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Abstract

This parer derives the covariance relations of the residuals in successive

least-squares fits, with application to tests of heteroscedasticity.
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We give some simplified proofs and extensions of results in A. Hedayat’s
paper No. BU-135.

Iet V be the observation space of dim. N, /3 the observed point.

Let Ee'lj =%X8, 8e = =R, X: O =V linear.

let Q denote the mean space, Im X, and Covy = D, where D is diagonal

with respect to the orthonormal standard basis e

10ttt e
Denote Vi = the span of {el, see, ei}, and Qi = PViQ, where P denotes
orthogonal projection onto WwcCcv,
‘ We are concerned with computing the covariance relations gmong the least—

squares estimates of Ey and the residuals based on different numbers of

Observations.
(1) Now cov[ (ek, P, g Pv."a ), (ez, P, g By ‘3 ) ]
i i i J 3 J
k=1, ***, i3 & =1, *+¢, j; 1 s1i=j=N,
is the covariance between the k' coordinate of the residual vector , based on a

fit to the 1** i observations, and the £'® coordinate of the residual based on

the 1*' j observations.
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(ek, Py o By ’H ) = (P\JI.' 0 P\J,' s ) = (PV Q. Cx’ 7j), as a projection
i i i i1 i i i ¢

is self-adjoint.

P,
ViAQi

by the definition of cov 3 .

Evaluation of (2).

Assume D o I.

Lt}

Case l.

= ™™

1sk<i<gsjsN

Kk PQ ek+PV.-Q ek
i i i

Now Vi - Qi s 0

Write e

a,ndV."V.
J

i i

But Q, < Q, @ V. -V..
J 1 J i

SO V. “'Q. g Q.o
1 1 J

(4) Hence, (ek, PQj ez) = (PQ e PQj e‘@) + (Pvi-Qi €y PQJ_ ez)

e, = (I~ PQ;L) e, 8s e €V,. So (1) becames (Pvi'Qiek, D

P e,)
-0
ijz

(2)



So (2) becomes O,
Therefore, any component of the residual based on the first i observations is
uncorrelated with any component > i of the residual based on the first j obser-

vations, j @ 1, in the homoscedastic case.

i | } 1
Case 2. t ! 4 4 _} %
1Skx<f<i<j<N 1 kL4 J
(4) and (6) still hold.
so (2) = -(ey, By ek) 02, which doesn’t depeni on j.
i
| i L l 1
Case 3. r t [ ' '
l .
1Sk=4SisjsN k 1 j N
2

(%) still holds.

So (2) = ¢® {(ez, ez) - (ez, PQi ez)}, which doesn’t depend on j.

(7) Thus, var (ez, Pvi_ai By (lj )= (1 - HPQi ezlla) o®

i

A formula for the correlation between two residuals can be given.,

(8) o ) -, X -.v(ez, PQi ek)
kyi,2,3

1 1

for 1Sk<4si<j<su.
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Evaluation of (2).

- 2
Assume D Ul 0
o. 2
6] GN .
S L} |
Case 1l. : I 3 ! 1 —
1 k i 4L N

1sk<i<gs<j<N,

The 1** and 3¢ terms of (2) vanish. (2) becomes

- — = » - 2
(PQi e D PQJ ez) (ek, D PQJ e,) ©) Pgi e PQ,j ez) ck(ek, PQJ ez) (9)

which is not, in general, zero.

Case 2.
1<sk<4sSis<jsun,
The 1°% term of (2) vanishes. (2) becomes

- (ek, D Fy ez) - (D ey Qdi ek) + (Pbi e D Phj ez), which depends on j.
Jd




Case 3, o
) { b | 1}
T ¥ 1 ¥ 1
1 k i J N
1<k=451i<jsH. 2
(2) remains unchanged.
L,
Case % 4 k 4%
1 k i N
L J

1Sk=4%1i=jSH.

The #2¢ and 3% terms of (2) become identical. (2) becomes

(10) ci - 2(ez, D 1>Qi ez) + (PQi ey D PQi ez) = va.r(ez, 1>Vi_Qi Pvi ?j )
. C.

Now to investigate

(11) cov [(ek, P, Py 'lj ) (egr By o Pv_/lﬁ ) ]
i i Jd J J
the covariance between the k'® coordinate of the estimated mean vector based
on the first i observations and the 2'* coordinate of the residual based on
the first j observatioms.
k=1, ¢*¢, i3 L =1, *»*+, j3 1 S1SN; 1=jsN.
(11) vecomes (PQi es D ij_Qj eﬂ) = (gni e D(I - Q,) ez)

J

= (PQ. e D ez) - (PQ e» D By ez) (12)
i J
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Evaluation of (12).

Assume D = o2I.

| i i B

Case 1. P ,i_ 1 f 1 |
1 kK 2 j N

i

15k, £, j SN

(12) vpecomes

o2 Ji(PQ e eﬂ) - (PQ es B ez)} = cvz(PQ e Py g ez)

N N J N Jd

- Q. and ~V.. Q. c + - .
But V, - w0 #Vy =V, and NCQJOVN v,

Hence above equals O.

Evaluation of (12).

Assume D =) ¢

So V -Q,,:.Q
J J

N.




Case 1. f_ 4% { Aﬂ*_____‘
1 k i

b
-
H=

1<k, 4, j=N
i=N,£sjn

(12) becomes

ai(Pb C ez) - (B e DBy ez),
N N J

which is not zero, in general.

nn n

Var £

{l - ”Pb enHZ} 0® = Cn 02, under homoscedasticity assumption.
n

_ 2 2
Var fn = 0y = 2%, (e Q “n nn

n

n n

heteroscedasticity assumption.

fn
Iet 4= .
n
Je
n
Var dn = 02, under hcmoscedasticity assumption.
= oi cé , under heteroscedasticity assumption.
c
n

Under homoscedasticity assumption, the dn are uncorrelated, with constant
var. 0%, n = r‘+”l, e+, N, where r = rank of X. Under heteroscedasticity

1 -
) = —— cov(xn, f

c.c
n n+l

n+l)’

assumption, the 4 are correlated, with cov(dn, S



The 4’s have expectation O, under both hypotheses. If heteroscedasticity holds,

Pllapa 171,121 5

var 4
>
| cor (dn+l’ dn) a+l | 1.
var 4
n
cov (dn+l’ dn) cov (fn+l’ fn)
Above equals ‘ l = y l
var 6‘n 0121 Er_; ¥ cn+l Cn
cn

cov (fn+l’ fn)

var fn Cn+l

C
n

o s 1
Thus, a sufficient condition that P{'dm_l[ > [dnl} > 5 B=T+ 1, ***, N

is that the absolute value of

2
en+l) = % (en’ Fa

DPp, e, P
Qn n Qn+l n+l

en'+l)

5 .2 -y enall
[ o - 20 (en, PQn en) + (PQn e» D PQn en):l [ n+l ]

1- “PQ en”2
n

be 2 1.

This condition could then be used to insure power against alternatives in

the Goldfeld, Quandt peak-test.
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