherical and Obelisk-shaped Vess11ls.-By means of the 
formula of the last paragraph, we may now find 

Fig. 4SJ. the times of efflux for many other vessels, such 
as spherical, pontoon-shaped, pyramidal, &c. 
For the emptying of a spherical segment ./1B,
Fig. 481, ,ve obtai n :  

" rh' tt h3
t = i ----=== - i . ---==:. 

,,_ F ✓ 2 g/1, · "' F ✓ 2 gh 
., (10 r - 3/i) h:i.

ll 

= 1-5' rt �----===--,
,,. F ✓ 2g

therefore, for the emptying of a full sphere, ,vhere It = 2 r, 
16 1' r ✓ 2 rt = ----==e,
15 µ F✓ 2 g

and for that of half a sphere where : 
14 "'r  ✓�li = r,t,.. = .
16 µ F ✓2g

Here the horizontal stratum liiR1 corresponding to the depth FG,
h 2 ,c r h x  ,c h :r b r.= x =  G1 = rt x (2 r-x) . - = --- - --, l ere,ore : 
n n n 

2 ,c r h  i rt h  1"f = ---==e. x� - ----==e. x· ;
115p, F✓ 2 g nµ, F✓ 2 g

as the first part of this expression agrees with the formula for the
emptying of a prismatic, and the second part for the emptying of a 
pyramidal vessel, if ,-ve put first 2 n r Ji in place of bl, and secondly
� h'J in place of G, we shall obtain by means of the difference of the 
times of emptying of a prismatic and pyramidal vessel, found in the
formfr paragraph : 

h l ll,  G h  
---:==, and t = i . ----==-,
�F✓:2gh 

t _ - .2_!I'" , 

. 



, - � ' 

::s; ;  r + zl (b-b1)J ✓ h b cz-1 ) t2 l 1

= 15 3 . 7,4s1 = 1145 sec. As the 
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Fig. 482•breadth at top .IJ.D, and b
1 

the breadth ./J.1 ======-D at bottom, l the length at top .llB, and
l1 

1

the length at bottom A1Bi, and lastly,
h the height of the vessel, we have then
for the area of the surface .llC: bl= b1l1 . . ' 

I •  '+ b1 (l- l1) + l1 (b - b1) +  (lo- l1) (b : ' 
I•,, I-�1), of which b belongs to the parallel­

1l1 •..•••..-.-:.... '!.....IC 
• •,•• 

to the two prisms CPB1 cl, and .ll.FB •. 11.. ' 

t 

. . 
op1ped .IJ1 C1EG, b1 (l - l1) + /1 (b-b1) B, 

n._.:..
. ,... : . ' 

•• J 

·and ( l - [
1) (b - b1) to the pyramid BF 

Br But now the time of efflux for the ' �//parallelopiped, ,vhose base is b1
l
1, is t1 

= ! 
2 b1l1 ✓h; further, that for the two triangular prisms 
,,.F✓ 2 g  

µ, F✓ 2g 
and, lastly, for the pyramid: 

t _ 2 (l-li) (b-bl) Jli. 
p, F ✓2 g  

hence the time of discharge for the whole vessel is: 
t = t1 + t2 + t3 

✓ h=(30 b1l1 + I O b1 (l-l1)+10 l1 (b-b1)+6 (l-l1) (b-b1)] 
15µ, F✓ 2 g-

.2o✓ h= [3 bl+ B b1l1+2(bl1 +b1l)] . _15 ,.,. F ✓2g 
If l

b 
•
1 b · ·aer. Let- = -, we have then a truncated pyramid to cons1

l
the one base bl = G, and the other b1l1 = G1, we then obtain : 

2 ✓ ht = (3 G+8 G1 +4 ✓ G G1) ---=---===· 
15,.,. F✓2g

It would be easy to show that this formula holds true also for eYery
trilateral or multilateral pyramid. 

Example. An obelisk-shaped water-cask is 5 feet long, and 3 feet broad at top� BD<l �t
the depth of 4 feet, that is, at the level of a short horizontal discharge-tube, 1 inch in 
,vi�th, and 3 incl1es in lengtli, it is 4 1eet long and 2 feet l,roa.d, what tirne _will be_re· 
quired for Lue water in lhe iu11 cask. to sink 2½ feet ? The time for emptyiog 15, /.4 berng 
taken = 0,8 1 5 t ; 

✓4t= (S . 4 .2+3 . 5 t.3+2 (3.4+5t . 2)) : ( 1 )1
155. 0,815 ·4 . 12 . 8,02 

1 5 3  . 4 2304= . 4 • \44 = 1 5 3  • 
1 5 t. 0,8I 5 . 8,02 w 12,22 5  . ,02 .-

level 4 - 2½ = 1 i feet above tbe tube l=l1 + ¾= 4f and b= b� + l= 2½ feet, hence 
the time for emptying if the vessel be filled only up to this level,2!_: 

l 152 ✓1,5 = ia1,012 .t,t= (8.4 . 2 + ta .  'Io •1 +2(2. v + 4  . V)J. 15t o,s1 . s,02 .-· . 5t



= --=== = 

✓ /1 3 ✓ /1,4 

ul water lia ,·e the following areas 1 

1.'tllrnnce = 0,832� an<l that for tlle friction : 

v'l + 0,832 + 116365 v' 3,4uM5 
, , 

l 
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4,5779= 602,76 sec. The di fference of the time-t found gives lhe tin10 in �·l1ich th� 
surfuce of ,,,ater originally at tile top of thu vessel sinks 2½ feet. 

§ 351 .  Irregular Vessels.-Wben we have to find the time of effiu · 
for an irregularly fortned vrsse1 HFR, Fig. 483, \Ye must apply Simp-

Fig. 483. 

son's rule as a method of approximation. If we divi<le the whole 
mass of water into four equaJly thick strata, ancl the heads of ,vater 
G0, G1, G2

, G3, G4, corresponding to the horizontal slices, represented
by h0, h1, h,, h3, /1,4, the time of efflux \\'ill be gi\·en by Simpson's rule 

2 G2 4 03 G,t = h0 - h4 -G0 4 G1 •--=-( - +  - - T
✓ h0 ✓ h1 

- + --= + -
✓ h.2 

)-= .
12 µ. F ✓ 2g

In assuming six strata:  
2G� 4 G3 + 2G.,h0- h0 ( G0 4G1 -+- -+ -+ - -+

18µ. F✓2g ✓ li0 ✓ h3 ✓ h, 
Gt _ - 4 G1-+

✓ h, 
.

✓ h1 ✓ h� 
0--)

✓h6
The discharge in the first case is : 

Q= ho-h,. ( G0 + 4 G1 + 2 G2 + 4 G3 + G4), in the second : 
12  

Q = ho-Ile, ( G
0 
+ 4 G1 + 2 G2 + 4  G3 + 2 G,. + 4 G, + G,,).18 

When the form and dimensions of the vessel of efflux are not kno,vn,
\\·e may then calculate very nearly the discharge by the heads of water 
noted in equa] intervals of time. LetBt be one such interval, \ve have
then for apertures at the bottom and sides: 

Q = µ. F
t
3 
✓2g (✓ho + 4 ✓� + 2 ✓� + 4 ✓� + ✓�), 

and for divisions or notches in a side:  
Q = i 1& h t ✓ 2g ( ✓li3

0 + 4 ✓� + 2 ✓h1
2 + 4 ✓h':1

3 + ✓h3
4). 

&ump/,.. In ·wliat lime ,vjll the surface of water in a pond sink 6 ft•er, if the iiluieo
fo_rnis a half c· ylinder, 18  inches wide, 9 iuohcs Jeep, and 60 feet long, anJ lho surface:; 

Gr,, at 20 feet head of ,vatcr, = 600000 square feet. 
" " = 405t000 " = 410000 

G1, " 
G'nt " 

" 

18,5
17,0

5 
" " " 
" " = 325000 "G$) 1 5 ,

G,., " 14,0 " " 
o.,..= - = 0,S836 square feet. 
;J :J 

= 205t000 " 
F - .,, ( s )� - 8 · s 

= O,U!.!5 • ;= 0,02J . 60t. 1,09 l = J,G35G1 then is the co-efficient of  efllux 

Let I.he co-efficient of resistance for thtt 

14 =  
l 

0 .:.<J37
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or, more simply, if we represent 
. , Q ·9. · ( . . . · h - h  

[ 
G G . � � . I . - · :::: o • o 

INFLUX AND EFFLUX. 

and ,,. F v2g == 0,537 • 0,8836 . 8,02 = 3,80M. Now 
G0 600000 G, 495000--"--=--=-- = 134170, - ==----=== = 115090,v ho ✓ 20 ✓111 ✓ 18,5
G� = 410000 = 325000 =99440, G�= 82550, 

v Ii, v 11 vh, v 15,5
G4 265000�-= _ = 70830 ; hence, then, the tune of efflux r.iows: 

vh4 v 14 
t = 6 (134170 + 4 .  115090 + 2 .  99440 + 4 .  82550 + 70830)

12 . 3,8054= 1194440 == 156940 aec., -= 43 hours, 35 min. 40 sec.
7,6108

The diecbarge is:
Q = -h (600000 + .( . .(950()()+ 2 .  410000 + 4 .  325000 + 266000) 
= 4965000 = 2482500 cubic feeL

2 

§ 352. Influx and Ej/1:ux.-If the vessel during the efflux from
below has an influx to it from above, the determination of the time in
,which the surface of water rises or falJs a certain height becomes 
more complicated, so that we must be satisfied generally with
but an approximate determination. If the discharge per second Q1
is > µ. F ✓2gh, then there is a rise, and if Q, <,,. F ✓2gh, a fall
of the surface. Moreover, a state ofpermanency occurs whenever the 
head of water is increased or decreased by k ::s 

2� ( '1,)1 
• The 

,,.
time ", in which the variable head of water x increases by the small 
amount e, is given by the equation

G1 l = QJ -r - ,,. F✓2gx . -t, �-
and, on the other hand, the time in which it sinks the height -k, by

G1 t == ,,. F ✓ � gx . " - Q1 "· 
GitHence we ha,·e in the first caseo" == , and in the 

Q1 - ,,. F ✓2gx 
second ., = G1 l . By the application of Simpson's rule 

p. F ✓2gx- Q1
'\\'e then obtain the time of efflux, during which the lowering surface 
passes from G0 to G1, G, . . ., and the head of water from h0 

to h,.,
h2 • • • 
t = h h• [ G + 4 G + 2 G10- 0 1 +

12 p.F✓2gh0 - Q1 p.F✓2ghl -Q1 p.F✓2gh1-Q1 
.... + 4 G3 + .z G. J ,

µ. F  ✓2ghJ - Ql µ. F ✓2gh.- Ql
Q1 by �k, . 

·+' 

. 
I 

✓i;�vk

· 

+ 

14-F ✓ 2g ,.

_ 

12,,.F✓2g ✓"ii;-✓ k 
+ �Ai��• +: 

_!G3 + -� _]·
✓k,- ✓ k  .�/i,�✓ k  .36• ; .. . : 



- - -

__ 

t = G k  [ hyp. log. h

notch in a side. 

k +  k + ✓12 arc (tang. = -:-✓"!7i, + � h, , -) ] . 

4,1338+✓4. 2070 -✓12,lo0. , 

3 Q,
Now G = 12 . 6 = 
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If the vessel is prismatic, and has a uniform trans,·ers section G,
"'e then have : 

2 G ( - - -
(

✓Ii - ✓k) )t = _ ✓li-✓IL1 + ✓ko. hyp. log. -----== • 
µ F ✓2g ✓ltl - ✓!.:the time in "·hich the head of "·ater passes fron1 fl to Ii,. Since for : 

k ✓lt - ✓k _ ✓lto- ✓k _
1tl1 -- , _ _ - Q - 001

✓lt1 -✓i 
it follows that the condition of pertnanency takes place indefinitely
late.

The foIJo,\'ing formula is the result of investigation for a ,vier or 

t 
( ✓h- ✓k)' (h1 + ✓°h;!.: + k)log. 
(✓k1 -✓k)2 (h + ✓Ill..· + It·) 

G k  [n= 3 Q1 YP· 
( ✓li- ✓IL1) ✓l2k(tang.+ ✓12• · arc )] ' 

= 
3 1, + (2 ✓h + ✓k) (2 ✓h1 + ✓k)

Q, )l, hyp. log. represents tl1e hyperbolic 

= y) the arc whose tangent = y. 

"'here k = (
J ,i b ✓2 g

logarithm, and arc (tang. 

According as k is : h, and the inflowing quantity of ,vatero: 

Q1 > ½ µ. b ✓2 g li3, there is a rise or fall of the fluid surface. 'fhe 
<

condition of permanency occurs, ,vhen lt1 = k, an<l the ti1ne corre-
sponding beco1nes oo. 

Exampl�. In what time will the water in n rectangular tank 12 feet long ani.1 C feet 
broad rise from O to 2 feet above 1.he ed�e of a notch ½ foot bronc!, if 5 cubic feel of \\'Bier 
How in per second? \Vo bavo here h = 0 ;  hence, more simply • 

2 vk +✓h,
21 b = !, and0'-' = 0161

(✓h,-✓k)'
72, Q. = :'I, h, = 
)*(J . 0,6 • ! . 8,02 

t = 72 . 2,1338 [1i
3 . 5 Y'JJ 

= 10,242 [ hyp. 

5 = 2,1338, and the time sought is: 

g (1,4142-1,4607)' 

k = 
arc (ta,,0. = -- ✓6 -)]g 114142+ 2,021.1

✓6 ) J4,33�0
log. 6•1996 .,/ 12 . arc (tang. = _0,002162= 10,242 (7,96 1 - 1,781) = 10,2420. 6,18 = 63,t0 sec. 

§ 353. Locks.-A very useful application of the doctrines hitherto 
treated of may be mnc1e to 

Fig. 484. the filling and emptying of
canal locks. \\re clistingui ·h 
two kinds of navigation
locks, single anc1 double.
The single Jock, Fig. 484,
consists of a chamber B,
which is separated by the 
upper gate HF from the 
upper reach .11, and by the 

• 



--�=----'=' . 

- -= 
F ( ✓h1 - ✓x). Now the quantity o wa er :=;--

1 

,. 
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lower gate RS from the lower reach C. The double lock, Fig. 485,
on the other hand, con­
sists of two chambers, Fig. 486. 

with the upper gate KL,
the middle one HF, and 
the lo\ver one RS. 

Let the mean horizon­
tal transverse section of 
a simple lock chamber 
= G, the distance of the 
middle of the sluice in 
the upper gate from the 
upper surface HR of the upper reach = h1 , and from that of the lower
reach = /1,2, and, lastly, the area of the aperture or sluice opening= F, we then obtain the time of filling up to the middle of the

Gh2 . . . aperture t1 = d h filling t e rema1n1ng--�==, an t e time for h 
p, F ✓2g hl

space, where a gradual diminution of the head of water takes place,
2 Ghl .t2 = ---:::=== ; consequently, the time for filling the .singIe 

,,. F ✓2ghl
sluice is ; 

(It. + 2 hl) Gt = tl + t'J. = . 
,,. F ✓2ghl

If the aperture in the Io,ver gate is entirely under water, then while 
emptying, the head of water gradually decreases from h1 + h2 to zero, 
hence the time for emptying or running off is :  

2 G ✓ hl + li'lt = 
,,. F ✓ 2 g 

If, on the other hand, a part of the aperture stands above the 
lower ,vater, we then have two discharges to take into account ; the 
one flowing above and the other below the water. Let the height of 
the part of the aperture above the water = a,, and that under the 
\yater = a,, the breadth of the aperture = b, "'e then obtain the
hme of efflux from the expressione: 
t _ - 2 G (h1 + h2) . 

p, b ✓2g (a, Jh, + h1 - ;, + a, ✓k, + h,) 
In double locks, the head of water gradually decrease� in the 

�hamber which is closed from the upper reach, during the clischa�ge 
into the second chamber. If G is the horizontal trans,rerse section 
0f the first chamber, and the original head of water h1 in this cha�ber 
sinks to x, whilst the water in the second chamber rises to the muldle 
of the aperture of the sluice, we have then the corresponding time 

2 G  · f tt 
✓�g 



G ( - .x) = G1 hence .x =- h1 , h
1 h

2

and the whole time for Alling: 

into that of the velocity v, equal to the mechanical effect Q p h . yp
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_ 
G1 h

2, and 
G 

- 2 v'G (✓Gh1 -✓ Gh1-G1hs)•
,,.F✓2g 

t1 - 2 G-(✓h-- lh1 -
,,.F✓2g 1 

G1hs)G-'1/
The time in which the water rises as high in the second as in the

first chamber, and in which, therefore, it comes to the same level in 
hoJh, may be found from i � 7 : _

2 GG1 ✓zo' .2 G, ✓ G  ✓Gh1 - G1
h.1- -ts == 

,,.F( G+ G ) ✓
- -
26 ' 

t - t1 + t2 -

,,. F( G + Gl) ✓2g 

G2 ✓G ( 
- ✓ Gh1 -,. F✓2g 1 

- -=-=------)
G + G v'Gh1 G1h2 - • 

Ezampk. What time is required for the filling and running off of the following single
lock chamber 1 The mean length of the lock = 200 feet, mean breadth == 24 feet 
therefore G = 200 . 24 == 4800 square feet, distance of the centre of the aperture of th: 
sluice in the upper gate from the two surfaces of water 5 feet, breadth of both apertures 
2½ feet, height of the aperture in the upper gate 4 feet, and of that in the lower gate
(entirely under water) 5 feet. Let 

(2 ,.I + la.) G _
t = ..:..---C-.-'-:===-• h, = 5, h, = 5, G == 4800, ,,_ =-= 0,615, F :s 4 . 2½e-= 10, v:! g 

,,. F v 2 g h,= 8,02, we then obtain the time of filling: 
3 · 5 · 4800 14400 _

t = -= _e 652,85 seconds. If we subatitute in the
6,15 . 8,02 v:; 1,23 • s,02 v 5 

formula t = 2 G vh1 ±_ "-, G -=  4800, A, + "• - 10, F - 5 .  2j - 12,5, we then 
,,. F ✓J. g

obtain the time for e1nptying of the sluice : 
2 · 4800 vlO = 4911 78 sec.e= 8 min. 21,78 1ec.= 

C H A P T E R  VI .  

ON THE EFFLUX OF AIB. FROM VESSELS .AND TUBES. 

§ 354. E.fllux of Still Air .-Condensed air does not flow from 
vessels quite in accordance with the law which regulates the flow of
�ater, because an expansion takes place during its discharge, "·hich 
1s not the case with water. But in order to discover a similar law for . viair and other gases, let us make the mechanical effect Qro-, which a2g 

t 
0,615 . 12,5 . 8,0i 

f .9uant•1ty o air Q of the density r requires to pass from a state of rest 

log. (�1) found in §298, "'hich the same quantity of air produces 



--------

or more accurately
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p p 

But the height of :n external column of air which is in equilibrium 

barometer, is : 

: 

Q =  Fvn= F (1 - :6) ✓2gh, 

= 

EFFLUX OF STILL AIR. 

when it passes from a greater pressure p1 to a less p. If� therefore,
P1 be the elastic force of air enclosed in a vessel, v its velocity of
efflux for the tension of the external air, and r its density, then 

2
Qr . ;n = Qp hyp. log. (!!.!.), therefore, the height due to the velo-
. g pcity: 

v2 

- = 'f!_ hyp. log. (P1 ) = 2,3026 ]!_ log. (P1 ) ;
2g "I pp "I

and the velocity itself: 

v = J 2g � hyp. log. (f) · 
When the tensions p and p1 differ little from each other, when 

P1 - p is < Tl
if p, then \\re may put : 
Pi = hyp. log. (1 + 'P1--P) = Pi-P, and hencehyp. log. 
p 

v = ✓2g (p•-P). 

= Pi-by its weight with the pressure p1-p ( § 294 ), is h 
"I 

P ; hence we 

tnay put the velocity of efflux v = ✓2g h, and a perfect analogy "·ith the efflux of ,vater will hereby subsist. For high pressure this for­
tnula is not of course sufficient, for in this case : 

hyp. log. (� ) = P,;P _ ½ (Pi;P)• at least. 
Hence, then, more accuratelyn: 

� = J 2 g (P,-;P - ½  (p,;:l) = J 2 g (1 _
p

2-:) h,
or if "·e represent the height of the barometer by b, p = br, and 

V =  J 2 g  (1 h
) h =  (1 - 4�) ✓ 2gh.-

2 6
If the discharging orifice F of the vessel

JJB, Fig. 486, is accurately and smoothly Fig. 486. 
rounded, the particles of air then flow in 
parallel lines, and hence the quantity of air 
ilow1ng through the orifice in each second, 
and measured by the height of the external 

_n

-
F✓2g b hyp.o

-
log 

_o_o_ 
;

Ii)·(_b_

§ 355. The above formulre do not admit of direct application, be­
catise we cannot measure the internal or the external pressure by the 



(b th) metres. 

l 1 
P1 

. b cubic metres. . log
. 1 t 

f . -1 ·-. F . . 
=- 150° C., we then have: t1 

P - 1+0,00367 · 
r 1,2572 
p 1 +0,00367 t- - ------· 

If, for example, t .. 0 and
Fl - ✓1,5505o. F 
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length b +h, and b of the columns of air. These pressures are gene­
rally measured by columns of ,vater or mercury. As reganJs the 
quotient � = b +h, it is immaterial whether b and h be expressed in p b
columns of air, water, or mercury, because each reduction of b and h 
leaves the fraction b +h  constant, except that the quotient P == b, is 

b t 

still dependent on the temperature of the effluent air, and varies for
different kinds of gas. For atmospheric air (§ 301), if p represent
the pressure of air on one square centimetre, and r the weight of a
cubic metre of air, and t the temperature in degrees centigrade, we 
have 

t ,  on the other hand, for steam, 
. 

r 0,7857
If we substitute these va.lues in the general formula for v, we shall

obtain for atmospheric air :'------------=:----=--
v = 395 J(l +0,00367o. t) hyp. log. (°t

h
) metres, 

or h being small : b 
v = 395 J(l +0,00367o. t) ; metres, and for steam 

v =500,6J(1 +0,00367 • t) hyp. log.
The theoretical discharge as estimated under the external pressure

is Q = Fv, but if this is to be estimated at the internal pressure, v.e
6 Qmust then make Q p - Qp, hence Q1 -]!_ Q- 6o Reduced to the.+h

temperature of zero, the quantity discharged is : 
QQ , therefore, for atmospheric air1 I+0,00367 .  t

=- 395 FJ hyp. log. (h+h)-hyp
+0,00367

If equal masses of air of different temperatures issue from different
orifices Fand F1 at the same tension, we then have 

= 

:
l + 0,00367 tl

"'1 +0,00367 t
F. 

1 ,245 F.== 
If, therefore, a blast furnace is to be supplied '\\'ith heated air of
150° , we musto. apply nozzle pipes, which haYe a one-fourth greater
transverse secuon at the discharging orifice than if cold air '\\'ere to
be used. 
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· J (1 + 0,00204 t) hyp. . v = 1642 l g. o )

v' � 

EFFLUX OF AIR lN MOTION. 

For Prussian measure, and centigrade scale of temperature :  

v = 1258 . J (1 + 0,00367 t) hyp. log. (6t h), and for steam 
v = 1595 . J (1 + 0,00367 t) hyp. log. tt h)·

For English measure, and Fahrenheit's scale of temperature: 

J (1 + 0,00204 t) hyp. log. (bthv = 1295 . ), and for steam 

Exan,ple. In a large reservoir, air at 120° C , temperature is enclosed, which corresponds .to the height of a mercurial manometer of  5 inches, whilst the external barometer 
stanus at 2712inches ; what quantity of air will tlow from tbis through a rounu apertureli inch wide ? It ls : 
hyp. wg. (b + h) = hyp. log. (

3212 
) = hyp. log. 32,2 - hyp. log. 27,2 = 5 177455

b 27,2 
- 5 ,605t80 = 0, 1687 5 ,  hence the velocity of efflux is:  -----" = 125 8 . .,/ (1  +0,00367 .t120) 01 16875 =125t 8 . .,/ 1,4-104t. 0,16875 = 620,2 Prussian 
feet. Now thearea ofthe orifice=..!. (i)'= "' =0,01227 square feet ;  hence it follows 

4 256
that the discharge Q = 0,0 1227 . 620,2 = 7,61 cubic feet. Estimated at the interior 
pressure, it is = 272 

. 7,Gl = 6,43 cubic feet, antl reduced to the mean height of the 
322

barometer, 28 inches and o0 temperature (30 English inches and 32° temperature F.),
the quantity discharged is: 

272 1= 7,61 . . = 5 ,13 cubic feet.
280 1,4404 

§ 356. Efftux of .llir in �fotion.-Tbe formula of efflux given:  
suppose the pressure p1 or the height of the manometer I,, to be mea­
sured at a place ,,·here the air is at rest, or has a very slight motion, 
but if p1 or h1 is measured at a place where the air is in motion, if,
for instance, the manometer 

Fig. 487.M communicates with the air • J ----in a conducting tube CF, Fig.
487, we sh all then ba,·e to 
take into account the vis viva 
of the arriving air. If now c
°?e the velocity of the air pass­
ing the orifice of the manome­
ter ,ve sha1l accordingly have 
to make : 

+ Q p hyp. log. (l!.1- , 
p)

be the transverse section of the orifice and G that of the tube, 
or of the air passing the orifice of the man�meter, according to the 
or 'f1 F 

Qy 2 = 
• :g Qy . 2:g 

law of Mariotte, : = J!, or Gcp1 = Fvp, therefore,
Pi 

= �t.t:. v, Qr [1 - (�)' (;.)] ;; = Qp hyp. log.t(;•), 

, 

c 



27½+ 2½ p1 

t, and at the external pressure is : 
Vn == V (h+h ) - V(b+hn ) V(6--hn ) . o

h b 
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and the velocity of efflux in question : 

✓ 2 g ; hyp. log. (�' )
V =  -

✓ 1 - (G�, )' 
The velocity of efflux is, therefore, here exactly ]ike that of \\·ater 

from vessels, the velocity is greater, the greater the ratio � of the 
transverse section of the orifice to that of the tube or the arriving cur­
rent of air. From this it is e,·ident, that under otherwise similar cir­
cumstances, the height of the manometer p1 is so much the Jess the 
narrower the conducting tube is, or the greater the velocity of the air
issuing from it . 

.Exampk,.-1. A mercurial manometer, placed upon ftn air tube 3½ inches wide, stand� 
at 2½ inchet1, while the air flows from its conical extremity throu�h a round orifice 2 inobt-s 
in diameter; with what velocity will the current move ? If the external baromctt•r 

-= 
27½ 

=- 30 rf an<l5 -271
stand at 27½ inches, we shall then have p

' 16 1 1  =f! = ·F J!... = ( 2 
3,5 

.)n
44 ; hence the theoretical velocity of efflux at49 • 12 147 •U p. 

a temperature of the air 10° C. : 
1258 . ..,I 1,0367n. lujp. log. (ff) 1258n-./ 1,0367n. 0,087 .3,.0 p v = ---====---=--- == -___,;;----:::==-- - v russ1an feet.-

✓ 1 - (//t,)1 ..,IO,\H04 
2. The tension Pi in the air regulator, where the air is without motion, i1 giTen by the
1brn1ula, 

(P•) 111 ,- /ayp. 
/of. 

(f)
/ayp. 1o8. - -= ;;- . -, or /ayp. log. p, -Jiyp. log. P + 

p �g p ( 
G
1

p

· p 
, 

)
' 

1 -

0,087
therefore, in the pre1ent cue, ::s layp. log. 27,� + 0 9104 .. 3,3142 + 0,0065 111: 3,4 107. ' 
Hence it follows that Pi = 30,3 inches. 

§ 357. Efflux under Decreasing Pressure.-!( an air reservoir has 
no influx, whilst an uninterrupted efflux goes on, the density and ten­
sion gradually diminish, and hence the velocity of efflux becomes Jess
and less. We may determine in the folJowing manner in \\'hat ratio
this diminution is to the time and to its discharge. 

Let Y be the volume of the reservoir, h0 the initial height of the
manometer, and h,. the height of the manometer at the end of a
certain time t, I, the height of the external barometer. Then the
quantity of air in the reservoir at the commencement reduced to 
the external pressure =- V(b+h0) and at the end of the time t

b ' 
, 

V(b+hn )
b 

, and, consequent y, t e quantity 1sc arged .J h . d' h 1n t he h· me =-

-

· /., :. 

b , 
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hyp. log. (b th) = i (1 -�), 
) J� and consequently J hyp log. (

6 

t_ h) - (1 - :. b

+ 4b "'b= l . 
(b + h) 

V( h -h ) , ..

h + 4b V ( h - hn ) e 

EFFLUX UNDER DECREASING PRESSURE. 

and, inversely, the height of the manometer corresponding to the dis­
charge Vn is : 

hn = ho - ; . b. 
If we take four intervals, and the initial height of the manometer

h0, and at the end of the time t = h,, and 
h1 = h0 -

ho�
h
,, h1 = h0 - f (h0 -h,), and 

h3 = h0 - f -(h0 - h,), we shall then obtain by Simpson's rule the time 
_ V(h0-h,) 1 4t + 
- 12 Fl>J2g� J hyp. log. (

b�h•) J hyp. log. (b�h•) 

2 4+ 
�
f hyp. log. ( � •) �f hyp. log. ( t 3)b h  + b h  

1 -+ b+h •f� hyp. log. ( b ' ) 

For moderate pressures or heights of the manometer : 

1 
( 

h) fh 

b�f hyp. log. 
If we now take n intervals, and therefore the discharge for one inter­

val : v. = V(h0-;;h.), we shall then obtain the corresponding element 
n n 

of time : 

� � W(�-;;-hn ) +1'-F 
J 

2 g ; hyp. log. (bth) 
(i + 4

h
b) J!

nb-
F J2 g � 

( -½ hl) 
• 
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( 
h0-:-hn ) h--½ = 2(h

0
n t-h" ½) = 2 ✓ h0

-✓ h( ). 

and the sum of all the 
, ( 

ho-:ahn )  h½ = J(ho:f_h,, j) - f ( ✓ho 
3 -✓h3 )n 

whence the sum of a11 the small intervals of time, or the whole ti1ne 

) C ows out, IS " h h fl Vn -
O
b V(h -h : W In 

t =- 2 V 1 , or ✓ ho- ✓ h ] ,. ( ✓ h( - ✓ la,. ) o[ ) 
12b 

+ 

= 2 V - (✓ h (1 + ho + ✓hi',. + hn )- ✓ hno ), 
12 b 

2 V 

F ✓ 2 gb � 

Example. A 50 feet Jong and 5 feet wide cylindrical eir-re�httor of a blowing 
machine is filled with air• tut- height of its manometer h == IO 1nd1t>s, and the ther­
mometer stands at 60 C. 

1
Jf now a flow of air takt>s place in a space where the height 

of the barometer is 27 inches, through a I-inch wide circular oriflc�, then the question 
arises in what time will the heia"ht of the manometer fall to 7 inches, and what will 
be th; corresponding discharge? The yolume of the chamber is for Prussian measures,-

h ") Y - ( 
1 O-7

) • 981, 7 5 :ms 109,08 cu Lie fl'et. 
("0 -

4 576 

+ 
8 0,005454 • l 27 . 

1963,5 
5,454 . 1,272 

also 1_n the �fflux of air. If the orifice of efflux be cut in a thin plate, th� air passing t�rough it has a smaller transverse section than the orifice, and on this account the discharge is Jess than the product }v ., 
of the transverse section F of the orifice and the theoretical velocity v. 
Let } be the ratio of the transverse section F1 of the blast to that of 
the orifice F, == ,,., we then ha,·e the effective discharge as for water:  
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, h1, h1, • • • • hn , we shall then ob­
0

No,v if we substitute for h ;  h
tain the sum of all the 

in ,vhich hn passes into h0, and the quantity of air 

F✓ 2 gb ; 

F✓ 2 g b� 

-,--

approximately: 
(✓�- ✓ ,\n ) (1 + ho:

hn )·= 

98J,75 cubic feet, hence the discharge, measured at the!.n. 51 • 50 1250 .  !. == =
4 4 

external pressure is V. = . I I 27b 

Now J 2g � =- 1258 ..,I J + 0,00367 • t =- 1258 ..,I 1,02:.102 - 1272, anJ 

� (i,? = "" =0,005454 �quare feet, hence the time of efflux in question is 

') 
F = 

10 +' ) 2 .  981,75 

== 
( 

/10
1272 J 27 -J 27 

. . 0,0994 . 1,079-= 30,3 seconds. 

1 =a: 
( 

�- 358. Co-efficients of Ejflux.-The phenomena of contraction
\\'hic� we have considered in the efflux of water from vessels, occu; 
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Q1 =µ Q = F1v =,,. Fv = µ FJ 2g ; hyp. log. (i)· 
From the author's reduction of Koch's experiments at pressures of 

the manometer of from �bu to ! of an atmosphere, we may take the 
mean of ,.,, = 0,58.

The effective discharge in the issuing of air through short cylindrical 
adjutages, is likewise less than that determined theoretically ; we have,
therefore, to multiply this latter by a number deduced from experi­
ment, the co-efficient of efflux, ,.,, in order to obtain the former; only 
here ,.., is not the ratio of the transverse section F1, but the ratio v1 of

F V
the effective velocity of efflux 111 to the theoretical "· Koch's experi­
ments give for the above pressures, in the fiow of air thl'Qugh cylin­
drical adjutages, which were nearly all six times as long as wide, as 
a mean µ =- 0, 74. 

Conically convergent adjutages, similar to the nozzles of bello\'\'S,
give a still greater co-effi.eient tlf efflux;  a tube of 6° lateral converg­
ence in the experiments of Koch, gave \\'hen five times as long as
wide, the mean co-efficient ,,, = 0,85.

F'rom this, therefore, the effective discharge for the flow of air :
through orifices in a thin plate, measured at the external pressure, is 

h t, . .Q1 = 751,1 F (1 - -) (1+ 0,00367t)..- :_cub1c feet (Eng.),4b J �- . ,
for efflux through short cylindrical adjutages : 

Q1 == 958,3 F ( 1 -! ) J (1 + 0,00367 t) : cubic feet, 

and through conical adjutages of 6° convergence. 

Q1 = 1090,7 F (1 -!)J ( 1  + 0,00367 t) : cubic feet.• 

• Experiments on the efflux of air have been undertaken by Young, Schmidt,
Lagerhjelm, Kochi d'Aubuisson, Buff, and in later time, by Pecqueur, Saint-Venant, and 
Wantzel. For an account of the experiments of Young and Schmidt, we may refer to 
Gilbert's " Annalen," vol. 22, 1 801, and vol. 6, 1820, and to Poggendorff's " Annalen," 
vol. 2, 1824; for those of Koch and Buff, to the " Studien des gottingschen Vereines 
bergmannischer Freunde," vol. 1 ,  1824; vol. 3, 1833; vol. 4, 1837, and vol. 5, 1838;
also in Poggendor.tf·'s "Annalen," vol. 27, 1836, and vol. 40, 1�37. The experiments of 
Lagerhjelm are described in the Swedish work, "Hydrauliska Forsok of Lagerhjelm, 
Forselles och Kallstenius," 1 vol. Stockholm, 1818. D'Aubuisson's experiments are to 
be found in the " Annales des Mines," vol. 11, 1S25; vol. J 3, 1826; vol. 14, 1827, and 
likewise in his "Traite d' Hydraulique." The latest experiments instituted in Franc�
are reported in the " Polytechnischen Centralblatt," vol. 6, 1845. M0.9t of these expen­
�ents were tnade with very narrow orifices, and, therefore, !ICSrcely answ�r the purpose _in practice. The experiments of d'Aubuisson and Koch deserve moet cons1deratton; and
next to them, perhaps, those of Pecqueur: but the most extensive are those of Koc�. 
The wished-for accordance is hardly to � met with in the reault• of all these expen­_menta; the co-efficients of efflux found by d'Aubuiuoo vary cons1d�rably from tnhose _
<'alculated by Koch. The grounds for my placing the most confidence 1n theco-effic,�nt.s
of Koch, are given in the " Allgemeinen Maschinenencyclopiidie," under the article 
" A m;fluz," and in a Memoir of mine in Poggendor.tf'e " Annalen," vol. 51, 1840. [For
calculations of the above, and all similar caeea, the co-efficient of t for the Fahrenheit'& 
thermometer is 0,002039 instead of 0,00367; (see above, p. 346;) but the degrees com• 
puted are actually t - 32 on that ecale.J-Ax. ED. 



J 2 g f hyp

3 ,.) J c1 + 0Q, = lOOO . Tf� (1  - ar. 1OO307 . 15) 4 , 27,,l 

✓t,Of>5 . ·&8, = 2 1,tJ6 ✓0,1151 = 7,3•1 cubic fe et. 
_ •)l) 27 ---107 
- -�, • 

110 

. log ( 6 � A.,) . 

) 7) /12bu if be the height of the manometer at the beginning of the con­! /1 1 
<lu1t, ,ve shall then have: 
J!.. l1yp. log. (h-h•) = [1 + ( !_ )

2 (!!_1)'+ O 024 : (!i)•J � 
bet'ause the velocity in the tube = � v ;  hence in tJ,is case 
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Examplt. If the l\,·o orifices of n bello,vs together pos�csR nn area or 3 squnrt'! inche. 1 .1� further, the pre.4sure or the 1nnn0111eter j!;I 3 inches, the cxternnl oo.rotnetcr 27½ incite1 
alld the temperature of the nir 15°, then is the discbnrg,-. : 

!47,U 

§ 3�9. Flow tl1rougli Tuhes.-If the air issues through a Jong tube 
GF, Fig. 488, it has then the resistance of friction to overco1ne in 

Fig. 488. 

the same manner as ,,·ater ;  this re5:istance 1nay also be measured 
by the height of a column of air, which has for expression 
h,. = { . � . v' , where, as in the conducting of ,vater, v represents 

d 20'0
the velocity, l the ]ength, d the wiclth of the tu be, and r a co-efficient 
of resistance to be determined by experiment.

Numerous experiments of Girard, <l 'Aubuisson, Buff and Pecqueur,
Jea<l to the mean value { = 0,024. Ji''rom this, therefore, the resist­
ance generated by the friction 

v2 
of air in tubes may be mea. ure<l by

the height liu = 0,024 � . of a colu1nn of ail', or by the height
d 20'0 

v2
11" = 0,0000023 � . _e of a column of quicksilver, an<l the manome­

d 2g
ter will stand at this much Jess height at the en<l of the conducting
tube than at the beginning. 

If at the end of a <.'onclucting tube of the "·idth d, the mnnometer
stands at I, , whilst the air flo\\'S through an orifice of the ,vi<lth d,
then from �hat precedes, the velocity of discharge ,vill be : 

2 ( d
I

� 
1 - (

h + 
b 

◄ ;
V = 

. 

' 'Y b b + h1 d <I d 2ge' 

rfl 
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1294 ,. J (1  + 0,00367 t) hyp. log. ( b t h
) 
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J2 g � hyp. log. (b
�

h,
)

V =

J 1 + [0,024 � + (6:h)' ] (�• )' 
�f, lastly, the height of the manometer h is measured in the reser­

Yo1r at the beginning of the conduit, where the air may be regarded 
as at rest, we then have : 

J 2 g � hyp. log. (
b-:- h

) 
v ==  ----

f 1 + 0,024 l d/ 

If, further, we put the co-efficient o( resistance { for entrance into 
the tube, which when 141 = 0,74 amounts to 0,826, and, further, join
to it the co-efficient of efflux I' for the outer adjutage, we then obtain
for the velocity : 

,. J 2 g � hyp.olog.o(
b

t h
) 

V = -----==:::::::=======:---
1 + { + 0,024 l d/ 

. d' 

--:-=====:::;;:==----· 

d' 

' 

---.:..---=====-======----- feet (Pruss.) 
J 1 + C + 0,024 

l!:' 
or = 

.A.ccording as the point of the interior orifice lies s lower or higher 
than the point of the exterior orifice, we have to add ± , to the quan­
tity under the radical in the denominator. Moreover, other hindrances 
may present themselves in the tube, such as curvatures, contractions, 
and widenings, &c. Satisfactory experiments on these obstacles do 
not exist, but we may assume with great probability that these resist­
ances are not much different from what takes place in the. cue of 
water, because the co-efficients of efflux, and the �efficient of fric-
tion are nearly the same for air as for water. ·· · 

As long, therefore, as no further experiments are made oa ti.. 1Ub­
ject, we may avail ourselves with tolerable safety ofthe co-efficient of 
r�sistance found for water in investigations on the motion and flow of 
air. 

&am,,k.. In the regulator at the bead of a 320 feet Jong and ( ineh wide air�
ductor, the mercurial manometer stands at 3,1 inch, whilst' the external �eter 111 at 
27,2 inch ; further, the width of the orifice of the conically contracted ex�emity ?f �e 
conductor is 2 inches, and the temperatu.re of the air 200 C., what quantlty of a1J' will
this conductor deliver1 It will be :  

3
l + C + 0,024 ia' rs:: 1,826 + 0,O'J45. 3:o . (f)• .. 1,826+0,024 • 

32�� s;a 1,826 

+ 1,44 - 3,266 ; further, ( 1 +0,00367 t) ltyp. log. ( ;;") 

37• 

• 

http:temperatu.re
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27,'l 

V, 5, ,ve shall then obtain the velocity of no,v ; 
1258 . 0,85 v1J 1 158 

�J,206 
- -

4 
-- = v =  -. • cu,lc eet 4,39 
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= ( l  + 0,003u7 . 20) h!IJJ.log. (
30•3 

) = 1 :073•1 .  (5,7137-5iJ0f.lti) 
= 1,0?34 . 0,1079 = 0,1158 ;  ifnon·, filttber, ,vc introduce tho co-efllcient of elilux,f' = 

1l'= = 201,3 feet; nnd lastly, die discharge: 

fT,rd,l
Q - 20J,3 

�tl4 
l. 1i (PnusJon .. ) 

C H A P T E R  V I I .  
ON THE MOTION OF '\VATE.R IN C.ANALS .AND RIVERS. 

§ 360. Running Wate-r.-The doctrine of the motion of ,vater in
canals and rivers, forms the second main division of hydraulics.
Water flows either in a natural or in an artificial bed. In the first 
case, it forms streams, rivers, brookso; in the second, canals, cuts,
drains, &c. In the theory of the motion of flo,ving water, this <listinc .. 
tion is of little moment.

The bed of a river consists of the hottorn ao<l the t\VO banks or sllores. 
The transverse secti'.on is obtained by n plnne at right angles to the
direction of motion of the flo,-.,ing ,vater. Its peri:nieler is that of the 
transverse section, which again consists of the air and the water sec­
tion. A ,?ertical plane in the direction of the flo,...·ing ,vater gives the
longitudinal section or profile. By the slope or declivity of flowing
water is understood the angle of inclination of its surface to the hori-

zon. Thefall, which is the vertical distance 
1F.g. 489. of the two extreme points of a definite len�h

of the fluid surface, ser,·es to assign t e==== 
angle for a definite Jength of the flowingstream. For the length of course, .llD =r l,
Fig. 489, BC is the bottom of the channel,
DH= /1, the fall, and the angle D • .111-J = 8, 

the slope sin. � = � = absolute faJI per 
unit of length.• 

§ 361 .e. Dz]ferent Velocities in the Transverse Section.-The velocity
of water 1n one and the same transverse section is very different at 

• The fnll of brooks and rivers is very various. The Elht•, for exnmplo, for the
�-tent of a �enn� mile from the Upper Ellw to Podiebnul, has a falJ ol 57 fot.•� fcorn 
��ence to Le1tmcritz 9 feet, from there to 1\10.hlborg a mean or 6,S, and frotn the11�e to
D.L_agdeburg 2,5 feet. 1\lounuun brooks have a foll of from 40 to •100 foet per GertnM
nnle. For further particulars, «t II Vergleichende hydrogmpbiscJ10 Tabcllen," &c,1 von
Stranz. Canals and o�be-r artificial wntar conduits have much smaller falls. Here the
abro!u.te :all, at most, 1s 0,001, often 0i00011 and even less. l\1orc on this aul,ject will
be given 1n the Second Part. 

http:abro!u.te
http:secti'.on
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different points. The adhesion of the water to its bed, and the cohe­
sion of the particles to each other, cause those lying nearer to the sides of the bed to suffer some constraint in  their motion, and hence, to tlo,v more slowly than the more remote. For this reason the velocity di­
°;linishes from the surface downwards to the bed, and is least near the 
s�de or at the bottom. The greatest velocity is found for straight rivers, generally in the middle, or at that part of the free surface of the water where there is the greatest depth. The place "'here the water attains its maximum \·elocity is called the line of current, and the deepest part of the bed; the mid-cliannel. The upper surface does not form an exact horizontal line, because the elements lying on the surface of ,vater, flow on with different ve­locities with respect to each other, they there-fore exert on each other different pressures ; Fig. 490. 

the quicker ones a less, and the slower a greater pressure, and thus for the maintenance of relative equilibrium, the quicker elements 
superpose themselves on the slower. If v and are the velocities of two elements Mand .11,v1Fig. 490, then according to the doctrine of hydraulic pressure (§ 307) the difference of level of the two elements ise: 

v2 ve vi-v 21 • MH = h = _ _ _1 
i = 

2g 2g 2gThis difference of level is always very small. If, for example, v1 = 0,9 v, and v = 5 feet, ,ve then have this 
= ll( 1-0,81) � = 0,19 . 0,0155 . 25 = 0,0736 feete= 0,88 inches

2g(Eng.). For this reason the ,vater stands highest in the current, and lowest at the banks. In bends, the current is generally near the concave banke. § 362. Permanent Motion of Water.-The mean velocity of ,vater in a transverse section is, according to § 308: _ Q _ quantity of water per second
C - F - area of section The mean velocity besides may be further calculated from the velo­cities c1, c2, c3, &.c., of the separate portions of the section, and from the areas F1, F2, F

3
, &c. It is namely : 

Q = F1c1 + F2c2 + F3c3 + . . .  ' and hence also : 
C = F1c1 

+ F2c2 + . •__,;;_�-�-'----
Fl + F,. + . .Besides the mean velocity, the mean depth of ,vater has to be in!ro-duce?, that is, the depth a which a section must ha!e at all P?Ints 

that 1t may have the same area as it actually has ,v1th the variable depths av a2, a3, &c. Hence, therefore, 
F area of section a = - = --.,-,-----•b breadth of section 



--

&ampla.-1. .At Lbe section of a canal, ..iBCD, Fig. •l9J, \\·n� foun1l thnt thl• it 

Corretipooding mMn vef(l('ilie!' 

the mean velocity 1n a perpendicular Cm = 0,915 c0, 
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If the �epnrate parts of the breaclth bl ' b2, b3, have the corresponcl-.1ng mean depths a1 , a2, a3, &c., Fig. 491, \\'t! then have : 
F = a1b1 + a1b2 + . . • ,

Fig. 491. and hence also: 
a1b1 + a2h, + . .a c:::: -!.....!--�--=---·.bl + b'J. + . .

Lastly : 
a,b1c1 + a,,h,c,, + . .  

c = - ' 
a1bt + a,h,. + . .

and if the portions b1, b2, &c., be of 
equal size, 

_ a1 c1 + a, c2 + . .
C - --=--=---..::......:::___;__ , 

01 + a, + . .
A ri,·er or brook is in a state of permanency \\'hen _an e.qual quan­.tity of \\'ater flo,vs through each of its transverse sections 1n on equal 

time; "'hen, therefore, Q or the product Fe of the area of the .ection
and the mean velocity throughout the ,vhole extent of the stren,n is a 
constant number. Hence this simple Ja,v conies out : in tlui pernia­__nent motion cifwater, tlie mean velocities in. two transverse sections are
to eac/1, otlter inversely as lite areas of tllese sections. 

Portions of the breadtu • • . b, = 3, J fec11 1,9 = �,4 f�t, h, m 1,3 foc
Mean depth • 

Hence the area of 1bese profiles F 

"• • a, = 2,:, " a• = 4.5 a, = :J,O '' 
r1 

11• • 2,9 r, = :J1 7 u r s::::a 3,2 u .,= 3,1 . 215 + 5,4 . 415 -t- .,,3t. 3,0 = 14,05 squnro 

t 

feet, nnd the discharget: 
Q =3,1t. 2,5.2,0 + 5,4 . ,l,5t. 3,7 + .J,3t. 3,0 .3,2 = 1 53,065 cubic feet, nnd th ntenn 
YeJocity c = � = 153•665 = 3 •119 feet I

JI' 4.J,{)5
2. When a cut is to conduct 4,5 cubic feet of  \\'lltcr wjth a menn volocity c of 2 feet, wo 
must then give to it a transverse section of •l,

2 
S = 2125 square foot arcn.-3, If one nu,l 

the rome stream has a menn velocity of 2f feet  nt n pince 500 fel."t bruod n111l {I ful�t 
mean depth, it ,vi ii then hnve, at a plncc :120 fee l  brotul nnd 7,5 feet n1cn11 depth, tho 
mean velocity 

c = �GO · 9 • 2,'l5 = 56 7 = •l,725 feet. 
320 . 7 ,6 J2U 

§ 363. J.fean Velocity.-If we divide the depth of ,vatcr nt any
point of a flowing stream into equal parts, and raise ordinates upon
them corresponding to the yelocities, we shall then obtain a scale of
the velocity of the current .IJB, Fig. 492. Although it may be granted

that the Jaw of this cale, or of the clifierence 
Fig. ◄92. of velocity is expressed by some cur,·e, as

according to Gerstner by an ellipse, yet it is
allo,YablP, without fear of any great error, to 
substitute for this a strnight line, or assume
that the velocity din1inishes unifor1nly ,vith 
the depth, because the din1inufion of velocity
do\vn,va.rds is always very small. From the
experiments of Ximenes, Brunnings, and Funk,. . 

,,·here c0 repre-
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c + C2 + . .  • Cn ). , C = 0,915 ( Co +  

. 46 = 3 2� feet• cording to Prony, c = SO. �! _.' 4 = ,l13,97 
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sents the velocity at the surface, or the maximum velocity. 1'he 
velocity, therefore, diminishes from the surface to the middle M

by C - Cm == {1 - 0,915) c = 0,085 C
0,0 0

and, consequently, the velocity below or at the foot of the perpendi­
cular may be put 

Cu. = C0 -2 . 0,085 C
0 

= {l - 0,170) c0 = 0,83 C0•

I_f, now, the whole depth = a, we then have, by assuming a straight 
hne for the scale of the velocities, the corresponding velocity for a 
depth .IJN = x, below the water 

X ' X= c0 - ( C -Cu ) = (1 -0, 17 ) C0•V 0 a a 
•Further, Jet c0, c1

, c2, • • be the superficial velocities of a whole 
transverse profile of not very variable depth, we have then the corre­
sponding velocities at a mean depth : 0,915
and hence the mean velocity in the whole profile: 

c0, 0,915 c1, 0,915 c2, 

Lastly, if we assume that the velocity diminishes from the line of 
current towards the banks, as it does according to the depth, \\·e may 
then again put the mean superficial velocity

( Co + Cl + • • + Cn ) --------- == 0' 915 co,n
and so obtain the mean velocity in the whole profile : 
• C = 0,915 . 0,915 . C0 = 0,837 . C0, 

i. e. from 83 to 84 per cent. of the maximum velocity, or of that of
the line of current.

Prony deduced from Du Buat's experiments conducted with very 
small channels, and for these cases perhaps more correctly: 

= (
2,372 + co) c metre = ( 7,7l + Co ) c0 feet English.c,11 03,153 + C

0 
10,25 + C

0

}.,or medium velocities of 3 feet it hence follows that Cm = 0,81 c0• 

&ample. In the line of current of a brook the velocity of the water is. 4 feet, and the depth 6 feet, we have then the mean velocity at a corresponding perpendicular 
cm = 0,915e. 4 = 3,66 feet, and that at the bottomn= 0,83e. 4 = 3,32 feet ; further, the velocity 2 feet below the surface is 11 = ( 1 - 0,17 • f) 4 - 0,057) 4 = 3,772 feet; lastly, the mean velocity throughout the profile is, c = = (l 

3,348 feet, and ac•0,837 . 4 = 
13197 I 

. ). . . .. 
stance� 364. 7'k Best· Form of Transverse Sections.-The resi_

wh!ch the bed opposes to the motion of the water in virtue of its ad­
hesion, viscosity, or friction increases with the surface or contact be­
tween the bed and the wat;r and therefore with the perimeter P ofthe w�ter profile, or of the portion of the transverse secti�n which 
comprises the bed. But as more filaments of water pass through a 

• This and the following subjects have bf.en fully treated of und�r the article " Bewe• _gung des Wassers," in the "Allt<emeinen Maschinenencyclop.'.ic.lie." New experiments 
a11d new ,,iews may be found in the follou•ing writin�n: Lnhmeyer's " Erfahrnngsre�ul­tate fiber die Bewei:ung des Wassers in Fluszbetten und Kanii.len." Brunswick, 1845. 
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profile, the greater its area is, so this resistance of a filament increases 
also inYerse]y as the area, and hence on the ,vhole as the quotient
-f of the perimeter of the water profile, and the area of the ,vho]e 

trans,Terse profile. 
That the resistance of friction of a running stream or river may be 

the smallest pos ible, ,ve must give to its transverse section that form
for "-'hich the perimeter p for a gi ,·en area is a minimum, or the area
for a given perimeter a maximum. In enclosed conduit , as, for c.·­
ample, pipes, p is the entire perimeter of the fignre formed by the 
transverse profile. No\\' of aH figure hnl'ing an equal number of
sides, the regular 1igure7 nn<l again, of all regular figures that ,vlaich 
11as the greater number of sides, has for the sarne area the least peri­
meter ; hence for enclosed con<lnits, the co-efficient of friction conies 
out the less, the nearer its transl'erse profile approaches to a regular 
figure, and the greater its number of sides ; and the circle, ,vhich is a
regular figure of an infinite number of si<les, is in this en. e the profile 
which corresponds to the minimu1n of friction. \\7e mu�t, therefore, 
in estimating this resistance of friction, leal'e out of our consideration 
i n  the quotient f the upper , ide or surface in contact ,vith the air. 

The rectangular and trapezoidal sections are those generaJly applied 
to canals, cuts, water-courses, &c. A horizontal 

Fig. 493. line EF, Fig. 493, passing tl1rough the centre .M
of the square .11.C, di\·i<les as "relI the area as nlso 

I> ( . the perimeter into two equal parts, hence it follo\\'S 
l\1 that what is true for the square is also correct for 

f' I
! 

E these hal,·es, an<l, accordiugly, of nil rectangular I trans,•erse profiles, the ha]f quare .IJE, or that 
.>\ ,vhich is t,vice as broad as it is deep, eorre pon<ls

J{ 
to the lea t resistance of friction. 1'hc regular 
hexagon .IJ.CE, Fig. 494, may be Jike\vise di\·iclecl 

by a horizontal ]ine CF into t"·o equal frapeziurns, each of "·hich,
]ike the entire hexagon, has the greatest relative area, ancJ, conse­
quently, of a11 trapezoidal profiles, half the regular hexagon or the 
trapezium .IJ.BCF v.ith the angle of slope .IJF.1ll = BC:Af of 60° is that 

Fig. 494-. Fia. 49:5. Fig. 496. 

'"hich, when applied, gives the least resistance of friction. Jialf the 
regular �ct�gon .IJDE, Fig. 495, half the regular uecagon, nnd, lastly, 
the sem1-c1rcle .llDB, Fig. 496, afford under given circumstances 
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the most advantageous transverse profiles for canals. The trape­
zoidal, or half the regular hexagon, gives a still less resistance than 
half the square or rectangle, the ratio of whose sides is 1 to 2, because 
the hexagon has a less relative perimeter than the square. Half the 
regular decagon gives a still less friction, and, in general, the mini­
mum of friction corresponds to the semi-circle. The profiles of chan­
nels of wood, stone or iron only, are made semi-circular an<l rectan­
gular; the profiles of canals, on the other hand, which are cut and 
bricked, are constructed of the trapezoidal figure. Other figures, in 
consequence of difficulties in the execution, are not easily applicable. 

§ 365. In the case where a canal is not walled up, but dug out of 
loose earth or sand, the angle of 60° slope is too great, and the rela­
tive slope cotg. 60° = 0,57735 too small, because the banks would
not have a sufficient stability ; we are, therefore, under the necessity
of applying the trapezoidal profiJe, for \vhich the inclination of the 
sides to the base must be still less than 60° , perhaps scarcely 45° , 
or even less. For a trapezoidal profile 
.llBCD, Fig. 497, which has a perimeter Fig. 497. 

====and area equal to that of half the square, 
the relative slope = {,  and the angle of 
slope hardly 36° 52'. If the height BE be 
<li.vided into three equal parts, the base BC 
will then have two of them, the parallel line 
.llD ten, and each of the sides .IJB = 0 D 
= five parts. In many cases the slope is made = 2, to \vhich 
belongs an angle of 26° 34', and sometimes it is even made still 
greater.

In every case the angle of slope B.B.E = e, Fig. 498, or the slope 
n = !! = cotang. 0 may be regarded as a given Fig. 498. 

quantity dependent on the nature of the ground in 
which the canal is dug, and hence the dimensions 
of the profile which offers the least resistance have 
only further to be determined. Let the lower 
breadth BC = b, the depth BE = a, and the
slope = n, we then obtain for the perimeter : 

.11.B + BC +  CD = p = b + 2 ✓a2 + n'Aa2 = b + 2 a ✓  1 + n',
for the area : 

F= a b + n a a =  a (b +  na), 
and hence, inversely, b = F - na, and the ratio : 

a 

!!_ = .!. + � (2 ✓ 112 + 1 - n).
F a F

If we substitute for a, a + x, where x is a small number, we may 
then put : 

1!_ = 1 
+ (a + x) (2 ✓ nl + 1 - 11)F a +x F 



+ _ n) + (
2 ✓ n== ! + !: (2 ✓ n x12 1 1 2 • 

� � F 
+ 

a = 
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== 
i) + a + x  (2 ✓ ni + 1 - nF 

! (1 _ x  + x

a2a a 

a F 
- n _

) 
_!_) x + 

No\\· that this value may be greater not only for a positive, but also 
for a negative value ofx, than the first 

! + !:.. ( 2 ✓n-1 + 1-n),a F
it is necessary that the member with the factor x should vanish, and 
therefore that � may become a minimum, we must have 

2 ✓n3+ l-n 1 F0 . 1- - =- , i. e. a - , 
• 

F a2 2 ✓n1+ 1-n
or since: 

1 F sin. en == cotang. e and ✓ n2 + 1 == , a2 = ----· .
sin. e 2-cos. e 

Hence, therefore, the most appropriate form of profile correspond­
ing to a given angle of slope e, and a given area is determined by 

F sin. e Fa =- --- - and b = -- a cotang. e.J2 - co,. e a 
Example. What dimensions must he given to the transverse profile of a canal, whose 

banks are to have 40° slope, and which is to conduct a quantity of water Q of 7 5  cubic 
feet, with a mean velocity of 3 feet ? F== �= 75 = 2 5 square feet, hence the depth

C 3 
2 5J �5 lin · 40° - J5 

o'u4i79 - 3, 609 feet, the lower breadth b == -- --2 - co,.40° 1,23396 3, 609 
3,609 cotang. 40° = 6,927 - 4,301 == 2,626 feet the slope or cut of the banks =- 3,60!)cotang. 40° = 4,301, the upper breadth =6,927 + 4,30t1 = 1 1,22 8 feet, the perimeter pI,+ 2a 7,218 · . . ·- . -= 2,626 + . 

00 == l 3,855 feet, and the ratio determining t he frict ion 
11n. 9 nn. 4 

p 13,855 

F 
-= 

2 5  
0 1(1(42 ' == ,.,., 

§ 366. The dimensions of the most suitable profiles which corre­
�pond to different angles of slope and to a gi,·en profile are to be found 
in the follo\\·ing table. 
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Dimensions of transverse profile. 
Quotient 

Angle of Relative
slope. slope. Upper p 

Depth a. Lower Absolute breadth }'
9 breadth b. slope na. b + 2 n a. 

2,828
90° 0 0,707 -._/F 1,414 -._/F 0 l,414 ✓F -._/F

2,632
60° 0,577 0,760 ✓F 0,877 -._/F 0,439 -._/F 1,75t5 -._/F -._/F

2,704
45° 1,000 0,740 -._/F 0,613 -._/F 0,740 -._/F 2,092 -._/F -._/F

2,7 71
4 0° 1,192 0,722 -._/F 0,52 5 -._/F 0,860 -._/F 2,246 -._/F -._/F

2,828
36° 52' 1,333 0,707 -._/F 0,471 -._/F 0,943 ✓F 2,357 -._/F -._/F

2,870
0,697 ✓F 0,4 39 -._/F 01995 -._/F 2,430 ✓F -._/F35° l,40� 

3,012
30° 1,732 0,664 ✓F 0,356 -._/F 1,150 ✓F 2,656 ✓F ✓F 

3,144
26° 34' 2,000 0,636 -._/F 0,300 ✓F 1,272 ✓F 2,844 -._/F ✓l' 

2,507
1,596 -._/FSemicircle 0,798 -._/F -._/F 

We see from this table that the quotient : is least for the semi-
. 2 507 l ' ; greater fior t he semi-. h exagoo, an d greaterc1rc e, namely, = ✓F 

still for the half square, and the trapezium of 36° 52', &c. 
Exampk. What dimensions must be given to a profile, which has for an area of 40 

square feet, a slope of its banks of 35° 1 From the preceding table, the depth a =  0,697
✓40 =41408, the lower breadth = 0,439 ✓40 = 2,777 feet, the absolute slope= 01995 
-.,/40 = 6,293 feet, the upper breadth =  15,363, and the quotient 

2•870J!.. = = 0 4 538 ' ' j' -._/40 

§ 367. Uniform Motion.-The motion of water in beds is for a 
certain tract either uniform or variable; it is uniform when the mean 
velocity at all transverse sections of this length remains the same, and 
therefore, also, the areas of the sections equal ; and variable, on the 
other hand, when the mean \·elocities, and therefore, also, the areas 
of the sections vary. We shall treat first of uniform motion. 

In the uniform motion of water along the distance..RD =- l� ':ig.
489, the who]e fall HD = h is expended in overcoming the fnction 
of the water in the bed, because the water flows on with the same 
velocity with which it arrives, therefore a height due to a velocity is 
neither taken up nor set free. If w; measure this friction by the
height of this column of water, we may then make the fall equal to
this height. But the height due to the resistance of friction increases 

38 
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Ezampk•. 1. What fall must be given ro a canal of the length l = 2600 feet, lower breadth b == 3 feet, upper breadth b1 = 7 feet, and depth a = 3 feet if it is to conduct a quantity of water of 40 cubic feeet per �nd 1 It is : 

15 What quantity of water doe.e a canal 5800 feet long, having a 3 feet fall, 5 feet deep, 4 feet lower and 12 feet upper breadthe? Here : 

- 40 .. . F ' 8 

92,35 92,35 3 '>4 r. 02.35 c z:: ,· v 812,29 28,5 
tJ 

an<.! the quantity of water Q =- Fe -= 40 
0,4�01 5

3,24 -= 129,6 cubic feeet, English measure
. 5800 . vo,1400:;e 5800 _

. . 

hence the velo<-ity 

92 3"' J,
__;,--=3--
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with the quotient P , \\·ith l and with the square of the mean velocity F 
c (§ 329) ;  hence then the formula holds good : 

1 .  h = { . P.. . �' 
F 2g

in which { expresses a number deduced from experiment which may 
be called the co-efficient of the resistance offriction. 

By inversion it follows: 

2. c - J F . 2gh.
� ' .  lp

In determining the fall, therefore, when the length, the cross section 
and the velocity are given, and inversely, in deducing the velocity 
from the fall, the length and the cross section, we must know the co­
efficient of friction {. According to Eytelwein's reduction of the 
ninety-one observations of Du Buat, Briinings, Funk and Waltmann, 
{ =-= 0,007565, and hence 

h = 0,007565 . lp . �
F 2g 

. 

If "·e put g = 9,809 metres or 31,25 feet (32,2 feet English), we
have for the metrical measure 

lp I Fhh == 0,0003856 
F 

. � and c == 5.Q9 
� pl 

, 

and for the foot measure : 

h= 0,00011726 Ip . c2 and c== 92,35 f Fh English measure. 
F � pl 

. ,c l d h. "-F d lp - 41-, hence t 1s fi .ormu a gives I 1oror con uit pipes - =-F 1� ted2 d 
pipes h == 0,03026 � • v' , whilst \\0e have found more correctly for 

d 2g
these (§ 331) for mean Yelocities 

v2lh = 0,025 - . -· d 2g
The friction, therefore, as might be expected, is greater in the beds 
of rivers than in metallic conducting pipes. 

' 

P = 3 + 2 v:a•+ 3• a:= 10,21e1, F= (7 + 3) 3 = 15 and c =40 =- 1, hence the fall
2 1 5 

. 1 0,21  1 . 64aought, h==0,000l l73e. 2600e. 10,2 1 1  0,305. (I)'e= .. 1 ,476 {eet.-2. 
15 . 9 

!... - 4 + 2 v 5• + 41 16,806 o'42015· 

,F.. 1eet, 
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, and hence 1t follows for the 

0, 9 0,3 

797 778 

CO-EFFICIENTS OF. FRICTION. 

§ 368. Co-efficients ef Friction.-The co-efficient of friction for 
rivers, brooks, &c., the mean va]ue. of which, in the foregoing para_.
graphs, we have taken at 0,007565, is not constant, but, as in pipes, 
increases somewhat for sma11 and diminishes for great velocities. 
We ha,·e, therefore, to put: 

{ = {1 (1 + ;) or {1 (1 + ✓�)· 

The author of the work al1uded to in § 363, finds from 255 experi­
ments, the greater part of thP.m undertaken by himself, for the Prussian 

0 0299)0,007409 1 + ' .measuree; - ( c 
0 00939

)metre { = 0,007409 (1 + ' c , 

. 0 0308
)and for English measure 007409 (1 + ' 

It is manifest that these formulre, for a 
c
velocity c = I½ feet, gil'e 

again the above assigned mean co-efficient of resistance { == 0,007565.
The following useful table of the co-efficients of resistance in the me­
trical measure serves for facilitating calculation. 

Velocity c. 0,1 0,2 0,3 / 0,4 I 0,5 I 0,6 0,7 0,8 0,9 Meter. 
Co-efficient of resistance 

t = O,oo 811 776 764 758 755 753 751 750 7<9t1 

-
Velocity c. 1 

I 

1,2 l 5 , 2 

744 

3 Meter.I
I 

743 
efficient of re11i11tance t = o,oo 748 747 746 

The following table serves for the Prussian or English measure : 

0,8 li 
2 I a I 5 10 ft. 

763 759 752 749 745 743 

0,6Velocity c. 0,4 1 0,5 0,7 1 

Co-efficient of resistance
C = o,oo 815 785 773 769 766 

These tables find their direct application in all cases where the 
velocity c is given and the fall to be found, and where the f?rmu!a 
No. 1 of the f�rmer paragraph is applicable. But if the yeloc1ty c 1s 
unknown, and its amount to be determined these tables will then only
admit of a direct application, when we h;ve already an approximate 
value of c. We may set to work in the simplest manner by deter-

mining c approximately by the formula c - 50,9 .J:Z" , and from 
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:tg Clp 0,007 4 5 . 46 7 5U . 12 . 

= 1 ,539 feet. Hence C is to be takenn= 0,00758, and 
j144 )f = 7,67 square feet. Therefore the depth must ·. F= ( 0,00758 . 2,632

448 VARIABLE MOTION. 
this a value of {, taken from the table, and the value so obtained put 
into the formula 

c2 h F F= or c = . 2gh.2g { 
. 

lp J{ lp. From the Yelocity c, the quantity of water is then given by the 
formula Q = Fe.

If, lastly, the quantity and the fall are given, and, as is often 
requisite in the construction of canals, it be required to determine 

pthe transverse section, we may put 
F -=- m (see Table, § 366) and

✓F 
Q .  == 0,007565 p- �c .. _ into the formula I,, . --, and write, therefore, 
F F % 

h =- 0,007565 ml Q:,  and accordingly determine: 
2gF1. 

F=- (o,007565 m l Q2)f, i. e., for the 1netre F== 0,0431 (m l Q2)i 
2 �  h 

or the English foot measure F== 0,0.268 (m�Q2)i.  Hence it follo\\·s, 

approximately, that c = 
F
Q ; if we take a correspondent value of , from 

one of the tables, more accurately F = ({ . m2�'[)i ; and hence, 

more exact Yalues for c = Q, p == m✓F, as also for a, b, &c.F 
Example,.-1. What fall does a canal 1500 feet long, 2 feet lower and 8 feet upperbreadth, an<l 4 feet depth require to give a discha!ge of 70 cubic feet per second 1 It is 

70p = 2 + 2 -/ 4� + �t� = 12, F = 5 . 4 = 20, c = _ = 3,5, hence C = 0,00748, nndV 
'2U 

h = 0,007 4 S . 1 5oo · 12 • 3,5i = 6,732 . 0, 1902= 1,2 8 ft. (Eng.)-2.What discharge does
20 '2ga brook 40 feet broad, 4l feet mean depth, nn<l 46 feet water profile, if it has a n•ll of 10  

J 40 · 4 5 10 U2,35' ·inches for a length of 7 50 feet 1 It is about c= 92,35 . = --==== = 6,08946 . 750 .  1'2 V '23Ufeet, and hence C = 0,00745. Hence we obtain, more correctly: � Fh 4,5 • 40 · lO= = .I ,7 1 1:.! = 4,5. 40 . 6,119 
= 1 = 0,5844, an<l c = 6,119 feet. Lastly,

1 101 cubic feet, (Eng.)-3. A trench:1650 feet long is to be cut, which for a total fal l  of 1 foot is to carry off a discharge ofcubic feet per second, what dimensions nre to be given to the transverse profile, if it is to preserve a regular semi-hexagonal figure1 Herenm =  2,63:.! (•« Table, § 366), hence, 
Jnpproximately, F = 0,0268 (2,632 . 3650 .  144)"3" = 7,665 square feet,and c == 7,(i65 

the correspondiug discharge is Q = l'2 

1 ;-) 

�,104 feet, the lower breadth ss 0,877 ✓F:::= 2,428, and he made : a =  0,700 vF = the upper breadth == 2 . 2,428 == 4,846 English feet. 
§ 369. Variable .Motion.-The theory of the variable motion of 

,vater in beds of rivers may be reduced to the theory of uniform mo-



F = Fo + Fi ,  and Q =  Fo vo = F v , i i

v1
2-vo2 = _.!:_ [(_g_)2 _ (_g_) .2 ] = (-; _ _!_2) !!_, and 

VARIABLE MOTION. 449 

tion, provided the resistance of friction for a short length of the river 
may be considered as constant, and the corresponding height, in like 
manner, as = r . lp • v'B. But, besides this, regard must be had to 

F 2g
the vis viva of the water, which corresponds to a change of velocity. 

Let .RBCD, Fig. 499, be a short ex-
tent of river, of the length .RDB= l, the Fig. 499. 
fall DH = Ii, and let v0 be the velocity 
?f the arriving, and v that of the depart­1
ing water. If we apply the rules of 
efflux to an element D of the surface, ,ve
shall obtain for its velocity v1 , 

VJ2 h + Vo
2 

;= 
2g 2g

as regards an element E below the surface, it is true that on the one 
side it has a greater height of pressure .llG = EH; but as the down­
stream water reacts with a pressure DE, there remains for it on]y
the fall DH = EH- ED, as pressure inducing motion, and so, for 
this or any other element, the formula : 

v1 
i-v0 

s
h = answers ; 

2g
and if, further, the resistance due to friction be added, we then 
obtain : 

s s zlh = vi -Vo + t . }!_ • �,
2g F 2g

where p, F and v are the mean values of the wetted perimeter, trans­
verse section, and velocity. If F is the area of the upper, and F0 1
that of the lower section, ,ve may then put : 

2 
,vhence it follows that : 

F1 F0 F1 F0 2g2g 2g 
vZ 

F =Vo2 + Vl 2 ( 1 1 ) Q�
F , ,ve obtain :F2 + F 2 

o 1 F.o + 1 
= Fo +-F 1 1 )] Qi2' as also pz - F z + t F + F F 2 + F •

1 

1 Ih1 . = [ l p ( I 
O o 1l o g

✓ 2 gh
2_ Q = .

J 1 1 lp 
( 

1 I )
p z - p z  + ( F + F p2  + p 2

1 0 0 l O 1
The corresponding fall Ii may be calculated by means of the �or-

mula �' fron1 the quantity of water, the length �nd transverse section 
of a nver or canal; and, inversely, the quanhtJ: of water from t�e 
faJl, the length and the transverse section, by formula 2. To obtain 
�reater accur�cy, we may make the calc?lation for several short por­
tions of the river, and take the arithmetical mean. If the total fall 
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The length l which corresponds to a difference a -a of the dep h tof wa�er, may be determined by this formula But if th� reverse pro­. blem is to be so!ved, we must do it by the method of approximationt, and first determine the distances corresponding to the assumed l and l · .. 1 2 

tion, the depression corresponding to a given distance l. • 
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on]y is known, ,ve must substitute this at once for h in the last for-
1nula, and put 1 I 1 I= -F1'J, F 'J, F.n l - F :i'o o
where Fn denotes the area of the last section, and in place of 

{ .  l P (_!_ + __!_ )Fo + Fl Fol p11

the sum of all similar values of the separate lengths of the river. 
Eza,,,plt. A brook bu b a dJatanoe of 300 feet a fall of 9,6 inches, the mean peri­

nteter of ita water proffle ia 40 feet, the area of the upper transverse profile 70, that of 
the lower 60 equare ht; what quantity of �er does this brook diecharge 1 It is 

8,0'.2 ✓0,8 
Q-

J 1 
I 

1 300.40 ( 1 
-

601 - 7()1 + O 
I 
OO756�-• 

130 601 + 
7

1 
02 ) 

7,173 7,173= ---========= = ---==== == 354,43 cubic feet. The mean velo -
v'(),0000731 + 0,0003365 v'(),0004096

2 Q •8 =Jocity is = 708 5.452 feet; hence, more accurately, C must be taken 
F

0 + F 130 = 0,00745 in place of 0,007565, and therefore more  nearly :  
7,173 

Q = - = 357,5 cubic feet. If the same brook, with the same ✓0,0000731 + 0,0003314 
head of water, had for a length of 450 feet, a fall of 1 1  inches, and if its upper trans­
verse profile had an area of 50 and its lower of 60 square feet, and the mean perimeter
of the profile measured 36 feet, we should then have: 

8,02 ✓0,9167 

J 1 _ 1 + 0 0074 5 _  450 . 36 ( 1 •
Q = 

6()1 � 
, 

1 10 602 + 50
I

1 ) 

0,9167 , ___ b' � z= 8 02 ___t __ == 308 cu 1c 1eet. 
0,000t1222 + 0,0007436 

= 357The mean of these two values is Q · 5 + 308 = 332,75 cubic feet. 
2 

§ 370. In order to obtain a formula for the depth of water, let the 
upper depth = a0 and the lower = a1, the slope of the bed = e1, con­
sequently the fall of the bed -= l sin. a. We then obtain the fall of the
water h = a0 - a1 + l sin. e1, and there results the equation : 

a,-a.() , - } ) != [{ F,!F, (},. + ;,.) : - sin. "-] l,1 ,. ( l ) Q
1l 

ao-ai - p 2  - p 1  -
hence l == 1 o 2:g 

S F,! F, (},, + ;,,) ! - sin. ,. · 

d.epressions ao--?1, and a1-a1, and from these calculate by a propor-

• See " lngenieur," .Arithmetik, § 16, v. 



• 400 = 
0 9379 

-= 0,1692 feet. Now, for the second half, a,= 

2g 
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'fhe formula is further capable of simplification when the breadth
b of the running water is constant, or may be considered as such.
In this case we put: 

Q2( I - 1 ) Q2 - p 2 _ p.2 (Fo-F1) (Fo + Fi) 'Vo2 o = .p 2 p2
0 2go- p 2 p 2  · 2go p 2

1 · 0 l l 
2:g 

= (a -a0 1) (a0 + a1) v 2 • (a -a 1) v 2 

a12 
• _.!.. approximately = 2 ° • _!_,2g Go 2gand likewise: 

p 1 - p (Fo2+F/) Vo2 . 

Fo+Fi ( F
1 
o' 

+ Fi
)

' 
Q

2g 

2 
- (Fo+F1)F1'o

. 
2g 

approxi ]mate y 

( a0-a1) ( 1 - .!_ . v;-) 
= P vo2 = < 2g

2-, hence l , and hence 
aob • :g ,,. • 

p Vo
2 

•!II -=-- • - - stn. Cl

a0b 2g 
,,. p vo2
!II • - • - sin. a.-a0b 2g •..;._--·--

V 221 - - . _.!.. 
a0 2g

The difference ( a0-a1) of the depth corresponding to a given extent 
l may be calculated directly by this formula. 

Examp�. In a horizontal trench, 5 feet broad and 800 feet long, it is desired to carry 
off a 20 cubic feet discharge, and to let it flow in at a depth of 2 feet, what depth will 
the water at the end of the canal have? Let us divide the whole length into two equal 
portions, and determine from the last formula the fall for each of them. 

Here the ,in. • = O, I = S
2
OO = 400, and b = 6 ; for the first portion o = 

20 = 2, hence C = 0,00752, al8o a0 = 2 ; since p = S½, it follows that a0 - a, = 
2 . 5  

8•50,007 52 . . � 
0,15877 

, 

10 2g 

2 4
1 - - . -

2 2g 

2-0,1692 = 1,8308, and·np,==8,2, o1 = 
9,1 

2�
4 

= 2,1848, and the depression of the 

Second portion: 
8,2 2,184S90,00752 .  . 

0,1997
• 400 = 01919 

9,154 = 0,2173 feet, hence the 
2,18489 

.
1,8308 2g
0,1692 + 012173 == 013865, and the depth of water at the lower 

1,6135. 

21 -

whole depression = 
endn= 2 - 0,3865 = 

§ 371. Floods.-When the depth of water in rivers and canals 
varies, variations in the velocity and discharge take pla_ce likewise.
A greater depth of water not only involves a greater section, bu! also 
a greater velocity, and hence, for two reasons, a greater quantity �f.
water, and likewise a diminution of the depth of water, gives a d1mi­
nution of the section and the velocity, and hence al8? a decrease of 
the discharge. If the original depth - a, and any increased depth 



� -

+ h F ( a - a) . 1 1 I approximately = I ..J F 

-a, a also IP == l - a1-:- a- l + a1 ! s . fP

- a)
) [l + (a(i + b (a== F 1 1 11 

1 
c 

-= 

p sin. e 
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:a a
1
, the upper breadth of the canal = h, then the aug1nentation of 

the section may be put = b (a1-a), and hence the section after\\'ards 
"ll-a, F1 

= F+ b (a1-a), it also follows from this that. F1 - b (a1 - a)I 'tand+ FF -

2 F
the increased perin1eter of the \\·ater If further p be the original, p1

profile, and e the angle of slope of the banks, then
-a) 1 = 1 + 2 (a•, hence P .p p sin. e

p + 2 (a
! 

,� sin. e 
- a), an<l=-p1 

sin. e �p1 p sin. e'\J p
Now the velocity with the first depth of water is 

c=92,35 fFh, and with the second c1
=92,35 �1 

• !!_,� pl ..JP1 l
hence we may put : 

_5 = J
F1 • 

J
P = (l + b (a1 - a)) (l - a)a1 -:-

c F p1 2 F p sin. e 
== 1 + (a - a) (!!_ - . 1 

),
1 2F p nn. e

therefore the relative change of velocity : 
1.  c1 - ct-=- (a - a) (2

1,
F 

_ _1 
) · .c p sin. e

On the other hand, the ratio of the discharge is : 

F 
_ a) (2

b
F _p sin.

_1 
e
)]

I
Fe

QQ 
3 b  -(-2F1 + (a1 - a) )== ,.p sin. e

and the relative increase : 
l2. Q1 - Q == (a1 - a) (3 b - _ )· 

Q 2P p sin. e
Less accurately, but in many cases, especially in broad canals "'ith 

1little slope, we may put F == ah, and neglect. .t , whence it fol-
lows more simply that : 

c1 - c 1 a1 - a d----- - � -- , an 
C a 

Q. - Q  a a1 - a.
Q - i • a

F�om this, t"!refore, the relative change of velocity is ½, and the 
�elative change in the quantity of water �,  that ofthe relative change
in the depth of water. 

&ampla.-1. When the head of water increases T� of ita original amount, the velo-
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ciry is then ,J7f, and the quantity �'o greater than its original value.-2.-"\Vhen the 
depth diminishes S per cent., the ve}ocjty then <limjnishPS
4, and the quantity 12 per cent.-3. Fro1n the more cor• Fii;r. 500. 
rect formula: 

Q, 1 -- ' !\•l - Q = (a, - a) (� - ) \ . ,_ - - -- .-·Q 2F p sin. e A - �·· - i L  ; D 
a scale of the depth of ,vater KM, Fig. 500, may be con• �·]�······.:.:1 
suucted, on which the discharge of a canal corresponding 

. ----(

to any dt>pth KL, may be read off. ,vhen the quantity of . C 
,vater for fl certain mean depth is once known. If b = 9 B 
feet, b, = 3, a = 3, and E> = 45° , ,ve then have F = 
(9 + 3) 3 .- · -= 18 squaie ft.,p = 3 + 2 . 3 .,/2 = 1 11485 anil 1u1. e = -,,.½ = 0,707,V2 
hence : 
Q1 - Q = ( 3 · 9 _ 1 

) (a, - a)n= (0,750 - 0,123) (a, - a)= 0,627 
Q 2 . 1 8  1 1,4.85 . 0,707

(a1 - a). If the quantity correspom.ling to a mean head of v,ater Q = 40 cubic feet, 
tt - awe then have Q_. = 40 + 40n. 0,627 (a, - a)t= 40 + • If a, - a =  0,01

0,04
feetn= 5,76 lines, it follows that Q, = 41 i a 1 - a =  0,08 feetn= 1 1,52 lines, we then 
have Q, = 42 cubic feet ;  if. further, a1 - a = - 0,04, then is Q, = 30 cubic feet, &c. 
A scale, therefore, ,vhose intervals are Ll}f = LN = 5,76 lines, gives the discliarge 
accurately to a cubic foot Of course tbe accuracy is the less, the more rbe head of \\"ater 
differs from a mean value. 

Remark. The conducting and carrying off of \vater in canals, as well as the subject of 
weirs and dams, will be fully tteated of in the Second Pan. 

CHAP"f E R  V I I I .  
HYDROMETRY, OR THE DOCTRINE OF THE !tIEASURDIE.NT OF \\'ATER. 

§ 372. Gauges.-The quantity, '"hich a stream discharges in a 
certain time, is determined either by a gauge, by an apparatus of 
efflux, or by an hydrometer. The most simple \Vcty of measuring
water is by the guage, i. e. by the use of a graduated vessel, but this
method is only applicable to small Fig. 501. discharges, carried off by pipes
or small brooks, or drains. The 
gauge vessel is generally made of 
,vood, and of a rectangular form, 
andto increase its strength is bound 
round ,nth iron-hooping. The 
,vater i s  conducted into it by a 
trough EF, Fig. 501, at ,vhose ex­
tremity there is a double val,•e GH,
by which the water may be made 
to flo,v at will into the vessel .flC,
or by the sicle of it. To obtain the 
exact depth of the body of water in the vessel, a scale KL is fur-

http:tIEASURDIE.NT


When ,ve are convinced 

salt \\•arks. 

Q = µ. F ✓ 2 gh is gi,en. 1'he PoncPlet orifices are those best 
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ther applied. If before measurement, the index Z be mo\'ecl do,vn 
to the surface of the water, alrea<ly in the vessel, and merely covering 
the bottom, and the bead of ,vater read off from the scale, ,•.re shall
obtain the height ZZ1 of the gauged ,vater by subtraction of this from 
the head of ,vater ,vhich the scale indicates ,vben the inrlex han<l Z1
i s  brought into contact with the surface of water at the encl of the 

Before measurement, the valre must be so placed that
the ,vater may tlo,v off outside the vessel. 
observation. 

that the efflux in the trough is i n  a St;\te of permanency, and, watch 
in hand, have noted a certain moment, the valve must then be turned, 
so that the water may run i nto the gauge vessel, and after it is either 
partly or entirely fille<l, a second inter\·al is noted by the ,vatcb, and 
the valve again brought into its first position. From the mean sec­
tion F of the vessel, and the depth ZZ1 = a of the body of water, the 
,vhole quantity = Fa may be estimated, and again from the time of 
£Hing t, gi,·en by the difference of the times observed, the quantity

Faof \\'ater per second Q = -· 
t 

Remark. To determine a ,•arinble quantityofeCHn.-x: at eacL period of the day, we may
make use of the apparatus represented 
in Fig. 502, as applicable especially inFig. 502. 

There are here t,vo gauge 
vessels, .11. and B, ,vhich nlternatcly fill 
anti en1pty themselves, and the ,vater 
"·Lich is cont.lucted by the pipe F pn.sses 
through a �hort pipe CG, ,vhich is 
rigidly connected ""ith a 1<',•er IJE, re­
,·otving about C. When one ves:1et .fl 
becon1es filled, the \.\•ater then fio,vs
1luough a short tube H into the little 
vessel .lJf, this tlmws the lever do,vn
again on one si<le, nnd tho pipe CG 
con1es into such a posuion that tile 
"'ater is concluctetl into B. Tht• dn\\v­
ing up of the vnl ,,es O and P tnkes 
place by means of &trings passing over 
pulley�, whose extren1ities nre con­
nected \\ritb the lever, and sustained by

iron balls, ,vhfoh impart a final iinpulse tO the descent of tho lever. The vessels Mand 
N have small effl11x orifices, by ,vhich they empty themselves after each reversion of the 
lever. An apparatus js besides applied, by which the nun1tx>c ofstrokes may be rea<l off 
at any time. 

§ 373. Ej/lux Regulalors.-Small a_n<l 1nedium discharge� are ¥ery _frE>quentJy determined by means of their flow through a definite onfice,
and under a kno\vn h�a<l. From the area F of the orifice, the he�<l 
of ,vater /z, and the efilux co-efficient µ., the discharge per second 

adapte<l_ for this purpose, because the co-efficients of efflux of these 
u�<ler different h�ads of \\Tater are kno\vn ,vith great accuracy (§ 316), 
still they are applicable on)y to certain medium discharges. The author 
availed hiruseJf of four su�h orifices for his 1neasurements, one of five, 
one of ten, one of fifteen, one of t\venty centimetres depth, but all of 
t,venty centimetres \\'idth. These orifices are cut out of brass plate, 
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ancl fixed to a woo<len frame .RC, Fig. 503, which is fastened by four 
�trong iron screws to each \Vall. In many cases, 

Fig. 503.1ndee<l, greater orifices, the co-efficients of efflux 
for which are not so accurately determined, an<l 
sometimes \viers must be used, which admit gene­
rally of a still Jess accuracy. In all cases, how­
ever, the rule holds good, that �·e must endeavor 
to get as complete and perfect a contraction as 
possible, and for this reason must give to the 
orifice, if it is in a thick plate, a slope outward. The corrections 
which must be applied for incomplete and partial contraction, have 
been sufficiently distinguished in paragraphs 319, 320, &c. To mea­
sure the water of a brook we must set the frame ,vith its orifice, and 
wait for the moment when the head of water is permanent. For the 
measurement of the head of ,vater \\·e must avail ourselves of the 
index scale, Fig. 500, or of the movable scale EF, Fig. 505. If we 
would note the efflux directly from the apertures of sluices, it is better 
to fix before han<l a pair of brass scales BC and DE, Fig. 504, with 

Fig. 504. Fig. 605. 

their indices F and G to the slide, and to the sluice-board .11, in order 
to read off more safely the height of the aperture. It is generally
better for the purpose of measuring ,vater, to put on a new sluice­
board with its guide, and with the requisite slope outwards. The 
simplest means of measuring ,vater in a channel, consists in putting 
in a board CD, '\vith its upper edge sloped off, Fig. 505, and measur­
ing the fall produced by it. If the channel is long, and there is little 
rise, it is generally some time before the condition of permanency takes 
place, and it is for this reason good, before measurement, to put on a 
second board, so as to impede the efflux of water for a Jong time, in 
order to accelerate the rise to a height corresponding to a state of per­
manency. 

To measure the quantity of water of a brook 
Fig. 506•We may dam it np with posts and boards' 

as in Fig. 506, and let the water C run off 
through an aperture, or "'e may a-rail our­
selves of a simple overfall or wier, but of
this "'e shall treat in the second part. 

§ 374. But as it is often long before a 
state ofpermanency occurs in water dammed 
up by this construction, ,ve 1nay adopt with 
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advantage the following method, first proposed by Prony. We may 
first close entirely the aperture by a sluice-board, and let the water 
rise to some height, or as high as circumstances will admit, then dra,v 
it so far up that more water may flow in than out, and measure the 
heads of water at equal and very short intervalss; lastly, the aperture 
of the sluice must be again perfectly closed, and the time t in \\'hich 
the \\'ater rises to the first height, further noted. In each case, then, 
during the whole time of observation t+ t1, as much ,vater flows in as 
out, and hence the quantity flowing in, in the time t+ t

1
, may be ex­

pressed by the quantity flo,ving out in the time t1• If the heads of 
water during the depressions are h0, h1, h'J, h3, and h4, we have then 
the mean ,·elocity of efflux : 

✓2 
v = g ( ✓ � + 4✓� + 2✓h'J + 4✓h3 + ✓ h4) (see § 351),

12
and if the area of the aperture = F, we have then the quantity of 
efflux in the time t :  

,,,Ft✓2g - - - - -V= ---..:c ( ✓ h0 + 4 ✓h1 + 2✓h2 + 4 ✓ h3+✓ h4), and the 12
quantity flowing in per seconds: 

V ,,, F t✓2g - - - - -Q =  - = ( ✓ h0 + 4✓ h1 + 2✓ h'J + 4✓ h3+✓h4).t+t. 12 (t + t.) 
F..xanaple. To measure the water of a brook use<l for the driving of a water-wheel, 

which has been dam1ned up by a sluice, Fig. 506, after opening the rectangular aper­
ture, the following is observed: the original bead of water is 2 feet, after 30'' 1,8 feet, 
after 60'' 1,55 feet, after 90'' 1,3 feet, after 120'' 1 , 15  feet, after 150'' 1,05 feet, and after 
180'' 0,9 feet, breadth of the aperture 2 feet, depth ½ foot, time of rising to th� first height 
with closed aperturen= 1 10''. The mean velocity of efflux is: 

=1'
8
;�

2 
(\/2+ 4 vl,8 + 2 v 1,55 + 4 \/1.3 +  2 vTT5 + 4 vl,05 + vu,9) = 

0,440 (1,414 + 5,364+ 2,490 + 4,561 + 2,145 + 4,099 + 0,949) = 0,440 . 21 ,022 = 
9,248 feet; but now F == 2 .½ = 1 square foot, hence it follows that the theoretical dis­
charge is= 9,248 cubic feet. If the co-efficient of efflux is takenn= 0,6 l ,  we finally ob­
tain the quautity ofwater sought: 

0,6 1
Q = · ISOn. 9,248n=3,5015 cubic feet, (English.) 

1so+ 110 

§ 375. The " Pouce d' Eau," or Water-lnch.-To measure small 
discharges, we aYail ourselves of the flow through round 1 inch wide 
orifices, in a thin plate, under a given pressure. The discharge given
through such an aperture under the least pressure, or when the sur­
face is only a line above the uppermost position of the orifice, is calJed 
an inch of water. The French assume for the water-inch (old Paris 
measure) 15 pints, or 19,1953 cubic metres of water in the 24 hours ; 
therefore in 1 hour O, 7998, and in 1 minute 0,0133 cubic metres ; yet 
older data, by Mariotte, Couplet, and Bossut, vary not a little from the
ab�l"'e. :lccording to Hagen, an inch of water (Prus�ian measure)
delivers 1n 24 hours 520 cubic feet, therefore, in a nnnute, 0,3611 
cubic feest. The double water modulus of Prony, which corresponds _to an orifice of 2 centimetres diameter, with a pressure of 5 centi-



� 
Qi = F  Jii!- = µF.,/ 2 g h

= 
Q 

.,/ J + 0,49 . ' 
Q 
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metres, ancl discharges 20 cubic metres F.,g. 507.
of water in 24 honrs, has not been adopt-
ed. The apparatus by which water is
measured by the inch is represented in 
Fig. 507. The ,vat er to be measured 
flows through the tu be .Ii into a box ; 
�rom this it passes through holes below 
1n the partition CD into the box E, and 
from this through a horizontal row of 
round orifices F, of exactly 1 inch width,
and cut in tin plate, into the reservoir G.
That the surface of water may stan<l a
]ine abo,e the heights of these orifices, it is necessary that there be a 
sufficient number of them, and that a part of them be closed by stop­
pers. For great discharges the ,vho)e water is divided, and in this 
way a part, on]y one-tenth, is measured. This division may be ac­
complished easily, by .fir�t conductingthe water into a reservoir, with 
a certain number of orifices at the same level, and only to receive 
the quantity delivered by one orifice in the apparatus represented 
abo�e. 

Remark 1. We may apply also cocks and other rei;nilating apparatus to the measure­ment of water, if ,ve know the co-efficient of resistance for each position. If h is tho 
bead of water, F the transverse section of the pipe, and µ. the co-efficient of efflux, for a cock quite opened, we then have the discharge Q = µ. F .,/ 2 g h, as inversely,

Qf4 = and _!_ = (F)" . 2 g h. If now we put the co-efficient of resistanceF .,/ 2 g h  1-4" Q 
corresponding 10 a position of the cock, and taken from the tables already given = �. we then have the corresponding discharge : 

_!_ + t . 1J1 + t (s_)'l 
F 

can nn<l nt A.
.,/ l + f4' t 2 g h

For convenience sake1 ,ve may construct for ourselves a table, so that ,ve glance the discharge corresponding to a position of the cock, or the posiuon of the cockcorrespondjng to a given discharge. If, for example, f4 = 0,7 and F = 5 square inches,,ve have then: 
8,02 4 7 h .,/ . . . 0, = --=====�-12 na9 ,: J h= " ,., 

269•!> If now the positions of the cock nre ator if h is constantly 1 foot, Q
1 = 

. .--,...--- cubic inches, 
1 + 0,49 � 

1 

•.,/ l + 0149 � 
, 20° 1 25° 1 &c.1 t11e co-efficients of resistance, 01057 ; 0,293 i 01758; 1,559 ; 5 ° , 10° , J 5° 

Fjg. 508. Fig. 509. 

• 
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and hence, inverse]y, cl 
= 2 c - Co. 
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3,095, the clischnrgcs corresponding to these nre: 265,8 ; 252 ; 230,l ; 202,8 j 169,9 
cubic inrhes. 

Remark 2. To rei;?ulnte tho now through an orifice D, Fig. 508, ,ve mny npply n ,veir 
B thot the exce:::s of v.·nter from the pipe ..i. 1nay Dow over, nncl that n l'Onsuu,t pressure
mt1y ho 1nai11taiued in the rt.· ervoir DE. Tliat there may l>e no lo:'is of ,vnLer, n cock or 
a vnlve JJ, Fig. 509, is upplie<l, ,vhicb is regulntetl by n float K acting upon a lever, so 
LhnL as much wnter only flo,vs in through B ns fio,vs out through F. 

§ 376. Floating Bodies.-The discharge of large brooks, canals,
and rivers, can be determined only by an hydrometer indicating the 
vrlocity. Of such instruments floating bodies are the most simple.
We may use any floating body for this purpose, but it is better to have bodies of a moderate size, ,vhich are only a little specifically 
lighter than ,vater. Substances of about /o of a cubic foot content 
are large enough. Very large ones <lo not easily assume the Yelocity
of ,,·ater, and ,·ery small ones again, especially when much above the 
,vater, are easily disturbed in  their motion by accidental circum­
stances, sometimes by the air on the surface of the fluid. Often,
plain pieces of wood are sufficient ; it is better, however, if they have 
a coating of some bright varnish, and better still if the floats are hol­
low, such as glass flasks, tin balls, &c., because these may be fiUe<l 
at will with water. S',\1imming balJs are most frequently used. They are fro1n 4 to 12  inches diameter, and made of brass, and painted 
over with some light oil-color, to make them more visible to the eye, 

and have an opening \•tith a neck, that they may be.Fig. 610• filled with water and stopped. A floating balJ, such 
as .Ii, Fig. 510, gives on]y the velocity at the surface, 
and often only that of the main current ;  but by sus­pending two balls one to the other, .Ii. and B, Fig.

51 1 ,  '\\Te may determine the velocity
Fig. 511.  at different depths. In this case, the 

one ball B, "•hich S\\'ims under water, 
is quite filled with the fluid ; the other, 
however, \vhich swims on the surface, 
is only filled just enough to make it 
float a little above the surface. Both balls are connected with each other by a string or wire, or by a light wire 
chain. The velocity c0 of the surface is first determined by the single ball,
and then the mean velocity of the two 
obserYed by the connection of balls. 

If, now, the Yelocity at the depth of the second ball be denoted by Ci, 

we may then put c = co + cl ,
2

Whilst now both balls are connected with one another by longer and 
Jonger ,vires, v:e may, in this manner, find the velocities at greater
?epths. 1'he mean velocity c of a perpendicular is other\\·ise gi \'en 
if the second ball is allowed to S',\'im a Jittle abo,·e the bottorn, and c
is ma<le = 2 c - c0 ; stil] more accurately, however, if for c1 the,..
mean of all the velocities obser\·etl in a perpenclicular be taken. 
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To find the mean velocity in a perpendicular, the floating staff .A
Bi , represented in Fig. 512, is used. This is particularly convenient

1 

for measurements in canals and cuts when it is composed of short
pieces screwed together. The floating staff which the author uses is 
composed of 15 hollo\.v portions, each 1 decimetre in length. That 
this may s,nm pretty nearly upright, the lov,.ermost piece is loaded 
,vith shot, so that the top just rises above the water. The number 
of pieces composing the staff, depends, of course, on the depth of the 
canal. 

Both with the floating staff as well as the connection of balls, it may
be observed that the velocity at the surface, when the motion of the 
water in beds is unimpeded, is greater than at the bottom, because the 
top of the staff s,vims in a<l vance of the bottom, and the upper baJl in 
advance of the Jo,ver. In contraction only, for example, when the 
water is dammed up by piles, &c., does the contrary take place.

Remark. As a rule, especially ,vith large and floating bodies, n5 ships, &e., the velocity
of the swimming body is somewhat greater than that of the ,vater; not so much uecause 
these Lo<lies in swin1ruing float uo·wu an inclined plane formed by the rorfuce of the 
water, but because they take none, 01 scarcely any, part in the ir_rcgular inti1nate motion 
of the water ; still, the yariation for small floating bodies is so slight that it may be 
neglected. 

§ 377. The velocity of a floating ball is found by noting the time 
t \vith a good seconds watch, or a half-second pendulum (§ 247), 
which it takes v.·hile floating on the water to describe a measured dis­
tance s, marked out on the banks. Then the required velocity of the 
ball is c = _!_,, That the time t corresponding to the space <le-

t 
scribed a]ong the bank may be accurately found, it is necessary, with 
the assistance of a cross line or lines, to erect at the opposite bank two 
signal staves C and D, perpendicular at .IJ. and B, Fig. 512. If we place
ourselves behind .JJ, \Ve may then note the moment when the float K,
dropped in a little above .11., comes into the line .IJ.C, and if behind B,
we may then also observe the time by a watch held in the hand, \,·hen 

Fig. 512. Fig. 513. 

the float reaches the line BD and ,ve then find by subtraction of the 
!imes of obser,·ation, the req�ired time t corresponding to the describ­
ing of the space s. Besides the mean velocity c of the water, the area 



�, 

. . . , + a3b3c3 + + a2b2Q = a1b1c1 c2 and, lastly, the mean velocity: 
ca + . . + a c2 c = !l:_ _ 2 11b

1 b
1 

poinrs of portions of the IJrcatJtlJ : 
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F of the transverse profile is further required for determining the quan­
tity of water Q = Fc. To find this area, it is necessary to knO\\' the
breadth and the mean depth of the ,vatcr. The depths are measured 
by a sounding rod .11.B, J?ig. 513, ha,iog a rhomboidal section, an<l a 
board B at the foot; for greater depths 'tve may also use a sounding 
chain, at ,,·hose extremity there is an iron plate, ,vhich, in  sinking, 
rests on the bottom. The breadth and the abscissre corresponding to 
the measured depths, or the distances from the banks in canals and
small brooks EFG, Fig. 514, are found by stretc·hing across a mea• 

Fig. 514. FilJ. 515. 

suring chain .. llB, or the placing of a rod right across the running
water. For broad rivers this is determined by a measure table .:AI,
which is placed at a proper distance .110, from the section EF, Fig.
515, which is to be measured. If ao is the distance JJ.O bet\,·een .fl
and 0, reduced to the table, and if ao is placed in the direction of 
.R.O, and thereby also the direction of the breadth af made parallel to 
the line of breadth JJ.F marked out, then each line of vision ,vill in­
tersect in  the direction of the points E, F, G, &c., in the profile, the 
corresponding points e,f, g on the table, and ae, af, ag, &c., are the 
distances .R.E, .IJF, .11.G, &c., in the reduced measure. It is not,
therefore, necessary on putting in the sounding rod, and measuring 
the depths by it, to measure the distances of the corre�ponding points
of the banks, if the engineer standing by the measure table looks at 
the sound on its being put in, in the line EF.

If, no,v, the breadth EF, Fig. 514, of a transverse profile, consist
of parts b1, b2

, b3, &c., and the mean depths ,vithin those parts a1, a2,

a3, and the mean velocities c1, c2, r3, &c., \\"C have then the area of
the profile : 

F =  a1b1 + a'J,b2 + a3b3 + . . . ,.the discharge : 

a1b1
F - . . · 

• 

+ a2b2 + 
Example. ln a tolerably strai<>l1t nnd wuform extent of ri,.-er ,ve have at the midule ' 

5 feet, 12  feet. 20 feet, 15 f ect, 7 fee� 
3 u 6 11 } 1  h 8 « 

J) 3 Cl 2 l:i ,, 2 4 

4 UThe depths 
The mean velocjties 1J9 « 11, 2,1t 
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HE>nce we may put: 
The area of  the profile F = 5 . 3+ 12 . 6 + 20 . 1 1  + 15 . S+ 7 .4 =4 55 square feet. 
The quantity of water Q = 15 • 119 + 72 . 213 + 220 . 218 + 120 . 2,4 + 2 8  • 2 11

115619= 1156,9 cubic feet. The mean velocity c = = 2,54- feet. 
455 

§ 378. The Tachometer.-The most eligible hydrometer is the
tachometer of Woltmann, Fig. 516. It consists of a horizontal axle
.IJ.B, ,vith from t�·o to five vanes F, placed at an inclination to the 
direction of the axis, and gi,·es, when immersed in the ,vater and 
held at right angles to the direction of motion, by the number of its
revolutions in a certain time, the velocity of the running ,vater. To
read off the number of these revolutions, the axle has a few turns of 
a screw C, and these work into the teeth of a wheel D, upon whose
lateral surfaces numbers are engraved, ,vhich give, by means of an
index, the number of revolutions of the wheel. But to be able to 
register a great number of revolutions upon the axle of this toothed 

Fig. 516 .  

wheel, there is a pinion which works into the teet� of the w�eel
E, by which, like the hands of a watch, several multiple revolutions 
may be read off. If, for example, each of the t"'O toothed wheels has 
fifty teeth, an<l the trundle ten, then the second \\'heel revolves one 
tooth whilst the first ad\'ances five teeth, or the vanes make .five reYo­
lutions, if the index of the first ,vheel points to 27 = 25 + .2, and 
that of the second to 32, the corresponding number of revoluti.ons of _
the vanes is accordingly : = 32 • 5 + .2 = 16.2. The enb�e instru­ •
ment is screwed to a staff having a tin vane attached, to admit of easy 

39• 
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imn1ersion in the water, and of being kept opposed to the current. 
But that the ,\·heeJ,vork may only revolve during the time of observa­
tion, the axis is connected ,vith a lever GO, ,vhich is pressed do,vn
by a spring, so that the teeth of the first ,�heel are thro,vn into gear 
,\·ith the screw only when the lever is dra,vn up by a string.

The number of revolutions of a wheel in a certain time, for exam­
ple, in a second, is not exactly proportional to the '\'elocity of the 
,vater, hence we cannot put v = a,u, ,vhere tt is the number of revo­
lutions, v the velocity, and 4 a nu1nber deduced fro1n experimentso;
but rathero: v = v0 + o. u, or more correctly v = v0 + a. u + j3 uz . . .  , 
or still more correctly: 
v = a. u + ✓v0 

2 + f3 u\ ,vhere v0 is the velocity, at "'·bich the water 
is no longer ab]e to turn the "·heel, an<l o. an<l f3 are co-efficients from 
experiment. The constants v0, a and i3, are to be determined for 
each instrument in particular. \Vith their assistance the velocity is 
known from a single observation, nevertheless it is al\vays safer to 
make at least two, and to substitute the mean value as the correct 
one. 

= 0,1 IO feet, a = 0,4R0, and 8 = 0, therefore v = 
0,1 1  + 0,48 1♦, and ,ve have by an observation ,vith this instrument founu the number 

210v = 0,11 + 0,48e. -- = 0,11 + 1,26 = 1,37 feet. 
60 

Remark 1.  The constants v
0

, • and 6 depend principally on the 
nJagnitutle of the angle of impact, i.e., on the nngle which the plane 
of the vane makes ,vilh the direction of motion of the ,vater, anu 
therefore, nlso, ,vith the direction of the ruds of tho ,vl,ef'l. To 
observe ,vjth tolerable nccuracy small "elocitics, it is well to have 
a lnrge angle of irnpul!<e, i. t., one of 70° . For the rest, it is desira­
ble to have vanes of cliifercnt sizes and with clilferent angles of 
in1pulse, and to use the vane ,,,ith sn1all angles of impultse for 
great velocities, ond n sn1aller oue for shallo,,· ,vnter. 

Ranark 2. To finu the velocity of the surface of ,vater, a small 
tin ,vlieel may l,e used, as represented io Fig. 517, and its under 
part allowed to clip into tlle ,vater. The number of its revolutions 
may be determined by a system of ,vhcels, n11 iu the tachometer. 

§ 379. To find the constant or co-efficient of the tachometer, it is 
necessary to set this instrument in a stream, whose velocity is known,
and to note the corresponding number of revolutions. Although as 
many observations only are required, as there are constants, it is still 
safer to ha Ye as many observations as possible, and especiaJly for very
different velocities, because we may then apply the method of least
squar�s, an� thereby eliminate the effect of accidental errors of ?b­
servat1on. fhe velocity of the water may be fonncJ by the floating 
ball, or by _receiving the water in a gauge vessel, �nd di�ding the 
measured discharge by the transverse section. In using floating balls,
the air should be still, and the tract of water straight and uniform. 
The tachom�ter is  to be held at se,eral places of the space described
by the floating ball, and it is also requisite for accuracy, that the
diameter of the ball should be equal to that of the tachometer.

'fhe second method of determination has seYeral ad vantages when 

Example. If for a sail-,vheel v
0 

of revolutions 210 iu 80'', tuen tLe corresponding velocity is; 

Fig. 517. 



.I (x) = 0
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the method of least squares, put: 

- . .  • . I (xy) -

small tacho meter the velocities are: 0 :Meif 0,298; O; 63; 0,205 ,1 ,Exampu. For a 
0,835 ; 1,805 ; 1,467 3,142 ; ; 0 61 O metres the number of revolutions per second: 0,600

r�quired to determine the constants oorresponding to this wheel. From the formula 

= 18 63 + (y) = 01 I · · · ' ' == · · ,11
740

6

.z (zy) = 0,600 + + . .  == 80 961, 

,
.I (.r) = ( 

THE TACHOMETER. 

the water in which the instrument is immersed is received into a 
gauge vessel. For this purpose, and especially for adjusting the
hydrometer, it is well if the engineer can erect a proper hydraulic
observatory, consisting of a vessel of efflux, a gauge reservoir, and a 
channel of communication between the two. With such an arrange­
ment, we may impart to the ,vater any arbitrary Yelocity, because we 
can not only regulate the entrance into the channel, but also the 
motion by means of boards placed in at pleasure. During ob­
servations we must keep the tachometer at different parts of the 
transverse section of the channel, measure the depth of this section
by a scale, and, lastly, gauge the water running through in a definite 
time� in the Jo,ver reservoire(§ 372). We obtain the area F of the 
transverse profile by multiplication of the mean depth with the mean 
breadth, and the quantity of water Q is found from the mean trans­
verse section G of the gauge measure, and the height ( s) of the quan-
tity which has flowed in during the time by the formula Q ==-E!; but 

t 
Q Gsthe mean velocity of the water: v = = Fl 

follows from Q and F. 
F 

The corresponding number of revolutions u of the wheel ' is the 
mean of all the revolutions which are obtained when the instrument 
is immersed at different breadths and depths of the measured profile. 

If from a series of experiments we have found the mean velocities 
v1, v2, v3, &.c., and the corresponding number of revolutions, ,ve then
obtain by substitution in the formula v = v0 + a. u, or in the more 
correct one : v = a.u + ✓v02 + J3u2 as many equations of condition 
for the constants v0, a., J3, as there have been observations made, and
'\\'e may from these find the constants, if these equations are divided 
into as many groups as there are unknown constants, and these added 
together for as many equations of condition as are requisite for deter­
mining v0, a, and also � when required. 

' 
Rtmark. If we adopt the more simple formala with 2 constants,' we may then, after 

= .I (y)2 I (x) - % (xy) I (y) and •" 
I (r) I (y2) -(I (xy)]1 = I (r) .I (y) - .I (xy) .I (.r) 

.I (x') .I {y) -[% (xy)1 , O 
where x = .!_ and y= �. and the sign .I represents the sum of all successive similar"" 

· • · ,1- 1+ -+ 1- +
", "• 

u, + 
values, for example, I (x) = 

1+ 
"1
-

"1 
. 

"· v, "2 "• "• 
-

1 us + 1 tAi 
• 

given in the remark. it follows, tha t :  
°,6001 1 22 7 59 

3 + 0 2, 05
+

1 )' + ( 1 )' + . .  == 82,846, I (y') = 105,223, and 
0,163 

(0,1 63)2 

0,20:,
0,835 

(0,205)1 



v = �OS,223 
0 

22,?�9 = 129,5 = 0 060 and . 18.740- 80,9u l . 

If in this we put u = 0.1\ \Ve then obtain· 
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1:12,si1a . 10:-,,223-(80,961)2 2102 ' 
,= 368·3 = 0,1703, hence for this instrutnent the formula v = 0,060 + 0, 1703 u.2162 

v =0,060 + 0,102 = 0,162 i further, to= 01835,
V = 0,060 0,142 =01202 ; further,0,,= 1,467,
t1 = 01000 0,2,J O =O,:lOfl. u = 1, 05, 
t• =0,000 0,307 = IJ,307; lnstly u = 3,1,12,
v =0,000 

t
+ 0,535 = U.595 ; 

therefore, the calcul:itcd values agree ,•cry ,\·ell ,vith the observed. 

§ 380. Pilot's Titbe.-Other hydrometers are not so satisfactory as
the tachometer, for they either admit of less accuracy, or they are 
more complicated in their use. The most simple instrument of this 
kind is Pitot's tube. In its simplest form it consists of a bent glass 

tube .fl.BC, }..,ig. 518, which is held in the water 
Fig. 518. in such a manner that its lower part stands hori­

zontally, and is oppose<l to the ,vater. By the 
percussion of the ,vater, a column of water is sus­
tained in this tube, which stands above the level 
of the exterior fluid surface, and the elevation DE
of this column is greater, the greater the percus­
sion or the velocity of the water generating it; this 
elevation or difference of level may hence serve
inversely for a cneasure of the ,elocity of the water. 
Let this elevation DE above the external surface 

2
of water = h, and the velocity = v, then h = v , ,vhere ,.. is a 

2g"'2 
number derived from experiment, and we have inversely, v = µ.. ✓ 2gli, 

or more simply : v = .i, ✓h. To find the constant .i,,Fig. 519. the instrument is immersed at a place in the ,vater 
where the velocity v1 is kno\VD ; if the elevation is here 

• = h1, ,ve then have the constant 4- = v1 , ,vhich is
✓ hl

to be applied in other cases, where the velocity is to be 
determined \\'ith this instrument. 

To facilitate the reading otf of the height h, the in­
strument consists of two tubes, as shown in Fig. 519,
and from the one a s1nall tube F is directed against
the stream, from the other t,vo small tubes (l and G1

at right angles to the direction of the stream, both tubes 
are connected with a single cock H, by '\\>·hich the
"'ater can be retained in them. 'When the instrument
is dra\vn out of the water, we may conveniently read 
off on a scale attached to both the tubes, the difference 
CD = Ii of the t\vo columns of water. That the water
in the tube may not oscillate much, it is necessary to
make the exterior orifices of the tu bes narrow, and that 

the closing of them may take place quickly and safely; the cock is 
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provided with an arm ancl an eYen rod HK, ,vhich terminates abo"'e, 
near the handle of the instrument. 

§ 381. Hydrometric Pendulum.-The hydrometric pendulum has
been used in preference by Ximenes, l\iichelotti, 

Fig. 620•Gerstner and Eytelwein for the measurement of
the :elocity of running water. This instrument 
consists of a quadrant .JlB, Fig. 5201 divided info
degrees and smaller parts, and a metal1ic or ivory 
ball K of from two to three inches diameter, sus­
pended by a thread from the centre C, the velocity
of the ,vater is given by the angle .11.CE, at which
the thread when stretched by the ball deviates 
from the vertical, when the plane of the instru­
ment is brought into the direction of the stream,
and the ball submerged in the water. As the angle rarely amounts 
to forty or more degrees, this instrument has often the form of a right 
angled triangle given to it, and the divisions made on its horizontal 
arm. For the placing of the index or zero line in the vertical, it is 
best to use a spirit level on the horizoL1tal arm of the instrument, or 
the ball itself may ser,·e for this purpose, by letting it be suspended
out of the water, and the instrument revolve until the thread coin­
cides with the zero line of the division. 

For velocities under four feet we may use the ivory ball, but for 
greater velocities the hollo,v metal ba11. On account of the constant 
undulations of the ball in the direction of the motion of the ,vater, as 
also at right angles to the direction of the current, the reading off is
some\\·hat difficult, and leaves a good deal of uncertainty, for which 
reason this instrument cannot be relied upon for the more exact 
numbers. 

The dependence between the angle of deviation and the velocity 
of the water may be determined in the following manner when the 
ball is not very deeply immerse<l. From the weight G of the ball 
and from the impulse of the ,vater P = ,,. Fv2 , increasing simulta­
neously with the square of the velocity v and the section of the ball 
F, the resultant R, whose direction the thread assumes, follo,vs, and 
is determined by the angle of deviation /3, for which the tang. /3 = 
� = ,.,. Fv2, hence also inversely : 
G G 

v2 = G ta11u0 . � , and v = ✓ G-- . ✓ tang. �, ·1.  e .  v = -i, ✓ tang /3,.µ, F µ.F
if ,i, represents a co-efficient derived from experiment, which must be 
obtained before use according to the above-mentioned instructions.

§ 382. Rheomete�.-The remaining hydrometers, such as Lorgna's 
water lever, Ximenes's water vane, Michelotti's hydraulic balance, 
Brunning's tachometer, Poletti's rheometer, are 1nore complicated in 
their use, and not altogether to be relied on. The principle of aH 
these instruments is the same, they are composed of a surface of im­
pulse and a balance, and the last serves for the purpose of giving the 



-
J P -=- = 4 ✓ P, ,vhere 4 denotes a constant deduced from ex­

J P  J a G 
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percussion P of the \vater against the former, but since this 
,ve then ha,·e inversely : 

= I" Fv', 

= 
,uF

periment dependent on the magnitude of the surface of impact F. 
The rlieometer, ,vhich ,vas lately proposed by Poletti, and does not 

materially differ from the hydrometric balance 
Fig. 521. of Michelotti, consists of a Je,·er .llB, Fig. 521, 

t urning about a fixed axis C, and an arm CD to 
,vhich the surface of impulse, or according to 
Poletti, a mere impulse-staff is scre,vecl. To
maintain equilibrium \\'ith the percussion of the
\\'ater against the surface, the boxes suspended
at the extremity .JJ of the lever are loaded ,vith 
"·eight or shot, and to put the empty balance in
equilibrium in still water, n counterpoise is 
placed at B, ,vhich makes up the outermost end 
of the arm CB. From the weight put on G, the
impulse P is found by means of the arm C.11 = a
and CF= b from the formula PbF= Ga, "'hence,

therefore, 
aP - _ _ ----,-----=-

,.,, }' - p. b F 
"·here 4' is a constant derived from experiment. 

G, and v == = 4,✓ G,b 

Remark. With respect to the last hydrometer, ample details will be found in Eytel• 
,vein"s '1 llandbuchder l\1e<.·hanik fester Korper unu der Hydraulik ;" further, in Gerstner's 
·• Hancllmch der l\fcchanik," ,·ol. 2 ;  in Brunning's •1 Treatise on the -velocity of running 
watl.!r ;" in Venturolj's " Elementi di l\fecoonica e d'ldraolicn," vol. 2. Concert1ing 
Poleurs hydrometer, ,ve musr refi�r 10 Dingler·s II Polyteobn. Journlll," Yol. 20, 1826. 
The liydrotut-tcr descrjbed in Stevenson's treatise on l\[nrine Surveying anJ Hydrometry 
is tue 1ncbometer of 1Voltmano, ,re Dingler·s "Journal,'' vol. t351 11:!42. 

C H A P T E R  I X .  
O N  T H E  l lt1 P U L S E  A N D  R E S I  STA N C E  O F  F L U I D S .  

§ 383. Imp11,lse and Resistance of Water.-Water or any other fluid .1rup�rts a sh?�k to a rigicl body, ,vhen it meets it in s�1ch a man�er
that 1ts cond1t1on of motion is thereby altered. The resistance \vh1ch 
�vater opposes t� the �otion of a body, does not essentia1!y uin:er f!om
impulse. TJ1e 1nvest1aation of these two forms the third principal
Ji,·ision of hydraulics. 

0 
We distinguish from each other:

1 .  The impulse of an isolated stream.
2. The impulse of a limited stream. 
3.  The impulse of an unlimited stream. 
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An impulse of the first kind takes place '-Vben a body, (or instance,
the float board of an over-shot water-wheel, is opposed to a stream of 
water issuing from a reservoirn; an impulse of the second kind occurs 
where water, in a canal or in a water-course, impinges against a body 
which entirely fil1s up its transYerse section, as for instance, against 
the float board of an under-shot wheel ; the third kind, lastly, presents
itself, when running water strikes against a body immersed in it, 
whose transverse section is only a ,ery small part of that of the cur­
rent of water, as, for instance, against the float boards of a floating
mill-wheel.

We must distinguish the impulse of water against a body at rest 
and against a body in motion, and further, the impulse against a
curved and against a plane surface, and in this last again, bet"·eeu 
the perpendicular ancl the oblique impulse. 

Let us consider at once the general case, namely, the impulse of 
an isolated stream against a surface of rotation which moves in its 
proper axis, and in the direction of motion of the stream. 

§ 384. Impact of Isolated Streams.-Let B.llC, :Fig. 522, be a sur .. 
face of rotation, .flX its axis, and F.11 a 
fluid stream meeting it in this direction. Fig. 52-l.. 
Let the velocity of the \\"ater = c, that
of the surfacen= v, and the angle BTX, 
which the tangent D T at the extremity 
B of the generating curve or of each of 
the filaments of water BT leaving the 
surface, includes with the directi0n of 
the axis B E =  a. ;  lastly, let u.s further 
assume that the water in running off 
from the surface loses nothing in vis viva 
by friction. Tbe ,vater strikes against
the surface with the re-lati\·e velocity c-v,. and hence leaves the sur­
face with this, and therefore quits it in the tangential directions TB,
TC, &c. From the tangential vel'1c1ty BD _, c - v, and the velocity
of the axis BE =- v, the absolute veloc1ty BGB== c1 of the water after
impinging against the surface is fo111nd by the known formula:  

c1 = .,./ (c-v)2 -t 2 (c-u) v cos. a. +  v2• 

But now a quantity of water Q is able to produce by virtue of its 
vis viva the mechanical effect � • Qr, if its velocity c is fully impart­

ed ; acoordingly the residuary effect of the water: 
2 

== c1 • Qy ; consequently the mechanical effect distributed over the, 2g
surface is: 

c2 C 2 ,;' - c/Pv = - Qr - i Qr = -___;;.,. · Qy.
2g 2g 2g = [c2-(C-V)2-2 (C-V) V • COS. a.-V2] 

Q
ir 

2g 
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2 c v-2 v2-2 (c-v) v cos. a Q= ________ -=-"____;____ y, i .e. 2g
Pv = (I-cos. a) (c-v) v Q-y, 

g
and the force or the impulse of the water in the direction of its 
aXIs 1s : 

P = (I-cos. a) (c-v) Qy. 
g

If the surface meets the water with the Yelocity v, we then have :
(c+v) QyP = (I-cos. a.) . -- ,

g
and if this is without motion, therefore, v = O, the impulse or hydrau­
lic pressure of the axis comes out : 

P = (I-cos. a) c . Qy.
g

It follows from this, that the impulse of one and the sarne mass of 
wate-r under otherwise similar circumstances is proportional to the rela­
tive velucity c + v of the water. 

J?rom the area F of the trans-rerse section of the fluid stream, it
follows that the quantity discharged is Q = Fe ; hence 

P = (I-cos. a) (c+v) c Fr ; 
and for v = 0 :  

g 

c' P == (1-cos. a) - Fr, 
g

For an equal transverse section of t!te stream, the impulse against a 
surface at rest increases therefore as the square of the velocity of the 
water.

§ 385. Impulse agai11st Plane Suifaces.-Tbe impu]se of one and
the same fluid stream depends principally on the angle a, under which the water, after the impulse, leaves the axis; it is nothing if this angle = O ;  and, on the other hand, a maximum, namely, 
= 2 (c+v) Q .,, if this angle is 180°, therefore its cosine = - 1, 
where theg water, as represented in Fig. 523, lea,es the surface in a 

F. -,,3 Fig. 524. 1g. o:.. • 

• 

direction opposite to that in  ,,.,bich it impinges. This is generalJy 
greater for conca,·e snrfaces than for convex, because the angle is there 
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oblique, therefore the cosine negative an<l 1 - cos. becomes
l + cos. c.. 

e1 

Most frequently the surface, as represented in Fig. 524, is plane,
and hence a = 90°, therefore cos. (l, = O, and the impulse 
P = (c+v) 

• Q r ;  for a surface at rest : 

C c2 c2
g 

P = - Q r  = - F '>' = 2 . - Fr = 2 F h 1. 
g 2g 2g

The normal impulse of water against a plane surface is theref OTe 
equivalent to the wdght <if a colztmn ef water which has for base the 
transverse sect·ion F <if the stream, and for altitude, twice the ludght 
due to the velocity 2 h = 2 . �-

2g
The experiments made on this subject by Michelotti, Vince, Langs­

dorf, Bossut, Morosi, and Bidone, have nearly led to the same results 
when the transverse section of the impinged surface was at least six 
times as great as that of the stream, and '\\1hen this surface was twice 
as far from the plane of the orifice as the thickness of the stream. 
The apparatus which was used 

Fig. 625. for this purpose consisted of a 
lever, similar to that of Poletti's 
rheometer, which received upon 
one side the impulse of the ,vater, 
and whilst its other side was kept 
in eq nilibrium by weights. The 
instrument which Bidone made 
use of is represented in Fig. 525. 
BC is the surface impinged on 
by the stream F.11, G is the 
scale-pan for the reception of 
the weights, D the axis of rota­
tion, KL counter-,veights.• 

§ 386. Maximum qect of Impulse.-The mechanical effect of 
impulse : 

- cos. a) (c-v) v Q "IPv = (I g
depends principally on the velocity v of the impinged surface ; it is, 

• The latest and most extensive experiments on the percussion of water a.re those 
of Bidone. &e II Memorie de la Reale Accademia delle Scicnze di Torino," vol 40,
1838. They were performed with a velocity of at least 27 1eet, and on bras� plates 
of from 2 to {; inches diameter. In general Bit.lone found that the normal impulse
against a plane surface was somewhat greater' than 2 F h)':, yet this variation is perh�ps 
to be attributed to an augmenration of the leverage which is prodo� by the _falling 
back of the water. Stt Duchemin's " Recherches experim. sur !es l01s de la reS1s1Bnce 
des fluides." When the impinged surface was quite near lhe orifice, Bidone found that 
P was only 115 F h ,, ; when, furlber, the surfuce had a transverse section equal to that 
of the stream, in which case the water only deviated by an acute angle ii, then, after Du .Buat and Langsdorf, P was only = F h ,-. Lastly, it bas been doo�ced by B1done and 
others that the impulse is in the first moment nearly as great again as lhe permanent 
impulse.

40 
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for example, notl1ing, not only for v = c, but also for v = 0 ;  hence 
there is a ,�elocity for which the effect of the impulse is a maxi1num. 
It is manifest that it only <le_pen<ls on (c-v) v be('oming a maximum. 
If ,ve consider c as half the perimeter of a rectangle, (lnd v as its base, 
,ve have then its height = c-v and its area = (c-v) v. But of all 
rectangles the square is that which has for a gi,·en perimeter 2 c the 
greatest area, hence also (c-v) v is a maximum, \Yhen c-v = v, 

i . e. v = c ,  and we therefore obtain the nt.axiniu,n value of the me-
2

chanical effect of the impulse tohen the surface moves from it with half 
the velocity of. the water, and indeed 

Pi1 = (I-cos. a.) • ½ . !:._ . Qy = (I-cos. a.) • I Qhy.
2g

If nowa. =  180° , and if, therefore, the motion of the \vater be reversed 
by the impulse, ,ve then have the effect equal to 2 . ½ Qhr = Qllrf. But 
if a. = 90°, i. e. if it impinges against a plane surface, this effect is 
then onlye½ Qhy, therefore, in the last case, the half only of the ,vhole 
disposable effert, or that which corresponds to the vis viva of the 
water, is gained or brought to bear upon the surface. 

&ample,.-1. lf a. stl'enm of ,vnter, of 40 s quare inches tron!tverse section, delivers I\
quantity or  ;; c111Jic feel per �&'<lntl, nntl :.trikes nor1nall y  against n plane 8Urfh.ce, nnc.l 
eS<'apeg ,vith a 12 feet velocity. the effect of impulse is then: 

(c-t•) Q,, = (
g 40 

5antl lhe mechanical effect brough t to bear upon tlia snTface Pv = 8,12 X 12 = 007,44 

ft. lbs. Tho greatest eflt!ct is for 11 = !_ = ½ .  5 · 1'14 = 0 feet, and indeed:
2 -t-0

l'= ½ • - . Q >' = ½ .  ll:>'l .0,015t5t . 5 .  62, 5  = 8 1 .  0,015t5t . 62,5 = 784,68 fl. lbs.; the 
2g 

corresponding impulse, or by<lraulic pressuret= 78!•(j = 87, 1 8  lbs.-2. If a strean1 

F.11, 'Fig. 5 '26, of 15,1 !'lfJ.Uarc inches s ection, strikes with a 40 feet velocity against an im­
movable cone, having an angle of convcrgooce B.IJ.C = 100°, Lhen is lbe hydrnulic pres­
l'5UTe in the direction of the stream : 

P= ( l - co,.ca) .!_ Q )' = (1 - co,. 00°) 400. 0,0310. 64 . 400. 62,5 
1« 

g 
10000= (1-0,G-1279) • 1 . 24 • -- = 0,35721 . 137717 = 492. 13 lbs.

9 

Fig. 526. Fig. 627. 

§ 387. 1,npulsc of a Limited Stream.-If ,Ye acltl borders BD, CE, _to th� per�me�er of a plane surface BE, Fig. 527, ,vhich project from
the s!de �rnp1nge<l upon by the ,vater, then ,viii the water deviate _from its dtrechon at an obtuse ano-le in a similar manner as trom 

t) , 

http:l-co,.ca
http:8Urfh.ce
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pressure against the surface i n  the direction of the stream P = ( 1 -cos. a.} 

OBLIQUE IMPULSE. 

concave surfaces, and hence the impulse ,vill be greater than for plane
surfaces. The effect of this impulse depends principal1y on the ht>ight 
of the border an<l the ratio of the transrerse section between the 
stream and the part confined. In an experiment, ,vhere the stream 
was 1 inch thick, the cylindrical enclosure 3 inches wide and 3½ lines 
deep, the water ran off almost i n  a reversed direction, and the impulse 
amounted to 3,93 � 

2 

F 'Y ;  i n  every other case this force was less. In
2g 

consequence of the friction of the water at the surface and the sides, 
the theoretical maximum value never reaches 4 c2 F 'Y· 

2g
In the impulse of a limited stream F.llB, Fig. 528, a rising at the

edges takes place ; this rising occu-
pies only a portion of the perimeter, Fig. 528. 
and extends itself, on the other hand, 
simultaneously to the impinged surface 
and lhe fluid stream. The impinging 
water takes the direction of the un­
bordered portion of the perimeter, and 
here, therefore, becomes deflected 90 
degrees, whence the formula above 
found for the isolated stream P = (c - v) Q "I bolds good ; yet this 

g
may also be deduced in the following manner. If we assume that 
the velocity c of the arriving water by the impulse against its surface 
is changed into the velocity v of the surface, we may then also assume 
that a loss of mechanical effect (c-v)2 

Q "I (similar to that i n § 337), 
2g

expended i n  the division of the water, is connected ,vith it. But now 
the effect due to the vis viva of the arriving watere= i:_ Q r and to that 

2g

of the water going on = i� Q r, hence it follo"·s that the mechanical2g
effect imparted to the surface is: 

Pv = [c2- (c - v)2- v2] 2_ Qy = (c- v) v Q r,*
2g g§ 388. Oblique Impulse.-In oblique impulse against a plane sur­

face, ,ve must distinguish whether the ,vater flo\Vs a'9.'8V in one, two, 
or i n  all directions i n  the plane. If, as in the impact of limited
water, the surface .llB, Fig. 529, is confined at three sides, so th�t 
the ,vater ca? run off only in one direction, we have then the hydraulic 

(c - v) Q y.g 

• Tith, formula \\·ill be found applicable hereafter, when ,ve come to the theory of 
water-wheels. 
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'f [(1 - COS, a.) Q1 + (1 + COS. a.) Q2]. 

OBLTQUE J?t1PULSE. 

Fig. 529. Fig. 530. 

But if the impinged plane BC, Fig. 530, is only bordered on two 
oppositely situated sides, the stream then divides itself into two un­
equal portions ; the greater portion Q1 takes the small deflexion a.,
and the lesser Q2 , 1he greater deflexion 180 - a. ;  hence, the whole 
impulse in the direction of the stream ise: 

C 
- Vp = (1 - COS, a.) , C 

- V Q1 r + {1 + COS. a.) , � "/ = 
g

(C-; ·v) 
g 

No,v the equilibrium of the t,vo portions of the stream requires that 
the pressures 

(c - v) ,y (1 - cos. a.) Q1 and (c - v) 'Y (1  + cos. a.) Q1 
g g

between them should be equal ; hence, also : 
(1 - cos. a.) Q1 

= (1 + cos. o) Q2, or since Q1 + Q2 = Q,
(1  - cos. a.) Q1 = (1 + cos. a.) ( Q - Q1 ), i. e., 

Q1 = ( (1 +
;

os. a.)) Q, and Q2 = (1 - os. e1) Q,;
so that the ,vhole impulse in the direction of the stream is finally : 

= (c-v) r . 2 (1 )
(l +  cos. a.) Q (c-v)r (l -P 2 

�) Q,- - - cos. a. --�-- = --- cos. a. 
g g 

· p C - t,  · Qi. e., = -- sin.. ta. • r, 
Besides the�arallel impulse P, acting in the direction of the stream, 

''°'e distinguish, further, the lateral impulse 8, acting at right angles
to the direction of the stream, and the normal impulse N, composed
of these two, and at right angles to the surface. In eYery case P = N sin. a., and 8 = N cos. a.;  hence, inversely, 

,.,. P c -v . c-v ..,, = . = -- s1,n. a Qy and S = __ sin. 2 a . Qrsin. a 2g • 
The normal iinpulse, therefore, increases as the sine, tlte parallel.impulse as the square ofthe �ine of tlte angle <ifincidence, and the late. 

ral impulse as double the same angle. Lastly if the inclined surface 
impinged on is not bordered, then the water �an sprea<l o\·er it in all 
<lir�ctions ; the impulse is then greater, because of aJI the angles by 
,vh1ch the filaments of ,,·ater are deflected, a. is the least ; and hence, 
each filament which does not mo,·e in the normal plane, exerts a 
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greater pressure than the filament in this plane. Let us assume tha 
a portion Q1 corresponding to the sectors .11 OB 
and DOE, Fig. 531, is deflected by the angles Fig. 531. 
a- and 180° - a., and another Q2, correspond­
ing to the sectors .8..OD and BOE, by 90° , and 
that both portions exert a parallel impulse, \Ve 
may then put : 

c-v Q , c-v Q Q •P = -- 1 r sin. a.2 + -- 2r, 1 sin. a. 2 

g g= Q2, and Q1 + Q2= Q ;  hence it follows, that 
Q1 (1 + sin. a.2) = Q, and the ,vbole paral1el 
impulse P = 
(c-1,) 2 Qysin. a.2 _ 2 sin. a.2 c-v- . . r•g I + sin. a.2 I + sin. a.2 g 

Q 

Although this hypothesis is only approxi­
mately correct, it tolerably well agrees, nev-er­
theless, with the latest experiments of Bidone. 

§ 389 . .11.ction of an Unlimited Stream.-If a body moves progres­
sively in an unlimited fluid, or if a body is put into a flnid which is 
in motion, it then suffers a pressure which is dependent on the form 
and dimensions of this body, as well as on the density and on the 
velocity of the one or the other mass, and in the one case is called the 
resistance, and in the other the impulse of the fluid. This hydraulic
pressure arises principally from the inertia of the water, whose con­
dition of motion is altered by striking against the solid body, and also, 
further, from the force of cohesion of the particles of water, which are 
hereby partially separated from one another, or pushed aside. If a 
body .11.C moves against running ,vater, Fig. 532, it pushes a,\'ay 

Fig. 532. Fig. 533. 

before it a certain quantity with an augmented pressure. Whilst this 
mass of water, by the further advance of the body, always increases 
on the one sid�, on thee other a constant flo,ving away takes pla_ce, . _�htle the particles ly1ng near the anterior surface assume a motion 
1n the direction of this surface. If the moving mass of ,vater strikes 
against a body at rest, Fig. 533, then is there likewise an increased 
pressure produced in front of it, which causes the particles before the 
body to deviate from their original direction, and to run off at the
surface .ll..B. When these particles have reached the limits of the 
surface, they then turn and flow away by the lateral surfaces until 
they come to the back, when they then again immediately unite, but 

40"" 

• 
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assume an eddying motion. It is manifest that the general circum­
stances of motion of the particles surrounding the body are the same 
in the impact of moving water as in the resistance of a body moving 
in water, except that in the eddies a difference so far takes place,
that '!ith lhort bodies the eddy in the latter case occupies a less sp�ce _
than 1n the former. In both cases the velocity of the particles in­
creases more and more from the middle of the anterior surface to its 
limits, attains its maxi1num at the commencement of the lateral sur­
faces, where, for the most part, a contraction takes place, gradually
dimioisbea in the \tater which passes away at the sides, and lastly,
attains it1·tminimum when the water reaches the back and passes into 
a whi eg motio&I. .,,. � of Impulse and Resistance.-The normal pressurefnnea at cWferent points of the body; it is greatest at the middle of 
the anterior, and least at the middle of the posterior surface, and, next 
to that, at the parts of the sides nearest this ; because, in respect to 
the body, there is at the one place rather a flow to, and at the other a
flow from these surfaces. If the body be symmetrical, as we shall 
suppose it to be, with respect to the direction of motion, then the ag­
gregate pressures in this direction counteract each other, and hence 
only the pressures in the direction of motion are to be taken into ac­
count. But now the pressures on the posterior surface are opposed 
to those on the anterior ; hence the resultant impulse or resistance of
the water may be equated to the difference of pressure of the anterior
andposterior surfaces. 

H we cannot assign the amount of these pressures a priori, we may,
nevertheless, from the great similarity of the circumstances to the im­
pulse of isolated streams, assume that at least the general law for the
impulse of unlimited water does not differ from that of the impulse of 
isolated streams. If, therefore, F is the area of a surface, which is 
impinged on by an unlimited current whose density is r, with a velo­
cityt", then the corresponding impulse or hydraulic pressure may be 

v'put P - C - Fr, where C represents a number deduced from expe-
2g

riment, dependent on the form of the surface. But this expression is 
not only applicable to action against the anterior, but also to that 
.... the posterior surface, only that in this last, when the water 
has a tendency to flow away, it consists of a draught or negative pres­
sure. If now F h r is the hydrostatic pressure (§ 276) against the
front and back surface of a body, the \\'hole pressure against the front 
is: P1 - Fh-, + ,1. • f 

g 
Fr, and that against the back : P1 - Fh-,

' 
- Cs • hF.,, and the resultant impulse or resistance of the water is 
then found : 

v' .P - P1 - P2 =- (C1 +C2) .  - Frt=- c. -v
s 

Fr, 1f C1 + r2 =- {. This2g 2g
general_ formula for the impulse of unlimited water is applicable to the
percussion of the wind or to the resistance of the air. Besides the 

• 
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difference of aerodynamic pressure at the front and back, there is fur­
ther a difference of aerostatic pressure, because the air in front, in 
consequence of its greater elasticity, has a greater density (r) than that 
at the back. For this reason, in high velocities, as those of cannon­
balls, the co-efficient of the resistance of air is greater than that of 
water. 

Rmrark.-The adhesion of a certain quantity ofair or water to lhe body, is a peculiar 
phenomenon of the impulse or resistance of an unlimited medium (water or air), whoee 
influence is particularly remarkable in lhe variable motion of bodies, as, for example, i n
the oscillations of the pendulum. For a ball, the air or water adhering to the moving
body is equal to 0,6 of the volume of the ball. For a prismatfo body moved in the direc-
tion of its axis, the ratio of this volume =0, 13 +0,7 0 5  ..I

l 
F, where I is the length, 

and F lhe transverse section of the body. These relations, di900vered by D11 Buat, have 
been fully confirmed by the later observations of Bessel, Sabine, and Baily. 

§ 391. Impulse and Resistance against Suifaces.-The co-efficient
of resistance C, or the number with which the height due to the velo­
city is to be multiplied to obtain the height of a column of water mea­
suring this hydraulic pressure, varies for bodies of different figures,
and only for plates which are at right angles to the direction of mo­
tion is it nearly a definite quantity. According to the experiments 
of Du Buat and those of Thibault, we may put { = 1,85 for the im­
pulse of air or water against a plane surface at rest: and, on the 
other hand, assume, but with less accuracy, for the resistance of · air 
or water against a surface in motion C =- 1,40. In both cases,
about two-thirds of the whole effect are expended on the front, and
one-third on the back. The resistance which the air opposes to a
surface revolving in a circle, has been found by Borda, Hutton, and 
Thibault to vary a good deal, but may be expressed by a mean of 
C == 1,5. If the surface does not stand at right angles to the direc­
tion of the motion, but makes with it an acute angle •, we may. s2 C n_n. 11then, with Duchemin, substitute for C, with tolerable cor-

1+ nn. a.3 

rectness.
The impulse and resistance of unlimited media are also augmented 

when the surfaces are hollowed out or have projecting edges at their 
perimeters, but we have arrived at no general results on this subject. 

Exampk. Ifthe wind impinges with a 20 feet velocity against a firmly fixed wind-mill 
wheel, which consists of four wings, of which each has an area of 200 aqnare feet and 
7 5° inclination to the direction of the wind, then is the impinging force of the wind in
its direction, or in  that of the axis of the wheel: 

2 {rin.t 7 5)9 2()1P - 81, 5 . ----'-- . - . 4 . 002 0 0  6nl,, • 800 • 00SJ- • , 81  :a: 1,85 • 0,966 • ,
1 + (,in. 75)9 2g= 7 18,4 ft. lbs., when the density of the wind is {from § 301) taken at 0,081 lbs. 

lumark. Views, with respect to the impulse and resistance ofunlimited fluids, e!1tirely
at variance with these, are putforward in the above-menttioned work of Duchemin. It 
is there maintained, for instance, that the impulse and resistaDCe against the (ront sur-
iilee of a thin plate amounts to2 .  !!_ F l, and � not negative at the back, that the

2g 
impulse= 0,136 tJ9 F,,, and the resistance a: 0,7t46 !!... F-r. It would be too cireum-

2 g 2g
stantial here to give a detail of the reaaons why the author cannot agree with the views 
of Duchemin, but moi:e with reference to this wiU be found in Poncelet's " Introduction 
a la mecanique indU8trielle," 2d edition, 1841. 



l 

velocity of 5 feet is only 0,00562 25 = 0,1405 lbs.; and the corresponding mechanical . 

four tu�es, an� the �1fect expended eight as great, and for a velocity of 15 feet, 
the reai�tance 18 9 times � the effect 27 

times 
times as great as for a 5 feet velocity. If a 

man, with a � feet veloc1ty, moves against wind having a 50 feet velocity, he has then _ 

• Poncelet, in his work above cited and Duchemin and Thibault in their " Recherches 
experimentales," have treated very f�lly of theae circumstaooes. 

aa also the im-
pact of the wind on wheel9: &c. 

476 IMPULSE AND RESISTANCE TO BODIES. 

§ 392. Impulse and Resistance ta Bodies.-The impulse and resist• 
ance of water to prismatic bodies, whose axis coincides w_ith the 
direction of motion, diminishes when the length of the body 1� con• 
siderable. From the experiments of Du Buat and. Duchemin, _the
impulse of the front surface is invariable, and only the effect aga!nst
the back surface variable. To this corresponds the co-efficient 
,1 = 1,186, for the total effect, however, with the relative lengths 
---- = 0, I, 2, 3,
✓ }'

{ =- 1,86 ; I,47; 1,35; J ,33. - · . ' 
For still greater ratios between the length l and the mean breadth 

✓Fof the body { diminishes, owing to the friction of the water at 
the lateral surfaces of the body. }.,rom the resistance of the '\\'ater, 
reverse relations take place. Here, from Du Buat, for the effect on 
the front surface, {1 rs 1 invariably ; for the total effect, however,
with 

l-=-- = o, 1, 2, 3,
✓ F

{ = 1 ,25 ; 1 ,28 ; 1,31 ; 1,33, so that, for a prism
\\·hich is 3 times as long as broad, the impulse is the same as the 
resistance. ' 

The experiments undertaken by Borda, Hutton, Vince, DesaguiJ.
liers, Newton, and others, with au�ular and with round bodies, leave 
still much uncertainty. In what relates to spheres, it appears that 
for moderate velocities the mean co-efficient for motion in air or 
water = 0,6. For a greater ,·elocity and for motion in air, accord• 
ing to Robins and Hutton, for the ,·elocities 

v -= 1 ,  5, 25, 100, 200, 300, 400, 500, 600 metr. 
{ == 0,59 ; 0,63 ; 0,67 ; o,71 ; o,77; 0,88 ; 0,99; 1,04 ; 1,10.

Duchemin and Piobert have given particular formulre for the rate of 
increase of these co.efficients. 

For the impulse of water against a sphere, Eytelwein found
{ = 0,7886.• 

Example. If, according to Borda, we put the resistance and impact at right angles to 
the axis of a cylinder at half as great as that against a parallelopiped which has the 
same dimensions, we then obtain for the resistance t= ½ . 1,28 = 0,64 and the impact= ½ .  1,47 = 0,735. If we apply these values to the human body, whose section has 
�n area of aome 7 square feet, we then find for the resistance and impulse of air against 
1t, the values :

P = 0,64 . 0,0155 . 7 . 0,081 ti'n= 0,00562 v', and
P � 0,735 . 0,0155 . 7 • 0,081 vin= 0,00646 ti'. Hence the resistance of air for a 

effect Per second == 5 . 0,1405 = 0,70 ft. lbs.; for a velocity of 10 feet this resistance is_n

an_ resistance 0,00646 . 55" = 19,54 lbs. to overcome, corresponding to the relative velo­
city w+ 5 ==== 55 feet, and thereby to produce the mechanieal effect of 19,54 • 5 97,7
ft. lbs. (English.) 

In the Second Part
we shall treat of the resistance to floating bodies, especialJy to ships, &c., 
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§ 393• . Motion in Resisting Media.-The laws of the motion of a
body in a resisting medium are rather complex, because we have here 
to deal with a variable force, i. e., one increasing with the square of 
the velocity. From the force P1 which urges the body forward, and 
from the resistance P,. = { . !__I 

Fr, which the medium opposes to the
2g

motion, the motive force is: 
v"p = pl - P, = pl - ' . - F,,, 

. 2g 
Gbut since the mass of the bodyo== M =- , the accelerating force is: 
g 

vs _pl , _  F., 

p = .!;- = (P, - r ; Fy)+.M-( 
G
2g ). g, 

or if we represent F,"I by -
1 .ur2gP1 

p = [1 - C (;) 
2
] �1 g. But the velocity " is accelerated in the 

instant of time 1' by • = p -t, hence : 
x = [1 ...,..  t (;)"] �1 g ", and inversely :  

G, " 
't = - . -------· 

pl g [1-, (;)'] 
Now to find the time corresponding to a given chanr;e of velocity, 

let us divide the difference "" - v0, of the final and initial velocity 
into n parts, let any such part "" - "0 == ., and let us calculate the 

n
velocities : 

111 == 110 + •, 11, == "o + 2 •, "s - "o + 3 •, &c.,
and substitute these values in the formula of Simpson. In this man-
ner, by taking four parts we shall obtain the time sought

G 11,. - V0( 1 4
l . t == . + +

pl 12g 1-{ (�)I }-{ (�)I 
2 4 1+ I +2 + s)•1-C (:') I-{ (�) 1-{ (:•) 

Further, the small space described in any instant .., ( § 19), is o -= v 1', 

or since " =- �, er -= �, therefore, 
p p

G. . By the application of Simpson's rule, we 
1-{ (:)' Plg 



+ P2), andp = - [ g. P = - (P + { (:) 
2

1 1 1 ] �

' , .  % 

60 0,0859 = 0,000515, and ( _!_ = .' 171 = 2,66 . 0,000515 . 25� = 0,85625. · 

= -- =-= 29,58 ; and from this the space of descent sou1ht: 
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�hall now find the space which is described while the velocity v passes
into· that of Vn •

2. s ==!!_=. Vn - V0 ( v0 + 4v1 +
pl 12 g J-{  (�)2 1-:-{ (:1)2 

2v2 4v3 · v,+ + + 2) · 1-{ (�)2 1�, (�). . 2 �-{ (:') . 
Of course the accuracy. is greater, when we take six, eight, or 

moreparts. · This formul� takes ioto account the variability of the
co-efficients of resistance, ·which in considerable velocities is neces­
sary. For the �ree- descent of bodies i� air or ,vater P1 =- G, and for 
rnotion on a honzontal plane P1 =- �, 1s more correctly equal to the 
friction/ G. Since this is a resistance, we have then to introduce it 
as negative into the calculation, whence 

As it cannot b� a_ question here of an increase, but only of a diminu­
tion of velocity, \\·e have then to substitute in the above formula 
V0 - Vn for V11 - V0•

In the case, where the_ body is urged by a force, by its weight for 
instance, the motion approximates more ·and more to a unifor� one, 
so that after the lapse of a certain time, it may be considered as 'Such, 
although not so in reality. The accelerating force p = O, wh_en 

v2 = p 
. 

1, w en, t ereiore, r. v - -,---=--·2g pih h
' J ' �  

F, • .'1_ 

The velo�ity of a falling body_ approximates, therefore, to this limit 
more and more, without ever actually attaining it. 

·Example. Piobert, Morin, and 'D"id'ion found, for a parachute whose depth was 0,31 
that of the diameter of its opening t = 1,94 . 1,37 = 2,66. Hence, from what height 
in Prussian feet will a man, of 150 lbs. weight, be able to desc�nd with a similar para­
chute, of 10 lbs. weight and 60 square feet transverse section, 'Without acquiring a greater 
velocity than that which he would have acquired by jumping from a 10 feet height, 

' -
without a paraohute1 The last velocity is 17 == 7,906 ..,/ 10 = 25 feet, the force is 
P, = G = 1 50 + 10 = 160 lbs., the surface F = 60 square feet, the density )' = 
0,0859, and the co-efficient of resistance ( = 2,66, hence : 

·6� . 160 .Ill .w'_ 
If, 

therefore/we take 6 parts, we then obtain for these : 
1 - C • 

11
ff
1 = 0,9762 1 ;  0,90486; 0,78593 ;  0,61 944 ; 0,40537 ; 0,14375, and for 

V 
'' 

---v- = O ;  4,268; 9,210; 15,905 ; 26,910; 5 1 ,393, and 173,913; 'rrom Simpson's 
1-c w' 

rule the mean value is: 
== 

' 

• 
1 �  

= 
·"•• - "o 

'( 1  . O-f-4 • 4,268+2 . 9,210 + 4 .  1 5,90�2 . 26 9lo+4 . !H 39-u.. l .  173,913) + 3 .  6 

532,42 
", , "T

I 

'' 
·· · - 017times the mean value of a:: 25 . 29,58 =- 23,6 feet. 

g 31 ,25t-C . � w' 
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The corresponding time of descent is. since the mean value of 1 
J1 - t: �  

ur= ( 1 .0+ 4- .  1,024 + 2 .  1,105+ 
4 . 11272 + 2 .  1,614-+ 4 .  2,467 + l .  6,957) + I S  

= 1 17471 t = 25 . 11747 = 1,4 sec. 
31 .25 Rtmark. For a oonstant co-efficient of resistance, the higher calculus gives us: 

v = ( ti"'- l ) f 2g p and & = G L 11 ...:... ( 114'+ l)' )
I�+ 1 "' t:F-y {F-y • 4 �  

where p. = J 2 g t: p;" �being the base of the hyperbolic system of powers, and 
Ln the hyperbolic logarithm. 

§ 394. Projectiles.-We have already in¥estigated the motion of 
projectiles in vacuo (§ 38), and found this motion to be parabolic;  ,ve 
may now obtain a more exact knowledge of motion in a resisting 
medium, and consider that, 
for instance, of a shot. In Fig. 534. 
no case is the path .fl. GN,
Fig. 634, of a body passing 
through the air a symmetric 
curve ; the portion G.N in 
which the body descends is 
rather shorter, and, therefore, 
less inclined than the portion 
.llG in which the bo<ly as­
cends, because the resist­
ance of the air operating in 
the direction of motion tends 
always to shorten the por­
tions of its path .!JC, CE, 
EG, &c., more and more ; 
if, therefore, the first portion 
of the path .11.C, for motion in the air is onJy a Jitt]e shorter than it 
,vould be in  vacuo, the last portion LN is considerably shorter in the 
first motion than it is i n  the last. The construction of the path in  a 
resisting medium by means of circles of curvature may be accom­
plised in the following manner. 

From the initial ,·elocity v1, and the angle of elevation BAN = o1

it follows that the L .fl.BC = 90 - G1, and sin . .fl.BC = cos. 111, from 
§ 40 the radius of curvature 

v �
0i.11. = 0i C = ri = i 

' 
g cos. <l-1

hence with this we may approximately describe the portion of arc JJ.C. 
°If now we assume the angle subtended at the centrt> ./1.(!1 C = .t i, 

therefore ./JC = s, = r1 4>,, we then obtain for the succeeding particle
of space CE the angle of inclination a.0 = a. 

0 t0 Let further, 2 1 -

the height of fall BC = h1, and the measllre of the retardation due 
to the air's resistance { . �

2 
F r  being

2g 
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"1' F., "' ,,. Frt. - . - =- ,.. v1 ', there1ore '!II • =- ,..,2g G 2G .
from the principle of vires vivce, we then obtain for the velocity ", 
at the initial point of the second portion of arc: 

t1 1 V t (V 1 +V 2) 

" 

V 2 

==(1 - 14s ) -L
1 

- h•' and hence 11' =- · 1 1

I +"8 
1•J (I-� ) v '-2gn 

2i :g
Since now the height of fall h1 - lK"' - lg•( t) , t 1

it follows that : 

If we substitute these values ofOs and v1 in the equation : :a 
r1 -, "• , we then obtain the radius of curvature O,C = O'JE of gco,. �
the succ�1ng portion of arc CE, and if we assume an angle of re­
volution CO, E - •� it again follows from this that the angle of 
inclinati_on in the vicinity of E : a, - ca'J t1, and the velocity at this 
point 

.. ."s - t,t . l--prl ft I I • co, . .,· - V l +,-r,t 
It �s therei>re easy to see how the entire path of the projectile may be 
succnaiveJy composed of circular arcs. 

Eru1 le A. eaat,imD ball, ol 4' iaebu diameter, is shot off at an angle of elevation o f  
:S0° with a Tillolisy ot 1000 feet, ll?Cpiil9d ita path, if only approximately, according to 
Prmaian weipts and mwmu. The J'alti1IS of curnture of the first portion of arc 

is r1 = •,• = lOOOOOO = 4 9783 ft. As the density o f  the airt== O,O8a9, and 
g co•. • 31,25 co.. 00° 

that of cast-iron =47O lbs., we have then /A =C . F.,. == C. 3 · 3 · 0,0859 =:0,00041 122 
2 G 4 .470 

. ('; now for ii=-1000, C-O,90, hence ,-.t-=0,00037O1. If we take an arc of 1° only, we
•then obtain the velocity at the end of it : 
., _ 1 000  Ji-0,00031O1. 49783. 0,01 74 53-(0,017453 +roa. ao0)'
11 1+0,0003701 .  4 9783. 0,0174 53 

=- 7697 feet. 
and the radiua o f  curvature for a second portion of arc : 

(769,7)9 

r, = 
31,25 co,. 490 = 288 97 feet. 

For "•= 76_9,7 feet, C== 0,81, therefore ,-. == 0,0003331. If, therefore, we d�ribe with 
the last radius, an arc ♦1== 2 ° , the velocity at its ending point will be. 

_,
1 

_ 769,7 J1 - 0,335 98 - 0,002831 = 54114 7  feet. 
1,33598

For a third arc Q3, the radius ofcul'Tat uret,. =-1375 7  feet. and if, therefo re, we assume 
( -=  0 ,75, we shall theo obtain at the end �f a length o f  are of 4°, the velocity v, � 
398,85 feet. The ndius o f  curvatUJ'e for a fourth are may be likewise found r, == 
6960,5 by anuming C== 0,72, and we shall then obtain the velocity v5 == 288,85 feet, 

.at the end of an arc of 8° , from which a fifth ndius o f  curvature ,5 =-3259 feet may be 
calculated. Proceeding in this manner, we shall obtain, by degrees, the collective ele­
ments for the construction of the line of projection in ques tion. 
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	t = tt
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	If ·aer. Let
	l
	b 
	•
	1 
	b 
	· 

	-= -we have then a truncated pyramid to cons1
	, 

	l
	one base bl = G, and the other bl= G, we then 
	the 
	1
	1 
	1
	obtain: 

	2✓h
	t = (3 G+8 G+4 ✓ GG) ---=---===· ,.,. F✓2gIt would be easy to show that this formula holds true also for trilateral or multilateral pyramid. 
	1 
	Figure
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	Exle. An obelisk-shaped water-cask is 5 feet long, and 3 feet broad at topŁ BD<l Łtdepth of 4 feet, that is, at the level of a short horizontal discharge-tube, 3 incl1es in lengtli, it is 4 1eet long and 2 feet l,roa.d, what quired for Lue water in lhe iu11 cask. to sink 2½ feet ? The time for emptyiog 15, /.4 berng aken =0,815t; 
	amp
	the 
	1 inch 
	in 
	,viŁth, 
	and 
	tirne 
	_will 
	be_re· 
	t

	✓4
	=(S.4.2+3.5t.3+2 (3.4+5t. 2)) 
	t

	: (1)
	1

	Figure
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	15t
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	et above tbe tube l=l+ ¾= 
	lev
	el 
	4-
	2½ = 1ife
	1 
	4f 
	and 
	b= 
	bŁ 
	+ 
	l
	= 
	2½
	feet, 
	hence 

	time for emptying ifthe vessel be filled only up to this 
	the 
	level,2!_: 

	l 152 ✓1,5 t,t(8.4.2+ta. 'Io•1 +2(2.v+4 V)J.os1s
	= 
	ia
	1,
	012 
	.
	= 
	. 
	15t
	,
	. 
	,02
	.-

	· 5t
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	Figure
	Figure
	Figure
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	4,5779= 602,76 sec. The difference of the time-t found gives lhe tin10 in Ł·l1ich thŁ surfuce of ,,,ater originally at tile top of thu vessel sinks 2½ feet. 
	§ 351. Irregular Vessels-Wben we have to find the time of effiu · for an irregularly fortned vrsse1 HFR, Fig. 48, \Ye must apply Simp-
	.
	3

	Fig. 483. 
	son's rule as a method of approximation. If we divi<le the whole mass of water into four equaJly thick strata, ancl the heads of ,vater 0, G, G, G, G, corresponding to the horizontal slices, representedby h0, h1, h,, h, /1,, the time of efflux \\'ill be gi\·en bySimpson's rule 
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	The discharge in the first case is : 
	Q= o,. ( G+ 4 G+ 2 G+ 4 G+ G), in the second : 
	h
	-
	h
	0 
	1 
	2 
	3 
	4

	12 
	Q oIle, ( G+ 4 G+ 2 G+4 G+ 2 G+ 4 G, G).
	= 
	h
	-
	0 
	1 
	2 
	3 
	,. 
	+ 
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	18 
	When the form and dimensions of the vessel of efflux are not kno,vn,\\·e may then calculate very nearly the discharge by the heads of water noted in equa] intervals of time. LetBt be one such interval, \ve then for apertures at the bottom and sides: 
	have

	Q = µ. 2g (✓h+ 4 ✓� 2 � 4 � �), 
	F
	t
	3 
	✓
	o 
	+ 
	✓
	+ 
	✓
	+ 
	✓

	for notches in a side: 
	and 
	divisions or 

	i 1& h ✓ 2g ( ✓li4 ✓� + 2 ✓h+ 4 ✓h). 
	Q = 
	t 
	3
	0 
	+ 
	1
	2 
	':1
	3 
	+ 
	✓h
	3
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	&ump/,.. In ·wliat lime ,vjll the surface of water in a pond sink 6 ft•er, if the iiluieoo_a half cylinder, 18 inches wide, 9 iuohcs Jeep, and 60 feet long, anJ lho surface:; 
	f
	rnis 
	·

	r,, 
	G
	at 
	20 

	feet head of ,vatcr, = 600000 square feet. " " = 405t000 
	" 

	410000 
	= 

	G1, " G'nt
	" 

	" 
	18,517,0
	5 
	" " 
	" 
	" " 
	325000 
	= 

	"
	$) 
	G
	15,

	G,., " 14,0 " " 
	o.,..
	= -= 0,S836 square feet. 
	;J :J 
	205t000 " 
	= 

	F -.,, ( s )Ł 
	-· s 
	8 

	= . 60t. 1,09 l = J,G35Gthen is the co-efficient of efllux 
	= 
	O,U!.!5 
	• 
	;
	0,02J 
	1 

	Let I.he co-efficient of resistance for thtt 
	14= 
	l 
	<J37
	<J37
	0.:.
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	and ,,. F v2g== 0,537 0,8836 . 8,02 = 3,80M. Now 
	• 

	600000 G, 495000
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	--"----=--134170, -----=== 115090,
	=
	= 
	==
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	ho ✓20 ✓11✓ 18,5
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	GŁ 410000 325000 
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	940, = 825, 
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	vIi, v 11 5
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	1
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	4 265000
	G

	Ł-= 70830;hence, then, the tune ofefflux r.iows: 
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	vhv 
	vhv 
	4 
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	t = (134170 + 4. 115090 + 2. 99440 + 4. 82550 + 70830)
	6 

	12 . 3,8054
	1194440 
	1194440 
	= 
	== 

	156940 aec-= 43 hours, 35 min. 40 sec.
	., 


	7,6108
	The diecbarge is:
	Q= -h (600000 + .( . .(950()()+ 2. 410000 + 4. 325000 + 266000) 
	46000 
	46000 
	= 
	9
	5

	2482500 cubic feeL
	= 


	2 
	§ 352. Influx and Ej/1:ux.-If the vessel during the efflux frombelow has an influx to it from above, the determination of the time in,which the surface of water rises or falJs a certain height becomes more complicated, so that we must be satisfied generally withan determination. If the discharge per second Q
	but 
	approximate 
	1

	F✓2gh, then there is a rise, and if Q, <,,. F✓2gh, a fall
	is 
	> 
	µ. 

	of the surface. Moreover, a state ofpermanency occurs whenever the 
	head of water is increased or decreased by k ::s '1,)• The 
	2
	Ł 
	(
	1 

	,,.
	time ", in which the variable head of water x increases by the small 
	amount e, is given by the equation
	Gl=Q-r-,,.F✓2x.-t, on the other time in which it sinks the height -k, by
	1 
	J 
	g
	Ł
	-

	and, 
	hand, the 

	Gt == ,,. F✓ �x . " -Q"· 
	Gt == ,,. F✓ �x . " -Q"· 
	1 
	g
	1 

	Git

	Hence we ha,·e in the first caseo" == 
	, 
	and 
	in 
	the 

	Q-,,.F✓2x 
	1 
	g

	second ., 
	= 
	G
	1 
	l 
	. 
	By
	the 
	application of 
	Simpson's rule 

	p. F ✓-Q'\\'e then obtain the time of efflux, during which the lowering surface passes from Gto G, G, ..., and the head of water from hto h,.,2 •• hh• [ G4 G2 G
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	If the vessel is prismatic, and has a uniform trans,·ers section G,"'e then have: 
	Figure
	2 G ( ---✓Ii
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	t = _ ✓li-✓IL✓ko. h. log. -----== • 
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	µ F ✓2g ✓✓time in "·hich the head of "·ater passes fron1 fl to Ii,. Since 
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	that the condition of pertnanency takes place indefinitelylate.
	it 
	follows 

	formula is the result of investigation for a ,vier or 
	The 
	foIJo,\'
	ing 

	t 
	(✓h-✓k)' (h+ ✓°h;!.:+k)
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	l
	✓k-✓k)(h ✓Ill..· It·) 
	o
	g. 
	(
	1
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	+ 

	Gk 
	Gk 
	[n

	= 3 Q1 YP
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	Figure
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	+ ✓12• 
	· arc 
	]
	)

	' 
	3+ (2 ✓+ ✓k) (2 ✓✓
	= 
	1, 
	h 
	h
	1 
	+ 
	k)

	, 
	Q

	)l, hyp. log. represents tl1e hyperbolic 
	= y) the arc whose tangent = y. 
	"'here k (
	= 

	Jb✓2glogarithm, and arc (ta. 
	,i 
	ng

	According as k is : h, 
	and the inflowing quantity of ,vatero
	: 
	> ½ µ. 2li, there is a rise or fall of the fluid surface. 'fhe 
	Q
	1 
	b ✓
	g
	3

	<
	condition of permanency occurs, ,vhen lt= k, an<l the ti1ne corre
	1 
	-

	sponding beco1nes oo. 
	ExamplŁ. In what time will the water in n rectangular tank 12 feet long ani.1 C feet broad rise from O to 2 feet above 1.he edŁe of a notch ½foot bronc!,if 5cubic feel of \\'Bier How in per second? \Vo bavo here =0; hence, more simply • 
	h 

	2 v✓,
	k 
	+
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	21 b =!,and0'-' = 016
	21 b =!,and0'-' = 016
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	(✓h,-✓)'
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	72, Q. = :'I, h, = 
	)*
	(J. 0,6 • !. 8,02 t= 72.2,1338 [1i3 . 5 Y'JJ = 10,242 [hyp. 
	5 
	2,1338, and the time sought is: g (1,4142-1,4607)' 
	= 

	k = 
	arc (ta,,0.=--✓6 -)]g 114142+ 2,021.1
	.,/ 12 . arc (tang. = 
	.,/ 12 . arc (tang. = 


	✓6)J4,33�0
	log. 
	61996 
	61996 
	•

	_
	0,002162
	10,242 (7,961 -1,781) = 10,2420. 6,18 = 63,t0 sec. 
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	§ 353. Locks.-A very useful application of the doctrines hitherto 
	treated of may be mnc1e to 
	Fig. 484. canal locks. \\e clistingui ·h two kinds of navigationlocks, single anc1 double.The single Jock, Fig. 484,consists of a chamber B,which is separated by the upper gate HF from the upper reach .11, and by the 
	the 
	fillin
	g 
	and 
	emptying 
	of
	r

	• 
	Figure
	,. 
	Figure

	LOCKS. 427 
	LOCKS. 427 
	• 

	lower gate RS from the lower reach C. The double lock, Fig. 485,
	on the other hand, con­
	sists of two chambers, 
	Fig. 486. 

	with the upper gate KL,
	the middle one HF, and 
	the lo\ver one RS. 
	Let the mean horizon­
	tal transverse section of 
	a simple lock chamber 
	= G, the distance of the 
	middle of the sluice in 
	the upper gate from the 
	upper surface HR of the upper reach = h, and from that of the lower
	1 

	reach = /1,, and, lastly, the area of the aperture or sluice opening
	2

	, we then obtain the time of filling up to the middle of the
	= F

	Gh. . 
	2 
	. 

	aperture t= d h filling t e rema1n1ng
	1 

	--Ł==, an t e time for h 
	p, F ✓2gh
	l

	e, where a gradual diminution of the head of water takes place,
	spac

	2 Ghl .
	2 --:::===; consequently, the time for filling tsing
	t
	= 
	-
	h
	e 
	.
	I
	e 

	,,. F ✓2gh
	,,. F ✓2gh
	l

	sluice is; 

	(It. + 2 hl) G
	t = tl + t'J. = . 
	,,. F ✓2gh
	l

	If the aperture in the Io,ver gate is entirely under water, then while emptying, the head of water gradually decreases from h+ hto zero, hence the time for emptying or running off is: 
	1 
	2 

	2 G ✓h+ li
	l 
	'l

	t = 
	,,.F✓2g 
	If, on the other hand, a part of the aperture stands above the lower ,vater, we then have two discharges to take into account; the one flowing above and the other below the water. Let the height of the part of the aperture above the water = a,, and that under the \yater = a,, the breadth of the aperture = b, "'e then obtain theof efflux from the expressione: 
	hme 

	t _ -1 2
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	G 
	(h
	+ 
	h
	) 
	. 

	p, ✓2g(a, Jh, + -;, + , k, + h,) 
	b 
	h
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	In double locks, the head of water gradually decreasein the Łhamber which is closed from the upper reach, during the clischaŁge 
	Ł 
	into 
	the 
	second chamber. If G is the horizontal 
	trans,
	r
	erse 
	section 

	0fthe first in this chaber x, whilst the water in the second chamber aperture of the sluice, we have then the 
	chamber, 
	and 
	the 
	original 
	head 
	of 
	water 
	h
	1 
	Ł
	s
	inks 
	to 
	rises 
	to 
	the 
	m
	u
	ldle 
	of 
	the 
	corres
	ponding 
	time 
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	The time in which the water rises as high in the second as in thefirst chamber, and in which, therefore, it comes to the same level in hoJh, may be found from i Ł 7: 
	_
	2 GG✓zo' .2 G, ✓G ✓Gh-Gh.
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	Figure
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	Ezampk. What time is required for the filling and running off of the following singlelock chamber 1 The mean length of the lock = 200 feet, mean breadth == 24 feet therefore G =200 . 24 == 4800 square feet, distance of the centre of the aperture of th: in the upper gate from the two surfaces of water 5 feet, breadth of both aperturefeet, height of the aperture in the upper gate 4 feet, and of that in the lower (entirely under water) 5 feet. Let 
	sluice 
	s 
	2½ 
	gate

	(2 ,.la.) G _
	(2 ,.la.) G _
	I 
	+ 

	t = ..:..---C-.-'-:===-•h, = 5, h, = 5, G == 4800, ,,_ =-= 0,65, F :s 4 . 2½e-= 10, v:! g 
	1

	,,. F 2g,
	v
	h

	8,02, we then obtain the time of filling: 
	= 

	3 · 5 · 4800 14400 _
	-= 652,85 seconds. If we subatitute in 
	t 
	= 
	Figure
	_e
	the

	6,15 . 8,02 v:; 1,23 • s,02 v5 
	G-= 4800, A,+"• -10, F -5. 2j -12,5, we then ,,. F ✓J.g
	formula 
	t 
	= 
	2 G 
	vh
	1±_ "-, 

	obtain the time for e1nptying of the sluice: 2 · 4800 vlO 
	= 49178 sec.e= 8 min. 21,78 1ec.
	1 

	= 

	CHAPTER VI. 
	CHAPTER VI. 
	ON THE EFFLUX OF AIB. FROM VESSELS .AND TUBES. 
	§ 354. E.fllux of Still Air .-Condensed air does not flow from quite in accordance with the law which regulates the flow 
	vessels 
	of

	ater, because an expansion takes place during its discharge, "·hich 1s not the case with water. But in order to discover a similar law for 
	Ł

	. 
	vi
	gases, let us make the mechanical -a
	air 
	and 
	other 
	effect Qro
	, 
	which 

	2g 
	2g 
	f .

	t 0,615 . 12,5 . 8,0i 
	of the density r requires to pass from a state of rest log. () found in §298, "'hich the same quantity produces 
	9uan
	t•
	1ty 
	o 
	air 
	Q 
	Ł
	1
	of air 

	Figure
	Q= Fvn= F(1-:) ✓
	6
	2gh, 

	= 
	Figure
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	passes from a greater pressure p1 to a less p. IfŁ therefore,1 be the elastic force of air enclosed in a vessel, v its velocity ofthe tension of the external air, and r its density, then 
	when 
	it 
	P
	efflu
	x 
	for 

	2
	r ;n= Qp h. log. !!.!.), therefore, the height due to the velo-
	Q
	. 
	yp
	(

	. p
	g 

	city: 2 -= 'f!_ h. log. P) = 2,3026 ]!_ log. );
	v
	yp
	(
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	(
	P
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	"I 
	2
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	p

	p "I
	p "I
	the velocity itself: 
	the velocity itself: 
	and 

	v = J2g h. log. (f) · 
	Ł 
	yp

	When the tensions p and p1 differ little from each other, when 1 -pis < lthen \\e may put: 
	P
	T
	if 
	p, 
	r

	Pi = . og. (1 'P--P) = Pi-P, and hence
	Pi = . og. (1 'P--P) = Pi-P, and hence
	h
	yp
	l
	+ 
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	h
	. 
	og
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	2
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	)
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	=Pi
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	weight with the pressure p1-p ( § 294 
	by
	its 
	), 
	is 
	h 
	"I 
	P 
	; hence 
	we 

	the velocity of efflux v = ✓2gh, and a perfect analogy "·ith of ,vater will hereby subsist. For high pressure this for­not of course sufficient, for in this case : 
	tnay 
	put 
	Figure
	th
	e 
	efflux 
	tnula 
	is 

	hyp. log. (= ,;P _½ (Pi;P)• at least. 
	Ł 
	) 
	P

	e, then, more accuratelyn: 
	Henc

	ŁJg (P,-;P -½ (p,;:l) ,
	= 
	2
	= 
	J 
	2
	g 
	(1 _
	p
	2
	-
	:) h

	"·e represent the height of the barometer by b, p = br, and 
	or 
	if 

	2g 1)h= 1) ✓2g
	V= J 
	(
	h
	(
	-
	4
	Ł
	h.
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	the discharging orifice Fof the vessel
	If 

	Fig. 486, is accurately and smoothly the particles of air in llel lines, and hence the quantity of air ng through the orifice in each second, measured the height of the external 
	JJB, 
	Fig. 486. 
	rou
	nded, 
	then flow 
	p
	ara
	ilow1
	and 
	by 
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	The above formulre do not admit of direct application, be­cannot measure the internal or the external 
	§ 
	355. 
	cati
	se 
	we 
	pressure 
	by the 

	Figure
	P -1+0,00367 · r 1,2572 p 1+0,00367 t--------· 
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	Figure
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	length b+h, and b of the columns of air. These pressures rally measured by columns of ,vater or mercury. As reganJs the 
	are gene­

	, it is immaterial whether band h be expressed in 
	quotientŁ 
	= 
	b
	Figure
	+h

	p b
	air, water, or mercury, because each reduction h leaves the fraction constant, except that the quotient == b,is 
	columns 
	of 
	of 
	band 
	b 
	Figure
	+h 
	P 

	b t 
	still dependent on the temperature of the effluent air, and varies fordifferent kinds of gas. For atmospheric air (§ 301), if representthe pressure of air on one square centimetre, and the weight of acubic metre of air, and t the temperature in degrees centigrade, we have 
	p 
	r 

	t, on the other hand, for steam, 
	. 
	r 0,7857
	If we substitute these va.lues in the general formula for , we obtain for atmospheric air:
	v
	shall

	'------------=:--
	v = 395 J(l +0,00367o. t) hyp. log. (°metres, 
	t
	h
	) 

	or being small : 
	h 

	b 
	v = 395 J(l +0,00367o. t); metres, and for steam 
	v =500,6(1+0,00367 • t) hyp. log.
	J

	The theoretical discharge as estimated under the external pressr
	u
	e

	is Q = Fv, but if this is to be estimated at the internal pressure, 
	v.e

	6 Q
	must then make p -Qp, hence Q-]!_ Q-Reduced to the
	Q
	1 
	6o

	.
	+h
	temperature of zero, the quantity discharged is: 
	Q
	Q , therefore, for atmospheric air1 I+0,00367. t=-395FJhyp. log.(h+h)-hyp+0,00367Ifequal masses of air of different temperatures issue from differentorifices Fand F1 at the same tension, we then have 
	= 
	:
	l+0,00367tl"'1+0,00367t
	F. 
	1,245 F.
	== 
	a blast furnace is to be supplied air of
	If, 
	therefore, 
	'\\'ith 
	heated 

	150, we mustoapply haYe a one-fourth greatersecuon at the discharging orifice than '\\'ere tobe used. 
	° 
	. 
	nozzle 
	pipes, 
	which 
	transverse 
	if 
	cold air 
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	For Prussian measure, and centigrade scale of temperature: 
	v = 1258 . J(1 + 0,00367 t) yp. l. (6t), and for steam 
	h
	og
	h

	v = 1595 . J (1 + 0,00367 t). log. tt )·
	h
	yp
	h

	For English measure, and Fahrenheit's scale of temperature: 
	(1 + 0,00204 t)h. log. 
	J 
	yp
	(
	b
	t
	h

	= 1295 . 
	v 

	, and for steam 
	)

	Exan,ple. In a large reservoir, air at 120C, temperature is enclosed, which corresponds 
	° 

	.
	to the height of a mercurial manometer of 5 inches, whilst the external barometer 
	stanus 
	at 27
	1

	2inches; what quantity of air will tlow from tbis hrough a rounu apertureli inch wide? It ls: 
	t

	hyp. wg. = h. log. ) = h. log. 32,2 -h. log. 27,2 = 577455
	hyp. wg. = h. log. ) = h. log. 32,2 -h. log. 27,2 = 577455
	(
	b 
	+ 
	h
	) 
	yp
	(
	32
	1
	2 
	yp
	yp
	1

	27,2 
	b 

	-5,605t80 = 0, 1687 5, hence the velocity of efflux is: 
	--
	--
	-


	1258 . .,/ (1 +0,00367 .t120) 01 16875 =125t8 . .,/ 1,4-104t. 0,16875 = 620,2 Prussian 
	" = 

	Now thearea ofthe orifice=..!. (i)= "' =0,01227 square feet; hence it follows 
	feet. 
	'

	4 256
	athe discharge Q = 0,01227. 620,2 = 7,61 cubic feet. Estimated at the interior 
	th
	t 

	pressure, it is = . 7,Gl = 6,43 cubic feet, antl reduced to the mean height of the 
	272 

	322
	barometer, 28 inches and otemperature (30 English inches and 32temperature F.),the quantity discharged is: 
	0 
	° 

	272 1
	= 7,61 . . 5,13 cubic feet.
	= 

	280 1,4404 
	§ 356. Efftux of .llir in �fotion.-Tbe formula of efflux given: suppose the pressure or the height of the manometer I,, to be mea­at a place ,,·here the air is at rest, or has a very slight motion, but if or his measured at a place where the air is in motion, if,instance, the manometer 
	p
	1 
	sured 
	p
	1 
	1 
	for 

	Fig. 487.
	M communicates with the air 
	• ---
	J 
	-

	a conducting tube CF, Fig.
	in 

	487, we sh all then ba,·e to take into account the vis viva of the arriving air. If now cthe velocity of the air pass­ing the orifice of the manome­ter ,ve sha1l accordingly have to make: 
	°?e 

	Figure
	Q 
	p
	o
	(
	p)
	section of the orifice and G passing the orifice of the manŁmeter, 
	be 
	the 
	transverse 
	that 
	of
	the tube, 
	or 
	of 
	the 
	air 
	according 
	to the 

	'f1 F 
	or 

	y 
	Q

	2 
	2 
	= 

	• :g y . 2:g 
	Q

	of Mariotte, J!, or G= Fvp, therefore,
	law 
	: = 
	cp
	1 

	Pi 
	Łt:. v, Qr [1 -(Ł)' (;.)] ;; Qp l;•)
	= 
	.t
	= 
	hyp
	. 
	og.t
	(
	, 

	, 
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	EFFLUX UNDER DECRF:ASING PRESSURE. 
	and the velocity of efflux in question : 

	2hyp. log. (Ł' 
	2hyp. log. (Ł' 
	✓
	g
	; 
	)

	V= 
	-
	-



	1-(GŁ,)' 
	1-(GŁ,)' 
	✓ 

	The velocity of efflux is, therefore, here exactly ]ike that of \\·ater 
	from vessels, the velocity is greater, the greater the ratio Ł of the 
	transverse section of the orifice to that of the tube or the arriving cur­rent of air. From this it is e,·ident, that under otherwise similar cir­cumstances, the height of the manometer pis so much the Jess the narrower the conducting tube is, or the greater the velocity of the issuing from it . 
	1 
	air

	.Exampk,.-1. A mercurial manometer, placed upon ftn air tube 3½ inches wide, standŁ t-s in diameter; with what velocity will the current move? If the external baromctt•r 
	at 2½ inchet1, while the air flows from its conical extremity throuŁh a round orifice 2 inob

	-= 
	27½ 
	=-
	=-

	30 
	an<l
	rf 

	5 
	-
	-


	27
	1
	stand at 27½ inches, we shall then have p
	' 16 11 
	=

	f! = ·
	F J!... = 
	( 
	( 
	2 

	3,5 
	.
	)n
	; hence the theoretical velocity of efflux 
	44 
	at

	49 • 12 147 
	•
	U p. 
	a temperature of the air 10C: 
	° 
	.

	1258 . ..,I 1,0367n. lujp. log. (ff) .
	1258n-./ 
	1,0367n. 
	0,087 

	3,.0 p 
	v = ---====---=---== -___,;;----:::==---v russ1an feet.
	-

	..,IO,\H04 
	✓
	1-(//t,)
	1 

	2. The tension in the air regulator, where the air is without motion, i1 giTen 
	Pi 
	by 
	the
	1brn1ul
	a, 

	(P•) 11,-
	1 
	/a
	yp
	. 
	/of. 
	(
	f)

	/ayp. 1o. --= ;;-. , or /a. log. p, -JiP+ 
	8
	-
	yp
	yp. 
	log. 

	p Łg p p 
	( 
	G
	1
	p
	· 
	, 
	)
	' 

	1
	-

	0,087
	therefore, in the pre1ent cue, ::s layp. log. 27,Ł + .. 3,3142 + 0,0065 111: 3,
	0 9104 
	4107. 

	' 
	' 

	Hence it follows that P= 30,3 inches. 
	i 

	357. under DecreasinPressure.-!( an air reservoir no influx, whilst an uninterrupted efflux goes on, the density and sion gradually diminish, and hence the velocity of efflux becomeand less. We may determine in the folJowing manner in this diminution is to the time and to its discharge. 
	§ 
	Efflux 
	g 
	has 
	ten­
	s 
	Jess
	\\'hat 
	ratio

	Let Ybe the volume of the reservoir, hthe initial height manometer, and h,. the height of the manometer at the end certain time t, I, the height of the external barometer. Then of air in the reservoir at the commencement reduced to 
	0 
	of 
	the
	of 
	a
	the
	quantity 

	the external pressure =-and at the end of the time t
	V(b+h
	0
	) 

	b ' 
	, 

	V(b+hn)b 
	and, consequent y, t e quantity 1sc arged 
	, 
	.

	J h . d' h 1n t he h· 
	me 

	=-
	=-

	-
	· 
	/., :. 
	b 
	, 
	Figure
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	EFFLUX UNDER DECREASING PRESSURE. 
	inversely, the height of the manometer corresponding to the dis­charge Vn is : 
	and, 

	hn = h-;. b. 
	o 

	If we take four intervals, and the initial height of the manometerh, and at the end of the time t = h,, and 
	0

	1 h-Ł,, h= h-f (h-h,), and 
	h
	= 
	0 
	h
	o
	h
	1 
	0 
	0 

	h= h-f-(,), we shall then obtain by Simpson's rule the time 
	3 
	0 
	h
	0 
	-
	h

	_ V(h-h,) 4
	_ V(h-h,) 4
	0
	1 

	t 

	+ 
	-Fl>2gŁ J hyplog(Ł•) J hyp. log(Ł•
	-Fl>2gŁ J hyplog(Ł•) J hyp. log(Ł•
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	log. 
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	t 
	3
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	1 
	-
	+ bh •
	+

	hyp. log. ( ' 
	f
	Ł 
	b 
	) 

	For moderate pressures or heights of the manometer: 
	1 
	( 
	h) fh 
	b
	hyp. log. 
	Ł
	f 

	Ifwe now take n intervals, and therefore the discharge for one inter­val: v. = we shall then obtain the corresponding element 
	V(h
	0
	-;;h.), 

	n n 
	of time: 
	Ł Ł W(Ł-;;-) +1'-F 
	hn 
	J 
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	, h, h1, ••••hn , we shall then ob­
	1

	0
	No,v if we substitute for h; htain the sum of all the 
	in ,vhich hn passes into h0, and the quantity of air 
	F✓ 2gb 
	; 
	b
	F
	✓ 
	2
	g 
	Ł 

	-,-
	-

	approximately: 
	(✓�-✓ ,\(1 + o:·
	n )
	h
	h
	n 
	)

	= 
	75 cubic feet, hence the discharge, measured at 
	98
	J
	,
	the

	. 501250. =
	!.n
	1•5
	!. 

	==
	4 4 
	external pressure is V. = 
	. I I 
	27
	b 
	Now =-..,I J 0,00367 • t =-1258 ..,I 1,02:.102 -1272, anJ 
	J 
	2g
	Ł 
	1258 
	+ 
	Figure



	Ł (i,? = "" 
	Ł (i,? = "" 
	0,005454 Łquare feet, hence the time of efflux in question s 
	=
	i

	') 
	F = 
	10 +' ) 
	81,75 
	2. 9

	== 
	/10
	( 

	1272 J 27 -
	J
	27 

	. 0,0994 . 1,079-= 30,3 seconds. 
	. 

	=a: 
	1 

	( 
	Ł-358. Co-efficients of Ejflux.-The phenomena of contractiŁ have considered in the efflux of water from vessels, 
	on
	\\'
	hic
	we 
	occu; 

	CO-EFFICIENTS OF EFFLUX. 
	Q=µ Q= Fv =,,. Fv = µ FJ2g ; hyp. log. (i)· 
	Q=µ Q= Fv =,,. Fv = µ FJ2g ; hyp. log. (i)· 
	1 
	1

	From the author's reduction of Koch's experiments at pressures of the manometer of from Łbu to ! of an atmosphere, we may take the of= 0,58.
	mean 
	,.,, 

	The effective discharge in the issuing of air through short cylindrical adjutages, is likewise less than that determined theoretically; we have,therefore, to multiply this latter by a number deduced from experi­ment, the co-efficient of efflux, ,.,, in order to obtain the former; only 
	here,.., is not the ratio of the transverse section , but the ratio vof
	F
	1
	1 

	F V
	11to the theoretical "· Koch's experi­ments give for the above pressures, in the fiow of air thl'Qugh cylin­drical adjutages, which were nearly all six times as long as wide, as a mean µ =-0, 74. 
	the effective velocity of efflux 
	1 

	Conically convergent adjutaes, similar to the nozzles of bello\'\'S,give a still greater co-effi.eient tlf efflux; a tube of 6lateral converg­ence in the experiments of Koch, gave \\'hen five times as long aswide, the mean co-efficient ,,, = 0,85.
	g
	° 

	F'rom this, therefore, the effective discharge for the flow of air 
	F'rom this, therefore, the effective discharge for the flow of air 
	:

	through orifices in a thin plate, measured at the external pressure, is 

	t,. .
	t,. .
	h 

	Q= 751,1 F (1-(1+ 0,00367t):_cub1c feet (Eng.),
	1 
	-
	) 
	..-

	4b Ł-,
	4b Ł-,
	J 
	.

	for efflux through short cylindrical adjutages: 
	Q== 958,3 F ( 1 -! ) (1 + 0,00367 t): cubic feet, 
	1 
	J

	and through conical adjutages of 6convergence. 
	° 

	Q= 1090,7 F!)(1 + 0,00367 t): cubic feet.• 
	1 
	(
	1-
	J

	• Experiments on the efflux of air have been undertaken by Young, Schmidt,d'Aubuisson, Buff, and in later time, by Pecqueur, Saint-Venant, and Wantzel. For an account of the experiments of Young and Schmidt, we may refer to Gilbert's "Annalen," vol. 22, 1801, and vol. 6, 1820, and to Poggendorff's "Annalen," vol. 2, 1824; for those of Koch and Buff, to the "Studien des gottingschen Vereines bergmannischer Freunde," vol. 1, 1824; vol. 3, 1833; vol. 4, 1837, and vol. 5, 1838;also in Poggendor.tf·'s "Annalen,"
	Lagerhjelm, Koch
	i 
	Ł
	Ł
	Ł

	_
	och deserve moet cons1deratton; andperhaps, those of Pecqueur: but the most extensivThe wished-for accordance is hardly to � met with in the reault• of all these expen­
	in practice. The experiments of d'Aubuisson and K
	next 
	to 
	them, 
	e are 
	those 
	of 
	KocŁ
	. 

	_
	menta; the co-efficients of efflux found by d'Aubuiuoo vary cons1drably from tnhose 
	Ł

	_
	och. The grounds for my placing the most confidence 1n theco-effic,nt.sof Koch, are given in the "Allgemeinen Maschinenencyclopiidie," under the article "Am;fluz," and in a Memoir of mine in Poggendor.tf'e "Annalen," vol. 51, 1840. [Forcalculations of the above, and all similar caeea, the co-efficient of t for the Fahrenheit'& thermometer is 0,002039 instead of 0,00367; (see above, p. 346;) but the degrees com• puted are actually t -32 on that ecale.J-Ax. ED. 
	<'alculated by K
	Ł
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	FLOW THROUGH TUBES. 
	Examplt. If the l\,·o orifices of n bello,vs together posŁcsR nn area or 3 squnrt'! inche. 1 
	.
	1Ł further, the pre.sure or the 1nnn0111eter j!;I 3 inches, the cxternnl oo.rotnetcr 27½ incite1 
	4

	alld the temperature of the nir 15°, then is the discbnrg,-. : 
	!47,U 
	§ 3Ł9. Flow tl1rugli Tuhes.-If the air issues through a Jong tube G, Fig. 88, it has then the resistance of friction to overco1ne in 
	o
	F
	4

	Fig. 488. 
	Figure
	the same manner as ,,·ater; this re5:istance 1nay also be measured of a column of air, which has for expression 
	by 
	the 
	height 

	,. { . Ł . ' , where, as in the conducting of ,vater, represents 
	h
	= 
	v
	v 

	d 20'
	0
	the velocity, l the ]ength, d the wiclth of the tu be, and r a co-efficient of resistance to be determined by experiment.
	Numerous experiments of Girard, <l 'Aubuisson, Buff and Pecqueur,Jea<l to the mean value { = 0,024. Ji''rom this, therefore, the resist­ance generated by the friction of air in tubes may be mea. ure<l b
	v
	2 
	y

	the height liu = 0,024 . of a colu1nn height
	Ł 
	of ail', 
	or by the 

	d 20'
	0 
	211" = 0,0000023 � . _eof a column of quicksilver, an<l the manome­d 2gter will stand at this much Jess height at the en<l of the conductingtube than at the beginning. If at the end of a <.'onclucting tube of the "·idth d, the mnnomstands at I, , whilst the air flo\\'S through an orifice of the ,vi<lth then from �hat precedes, the velocity of discharge ,vill be: 
	v
	eter
	d,



	(d
	(d
	2 

	-
	I
	Ł 
	1
	(
	h
	+ 
	b 

	◄ ;
	V 
	V 
	= 

	. 
	' 
	'Y b 
	b + h
	1 
	d 
	<I 
	d 
	2
	ge

	' 
	rfl 
	th) 
	J,'LOW THROUGH TUBES. 
	J,'LOW THROUGH TUBES. 
	J
	J
	2g 
	Ł 
	hyp. log. 
	(
	b
	Ł
	h,
	)

	V=
	Figure
	6:h)'] (Ł•' 
	J 
	1 
	+ 
	[
	0
	,
	024 Ł 
	+ 
	(
	)

	�f, lastly, the height of the manometer h is measured in the reser­Yo1r at the beginning of the conduit, where the air may be regarded as at rest, we then have : 
	2 g hyp. log. 
	J
	Ł 
	(
	b
	-:-
	h
	) 

	v== 
	v== 
	----
	----


	f 1 + 0,024 
	l
	d/ 

	If, further, we put the co-efficient o( resistance { for entrance into the tube, which when = 0,74 amounts to 0,826, and, further, jointo it the co-efficient of efflux I' for the outer adjutage, we then obtainfor the velocity: 
	141 

	,.2ghyp.olog.o
	J
	Ł 
	(
	b
	t
	h
	) 







	V=
	V=
	-----==:::::::=======:--
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	1 + { + 0024 
	,
	l
	d/ 

	d' 
	. 

	--:-=====:::;;:==----· d' 
	' 
	feet (Pruss.) 
	feet (Pruss.) 
	---.:..---=====-======-----

	1 + C + 0,024 !:' 
	J 
	l

	or = 
	.A.ccording as the point of the interior orifice lies s lower or higher than the point of the exterior orifice, we have to add ±,to the quan­tity under the radical in the denominator. Moreover, other hindrances may present themselves in the tube, such as curvatures, contractions, and widenings, &c. Satisfactory experiments on these obstacles do not exist, but we may assume with great probability that these resist­ances are not much different from what takes place in the. cue of water, because the co-efficie
	-

	tion are nearly the same for air as for water. · 
	·· 

	As long, therefore, as no further experiments are made oa ti.. 1Ub­ject, we may avail ourselves with tolerable safety ofthe co-efficient of �sistance found for water in investigations on the motion and flow air. 
	r
	of 

	&am,,k.. In the regulator at the bead of a 320 feet Jong and ( ineh wide airductor, the mercurial manometer stands at 3,1 inch, whilst' the external eter 111 at 27,2 inch ; further, the width of the orifice of the conically contracted exemity ?f e conductor is 2 inches, of the air 200 C., what quantlty of a1J' willthis conductor deliver1 It will be: 
	Ł
	Ł
	Ł
	Ł
	and the temperatu.re 

	3
	l + C+ 0,024 ia' rs:: 1,826 0,O'J45. :o . (f)• .. 18260,024 • Łs;a ,
	l + C+ 0,024 ia' rs:: 1,826 0,O'J45. :o . (f)• .. 18260,024 • Łs;a ,
	+ 
	3
	,
	+
	32
	Ł 
	1
	826 

	+ 1,44 -3,266; further, ( 1+0,00367 t) ltyp. log. ( ;;") 
	37• 
	• 
	,3
	4
	9 
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	RUNNlNG ,vATER-DIFf'ERENT YF.LOCITIES. 
	(l + 0,003u7 . 20) h!IJJ.log. •
	= 
	(
	30
	3 
	)

	1:073
	= 

	•
	5,7137-5J0f.lti) 
	1. (
	i

	ifnon·, filttber, ,vc introduce tho co-efllcient 
	= 
	1,0?34 
	.
	0,
	107
	9=0,1158; 
	of 
	elilux,f' 
	= 

	1
	201,3 feet; nnd lastly, die discharge: 
	l'= 
	= 

	fT
	,rd,
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	-
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	CHAPTER VII. 
	CHAPTER VII. 
	MOTION OF '\VATE.R IN C.ANALS .AND 
	MOTION OF '\VATE.R IN C.ANALS .AND 
	ON THE 
	RIVERS. 

	§ 360. RunniWate-r-The the motion of ,vater incanals and rivers, forms division of hydraulics.Water flows either in a natural or in an artificial bed. In the first forms streams, rivers, brookso; in the second, cuts,drains, &c. In the theory of the motion offlo,ving water, this <listinc .. tion is of little moment.
	ng 
	.
	doctrine 
	of 
	the 
	second 
	main 
	case, 
	it 
	canals, 

	The bed of a river consists ofthe hottorn ao<l the t\VO banks or sllores. The transverse is obtained by n plnne at right angles to thedirection of motion of the flo,-.,ing ,vater. Its peri:nieler is that of the transverse section, which again consists of the air and the water sec­tion. A ,ertical plane in the direction of the flo,...·ing ,vater gives thelongitudinal section or profile. By the slope or declivity of flowinwater is understood the angle of inclination of its surface to the hori
	secti'.on 
	?
	g
	-

	zon. Thefall, which is the vertical distanc
	e 

	1F.of the two extreme points of a definite lenof the fluid surface, ser,·es to assign t 
	g. 489. 
	Ł
	h
	e

	==== 
	angle for a definite Jength of the flowinstream. For the length of course, .llD =r l,Fig. 489, BC is the bottom of the channel,DH= /1, the fall, and the angle D • .111-J = 8, 
	Figure
	g

	the slope sin. Ł = Ł = absolute faJI per 
	unit of length.• erent elocities in the Transverse Section.The velocityof water 1n one transverse section is very different at 
	§ 
	361 .e
	. 
	Dz]f
	V
	-
	and 
	the 
	same 

	• Tfll of brooks and rivers is very various. The Elht•, for xnmplo, for thea ŁennŁ mile from the Upper Ellw to Podiebnul, has a falJ fot.•Ł fcorn ence to Le1tmcritz 9 feet, from there to 1\10.hlborg a mean or 6,S, and frotn the11Łe tofeet. 1\lounuun brooks have a foll of from 40 to •100 foet per GertnMVergleichende hydrogmpbiscJ10 Tabcllen," &c,vonStranz. Canals and obe-r arconduits have much smaller falls. Here the:all, at most, 1s 0,00and even less. l\1orc on this aulject be given 1n the Second Part. 
	he 
	n
	e
	Ł-
	tent of 
	ol 57 
	ŁŁ
	D.L_agdeburg 2,
	5 
	nnle. For further particulars, «t 
	II 
	1 
	Ł
	tificial wntar 
	abrou.te 
	!

	1, often 
	0
	i
	0001
	1 
	,
	will

	PERl\1ANENT MOTION OF WATER. 
	PERl\1ANENT MOTION OF WATER. 
	different points. The adhesion of the water to its bed, and the cohe­sion of the particles to each other, cause those lying nearer to the sides of the bed to suffer some constraint in their motion, and hence, to tlo,v more slowly than the more remote. For this reason the velocity di­°;lfrom the surface downwards to the bed, and is least near the s�de or at the bottom. The greatest velocity is found for straight rivers, generally in the middle, or at that part of the free surface of the water where there is 
	inishes 
	n
	the 

	The upper surface does not form an exact horizontal line, because the elements lying on the surface of ,vater, flow on with different ve­locities with respect to each other, they there
	-

	fore exert on each other different pressures ; 
	fore exert on each other different pressures ; 
	Figure
	Fig. 490. 

	the quicker ones a less, and the slower a greater pressure, and thus for the maintenance of relative equilibrium, the quicker elements superpose themselves on the slower. If v and are the velocities of two elements Mand .11,
	1
	v

	Fig490, then according to the doctrine of hydraulic pressure(§ 307) difference of level of the two elements ise: 
	. 
	the 

	v2 vevi-v 
	2

	1 • 
	MH = h = ___1 = 
	i

	2g 2g 2g
	This difference of level is always very small. If, for example, v= 0,9 v, and v = 5 feet, ,ve then have this 
	1 


	(1-0,81) Ł = 0,19 0,0155 . 25 = 0,0736 feete= 0,88 inches
	(1-0,81) Ł = 0,19 0,0155 . 25 = 0,0736 feete= 0,88 inches
	= 
	ll
	. 

	2g
	(Eng.). For this reason the ,vater stands highest in the current, and 
	lowest at the banks. In bends, the current is generally near the concave banke§362. Permanent Motion of Water.-The mean velocity of ,vater 
	. 

	in a transverse section is, according to § 308: _ Q _ quantity of water per second
	F area of section 
	C 
	-
	-

	The mean velocity besides may be further calculated from the velo­cities c1, c, c3, &.c., of the separate portions of the section, and from the areas F, F, F, &c. It is namely: 
	2
	1
	2
	3

	Q 22 +3c3 + ... ' and hence also: 
	= 
	F
	1
	c
	1 
	+F
	c
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	11 F2c2 
	C 
	= 
	F
	c
	+
	+
	. 
	•

	__,;;_Ł-Ł-'---
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	l ,. 
	F
	+ F
	+
	..

	the mean velocity, the mean depth of ,vater has in!?, that is, the depth a which a section must ha!e at all Pthat 1t may have the same area as it actually has ,v1th the variable depths aaa&c. Hence, therefore, 
	Besides 
	to be 
	ro-
	duce
	?
	Ints 
	v 
	2
	, 
	3
	, 

	F area of section 
	a = ---.,-,-----•
	= 

	b breadth of section 
	440 :
	440 :
	MEAN VELOCITY. 
	If the Łepnrate parts of the breaclth b' b, b3, have the corresponcl-
	l 
	2

	.
	1ng mean depths a1 , a2, a3, &c., Fig. 491, \\'t! then have: 
	F= ab+ab+..•,
	1
	1 
	1
	2 

	Fig. 491. 
	and hence also: 
	ab+ah, +..
	1
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	a c:::: -!.....!--Ł--=---·
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	+
	..

	Lastly: 
	a,bc+ah,c+.. 
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	1 
	,,
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	+a,h+..
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	b
	t 
	,. 

	and if the portions b1, b2, &c., be of 
	equal size, 
	equal size, 
	_ ac+a, c..
	1 
	1 
	2 
	+

	--=--=---..::......:::___;__ , 
	C 
	-

	0+ a, + ..
	1 

	A ri,·er or brook is in a state \\'hen _an e.qual quan­
	of permanency 

	.
	tity of \\'ater flo,vs through each e sections 1n on equal time; "'hen, therefore, Q or the product Fe ofthe area of the .ectionand the mean velocity throughout the ,vhole extent of the stren,n is a constant number. Hence this J,v conies out: in tlui pernia­
	of 
	its 
	transvers
	simple 
	a

	_
	_
	oon cifwater, tlie mean velocities in. two transverse areto eac/1, otlter inversely as lite areas of tllese sections. 
	nent m
	ti
	sections 

	Figure
	readtu • 
	Portions of the b
	• 
	. 

	b, = 3,J fec11,= Ł,4 fŁt, h, m 1,3 foc
	1 
	9 

	Mean depth • Hence the area of 1bese profiles 
	F 

	"
	• • a, = 2,:, " a• = 4.5 a, = :J,O '' 
	11
	r
	1 

	• • 2,9 r, = :J7 u r s::::a 3,2 u 
	1 

	.,
	= 3,1 . 25 +5,4 . 45 -t-,,3t. 3,0 = 14,05 squnro 
	1
	1
	.

	t 
	feet, nnd the discharget: 
	Q =3,1t. 2,5.2,0 5,4 . ,l,5t. 3,7 + J,3t. 3,0 .3,2 = 153,065 cubic feet, nnd th ntenn 
	+
	.

	YeJocity c = Ł 3 •119 feet 
	= 
	153
	•
	665 
	= 

	I
	JI' 
	JI' 
	4.J,{)5

	2. When a cut is to conduct 4,5 cubic feet of \\'lltcr wjth a menn volocity c of 2 feet, wo 
	2. When a cut is to conduct 4,5 cubic feet of \\'lltcr wjth a menn volocity c of 2 feet, wo 
	must then give to it a transverse section of •= 225 square foot arcn.-3, If one nu,l 
	l,
	2 
	S 
	1

	the rome stream has a menn velocity of 2f feet nt n pince 500 fel."t bruod n111l {I fulŁt 
	mean depth, it ,viii then hnve, at a plncc :120 feel brotul nnd 7,5 feet n1cn11 depth, tho 
	mean velocity 
	c ŁGO · 'l•l,725 feet. 
	= 
	9 
	• 
	2,
	5 
	= 
	567 
	= 

	320 . 7,6 J2U 
	§ 363. J.fean Velocity.-If we divide the depth of ,vatcr nt point of a flowing stream into equal parts, and raise ordinates them corresponding to the yelocities, we shall then obtain a scale ofthe velocity ofthe current .IJB, Fig492. Although it may be granted
	any
	upon
	. 

	that the Jaw of this cale, or of the clifierence 
	of velocity is expressed by some cur,·e, 
	Fig. ◄92. 

	asaccording to Gerstner by an ellipse, yet it isallo,YablP, without fear of any great error, to substitute for this a strnight line, or assumethat the velocity din1inishes unifor1nly ,vith the depth, because the din1inufion of velocitydo\vn,va.rds is always very small. From the
	experiments of Ximenes, Brunnings, and Funk,
	Figure
	. . 
	,,·here crepre
	0 
	-
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	sents the velocity at the surface, or the maximum velocity. 1'he velocity, therefore, diminishes from the surface to the middle M-Cm == {1 -0,915) c= 0,085 C,
	by 
	C 
	0

	0 0
	and, consequently, the velocity below or at the foot of the perpendi­cular may be put 
	Cu. = C-2 . 0,085 C= {-0,170) c= 0,83 C•I_f, now, the whole depth = a, we then have, by assuming a straight hne for the scale of the velocities, the corresponding velocity for a depth .IJN = x, below the water 
	0 
	0 
	l 
	0 
	0

	X ' X
	X ' X
	-(C-Cu ) = (1-0, 17 C•
	= c
	0 
	) 
	0

	V 
	a a 
	0 

	•
	Further, Jet c, c, c, •• be the superficial velocities of a whole 
	0
	1
	2

	transverse profile of not very variable depth, we have then the corre­sponding velocities at a mean depth: 0,915hence the mean velocity in the whole profile: 
	and 

	c, 0,915 c, 0,915 c, 
	0
	1
	2

	Lastly, if we assume that the velocity diminishes from the line of current towards the banks, as it does according to the depth, \\·e may again put the mean superficial velocity
	then 

	Co + Cl + • • + Cn ) 
	Co + Cl + • • + Cn ) 
	(

	--------== ' 15 ,
	-
	0
	9
	co

	nso obtain the mean velocity in the whole profile: 
	and 

	• 
	• 
	• 
	C = 0,915 . 0,915 . C= 0,837 . C, 
	0 
	0


	i. 
	i. 
	from 83 to 84 per cent. of the maximum velocity, or of that ofthe line of current.
	e. 



	Prony deduced from Du Buat's experiments conducted with very small channels, and for these cases perhaps more correctly: 2,372 7,7l 
	= 
	(
	+ 
	c
	o) 
	c
	metre 
	= 
	(
	+ Co) c
	0 
	feet 
	English.

	11 
	c,
	0

	3,153 C10,25 C
	+ 
	0 
	+ 
	0

	}or medium velocities of 3 feet it hence follows that Cm = 0,81 c• 
	.,
	0

	&amle. In the line of current of a brook the velocity of the water is. 4 feet, and the depth 6 feet, we have then the mean velocity at a corresponding perpendicular cm = 0,915e. 4 = 3,66 feet, and that at the bottomn= ,83e. 4 = 3,32 feet; further, the velocity 2 feet below the surface is 11 = (1-0,17 • f) 4 -0,057) 4 = 3,772 feet; the mean velocity throughout the profile is, c = 3,348 feet, and ac•
	p
	0
	lastly, 
	= 
	(
	l 

	0,837 . 4 = 
	97 
	13
	1
	I 

	). . . .. 
	. 

	stance
	� 364. 7'k Best· Form of Transverse Sections.The resiwh!ch the bed opposes to the motion of the water in virtue of its ad­hesion, viscosity, or friction increases with the surface or contact be­tween the bed and the wat;r and therefore with the perimeter of�profile, or of the portion of the transverse rises the bed. fiwater pass through a 
	-
	_
	P 
	the 
	w
	ter 
	sectiŁn 
	which 
	comp
	But 
	as 
	more 
	laments 
	of 

	• This and the following subjects have bf.en fully treated ofundŁr the article "Bewe• 
	_
	des Wassers," in the "Allemeinen MaschinenencyclNew experiments ,,iews may be found in the follou•ing writin�n: Lnhmeyer's "Erfahrnngsre�ul­fiber die Bewei:ung des Fluszbetten und Kanii.len." Brunswick, 1845. 
	gung
	t<
	op.'.ic.lie." 
	a11d 
	new 
	tate 
	Wassers in 
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	profile, the greater its area is, so this resistance of a filament increases also inYerse]y as the area, and hence on the ,vhole as the quotient
	of the perimeter of the water profile, and the area of the ,vho]e 
	-f 

	trans,erse profile. 
	T

	That the resistance of friction of a running stream or river may be the smallest pos ible, ,ve must give to its transverse section that formfor "-'hich the perimeter p for a gi ,·en area is a minimum, or the areafor a given perimeter a maximum. In enclosed conduit , as, for c.·­ample, pipes, p is the entire perimeter of the fignre formed by the transverse profile. No\\' of aH figure hnl'ing an equal number ofsides, the regular 1igurenn<l again, of all regular figures that ,vlaich 11as the greater number of 
	7 
	p
	7

	in the quotient f the upper , ide or surface in contact ,vith the air. 
	The rectangular and trapezoidal sections are those generaJly applied 
	to canals, cuts, water-courses, &c. A horizontal 
	Fig. 493. line E, Fig. 493, passing tl1rough the centre .M
	F

	of the square .11.C, di\·i<les as "elI the area as nlso 
	r

	I> the perimeter into two equal parts, hence it follo\\'S that what is true for the square is also correct for 
	( . 
	l\1 

	IE these hal,·es, an<l, accordiugly, of nil rectangular 
	f' 
	! 

	I 
	trans,•erse profiles, the ha]f quare .IJE, or that .>\ ,vhich is t,vice as broad as it is deep, eorre pon<ls
	J{ 
	to the lea t resistance of friction. 1'hc regular 
	hexagon .IJ.CE, Fig. 494, may be Jike\vise di\iclecl by a horizontal ]ine CF into t"·o equal frapeziurns, each of "·hich,]ike the hexagon, has the greatest relative area, ancJ, conse­quently, of a11 trapezoidal profiles, half the regular hexagon or the trapezium .IJ.BCF v.ith the angle of slope .IJF.1ll = BC:Af of 60is that 
	·
	entire 
	° 

	Fig494-. Fia. 49:5. Fig. 496. 
	. 

	Figure
	applied, gives the least resistance of friction. regular ctgon .IJDE, Fig. 495, half the regular uecagon, nnd, lastly, the sem1-c1rcle .llDB, Fig. 496, afford under given circumstances 
	'"hich, 
	when 
	Jialf the 
	Ł
	Ł
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	the most advantageous transverse profiles for canals. The trape­
	or half the regular hexagon, gives a still less resistance than 
	zoidal, 

	half the square or rectangle, the ratio of whose sides is 1 to 2, because 
	the hexagon has a less relative perimeter than the square. Half the 
	regular decagon gives a still less friction, and, in general, the mini­
	mum of friction corresponds to the semi-circle. The profiles of chan­
	nels of wood, stone or iron only, are made semi-circular an<l rectan­
	gular; the profiles of canals, on the other hand, which are cut and 
	bricked, are constructed of the trapezoidal figure. Other figures, in 
	quence of difficulties in the execution, are not easily applicable. 
	conse

	§ 365. In the case where a canal is not walled up, but dug out of e earth or sand, the angle of 60slope is too great, and the rela­tive slope cotg. 60= 0,57735 too small, because the banks wouldhave a sufficient stability; we are, therefore, under the necessityof applying the trapezoidal profiJe, for \vhich the inclination of the sides to the base must be still less than 60, perhaps scarcely 45, or even less. For a trapezoidal profile 
	loos
	° 
	° 
	not 
	° 
	° 

	.llBCD, Fig. 497, which has a perimeter 
	Fig. 497. 

	====
	and area equal to that of half the square, the relative slope = {, and the angle of slope hardly 3652'If the height BE be <livided into three equal parts, the base BC will then have two of them, the parallel line .llD ten, and each of the sides .IJB = 0 D = five parts. In many cases the slope is made = 2, to \vhich 34', and sometimes it is even made still 
	° 
	. 
	.
	belong
	s an angle of 26
	° 

	Figure
	greater.
	every case the angle of slope B.B.E = e, Fig. 498, or the slope 
	In 

	n = !! cotang. 0 may be regarded as a given 
	= 
	Fig. 498. 

	quantity dependent on the nature of the ground in which the canal is dug, and hence the dimensions of the profile which offers the least resistance have only further to be determined. Let the lower breadth BC = b, the depth BE = a, and then, we then obtain for the perimeter : 
	slope 
	= 

	Figure
	11.+BC+ CD= p = b 2 ✓ana= b + 2 a✓ 1 + n',the area : 
	.
	B 
	+ 
	2 
	+ 
	'A
	2 
	for 


	F= ab+ naa= a(b+ na), 
	F= ab+ naa= a(b+ na), 
	hence, inversely, b = -na, and the ratio: 
	and 
	F

	a 
	!!_ = .!. + � (2✓-n).
	11
	2 
	+ 1 

	F a F
	Iwe substitute for a, a x, where xis a small number, we may put: 
	f 
	+ 
	then 

	1!_ = (2 ✓-11
	1 
	+
	(
	a
	+ 
	x
	) 
	n
	l 
	+ 1 
	)

	F a+x F 
	Figure
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	== 
	a+x 
	i
	) 
	+ 
	(
	2
	✓ 
	n
	i 
	+ 
	1-
	n

	F 







	+
	+
	! 
	(1 
	_x 
	x

	2
	a

	a a 
	a F 
	__!_) + 
	-
	n
	) 
	x

	No\\· that this value may be greater not only for a positive, but also for a negative value ofx, than the first 
	! + !:.. (2 ✓n-+ 1-n),
	1 

	a 
	F

	it is necessary that the member with the factor x should vanish, and 
	therefore that may become a minimum, we must have 
	Ł 

	2✓n+l-n 1 F
	Figure
	3

	1
	0 
	. 

	--=-, i. e. a -, 2 ✓n1-nor since: 1 Fsin. e
	Figure
	• 
	Figure
	F 
	a
	2 
	1
	+

	n == cotang. e and ✓n+ 1 == a= ----· 
	Figure
	2 
	, 
	2 

	.
	sin. e 2-cos. e 
	Hence, therefore, the most appropriate form of profile correspond­ing to a given angle of slope e, and a given area is determined by 
	F
	Fsin.e 

	a=-----and b = -a cotang. e.
	-

	2-co,. e a 
	2-co,. e a 
	J

	Example. What dimensions must he given to the transverse profile of a canal, whose banks are to have 40slope, and which is to conduct a quantity of water Qof 75 cubic 
	° 

	feet, with a mean velocity of 3 feet? F== Ł= = 25 square feet, hence the depth
	75 

	C 3 
	25
	-3,609 feet, the lower breadth b == --
	J 
	Ł5 lin 
	· 
	40
	° 
	-
	J
	5 
	o
	'
	u4i79 
	-

	-
	2-co,.401,23396 3,609 
	° 

	3,609 cotang. 40= 6,927 -4,301 == 2,626 feet the slope or cut of the banks 
	° 
	=-

	3,60!)
	cotang. 40= 4,301, the upper breadth =6,927 4,30t1 = 11,228 feet, the perimeter p
	° 
	+ 

	2a 7,218 · 
	I,+ 

	. ·
	. 

	-. -= 2,626 . == l 3,855 feet, and the ratio determining t he friction 
	+ 
	0
	0 

	11n. 9 nn. 4 
	p 13,855 
	-= 0 1(1(42 ' 
	F 
	Figure
	25 

	,.,., 
	== 

	§ 366. The dimensions of the most suitable profiles which corre­
	Łpond to different angles of slope and to a gi,·en profile are to be found in the follo\\·ing table. 
	Figure
	UNIFORM MOTION. 
	UNIFORM MOTION. 
	Dimensions of transverse profile. 
	Quotient 
	Angle of Relative
	slope. slope. p 
	Upper 

	Depth a. Lower Absolute breadth }'
	9 
	breadth b. slope na. +2na. 
	b

	Figure
	Figure
	2,828
	2,828
	2,828
	90
	90
	° 


	0 0,707 -._/F 1,414 -._/F 0 l,414 ✓F 
	Figure
	Figure
	Figure
	-._/F


	2,632
	600,577 0,760 ✓F 0,877 -._/F 0,439 -._/F 1,75t5 -._/F 
	° 
	-._/F

	2,704
	51,000 0,740 -._/F 0,613 F 0,740 -._/F 2,092 -._/F 
	4
	° 
	-._/

	-._/F
	2,771
	401,192 0,722 -._/F 0,525 -._/F 0,860 -._/F 2,246 -._/F 
	° 

	-._/F
	Figure

	2,828
	36521,333 0,707 -._/F 0,471 -._/F 0,943 ✓F 2,357 -._/F 
	° 
	' 
	Figure
	-._/F

	2,870
	0,697 ✓F 0,439 -._/F 01995 -._/F 2,430 ✓F 
	-._/F

	3l,40Ł 
	3l,40Ł 
	5
	° 

	3,012

	31,732 0,664 ✓F 0,356 -._/F 1,150 2,656 
	0
	° 
	✓F 
	✓F 
	Figure
	✓F 

	3,144
	3,144
	26342,000 0,636 -._/F 0,300 ✓F 1,272 ✓F 2,844 -._/F 
	° 
	' 
	Figure


	✓l' 
	2,507
	2,507
	1,596 -._/F

	Semicircle 0,798 -._/F 
	-._/F 
	We see from this table that the quotient : is least for the semi
	-

	2 507 
	. 

	l ; greater fior t he semi-. h exagoo, an d greater
	' 

	c1rc e, namely, = 
	✓F 
	still for the half square, and the trapezium of 3652', &c. 
	° 

	Exampk. What dimensions must be given to a profile, which has for an area of 40 
	square feet, a slope of its banks of 351 From the preceding table, the depth a= 0,697
	° 

	✓40 =41408, the lower breadth = 0,439 ✓40 = 2,777 feet, the absolute slope= 0995 -.,/40 = 6,293 feet, the upper breadth= 15,363, and the quotient 
	1

	2•870
	J!.. = = 0 4538 
	' ' 
	j' -._/40 
	§ 367. Uniform Motion-The motion of water in beds is for a certain tract either uniform or variable; it is uniform when the mean velocity at all transverse sections of this length remains the same, and therefore, also, the areas of the sections equal ; and variable, on the hand, when the mean \·elocities, and therefore, also, 
	.
	other 
	the 
	areas 

	the sections vary. We shall treat first of uniform motion. 
	of 

	the uniform motion of water along the distance.':89, the who]e fall HD = his expended in overcoming the fnction of the water in the bed, because the water flows on with the same velocity with which it arrives, therefore a height due to a velocity is neither taken up nor set free. If w; measure this friction by thethis column of water, we may then make equal toheight. But the height due to the resistance of friction increases 
	In 
	.RD 
	=-lŁ 
	ig.
	4
	height 
	of 
	the fall 
	this 

	38 
	Figure
	Figure
	Figure
	Figure
	hence the velo<-ity 
	-
	92 
	3"' 
	J,
	__;,
	-=3
	-
	-
	-
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	with the quotient , \\·ith l and with the square of the mean velocity 
	P

	F 
	c (§ 329); hence then the formula holds good : 
	1. h = {.P.. . Ł' 
	F 2
	g

	in which { expresses a number deduced from experiment which may 



	be called the co-efficient ofthe resistance offriction. 
	be called the co-efficient ofthe resistance offriction. 
	By inversion it follows: 
	2. c -J . 2h.
	F 
	g

	Ł '. 
	l
	p

	In determining the fall, therefore, when the length, the cross section and the velocity are given, and inversely, in deducing the velocity from the fall, the length and the cross section, we must know the co­efficient of friction {. According to Eytelwein's reduction of the ninety-one observations of Du Buat, Briinings, Funk and Waltmann, {=-= 0,007565, and hence 
	h = 0,007565 . . Ł
	lp 

	F 2
	g 
	. 

	If "·e put g = 9,809 metres or 31,25 feet (32,2 feet English), wehave for the metrical measure 
	lp I Fh
	h == 0,0003856 . Ł and c == 5.Q9 
	F 

	pl 
	pl 
	Ł 
	, 

	and for the foot measure : 

	h= 0,00011726 I. c2 and c92,35 f English measure. 
	p 
	== 
	Fh 

	F pl 
	Ł 

	. ,c lh. 
	d 
	"-

	--, ence t 1s ormu a gives 1or
	F d 
	lp 
	41
	h
	fi .
	I 

	or con uit pipes -
	=-

	F 1Ł tedd 
	F 1Ł tedd 
	2 

	pipes h == 0,03026 Ł • ', whilst \\e have found more correctly for 
	v
	0



	d 2g
	d 2g
	these (§ 331) for mean Yelocities 
	2
	v

	l
	= 0,025 . 
	h 
	-
	-
	· 

	d 2gThe friction, therefore, as might be expected, is greater in the beds of rivers than in metallic conducting pipes. 
	' 
	P
	3 + 2 v:a•+ 3• a:= 10,21e1, F= )= 15 and c ==-1, hence the fall
	= 
	(
	7 
	+ 
	3
	3 
	40 

	1 5 
	2 

	0,21 1.4
	. 1
	6

	ught,h==0,000
	ao
	ll
	73e. 
	2
	6
	00e
	. 
	1
	0,211 

	305
	0,

	. = 1 ,476 et-215. 9 
	(I)
	'e
	.. 
	{
	e
	.
	. 

	!... -+ + 4
	4
	2
	v 
	5
	•
	1 

	806 
	16,

	o42015· 
	'

	.. 1eet, 
	,F
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	§ 368. Co-efficients ef Friction.-The co-efficient of friction for rivers, brooks, &c., the mean va]ue. of which, in the foregoing para_.graphs, we have taken at 0,007565, is not constant, but, as in pipes, ases somewhat for sma11 and diminishes for great velocities. We ha,·e, therefore, to put: 
	incre

	{= {+ ;)or {(1 + · 
	1 
	(
	1 
	1 
	✓
	Ł)

	The author of the work al1uded to in § 363, finds from 255 experi­ments, the greater part of thP.m undertaken by himself, for the Prussian 
	0 0299
	)

	0,007409 1 + ' 
	.
	measuree; 
	-

	( 
	c 
	0 00939
	)

	metre { = 0,007409 1 ' c , 
	(
	+ 

	0 0308
	. 
	)

	and for English measure 007409 (1 + ' 
	It is manifest that these formulre, for a velocity c = I½ feet, gil'e again the above assigned mean co-efficient of resistance { == 0,007565.The following useful table of the co-efficients of resistance in the me­trical measure serves for facilitating calculation. 
	c

	Velocity c. 
	Velocity c. 
	Velocity c. 
	0,1 
	0,2 
	0,3 / 0,4 
	I
	0,5 
	I 
	0,6 
	0,7 
	0,8 
	0,9 
	Meter. 

	Co-efficient of resistance t =O,oo 
	Co-efficient of resistance t =O,oo 
	811 
	776 
	764 758 
	755 
	753 
	751 
	750 
	7<9t1 


	-
	Velocity c. 
	Velocity c. 
	Velocity c. 
	1 
	I 1,2 
	l 5 , 
	2 744 
	3 Meter.II 743 

	efficient of re11i11tance t= o,oo 
	efficient of re11i11tance t= o,oo 
	748 
	747 
	746 


	The following table serves for the Prussian or English measure: 
	0,8 
	li 2 I a I 5 10 ft. 763 759 752 749 745 743 
	0,6
	Velocity c. 
	0,4 1 0,5 
	0,7 
	1 
	Co-efficient of resistance
	C = o,oo 
	815 
	785 
	773 
	769 766 
	These tables find their direct application in all cases where the velocity c is given and the fall to be found, and where the f?rmu!a No. 1 of the frmer paragraph is applicable. But if the eloc1ty c 1s unknown, and its amount to be determined these tables will then onlyadmit of a direct application, when we h;ve already an approximate 
	Ł
	y

	value of by deter
	c. 
	We 
	may 
	set 
	to work 
	in the 
	simplest 
	manner 
	-

	mining c approximately by the formula c -50,9 :Z" , and from 
	.J
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	this a value of{, taken from the table, and the value so obtained put into the formula 
	ch F F
	ch F F
	2 
	Figure

	= or c = . 2gh.p Jp
	2g 
	{ 
	. 
	l
	{
	l

	. 
	Yelocity c, the quantity of water is then 
	From 
	the 
	given 
	by 
	the 

	formula = lastly, the quantity and the fall are given, and, as is often requisite in the construction of canals, it be required to determine 
	Q
	Fe
	.
	If, 

	p
	the transverse section, we may put -=-m (see Table, § 366) and
	F

	✓F 
	Q. == 0,007565 -
	p
	Ł

	.. _ into the formula I,, write, therefore, 
	c 
	. 
	--, 
	and 

	F F % 
	h =-0,007565 :, and accordingly determine: 
	m
	l
	Q


	2F1. 
	2F1. 
	g

	F=-o,007565 mQ2)f, i.e., for the 1netre F== 0,0431 
	(
	l 
	(
	m
	l 
	Q2)i 

	2Ł 
	h 

	or the English foot measure F== 0,0.268 mQ2)i. Hence it follo\\·s, 
	(
	Ł

	approximately, that = ; if we take a correspondent value of, from 
	c 
	F
	Q

	one of the tables, more accurately ({ . i ; and hence, 
	F 
	= 
	m
	2
	Ł
	'[
	)

	more exact Yalues for c = , p == m✓F, as also for a, b, &c.
	Q

	F 
	Example,.-1. 500 feet long, 2 feet lower and 8 feet upperbreadth, an<l 4 feet depth require to give a discha!ge of 70 cubic feet per second 1 It is 70
	What fall does a canal 1

	p = 2 + 2 -/ 4Ł ŁtŁ = 12,F = 5 . 4= 20, c = _ = 3,5, hence C= 0,00748, nnd
	+ 

	'2U 
	'2U 
	V 

	h= 0,007 4 S. • = 6,732 . 0, 1902= 1,2 8 ft. (Eng.)-2.What discharge does
	1
	5oo · 12 
	3
	,
	5
	i 

	'2g
	20 

	a brook 40 feet broad, 4l feet mean depth, nn<l 46 feet water profile, if it has a n•ll of 10 
	U2,35
	J
	40 
	· 
	4
	5 10 

	' ·
	' ·

	inches for a length of 7 50 feet 1 It is about c= 92,35 . = --==== 6,089
	= 

	50. 1'2 
	46 . 7
	V '23
	U

	feet, and hence = 0,00745. Hence we obtain, more correctly: 
	C

	Ł 5 •40 · lO
	Fh 4,

	= 
	= 
	= 

	.
	I,7 1 1:.! 
	= 4,5. 40. 6,119 
	= 
	1 
	= 0,5844, an<l c = 6,119 feet. Lastly,
	1101 cubic feet, (Eng.)-3. A trench:1650 feet long is to be cut, which for a total fall of 1 foot is to carry off a discharge ofcubic feet per second, what dimensions nre to be given to the transverse profile, ifit is to 366), hence, J
	preserve a regular semi-hexagonal figure1 Herenm= 2,63:.! (•« Table,§ 

	npproximately, F = c 
	0,026
	8 
	(2,6
	32 
	. 36
	5
	0. 
	144)"3" 
	= 
	7
	,66
	5 
	square 
	feet,
	and 
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	7,(i65 
	the correspondiug discharge is Q 
	= 
	l'2 
	1 -
	;
	) 

	�,104 ss 0,877✓F:::=2,428, and 
	feet, the lower breadth 

	he made: a= 0,700 vF = 
	the upper breadth == 2 . 2,428 4,846 English feet. 
	== 

	§ 369. Variable .Motion-The theory of the variable motion of ,vater in beds of rivers may be reduced to the theory of uniform mo
	.
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	tion, provided the resistance of friction for a short length of the river may be considered as constant, and the corresponding height, in like 
	= r . l• 'BBut, besides this, regard must be had to 
	manner, 
	as 
	p 
	v
	. 

	F 2g
	the vis viva of the water, which corresponds to a change of velocity. 
	Let .RBCD, Fig. 499, be a short ex
	-

	tent of river, of the length .RDB= l, the fall DH= Ii, and let vbe the velocity ?f the arriving, and vthat of the depart­
	Fig. 499. 
	0 

	1
	ing water. If we apply the rules of efflux to an element D of the surface, ,ve
	shall obtain for its velocity v, 
	1

	VJ
	2 
	h 
	+ 
	Vo
	2 
	;

	= 
	Figure
	g gas regards an element E below the surface, it is true that on the one side it has a greater height of pressure .llG EH; but as the down­stream water reacts with a pressure DE, there remains for it on]ythe fall DH= EH-EDas pressure inducing motion, and so, for this or any other element, the formula : 
	2
	2
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	, 

	v-v
	v-v
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	i
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	2g
	and if, further, the resistance due to friction be added, we then obtain : 
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	where , and v are the mean values of the wetted perimeter, trans­verse section, and velocity. If is the area of the upper, and F
	p
	F 
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	0 1
	that of the lower section, ,ve may then put : 
	2 
	,vhence it follows that : 
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	The corresponding fall Ii may be calculated by means of the Łor
	-

	' fron1 the quantity of water, the length �nd transverse section of a nver or canal; and, inverselythe quanhtof water from t�e faJl, the length and the transverse section, by formula 2. To obtain reater accurcy, we may make the calclation for several short por­tions of the river, and take the arithmetical mean. If the total fall 
	mula 
	Ł
	, 
	J: 
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	on]y is known, ,ve must substitute this at once for h in the last for1nula, and put 
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	where Fn denotes the area of the last section, and in place of 
	{. _!_ __!_ 
	l P 
	(
	+ 
	)




	Fo + FFol p1
	Fo + FFol p1
	l 
	1

	the sum of all similar values of the separate lengths of the river. 
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	= ---========= = ---==== == 354,43 cubic feet. The mean velo
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	v'(),0000731 + 0,0003365 v'(),0004096
	2Q •
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	8 
	=

	Jocity is = 5.452 feet; hence, more accurately, C must be taken 
	708

	FF 130 
	0 
	+ 

	0,00745 in place of 0,007565, and therefore more nearly: 7,173 
	= 

	-= 357,5 cubic feet. If the same brook, with the same 
	Q 
	= 

	✓0,0000731 + 0,0003314 
	head of water, had for a length of 450 feet, a fall of 11 inches, and if its upper trans­verse profile had an area of 50 and its lower of 60 square feet, and the mean perimeterof the profile measured 36 feet, we should then have: 
	8,02 ✓0,9167 
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	, ___ b' Ł 
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	0,000t1222 + 0,0007436 
	357
	= 

	The mean of these two values is Q = 332,75 cubic feet. 
	· 
	5 
	+ 
	308 

	2 
	§ 370. In order to obtain a formula for the depth of water, let the upper depth = aand the lower = a, the slope of the bed = e1, con­sequently the fall of the bed -= l sin. a. We then obtain the fall of thewater h = aa+ l sin. e1, and there results the equation 
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	and from these calculate by a propor-
	• See "lngenieur," .Arithmetik, § 16, v. 
	FLOODS. 
	451 

	'fhe formula is further capable of simplification when the breadthb of the running water is constant, or may be considered as such.In this case we put: 
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	0 gThe difference ( a-a) of the depth corresponding to a given extent l may be calculated directly by this formula. 
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	2
	0
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	ExampŁ. In a horizontal trench, 5 feet broad and 800 feet long, it is desired to carry off a 20 cubic feet discharge, and to let it flow in at a depth of 2 feet, what depth will the water at the end of the canal have? Let us divide the whole length into two equal portions, and determine from the last formula the fall for each of them. 
	Here the ,in. • = O, I= OO = 400, and b = 6 ; for the first portion o = 
	S
	2

	20 
	20 
	20 
	= 2, hence C = 0,00752, al8o a= 2 ; since p = ½, it follows that a-a, = 
	0 
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	0 
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	2-0,1692=1,8308,and·np,==8,2,o= Ł= 2,1848, and the depression of the 
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	Second portion: 
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	400 = 
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	1
	919 

	94 
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	0,2173 feet, hence the 
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	Figure

	2,1848
	2,1848
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	.0,1692 02173 == 03865, and the depth of water at the lower 
	1,8308 
	2g
	+ 
	1
	1

	1,6135. 
	2
	1
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	whole depression = endn= 2 -0,3865 = 
	§ 371. Floods.-When the depth of water in rivers and canals varies, variations in the velocity and discharge take pla_ce likewise.A greater depth of water not only involves a greater section, bu! also a greater velocity, and hence, for two reasons, a greaterquantitf
	y Ł

	.
	water, and likewise a diminution of the depth of water, gives a d1mi­nution of the section and the velocity, and hence ala decrease of the discharge. If the original depth -a, and any increased depth 
	8? 

	Figure
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	:a a, the upper breadth of the canal = h, then the aug1nentation of 
	1

	the section may be put = b (a1-a), and hence the section after\\'ards "l-a, FF+ b (a-a), it also follows from this that
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	profile, and e the angle of slope of the banks, then-a)2(a
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	Now the velocity with the first depth of water is 
	f, and with the second =92,35 
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	hence we may put : 
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	accurately, but in many cases, especially in broad canals "'ith 
	Less 
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	little slope, we may put F == ah, and neglect
	. 
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	, whence it fol
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	lows more simply that : 
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	Fom this, t"!refore, the relative ca
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	h
	ng

	Figure
	e of velocity is ½, and the 
	elative change in the quantity of water Ł, that ofthe relative changein the dth of water. 
	Ł
	ep

	&ampla.-1. When the head of water increases of ita original amount, the vel
	&ampla.-1. When the head of water increases of ita original amount, the vel
	T
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	ciry is then ,J7f,and the quantity Ł'o greater than its original value.-2.-"\Vhen the 
	depth diminishes S per cent., the ve}ocjty then <limjnishPS
	i;r
	4, and the quantity 12 per cent.-3. Fro1n the more cor• 
	Fi
	. 500. 

	rect formula: 
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	Figure
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	a scale of the depth of ,vater KM, Fig. 500, may be consuucted, on which the discharge of a canal corresponding 
	• 
	Ł
	·]Ł
	·····
	·.:.:1 

	. ----(
	. C 
	to any dt>pth KL, may be read off. ,vhen the quantity of 

	,vater for fl certain mean depth is once known. If b = 9 
	B 

	feet, b, = 3, a = 3, and E> = 45, ,ve then have F = 
	° 

	(9 33 
	(9 33 
	+ 
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	.-· 
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	= 18 squaie ft.,p = 3 +2 . 3 .,/2 = 11485 anil 1u1. e = -,,.½ = 0,707,
	1

	V
	V
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	hence: 
	= _ (a, -a)n= (0,750-0,123) (a, -a)= 0,627 
	Q
	1
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	( 
	3 
	· 
	9 
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	) 

	Q 2 . 18 11,4.85 . 0,707
	(a-a). If the quantity correspom.ling to a mean head of v,ater Q= 40 cubic feet, tt -a
	1 

	we then have Q= 40 + 40n. 0,627 (a, -a)t= 40 + If a, -a= 0,01
	_. 
	• 

	0,04
	feetn= 5,76 lines, it follows that Q, = 41 i a-a= 0,08 feetn= 11,52 lines, we then 
	1 

	have Q, = 42 cubic feet; if. further, a-a = -0,04, then is Q, = 30 cubic feet, &c. 
	1 

	A scale, therefore, ,vhose intervals are Ll}f = LN 5,76 lines, gives the discliarge 
	= 

	accurately to a cubic foot Ofcourse tbe accuracy is the less, the more rbe head of \\"ater 
	differs from a mean value. 
	Remark. The conducting and carrying off of \vater in canals, as well as the subject of 
	weirs and dams, will be fully tteated of in the Second Pan. 
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	§ 372. Gauges.-The quantity, '"hich a stream discharges in a certain time, is determined either by a gauge, by an apparatus of efflux, or by an hydrometer. The most simple \Vcty of measuringwater is by the guage, ie. by the use of a graduated vessel, but thismethod is only applicable to small 
	. 

	Fi. 501. 
	g

	discharges, carried off by pipesor small brooks, or drains. The gauge vessel is generally made of ,vood, and of a rectangular form, andto increase its strength is bound round ,nth iron-hooping. The ,vater is conducted into it by a trough EF, Fig. 501, at,vhose ex­tremity there is a double val,•e GH,by which the water may be made to flo,v at will into the vessel .flC,or by the sicle of it. To obtain the 
	exact depth of the body of water in the vessel, a scale KL is fur
	-

	Figure
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	ther applied. If before measurement, the index Z be mo\'ecl do,vn to the surface of the water, alrea<ly in the vessel, and merely covering the bottom, and the bead of ,vater read off from the scale, ,•.re shall1 of the gauged ,vater by subtraction of this from 1is brought into contact with the surface of water at the encl of the 
	obtain the height ZZ
	the head of ,vater ,vhich the scale indicates ,vben the inrlex 
	han<l 
	Z

	Before measurement, the valre must be so placed thatthe ,vater may tlo,v off outside the vessel. 
	observation. 
	that the efflux in the trough is in a St;\te of permanency, and, watch in hand, have noted a certain moment, the valve must then be turned, so that the water may run into the gauge vessel, and after it is either partly or entirely fille<l, a second inter\·al is noted by the ,vatcb, and the valve again brought into its first position. From the mean sec­tion F of the vessel, and the depth ZZ1 = a of the body of water, the ,vhole quantity = Fa may be estimated, and again from the time of t, gi,·en difference o
	£Hing 
	by 
	the 

	Fa
	of \\'ater per second -· 
	Q 
	= 

	t 
	Remark. To determine a ,•arinble quantityofeCHn.-x: at eacL period 
	of 
	the day, 
	we 
	may

	make use of the apparatus represented 
	in Fig. 502, as applicable especially in
	Fig. 502. 
	There are here t,vo gauge 
	Figure
	vessels, .11. and B, ,vhich nlternatcly fill 
	anti en1pty themselves, and the ,vater 
	"·Lich is cont.lucted by the pipe F pnsses 
	.

	through a Łhort pipe CG, ,vhich is 
	rigidly connected ""ith a 1<',•er IJE, re­
	,·otving about C. When one ves:1et .fl 
	becon1es filled, the \.\•ater then fio,vs
	1luough a short tube H into the little 
	vessel .lJf, this tlmws the lever do,vn
	again on one si<le, nnd tho pipe CG 
	con1es into such a posuion that tile 
	"'ater is concluctetl into B. Tht• dn\\v­
	ing up of the vnl ,,es O and P tnkes 
	place by means of &trings passing over 
	pulley�, whose extren1ities nre con­
	nected \\ritb the lever, and sustained byfinal iinpulse tO the descent oftho lever. The vessels Mand by ,vhich they empty themselves after each reversion of the lever. An apparatus js besides applied, by which may rea<l off at any time. 
	iron 
	balls, 
	,v
	hfoh 
	impart 
	a 
	N
	have 
	small 
	effl11x 
	orifices, 
	the 
	nun1tx>c 
	of
	strokes 
	be 

	§ 373Ej/lux Regulalors.-Small a_n<l 1nedium dischargeare ¥ery 
	. 
	Ł 

	_
	frE>quentJy determined by means of their flow through a definite onfice,and under a kno\vn hŁa<l. From the area of the orifice, the heŁ<l of ,vater /z, and the efilux co-efficient µ., the discharge per second 
	F

	this purpose, because the co-efficients of efflux uŁ<ler different hads of \\ater are kno\vn ,vith great accuracy(§ 316), still they are applicable on)y to certain medium discharges. The author availed hiruseJf of four suŁh orifices for his 1neasurements, one of five, one of ten, one of fifteen, one of t\venty centimetres depth, but all of t,venty centimetres \\'idth. These orifices are cut out of brass plate, 
	adapte<l_ for 
	of 
	these 
	Ł
	T
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	ancl fixed to a woo<len frame .RC, Fig. 503, which is fastened by four 
	trong iron screws to each \Vall. In many cases, 
	Ł

	Fig. 503.
	1ndee<l, greater orifices, the co-efficients of efflux 
	for which are not so accurately determined, an<l sometimes \viers must be used, which admit gene­rally of a still Jess accuracy. In all cases, how­ever, the rule holds good, that �·e must endeavor to get as complete and perfect a contraction as possible, and for this reason must give to the orifice, if it is in a thick plate, a slope outward. The corrections which must be applied for incomplete and partial contraction, have been sufficiently distinguished in paragraphs 319, 320, &c. To mea­sure the water of
	. 

	Figure
	Fig. 504. Fig. 
	605. 

	Figure
	their indices F and G to the slide, and to the sluice-board .11, in order to read off more safely the height of the aperture. It is generallybetter for the purpose of measuring ,vater, to put on a new sluice­board with its guide, and with the requisite slope outwards. The simplest means of measuring ,vater in a channel, consists in putting in a board CD, '\vith its upper edge sloped off, Fig. 505, and measur­ing the fall produced by it. If the channel is long, and there is little rise, it is generally some 
	manency. 
	To measure the quantity of water of a brook 
	Fig. 506•
	We may dam it np with posts and boards' as in Fig. 506, and let the water C run off through an aperture, or "'e may a-rail our­selves of a simple overfall or wier, but ofthis "'e shall treat in the second part. 
	Figure
	§374. But as it is often long before a state ofpermanency occurs in water dammed up by this construction, ,ve 1nay adopt with 
	§374. But as it is often long before a state ofpermanency occurs in water dammed up by this construction, ,ve 1nay adopt with 
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	advantage the following method, first proposed by Prony. We may first close entirely the aperture by a sluice-board, and let the water rise to some height, or as high as circumstances will admit, then dra,v it so far up that more water may flow in than out, and measure the heads of water at equal and very short intervalss; lastly, the aperture of the sluice must be again perfectly closed, and the time t in \\'hich the \\'ater rises to the first height, further noted. In each case, then, during the whole tim
	1
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	1
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	, 
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	✓2 
	v = g ( ✓ � + 4✓�+ 2✓'J + 4✓3 +✓4) (see § 351),
	h
	h
	h

	12
	and if the area of the aperture = F, we have then the quantity of efflux in the time t: 
	,,,Ft✓2g ----
	-

	V---..:c ( ✓ h+ 4 ✓h+ 2✓h+ 4 ✓ h+✓ h), and the 
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	quantity flowing in per seconds: 
	V ,,, Ft2g ----
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	Q= -= ( ✓ h+ 4✓ h+ ✓h+ 4✓h+✓h).
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	t+t. 2(t + t.) 
	t+t. 2(t + t.) 
	1

	F..xanaple. To measure the water of a brook use<l for the driving of a water-wheel, which has been dam1ned up by a sluice, Fig. 506, after opening the rectangular aper­ture, the following is observed: the original bead of water is 2 feet, after 30'' 1,8 feet, after 60'' 1,55 feet, after 90'' 1,3 feet, after 120'' 1,15 feet, after 150'' 1,05 feet, and after 180'' 0,9 feet, breadth of the aperture 2feet, depth ½foot, time of rising to th� first height with closed aperturen= 110''. The mean velocity of efflux 
	=
	1';Ł(\/2+ 4vl,8 + 2v1,55+ 4\/1.3+ 2 vTT5+ 4 vl,05 + vu,9) = 
	8
	2 

	0,440 (1,414 + 5,364+ 2,490 + 4,561 + 2,145 + 4,099 0,949) = 0,440 . 21,022 = 9,248 feet; but now F == 2 .½ = 1 square foot, hence it follows that the theoretical dis­charge is= 9,248 cubic feet. If the co-efficient of efflux is takenn= 0,6 l, we finally ob­tain the quautity ofwater sought: 
	+ 

	61
	0,

	= · SOn. 9,248n=3,5015 cubic feet, (English.) 
	Q 
	I
	1so+ 110 

	§ 375. The " Pouce d' Eau," or Water-lnch.-To measure small discharges, we aYail ourselves of the flow through round 1 inch wide orifices, in a thin plate, under a given pressure. The discharge giventhrough such an aperture under the least pressure, or when the sur­face is only a line above the uppermost position of the orifice, is calJed an inch of water. The French assume for the water-inch (old Paris measure) 15 pints, or 19,1953 cubic metres of water in the 24 hours; therefore in 1 hour O, 7998, and in 
	Ł

	_
	to an orifice of 2centimetres diameter, with a pressure of 5 centi
	-
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	metres, ancl discharges 20 cubic metres 
	Figure
	F.
	,
	g.
	50
	7
	.

	of water in 24 honrs, has not been adopt
	-

	ed. The apparatus by which water ismeasured by the inch is represented in Fig. 507. The ,vat er to be measured flows through the tu be .Ii into a box ; 
	Łrom this it passes through holes below 
	1n the partition CD into the box E, and from this through a horizontal row of round orifices F, of exactly 1 inch width,and cut in tin plate, into the reservoir G.That the surface of water may stan<l a]ine abo,e the heights of these orifices, it is necessary that there be a sufficient number of them, and that a part of them be closed by stop­pers. For great discharges the ,vho)e water is divided, and in this way a part, on]y one-tenth, is measured. This division may be ac­complished easily, by .fir�t conduc
	Remark 1. We may apply also cocks and other rei;nilating apparatus to the measure­ment of water, if ,ve know the co-efficient of resistance for each position. If his tho bead of water, Fthe transverse section of the pipe, and µ. the co-efficient of efflux, for 
	a cock quite opened, we then have the discharge Q =µ. F.,/ 2 g h, as inversely,
	Q
	f4 and _!_ = (F)" . 2 gh. If now we put the co-efficient of resistance
	= 

	F.,/2gh corresponding 10 a position of the cock, and taken from the tables already given =Ł.we then have the corresponding discharge: 
	1-4" 
	Q 

	_!_ + t 
	. 
	. 
	1

	J1 t (s_)
	+ 
	'l 

	F 
	can nn<l nt A.
	l f4' 
	.,/ 
	+ 
	t 

	2gh
	For convenience sake1 ,ve may construct for ourselves a table, so that ,ve glance the discharge corresponding to a position of the cock, or the posiuon of the cockcorrespondjng to a given discharge. If, for example, f4 = 0,7 and F = 5square inches,,ve have then: 
	= --====Ł
	=
	-

	12 na9 ,: J h= " ,., 269•!> Ifnow the positions of the cock nre at
	or if h is constantly 1 foot, Q= 
	or if h is constantly 1 foot, Q= 
	1 

	. .

	cubic inches, 
	--,...---

	1 + 0,49 
	Ł 

	1 
	•
	.,/l + 0149 Ł 
	, 201 251 &c.1 t11e co-efficients of resistance, 01057 ; 0,293 i 01758; 1,559 ; 
	° 
	° 

	5 , 10
	5 , 10
	° 
	° 

	, J 5
	° 
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	3,095, the clischnrgcs corresponding to these nre: 265,8; 252; 230,l; 202,8 j 169,9 cubic inrhes. 
	Remark 2. To rei;?ulnte tho now D, Fig. 508, ,ve mny npply n ,veir 
	through 
	an orifice 

	B the exce:::s of v.·nter from the pipe ..i. 1nay Dow over, nncl that n l'Onsuu,t mt1y ho 1nai11taiued in the rt.· ervoir DE. Tliat there may l>e no lo:'is of ,vnLer, n cock or a vnlve JJ, Fig. 509, is upplie<l, ,vhicb is regulntetl by n float K acting upon a lever, so LhnL as much wnter only flo,vs in through B ns fio,vs out through F. 
	thot 
	pressure

	§ 376. Floating Bodies.-The discharge of large brooks, canals,and rivers, can be determined only by an hydrometer indicating the vrlocity. Of such instruments floating bodies are the most simple.We may use any floating body for this purpose, but it is better to have bodies of a moderate size, ,vhich are only a little specifically lighter than ,vater. Substances of about /o of a cubic foot content are large enough. Very large ones <lo not easily assume the Yelocityof ,,·ater, and ,·ery small ones again, espe
	1

	and have an opening \•tith a neck, that they may be
	.filled with water and stopped. A floating balJ, such 
	Figure
	Fig. 610• 

	as .Ii, Fig. 510, gives on]y the velocity at the surface, 
	and often only that of the main current; but by sus­
	pending two balls one to the other, .Ii. and B, Fig.
	511, '\\Te may determine the velocity
	at different depths. In this case, the 
	Fig. 
	511. 

	one ball B, "•hich S\\'ims under water, 
	is quite filled with the fluid; the other, 
	however, \vhich swims on the surface, 
	is only filled just enough to make it 
	float a little above the surface. Both 
	balls are connected with each other 
	by a string or wire, or by a light wire 
	chain. The velocity cof the surface 
	0 

	is first determined by the single ball,
	and then the mean velocity of the two 
	obserYed by the connection of balls. If, now, the Yelocity at the depth of the second ball be denoted Ci, 
	by 

	Figure
	we mathen put co l 
	y 
	c 
	= 
	+ 
	c

	,
	2
	balls are connected with one another Jonger ,vires, v:e may, in this manner, find the velocities at greater?epths1'he mean velocity c is other\\·ise gi \'en if the second ball is allowed to S',\'im a Jittle abo,·e the bottorn, and cis ma<le = 2 c-c0 ; stil] more accurately, however, if for cthe
	Whilst now 
	both 
	by 
	longer and 
	. 
	of 
	a 
	perpendicular 
	1 

	,..
	mean of all the velocities obser\·etl in a perpenclicular be taken. 
	FLOATING BODIES. 
	To find the mean velocity in a perpendicular, the floating staff .ABi , represented in Fig. 512, is used. This is particularly convenientfor measurements in canals and cuts when it is composed of shortpieces screwed together. The floating staff which the author uses is composed of 15 hollo\.v portions, each 1 decimetre in length. That this may s,nm pretty nearly upright, the lov,.ermost piece is loaded ,vith shot, so that the top just rises above the water. The number pieces composing the staff, depends, of
	1 
	of 

	canal. 
	Both with the floating staff as well as the connection of balls, it maybe observed that the velocity at the surface, when the motion of the water in beds is unimpeded, is greater than at the bottom, because the top of the staff s,vims in a<l vance of the bottom, and the upper baJl in advance of the Jo,ver. In contraction only, for example, when the water is dammed up by piles, &c., does the contrary take place.
	Remark. As a rule, especially ,vith large and floating bodies, n5 ships, &e., the velocityof the swimming body is somewhat greater than that of the ,vater; not so much uecause these Lo<lies in swin1ruing float uo·wu an inclined plane formed by the rorfuce of the water, but because they take none, 01 scarcely any, part in the ir_rcgular inti1nate motion ng bodies is so slight that it may be neglected. 
	of the water; still, the yariation for small floati

	§ 377. The velocity of a floating ball is found by noting the time t \vith a good seconds watch, or a half-second pendulum (§ 247), which it takes v.·hile floating on the water to describe a measured dis­tance s, marked out on the banks. Then the required velocity of the 
	ball is c = _!_,, That the time t corresponding to the space <le
	-

	t 
	scribed a]ong the bank may be accurately found, it is necessary, with the assistance of a cross line or lines, to erect at the opposite bank two signal staves Cand D,perpendicular at .IJ. and B, Fig. 512. If we placeourselves behind .JJ, \Ve may then note the moment when the float K,dropped in a little above .11., comes into the line .IJ.C, and if behind B,we may then also observe the time bya watch held in the hand, \,·hen 
	Fig. 512. Fig. 513. 
	Figure
	the float reaches the line BD and ,ve then find by subtraction of the !obser,·ation, the req�ired time t corresponding to the describ­ing of the space s. Besides the mean velocity c of the water, the area 
	imes 
	of
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	Fof the transverse profile is further required for determining the quan­tity of water Q= Fc. To find this area, it is necessary to knO\\' thebreadth and the mean depth of the ,vatcr. The depths are measured by a sounding rod .11.B, J?ig. 513, ha,iog a rhomboidal section, an<l a board B at the foot; for greater depths 'tve may also use a sounding chain, at ,,·hose extremity there is an iron plate, ,vhich, in sinking, rests on the bottom. The breadth and the abscissre corresponding to the measured depths, or 
	FilJ. 515. 
	Fig. 
	514. 

	Figure
	suring chain .. llB, or the placing of a rod right across the runningwater. For broad rivers this is determined by a measure table .:AI,which is placed at a proper distance .110, from the section EF, Fig.515, which is to be measured. If ao is the distance JJ.O bet\,·een .fland 0, reduced to the table, and if ao is placed in the direction of .R.O, and thereby also the direction of the breadth af made parallel to the line of breadth JJ.F marked out, then each line of vision ,vill in­tersect in the direction o
	If, no,v, the breadth EF, Fig. 514, of a transverse profile, consistof parts , &c., and the mean depths ,vithin those parts a, aa, and the mean velocities c, c, r, &c., \\"C have then the area ofthe profile: 
	b
	1
	, 
	b
	2
	b
	3
	, 
	1
	2
	,
	3
	1
	2
	3

	F= ab+ab+ ab+...,
	1
	1 
	'J,
	2 
	3
	3 

	.
	the discharge: 
	11
	a
	b

	F 
	-

	. · 
	. 

	• 
	b+ 
	+ 
	a
	2
	2 

	Example. ln a tolerably strai<>l1t nnd wuform extent of ri,.-er ,ve have at the midule 
	' 
	5 feet, 12 feet. 20 feet, 15 f ect, 7 feeŁ 
	11 }1 h 8 « 
	11 }1 h 8 « 
	3 
	u 
	6 

	J) Cl 2 l:i ,, 2 4 
	3 

	4 
	U
	The depths 
	The mean velocjties 
	J
	1
	9 
	« 

	11
	2,1
	, 

	t 
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	HE>nce we may put: 
	HE>nce we may put: 
	The area of the profile F =5 . 3+ 12 . 6 +20 . 11 + 15 . S+ 7.4=4 55 square feet. The quantity of water Q = 15 • 19 + 72 . 23 + 220 . 28 + 120 . 2,4 +28 • 21
	1
	1
	1
	1

	9
	1156
	1


	1156,9 cubic feet. The mean velocity c = = 2,54-feet. 
	1156,9 cubic feet. The mean velocity c = = 2,54-feet. 
	= 

	455 
	§ 378. The Tachmeter.The most eligible hydrometer is thetachometer of Woltmann, Fig. 516. It consists of a horizontal axle.IJ.B, ,vith from tŁ·o to five vanes F, placed at an inclination to the direction of the axis, and gi,·es, when immersed in the ,vater and held at right angles to the direction of motion, by the number of itsrevolutions in a certain time, the velocity of the running ,vater. Toread off the number of these revolutions, the axle has a few turns of a screw C, and these work into the teeth of
	o
	-

	Fig. 516. 
	Figure
	wheel, there is a pinion which works into the teet� of the w�eelwhich, like the hands of a watch, several multiple revolutions may be read off. If, for example, each of the t"'O toothed wheels has fifty teeth, an<l the trundle ten, then the second \\'heel revolves one tooth whilst the first ad\'ances five teeth, or the vanes make .five reYo­lutions, if the index to 27 = 25 + 2, and that of the second to 32, the corresponding number of revolutions of 
	E, 
	by 
	of the 
	first 
	,vheel 
	points 
	.
	.

	_
	the vanes is accordingly: = 32 • 5 + .2 = 16.2. The enbe instru­ment is screwed to a staff having a tin vane attached, to admit of easy 
	Ł
	•

	39• 
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	imn1ersion in the water, and of being kept opposed to the current. But that the ,\·heeJ,vork may only revolve during the time of observa­tion, the axis is connected ,vith a lever GO, ,vhich is pressed do,vnby a spring, so that the teeth of the first ,�heel are thro,vn into gear ,\·ith the screw only when the lever is dra,vn up by a string.
	The number of revolutions of a wheel in a certain time, for exam­ple, in a second, is not exactly proportional to the '\'elocity of the ,vater, hence we cannot put v = a,u, ,vhere tt is the number of revo­4 a nu1nber deduced fro1n experimentso;but rathero: v = v+ o. u, or more correctly v = v+ a. u + j3 u... , or still more correctly: 
	lutions, v the velocity, and 
	0 
	0 
	z 

	= a. u + ✓v+ f3 u\ ,vhere vis the velocity, at "'·bich the water is no longer ab]e to turn the "·heel, an<l o. an<l f3 are co-efficients from experiment. The constants v, a and i3, are to be determined for each instrument in particular. \Vith their assistance the velocity is known from a single observation, nevertheless it is al\vays safer to make at least two, and to substitute the mean value as the correct one. 
	v 
	0 
	2 
	0 
	0

	= 0,1 IO feet, a = 0,4R0, and 8 = 0, therefore v = 0,11 + 0,48 1♦, and ,ve have by an observation ,vith this instrument founu the number 
	210
	v =0,11 + 0,48e. --= 0,11 + 1,26 = 1,37 feet. 
	60 
	Remark 1. The constants v, • and 6 depend principally on the nJagnitutle of the angle of impact, i.e., on the nngle which the plane of the vane makes ,vilh the direction of motion of the ,vater, anu therefore, nlso, ,vith the direction of the ruds of tho ,vl,ef'l. To observe ,vjth tolerable nccuracy small "elocitics, it is well to have a lnrge angle of irnpul!<e, i. t., one of 70. For the rest, it is desira­ble to have vanes of cliifercnt sizes and with clilferent angles of in1pulse, and to use the vane ,,,
	0
	° 

	Ranark 2. To finu the velocity of the surface of ,vater, a small tin ,vlieel may le used, as represented io Fig. 517, and its under part allowed to clip into tlle ,vater. The number of its revolutions may be determined by a system of ,vhcels, n11 iu the tachometer. 
	,

	§ 379. To find the constant or co-efficient of the tachometer, it is 
	necessary to set this instrument in a stream, whose velocity is known,
	and to note the corresponding number of revolutions. Although as 
	many observations only are required, as there are constants, it is still 
	safer to ha Ye as many observations as possible, and especiaJly for very
	different velocities, because we may then apply the method of least
	squar�s, anthereby eliminate the effect of accidental errors of b­
	Ł 
	?

	servat1on. fhe velocity of the water may be fonncJ by the floating 
	ball, or by_receiving the water in a gauge vessel, nd diŁding the 
	Ł

	measured discharge bythe transverse section. In using floating balls,
	the air should be still, and the tract of water straight and uniform. 
	The tachomter is to be held at se,eral places of the space described
	Ł

	by the floating ball, and it is also requisite for accuracy, that the
	diameter of the ball should be equal to that of the tachometer.'fhe second method of determination has seYeral ad vantages when 
	Example. If for a sail-,vheel v0 of revolutions 210 iu 80'', tuen tLe corresponding velocity is; Fig. 517. 
	,
	.I (.r) = ( 
	.I (.r) = ( 
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	the water in which the instrument is immersed is received into a gauge vessel. For this purpose, and especially for adjusting thehydrometer, it is well if the engineer can erect a proper hydraulicobservatory, consisting of a vessel of efflux, a gauge reservoir, and a channel of communication between the two. With such an arrange­ment, we may impart to the ,vater any arbitrary Yelocity, because we can not only regulate the entrance into the channel, but also the motion by means of boards placed in at pleasur
	-

	tity which has flowed in during the time by the formula Q ==-E!; but 
	t 
	Q Gs
	the mean velocity of the water: = = follows from Q and F. 
	v 
	Fl 

	F 
	F 

	The corresponding number of revolutions u of the wheel is the mean of all the revolutions which are obtained when the instrument is immersed at different breadths and depths of the measured profile. 
	'

	If from a series of experiments we have found the mean velocities vv, v&.c., and the corresponding number of revolutions, ,ve thenobtain by substitution in the formula v = v+ a. u, or in the more correct one: v = a.u ✓v0+ J3uas many equations of condition for the constants v, a., J3, as there have been observations made, and'\\'e may from these find the constants, if these equations are divided into as many groups as there are unknown constants, and these added together for as many equations of condition as
	1
	, 
	2
	3
	, 
	0 
	+ 
	2 
	2 
	0
	0

	' 
	Rtmark. If we adopt the more simple formala with 2 constants,' we may then, after 
	.I (y)2 (x) -% (xy) I(y) •
	= 
	I
	and 

	" 
	I(r) I (y2) -(I (xy)]
	1 

	I (r) .I (y) -.I (xy) (.r) 
	= 
	.I 

	.I(x').I{y)-[% (xy)1 , 
	O 
	where =.!_and y=Ł.and the sign .I represents the sum of all successive similar
	x 

	"
	" 
	· 
	• 
	·,
	--+ -+
	1
	1
	+ 
	1

	", "• 
	u, 
	u, 
	+ 

	values, for example, I (x) = 
	1
	"1
	+ 
	-

	"1 "· v, "2 • 
	. 
	"

	• 
	"

	-
	1 u1 tAi 
	s 
	+ 

	• 
	given in the remark. it follows, that: 
	°,600
	22 759 
	1 
	1 

	05
	3
	+ 
	02
	, 
	+

	1 
	)' ( ).. == 
	+ 
	1 
	' 
	+ 

	82,846, I (') = 105,223, and 
	y

	0,163 
	(2 
	0,163)

	0,0:,
	2

	0,835 
	0,835 
	()
	0,205
	1 
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	1:12,si1a. 10:-,,223-(80,961)2102 ' 
	2 

	= hence for this instrutnent the formula v = 0,060 + 
	,
	368
	·3 
	= 
	0,
	1703, 
	0,
	1703 u.

	2162 
	v =0,060 + 0,102 =0,162 i further, to=01835,V =0,060 0,142 =0202; further,0,,= 1,467,
	1

	t1 =0000 0,2,J O =O,:lOfl. u = 1, 05, =0,000 0,307 =IJ,307; lnstly u = 3,1,12,v =0,000 + 0,535 = U.595; 
	1
	t• 
	t

	therefore, the calcul:itcd values agree ,•cry ,\·ell ,vith the observed. 
	§ 380. Pilot's Titbe.-Other hydrometers are not so satisfactory asthe tachometer, for they either admit of less accuracy, or they are more complicated in their use. The most simple instrument of this kind is Pitot's tube. In its simplest form it consists of a bent glass tube .fl.BC, }ig. 518, which is held in the water in such a manner that its lower part stands hori­zontally, and is oppose<l to the ,vater. By the percussion of the ,vater, a column of water is sus­tained in this tube, which stands above the
	..,
	Figure
	Fig. 518. 

	2
	of water = h, and the velocity = v, then h = , ,vhere ,.. is a 
	v 

	2g"'
	2 

	number derived from experiment, and we have inversely, v = µ.. ✓ 2gli, or more simply: v = .i, ✓h. To find the constant .i,,
	Figure

	Fi. 519. 
	g

	the instrument is immersed at a place in the ,vater 
	where the velocity vis kno\VD ; if the elevation is here 
	1 

	• = , ,ve then have the constant 4-= v, ,vhich is
	h
	1
	1 

	h
	✓ 
	l

	to be applied in other cases, where the velocity is to be 
	determined \\'ith this instrument. 
	To facilitate the reading otf of the height h, the in­strument consists of two tubes, as shown in Fig. 519,and from the one a s1nall tube Fis directed againstthe stream, from the other t,vo small tubes (l and Gat right angles to the direction of the stream, both tubes are connected with a single cock H, by '\\>·hich the"'ater can be retained in them. 'When the instrumentis dra\vn out of the water, we may conveniently read off on a scale attached to both the tubes, the difference CD = Ii ofthe t\vo columns o
	1

	the closing of them may take place quickly and safely; the cock is 
	Figure
	HYDROMETRIC PENDOLOM-RHEOMETER. 
	465 

	provided with an arm ancl an eYen rod HK, ,vhich terminates abo"'e, near the handle of the instrument. § 381. HydrometriPendulum.-The hydrometric pendulum hasbeen used in preference by Ximenes, l\iichelotti, 
	c 

	Fig. 620•
	Gerstner and Eytelwein for the measurement of
	the elocity of running water. This instrument 
	:

	.JlB, divided info
	consists of a quadrant 
	Fig. 520
	1 

	degrees and smaller parts, and a metal1ic or ivory 
	ball K of from two to three inches diameter, sus­
	pended by a thread from the centre C, the velocity
	of the ,vater is given by the angle .11.CE, at which
	the thread when stretched by the ball deviates 
	from the vertical, when the plane of the instru­
	ment is brought into the direction of the stream,
	Figure
	and the ball submerged in the water. As the angle rarely amounts 
	to forty or more degrees, this instrument has often the form of a right 
	angled triangle given to it, and the divisions made on its horizontal 
	arm. For the placing of the index or zero line in the vertical, it is 
	best to use a spirit level on the horizoL1tal arm of the instrument, or 
	the ball itself may ser,·e for this purpose, by letting it be suspended
	out of the water, and the instrument revolve until the thread coin­
	cides with the zero line of the division. 
	For velocities under four feet we may use the ivory ball, but for greater velocities the hollo,v metal ba11. On account of the constant undulations of the ball in the direction of the motion of the ,vater, as also at right angles to the direction of the current, the reading off issome\\·hat difficult, and leaves a good deal of uncertainty, for which reason this instrument cannot be relied upon for the more exact numbers. 
	The dependence between the angle of deviation and the velocity of the water may be determined in the following manner when the ball is not very deeply immerse<l. From the weight G of the ball and from the impulse of the ,vater P = ,,. Fv, increasing simulta­neously with the square of the velocity v and the section of the ball , the resultant R, whose direction the thread assumes, follo,vs, and is determined by the angle of deviation /3, for which the tan/3 = 
	2 
	F
	g. 

	Ł = ,.,. Fv2, hence also inversely : 
	G G 
	v= , anv = ✓ --. ✓ tang. �, ·1. e. v = -i, ✓ tang/3,
	2 
	G 
	ta11u
	0
	. 
	Ł 
	d 
	G

	.
	µ, F if,i, represents a co-efficient derived experiment, obtained before use according to the above-mentioned instructions.
	µ.F
	fro
	m 
	which 
	must 
	be 

	§ 382. Rheomete�.-The remaining hydrometers, such as Lorgna's water lever, Ximenes's water vane, Michelotti's hydraulic balance, Brunning's tachometer, Poletti's rheometer, are 1nore complicated in their use, and not altogether to be relied on. The principle of aH these instruments is the same, they are composed of a surface of im­pulse and a balance, and the last serves for the purpose of giving the 
	Figure


	IMPULSE AND RESISTANCE OF WATER. 
	IMPULSE AND RESISTANCE OF WATER. 
	466 

	percussion P of the \vater against the former, but since this ,ve then ha,·e inversely: 
	I" Fv', 
	= 

	= 
	,uF
	periment dependent on the magnitude of the surface of impact rlieometer, ,vhich ,vas lately proposed by Poletti, and does 
	F. 
	The 
	not 

	materially differ from the hydrometric balance 
	of Michelotti, consists of a Je,·er .llBFig. 521, turning about a fixed axis C, and an arm CD to ,vhich the surface of impulse, or according to Poletti, a mere impulse-staff is scre,vecl. Tomaintain equilibrium \\'ith the percussion of the\\'ater against the surface, the boxes suspendedat the extremity .JJ of the lever are loaded ,vith "·eight or shot, and to put the empty balance inequilibrium in still water, n counterpoise is placed at B, ,vhich makes up the outermost end of the arm CBFrom the weight put 
	Fig. 521. 
	, 
	. 

	Figure
	therefore, 
	a
	P 
	-

	_ _ 


	,.,, }' -
	,.,, }' -
	,.,, }' -
	p. b F 

	"·here 4' is a constant derived from experiment. 
	G, and v =
	= 
	= 
	4,✓ G,
	b 
	Remark. With respect to the last hydrometer, ample details will be found in Eytel• ,vein"s 'llandbuchder l\1e<.·hanik fester Korper unu der Hydraulik ;" further, in Gerstner's ·• Hancllmch der l\fcchanik," ,·ol. 2; in Brunning's •Treatise on the -velocity of running watl.!r ;" in Venturolj's "Elementi di l\fecoonica e d'ldraolicn," vol. 2. Concert1ing Poleurs hydrometer, ,ve musr refiŁr 10 Dingler·s II Polyteobn. Journlll," Yol. 20, 1826. The liydrotut-tcr descrjbed in Stevenson's treatise on l\[nrine Surve
	1 
	1 
	1 

	Figure
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	ON THE llt1PULSE AND RESI STANCE OF FLUIDS. 
	§ 383. Imp11,lse and Resistance of Water.-Water or any other fluid 
	§ 383. Imp11,lse and Resistance of Water.-Water or any other fluid 
	.
	1rupŁrts a sh?Łk to a rigicl body, ,vhen it meets it in s1ch a manŁerthat 1ts cond1t1on ofmotion is thereby altered. The resistance \vh1ch vater opposes tŁ the otion of a body, does not essentia1!y uin:er fomimpulse. TJ1e 1nvest1aation of these two forms the third principalJi,·ision of hydraulics. We distinguish from each other:
	Ł
	Ł
	Ł
	!
	0 

	1. 
	1. 
	1. 
	The impulse of an isolated stream.

	2. 
	2. 
	The impulse of a limited stream. 

	3. 
	3. 
	The impulse of an unlimited stream. 
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	An impulse of the first kind takes place '-Vben a body, (or instance,the float board of an over-shot water-wheel, is opposed to a stream of water issuing from a reservoirn; an impulse of the second kind occurs where water, in a canal or in a water-course, impinges against a body which entirely fil1s up its transYerse section, as for instance, against the float board of an under-shot wheel; the third kind, lastly, presentsitself, when running water strikes against a body immersed in it, whose transverse sect
	We must distinguish the impulse of water against a body at rest and against a body in motion, and further, the impulse against acurved and against a plane surface, and in this last again, bet"·eeu the perpendicular ancl the oblique impulse. 
	Let us consider at once the general case, namely, the impulse of an isolated stream against a surface of rotation which moves in its proper axis, and in the direction of motion of the stream. 
	§ 384. Impact of Isolated Streams-Let B.llC, :Fi. 522, be a sur .. face of rotation, .flX its axis, and F.11 a 
	.
	g

	fluid stream meeting it in this direction. 
	Fig. 52-l.. 

	Let the velocity of the \\"ater c, thatof the surfacen= v, and the angle BTX, which the tangent D T at the extremity B of the generating curve or of each of the filaments of water BT leaving the surface, includes with the directi0n of the axis BE= a.; lastly, let u.s further assume that the water in running off from the surface loses nothing in vis viva by friction. Tbe ,vater strikes against
	= 

	the surface with the re-lati\·e velocity c-vand hence leaves the sur­face with this, and therefore quits it in the tangential directions TB,TC, &c. From the tangential vel'1c1ty BD _, c-v, and the velocityof the axis BE=-v, the absolute veloc1ty BGB== c1 of the water afterimpinging against the surface is fo111nd by the known formula: 
	,. 

	c= .,./ (c-v)-t 2(c-u) v cos. a.+ v
	1 
	2 
	2
	• 

	But now a quantity of water Qis able to produce by virtue of its 
	vis viva the mechanical effect� • Qr, ifits velocity c is fully impart­
	ed; acoordingly the residuary effect of the water: 
	2 
	== • Qy; consequently the effect distributed over the, g
	c
	1 
	mechanical 
	2

	surface is: 
	2 ,;'-c/
	c2 
	C 

	Pv = -Qr-i Q= -___;;.,. · y.
	r 
	Q

	g g 
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	= [c2-(C-V)-2 C-V) V •COS. a.-V] ir 
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	(c-v) v Q-y
	P
	v =(
	I
	-cos
	.
	a
	)
	, 

	g
	and the force or the impulse of the water in the direction of its 
	aXIs 1s : 
	P= (I-cos. a) Qy. g
	(
	c-v) 

	If the surface meets the water with the Yelocity v, we then have :
	(+v) Qy
	c

	P= (I-cos. a.) . --,
	g
	and if this is without motion, therefore, v = O, the impulse or hydrau­lic pressure of the axis comes out: 
	P= (I-cos. a) . Qy.
	c 

	g
	It follows from this, that the impulse of one and the sarne mass of wate-r under otherwise similar circumstanes is proportional to the rela­tive velucity c + v of the water. 
	c

	J?rom the area F of the trans-rerse section of the fluid stream, itfollows that the quantity discharged is Q= Fe; hence 
	P= (I-cos. a) (+Fr; 
	c
	v
	)
	c

	and for v = 0: 
	g 

	' 
	c

	P == (1-cos. a) Fr, 
	-

	g
	mpulse aainst a surface at rest inreases therefore as the square of the velocity of the water.
	For an equal transverse section of t!te stream, the i
	g
	c

	§ 385. Imulse ai11st Plane Suifaces.-Tbe impu]se of one andthe same fluid stream depends principally on the angle a, under which the water, after the impulse, leaves the axis; it is nothing if this angle = O; and, on the other hand, a maximum, namely, 
	p
	ag

	= 2 +Q.,, if this angle is 180, therefore its cosine = -1
	(
	c
	v
	) 
	°
	, 

	where therepresented in Fig. 523, lea,es the surface 
	g
	water, as 
	in a 

	F. -,,3 Fig. 524. 
	1g. o:.. • 
	Figure
	• 
	Figure
	direction opposite to that in ,,.,bich it impinges. This is generalJy greater for conca,·e snrfaces than for convex, because the angle is there 
	MAXIr.IUM EFFECT OF IMPULSE. 
	oblique, therefore the cosine negative an<l 1 -cos. becomesl + cos. c.. 
	e1 

	Most frequently the surface, as represented in Fig. 524, is plane,and hence a = 90, therefore cos. (l, = O, and the impulse 
	°

	P = c+vQr; for a surface at rest: 
	(
	) 
	• 

	C c2 c2
	= -Qr = -'>' = 2 . -r = 2 h. 
	g 
	P 
	F
	F
	F
	1

	g 2g 2g
	The normal impulse of water against a plane surface is theref OTe equivalent to the wdght <if a colztmn ef water which has for base the transverse sect·ion F <if the stream, and for altitude, twice the ludght 
	due to the velocity 2 h = 2 . Ł
	-

	2g
	The experiments made on this subject by Michelotti, Vince, Langs­dorf, Bossut, Morosi, and Bidone, have nearly led to the same results when the transverse section of the impinged surface was at least six hen this surface was twice as far from the plane of the orifice as the thickness of the stream. 
	times as great as that of the stream, and '\\
	1

	The apparatus which was used 
	Fig. 625. 
	for this purpose consisted of a lever, similar to that of Poletti's rheometer, which received upon one side the impulse of the ,vater, and whilst its other side was kept in eq nilibrium by weights. The instrument which Bidone made use of is represented in Fig. 525. BC is the surface impinged on by the stream F.11, G is the scale-pan for the reception of the weights, D the axis of rota­tion, KL counter-,veights.• 
	§ 386. Maximum qect of Imlse.-The mechanical effect of impulse: 
	pu

	(c-v) v 
	(c-v) v 
	-
	c
	o
	s
	. 
	a) 
	Q
	"I

	v = I 
	P
	(


	g
	depends principally on the velocity of the impinged surface; it is, 
	v 

	• latest and mssion of water a.re II Memorie de la Reale Accademia delle Scicnze di Torino," vol 40,1838. They were performed with a velocity of at least 27 1eet, and on brasŁ plates f{; inches diameter. In general Bit.lone found that the nimpulseagainst a plane surface was somewhat greater' than 2 F )':, yet this variation is perhŁps to be attributed to an augmenration of the leverage which is prodoŁ by the _falling back of the water. Stt Duchemin's "Recherches experim. sur !es l01s de la reS1s1Bnce des fl
	The 
	ost extensive experiments on the percu
	those 
	of Bidone. &e 
	of 
	rom 
	2 
	to 
	ormal 
	h
	P was only 1
	of the stream, in which case the water only deviated by an acute angle 

	.
	and Langsdorf, P was only = F ,-. Lastly, it bas been dooced by B1done and others that the impulse is in the first moment nearly as great again as lhe permanent impulse.
	Buat 
	h 
	Ł

	40 
	Figure
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	for example, notl1ing, not only for v = c, but also for v = 0; hence there is a ,Łelocity for which the effect of the impulse is a maxi1num. It is manifest that it only <le_pen<ls on (c-v) v be('oming a maximum. If ,ve consider c as half the perimeter of a rectangle, (lnd v as its base, ,ve have then its height c-v and its area = (c-v) v. But of all rectangles the square is that which has for a gi,·en perimeter 2 c the greatest area, hence also (c-v) vis a maximum, \Yhen c-v = v, 
	= 

	i. e. v = c, and we therefore obtain the nt.axiniu,n value of the me
	-

	2
	chanical effect of the impulse tohen the surface moves from it with half 
	the velocity of. the water, and indeed 
	Pi= (I-cos. a.) • ½ . !:._ . Q= (I-cos. a.) • I Qhy.
	1 
	y 

	2g
	If nowa.= 180, and if, therefore, the motion of the \vater be reversed by the impulse, ,ve then have the effect equal to 2 . ½ Qhr = Qllrf. But if a. = 90°, i. e. if it impinges against a plane surface, this effect is then onlye½ Qh, therefore, in the last case, the half only of the ,vhole disposable effert, or that which corresponds to the vis viva of the water, is gained or brought to bear upon the surface. 
	° 
	y

	&ale,.-1. lf a. stl'enm of ,vnter, of 40 square inches tron!tverse section, delivers I\quantity or ;; c111Jic feel per Ł&'<lntl, nntl :.trikes nor1nally against n nnc.l 
	mp
	plane 8Urfh.ce, 

	eS<'apeg ,vith a 12 feet velocity. the effect of impulse is then: (c-t•) Q,,= (g 40 
	5
	antl lhe mechanical effect brought to bear upon tlia snTface Pv = 8,12 X 2 = 007,44 ft. lbs. Tho greatest eflt!ct is for 11 = !_½. · '= 0 feet, and indeed:
	1
	= 
	5 
	1
	14 

	2 -t-0
	l'
	= ½ •-Q >' = ½. ll:>'l .0,015t5t. 5. 62,5 = 81. 0,015t5t. 62,5 = 784,68 fl. lbs.; the 
	. 

	2g 
	corresponding impulse, or by<lraulic pressuret= !•= 87,18 lbs.-2. If a strean1 
	78
	(j 

	F.11, 'Fig5'26, of 15,1 !'lfJ.Uarc inches section, strikes with a 40 feet velocity against an im­movable cone, having an angle of convcrgooce B.IJ.C = 100, Lhen is lbe hydrnulic pres­l'5UTe in the direction of the stream : 
	. 
	°

	P= (.!_ )' = 1-co,. 00400. 0,0310. . 400. 62,5 
	l-co,.ca
	)
	Q 
	(
	°
	)
	64 

	1« 
	g 
	10000
	= 1-0,G-1279) • 1 . 24 • --= 0,35721 . 13777 = 492. 13 lbs.
	(
	1

	9 
	Fig. 526. Fig. 627. 
	§ 387. 1,npulsc of a Limited Stream.-If ,Ye acltl borders BD, CE, 
	_
	to thŁ permeer of a plane surface BE, 527, ,vhich project fromthe sde rnp1nge<l upon by the ,vater, then ,viii the water deviate 
	Ł
	Ł
	Fig. 
	!
	Ł

	_
	from its dtrechon at an obtuse ano-le in a similar manner as trom 
	t) , 
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	concave surfaces, and hence the impulse ,vill be greater than for planesurfacesThe effect of this impulse depends principal1y on the ht>ight of the border an<l the ratio of the transrerse section between the stream and the part confined. In an experiment, ,vhere the stream was 1 inch thick, the cylindrical enclosure 3 inches wide and 3½ lines deep, the water ran off almost in a reversed direction, and the impulse 
	. 

	amounted to 3,93 Ł F'Y; in every other case this force was less. In
	2 

	2g 
	consequence of the friction of the water at the surface and the sides, 
	the theoretical maximum value never reaches 4 2 F 'Y· 
	c

	2g
	In the impulse of a limited stream F.llB, Fi. 528, a rising at theedges takes place; this rising occu
	g
	-

	pies only a portion of the perimeter, 
	Figure
	Fig. 528. 

	and extends itself, on the other hand, simultaneously to the impinged surface and lhe fluid stream. The impinging water takes the direction of the un­bordered portion of the perimeter, and here, therefore, becomes deflected 90 degrees, whence the formula above found for the isolated stream P = (-) Q "I bolds good ; yet this 
	c 
	v

	g
	may also be deduced in the following manner. If we assume that the velocity c of the arriving water by the impulse against its surface is changed into the velocity v of the surface, we may then also assume 
	that a loss of mechanical effect (similar to that in§ 337), 
	(
	c
	-v
	)
	2 
	Q 
	"I 

	g
	2

	expended in the division of the water, is connected ,vith it. But now 
	the effect due to the vis viva of the arriving watere= i:_ Qand to that 
	r 

	g= Ł Qr, hence it follo"·s that the mechanicalg
	2
	of 
	the 
	water 
	goi
	ng 
	on 
	i
	2

	effect imparted to the surface is: 
	P= [c-c-2-] 2_ y ,*
	v 
	2
	(
	v
	)
	v
	2
	Q
	= 
	(c-v) v 
	Q
	r

	2g g
	388. Oblique Impulse.-In oblique impulse against a plane sur­face, ,ve must distinguish whether the ,vater flo\Vs a'9.'8V in one, two, or in all directions in the plane. If, as in the impact of limited.llB, Fig. 529, is confined at three the ,vater carun off only in one direction, we have then the hydraulic 
	§ 
	water, 
	the 
	surface 
	sides, 
	so 
	thŁt 
	?

	(c-v
	) 
	Q
	y.

	g 
	• Tith, formula \\·ill be found applicable hereafter, when ,ve come to the theory of water-wheels. 
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	Fig. 529. 
	Fig. 530. 

	Figure
	But if the impinged plane BC, Fig. 530, is only bordered on two oppositely situated sides, the stream then divides itself into two un­equal portions; the greater portion Qtakes the small deflexion a.,and the lesser Q, 1he greater deflexion 180 -a.; hence, the whole impulse in the direction of the stream ise: 
	1 
	2 

	C 
	C 
	V
	-


	= (1 -COS, a.) , -Qr + {1 + COS. a.) , Ł "/ 
	p 
	C 
	V 
	1 
	= 

	g
	(C
	(C
	-; 

	·v) 
	g 
	No,v the euilibrium of the t,vo portions of the stream requires that the pressures 
	q

	-v) ,y (1 -cos. a.) Qand v'Y (1 + cos. a.) Q
	(c 
	1 
	(c 
	Figure
	-
	)
	1 

	g g
	between them should be equal; hence, also: 
	(1 -cos. a.) Q= (1 + cos. o) Q, or since Q+ Q= Q,
	1 
	2
	1 
	2 

	(1 -cosa.) Q= (1 + cos. a.) Q -Q), i. e., 
	. 
	1 
	(
	1 

	Figure
	a.)) -e1
	Q
	1 
	= 
	(
	(1 
	+
	;
	os
	. 
	Q, 
	and 
	Q
	2 
	= (
	1 
	os. 
	) 
	Q,

	;
	so that the ,vhole impulse in the direction of the stream is finall: c-v(l+ . Q (c-v)rl 
	y 
	= 
	(
	) 
	r.
	2
	(
	1 
	)
	cos
	a.
	) 
	(
	-
	-


	P )Q,
	2 
	Ł

	---cos. a. --Ł--= ---cos. a. 
	g g 
	C-t, · 
	· p 
	Q

	i. e., = --sin.. a. • r, 
	t

	Besides theŁarallel impulse P, acting in the direction ofthe stream, ''°'e distinguish, further, the lateral impulse 8, acting at right angles
	to the direction of the stream, and the normal impulse N, composed
	of these two, and at right angles to the surface. In eYery case P 
	a., and 8= Ncos. a.; hence, inversely, 
	= N
	sin. 

	,.,. P c -v . c-v .
	.,, = . --s1,n. a Qy and S = __ sin. 2 a . Qr
	= 

	sin. a 
	2g 
	• 

	The normal iinpulse, therefore, increases as the sine, tlte parallel
	.
	impulse as the square ofthe Łine of tlte angle <ifincidence, and the late. ral impulse as double the same angle. Lastly if the inclined surface impinged on is not bordered, then the water Łan sprea<l o\·er it in all <lirctions; the impulse is then greater, because of aJI the angles by ,vh1ch the filaments of ,,·ater are deflected, a. is the least; and hence, each filament which does not mo,·e in the normal plane, exerts a 
	Ł
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	greater pressure than the filament in this plane. Let us assume tha a portion Qcorresponding to the sectors .11 OB 
	1 

	and DOE, Fig531, is deflected by the angles 
	. 
	Fig. 531. 

	a-and 180-a., and another Q, correspond­ing to the sectors .8..OD and BOE, by 90, and that both portions exert a parallel impulse, \Ve may then put: 
	° 
	2
	° 

	c-v Q , c-v Q Q •
	= -sin. a.--sin. a. 
	P
	-
	1 r 
	2 
	+ 
	2
	r, 1 
	2 

	g g
	Q, and Q+ Q= Q; hence it follows, that 
	= 
	2
	1 
	2

	Q(1 + sin. a.) = Q, and the ,vbole paral1el impulse P = 
	1 
	2

	(c-1,) 2 Qysin. a._ 2 sin. a.c-v
	2 
	2 

	r•
	-
	. 
	. 

	I + sin. a.g 
	g 
	I + sin. a.
	2 
	2 
	Q 

	Although this hypothesis is only approxi­mately correct, it tolerably well agrees, nev-er­theless, with the latest experiments of Bidone. 
	§ 389 . .11.ction of an Unlimited Stream.-If a body moves progres­sively in an unlimited fluid, or if a body is put into a flnid which is in motion, it then suffers a pressure which is dependent on the form and dimensions of this body, as well as on the density and on the velocity of the one or the other mass, and in the one case is called the resistance, and in the other the impulse of the fluid. This hydraulicpressure arises principally from the inertia of the water, whose con­dition of motion is altered 
	Fig. 532. Fig. 533. 
	Figure
	Figure
	before it a certain quantity with an augmented pressure. Whilst this mass of water, bthe further advance of the bod, always increases on the one sid, on thee other a constant flo,ving away takes pla_ce, 
	y 
	y
	Ł

	. _
	htle the particles ly1ng near the anterior surface assume a motion 1n the direction of this surface. If the moving mass of ,vater strikes against a body at rest, Fig. 533, then is there likewise an increased pressure produced in front of it, which causes the particles before the body to deviate from their original direction, and to run off at theWhen these particles have reached the limits of the surface, they then turn and flow away by the lateral surfaces until they come to the back, when they then again 
	Ł
	surface .ll..B. 

	"" 
	4
	0

	• 
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	assume an eddying motion. It is manifest that the general circum­stances of motion of the particles surrounding the body are the same in the impact of moving water as in the resistance of a body moving in water, except that in the eddies a difference so far takes place,that ith lhort bodies the eddy in the latter case occupies a less sp�ce 
	'!

	_
	than 1n the former. In both cases the velocity of the particles in­
	creases more and more from the middle of the anterior surface to its 
	limits, attains its maxi1num at the commencement of the lateral sur­
	faces, where, for the most part, a contraction takes place, gradually
	dimioisbea in the \tater which passes away at the sides, and lastly,
	attains it1minimum when the water reaches the back and passes into 
	·t

	a whieg motio&I. 
	.,,
	. Ł of Impulse and Resistance-The normal pressure
	.

	f
	cWferent points of the body; it is greatest at the middle of 
	nnea 
	at 

	the anterior, and least at the middle of the posterior surface, and, next 
	to that, at the parts of the sides nearest this ; because, in respect to 
	the body, there is at the one place rather a flow to, and at the other a
	flow from these surfaces. If the body be symmetrical, as we shall 
	suppose it to be, with respect to the direction of motion, then the ag­
	gregate pressures in this direction counteract each other, and hence 
	only the pressures in the direction of motion are to be taken into ac­
	count. But now the pressures on the posterior surface are opposed 
	to those on the anterior ; hence the resultant impulse or resistance of
	the water may be equated to the difference of pressure of the anterior
	andposterior surfaces. 
	Hwe cannot assign the amount of these pressures a priori, we may,nevertheless, from the great similarity of the circumstances to the im­pulse of isolated streams, assume that at least the general law for theimpulse of unlimited water does not differ from that of the impulse of isolated streams. If, therefore, Fis the area of a surface, which is impinged on by an unlimited current whose density is r, with a velo­cityt", then the corresponding impulse or hydraulic pressure may be 
	v'
	r, where C represents a number deduced from 
	put P 
	-
	C 
	-F
	expe
	-


	2g
	riment, dependent on the form of the surface. But this expression is not only applicable to action against the anterior, but also to that .... the posterior surface, only that in this last, when the water has a tendency to flow away, it consists of a draught or negative pres­sure. If now F h r is the hydrostatic pressure (§276) against thefront and back surface of a body, the \\'hole pressure against the front is: P-Fh-, + ,1.• f Fr, and that against the back: P1 -Fh-,
	1 
	g 

	' -Cs resultant impulse or resistance of the water is then found: 
	• 
	h
	F.,, 
	and 
	the 

	v' .
	-1 -2 =-(C1 +C2). -Frt=-c. -Fr, 1f+ r2 =-{. This
	P
	P
	P
	v
	s 
	C
	1 

	2g 2g
	_ for the impulse of unlimited water is applicable to the
	general
	fo
	rmula 

	percussion of the wind 
	or 
	to 
	the 
	resi
	stance of 
	the 
	air. 
	Besides 
	the 

	• 
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	difference of aerodynamic pressure at the front and back, there is fur­ther a difference of aerostatic pressure, because the air in front, in consequence of its greater elasticity, has a greater density (r) than that at the back. For this reason, in high velocities, as those of cannon­balls, the co-efficient of the resistance of air is greater than that of water. 
	Rmrark.-The adhesion of a certain quantity ofair or water to lhe body, is a peculiar henomenon of the impulse or resistance of an unlimited medium (water or air), whoee influence is particularly remarkable in lhe variable motion of bodies, as, for example, inthe oscillations of the pendulum. For a ball, the air or water adhering to the movingbody is equal to 0,6 of the volume of the ball. For a prismatfo body moved in the direc
	p
	-

	tion of its axisthe ratio of this volume =0, 13 0,705 ..Iwhere I is the length, 
	, 
	+
	l 
	F
	, 

	and F lhe transverse section of the body. These relations, di900vered by D11 Buat, have 
	been fully confirmed by the later observations of Bessel, Sabine, and Baily. 
	§ 391. Impulse and Resistance against Suifaces.-The co-efficientof resistance C, or the number with which the height due to the velo­city is to be multiplied to obtain the height of a column of water mea­suring this hydraulic pressure, varies for bodies of different fires,and only for plates which are at right angles to the direction of mo­tion is it nearly a definite quantity. According to the experiments of Du Buat and those of Thibault, we may put {= 1,85 for the im­pulse of air or water against a plane 
	gu
	·

	. 
	s

	2 C n. 11
	n_

	then, with Duchemin, substitute for C, with tolerable cor
	-

	1+ nn. a.
	3 

	rectness.
	The impulse and resistance of unlimited media are also augmented when the surfaces are hollowed out or have projecting edges at their perimeters, but we have arrived at no general results on this subject. 
	Exampk. Ifthe wind impinges with a 20 feet velocity against a firmly fixed wind-mill wheel, which consists of four wings, of which each has an area of 200 aqnare feet and 7 5inclination to the direction of the wind, then is the impinging force of the wind inits direction, or in that of the axis of the wheel: 
	° 

	2{rin.t75)2()1
	2{rin.t75)2()1
	9 

	P-81, 5 . ----'--. -. 4 . 002 00 6nl,, • 800 • 00SJ

	-
	• , 81 :a: 1,85 • 0,966 • ,
	1 + (,in. 75)2g718,4 ft. lbs., when the density of the wind is {from§301) taken 
	9 
	= 
	at 
	0,
	081 
	lbs. 

	unlimited 
	fluids, 
	e!1ti
	rely
	these, 
	are 
	put
	forward 
	in 
	the 
	above-ment
	tioned 
	-
	amounts to2. !!_Fl, and Ł not the
	iilee 
	of 
	a thin plate 
	negative 
	at the 
	back, that 

	2g 
	impulse= 0,136 tJ9 F, and the resistance a: 0,7t46 !!... F. It would be too cireum
	,,
	-r
	-

	2 g 2gstantial here to give a detail of the reaaons why the author cannot agree with the views of Duchemin, but moi:e with reference to this wiU be found in Poncelet's "Introduction a la mecanique indU8trielle," 2d edition, 1841. 
	IMPULSE AND RESISTANCE TO BODIES. 
	476 

	§ 392. Imse and Resistance ta Boies.-The impulse and resist• ance of water to prismatic bodies, whose axis coincides w_ith the 1Ł con• siderable. From the experiments of Du Buat and. Duchemin,_theimpulse of the front surface is invariable, and only the effect aga!nstthe back surface variable. To this corresponds the co-efficient ,1,186, for the total effect, however, with the relative lengt
	pu
	l
	d
	direction of motion, diminishes when the length of the body 
	1 
	= 
	hs 

	0, I, 2, 3,
	-
	---
	= 

	✓ }'
	{ =-1,86 ; I,47; 1,35; J ,33. -· . ' 
	For still greater ratios between the length l and the mean breadth ✓Fof the body { diminishes, owing to the friction of the water at the lateral surfaces of the body. }rom the resistance of the '\\'ater, reverse relations take place. Here, from Du Buat, for the effect on rs 1 invariably ; for the total effect, however,with 
	.,
	the front surface, {
	1 

	l
	-=-= o, 1, 2, 3,
	-

	✓F
	{= 1,25 ; 1,28 ; 1,31 ; 1,33, so that, for a prism\\·hich is 3 times as long as broad, the impulse is the same as the resistance. ' 
	The experiments undertaken by Borda, Hutton, Vince, DesaguiJ.liers, Newton, and others, with auŁular and with round bodies, leave still much uncertainty. In what relates to spheres, it appears that for moderate velocities the mean co-efficient for motion in air or water = 0,6. For a greater ,·elocity and for motion in air, accord• ing to Robins and Hutton, for the ,·elocities 
	v -= 1, 5, 25, 100, 200, 300, 400, 500, 600 metr. 
	{ == 0,59 ; 0,63 ; 0,67 ; o,71 ; o,77; 0,88 ; 0,99; 1,04 ; 1,10.
	Duchemin and Piobert have given particular formulre for the rate of increase of these co.efficients. For the impulse of water against a sphere, Eytelwein found
	{ = 0,7886.• 
	ccording to Borda, we put the resistance and impact at right angles to cylinder at half as great as that against a parallelopiped which has the same dimensions, we then obtain for the resistance = ½ . 1,28 = 0,64 and the impact½. 1,47 = 0,735. If we apply these values to the human body, whose section has 
	Example. If, a
	the axis of a 
	t
	= 

	n n find for the resistance and impulse of air against 1t, the values :
	Ł
	area of aome 7 square feet, we the

	P = 0,64 . 0,0155 . 7 . 0,081 ti'n= 0,00562 v', and
	35 . 0,0155 . 7 • 0,081 vin= 0,00646 ti'. Hence the resistance of air for a 
	P 
	Ł 
	0,
	7

	effect 
	0,1405 = 0,70 ft. lbs.; for a velocity of 10 feet this resistance is
	Per s
	eco
	nd 
	== 5 
	. 

	_n
	an
	an
	_ = 19,54 lbs. to overcome, corresponding to the 
	resis
	ta
	n
	c
	e 
	0
	,00646 
	. 
	55" 
	relative 
	velo­


	city w+5 ==
	thereby to produce the mechanieal effect of 19,,
	== 
	55 
	feet, 
	and 
	54 
	• 5 
	97
	7

	ft. lbs. (English.) 
	n the Second Part
	I

	ncetofloating bodies, especialJy toships, &c., 
	we
	shall 
	treat 
	of
	the
	resis
	ta
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	§ 33•. Motion in Resisting Media.-The laws of the motion of abody in a resisting medium are rather complex, because we have here to deal with a variable force, i. e., one increasing with the square of the velocity. From the force Pwhich urges the body forward, and 
	9
	1 

	from the resistance P= {. !__Fr, which the medium opposes to the
	,. 
	I 

	2g
	motion, the motive force is: 
	v"
	pl-, pl' -F,,
	p 
	= 
	P
	= 
	-
	. 
	, 

	2g 
	2g 
	. 

	G

	but since the mass of the bodyo== M, the accelerating force is: 
	=-

	g 
	vs 
	_
	_
	pl,_ F., 

	p = .!;-P,r;Fy)+.M-)
	= 
	(
	-
	( 
	G
	2g 
	. 
	g, 

	or if we represent "I by .
	F,
	-
	1 

	ur
	2g
	2g
	P
	1 

	p = [1 -C ] Łg. But the velocity is accelerated in the 
	(;
	) 
	2
	1 
	" 

	instant oftime 1' by • = -t, hence: 
	p 

	x = [1...,.. t (;)"] Łg ", and inversely: 
	1 

	G, " 
	't = -. -------· 
	pl 







	g [1-, (;)'] 
	g [1-, (;)'] 
	Now to find the time corresponding to a given chanr;e of velocity, let us divide the difference " -v, of the final and initial velocity 
	"
	0

	into n parts, let any such part " == ., and let us calculate the 
	"
	-
	"
	0 

	n
	velocities : 
	== 110 + •, 11, == "o + 2•, "s -"o + 3 •, &c.,and substitute these values in the formula of Simpson. In this manner, by taking four parts we shall obtain the time sought
	11
	1 
	-

	G 11,. -V( 1 4
	Figure
	0

	. t == . 
	l

	+ +
	l 12g 1-{(Ł)}-{ (Ł)
	p
	I 
	I 

	2 4 1
	+ 
	+
	I 

	2 •
	+ 
	s
	)

	1-C (:') I-{ (Ł) 1-{ (:•) 
	1-C (:') I-{ (Ł) 1-{ (:•) 
	Further, the small space described in any instant .., ( § 1), is o -= v 1', 
	9

	or since " =-Łer -= Ł, therefore, 
	, 

	p p
	G
	. . By the application of Simpson's rule, we 
	. . By the application of Simpson's rule, we 
	Pg 
	1-
	{ 
	(
	:
	)
	' 
	l
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	Łhall now find the space which is described while the velocity v passesinto· that of
	V
	n 
	•

	Figure
	Vn-V0 ( 0 + 1 +
	2. 
	s 
	==!!_=. 
	v
	4
	Figure
	v

	pl 12 g J-{ (Ł)1-:-{ (:1)
	2 
	2 

	2v4v· v,
	2 
	3 


	+ + + 
	+ + + 
	2) · 

	1-{ (Ł)1Ł, (Ł). . Ł-{ (:') . 
	1-{ (Ł)1Ł, (Ł). . Ł-{ (:') . 
	2 
	2 
	Figure

	Of course the accuracy. is greater, when we take six, eight, or morearts. This formul� takes ioto account the variability of theco-efficients of resistance, ·which in considerable velocities is neces­sary. For the �ree-descent of bodies i� air or ,vater P=-G, and for rnotion on a honzontal plane P=-�, 1s more correctly equal to the friction/ G. Since this is a resistance, we have then to introduce it as negative into the calculation, whence 
	p
	· 
	1 
	1 

	As it cannot b� a_ question here of an increase, but only of a diminu­tion of velocity, \\·e have then to substitute in the above formula 
	V-Vn for V11 -V•
	V-Vn for V11 -V•
	0 
	0

	In the case, where the_ body is urged by a force, by its weight for instance, the motion approximates more ·and more to a uniforŁ one, so that after the lapse of a certain time, it may be considered as 'Such, although not so in reality. The accelerating force p = O, wh_en 
	Figure

	2 
	v

	= 
	p 

	. 
	, w en, t ereiore, r. v --,---=--·
	1

	2g p
	i

	h h
	' 
	J'Ł 
	F
	, • 
	.
	'1
	_ 
	The veloŁity of a falling body_ approximates, therefore, to this limit more and more, without ever actually attaining it. 
	·
	Example. Piobert, Morin, and 'D"id'ion found, for a parachutewhose depth was 0,31 that of the diameter of its opening t = 1,94 . 1,37 = 2,66. Hence, from what height in Prussian feet will a man, of 150 lbs. weight, be able to desc�nd with a similar para­60 square feet transverse section, 'Without acquiring a greater velocity than that which he would have acquired by jumping from a 10 feet height, 
	chute, of 10 lbs. weight and 

	' 
	-
	without a paraohute1 The last velocity is 17 == 7,906 ..,/ 10 = 25 feet, the force is 
	P, = G = 150 10 = 160 lbs., the surface F = 60 square feet, the density )' = 0,0859, and the co-efficient of resistance (= 2,66, hence : 
	+ 

	·
	60 .
	6Ł . 1

	Ill 
	.
	w'_ 
	If, 
	therefore/we take 6 parts, we then obtain for these : -C 1 = 0,97621; 0,90486; 0,78593; 0,61944; 0,40537; 0,14375, and for 
	1 
	• 
	11
	ff

	'
	V 

	' 
	O; 268; 9,210; 15,905; 26,910; 5 1,393, and 173,913; rrom Simpson'1-c 
	---v-= 
	4,
	'
	s 
	Figure
	w' 

	rule the mean value is: 
	== 
	' 
	"•• -
	• 
	1
	Ł 
	= 
	·
	"o 

	'
	(1 . O-f-4 •4,268+2 . 9,210 4. 15,90Ł2. lo+4. !H 9-u.. l. 173,913) + 3. 
	+
	26 
	9
	3
	6 

	", , "T
	532,4
	2 

	I 
	'
	' 
	·
	· 
	· 
	0
	-

	17
	times the mean value of a:: 
	times the mean value of a:: 
	25 

	. 29,58 =-23,6 feet. 

	g 
	25
	31,


	t-C. Ł 
	t-C. Ł 
	w' 
	Figure
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	The corresponding time of descent is. since the mean value of 
	1 

	J
	1-t:Ł ur
	(1.0+ 4-. 1,024 + 2. 1,1054 . 1272 + 2. 1,614-+ 4. 2,467 + l. 6,957) + IS 
	= 
	+ 
	1

	1747t = . 1747 = 1,4 sec. 
	= 
	1
	1 
	25 
	1

	31.25 
	Rtmark. For a oonstant co-efficient of resistance, the higher calculus gives us: 
	v ( ti"'-lf 2g p ad& G L 11 ...:... ( '+ l)' 
	= 
	) 
	n
	= 
	114
	)

	I
	Ł1 "' t:F-y {F-y • 
	Ł1 "' t:F-y {F-y • 
	+ 
	4Ł 

	where p. = 2 g t: p;" Łbeing the base of the hyperbolic system of powers, and 
	J

	erbolic logarithm. 
	Ln the h
	yp

	§ 394. Projectiles.-We have already in¥estigated the motion of 
	projectiles in vacuo (§ 38), and found this motion to be parabolic; ,ve 
	may now obtain a more exact knowledge of motion in a resisting 
	medium, and consider that, 
	for instance, of a shot. In 
	Fig. 
	534. 

	no case is the path .fl. GN,Fig. 634, of a body passing through the air a symmetric curve ; the portion G.N in which the body descends is rather shorter, and, therefore, less inclined than the portion .llG in which the bo<ly as­cends, because the resist­ance of the air operating in the direction of motion tends always to shorten the por­tions of its path .!JC, CE, EG, &c., more and more ; if, therefore, the first portion 
	of the path .11.C, for motion in the air is onJy a Jitt]e shorter than it ,vould be in vacuo, the last portion LN is considerably shorter in the first motion than it is in the last. The construction of the path in a resisting medium by means of circles of curvature may be accom­plised in the following manner. 
	From the initial ,·elocity v, and the angle of elevation BAN = 
	1

	1
	o

	it follows that the L .fl.BC = 90 -G, and sin . .fl.BC = cos. 11, from § 40 the radius of curvature 
	1
	1

	vŁ
	0i.11. = 0i C = r= 
	0i.11. = 0i C = r= 
	i 
	i 

	' 

	g cos. <l-
	1

	this we may approximately describe the JJ.C. 
	hence 
	with 
	portion 
	of arc 

	°
	If now we assume subtended at the centrt> ./1.(!1 C .t i, therefore ./JC = s, = r1 4>,, we then obtain for the succeeding particleof space CE the angle of inclination a.= a. 
	the angle 
	= 
	0 
	0 
	t
	0 
	Let further, 

	2 
	1 
	-

	the height of fall BC = h, and the measllre of the retardation due 
	1

	to the air's resistance { . ŁFr being
	2 

	2g 
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	"1' F., "' ,,. Fr
	t. -. -=-,.. v', there1ore '!II • =-,..,
	1 

	2G 2G from the principle of vires vivce, we then obtain for at the initial point of the second portion of arc: t1 V t (V +V ) 
	g 
	.
	the 
	velocity 
	", 
	1 
	1 
	2

	" 
	V 
	V 
	2 

	==(1 -14s )-L-and hence 11
	1 
	h
	•' 
	' 
	=-

	1 1+"8 
	· 
	I 
	1
	•

	(I-Ł) v '-2gn 
	J 

	2
	i :g
	Since now the height of fall h
	1 

	-
	lK"' -lg•( t) , it follows that: 
	t 1

	Figure
	If we substitute these values ofOs and vin the equation: 
	1 

	:a 
	r-"• , we then obtain the radius of curvature O,C = O'JE of 
	1
	, 

	co,. 
	g
	Ł

	the succ�1ng portion of arc CE, and if we assume an angle of re­volution CO, E -•it again follows from this that the angle of cat, and the velocity at this point 
	Ł 
	inclinati_on in the vicinity of E : a, -
	'J 
	1

	Figure
	.. 
	"s t,t . l--prl ft 
	.
	-
	I I • 

	co, . .,
	Figure

	l+,-r,t 
	·-V 

	It Łs therei>re easy to see how the entire path ofthe projectile may be succnaiveJy composed of circular arcs. 
	° 
	Figure
	is r= •,• = lOOOOOO = 49783 ft. As the density of the airt== O,O8a9, and 
	1 

	g co•. • 31,25 co.. 00
	° 

	that ofcast-iron=47O lbs., we have then /A=C. F.,. C. =:0,00041122 
	== 
	3
	Figure
	· 
	3
	· 
	0,0859 

	2 G 4.470 . ('; now for ii=-1000, C-O,90, hence ,-.t-=0,00037O1. If we take an arc of 1° only, we
	•then obtain the velocity at the end of it: 
	., _ 17453-(0,017453 +roa. ao)'
	1000 
	J
	i-0,00031O1. 49783. 0,0
	0

	11 
	1+0,0003701. 49783. 0,017453 
	7697 feet. 
	=-

	and the radiua of curvature for a second portion of arc : 
	769,7
	(
	)
	9 

	r, = 
	31,25 co,.49
	0 
	= 
	2
	8897 
	feet. 

	For •= 76_9,7 feet, C== 0,81, therefore ,-. == 0,0003331. If, therefore, we d�ribe with the last radius, an arc ♦== 2 , the velocity at its ending point will be. 
	"
	1
	° 

	769,7 = 541147 
	_,
	1 
	_ 
	J
	1
	-
	0,3
	3
	598-
	0,00
	2
	831 
	feet. 

	1,33598
	For a third arc Q3, the radius ofcul'Taturet,. =-13757 feet. and if, therefore, we assume 
	(-= 0,75, we shall theo obtain at the end Łf a length of are of 4, the velocity , Ł 
	°
	v

	398,85 feet. The ndius of curvatUJ'e for a fourth are may be likewise found r, == 
	6960,5 by anuming C== 0,72, and we shall then obtain the velocity v== 288,85 feet, 
	5 

	.
	at the end of an arc of 8, from which a fifth ndius of curvature ,=-3259 feet may be calculated. Proceeding in this manner, we shall obtain, by degrees, the collective ele­ments for the construction of the line of projection in question. 
	° 
	5 











