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ABSTRACT 

A class of saturated fractional replicate designs are 

presented. They are denoted as nonorthogonal array, NA, designs. 

The method of construction is described and plans are given for 

various numbers of runs, factors, and levels of factors. A 

comparison of the designs is made with the lowest possible 

determinant of the design matrix and with an upper bound. The 

upper bound is not usually achievable. 
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l. Introduction 

In many industrial experiments it is necessary to utilize as few runs as 

possible because of cost, material, or time constraints. This means that 

saturated or nearly saturated fractional replicates will be required for these 

situations. Orthogonal array designs for n2 runs, n+l factors, each as n levels 

and denoted as OA[n2 ,n+l,(n)], are variance optimal designs. However, OA's are 

not available for all situations. Different levels of factors and sometimes inter-

actions between pairs of factors may be of interest to the experimenter. Hence, 

OA designs may not be suitable or may require too many runs . 

To fill this need, a class of saturated fractional replicates, which are 

nonorthogonal array designs, NA designs, has been constructed. The construction 

procedures make use of latin square design, Youden design, orthogonal latin square 

designs, and balanced Youden designs theory. Also, use is made of results developed 

by Anderson and Federer (1973) to establish upper and lower bounds on the value of 

the determinant of the design matrix. The design plans given are compared with 

these bounds. 

2~ Nonorthogonal Arrays for Industrial Experimentation 

To illustrate the class of nonorthogonal array treatment designs presented 

here, we first consider an example. Suppose that it is desired to conduct an 
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experiment using two factors at four levels and one factor at two levels in 

eight runs. Note that an orthogonal array would require 16 runs. Two such 

designs which allow solutions for the eight parameters of this design are: 

One-at-a-time plan NA[8,3,(2,4,4)] 

Treatment level for Treatment level for 

run a b c r~ a b c 

1 0 0 0 1 0 0 0 

2 1 0 0 2 0 1 1 

3 0 l 0 3 0 2 2 

4 0 2 0 4 0 3 3 

5 0 3 0 5 1 0 1 

6 0 0 1 6 1 1 2 

7 0 0 2 7 1 2 3 

8 0 0 3 8 l 3 0 

where NA[r = number of runs, f = number of factors, (ni = number of levels of 

each factor)] is used to denote the nonorthogonal array used with r runs, f 

factors, and ni levels of a factor. A third plan would be to replace the 

levels of factor c in runs 5 to 8 with levels 1, 0, 3, 2. This last design 

is not a connected design in that solutions for the parameters are not possible, 

and hence will not be considered further. 

Two possible linear model response equations for this example are a cell-

means model and a factorial main effect model as follows 

(2.1) 

and 

~ + ~ + ~. + y. + Eh .. 
h 1 J 1J 

(2.2) 
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where ~ .. is the mean of combination hij and is estimated by Yh .. for these ' nlJ lJ 

saturated main effect plans, ~ is an effect common to all observations, ~ is 

the effect of the hth level of factor a, ~. is the effect of the ith level of 
l 

factor b, y. is the effect of the jth level of factor c, and the Eh .. are inde-
J lJ 

pendently and identically distributed with zero mean and common variance a2 • 
E 

Equation (2.2) is over-parameterized. Therefore, we reparameterize it as fol-

lows for factors a, b, and c: 

l l l l ~l Bo l l l l yl co 

jl 1] ja1] = [Ao] I l -1 I ~ Al 
- -

l -1 0 0 Y2 cl 

l l -2 = 0 Y3 c2 

l -1 0 0 ~2 Bl 

l l -2 0 ~3 B2 

l l l -3 ~4 B3 l l l -3 Y4 c3 

Then we estimate ~ = ~· + A0 + B0 + c0, A1 , B1 , B2 , B3, c1 , c2 , and c 3. The 

particular contrasts selected were the Helmert polynomial contrasts. These were 

selected here because the theory developed by Anderson and Federer (1973) made 

use of this set of contrasts in obtaining upper and lower bounds on the deter-

minants of the incidence matrix. As these authors state, the ~heory could have 

been developed in an analogous manner for any set of orthogonal contrasts. Thus, 

our response equation (2.2) now becomes: 

(2. 3) 

h = 1,2, i = 1,2,3, and j = 1,2,3. Solving the following set of equations 

results in solutions for the parameters as follows for the second design: 
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Yooo l l 1 1 1 l 1 l 1-1 

YOll 1 l -1 1 l -1 1 l Al 

Yo22 1 1 0 -2 l 0 -2 l Bl 

Y033 1 l. 0 0 -3 0 0 -3 B2 
= (2. 4) 

Y1o1 1 -1 1 1 1 -1 l 1 B3 

yll2 l -1 -1 l l 0 -2 1 cl 

yl23 l -1 0 -2 1 0 0 -3 c2 

yl30 1 -1 0 0 -3 1 1 l c3 

and the solutions are: 

A 

3 1-1 3 3 3 3 3 3 3 Yooo 
A 

Al 3 3 3 3 -3 -3 -3 -3 Yoll 
A 

3 -9 3 Bl 3 9 -3 -3 '-3 Yo22 
A 

3 -1 -5 3 1 y033 B2 l 5 -3 -3 

"' 
=24 (2. 5) 

B3 3 1 -1 -3 -1 1 3 -3 Y101 
A 

9 cl -3 -3 -3 -9 3 3 3 yll2 
A 

l c2 5 -3 -3 -1 -5 3 3 yl23 
A 

-1 1 3 -3 c3 1 -1 -3 3 yl30 

Equation (2.5) in matrix form is~= X-~ and (2.4) is X~= Y. 

In a similar fashion, matrix equations like (2.4) and (2.5) could be con-

structed for design 1, the one-at-a-time plan. To compare the designs for 

variance efficiency, we note that the X~ = Y in regression, that (X'X)-1cr2 
- - E 

is the variance covariance matrix of the vector §. Hence, to minimize (X'X)-l 
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we maximize X'X, or for saturated fractions, if we maximize the absolute value 

of the determinant lxl, we minimize its inverse. Now, the value of the deter

minant of the 8 X 8 matrix X in (2.4) is 46o8 and of the analogous X for design 

l is 1152. Thus, the second design has % the variance of the first design. 

From Anderson and Federer (1973), we note that design one has the minimum 

value possible among all connected saturated fractional replicates. That is, 

it is least-optimal with respect to variance optimality. Also, from their 

paper we note that the upper bound on the value of this determinant is 9216. 

We should note that no plan may exist which achieves the upper bound. In our 

case, the upper bound appears unachievable and design two appears to be the best 

that can be constructed. 

The method of constructing NA[r,f,(n1 ,n2,··· )] designs involves use of 

latin square design, Youden design, orthogonal latin square designs, and balanced 

• Youden designs theory (see, e.g., Hedayat, Seiden, and Federer (1973)). For one 

• 

factor at two levels and two other factors at n levels one may use any two rows 

of an n X n latin square design. For one factor at three levels, and the other 

three factors at n levels, one may use the same three rows of two orthogonal 

latin squares, or even two nonorthogonal squares where the rows are selected in 

such a manner as to approach or achieve variance balance between the columns 

and the symbols in each square and between the symbols of the two squares. To 

illustrate, consider NA[21,4,(3,7,7,7)] as follows: 
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columns of square l columns of square 2 

row 0 l 2 3 4 5 6 0 l 2 3 4 5 6 

0 l 2 3 4 5 6 0 l 2 3 4 5 6 0 

l 2 3 4 5 6 0 l 3 4 5 6 0 l 2 

2 4 5 6 0 l 2 3 0 l 2 3 4 5 6 

3 0 l 2 3 4 5 6 6 0 l 2 3 4 5 
4 3 4 5 6 0 l 2 5 6 0 l 2 3 4 

5 5 6 0 l 2 3 4 2 3 4 5 6 0 l 
6 6 0 l 2 3 4 5 4 5 6 0 l 2 3 

The rows of a pair of orthogonal latin squares of order n=7 have been arranged 

in such a fashion that the first three rows of both squares form Youden designs; 

likewise, the first four rows form Youden designs. It is not possible to form 

Youden designs for five rows, but it is possible for six (see, e.g., Federer 

(1970)). Construction of orthogonal arrays arranged such that as much variance 

balance as possible is achieved between the columns and symbols of any square 

and between symbols of any two squares, results in efficient, if not the most 

efficient, fractional replicate plans for saturated designs. 

Plans for various NA[r,f,(n1 ,n2,··· )] designs are presented in Table l. 

The NA[2l,4,(3,7,7,7)] plan given above for the first three rows is from Table 

1 where the first factor is rows, the second factor is columns, the third factor 

is symbols of square one, and the fourth factor is symbols of square two above. 

The third plan presented for NA[8,3,(2,4,4)] is also obtained directly from 

Table l. No special ordering of rows of latin squares of orders 2, 3, and 5 

• 

• 

is required. A plan is given for NA[l2,3,(2,'6,6)]. For a plan of NA[l8,4,(3,6,6,6)], 

one would proceed as follows: 

• 
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column of square l column of S@Me2 

row 0 l 2 3 4 5 0 1 2 3 4 5 

0 l 2 3 4 5 0 4 5 0 l 2 3 

l 2 3 4 5 0 l 0 l 2 3 4 5 

2 5 0 l 2 3 4 3 4 5 0 l 2 

to obtain the 18 combinations: 0014, 0125, 0230, 0341, o452, 0503, 1020, 1131, 

1242, 1353, l4o4, 1515, 2053, 2lo4, 2215, 2320, 2431, 2542. An almost balanced 

incomplete block design arrangement in columns is achieved with each square, 

and there is a partially balanced arrangement of symbols between unordered 

pairs of the two squares (Hedayat, Seiden, and Federer (1973)). It may be 

possible to achieve a more nearly balanced arrangement by selecting a different 

latin square than the above cyclic one. However, the above appears to be best 

for the square selected. A similar procedure to that outlined above was utilized 

to obtain plans for factors with eight and nine levels given in Table l. 

It should be noted that the above NA[l8,4,(3,6,6,6)] could also be a plan 

for four factors at three levels, and for three factors at two levels with three 

of the interaction effects being obtainable. Thus, we could write the above as 

NA[l8,7,(3,2X3,2X3,2X3)] to indicate that factor a has three levels, that factors 

b and c are in all possible combinations, factors d and e are in all possible 

combinations, and that factors f and g are in all possible combinations allowing 

estimation of the A effect, the B, C, and B X C effects, the E, F and E X F 

effects, and the G, H, and G X H effects. Also, the NA[l8,3,(2,9,9)] plan could 

be used for one factor at two levels, two factors at three levels each and their 

interaction, and one factor at nine levels • 
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0 0 0 0 0 0 0 0 0 0 
0 1 1 1 0 1 1 1 1 l • 0 2 2 2 0 2 2 2 2 2 
1 0 1 2 0 3 3 3 3 3 
1 1 2 0 0 4 4 4 4 4 

J 1 2 0 1 1 0 1 2 3 4 
2 0 2 1 1 1 2 3 4 0 
2 1 0 2 1 2 3 4 0 1 
2 2 1 0 1 3 4 0 1 2 

1 4 0 1 2 3 
0 0 0 0 0 2 0 2 4 1 3 
0 1 1 1 1 2 l 3 0 2 4 
0 2 2 2 2 2 2 4 1 3 0 
0 3 3 3 3 2 3 0 2 4 1 
1 0 1 3 2 2 4 1 3 0 2 
1 1 0 2 3 3 0 3 1 4 2 
1 2 3 1 0 3 1 4 2 0 3 

NA[8 2 3 2 ~2 2 4 2 4 }J t 1 3 2 0 1 3 2 0 3 1 4 
2 0 2 1 3 3 3 l 4 2 0 
2 1 3 0 2 3 4 2 0 3 l 
2 2 0 3 1 0 3 2 1 
2 3 1 2 0 410432 
3 0 3 2 1 421043 
3 1 2 3 0 432104 
3 2 1 0 3 4 4 3 2 1 0 
3 3 0 1 2 

0 0 1 1 1 1 1 1 0 0 0 • 0 1 2 2 2 2 2 2 0 1 1 
0 2 3 3 3 3 3 3 0 2 2 
0 3 4 4 4 4 4 4 0 3 3 
0 4 5 5 5 5 5 5 0 4 4 
0 5 6 6 6 6 6 6 1 0 1 
0 6 0 0 0 0 0 0 1 l 2 
1 0 2 3 4 5 6 0 1 2 3 
1 1 3 4 5 6 0 1 1 3 4 
1 2 4 5 6 0 1 2 1 4 5 
1 3 5 6 0 1 2 3 1 5 0 
1 4 6 0 1 2 3 4 
1 5 0 1 2 3 4 5 0 0 0 5 
1 6 1 2 3 4 5 6 0 1 1 6 
2 0 0 3 6 2 5 0 2 2 7 
2 1 5 1 4 0 3 6 0 3 3 0 
2 2 6 2 5 1 4 0 0 4 4 1 
2 3 0 3 6 2 5 1 0 5 5 2 
2 4 1 4 0 3 6 2 0 6 6 3 
2 5 2 5 1 4 0 3 0 7 7 4 
2 6 3 6 2 5 1 4 1 0 1 7 
3 0 0 5 4 3 2 1 l 2 0 
3 1 1 0 6 5 4 3 1 2 3 1 
3 2 2 1 0 6 5 4 1 3 4 2 
3 3 3 2 1 0 6 5 1 4 5 3 • 3 4 4 3 2 1 0 6 1 5 6 4 
3 5 5 4 3 2 1 0 1 6 7 5 
3 6 6 5 4 3 2 1 1 7 0 6 
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4 0 3 5 0 2 4 6 
41461350 
4 2 5 0 2 4 6 l 
43613502 
44024613 
4 5 l 3 5 0 2 4 
46246135 
5052 304 
5 l 6 3 0 4 l 5 
52041526 
5 3 l 5 2 6 3 0 
54263041 
5 5 3 0 4 l 5 2 
56415263 

0 2 0 5 3 
6 l 0 5 3 l 6 4 
62164205 
6 3 2 0 5 3 l 6 
64316420 
6 5 4 2 0 5 3 l 
66531642 

t This is not a connected design. 

J 

2 0 3 4 
2 l 4 5 
2 2 5 6 
2 3 6 7 
2 4 7 0 
2 5 0 l 
2 6 l 2 
2 7 2 3 

0 0 0 5 
0 l l 6 
0 2 2 7 
0 3 3 8 
0 4 4 0 
0 5 5 l 
0 6 6 2 
0 7 7 3 
0 8 8 4 
l 0 l 7 
l l 2 8 
l 2 3 0 
l 3 4 l 
l 4 5 2 
l 5 6 3 
l 6 7 4 
l 7 8 5 
l 8 0 6 
2 0 3 4 
2 l 4 5 
2 2 5 6 
2 3 6 7 
2 4 7 8 
2 5 8 0 
2 6 0 l 
2 7 l 2 
2 8 2 3 

Table l. Nonorthogonal arrays, NA, and orthogonal arrays, OA, saturated fractional 
replicates for various numbers of factors and levels • 



- 10 -

3. Efficiency of the Class of Nonorthogonal Arrays 

For the class of saturated fractional replicates given in Table 1, it is 

possible to obtain an idea of how good these nonorthogonal arrays are. Of course, 

the orthogonal arrays, OA[r,f,(n)], where each of the factors is at n levels, are 

fully efficient from a variance viewpoint. One cannot obtain a better fraction. 

Anderson and Federer (1973) have provided guidelines which allow a saturated 

fractional replicate to be compared with the worst possible design, i.e., a lower 

bound for all connected designs, and an upper bound for all fractional replicates. 

The upper bound may only be achievable for OA[r,f,(n)] designs. They give the 

lower bound, £, as ni=1 (si:). Thus, for the first example in Table 1, the lower 

bound on the determinant of the matrix X using Helmert polynomials for the para-

meters, is computed as 2: (3: )2 = 72, and for NA[l2,4, (3,4,4,4 )] as 3: (4:? = 82,944. 

The lower bounds are computed for all the NA designs given. 

The upper bound for a design may be obtained as the following multiple of the 

lower bound £: 

Thus for NA[6,3,(2,3,3)] and NA[8,3,(2,4,4)], the upper bounds are computed res-

pectively as: 

and 

For the NA[6,3,(2,3,3)] plan given, the determinant of X was 3£ with the upper 

bound being 8£. There is no assurance that the upper bound can be reached except 

• 
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for OA designs, which are impossible for 6 and 8 runs, respectively • 

The Anderson-Federer bounds then serve as a criterion for evaluating 

fractional replicates for all factorials, but particularly for the general 

asymmetrical factorials where relatively little work has been done • 



Plan 

NA[6,3,(2,3,3)] 

NA[8,3,(2,4,4)]t 

NA[l2,4,(3,4,4,4)] 

NA[l0,3,(2,5,5)] 

NA[l5,4,(3,5,5,5)] 

NA[20,5,(4,5,5,5,5)] 

NA[l2,3,(2,6,6)] 

NA[l8,4,(3,6,6,6)]t 

NA[l4,3,(2,7,7)J 

NA[21,4,(3,7,7,7)J 

NA[28,5,(4,7,7,7,7)] 

NA[35,6,(5,7,7,7,7,7)] 

NA[42,7,(6,7,7,7,7,7,7)] 

NA[l6,3,(2,8,8)] 

NA[24,4,(3,8,8,8)] 

NA [ 18, 3, ( 2 9 9)] 

NA[27,4,(3,9,9,9)] 

t Plans given in text 

* Not computed 

- 12 -

Determinant value of 

bound 

lower (L) upper plan 

2: 3: 3: = 72 4t 3L = 216 

2~4:4~ = 1152 23 L 4t 

3~ (4~ )3 39/ a L 43 L 

2~5:5: 24! 5L 

3: (5: )3 36 L 53 L 

4~ (5: )4 48 .e 56 L 

2:6:6: 26 L 6L 

3:(6:)3 3151 a L --:J: 

2:7:7: 26 L 7L 

3: (7: )3 39 L 7aL 

4: (7: )4 41a L 7sL 

5: (7: )5 515! 282,475,249! 

6: (7: )6 618 L 4.7476(101 a)L 

2:8:8: 27! 8L 

3~(8:)3 3a1; a L 3a8a L 

2:9:9: 28 L 9L 

3: (9: )3 31a L 1539! 

Table 2. Upper and lower Anderson-Federer bounds for determinant lxl for the 
plans of Table 1 and the actual value of the determinant lxl. 

• 

• 

• 



• 

• 

- 13 -

References 

Anderson, D. A. and W. T. Federer. [1973]. Representation and construction of 

main effect plans in terms of (O,l) matrices. BU-499-M in the Mimeo Series 

of the Biometrics Unit, Cornell University. 

Federer, W. T. [1972]. Construction of classes of experimental designs using 

transversals in Latin squares and Hedayat's sum composition method. Ch. 7 

in Statistical Papers in Honor of George~· Snecedor (ed. T. A. Bancroft), 

Iowa State University Press, Ames, pp. 91-114. 

Hedayat, A., E. Seiden and W. T. Federer. [1972]. Some families of designs 

for multistage experiments: Mutually balanced Youden designs when the 

number of treatments is prime power or twin primes. I. Annals Math. Stat. 

43, 1517-1527 . 


