Region Analysis for Imperative Languages

Radu Rugina and Sigmund Cherem
Computer Science Department
Cornell University
Ithaca, NY 14853
{rugina,siggi}@cs.cornell.edu

Abstract

This paper presents a region inference framework designed specifically for imperative pro-
grams with dynamic allocation and destructive updates. Given an input program, the algo-
rithm automatically translates it into an output program with region annotations on proce-
dures and allocation commands, and with explicit region creation and removal commands.

Our framework formulates the analysis problem as a three-step algorithm. In the first
phase, it infers region annotations for record declarations in the input language. Second,
it performs a unification-based flow analysis of the program, inferring region types at each
point in the program. In particular, it determines region types for allocation commands and
procedure calls. In the third phase, it uses a single-pass algorithm to inspect each point in the
program and insert region creation and removal commands in the control flow of the output
program. This transformation ensures that regions are live whenever they are being used,
while minimizing region lifetimes. The algorithm is simple, efficient, and provably correct.

Furthermore, we show that the framework can be extended with more aggressive analyses
(at the expense of making it less modular or more complex), such as interprocedural region
liveness or shape analysis, to further improve the accuracy and performance of memory man-
agement. More generally, our framework allows existing analysis technology for imperative
languages, such as points-to or shape analysis, to be easily integrated and applied to the region
inference problem.

1 Introduction

Memory management is a fundamental problem in languages, compilers, and virtually in any
programming system. The difficulty of manually managing the data in the program has led to a
large body of research to improve the data management process using either run-time systems,
language support, or static analysis; all of these techniques have the common goal of making
memory management simpler to use, safer, more efficient, and more precise.

Region allocation is an approach that has been proposed in the past decade for reaching
these goals. In a region-based system, the compiler groups objects together in regions, and
then deallocates all regions at once. Region-based systems have a number of appealing properties
which makes them a good match for addressing the memory management problem: they efficiently
deallocate larger groups of data; they are easier to use because they allow users to reason about
collections of objects rather than individual objects; and they can be incorporated in the language
and statically checked by the compiler to ensure safety. Two main research directions have
emerged in this area: one concerns adding language support for regions, as in the case of the
Cyclone [10], or RC [8] systems; the other direction is to develop static analyses for automatically
inferring regions. The work presented in this paper falls in the latter category. So far, the proposed
analysis techniques for region inference include the seminal work of Tofte and Talpin [15, 3], and

other similar, but more flexible systems. However, these approaches are all targeted to functional
languages and their commonly used features, such as polymorphism and higher-order functions;
they are not directly applicable to imperative languages such as Java or C.

This paper presents a region inference algorithm specifically formulated in the context of im-
perative languages. Although we use the same general ideas as the Tofte and Talpin approach, our
algorithm focuses on control flow constructs, program state, dynamic allocation, and destructive
updates. Given an input program, our algorithm automatically translates it into an output pro-
gram with region-based data management. The output program has region-annotated procedures
and allocation commands, and contains region creation and removal commands ! at appropriate
points in the control flow. The translation guarantees that the regions are live whenever they
are being used; at the same time, the translation minimizes the lifetimes of each region in the
program.

The algorithm consists of three steps. In the first phase, it computes region annotations for
declarations of data structures in the program. Second, it infers region types for each variable,
at each program point. In particular, it infers region types for each allocation command and
procedure call. This step consists of two subphases: an intra-procedural flow analysis of each
procedure; and an inter-procedural propagation of unifications. The insight behind having a flow
analysis is that we want to allow variables to have different region types at different program
points. For instance, a variable may point into different regions at different program points.
Finally, in the third phase the algorithm uses a single-pass algorithm to infer the appropriate
points in the program for inserting region creation and removal commands. Unlike many existing
region-based systems [15, 10], our framework doesn’t use lexically scoped region lifetimes at the
intra-procedural level; a region can even be created or removed in our framework at multiple
points, along different paths. However, regions are created and removed in the same procedure.

The paper also presents extensions to the basic algorithm which allow more aggressive opti-
mizations and further improve the generated code. Interprocedural creation and removal performs
an interprocedural region liveness analysis to determine when regions can be allocated late, in
the invoked procedures, or removed early, before returning to the procedures that create them.
The downside is that this adds more inter-procedural analysis overhead and makes the analysis
less modular. The second extension, object migration, allows the compiler to extract objects from
existing regions and move them to different regions, whenever the analysis can precisely deter-
mine that each extracted object is no longer connected to the old region. This transformation
requires precise shape analysis information; it also requires a special command for the migration
of objects across regions.

Our region inference framework has a number of appealing properties:

o Simplicity: The framework consists of two simple and lightweight algorithms.

Correctness: The algorithm is provably correct.

Flexibility: The basic algorithm can be optionally extended with more aggressive analyses.

Applicability: The algorithm provides a core region analysis for imperative languages. With
few changes, the algorithm can be extended and applied to widely used imperative languages
such as Java, C, or C++.

The contributions of this paper are twofold. The first contribution is the formulation of
the region analysis problem in the context of imperative languages. We give a clean, formal
presentation of the proposed region analysis algorithms. The second contribution of the paper is

"'We use the terms region creation and removal, instead of allocation and deallocation, in order to avoid
ambiguities between object allocation and region allocation.

that it provides a general region inference framework, where more aggressive analyses can build
upon our basic algorithm and be applied to the region inference problem. In particular, it enables
the direct application of existing analyses, such as points-to or shape analyses, to the memory
management problem.

The paper is structured as follows. Sections 2 and 3 present the translation input and lan-
guages. Next, Section 4 shows an example of how our translation works. Section 5 presents
the basic region inference algorithm, and Section 6 shows several extensions to this algorithm.
Finally, we present related work in Section 7 and conclude in Section 8.

2 Input Language

Figure la) presents the abstract syntax for our input language. This is a simple imperative
language which manipulates integers and dynamically allocated records, which we refer to as
objects. A program consists of a sequence of type declarations for records, followed by a sequence
of procedure declarations. For simplicity, we assume that procedures take exactly one argument
and always return a value. The language allows directly and mutually recursive procedures.
There is one special procedure main in the program, whose signature is main : int — int. The
execution of the program consists of running the body of this function with an argument value
of zero.

The commands in the language include declarations of local variables, control flow commands
(sequencing, conditionals, and loops), assignments, and return commands. Assignments, in turn,
include updates to variables and to fields of heap objects; the value being assigned can be either
the object returned by new; the result of a procedure call; or the result of an expression. Fi-
nally, expressions include variable values, field values, the null reference, integers constants, and
arithmetic operations denoted by .

Appendix A.1 gives a precise specification using large-step operational semantics. The rules
for evaluating expressions use judgments of the form (S, H,expr) — v, with the meaning that in
the stack environment .S and heap environment H, expression expr evaluates to value v. The rules
for commands use judgments of the form (S, H,com) — (S’ H' vt) meaning that in the stack
environment S and heap environment H, the evaluation of command com yields a new stack S’
and heap H’, and a return value v,et. The latter is being used to ensure that the body of each
procedure returns a value. We use a special value vyt = nr to indicate when a command doesn’t
return.

We informally describe the semantics of the input language as follows. An if statement
executes its false branch if the condition expression evaluates to 0 (or null), and executes its
true branch otherwise; similarly, the body of a while loop is executed as long as the condition
expression is non zero (or not null). At declarations, variables are initialized with their default
values (0 for integers, and null for references); the fields of dynamically allocated records are
initialized with their default values; and variables must be declared before being used. Finally,
the command representing the body of a procedure must always return a value.

The program types 7 include integers, function types, references types to records, and a
bottom type to model null references:

T u= int|7m — 71| L|ref (FF)

The null reference can be assigned to a reference variable of field of any reference type.

Program ::= typeDecl * procDeclx

typeDecl = records = (tf)
procDecl == tp(tz) = com Program ::= typeDecl * procDeclx
t u= int|s typeDecl ::= record sro,7] = (tf)
procDecl == tp|[f] (tz) = com
com = intx;com |sx;com | t = int|[sro,T]
comy ; comy | while (expr) com |
com = ... |creater | remove r

if (expr) then com; else com; |
x = expr | x.f = expr | "
x=news | x=p (y) | return x | x=p[r] (v)

| x=newsinr

expr == x| xf|null | n|expr; & expro where: r € Region names
X,Y¥,z € Variables f € Fields s & Records
p € Procedures n € Integer constants

Figure 1: Syntax of the input and output languages

3 Output Language

Figure 1b) presents the abstract syntax for the output language. This language extends the
input language in two ways. First, it adds regions annotations for declarations of record types
and procedures. Second, it adds commands for manipulating regions: region creation and removal
commands, dynamic allocation of objects into regions, and region based procedure calls.

For types, the construct [rg,] denotes the type of a reference which points into region rg, and
is such that all of the regions reachable from this reference, except ro, are in the sequence r. We
call rg the base region of the record, and ¥ the region parameters of the record. This construct
allows the compiler to grant access to the structure pointed to by such a reference only if it can
guarantee that rg and all of the regions in ¥ have not been removed.

For procedure declarations, the construct [r] denotes the formal region parameters of the
procedure. The sequence ¥ must include all of the regions in the argument and return type. For
procedure calls, the construct r denotes the actual region parameters at the call site. We require
that all of the actual regions are live at the call site.

The commands for manipulating regions have the standard meanings: create r dynamically
creates a new region, remove r dynamically removes a region, and new s in r dynamically allocates
an object of record type s in region r. We require that region r is not created when remove is
invoked, and that r is not removed when it is used in any other command or annotation.

Appendix A.2 provides a specification for the commands in the output language. The seman-
tics is defined using judgments of the form (S, H, R,com) — (S’ H', R/, vyet), where S, H, S", H’
and vyt are as before, and R and R’ are the sets of live regions before and after the evaluation
of command com. The majority of rules are identical to the corresponding rules from the input
language, and are therefore not shown; we present only the rules which involve regions.

For types, we add region variables p and type schemes o which include universal quantification
over regions:

p € Region variables
o = 1|Vp.T
T u= int| 7 — 7| L|ref [po,p] (FF)

The recursive syntax for types corresponds to recursive types. For simplicity, we omit the

recursive type operator (u) from the syntax, and express recursive types by their recursive type
equations. For instance, the recursive type definition:

T = ref [p] (int data, 7 next)
stands for the recursive type:
T, = ut . ref [p] (int data, 7 next)

Note that the universal quantification always encloses recursive types. In other words, we
require that the recursive occurrences of types have identical region parameters. For instance, all
the elements of a list or a tree structure have to be allocated in the same region. Consider the
following type scheme for a list whose elements have a data field and a next link:

oList = Vp . (ur . ref [p] (int data, 7 next))

This shows that all of the elements of the list must be allocated in the same region p.

4 Example

Figure 2 presents an example output program program generated by our translation, that illus-
trates several features of our region inference algorithm. The region annotations are shown in
bold. The input program is the same, but without the region annotations.

The program uses two functions, main and copy, to perform list manipulations. In this pro-
gram, list elements and data are being allocated as different heap objects, as shown by the record
declarations for List and Data; we refer to the list elements alone as the spine of the list. The
copy procedure is a recursive procedure which takes a List as argument and produces a list with
a different spine, but with the same elements as the original list. The main procedure works as
follows. First, it creates a list using the first loop. At each iteration it allocates a new element in
the spine, and a new data element. Next, the procedure performs a “re-spining” operation using
the assignment x = copy(x): it replaces its old spine with a new one; after the assignment, the old
spine becomes garbage. Finally, the program runs another loop. At each iteration in this second
loop, it creates a list y with a new spine, processes it, then discards the spine by nullifying y.
The procedure process is omitted from the code; it takes a list as argument, uses it for internal
computation, and returns an integer value.

We highlight several details of this transformation. First, the analysis identifies that procedure
copy returns a list with data in the same region as the parameter list, as shown by the two
occurrences of rg in the argument and the return value for copy. The transformation also annotates
the allocation command in this function with region r7, which is the region for the spine of the
returned list. The analysis infers that r; is a parameter region and does not generate a creation
command for it in the body of the procedure; it is the responsibility of the caller to create this
region.

Second, the analysis accurately determines the region creation points for the objects allocated
in the two loops of procedure main. For the first loop, which iteratively creates a list, the analysis
places the region creation commands for regions r; and rp outside the loop. For the second loop,
the analysis determines that the lifetime of the region returned by copy doesn’t span outside the
loop body; it therefore places the region creation and removal commands for this region inside
the loop.

Third, for the “re-spining” assignment x = copy(x), the transformation places a region creation
command for region r3, the region for the new spine, before invoking copy. It also generates a

record Data [rq] = (int i)
record List [r),rq] = (Data[rg] d, List [r},rq] n)

int main(int i) { List[rg,r7] copy[rg.rg.r7]
List x; (List[rg.rgl x) {
List y,z,t;

create ry;

create rp; if (x) {

while (i - 10) { y = new List in rg;
Data d = new Data in ry; y.d = x.d;
di=ri; Z = X.n;
t = new List in rp; t = copy[rg.rg.r71(z);
t.d=d; y.n =t;
t.n = x; X =t return y
i=i+1 } else {

} t = null;

return t

create r3; }

x = copy[rq,rp.r3](x); ¥

remove ry;

while (i) { int process[rg,rg]
create ry; (List[rg.rg] x) {
List y = copy[ry,r3.rg](x);
i = process[ry,raq](y); }
remove ry

}

remove ry;

remove r3;

return |

}

Figure 2: Example translated program. The region annotations are shown in bold. The input
program is the same, but without the region annotations.

region removal command for region rp, the region of the old spine, detecting that this region
becomes garbage as a result of the assignment.

Fourth, the analysis automatically determines the appropriate actual region parameters at
call sites. For the first call to copy it computes the region parameters [r1,rp, r3]. For the second
call, it computes parameters [ri, r3, ra).

Finally, this example shows that region lifetimes are not necessarily nested into each other.
For instance, the placement of create r3 before remove r, makes the lifetimes of these regions
to overlap. Our the region inference algorithm doesn’t require a particular discipline of region
lifetimes, such as the stack discipline when regions are lexically scoped.

5 Region Inference Algorithm

This section presents the region analysis algorithm and the translation process. The algorithm
consists of three phases. First, a class declarations phase infers region parameterized types for
records. Second, a record declaration phase computes region types for variables at each point in
the program. It consists of an intra-procedural flow analysis of each procedure; and an inter-
procedural analysis which propagates type unifications between procedures. Third, a translation
phase produces the output program. It generates region annotations for records, procedures, and
allocations using the result from the first two phases. It also places region creation and removal
statements at appropriate points in the control flow of the output program. We describe each of
these steps in the following sections.

5.1 Record Declarations

The inference algorithm for record declarations is fairly straightforward. We require that the
region parameters in each field of a record be a subset of the region parameters of the enclosing
region; if the field is an instance of the recursive type, then these region parameters must be
identical. For each record s, the analysis generates a fresh region name rs to represent the base
region of the record.

We define the translation using a function 7 [-] which maps a piece of syntax from the input
language into a piece of syntax in the output language. The translation of record declarations is:

T[record s (t f)] = record T[s] (T[t] f)
T[int] = int
T[s] = s|[rs,ps) (rs fresh)

where each sequence Fps of region parameters is an arbitrary permutation of the set RV(s) of
region variables, computed as the least fixed point of the following constraints:

records (tf) s €t
RV(s') C RV(s) rs C RV(s)

We compute the least fixed point using a standard iterative computation which initializes each
RV(s) to the empty set, and then applies the rules until no changes occur.
For example, the translation of the following declaration:

record Data = (int x, inty)
record List = (Data data, List next))
record Iterator = (List crt)

is:
record Data [rd] = (int x, inty)
record List [rl,rd] = (Data [rd] data, List [rl, rd] next))
record Iterator [ri,rl,rd] = (List [rl,rd] crt)

At this point, the algorithm computes types for records, using the result of the above trans-

lation: -
record s [ro,T] (t f) po = fresh(rg) p = fresh(r)

type(s) = ref [po, 7] (t[po/r0, /7] f)

The function fresh return a fresh region variable for each region name passed as argument.

5.2 Region Inference

The algorithm next infers region-polymorphic types for methods, and region types for variables at
each program point. First, the algorithm uses a unification-based intra-procedural flow analysis
which processes each method in the program once. Then, it performs an inter-procedural analysis
which propagates type unifications beyond procedure boundaries. We describe each of these steps
in turn.

The intra-procedural analysis of each procedure first builds a type environment A which
assigns the most general types to procedures, call sites, and allocation commands, using fresh
region variables. For procedures and call sites, the analysis assigns fresh region variables for each
occurrence of a reference in the parameter and in the result value of the procedure being declared
or invoked. For allocation sites, is assigns fresh region variables to the allocated record. To
formalize the construction of this environment, we introduce labels for each allocation expression
a: new s and each call expression c : p(y). The rules for computing A are as follows:

to p (t1 2) 71 = fresh(type(ti)) AbFp :Vp. 11— 7
p=FV(r1 — 1) 7 = fresh(type(tz)) c:ply) 7 — 75 =fresh(ri — m)

Abp : Vp. 11— Abc: 1 —71h

a:news type(s) =7 = ref [po,p] (T f)
sy = fresh(po) 77 = fresh(p)
Ata : T[po/po, /P

where FV(7) is the set of free region variables in 7. In the first two rules, the function fresh takes
a type and replaces each of its region variables with fresh variables; it then returns the new type.
In the last rule, fresh yields a fresh region variable for each of its argument regions. Note that
we initialize all fields of a record with fresh region variables, although they are being initialized
to null in the operational semantics. In other words we fix the regions for the values that will be
later be stored in these fields. This is important for ensuring that the translation is sound.

A type environment I' maps variables to their types. We define standard typing judgments
for expressions I' F e : 7, with the meaning that, in the environment I', expression e is well-typed
and has type 7:

x:Tel
I'tn:int Thknull: L Tkx:7

I'+expry :int ' expry :int
I' - expry @ expra : int

T+ x:ref [po,p] (7f) =f € 7f
F'Exf:r

A TU{x~—int}Fcom,I"U{x— 7}, F
A, Tk int x; com, IV, E

ATU{x— L} Fcom I"U{x+— 71} FE
A, T+ sx; com I E

A,Fl—coml,Fl,El A,Fl |_C0m2,F2,E2
A, '+ comy;comy, 'y, By U Ey

A,F H coml,Pl,El A,F H Comz,Fg,EQ
(£,T) = unify(T'1,I'2)
A, T F if (expr) then com; else comy, I', By U B U E

A,Fl H C0m,F2,E1 (E,Fl) = unify(F,FQ)
A, T+ while (expr) com,I'1, E; UFE

Figure 3: Analysis rules for variable declarations and control flow constructs

Next, the algorithm performs the actual type inference via unification. It uses a flow analysis
which generates unification constraints as a result of analyzing commands. Each unification
constraint in F is a pair of unified region variables. The reason for using a flow analysis instead
of a flow-insensitive approach is the presence of destructive updates in our input and output
languages. Destructive updates to variables in the program yields new types for the updated
variables, with new region instantiations. The algorithm must compute these types in a flow
sensitive manner. The result of the algorithm is a type environment I' at each program point.

We formulate our flow analysis for region inference using judgments of the form A T" +
com, I, E, which express the fact that in the typing environment A for procedures and allo-
cations, and given the region type environment I' for variables, the command com yields a new
type environment IV and a set of unification constraints E. Figure 3 shows the analysis rules for
variable declarations and control flow constructs. For variable declarations, the initialize types
of references to L and the types of integer variables to int.

The rules for control flow merge type information at control flow points using the unification
function unify. This function takes two type environments, unifies the types of the corresponding
variables, and yields the generated unification constraints and a resulting type environment. The
reason for returning a type environment is that the analysis must handle subtyping relations
for bottom types L) Unifying the bottom type L with another type 7, yields no unification
constraints, and returns 7 in the environment. If none of the arguments to unify are L, the
unification function recurses on the structures of the types.

Note that the flow analysis domain is the cartesian product of lattices of height 1, correspond-
ing to the two possible types for references, | and ref, ordered by subtyping. Hence, the analysis
domain is a lattice with height equal to the number of reference variables. As a result, the number
of iterations in the analysis of each loop is bounded by the number of reference variables updated
in the loop body.

Figure 4 presents the analysis rules for assignments and return commands. In these rules, ret
represents a dummy variable introduced in the type environment to keep track of the return type.
The unification function works as before, but on pairs of types rather than type environments.

These represent the core rules of our analysis. They show how the analysis handles destructive

I'Fexpr:7
AT Fx=expr,['[x — 7],0

F'kxf:mp Thexpr:m (E,.) = unify(r,m)
A, T'Fxf=expr,I'| K

AFa:r
ATEx=a:news,I'[x— 7],0

AbFc:mp—m y:msel (E,.) = unify(m,s)
ATEx=c:p(y),lx— n,E

x:mp €l ret:m el (E,.) = unify(r, ™)
A, T F return x,0, E

Figure 4: Analysis rules for assignments and return.

updates of variables and heap objects. The main observation is that updates to stack locations
also update their types, while updates to heap locations require type unification. We refer to the
former as strong type updates, and to the latter as weak type updates. The reason for having two
kinds of updates lays in the reachability properties of the updated locations. Remember that the
region types of variables model all of the regions reachable from that variable; the type update of
a variable must maintain this invariant. But updates in the program can change the reachability
information in two ways: 1) they may change the regions reachable from the updated variable;
and 2) they may change the reachability information for other locations that reach the updated
location. Therefore, the analysis must correctly model these two effects. Our analysis performs
strong type updates for variable assignments (rules for x = ...), and performs type unification, i.e.
weak type updates, for modifications of heap locations (rule for x.f = ...); these rules correctly
model the changes in reachability, according to the language semantics. Strong type updates are
possible because our language forbids pointers to variables. Our rules are applicable to languages
with similar semantics, like Java.

For pointer-based languages like C, the compiler can apply strong type updates only when it is
able to determine that the assigned variable is not pointed to by other locations. Existing pointer
analyses can give such guarantees and extend the above analysis rules in those cases. Similarly,
shape analyses can provide guarantees that destructive heap updates only modify individual,
disconnected heap locations; this would enable the application of strong type updates on heap
locations as well.

The overall analysis of the current procedure p instantiates its argument and return type in
the environment, then analyzes its body:

top(t1z)=com Abp:Vp.1 — 7
A, {z— 1, ret — 1} Fcom,T', E,
FE,

The analysis result is the set F, of unification constraints for procedure p. Its transitive
closure yields the sets of unified region variables. Each region variable is then replaced with the
representative of its equivalence class.

In the second part of the region inference phase, the algorithm performs inter-procedural
region unifications, to ensure that the region type of each procedure at each call site is a valid

10

Apf—p:Vb.
pisp; €0 =Apr}tn |
Apks:m —71y p=FV(r] — 1))

(ri = 1)) € Eipter

x=c:p(y)
(pi = pj) € Einter

T — T2

(p= P/) € Eintra

(p=10") € Ejpter

Figure 5: Inter-procedural analysis rules

instantiation of its declared region-polymorphic type. More precisely, if two region parameters
of a procedure get unified, then the corresponding regions at each call site must also be unified.
Such unifications can recursively propagate beyond multiple procedures. Figure 5 formalizes
these unification rules. The environment Ap is the union of initialization environments of all
procedures, and Ejy 4., is the set of unifications produced by the intra-procedural analysis of
all procedures. The final set of unifications E,, ., is the least fixed point solution of these
constraints.

5.2.1 Example

Figure 6 shows how the type inference algorithm works for the copy procedure from the example
program in Section 4. The first column shows the code after the parameterized region types
for Data and List have been inferred. For simplicity, we omit the region parameters in the
recursive occurrence of List in its declaration. The second column shows the initializations for the
type environment A. The algorithm assigns types to procedure copy (universally quantified over
regions), to the allocation site new s, and to the recursive call copy(z). For simplicity, we denote
list types as List[p, p] to mean the recursive type 7 = ref|p, p/] (ref[p](int i) d, 7 n).

Program Code Initialization Types Computed Types Unifications Unifications
(intra) (inter)
record Data[rd] = (int i)
record List[rl, rd] =
(Data[rd] d, List[rl, rd] n)
List copy(List x) { copy : Vp1,p2,p3,p4 - x : List[p1, p2]
List[p1, p2] — List[ps, pa] | ret: List[ps, pa]
Listy, z, t; y,z, t: L
if (x) {
y = new s; List[ps, ps] y : List[ps, pe]
y.d = x.d; p2 = pe
z = x.n; z : List[p1, p2]
t = copy(2); List[p7, ps] — List[po, p1o] | t : List[po, p1o] p7 = p1,ps = p2
yn =t Ps = P9, P6 = P10
return y pP3 = Ps, P4 = Pe P8 = P10
} else {
t = null;
return t
}
}

Figure 6: Region type inference example. Inferred type of copy is Vp1,p2,p3 . List[p1, p2] —
List[p3, p2], the type of the recursive call is List[p1, p2] — List[p3, p2], and the type of the allocation

is List[p:-;, pg]

11

The third column shows the types that the analysis computes at each program point, and
the last two columns shows the generated intra-procedural and inter-procedural unification con-
straints. In this example, the destructive update y.n = t requires the unification of the types of
the objects referenced by y and t, as a result of adding an edge between them. The next command
(return y) then unifies the return type of the procedure with the type of t at this point. As a result
of these two unification, the analysis infers that p» = p4, i.e., that the returned list has the data
in the same region as the argument list. Because these are region parameters in the signature
of the function, the inter-procedural part of the analysis must propagate this constraint to the
recursive call site. The generated inter-procedural constraint is pg = p19. However, this relation
was already implied by the intra-procedural constraints, so it doesn’t change the existing region
equivalence classes.

5.3 Translation

Once unification has been performed and types for procedures and allocation sites have been
computed, it is straightforward to translate procedures and commands in the output language.
The algorithm first maps each region variable to a region name: 7 [p] = r (where unified variables
map to the same region name). It then uses this map to translate occurrences of record names in
the program. If a record s is such that type(s) = ref [po, p] (7f) then the algorithm translates each
occurrence of s in the argument or result type of a procedure as: 7T [s] = s [7 [po], 7 [p]], and
each occurrence of s in an allocation command as: 7 [new s] = new s in 7 [po]. For each procedure
whose type in the environment A is Vp .7y — 7o, we translate the name in its declaration as:
Tp] =p [T]p]]- Finally, we use a similar translation for procedure names at each call sites, but
using the actual region parameters p at these points, as given by region types of these calls in the
environment A. All of the other constructs remain unchanged in the generated code.

At this point, the analysis has inferred region types for procedure definitions, allocation com-
mands, and procedure calls. To complete the algorithm, the compiler needs to insert region
creation and removal statements at appropriate points in the program. This is the main job of
the translation phase.

Let us denote by R, the region parameters of the currently analyzed procedure, by R, the
regions at allocation sites, and by R the regions at call sites. Of all these regions, only the ones in
Rp are already created at the entry point of the procedure. For each region in (R, U Rc) —Rp, the
compiler must insert appropriate region creation commands to ensure that the required regions
exist when the command is executed. We say that the regions in (R, U Rc) — Ry are local to the
current procedure. We give a precise definition of the placement problem for region creation and
removal commands, and then present our solution.

5.3.1 Problem definition

We introduce the notions of a definition, use, and liveness of a region, as follows. The definition
of a region is the procedure entry point, for parameter regions, or the creation point, for local
regions. The uses of a region are the program points where its corresponding region variable
occurs in the type environment at that point. We say that a local region is live at a point if it is
used at that point; parameter regions are live throughout the body of the procedure, regardless
of whether they are being used or not. The reason is that the compiler doesn’t know whether the
caller holds live data in those regions, and it must conservatively assume they do.

With these definitions, the solution to the region placement problem must satisfy the following
constraints:

e Safety: For each procedure and each path in the flow graph of that procedure, the
following conditions must hold:

12

— Each use of a region must be preceded by a definition of the region, and there should
be no removal of the region since the last creation of the region.

— For each region there cannot be consecutive occurrences of creation or removal com-
mands.

— Each removal of a region must be preceded by a definition of that region.

e Precision: The placement of region creation and removal commands should minimize the
lifetimes of each region.

We next argue that, given the above conditions and assuming no interprocedural analysis,
the algorithm should not insert creation and removal commands for region parameters. First,
the region parameters may contain live data in the caller, which means that, in the absence of
interprocedural information, the compiler cannot remove them in the callee. As a result, it cannot
insert creation sites either, because they are already defined at procedure entry and additional
creation sites would violate the second safety condition above.

Hence, the problem of placement of region commands applies only to the local regions in
(RaURc) — Rp. For each of them, the algorithm must insert creation and removal commands that
satisfy the safety and optimality conditions listed above.

5.3.2 Placement of Region Commands

Despite its apparent complexity, the command placement problem has a short solution: the
compiler places a create r command at each point in the program where r becomes live, and
inserts a remove r command at each point where it ceases to be live. There are two situations
when a region becomes live:

1. When it is not live before a join point in the control flow, but is is live after the join. The
join points in the control flow occur at the end of conditional commands and at the entry
points of while loops.

2. When the region is not live before an allocation site or a call site which uses that region.
There are three situations when a region ceases to be live:

1. When the region is live before an assignment, but not after, because the assignment updates
the last variable whose type contains the region.

2. When a variable goes out of scope, and that variable is the last variable whose type contains
the region. Variables go out of scope either at the end of structured scope declarations
(int x; c or s x; c), or before return commands (which represent unstructured forms of
scope termination points).

Intuitively, our approach for region command placement models a finite state machine which
transitions between two states: one where the region is live, and another where it isn’t live. At
the beginning of the procedure, the state machine starts in the latter state. Then, during the
execution of a program, it transitions between the two states whenever it reaches a point where
the region becomes live or ceases to be live. Region creation and removal commands occur only
on the transitions between these states.

With this automaton model, it is straightforward to check that the resulting program satisfies
all three safety conditions. It is also easy to verify that the algorithm optimally places creation and
removal commands, minimizing the region lifetimes under the given safety constraints. Moving a

13

com = if (e) then com; else com; com = if (e) then com; else com;

r € Live(comje) r € Live(come) r & Live(compe) r € Live(come)
com; e — COMg comp e —> Ccomy
com = while (e) com; com = while (e) com;
r & Live(ecom) r € Live(ecom;) r € Live(comje) r € Live(ecom;)
ecom — creater com; e —> creater
com = x=newsinr r¢Live(ecom) com = x=p|[r] (y) r€F r ¢ Live(ecom)
ecom — creater ecom — create r;

Figure 7: Regions for Region Creation

com = tx; com’ r € Live(com’e) r ¢ Live(come)
come — remove r

r € Live(ecom) r & Live(come) com = return x; r € Live(ecom)
come =— remove r ecOm — remove r

Figure 8: Rules for Region Removal

region creation later or a region removal earlier immediately causes the program to use a region
at a point where it hasn’t been created yet, or has already been removed.

Figure 8 formalizes the region placement algorithm using relations of the form pp = create r
and pp = remove r, indicating that the algorithm inserts a region creation or removal command
at program point pp. Given a command com, we denote by ecom the program point before the
command, and by come the program point after the command. With the exception of the rule
for local declarations (first removal rule), all of the commands com represent assignments. All
the rules refer only to local regions r € Ry, since these are the only ones for which we insert such
commands. For a program point pp, we denote by Live(pp) the set of live regions at this point,
which includes all the regions that occur in the computed type environment at this program point.

5.4 Soundness

We briefly summarize the formal soundness properties of our algorithm. The safety condition
is based on consistency relations between stacks, heaps, regions, values, and type information.
Informally, a stack and heap in the output program is consistent with a stack and heap in the
input program, written (S,, H,) ~ (S;, H;), if there is a homomorphism between them. A value
in the output program is consistent with a value in the input program, written v, ~ v;, if they
are identical, except for the region information. A consistency relation (S,, H,, R) ~ I'(pp)
holds if the stack and heap structure (S,, H,) agrees with the type information I'(pp) and if
R = Live(I'(pp)). Finally, a consistency relation (v,, Hy) ~ I'(pp) holds if the structure of the
portion of heap H, reachable from v, is consistent with the type information. Given the type
information I' computed by our algorithm, the following two properties hold:

14

Progress. Assuming consistent starting states, if the input command doesn’t get stuck, then
neither does the transformed command.
¢ =Tc] A
<Si, Hi, C]> — <Szl’ H{, U'i> A\
(SO,HO) ~ (Sz,Hl) VAN (SO,HO) ~ F(OC])
= (S,,Hy,R,co) — (S/,H!, R, v,)

Preservation. If the execution of the input and output commands starts with consistent
states which agree with the type information, then states after the execution of the commands
are also consistent, and agree with the type information :

¢ =Tc] A

<Si,Hi,C]> — <S{,HZ/,’UZ> A\

(So, Hoy R, co) — (S),H!, R jv,) N
(SO,HO) ~ (Sl,HZ) A (SO,HO) ~ F(oci)

= (S0, H;) ~ (Si, Hf) N v~ v
(S</)>H(/),R/) ~ F(Cio) if v; =nr
(vo, H!) ~ T'(ec;) if v; # nr

Appendix B provides a detailed definition of the consistency relations and gives full formal
proofs for these results.

6 Extensions

This section presents extensions that improve the accuracy of the basic region inference algorithm.

6.1 Interprocedural Creation and Removal

Even though region lifetimes in our algorithm are not lexically scoped and don’t follow a stack
discipline, the region creation and removal commands are always placed in the same procedure.
The reason for this is to keep the basic algorithm modular.

A simple extension is to relax this condition and perform interprocedural placement of region
creation and removal commands. The downside is the loss of modularity in the algorithm. We
can extend the algorithm with interprocedural computation of region liveness analysis as follows.
A backwards dataflow analysis can determine when region parameters are always dead at the
end of the procedure. It can then use this information to perform region removal in the invoked
procedure. Another analysis can determine when region parameters are never used before the
function is invoked. In that case, they can be treated as not defined at procedure entry.

The overall algorithm executes as follows. It first performs the flow analysis the same way
as before. It then applies the interprocedural region liveness algorithms. Once region liveness is
available at procedure entry and exit points, it incorporates it in the Live sets of our analyses and
performs the placement of region commands according to the rules from Section 5.3.2.

6.2 Object migration

Another extension to the region inference algorithm is to support migration of objects between
regions. We want to allow individual objects to move from a region r; to a region ry, if we are
guaranteed that the object was completely disconnected from the region r; before moving it to the
region ra. To support this feature we extend the output language with an additional command:

com :=... | move X ry rp

15

This extension requires a precise analysis information about when individual object become
completely disconnected from the rest of the heap. This kind of information can be provided,
for instance, by existing pointer and shape analysis algorithms. We just assume an interface of
such an analysis, which provides a function D : PP — P(V), that, given program point pp € PP,
returns the set of variables that point to individual objects, unaliased and disconnected in the
heap. Here V is the set of program variables.

The object migration analysis requires only two simple extensions to the basic algorithm. The
first change is that the analysis inserts the move instructions in the program before running the
region inference algorithm. It determines the program points where to insert these instructions
using the available shape or points-to information in D. Object migration situations can only arise
for statements of the form x.f = expr, which may disconnect the object from one region and then
connect it to another. When expr is null, the assignment only disconnects the object. Since the
analysis must identify the point when objects become disconnected, we assume that the program
is in a form such that each assignment x.f = expr is preceded by a nullification assignment x.f
= null. The analysis uses the rewriting rule below to place migration commands when objects
become disconnected:

com = x.f =null x & D(ecom) x & D(come) pg, p1 fresh
com = com; MOVE X pg p1

The analysis then runs the basic region inference algorithm on the resulting resulting program,
using the analysis rules from Section 5.2. For analyzing move commands, it uses the following
rule: _ -

CEx:ref [p,p] (Ff) 7 =ref [p1,p] (FF)

A, T+ move x pg p1,L[x— 7], {p' = po}

The object migration extension requires no other modification of the algorithm.

Figure 9 shows an example of object migration. The program creates two lists a and b, then
moves an element from list a to list b. One can think of this example as modeling a process
scheduler that manages processes using lists; this operation can be thought as moving a process
from the running queue to the blocked queue of the scheduler.

The first column shows the original code before performing any transformation, the second
column shows the result using the original region inference algorithm, and the third shows the
resulting code after the migration extension. This example shows that the original algorithm
cannot support object migration, and requires the two lists to be allocated in the same region.
This is a result of not being able to perform strong type updates during the flow analysis of
field assignments. The object migration extension essentially uses precise shape analysis in the
premises of the analysis rules to enable strong type updates even for heap locations, whenever
can determine that it is safe to do so.

7 Related Work

The algorithm presented in this paper is closely related to the region inference algorithm of Tofte
and Talpin [15, 3]. They present a region inference algorithm for a simply typed lambda calculus,
which translates expressions in the input program into region-annotated terms in the output
program. The regions in their output language are lexically scoped, which imposes a stack
discipline on the lifetimes of regions. In an extended version of their algorithm, they propose
additional constructs such as region resetting , which alleviate the shortcomings due to the stack
discipline constraints on region lifetimes. Further extensions of their framework for ML references
include analysis rules similar to our typing rules for destructive updates in our algorithm.

16

l Original Code ‘ Region inference ‘ Migration extension ‘

record List = (int i, List n) | record List[r]] = (int i, List[rl] n) record List[rl]] = (int i, List[rl] n)

int main(int x) { int main(int x) { int main(int x) {
List a,b,t; List a,b,t; List a,b,t;
create rl; create rl;
a = makeList(x); a = makelList [r1] (x); a = makelist [r1] (x);
create r2;
b = makeList(x); b = makelList [r1] (x); b = makelList [r2] (x);
t =a; t=a; t=a;
a = t.n; a = t.n; a =t.n;
t.n = null; t.n = null; t.n = null;

// at this point the algorithm

// unifies the regions of a and b move t rl r2;
t.n = b; t.n = b; t.n = b;
b=t; b=t; b=t;
remove rl;
remove rl; remove r2;
return x return x return x
} } }

Figure 9: Example of extending the region inference algorithm with object migration.

Aiken, Fahndrich, and Levien [1] build on the Tofte/Talpin algorithm and extend it with sep-
arate region allocation and deallocation constructs. Object lifetimes are unrestricted and need
not follow a stack discipline. The placement of region allocation and deallocation constructs is
determined by building and solving a system of constraints which impose that regions are allo-
cated when they are used. The separation of allocation and deallocation points yields significant
improvements in performance compared to the Tofte/Talpin algorithm. Henglein, Makholm, and
Niss [11] present a region inference system whose output language extends the core lambda cal-
culus with imperative commands for region manipulation. They also decouple region allocation
and deallocation. Moreover, they propose commands for region aliases and region assignments.

Motivated by the success of the region-inference work, researchers have recently investigated
the alternative of providing language and compiler support for regions. In contrast to the research
on region inference, this work has focused more on imperative languages. The RC system [7, §]
provides run-time support for C programs, using library functions for allocation and deallocation
of regions, and allocation of objects in specific regions. The system uses reference counts to
identify unsafe region deallocations. The Cyclone language [10], a memory-safe version of the C
language, uses a more sophisticated region system, providing a full featured type system and run-
time support for regions. The system statically checks region annotations and statically ensures
safe region deallocation. We believe that our region inference algorithm is a good match for
automatically providing region annotations in such systems.

Another related area of research is that of statically inferring object lifetimes. Early work
in this direction [13] proposed intraprocedural and interprocedural dataflow analyses. More re-
cent work is based on escape analysis analysis to determine object lifetimes and enable stack
allocation for objects whenever objects do not escape from the current procedure [4, 6, 16, 5, 9].
Although they have the similar goals ours, these algorithms are significantly more complex than
the unification-based allocation algorithm in this paper. Moreover, the region polymorphic types

17

of procedures allow our algorithm to characterize object lifetimes even when they escape from the
procedure that created them, which the escape-based algorithms don’t. Lattner and Adve [12]
propose an algorithm for pool allocation of objects. Their approach is to inline procedures to
duplicate allocation sites into their callers. Duplicated allocation sites will then allocate objects
in different in regions. This approach, however, doesn’t work well in the presence of recursion or
for programs with deep call graphs, because of the exponential blow-up in code size (or analysis
abstractions). Our region approach is cleaner and more general.

Finally, precise shape analysis algorithms such as [14] can complement our algorithm to im-
prove the analysis results. These algorithms can provide accurate information about when indi-
vidual objects are being removed from their regions. The results of a combined region inference
and shape analysis can then be used in conjunction with run-time systems such as the recently
proposed reaps [2], which combine region allocation with individual deallocation of objects within
each region.

8 Conclusions

In this paper we have presented a region inference framework specifically designed for imperative
programs with control flow constructs, dynamic allocation, and destructive updates of variables
and heap locations. The basic algorithm in this framework first infers region types for variables,
procedures, and dynamic allocation commands using a unification based flow analysis. Then,
the analysis uses a one-pass algorithm to place region creation and removal commands in the
program. We show that the basic framework can be augmented with more aggressive analyses,
such as inter-procedural region liveness analysis, live variable analysis, and shape analysis, to
achieve better memory management. Because of its simplicity and flexibility, we believe that this
framework is a first step towards the adoption of region inference into existing popular imperative
programming languages such as Java or C.

References

[1] A. Aiken, M. Fahndrich, and R. Levien. Better static memory management: Improving
region-based analysis of higher-order languages. In Proceedings of the SIGPLAN ’95 Con-
ference on Program Language Design and Implementation, La Jolla, CA, June 1995.

[2] E. Berger, B. Zorn, and K. McKinley. Reconsidering custom memory allocation. In Proceed-
ings of the 17th Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, Seattle, WA, November 2002.

[3] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von neumann machines
via region representation inference. In Proceedings of the 23rd Annual ACM Symposium on
the Principles of Programming Languages, St. Petersburg Beach, FL, January 1996.

[4] B. Blanchet. Escape analysis for object oriented languages. Application to Java. In Proceed-
ings of the 14th Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, Denver, CO, November 1999.

[5] J. Bogda and U. Hoelzle. Removing unnecessary synchronization in Java. In Proceedings
of the 14th Annual Conference on Object-Oriented Programming Systems, Languages and
Applications, Denver, CO, November 1999.

18

[6]

[14]

[15]

[16]

J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for Java.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

D. Gay and A. Aiken. Memory management with explicit regions. In Proceedings of the SIG-
PLAN 798 Conference on Program Language Design and Implementation, Montreal, Canada,
June 1998.

D. Gay and A. Aiken. Language support for regions. In Proceedings of the SIGPLAN ’01
Conference on Program Language Design and Implementation, Snowbird, UT, June 2001.

O. Gheorghioiu, A. Salcianu, and M. Rinard. Lifetime analysis of dynamically allocated ob-
jects. In Proceedings of the 30th Annual ACM Symposium on the Principles of Programming
Languages, New Orleans, LA, January 2003.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based
memory management in Cyclone. In Proceedings of the SIGPLAN ’02 Conference on Program
Language Design and Implementation, Berlin, Germany, June 2002.

F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow sensitive region-
based memory management. In Proceedings of the 3rd international ACM SIGPLAN con-
ference on Principles and Practice of Declarative Programming, Florence, Italy, September
2001.

C. Lattner and V. Adve. Automatic pool allocation for disjoint data structures. In Proceed-
ings of The Workshop on Memory Systems Performance, Berlin, Germany, June 2002.

C. Ruggieri and T. Murtagh. Lifetime analysis of dynamically allocated objects. In Proceed-
ings of the 15th Annual ACM Symposium on the Principles of Programming Languages, San
Diego, CA, January 1988.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with
destructive updating. In Proceedings of the 23rd Annual ACM Symposium on the Principles
of Programming Languages, St. Petersburg Beach, FL, January 1996.

M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-calculus using
a stack of regions. In Proceedings of the 21st Annual ACM Symposium on the Principles of
Programming Languages, Portland, OR, January 1994.

J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java programs.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, Denver, CO, November 1999.

19

A Semantics

The following sections present the large-step operational semantics for the input and output
languages.

We use the following notation for maps. If M is a map, then M U {x — v} represents a map
M’ which extends M with a value for x: x & dom(M), M'(z) = v and M'(y) = M(z), for y # x.
Hence, dom(M') = dom(M) U {z}. Furthermore, M U {z +— v} represents a map M" which
updates M with a new value for z: & € dom(M), M"(x) = v and M"(y) = M(z), for y # x.
Hence, dom(M") = dom(M).

A.1 Semantics of Input Language

The domains and domain equations for the operational semantics of the input language are:

Value = Integer+ {null} + Location
Retval = Value+ {nr}

Stack = Variable — Value

Heap = Location — (Field — Value)

The value nr indicates that a command doesn’t return.

A.1.1 Expressions

The semantics of expressions in the input language is defined using a relation (S, H, expr) — v in
the domain:
(Stack x Heap x Expr) — Value

The meaning of (S, H, expr) — v is that, given a stack S and a heap H, expression expr evaluates
to value v. We define this evaluation relation using the following rules:

(S,H,x) —v (S,H,n)—mn (S, H,null) — null

(S,H,e1) = m
<S,H,62> — N9 S(X) :ll
n=mn; o ne H(l)(f)=wv

(S,H,e; ®ea) —n (S, Hxf)—wv

A.1.2 Commands

We express the semantics of commands using a relation (S, H,com) — (S’ H' vet) in the domain:
(Stack x Heap x Com) — (Stack x Heap x Retval)

The meaning of the relation (S, H,com) — (S’, H',v) is that, given a stack S and a heap H,
the evaluation of command com yields a new stack S’, a new heap H’ and a result value v. The

evaluation rules are:
(S,H,e) — v

(S,H,x =¢e) — (S[x+— v], H,nr)

S(x)=1 (S,H,e) —v
(S,H,x.f =e) — (S,H[l — H(l)[f — v]],nr)

20

s:ref(t f) nit(t f)

m =i
(S, H,x =new s) — (S[x+ 1], HU{l — m},nr)

Sly)=un tp(tz)=c
({z—wn},H,c) — (S1,H,v) v#nr

<Sv H,x = p(Y)> - (S[J: - U]7H17 nr)

S(x)=wv
(S, H,return x) — (0, H,v)

(SU{x—0},H,c) = (S"U{x— v}, H v)
(S,H,int x; c) — (S',H',v)

(SU{x—null}, H,c) = (S"U{z — v}, H v)
(S,H,sx; c)— (S H v)

<S, H, C1> — <51,H1,U> v 75 nr
(S, H,c1; c2) — (51, Hy,v)

SaH7C1> - <SlaH17nr
S1,Hi,co) — (So, Ha,vr

(S,H,c1; ca) — (S2, Ha, vy)

(S,H,e) —v v ¢&{0,null}
<SaH)C1> - <SlaH17/Ur>
(S, H,if (e) then c; else co) — (S1, Hy,vy)

(S,H,e) —v v e{0,null}
(S, H,ca) — (S2, Hz,vr)
(S, H,if (e) then c; else ca) — (Sa, Ha, vy)

(S,H,e) —v ve{0,null}
(S, H,while (e) c) — (S, H,nr)

(S,H,e) —v v ¢{0,null}
(SaH7C>_)<Sl7H1aU/> U,#nr
<S, H,while (e) C> — <Sl,H1,’U/>

(S,H,e) —v v ¢{0,null}
(S,H,c) — (S1, Hy,nr)
<51,H1,Whi|e (e) C> — <52,H2,Ur>
<S, H,while (e) C> — <SQ,H2,1}r>

21

A.2 Semantics of Output Language

We present only the evaluation rules which involve regions. The others are similar the corre-
sponding rules in the input language. The domains and domain equations for the operational
semantics of the output language are:

Value = Integer+ {null} + Location x Region
Retval Value + {nr}
Stack Variable — Value
Heap = Location — (Field — Value)
RegEnv = RegVar — Region

Again, the value nr indicates that a command doesn’t return.

A.2.1 Expressions

The semantics of expressions in the input language is defined using a relation (S, H, R, expr) — v
in the domain:
(Stack x Heap x RegEnv x Expr) — Value

The meaning of (S, H, R, expr) — v is that, given a stack S, a heap H, and a region environment
R, expression expr evaluates to value v. The rule for field access expressions is:
S(x)=(l,p) perange(R) H()(f)=v
(S,H,R,x.f) — v

A.2.2 Commands

We express the semantics of commands using a relation (S, H, R,com) — (S’, H', R',v) in the
domain:
(Stack x Heap x RegEnv x Com) —

— (Stack x Heap x RegEnv x Retval)

The meaning of the relation (S, H, R,com) — (S’, H', R’,v) is that, given a stack S, a heap H,
and a region environment R, the evaluation of command com yields a new stack S’, a new heap
H', a new region environment R’, and a result value v. Let range(R) be the range of map R:
range(R) = {y | 3z . R(x) = y}. The evaluation rules are:

p ¢ range(R)
(S,H,R,create r) — (S, H, RU {r — p},nr)

, «_J nullif reach(x, S, H, p)
S(z) = { S(z) otherwise
(S,H,RU{r+— p},remove r) — (S’ H, R, nr)

S(x)=(l,p) perange(R) (S,H,R,e) —v
(S,H,R,x.f =¢e) — (S,H[l — H(])[f — v]], R, nr)

R(r)=p s:ref(tf) m=init(tf)
(S,H,R,x=new s inr) — (S[x— (I,p)], HU{l — m}, R, nr)

22

Sly)=wv tp[fp](tz)=c R =R|r
({z—wn}, H R c[r/rp]) — (S1,Hi,R,v) v#nr
<S7H,R>X:pm (y)>_>< [x—>v],H1,R,nr)

The initialization function init yields a map m such that:

m(f) = 0 if intfetf
") null if sfetf

The reach(x, S, H, p) predicate indicates if a region p is reachable from a variable x:

(I, p) € reachLoc(S, H)
S(x) = (I, p) H()(F) = (', 0)
(I, p) € reachLoc(S,H) (I, p') € reachLoc(S, H)

reachReg(S, H, p) =3l . (I, p) € reachLoc(S, H)
reach(x, S, H, p) = reachReg({x — S(x)}, H, p)

B Soundness

B.1 Partial Ordering
The partial ordering for types is the subtyping relation:

L <:ref [p, po] (T f) T<T

Type environments are ordered pointwise and empty environments are less than any other envi-
ronments:

dom(T') =dom(I") W¥x.TI'(x) <:T'(x)
r<r’ p<Tr

The new environment computed by the unification function is the meet operator with respect
to this ordering. That is, if (I', E) = unify(I'1,T'2), then I' =T’y M Ty.
B.2 Live Regions

The live regions at a program point represent all of the regions that occur in the type environment
at that point. We formally define live regions as follows.

Definition 1 If 7 is a type and T is a translation of region variables to region names, then the
regions of T are:

Regions(int) = Regions(null) = ()
Regions(ref [po, 7] (7 f),T) ={T[p] | p € (FU{po})}

The set of live regions in I with respect to T 1is:

Live(T',7) = U Regions(I'(x), T)
zedom(T")

With respect to the live sets, the meet operation translates into set union. That is, when I' =
I'y MTg, we have Live(I') = Live(I';) U Live(T'y).

23

B.3 Unification

Intuitively, the purpose of the unification function unify in the algorithm is to make its arguments
comparable in the lattice. We formally define this function, as follows. We first define the function
unifyReg which unifies regions and region sets:

P17 P2
unifyReg(p1, p2) = {p1 = p2} unifyReg(p,p) =0

Vi. E; = unifyReg(pi,p;)
unlfyReg(- Pn s pl) EiU...UE,

Using this function, type unification is defined as follows:

unify(int, int) = (int, ()

T =ref [po,p] (FF) 7 =ref [po,p] (FF)
un|fy(7' J_) (7‘, @) unlfy(J_ T) (T, @)

T[pé)/pOa?/p] = 7:/ .
T =ref [po,p] (Tf) unifyReg(p,p/)=F
= ref [pg, p/] (77 f) unifyReg(po, py) = E
unify(r,7') = (1, Eg U E)

unify(r,71) = Ev unify(me, 75) = E»

unify (11 — 12,7 — 75) = (11 — T2, E1 U E»)

Note that the analysis rules and unification function are such that bottom types (L) are never
being used as arguments to function type constructors or reference type constructors.

B.4 Analysis Results

The region inference algorithm computes type information at each program point. Our type
inference rules ensure that the following relations hold between the type environments at different
points in the program.

P(e(s x; c1) Ufx— 1} = T(ocy) 1)
P((sx; c)e)Ufx =7} = T(cye) 2)

F(e(int x; c1)) U{x—int} = T'(ecy) (3)
C((int x; c)e) U{x+— 7} = T(cye) (4)
[(e(c1; c2)) = T(ecy) (5)

I((c1; c2)0) = T(cze) (6)

C1;C = F(Clo) = F(.C2> (7)

[((if (expr) then cy else co)e) = T'(cye) MI(cpe) (8)
['(e(if (expr) then c; else cp)) = T'(ecy) =I'(ecy) 9)

24

I'(e(while (expr) c1)) MI'(cie) = T'(ecy) (10)
['((while (expr) c1)e) = T'(ecy) (11)

For assignments and return commands, the analysis result is such that the following relations
hold:

c=(x=e) : I'(ec)kFe:r (12)
P(ce) = T(oc)fz — 7] (13)

c=(xf=e) [(ec) Fxf:7 (14)
[(ec)e:7, 7' <7 (15

['(ce) =T'(ec) (16

c=(x=a:news) : Ala:7 (17)
P(ce) = T(c)[i 7] (18)

c=(x=cs:ply)) : AFcs:m — 7 (19)
F'ky:m, 7<:m (20)

P(ce) = T(s)fx = 7] (21)

c=(returnx) : DIhkret:7 (22)
FEx:7r, 7 <7 (23)

['(ce) =10 (24)

B.5 Translation

We give a full definition for the translation that occurs in the two phases of the algorithm. The
translation 7 uses the initialization environment A and the type environment I' which contains
type information at each program point. The translation for each procedure is:

Abp:mp—1 FV(rn—1m)=70
Ttz p(t1 z) = com]AT =
T[m]AT p [p] (T[n]AT z) = T [com]AT’

(25)

At several points in our translation, the algorithm inserts sequences of create or remove
commands. Given a set S of regions, we denote by create S the sequence of region creation
commands for each region in S. Similarly, we denote by remove S the sequence of region removal
commands for all regions in S. If S = (), these are empty sequences.

25

B.5.1 Control Flow Constructs

The translation for declarations and control flow constructs recurses on the structure of com-
mands. At join points in the control flow it may create new regions; when variables go out of
scope, the translation may remove existing regions. We define the translation ¢, = 7 [c;Jof an
input command ¢; into an output command c, as follows:

T[[Cil]]AF = Co1
Ry = Live(cj1®) — Live(cje)
Ts x; ci1]JAT = (s x; co1) ; remove Ry (26)

T[[Cil]]AF = Co1
R4 = Live(ci1®) — Live(c;e)
T[int x; cii]JAT = (int x; co1) ; remove Ry (27)

Tlcia]Al = co1 T[cip] AT = cop
Teirs ci] AL = co1; Co2 (28)

Tlci] AT = co1 T[cip] AT = cop
Cc1 = Live(cje) — Live(cjre)
Ceo = Live(cje) — Live(cjpe)
T[if (e) then ¢;1 else cip] AT =
if (e) then (co1; create Ce1) (29)
else (co2 ; create Cep)

T[[Cil]]AF = Co1
Cw1 = Live(ecj1) — Live(eq)
Cw2 = Live(eci;) — Live(cjre)
T [while (e) ci1JAT =
create Cy1 ; while (e) (co1; create Cy2)

B.5.2 Basic Commands

The translation for basic commands (assignments and return commands) consists of two trans-
lations 7; and 7;. The former corresponds to the first phase of the algorithm, which adds region
type annotations; the latter corresponds to the second phase, which inserts region creation and
removal commands. The translation for basic commands is then the composition of the two:

T[cJAT = T[]AT ="
T[c]AT =" (31)

B.5.3 Region Type Annotations

We first define the translation for insertion of region annotations. Except for allocation commands
and procedure calls, this is the identity function.

c#(x=newc) c#(x=p(y))
T[c]JAT =c (32)

26

c=(x=a:newc) Al a:reflpy,p] (FF)

T[c]JAT = x =new s in 7 [po] (33)
c=(x=c:ply)) AkFc:m—mn
p=FV(r1) UFV(m)
Lx=p)AT = x=p [T]p]] (v) (34)

B.5.4 Region Creation and Removal

The translation 7, for inserting region creation and removal commands for basic statements is:

¢ # (return x) ¢ # (x = p[rl(y))
Cp, = Live(ce) — Live(ec)
Rp = Live(ec) — Live(ce)

Ti[c] AT = create Cy; c; remove Ry, (35)

c= (x=p[r(y)
Cp = (Live(ce) UT) — Live(ec)
Rp = Live(ec) — Live(ce)

Ti[c] AT = create Cp; c; remove Ry, (36)

c = (return x) R, = Live(ec)
Ti[c] AT = remove R, ; ¢ (37)

B.6 Consistency

We define the projection of entities from the output domains by removing all of their region
information.

Definition 2 Ifv is a variable in the output domain then the projection v | 1is defined inductively

as:
| {v ifv=mnorv=null orv=nr
v _

I ifv=(r)
If S is a stack and H is a heap in the input domain, their projections S | and S | are defined
by:

(S 1)) = (Sw) |

(H L))(f) = H@)(f))]

We say that an output state (S,, H,) is homomorphic to an input state (S;, H;), and write
(So, Hy) ~ (Si,Hy), if : So | = S; and H, | = H;. Similarly, (Sy, Hy,vo) ~ (Si, Hi,v;) if
Sol = 8i, Ho | = H;, and v, | = v;.

Definition 3 A configuration (S, H) is consistent with the type environment I, relative to a

translation T of region variables to region names, written (S, H) ~ (I',T), if there exists a
mapping p of locations to reference types and regions p(l) = (7,r), such that:

vl . u(l) = (reflpo, 7] (7 F),r) Ar="T]po] (38)

27

S)=(Lr) = z:7€l A u(l)=(1,r) (39)
H)(f) = (1) = u(l') = (reflp), 7] (7 f),r') A
p(l)=(r,r) AN Tferf (40)
We use the shorthand notation (v,, H,) ~ (I', T) for:
({ret — v, }, H,) ~ (', T)

Definition 4 We say that a state (S, H, R) in the oulput domain is consistent with a type envi-
ronment I, relative to T, and write (S, H,R) ~ (I, T), if:

(S,H) ~ (T, T) (41)
Live(I',7) = R (42)

The following properties about the consistency between states and type information easily
follow from the above definitions:

Property 1 If (S,H) ~ (I',T) then:
reachReg(S, H,r) = r € Live(I',T)
Property 2 If (S,H,R) ~ (I',T) then:
reachReg(S,H,r) = reR

Property 3 If (S,H,R) ~ (I',;7) and ' C I, then:

(S,H,R) ~ (I'",T)
Property 4 If (S,H,R) ~ (I',T), (S,H,R,e) — (l,r), and ' e : T, then:

pu(l) = (7,r)

Property 5 If (S,H,R) ~ (I';7) and "'t e: L, then:

(S,H,R,e) — null

B.7 Lemmas for Expressions

Lemma 1 (Expression Preservation) Given an expression e, we have that:

(Si, Hi,e) — v; (43)
(So, Ho, R, €) — v, (44)
(So, Ho) ~ (i, Hi) (45)
= v, | = (46)

PROOF. We prove this lemma by induction on the derivations for (S;, H;,e) — v;. We must
examine each rule in the operational semantics for expressions.

Rule for e = x. Using relations (43) and (44) and the operational semantics of the input and
output languages, we have: S;(x) = v; and S,(x) = v,. Then relation (45) implies v, | = v;.

28

Rule for e = n. By the operational semantics of the input and output languages, we have:
v; = n and v, = n. By the definition of projection, v, | = v;.

Rule for e = null. By the operational semantics of the input and output languages, we have:
v; = null and v, = null. By the definition of projection, v, | = v;.

Rule for e = e1 @ ep. Because of relations (43) and (44) and the operational semantics of the
input and output languages, we have:

(Si, Hiye1) — n1 (S, Hp,e1) — nf
<Si7 Hi7 62> — N2 <SO7HO7 62> - nIQ

where ny @ ng =n = v; and n} ®nby =n' = v,. Applying the induction hypothesis for e; and eq,
we get: nj = ny and n, = ng. Hence n = n’. Therefore, v, | = v;.

Rule for e = x.f. Using relations (43) and (44) and the operational semantics of the input and
output languages, we have:

SZ(X) =1 Hz(l)(f) = U;
So(x) = (I, r) Ho () (f) = v, reR

From relation (45) we have S, | = S; and H, | = H;. Relation S, | = S; implies [= I’. Relation
H, | = H; then implies v, | = v;. O

Lemma 2 (Expression Progress) Given an expression e, we have that:

(Si, Hi,e) — v (47)

(S0, Ho) ~ (S, H;) (48)

(So, Ho, R) ~ (I',T) (49)
=

(So, Ho, R,€) — 0, (50)

PROOF. We prove this lemma by induction on the derivations for (S;, H;,e) — v;. We must
examine each rule in the operational semantics for expressions.

Rule for e = x. Because of relation (47), it means that x € dom(S;). But (S,, H,) ~ (S;, H;),
so x € dom(S,). Therefore, we can apply the rule for evaluation of variables in the output
semantics, and get: (S,, Hy, R,X) — 5.

Rules for e = n or e = null. The output operational semantics for integers and null are axioms,
hence they apply directly: (S,, H,, R,n) — n or (S,, Hy, R, null) — null.

Rule for e = e; @ ey. Using relation (47) and the operational semantics of the input language,

we have:
(Si, Hi,e1) — m
(Si, Hi, e2) — na

By induction hypothesis for e; and es:

<SO7HO7R761> - Ul
<SO>H07R7 62> — U2

29

By Expression Preservation Lemma, vy = ny and vy = no. Hence, we can apply the rule for
evaluation of arithmetic expressions in the output language and get:

(So, Ho, R, e) — 1
where n = ni P no.

Rule for e = x.f. Using relation (47) and the operational semantics of the input language, we
have:
Sz(X) =1 Hl(l)(f) = V;
From relation (48) we have S, | = S; and H, | = H;. Relation S, | = S; implies S,(x) = (I,r).
Relation H, | = H; then implies H,(I)(f) = v,, with v, | = v;. Finally, relation (49) and
Property 2 show that r € R. We can apply the operational semantics for field accesses and
evaluate the expression x.f: (S, H,, R, x.f) — v,. O

B.8 Preservation Theorem

Theorem 1 (Preservation) Given a command ¢; in the input language, type environments
['(ec;) and I'(c;e) at program points before and after the command, and a translation T, we have
that:

¢ = 7T ci] (51)
(Si, Hy, ci) — (i, Hi, vq) (52)
(S0, Ho, R, Co) — (S, Hyy R, 00) (53)
(S07 Ho) ~ (Su Hl) (54)
(S0, Ho, R) ~ (I'(eci), T) (55)
=
(Sé,Hé,UO) ~ (S;Hz,avz) (56)
(S!,H! R') ~ (I'(cje),T) ifv;=nr (57)
(vo, H.) ~ ([(ec;), T) if v; # nr (58)

PRrROOF. The proof is by induction on the derivations of the evaluation (S;, H;, ¢i) — (Si, H, v;).
We examine each of the rules in the operational semantics of the input language. We first prove
the cases for declarations and control flow commands, and then prove the cases for basic com-
mands.

Rule for ¢; = s x. The translation of ¢; is:

o = (sx;cu); remove Ry
Ry = Live(cire) — Live(cje)

Consider input and output states satisfying conditions (52)-(55). From the semantic rule consid-
ered in this case, we get:

(S; U{x — null}, H;,ci1) — (S U{x — vy}, H., v;)

From condition (53) and the operational semantics of declarations, sequencing, and region
removal in the output language, we have:
(So U{x+— null}, Hy, R,co1) — (S U{x— vy}, H., R" v,)
R"—Ry=FR

30

because the sequence of region removal commands remove Ry only removes regions from R”.
Then, using Property 1 and the fact that Ry and Live(ec;) are disjoint by definition of Ry, we
conclude that —reach(S/, H.,r) for each r € Ry. Thus, the removal commands leaves the stack
and heap unchanged, S, = S/ .

Condition (54) implies:

(So U{x+— null}, Hy) ~ (S; U{x — null}, H;)
Condition (55) implies:
(So U{x+— null}, Hy, R) ~ (I'(ec;) U{x— L}, T)
Analysis result relation (1) shows that: I'(ec;) U {x +— 1} = T'(ecj;). Therefore:
(So U{x+ null}, H,, R) ~ (I'(eci1),T)

All these equations show that conditions (52)-(55) are satisfied for the translation of the subcom-
mand c,1 = 7 [ci1], and the derivation (S; U {x — null}, H;, ¢;1) — (S U {x — vgi}, H.,v;) is a
sub-derivation of (S;, H;,ci) — (Si, H,v;). By induction hypothesis, we have:

(SLU{X = vgo}, H) o) ~ (STU{x — vy}, HY, v;)
(SLU{x+ vy}, H),R") ~ (I(cire), T) if v; =nr
(vo, H.) ~ (T'(eciy)(ret), T) if v; # nr

Relations (1) and (2) show that the analysis result is such that: I'(ecij;)(ret) = I'(ec;)(ret) and
['(ci1e) = I'(cje) U {x — 7}. Hence:

(SLUA{X = vgo}, H) o) ~ (SIU{x — vy}, HY, v5)
(S(/) U {x — vz0}, H(,v R”) ~

~ (D(cio) U{x—7},T) ifv;, =nr
(vo, H.) ~ (T'(ec;)(ret), T) if v; # nr

The last relation above is precisely condition (58). The first relation above implies condition (56):
(50, Hoy vo) ~ (57, Hi, vi)
Finally, to show condition (57), we prove that:
(S U{x+— vy}, H), R") ~ (D(cio) U{x— 7},T)

implies:
(Sév Hc/)a R/) ~ (F(Ci.)v T)

For this, we inspect the conditions from the definition of consistency. Consistency condition
(41) immediately follow from the former consistency relation because the stacks and the type
environments in the two relations are identical except for z. For condition (42), the former
consistency relation shows that: R” = Live(cjye), since I'(ciye) = I'(cie) U {x — 7}. Hence:

R = R'—R4
= Live(cize) — (Live(ciy®) — Live(cje))
= Live(cje)

The above relation holds because Live(cie) C Live(ci;e). We have therefore proved all the con-
ditions for the consistency relation (S, H), R') ~ (I'(cie), T), which completes the proof in this
case.

31

Rule for ¢; = int x. The proof is similar to the case above.

Rule 1 for ¢; = ¢j1;¢p. Let co1 = T[cii] and co2 = T[ciz]. The translation of ¢ is
Co = Col ; Co2. Comsider input and output states satisfying conditions (52)-(55). From the semantic
rule considered in this case, we have:

<S¢,H1,Ci1> — <S{,H{,’Uz> V; 7& nr

From condition (52), one of the two rules for sequencing in the output language applies. Both of
these evaluate the first command in the sequence:

<SO) HO7 R7 C01> - <S(/),5 H(/),’ RH? Ug>

From condition (54), (S,, Hy) ~ (S;, H;). We also have I'(ec;) = I'(ec;1), from (5), so (S,, Hy, R) ~
(I'(eci1), 7). All conditions (52)-(55) are satisfied for the translation of ¢j;, with the evaluation
(Si, Hi,cin)y — (S!',H! ,nr). Thus, we can apply the induction hypothesis for the translation of
¢i1- By induction hypothesis, we get v/ | = nr, so v/) = nr. Therefore, we must also use the first
sequencing rule in the output semantics:

(So, Ho, R, Co1) — (S, Ho, R, vo)

Because the evaluation of ¢j; returns, we directly use the conclusion of relation (58). By induction
hypothesis for the translation of ¢j;, we have:

(Sz/)?H(/)’UO) ~ (S;’Hz,7vl)
(vo, Hp) ~ (T'(ocin), T)

This completes the proof in this case, since I'(ec;) = I'(ec;1), by relation (5), and the type of
ret is the same at all program points: I'(cie) = I'(cjpe).

Rule 2 for ¢; = ¢j1;¢p. Let co1 = T[cii] and co2 = T[ciz]. The translation of ¢ is
Co = Co1 ; Co2- Consider input and output states satisfying conditions (52)-(55). From the semantic
rule considered in this case, we have:

(Si, Hi,cin) — (S, H! nr)
(S{, HY,cia) — (S, H, vi)

From condition (52), one of the two rules for sequencing in the output language applies. Both of
these evaluate the first command in the sequence:

<SO7 HO» R> C01> - <S(/)/a Hgv RH7 U:)/>

From condition (54), (S,, Hy) ~ (S, H;). We also have I'(ec;) = I'(eci1), from (5), so (S,, Ho, R) ~
(F(oc;l), T)

All conditions (52)-(55) are satisfied for the translation of ¢;1, with the evaluation (S;, H;, ci1) —
(SY, H!' ,nr). Thus, we can apply the induction hypothesis for the translation of ¢j;. By induction
hypothesis, we get v/ | = nr, so v/ = nr. Therefore, we must also use the second sequencing rule
in the output semantics:

<S¢,)/? Hga Rl/v Ci2> - <S(/)7 H</)7 Rl? UO)

Because the evaluation of cj; doesn’t return, we directly use the conclusion of relation (57). By
induction hypothesis for the translation of ¢;;, we have:

(51/3/7 Hclalv nr) ~ (Sz{/’ Hz{/v nr)
(S(,)/’ H(/)/7R/I) ~ (F(Cil.)>T)

32

The analysis result is such that I'(ci;e) = I'(ec;2), by relation (7). Thus, all conditions (52)-
(55) are satisfied for the translation of cjp, with the evaluation (SY, H!, co) — (Si, H/,v;). By
induction hypothesis we get:

(S/ H/) (S/ Hl 7,)
(S/ H/ R/) ((|20),T) if v; = nr
(UO,H(’)) ~ (T'(ecip)(ret), 7) if v; #nr

This completes the proof in this case, since I'(cie) = I'(cip®), by relation (6), and the type of
ret is the same at all program points: I'(cje) = I'(cjpe).

Rule 1 for ¢; = if (e) then c;; else c;p. This rule evaluates the true branch c;; of the
command. Let co1 = 7 [ci1] and co2 = 7 [cip]. The translation of ¢ is:

o = if (e) then (co1; create Ccy) else (co2; create Ceo)
where: C. = Live(ce) — Live(cjro)
Ce2 = Live(cie) — Live(cipe)

Consider input and output states satisfying conditions (52)-(55). From the semantic rule consid-
ered in this case, we have:

(Si, Hi,e) — v ¢ {0, null}

<SZ', Hi, Ci1> — <SZI, HZ(, Ui>

From condition (53) and the operational semantics of the output language, e must evaluate
to a value (since both rules have the evaluation of e in the premise):

(So, Ho, R, €) — v/

Because consistency relation (54), we can apply the Expression Preservation Lemma, and get
that v | = v. But v & {0, null}. Hence, v ¢ {0, null}. Hence, the first rule for conditionals in the
output semantics must apply:

(So, Ho, R, co1 ; create Cop) — (S0, H! R, v,)

Therefore:
<SO7 H07 R7 C01> e <S(I)7 H(/)7 Rl/v UO>
R'"UCq =R

By condition (54): (S,, Hy) ~ (Si, H;). By condition (55) and analysis result relation (9):
(Sm H,, R) ~ (F(.Ci1>7 T)

All conditions (52)-(55) are satisfied for the translation of ¢;;, with the evaluation (S;, H;, ci1) —
(S, H],v;). By induction hypothesis we get:

(S(INHzl)vvo) ~ (Sz{’Hz{7vZ)
(S),H,,R") ~ (I'(cire),7) ifv; =nr
(Vo, H.) ~ (T'(eciy)(ret), 7) if v; # nr

The first relation above is precisely relation (56). The last relation above implies relation
(58), since the return type is the same at all program points. Finally, to prove relation (57), we
show that:

(Sév H(/), R//) ~ (F(Cil.)v T)

implies:

(S:w Ht,yv R') ~ (T(c;e),T)

33

For this, we inspect the conditions from the definition of consistency. By the analysis result
relation (8) we have that I'(cj;e) C I'(cje). By Property 3, consistency condition (41) holds at
program point c;e. For condition (42), the consistency relation (S, H), R") ~ (I'(ci1®),7) shows
that: R” = Live(cjze). Hence:

R = R'UCy
= Live(cj;®) U (Live(cje) — Live(cir®))
= Live(cio)

The above relation holds because Live(ci;®) C Live(cie). We have therefore proved all the con-
ditions for the consistency relation (S, H), R') ~ (I'(c;e), 7T), which completes the proof in this
case.

Rule 2 for ¢; = if (e) then c;; else cjp. This rule evaluates the false branch cj of the
command and the proof is similar to the previous case.

Rules for c¢; = while (e) ¢;1. We consider all of the three rules for the evaluation of while
loops. The conclusion of all of these rules is:

(Si,Hi,whiIe (e) Cil) — (S{,H{,’Ul)

Let co1 = T[ci1]. The translation of ¢ is:

¢, = create Cy; while (e) (co1; create Cyp)
where: Cy1 = Live(eci1) — Live(eg;)
Cw2 = Live(eci1) — Live(cire)

Consider input and output states satisfying conditions (52)-(55). From condition (53), the
output command first executes the region creation commands create C,,1, and then evaluates the
loop. If we denote by c/; = (co1; create Cy2), we have:

(So, Ho, R, create Cy1) — (So, Ho, Ry1,nr)
(So, Hp, Ruw1,while (e) ciy) — (SL, H., R, v,)
where: Ry1 = RUCy1

By induction hypothesis, each sub-derivation of the evaluation (S;, H;, ci) — (S}, H/, v;) satisfies
the implication in the theorem. These sub-derivations include the evaluation of ¢;; in the second
and the third rule for loops. Given this fact, the following property holds:

Property 6 Consider the commands ci1 and cyy in the current case. Let (Spi, Hyi), (S, Hyy;, vi)
(Spos Hpoy Rp), (Spes Hppoy Ry, v0) be states and values such that:

bpi, Hpi, while (e) ci1) — (s!. H

pi> 4 pio Upi>

Spo, Hpo, Ry, while (e) cbq) — (S;O, pO,R' Upo)

((59)
((60)
(Spo; Hpo) ~ (Si, Hi) (61)
(Spo,Hpo,R) (I'(ecin), 7) (62)

(63)

and such that the derivation for:

(Spi7Hpi7 while (e) Cil) (S;w pzvvpl)

34

s a sub-derivation of, or is the same as, the derivation for:
(Si, HZ', while (e) Cil) — (51/7 HZ{, U,‘)

Then, the following relations hold:

(B;)m po’UPO) (; H/) (64)
(Spos Hj por Ry) ~ (D(ec),T) if wpi=nr (65)
(Upo, H,,) ~ (C(eciz)(ret), T) if wp #nr (66)

In other words, if we start with a output state consistent with the type information at the top of
the loop body (i.e., program point ecj;), then the execution of the loop preserves this invariants.

Using this result, we can easily prove the relations required for this case, using the following
instantiation:

(Spi’Hpi) = (S’HH’L) (S;n)) = (Sz,7Hz/) Upi = Ui
(SpmHPO) = (SO?HO) (Szgoa) = (Sé,,Hé) Upo = Vo
R, = R R;, =R

With these substitutions, relations (59)-(61) immediately follow from (52)-(54). We can also
prove relation (62) using condition (55), as follows. We inspect the conditions from the definition
of consistency. By the analysis result relation (10) we have that I'(ec;) T I'(eci;). By Property 3
and relation (55), consistency condition (41) holds at program point ecj;. Finally, consistency
condition (42) holds because:

Ry = R U Cn
= Live(ec)) U Cy1 by condition (55)
= lee(i) U
U (Live(eci1) — Live(ec)) by definition of Cy
= Live(ecj;) Live(ec;) C Live(eci;)
by relation (10)

We have therefore proved all the conditions for the consistency relation (S,, Hy, Rw1) ~ (I'(eci1), 7).
Hence, relation (62) also holds. We now apply the above property and get:

(ngHévvo) ~ (S{,H{,’UZ)
(Sg,Hé,R/) ~ (I‘(ocil),T) if v; = nr
(vo, H.) ~ (T'(eciy)(ret), T) if wv; #nr

Since the analysis result is such that I'(ec;;) = T'(cje), by relation (11), and T'(ecji)(ret) =
I'(ecj)(ret), this proves the relations for this case.

We now prove the property by induction on the derivations of the evaluation (Sy;, Hp:, while (e) ¢i1) —

(Spir H

bis I ;s vpi). Consider input and output states and values satisfying relations (59) - (62). From
condition (59), one of the three rules for while loops in the input operational semantics must
apply. We consider each of these rules in turn.

Subcase: While Rule 1. Assume the first rule for while loops applies:

(Spis Hpive) — v v € {0,null}
Spi = Spi Hp; = Hpi vy = nr

35

Next consider the evaluation (Sp,, Hpo, Rp, while (e) c1) — (Sp,, Hppy R, Upo). Because of the
evaluation of while (e) ¢/, one of the three rules for while loops in the input operational semantics

must apply. Each of these rules evaluates the expression e:
(Spos Hpo, Itp, €) — 0/

By the Expression Preservation Lemma, v | = v. But v € {0, null}, therefore v € {0, null}.
Hence, the first rule for while loops in the output operational semantics also applies. Therefore:

! / /
Spo =Spo Hpo=Hpo R, =R, vpo=nr

From condition (61), we get: (S},, Hpo, Upo) ~ (Sp; Hyy vpi). Finally, because vy = nr, we need
only to check relation (65). This relation immediately follows from (62), because S, = Spo,

H,,, = Hp,, and R}, = R,. This completes the proof for this subcase.

Subcase: While Rule 2. Assume the second rule for while loops applies:

(Spi, Hpiye) — v v & {0,null}

<Spi7 Hpia Ci1> - <Spi7 Hpia 'Upz'>

Szln = Spi H;oz = Hpi Upi 75 nr
Next consider the evaluation (Sp,, Hpo, Rp, while (e) c1) — (S, Hppy R, Upo). Because of the
evaluation of while (e) ¢/, one of the three rules for while loops in the input operational semantics
must apply. Each of these rules evaluates the expression e:

(Spos Hpo, Rp, &) — '

By the Expression Preservation Lemma, v’ | = v. But v € {0,null}, therefore v' ¢ {0, null}.
Hence, one of the last two rules for while loops in the output operational semantics applies. Each
of these rules evaluates the loop body c;. This first evaluates co1:

<Sp07 Hpo, Ry, Col> - <SgO’ H;/;oa RZ7 U;;o>
From condition (61), (Spo, Hpo) ~ (Spi, Hpi). From condition (62), (Spo, Hpo, Rp) ~ (I'(eci1), T).
We can therefore apply the outer induction hypothesis, for the translation of ¢;; with the evalu-
ation (Spi, Hpi,ci1) — (Spi, Hpi, Upi), because we know that its derivation is a sub-derivation of
(Si, Hi, while (e) ci1) — (S}, H],v;). Since vp; # nr, we get:

(Spor Hpos Upo) ~ (Spis Hipis Upi)

pos Hpos
(U;;ov H;go) ~ (P(.Cil)(ret)v T)

Hence, UI/,O | = vpi. But vy # nr. So UI’,O = nr. Therefore, the evaluation of the transformed

program also uses the second rule for while loops (but from the output operational semantics):
Spo=Spe Hp,=H,, Ry=R, v,,=1up
We then substitute these values in the result of the outer induction hypothesis:
(S;/m’ H;/m’UPO) ~ (S]/n" H}/n" Upi)
(vpo, Hy) ~ (I'(ociz)(ret), T)

po

Along with the fact that vy, # nr, this completes the proof for this subcase.

36

Subcase: While Rule 3. Assume the third rule for while loops applies:

(Spi, Hpi,e) — v v & {0, null}
<Sp7,7Hp27 |1> <S],)/Z,ng,nl’>

<S;/)IZ7H;/7/17 > <S;/n’ pz’vpl>

Next consider the evaluation (Sye, Hpo, Iy, while (&) cjy) — (S0, Hpps R, vpo). Because of this
evaluation, one of the three rules for while loops in the input operational semantics must apply.

Each of these rules evaluates the expression e:
(Spos Hpo, Iy, €) — v’

By the Expression Preservation Lemma, v' | = v. But v ¢ {0, null}, therefore v' ¢ {0, null}.
Hence, one of the last two rules for while loops in the output operational semantics applies. Each
of these rules evaluates the loop body c/;. This first evaluates co1:

<Sp07 jZed) Rp: Col> <SZ/3/0’ H,, R;9/7 U;)o>

po>

From condition (61), (So, H,) ~ (S;, H;). From condition (62), (Spo, Hpo, Rp) ~ (I'(eci1), 7).
We can apply the outer induction hypothesis, for the translation of cj; with the evaluation
(Spi, Hpi, ci1) — (S0, H!.,nr). Using the fact that c;; yields a nr value, we get:

(Szl)/mHz/)/o’ po) (sz’H]/m’UPi)

(Spor Hyos By) ~ (T(cine), T) (67)

pos £ por

Hence, v , | =nr. So Upo = nr. Therefore, the evaluation of the transformed program uses the

third rule for while loops in the output operational semantics:

(Spos Hpo, Rp, 1) — (Spys Hpppy Ry U Ciy2, i)

po> Hpo>
<S;/)/07H1/7/0’R;;/ U Cy2, while () > <S;/)o> po?RanpO>

because the evaluation of c; consists of the evaluation of co1 followed by the sequence of re-

gion commands create Cyp. We know that (S, H,,) ~ (S, H,;). We can also prove that

(Spos Hpyyy By U Cuy2) ~ (T'(eciz), T), as follows. We inspect the conditions from the definition of
consistency. By the analysis result relation (10) we have that I'(ci;e) C I'(ecj;). By Property 3
and above relation (67), consistency condition (41) holds at program point ecj;. And condition

(42) holds because:

Rg U Cw2 =
= Live(ci1e) U Cy2 by relation (67)
= Live(|10)
U (Live(eciy) — Live(cize)) by definition of Cyo
= Live(ec;; Live(cjre) C Live(ecir)

by relation (10)

We have therefore proved all the conditions for the consistency relation (Sy,, H,, R, U Rw2) ~

(I'(eci1), 7). We can now apply the inner induction hypothesis for the evaluations:

<S// H, > <S/ pz?vpl>

pis pis © pi’
<S;)/0¢H;)/07R//UC 2>Whlle() > <S;)o> po?R/ UP0>

By the inner induction hypothesis we get:
(¥

;707 povUPO) (Spw Hllnavpz> '
(Spm po?) ~ ((.Cll)) if Upi = Nr
C

(Vpos Hypp) ~ (F ocii)(ret), T7) if wp #nr

37

Finally, because I'(eci1) = T'(cje) by relation (11), and because I'(eci;)(ret) = I'(ec;)(ret), this
completes the proof for this subcase and the proof of the property.

Rule for ¢; = (x = e). The translation of ¢ is:

¢, = create Cp; ¢i; remove Ry

where R, = Live(ec;) — Live(cje)
C, = Live(cie) — Live(eg;)

Consider input and output states satisfying conditions (52)-(55). From the semantic rules of
assignments in the input and output languages, we have:

x € dom(S;) (Si, Hi,e) — v

Sl = Si[x — v] H!=H, v; =nr
x € dom(S,) (So, Hy, R, e) — v

Sl = S,[x — V'] H!=H, Vo = Nr

R = (RUCGC,) — Ry

First, we prove that (S), H),v,) ~ (S}, H/,v;) using the hypothesis (S,, H,) ~ (Si, H;). The
equivalence is trivial for return values, because v; = nr = v;, and for heaps, because H) = H,,
H! = H;, and H, | = H;. For stacks we have:

(S50(y)) L = (So(y)) | = Sily) = Si(y) for y # x
(SI(x) L =0 | =v=>5(x)

because v' | = v from the Expression Preservation Lemma. Hence S/ | = S/. Therefore
(SY, H},vo) ~ (S}, H.,v;).

Because assignments never return values, we only need to prove the conclusion of implication (57):
(SV,H!,R') ~ (I'(c;e), 7). We prove this relation using hypothesis relation (55): (S,, Hp, R) ~
(T(ec;), 7).

We first prove that consistency relation (41) holds. By hypothesis, (S,, H,) ~ (I'(ec;), 7).
That is, there is a mapping p which witnesses this consistency and satisfies relations (38)-(40).
We show that the same mapping witnesses the equivalence (S, H,) ~ (I'(c;®), 7). Since the heap
and the mapping p are unchanged, relations (38) and (40) trivially hold. Then, since the stack
S! and the type environment I'(cje) are the same as S, and I'(ec;), except for x, it means that
relation (39) holds for all y # x. Finally, consider (I,r) such that S”(x) = (I,r). The analysis result
is such that x : 7 € I'(cje), where I'(ec;) - e : 7. By the operational semantics of assignments,
the execution of ¢, must evaluate the assigned expression: (S,, Hy, R,e) — (I,r). By hypothesis,
(So, Ho, R) ~ (I'(ecj), 7). We can apply Property 4 and get: p(l) = (7,r). Hence, we proved that:

Sh(x)=(l,r) = x:7el(ce) A p(l)=(rr)

Thus, relation (39) is satisfied for all x. This proves that (S7, H,) ~ (I'(c;ie), 7).

Using Property 1 and the fact that Ry, and Live(cje) are disjoint by definition of Ry, we
conclude that —reach(S”, H!,r) for each r € R,. Therefore, by the operational semantics of the
region removal command we have that S/ = S7.

Finally, we prove condition (42), that R’ is consistent with the set of live regions after the
statement. We have:

C, = Live(cie) — Live(oc;)
Rp = Live(eci) — Live(cje)
R = Live(eq)

38

Hence:
R’ = (RUCyp) — Ry = Live(cje)

This relation is due to the set equality:
(Au (B—A) - (A-B) = B

with A = Live(ec;) and B = Live(c;e).
This proves that (S!, H., R') ~ (I'(c;e),7) and completes the proof for this case.

Rule for ¢; = (x.f = e). The translation of ¢; is:
co = (create Cp; ¢i; remove Ry)

Consider input and output states satisfying conditions (52)-(55). From the operational se-
mantics of the input and output languages, we have:

Sz(X) = l() <S¢,H¢,e> — v
SO(X) = (l67 ro) <S07H07R7 e> - 'U/
S!=1S, H. = Hll)— H;(I})[f —']] v,=nr
rheRUC, R =(RUGC,)—Rp

First, we prove that (S0, H),v,) ~ (S}, H/,v;) using the hypothesis (S,, H,) ~ (S;, H;). The
equivalence is trivial for return values, because v; = nr = v;, and for stacks, because S/ = S,,
S; =S, and S, | = S;. From the stack consistency S, | = S; we have: (I{),r) | = lo, so I = lp.
For heaps we have:

(HL(I")) | = (H(I")) | = Hi(I") = HI(I") for I # Iy
(Hy(lo)) | = (Ho(lo)[f — v']) | = Hi(lo)[f = v] = H](lo)

because v/ | = v from the Expression Preservation Lemma. Hence H] | = H]. Therefore

(Sg7 Hgv vO) ~ (Sz/’ Hz{7 vi)'

Because assignments never return values, we only need to prove the conclusion of implication (57):
(SV,H/,R') ~ (I'(cie),7). We prove this relation using hypothesis relation (55): (S,, Hop, R) ~
(T(ec;), 7).

We first prove that consistency relation (41) holds. By hypothesis, (S,, Hy,) ~ (I'(ec;), 7).
That is, there is a mapping p which witnesses this consistency and satisfies relations (38)-(40).
We show that the same mapping witnesses the equivalence (SV, H,) ~ (I'(cje), 7). Since the stack
and the type environment are unchanged after the execution of ¢;, and we use the same mapping
u, relations (38) and (39) trivially hold. Then, since the stack H. is the same as H,, except for
lo and field f, it means that relation (40) holds for all I’ # l.

Finally, consider I’ = Iy and (l1,r1) such that H.(lo)(f) = (I1,r1). Since S,(x) = (lo,r0), by
hypothesis ((So, H,) ~ (I'(eci), 7)) and relation (39), we have u(lo) = (70, ro). The analysis result
is such that I'(ec;) - x.f : 7. By the typing rules, we get x : ref[pg, p|(7 f) € '(ec;) and 7 f € 7 f.
By relation (39), we have rg = ref[p), p](7 f), so:

u(lo) = (ref[pop) (7 f),ro) Tfe7Tf

By the operational semantics of assignments, the execution of ¢, must evaluate the expression.
Because H](lp)(f) = (l1,r1), the evaluation must yield a location: (S,, H,, R,e) — (l1,r1). We

39

also know that the analysis result is such that I'(ec;) F e : 7/, with 7/ <: 7. Suppose 7/ # 7.
Then, by the definition of subtyping, 7 = 1. By property 5, (S,, Hy, R,e) — null, contradiction.
Hence 7 = 7 and I'(ec;) e : 7. Also, by hypothesis, (S,, Hy, R) ~ (I'(ec;), 7). We can apply
Property 4 and get: u(ly) = (7,r1). Therefore, we proved that:

H(lo)(f) = (li,r1) = p(lo) = (reflpo, p] (7 f),r') A
,u<11> = (T,rl) ANTfeTf

Thus, relation (40) is satisfied for all x, so we have that (S), H,) ~ (I'(c;e), 7).

Using Property 1 and the fact that Ry and Live(cje) are disjoint by definition of Ry, we
conclude that —reach(S/, H.,r) for each r € R,. Therefore, by the operational semantics of the
region removal command we have that S, = S/

Finally, we can show the consistency relation (42), R’ = (RU Cp) — R, = Live(cje), using the
same proof as in the case for x = e. Hence, (S, H., R') ~ (I'(c;e), 7). This completes the proof
for this case.

Rule for ¢; = (x = new s). The translation of ¢ is :
Co = (create Cp; x = new s in r; remove Ry)

where:

At ac:ref [po,p] (T F) r =T [po]

Consider input and output states satisfying conditions (52)-(55). Consider that [is the newly
created location. We assume that the same location [is created during the evaluation of the
input and output languages, whenever the evaluation starts in consistent input and output states.
Therefore [¢ dom(H;) and | ¢ dom(H,). From the operational semantics of the input and output
languages, we have:

S! = Six 1] H =H;U{l—m} v;=nr
SlIl=Sox+—(I,r)] H)=H,U{l—m} v,=nr
R =(RUGC,) — Ry, m =init(t) s : ref(tf)

From the relations, we immediately have (S), H),v,) ~ (S, H/,v;) because v, = v; = nr,
(So, Ho) ~ (Si, H;) and:
(S509) L=(l,r) | =1=5j(x)
(Hy() L =m | =m = H{(l)

Because assignments don’t return values, we only need to prove the conclusion of implication
(67): (S, H.,R") ~ (T'(cje), 7).

We first prove that consistency relation (41) holds. By hypothesis, (S,, H,) ~ (I'(ec;), 7).
That is, there is a mapping p which witnesses this consistency and satisfies relations (38)-(40).
We show that extended mapping p/ = pU{l — (7,r)} is a witness for the consistency (SV, H.) ~

(I'(cje), 7T), where type 7 is the type of the allocation command: 7 = ref [po,p| (7 f) and r =
7 [pol-

From hypothesis, (S,, H,) ~ (I'(eci), 7). Since S updates S, with a new value for x, I'(c;e)
updates I'(ec;) with a new type for x, and H} extends H, with a value for [, it means that: relation
(38) holds for all locations except [, relation (39) holds for all variables except x, and relation
(40) holds for all locations except I. We next prove that these relations also hold for [and x.

Relation (38) immediately holds for the new location [, by construction of the extended
mapping p': p'(1) = (7,r), where 7 = ref [po, p] (7 f) and r = T [po].

40

Relation (39) holds for variable x because all the relations in this equation hold: by the
operational semantics we have S/ (x) = (I,r), by the analysis result relation (18) we get I'(cje) -
x : 7, and by construction of p/ we have /(1) = (7,r).

Relation (40) trivially holds for the new location [, because the initialization function init sets
all of the fields to 0 and null values. Hence H/(1)(f) € {0,null}, so H.(I)(f) # (I',r) for all fields
f. Since the premise is false, the implication is trivially true.

Thus, p' satisfies all of the relations (38) - (40) for all variables and all locations. This proves
that (S), H]) ~ (I'(c;e), T).

Using Property 1 and the fact that Ry, and Live(c;e) are disjoint by definition of Ry, we
conclude that —reach(S, H],r) for each r € R,. Therefore, by the operational semantics of the
region removal command we have that S, = S/

Finally, we can show the consistency relation (42), R" = (RU C,) — Ry = Live(cje), using the
same proof as in the case for x = e. Hence, (S), H., R') ~ (I'(c;e), 7). This completes the proof
for this case.

Rule for ¢; = (x = p(y)). The translation of ¢; is :
Co = (create Cp; x = p [f] (y); remove Ry)

Consider input and output states satisfying conditions (52)-(55). Let cj, be the command rep-
resenting the body of the invoked procedure in the input program, and c,, the body of that
procedure in the transformed program: co, = 7 [cjp]. From the operational semantics of the
input and output languages, we have:

Sily) =vi ({z— v}, Hi,cip) — (S/, HY ,vlf)

RIS

o £nr SI=Six—0/] H!=H!

Soly) = v1 ({z—= 01}, Hy, T, CoplF/Tpl) — (S, H, T, v5)
vl #Enr S =S,x— 0] H)=H/
FCR" R'=RUC, R/:(RUCb)—Rb

By hypothesis, (S,, H,) ~ (Si, H;). Hence, v} | = v1. Thus, {z+— v}, H,) ~ ({z +— v1}, H;).

We can also show that ({z — v}, H,,T) ~ (I'(ecip), T), as follows. First, we obtain relation
({z+— v}, Hy) ~ (T'(ecip), T) from the hypothesis (S,, H,) ~ (I'(eci), T), since it can be witnessed
using the same mapping . We only need to ensure condition (39) for variable z. This fact comes
from the subtype relation I'(ec;)(y) <: I'(ecip)(z). Second, we have that Live(eci,) = T, because
the analysis starts the evaluation of the procedure body using an environment which has the
argument type and the return type of the procedure.

We can apply the induction hypothesis for the translation of the procedure body and get:

(S(/)/’ Hl/ U”) ~ (‘51;/7 H// U//)

0’ Yo 1Y

<{ret = U/O,}, H(,)/) ~ (F(.Cip)7T)

From the first relation, it follows that (Sy(x +— o], H]) ~ (Si[x +— v/],H!). That is,
(St HL) ~ (S, HY).

From the second relation, we get (S,[x — v/],HY) ~ (I'(cie),T), using the same witness
mapping p. Therefore, (S, H!) ~ (I'(cie),7). Using Property 1 and the fact that R, and
Live(cje) are disjoint by definition of Ry, we conclude that —reach(S)’, H.,r) for each r € Ry.
Therefore, by the operational semantics of the region removal command we have that S, = S/'.
Finally, we show the consistency relation (42), R' = (RU C,) — Ry = Live(c;e), using the same
proof as in the case for x = e. Hence, (S!, H), R") ~ (I'(cje), 7). This completes the proof for this
case.

41

Rule for c; = return x. The translation of ¢; is:
Co = remove R, ; ¢

Consider input and output states satisfying conditions (52)-(54). From the operational se-
mantics of the languages:

Six)=v S/=0 H]=H, Vi =7
So(x) =" S)=0 H)=H, SJ(x)=v,=7
R' =R

Where S/ is the stack after remove R, but before ¢;. Since x is returned, by (??) we have
that x doesn’t reach any region in R,. Thus, S,(x) = S7(x). Because S, | = S;, it means
that v" | = v. Hence, we get (S, H,,v,) ~ (S, H/,v;). Finally, we can show that ({ret —
vo}, Hl) ~ (['(ec;),7) using the same mapping p as the one that witnesses the consistency
relation (S,, H,) ~ (I'(ec;), 7). As the heap is unchanged (H) = H,), relations (38) and (40)
trivially hold. For the stack, relation (39), we only need to prove that:

vo = (I,r) =ret: 7 € I'(oc) A p(l) = (7,r)

Assume that v, = (I,r). The analysis result is such that x : 7/ € T'(e¢;) and 7/ <: 7/. Assume
that 7 # 7. Then 7/ = L. By hypothesis, (S,, Hy, R) ~ (I'(ec;),7). By language semantics,
(S,, Hy, R,x) — v,. By Property 5, v, = null, contradiction. Therefore, 7/ = 7 and x : 7 € T'(e¢;)
and ret : 7 € I'(og;).

By hypothesis, (So, Ho, R) ~ (I'(eci),T). Since S,(x) = v, = (I,r) and x : 7 € I'(e¢;), it means
that p(l) = (7,r). Hence, we proved that ret : 7 € I'(ec;) and u(l) = (7,r). This completes the
proof for this case and the proof of the theorem. [J

B.9 Progress Theorem

Theorem 2 (Progress) Given a command ¢; in the input language, a type environment T'(ec;)
at the program point before the command, and a translation T, we have that:

C = Tq]

<Si7 H’i7 Ci> - <Sz/7 Hzlv UZ'>

(SO7 HO) ~ (SZ, Hz)

(S, Hoy R) ~ (I'(0c;),T)

<SO)H07R7 C0> - <S(/)7H;7R/7UO> (72)
PRrROOF. The proof is by induction on the derivations of the evaluation (S;, H;, ¢;) — (S., H], v;).

Rule for ¢; = s x. The translation of ¢; is

o = (sx;cj); remove Ry
R4y = Live(cize) — Live(cje)

Consider input and output states satisfying conditions (69)-(71). From semantic rule for this
case:
(S; U{x+— null}, H;, ci1) — (SIU{x — v}, H.,v;)

42

By induction hypothesis for the translation c¢,; = 7 [¢;1], command co; evaluates to a value:
<SO U {X = nU”}, HO7 R7 C01> - <S//7 Hé; R//7 UO)

From the Preservation Theorem, the resulting output state is consistent with (S/U{x — vy}, H., v;).
Therefore, S” is of the form S” = S, U {x — v,,}. Hence, we can apply the evaluation rule for
declarations:

(So, Ho, R,co) — (S, H!, R" v,)

If v, # nr, this completes the evaluation of ¢,. Otherwise, R” = Live(cj1®), so Ry € R”. Thus,
the evaluation can proceed and execute the trailing region removal commands.

Rule for ¢; = int x. The proof is similar to the case above.

Rule 1 for ¢; = ¢1;¢o. Let co1 = T[ci] and co2 = Tci2]. The translation of ¢ is
Co = Co1 ; Co2- Comsider input and output states satisfying conditions (69)-(71). From the semantic
rule considered in this case, we have:

(Siy Hi,cin) — (S, H, vi), v #nr
By induction hypothesis for the translation c¢;; with the above evaluation, we have:
(So, Hoy R, co1) — (S), H., R, v,)
By Preservation, v, # nr, so:
(So, Ho, R, co) — (S, H., R, v,)
which proves that the evaluation of ¢, doesn’t get stuck.

Rule 2 for ¢; = ¢j1;¢o. Let co1 = T[cii] and co2 = T[ciz]. The translation of ¢ is
Co = Col ; Co2- Comsider input and output states satisfying conditions (69)-(71). From the semantic
rule considered in this case, we have:

<Si7Hi,Cil> - <SZ{/7 Hz{/7 nr>
<Sz{/’ Hz{/v Ci2> - <Sz{> Hz(a Ui>

By induction hypothesis for the translation of ¢j; with the evaluation (S;, H;,ci1) — (S/, H], nr),
command co; evaluates to a value, and by the Preservation Theorem, that value is nr:

<507 H07 R7 C01> - <Sg7 H(/)I7 Rl/v nr)

Also, by the Preservation Theorem, (SJ, H)) ~ (S}, H) and (S4, H!!, R") ~ (T'(ci1®), T). Because
['(ci1e) = T'(ecip), we can apply the induction hypothesis for the translation of cj with the
evaluation (S, H! cip) — (SI, H!,v;), and get:

(S),H]l,R", co2) — (Sy, H}), R, v,)
From the evaluations of co; and co2, we conclude that the evaluation of ¢, doesn’t get stuck.
Rule 1 for ¢; = if (e) then c;; else c;p. This rule evaluates the true branch c;; of the
command. Let co1 = 7 [ci1] and co2 = 7 [ciz]. The translation of ¢ is:

co = if () then (co1; create Ceq) else (co2; create Ceo)

43

Consider input and output states satisfying conditions (69)-(71). From the semantic rule consid-

ered in this case, we have:
(Si, Hiye) — v & {0,null}
(Si, Hyycin) — (S}, Hj, vi)

By Progress and Preservation of Expressions, e evaluates to a value v’ ¢ {0, null}:
(So, Ho, R, &) — v g {0, null}

By induction hypothesis for the translation of ¢j; with the evaluation (S;, H;,ci1) — (Si, H/,v;),
command ¢, evaluates to a value v,:

<507 Hm R, C01> - <Sén Hcln RN, Uo>

If v, # nr, this completes the evaluation of c,. Otherwise, we use the Preservation Theorem,
to get (S),H.,R") ~ (I'(cire),7). Hence, R” = Live(cize), so R N Cy = (. Therefore, the
evaluation is not stuck and can execute the trailing region creation commands.

Rule 2 for ¢; = if (e) then c;; else cjp. This rule evaluates the false branch ¢ of the
command and the proof is similar to the previous case.

Rules for c¢; = while (e) ¢;;. We consider all of the three rules for the evaluation of while
loops. The conclusion of all of these rules is:

(SZ‘, Hi, while (e) Cil) — (51/7 H{, ’Ui)
Let co1 = T[ci1]. The translation of ¢ is:
co = create Cy; while (e) (co1; create Cyo)

Consider input and output states satisfying conditions (69)-(71). The output command
first executes the region creation commands create C,1, and then evaluates the loop. Since
(So, Hp, R) ~ (I'(ec;), T), R = Live(ec;), so RN Cy1 =). Therefore, we can evaluate the sequence
of region commands create Cy1:

(So, Hp, R, create Cy1) — (So, Ho, Rwi, nr)
where: Ry1 = RUCy1
By induction hypothesis, each sub-derivation of the evaluation (S;, H;,ci;) — (S;, H],v;) sat-
isfies the implication in the theorem. These sub-derivations include the evaluation of ¢j; in the
second and the third rule for loops. Given this fact, the following property holds:

Property 7 Consider the commands ciy and cyy in the current case. Let (Spi, Hyi), (S, Hy;,vi)
(Spos Hpo, Rp) be states and values such that:

(Bypi, Hpi, while (e) cit) — (Sp;, Hpy, Upi) (73)
(Spm HPO) ~ (Spiv Hpi) (74)
(Spoa Hpoa Rp) ~ (F(.cil)’ T) (75)

and such that the derivation for:
(Spis Hpi, while (e) ci1) — (S, Hpys vpi)
s a sub-derivation of, or is the same as, the derivation for:
(Si, Hi, while (e) ci1) — (S}, H., v;)
Then, there exists (S,,, Hyp, Ry, Vo) such that:

(Bpo, Hpo, Ry, while (e) coy) — (S, H)

po? *+pos

R}, Vpo) (76)

44

Using this result, we directly get the required relations for this case, using the following instan-
tiation:

(Spi, Hpi) = (53, Hi) (S, H;/gz) = (Si, H;) vpi =

i’

(SpO')HpO) = (SO7HO) (S/ H{)o) - (S(/NHé) UPO = Vo

po>

R, = Ru1 R;, =R
We can apply the property because one can show that: (S,, Hy, Rw1) ~ (I'(eci1),7), using the
same proof as the one from the corresponding case in the Preservation Theorem.

We next prove the property by induction on the derivations of (Sp;, Hp;, while (e) cj1) —
<Sz’n-, H;/n'? Upi). Consider input and output states and values satisfying relations (73) - (75). From
condition (73), one of the three rules for while loops in the input operational semantics must
apply. We consider each of these rules in turn.

Subcase: While Rule 1. Assume the first rule for while loops applies:

(Spis Hpi,e) — v v e {0,null}
S]/n = Spi H],n = Hpi Up; = Nr

By Progress and Preservation of Expressions, e evaluates to a value v/ € {0,null} in the
transformed program: (S,, Hy,e) — v’ € {0, null}. Therefore, we can evaluate while (e) c/; using
the first rule for while loops in the output operational semantics.

Subcase: While Rule 2. Assume the second rule for while loops applies:

(Spi, Hpiye) — v v &{0,null}
(Spis Hpiy i) — (Spis Hpi, Vpi)
S]/n == Spi Hzln == Hpi Upi 75 nr

By Progress and Preservation of Expressions, e evaluates to a value v ¢ {0,null} in the
transformed program: (S,, H,,e) — v' & {0,null}. We can apply the outer induction hypothesis
to the translation of ¢;; with the evaluation (Sp;, Hpi, ci1) — (Spi, Hpi, Upi), because we know that
its derivation is a sub-derivation of (S;, H;, while (e) ci1) — (S}, H!,v;). We get:

" " 1"
<SP0’ HP07 Rp’ C01> - <Sp0’ Hpo? Rp> Upo>

By the Preservation Theorem, v;,, # nr. Thus, we can evaluate while (e) c;; using the second rule
for while loops in the output operational semantics.

Subcase: While Rule 3. Assume the third rule for while loops applies:

(Spi, Hpi,e) — v v & {0, null}
(Spis Hpiy cin) — (Spi, Hyionr)
<S;/J,i7H1/9,i?Ci> - <S],:;i7Hg/7i7vpi>
By Progress and Preservation of Expressions, e evaluates to a value v ¢ {0,null} in the
transformed program: (S,, H,,e) — v' & {0, null}. We can apply the outer induction hypothesis,
for the translation of ¢j; with the evaluation (Spi, Hpi, ci1) — <51/;/i7 HI’?/Z-, nr), and get:

" " 1"
<SPO’ HP07 Rp> C01> - <Spo? Hpo? Rp? vpo>

By Preservation, v, = nr, (Sp,, H,,) ~ (Sp;, Hy;), and (S, Hy,, R)) ~ (I'(cize), 7). Hence,
R;’ = Live(cjre), so Rg N Cy2 = 0. Therefore, we can evaluate the sequence of region commands
create Cyo:

(Spos Hpyyy Ry, create Cu) — (S, Hpyyy Ry U Cyo, r)

45

One can show that: (S},, H),, Ry U Cy2) ~ (I'(cize),7), using the same proof as the one from

the corresponding case in the Preservation Theorem. We can then apply the inner induction

hypothesis for (S}, H, ci) — (S, Hp;, vpi) and get:

(St Hy, R U Cug, while (&) chy) — (8]

/ /
po’ 4 pos po7Hpo7Rpﬂva>

Thus, we can evaluate while (e) c/; in state (Spo, Hpo, Rp) using the third rule for while loops in
the output operational semantics. This concludes the proof of the property.

Rule for ¢; = (x = e). The translation of ¢ is:
¢, = create Cp; ¢j; remove Ry

Consider input and output states satisfying conditions (69)-(71). By condition (71), (S,, Ho, R) ~
(I'(e¢;),T), so R = Live(ecj). Thus, RN C, = (. Therefore, the execution can proceed by
evaluating the region creation commands:

(So, H,, R, create C,) — (S,, Hy, RU Cp, nr)

From the semantic rule considered in this case:

<Si,Hi,e>—>U
Si=Six—wv] H/=H; v;,=nr

By condition (70), and Progress and Preservation for Expressions:
(S,, Hy,e) — V'
Hence, we can further evaluate ¢; in the transformed program:

(So, Hyy RU Cp,¢;) — (S!, H,, RU Cp, nr)
S! = Splx — V']

We know that R, C Live(ec;) and R = Live(ec;). Thus, R, € RUCy, so the evaluation can proceed
and execute the trailing region removal commands.

Rule for ¢; = (x.f = e). The translation of ¢; is:
co = create Cp; ¢; remove Ry

Consider input and output states satisfying conditions (69)-(71). By condition (71), (S,, Ho, R) ~
(T'(ec;),7), so R = Live(ec;). Thus, RN C, = (. Therefore, the execution can proceed by
evaluating the region creation commands:

(So, Hy, R, create Cp) — (S,, H,, RU Cp, nr)

From the semantic rule considered in this case:

Sz(X) = lg (Si,Hi,e) — VU
S; = Sz HZI = Hz[lo — Hl(lo)[f = ’UH V; = nr

By condition (70), and Progress and Preservation for Expressions:

(So, Hyy€) — 0

46

Because (So, Hp) ~ (Si, H;), So(x) = (lo,ro). Thus, we have reach(S,, Hy, rp). Also, by condition
(71), (So, Hy, R) ~ (I'(ec;), 7). By Property 2, rg € R. So ryp € RU Cp,.
Hence, we can further evaluate ¢; in the transformed program:

(S, Hyy RU Cp, ¢;) — (S,, H., RU Cp, nr)

We know that R, C Live(ec;) and R = Live(ec;). Thus, R, € RUCy, so the evaluation can proceed
and execute the trailing region removal commands.

Rule for ¢; = (x = new s). The translation of ¢ is :
co = create Cp; x =new s in r; remove Ry

Consider input and output states satisfying conditions (69)-(71). By condition (71), (S,, Ho, R) ~
(T'(ec;),7T), so R = Live(ec;). Thus, RN Cp = (). Therefore, the execution can proceed by evalu-
ating the region creation commands:

(So, H,, R, create C,) — (S,, H,, RU Cy, nr)

From the semantic rule considered in this case:

s:ref(t f) m = init(t f)
Si=Six—1] H/ =HU{l—m} v;=nr
After the allocation statement, the analysis assigns to x the type of the allocation: I'(cje)(x) =
ref [po,p] (7), with T[po] = r. Therefore, r € Live(cie). Hence, either r € Live(ec;) = R, or
r € Live(cje) — Live(ec;) = Cp. In either case, r € RU Cp. Thus, the output program can further
execute the allocation command:
(S, Hyy, RU Cp, ¢) — <S(/), H(I), RUCGC,, nr>
Sl = Solx 1]
H! =H,U{l— m}

We know that Ry C Live(ec;) and R = Live(ec;). Thus, R, C R U C,, so the evaluation can
proceed and execute the trailing region removal commands.

Rule for ¢; = (x = p(y)). The translation of ¢; is :
Co = (create Cp; x = p [f] (y); remove Ry)

Consider input and output states satisfying conditions (69)-(71). By condition (71), (S,, Ho, R) ~
(T'(ec;),7T), so R = Live(ec;). Thus, RN Cp =). Therefore, the execution can proceed by evalu-
ating the region creation commands:

(So, H,, R, create C,) — (S,, Hy,, RU Cy, nr)

Let cip be the command representing the body of the invoked procedure in the input program,
and cop the body of that procedure in the transformed program: cop = 7 [cip]. From the semantic
rule considered in this case:

Si(y) = w1 <{Z = U1}7Hivcip> - <S;/,Hl{/,?};/>
vl #nr S =Six—] H!=H/

By hypothesis, (S,, Hy) ~ (Si, H;). Hence, S,(y) = v}, with v] | = v;. Thus, ({z —
vi}, Ho) ~ ({z— w1}, H;). Also, by relation (?7), 7 C RUCy,.

47

We can also show that ({z — v}}, H,,) ~ (I'(ecip), 7), in the same way we proved this result
for the corresponding case in the Preservation Theorem. By the induction hypothesis for the
translation of the procedure body ci, with the evaluation ({z — v1}, H;, cip) — (S/, H/',v)), we
get:

({2 04} HowFycoplF/ep)) — (SU HYL 7,0

By the Preservation Theorem, v], | = v/. Hence, v} # nr.
All of the premises in the semantic rule for procedure calls in the output language are satisfied,
so the evaluation can further execute the procedure call x = p [f] (y):

(So, Hoy RUCp,x=p [7] (y)) — (S.,H., RU Cyp,nr)
So = So[x — vg)
Hl — H//

We know that R, C Live(ec;) and R = Live(ec;). Thus, R, C R U Cp, so the evaluation can
proceed and execute the trailing region removal commands.

Rule for ¢; = return x. The translation of ¢; is:
Co = remove R, ; ¢

Consider input and output states satisfying conditions (69)-(71). By condition (71), (S,, Hy, R) ~
(I'(eci),7T), so R = Live(ec;). Thus, R, C R. Therefore, the execution can proceed by evaluating
the region removal commands:

(So, Ho, R, remove R,) — (S”, H,, R — R, nr)

Finally, from (69) and the operational semantics of the input language S;(x) = v. But
(So, Ho) ~ (Si, H;), so Sp(x) = v/, with v' | = v. Since dom(S,) = dom(S/) we know that
SY(x) = v”, for some v”. We can therefore apply the semantic rule for return and execute the
command. This completes the proof for this case and the proof of the theorem.

O

48

