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ABSTRACT

A class of saturated fractional replicate designs are
presented. They are denoted as ndnorthogonal array, NA, designs.
The method of construction is described and plans are given for
various numbers of runs, factors, and levels of factors. A
comparison of the designs is made with the lowest possible
determinant of the design matrix and with an upper bound. The

upper bound is not usually achievable,
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1l. Introduction

In many industrial experiments it is necessary to utilize as few runs as
possible because of cost, material, or time constraints. This means that
saturated or nearly saturated fractional replicates will be required for these

situations. Orthogonal array designs for n®

runs, n+l factors, each as n levels
and denoted as OA[n®,n+l,(n)], are variance optimal designs. However, OA's are
not available for all situations. Different levels of factors and sometimes inter-

actions between pairs of factors may be of interest to the experimenter. Hence,

OA designs may not be suitable or may require too many runs.

' To fill this need, a class of saturated fractional replicates, which are
nonorthogonal array désigns, NA designs, has been constructed. The construction
procedures make use of latin square design, Youden design, orthogonal latin square
designs, and balanced Youden designs theory. ‘Also, use is made of results developed
by Anderson and Federer (1973) to establish upper aﬁd lower bounds on the value of
the determinant of the design matrix. The design plans given are compared with

these bounds.

2. DNonorthogonal Arrays for Industrial Experimentation

To illustrate the class of nonorthogonal array treatment designs presented

here, we first consider an example. Suppose that it is desired to conduct an
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experiment using two factors at four levels and one factor at two levels in
eight runs. Note that an orthogonal array would require 16 runs. Two such

designs which allow solutions for the eight parameters of this design are:

One-at-a-time plan NA[8, 3, (2,4,4)]
Treatment level for Treatment level for
run a b c run a b c
1 0 0 0] 1 0 0 0
2 1 0 0 2 0 1 1
3 0 1 o) 3 0 2 2
L o 2 0 4 0 3 3
> 0 3 0 5 1 0] 1
6 0 0 1 6 1 1 2
T 0 0 2 7 1 2 3
8 0 0] 3 8 1 3 0]

where NA[r = number of runs, f = number of factors, (ni = number of levels of
each factor)] is used to denote the nonorthogonal array used with r runs, f
factors, and n; levels of a factor. A third plan would be to replace the

levels of factor ¢ in runs 5 to 8 with levels 1, O, 3, 2. This last design

is not a connected design in that solutions for the parameters are not possible,

and hence will not be considered further.

Two possible linear model response equations for this example are a cell-

means model and a factorial main effect model as follows

Y.

i

nij = Mpij T Chij (2.1)

and

<
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nijg =Mt O TR Yyt Sy s (2.2)



where M1 4 is the mean of combination hij and is estimated by Y. .. for these

iJ hij
saturated main effect plans, p is an effect common to all observations, a, is
the effect of the h*! level of factor a, p; is the effect of the it? level of
factor b, \3 is the effect of the j'® level of factor c, and the €hij are inde-
pendently and identically distributed with zero mean and common variance oi.

Equation (2.2) is over-parameterized. Therefore, we reparameterize it as fol-

lows for factors a, b, and c:

(1 1 1 1[ey| [Bo] [1 1 1 1] v] Fc(ﬂ
- o | 1A’ 1 -2 B3 Bl 2 |1 1-2 of|lv3|T|ce .
- - 1 - B B 1 1 1-3(|vwv C
B 1] Bad B el A dL™ L3
Then we estimate p = p' + AO + BO + CO’ Al, Bl’ Bg, B3, Cl’ C2’ and C3. The

particular contrasts selected were the Helmert polynomial contrasts. These were
selected here because the theory developed by Anderson and Federer (1973) made
use of this set of contrasts in obtaining upper and lower bounds on the deter-
minants of the incidence matrix. As these authors state, the theory could havé
been developed in an analogous manner for any set of orthogonal contrasts. Thus,

our response equation (2.2) now becomes:

Yhij =u+A + B + Cj + €3 5 (2.3)

h=1,2, 1i=1,2,3, and j = 1,2,3. Solving the following set of equations

results in solutions for the parameters as follows for the second design:



[ Y500 | 1 1 1 1 1 1 1 17| u 7]
YOll 1 1 -1 1 1 -1 1 1 Al
Yooo 1 1 0 -2 1 0 -2 1 By
Y033 _ 1 1.0 0 -3 0 0 -3 By (2.4)
YlOl 1 -1 1 1 1l -1 1 1 B3
Y110 1 -1 -1 1 1 o -2 1 Cq
Y103 1 -1 0 -2 1 0 0 -3 Co
Y13o 1 -1 0] 0 -3 1 1 1 C3

and the solutions are:

0 3 3 3 3 3 3 3 3|[ Y00 |
A 3 3 3 3 -3 -3 -3 -3 Yo11
B, 3 -9 3 3 9 -3 -3:-3 Yooo
B, 113 -1 -5 3 1 5 -3 -3 Y933
o =2k (2.5)
Bs 31 -1 -3 -1 1 3 -3 Y100
¢, 9 -3 -3 -3 -9 3 3 3 Y110
Cs 1 5 -3 -3 -1 -5 3 3 Y103
Cq -1 1 3 -3 1 -1 -3 3 Y130

Equation (2.5) in matrix form is é = X_l¥ and (2.4) is XE = Y.

In a similar fashion, matrix equations like (2.4) and (2.5) could be con-
structed for design 1, the one-at-a-time plan. To compare the designs for
variance efficiency, we note that the XB = Y in regression, that (X'X)-ldi

. . . . A R -1
is the variance covariance matrix of the vector B. Hence, to minimize (X'X)



we maximize X'X, or for saturated fractions, if we maximize the absolute value
of the determinant IXI, we minimize its inverse. Now, the value of the deter-
minant of the 8 X 8 matrix X in (2.4) is 4608 and of the analogous X for design

1 is 1152. Thus, the second design has % the variance of the first design.

From Anderson and Federer (1973), we note that design one has the minimum
value possible among all connected saturated fractional replicates. That is,
it is least-optimal with respect to variance optimality. Also, from their
paper we note that the upper bound on the value of this determinant is 9216.
We should note that no plan may éxist which achieves the upper bound. In our
case, the upper bound appears unachievable and design two appears to be the best

that can be constructed.

The method of constructing NA[r,f,(ni,ng,-°°)] designs involves use of
latin square design, Youden design, orthogonal latin square designs, and balanced
Youden designs theory (see, e.g., Hedayat, Seiden, and Federer (1973)). For one
factor at two levels and two other factors at n levels one may use any two rows
of an n X n latin square design. For one factor at three levels, and the other
three factors at n levels, one may use the same three rows of two orthogonal
‘latin squares, or even two nonorthogonal squares where the rows are selected in
such a manner as to approach or achieve variance balance between the columns
and the symbols in each square and between the symbols of the two squares. T&

illustrate, consider NA[21,4,(3,7,7,7)] as follows:



columns of square 1 columns of square 2
row 01 2 3 4 5 6 01 2 3 4 5 6
0 1 2 3 4 5 6 0 1 2 3 45 6 0
1 2 34 5 6 01 3 k5 6 01 2
2 by 5 6 01 2 3 0O 1 2 3 L4 5 6
3 01 2 34 56 6 01 2 3 L4 5
L 3k 5 6 0 1 2 5 6 01 2 3 b4
5 56 012 34 2 34 56 01
6 6 01 2 3 L 5 L 5 6 01 2 3

The rows of a pair of orthogonal latin squares of order n=7 have been arranged
in such a fashion that the first three rows of both squares form Youden designs;
likewise, the first four rows form Youden designs. It is not possible to form

Youden designs for five rows, but it is possible for six (see, e.g., Federer

(1970)). Construction of orthogonal arrays arranged such that as much variance ‘

balance as possible is achieved between the columns and symbols of any square
and between symbols of any two squares, results in efficient, if not the most

efficient, fractional replicate plans for saturated designs.

Plans for various NA[r,f,(nj,n,,+-+)] designs are presented in Table 1.
The NA[21,4,(3,7,7,7)] plan given above for the first three rows is from Table
1 where the first factor is rows, the second factor is columns, the third factor
is symbols of square one, and the fourth factor is symbols of square two above.
The third plan presented for NA[8,3,(2,4,4)] is also obtained directly from
Table 1. No special ordering of rows of latin squares of orders 2, 3, and 5
is required. A plan is given for NA[12,3,(2,6,6)]. For a plan of NA[18,4,(3,6,6,6)]

one would proceed as follows:

)



' column of square 1 column of square 2
row 0 1 2 3 Lk 5 0 1 2 3 L4 5
2 3 4 5 0 L 5 0 1 2 3
5 0 1 0O 1 2 3 5
1 2 L 3 4 0O 1 2

to obtain the 18 combinations: 001k, 0125, 0230, 0341, O452, 0503, 1020, 1131,
1242, 1353, 140k, 1515, 2053, 2104, 2215, 2320, 2431, 2542, An almost balanced
incomplete block design arrangement in columns is achieved with each square,

and there is a partially balanced arrangement of symbols between unordered

pairs of the two squares (Hedayat, Seiden, and Federer (1973)). It may be
possible to achieve a more nearly balanced arrangement by selecting a different
latin square than the above cyclic one. However, the above appears to be best
for the square selected. A similar procedure to that outlined above was utilized

to obtain plans for factors with eight and nine levels given in Table 1.

It should be noted that the above NA[18,k4,(3,6,6,6)] could also be a plan
for four factors at three levels, and for three factors at two levels with three
of the interaction effects being obtainable.. Thus, we could write the above as
NA[18,7,(3,2%3,2X3,2X3)] to indicate that factor a has three levels, that factors
b and c are in all possible combinations, factors d and e are in all possible
combinations, and that factors f and g are in all possible combinations allowing
estimation of the A effect, the B, C, and B X C effects, the E, F and E X F
effects, and the G, H, and G X H effects. Also, the NA[18,3,(2,9,9)] plan could
be used for one factor at two levels, two factors at three levels each and their

interaction, and one factor at nine levels.
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+ This is not a connected design.

Nonorthogonal arrays, NA, and orthogonal arrays, OA, saturated fractional

replicates for various numbers of factors and levels.

Table 1.



- 10 -

3. Efficiency of the Class of Nonorthogonal Arrays

For the class of saturated fractional replicates given in Table 1, it is
possible to obtain an idea of how good these nonorthogonal arrays are. Of course,
the orthogonal arrays, OA[r,f,(n)], where each of the factors is at n levels, are
fully efficient from a variance viewpoint. One cannot obtain a better fraction.
Anderson and Federer (1973) have provided guidelines which allow a saturated
fractional replicate to be compared with the worst possible design, i.e., a lower
bound for all connected designs, and an upper bound for all fractional replicates.
The upper bound may only be achievable for OA[r,f,(n)] designs. They give the
lower bound, £, as H§=l(si!). Thus, for the first example in Table 1, the lower
bound on the determinant of the matrix X using Helmert polynomials for the para-
meters, is computed as 2!(3!)% = 72, and for NA[L2L, (3,4,4,4)] as 3!(41)° = 82,94k,

The lower bounds are computed for all the NA designs given.

The upper bound for a design may be obtained as the following multiple of the .
lower bound £:

f
oL 2 TTSE,/2

i=1
Thus for NA[6,3,(2,3,3)] and NA[8,3,(2,4,4)], the upper bounds are computed res-
pectively as:

166/2/22/233/233/2 = 224 = L(72) 2883

and

w8/22/M M2 ey ga1se) = ge16

For the NA[6,3,(2,3,3)] plan given, the determinant of X was 3£ with the upper

bound being 84. There is no assurance that the upper bound can be reached except
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for OA designs, which are impossible for 6 and 8 runs, respectively.

The Anderson-Federer bounds then serve as a criterion for evaluating
fractional replicates for all factorials, but particularly for the general

asymmetrical factorials where relatively little work has been done.
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Determinant value of

bound

Plan lower (4) upper plan
NA[6,3,(2,3,3)] 2)3.30 = T2 Ly 34 = 216
NA[8,3, (2,4,4)]1 214! = 1152 2%4 Ly
NA[12,4, (3,4,4,4)] sHU S 3% 24 434
NA[10,3,(2,5,5)] 2l5!s5! 2%y 54
NA[15,4, (3,5,5,5)] 3:(50)3 3% 5%4
NA[20,5, (4,5,5,5,5)] hi(50)* 48 56 4
NA[12,3,(2,6,6)] 2.6.6! ) 64
NA[18,4,(3,6,6,6)]+t 31(6!)® 32y --%
NA[14,3,(2,7,7)] 2i7!7! 24 T4
NA[21,4, (3,7,7,7)] 3:0(72)° 34 754
NA[28,5, (4,7,7,7,7)] Li(7h)* yray 764
NA[35,6,(5,7,7,7,7,7)] 5:(7.)° 5154 282,475,294
NA[42,7,(6,7,7,7,7,7,7)] 6:(7:)° 6*%2 b, 7h76(10M2) 4
NA[16,3,(2,8,8)] 2.8.8! 274 84
NA[2),4,(3,8,8,8)) 30 (81)° 3R 2y 3?82y
NA[18,3,(2 9 9)] 2!9!9! 284 94
NA[27,4,(3,9,9,9)] 30(90)° 324 15394

t Plans given in text

# Not computed

Table 2. Upper and lower Anderson-Federer bounds for determinant IXI for the
plans of Table 1 and the actual value of the determinant lX .
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