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SIDNEY 1. RESNICK
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ABSTRACT. A heavy tailed time series that can be expressed as an infinite order moving average has the property
that the sample autocorrelation function (acf) at lag h, converges in probability to a constant p(h) despite the
fact that the mathematical correlation typically does not exist. A simple bilinear model considered by Davis and
Resnick (1996) has the property that the sample autocorrelation function at lag h converges in distribution to a
non-degenerate random variable. Examination of various data sets exhibiting heavy tailed behavior reveals that
the sample correlation function typically does not behave like a constant. Usually, the sample acf of the first half
of the data set looks considerably different than the sample acf of the second half. A possible explanation for this
acf behavior is the presence of nonlinear components in the underlying model and this seems to imply that infinite
order moving average models and in particular ARMA models do not adequately capture dependency structure
in the presence of heavy tails. Some additional results about the simple nonlinear model are discussed and in
particular we consider how to estimate coefficients.

1. Introduction. There are now numerous data sets from the fields of telecommunications, finance and
economics which appear to be compatible with the assumption of heavy-tailed marginal distributions. Ex-
amples include file lengths, cpu time to complete a job, call holding times, inter-arrival times between packets
in a network and lengths of on/off cycles (Duffy, et al 1993, 1994; Meier-Hellstern et al, 1991; Willinger,
Taqqu, Sherman and Wilson, 1995; Crovella and Bestavros, 1995; Cunha, Bestavros and Crovella, 1995).

A key question of course is how to fit models to data which require heavy tailed marginal distributions.
In the traditional setting of a stationary time series with finite variance, every purely non-deterministic
process can be expressed as a linear process driven by an uncorrelated input sequence. For such time series,
the autocorrelation function can be well approximated by that of an finite order ARMA(p,q) model. In
particular, one can choose an autoregressive model of order p (AR(p)) such that the acf of the two models
agree for lags 1, ..., p (see Brockwell and Davis (1991), p. 240). So when finite variance models are considered
from a second order point of view, linear models are sufficient for data analysis. In the infinite variance case,
we have no such confidence that linear models are sufficiently flexible and rich enough for modeling purposes.
Yet theoretical attempts to date to study heavy tailed time series models have concentrated effort on ARMA
models or infinite order moving averages despite little evidence that such models would actually fit heavy
tailed data. Understandably, these attempts were motivated by the desire to see how well classical ARMA
models perform in the heavy tailed world. However, the point which this paper emphasizes is that the class
of infinite order moving averages is unlikely to provide a sufficiently broad class which is capable of accurately
capturing the dependency structure of a variety of heavy tailed data.

Some theoretical perspective on this issue is provided in the interesting work of Rosinski (1995) who
decomposes a general symmetric a-stable process {X(t),2 > 0} into an independent sum of 3 processes

X(t) = X1(t) + X2(t) + Xs(t)

Key words and phrases. heavy tails, regular variation, Hill estimator, Poisson processes, linear programming, autoregressive
processes, parameter estimation, weak convergence, consistency, time series analysis, estimation, independence.
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where X is a superposition of moving average processes, X; is a Harmonizable a-stable process and X3 is
a process of ‘third’ type. There is no reason to suppose the moving average processes are in any way dense
within the class of symmetric a-stable processes and thus no reason to suspect that moving averages should
be given a prominent role in data analysis.

The challenge, of course, is to find flexible parametric families of heavy tailed models. One possible family
is the class of bilinear models which has received attention in the finite variance world (Gabr and Subba Rao,
1984). Davis and Resnick (1995) study a simple bilinear model and show that the behavior of the sample
correlation function is strikingly different for such models than for linear heavy tailed time series. This has
the important implication that any heavy tailed inference such as Yule-Walker estimation (Brockwell and
Davis, 1991; Resnick, 1995) based on the sample acf, will be dramatically misleading if the analyst fails to
adequately account for nonlinearities. This is discussed further in Section 2. Section 3 gives examples of
several data sets whose sample correlation function behaves like that of the bilinear process and it is doubtful
if such data can be fit by linear heavy tailed models. Further consideration is given in Section 4 to linear
programming estimators (Feigin and Resnick, 1992, 1994, 1996; Feigin, Resnick, Staricd, 1995; Feigin, Kratz,
Resnick, 1994; Davis and McCormick, 1989) applied to a simple bilinear process. Generalizations of this
simple process will be necessary to achieve the flexibility needed of a desirable parametric family.

2. Sample correlations of linear and bilinear processes. The sample correlation function is a basic
tool in classical time series for not only assessing dependence but also for estimation purposes since, for
example, the Yule-Walker estimators of autoregressive coefficients in an autoregressive model depend on
sample correlations. (See Brockwell and Davis, 1991; Resnick, 1995.) For a stationary sequence {Xp,n =
0,41,+2,...} the classical definition of the sample correlation function at lag his (h=10,1,... )

P = X)(Kegn — X)
Z?:l(Xt - X)2

When heavy tails are present, and especially when the data is positive as is frequently the case, it makes
little sense to center at X and the following heavy tailed version is used:

o) =

n—h
t=1 XtXt+h

pr(h) =
E?:l Xt2
Consider an infinite order moving average
o0
(2.1) Xi =Y i Ze-j
=0

where {Z,} is an iid sequence of heavy tailed random variables satisfying

P[|Z1] > @) =z~ % L(z), (xr— o0),
P[Zl > 33]

(2.2) m P,

(z — 00),

and « > 0, L is slowly varying and 0 < p < 1 and the ¢’s satisfy mild summability conditions. Note that
if Zy > 0, then p = 1. If @ < 2, there is no finite variance and hence the mathematical correlations of
the Z’s and presumably the X’s do not exist. However, Davis and Resnick (1985a,b; 1986) proved that
(pr(h),h = 1,...,q) still has nice asymptotic properties which can be used for assessing dependence and for
Yule-Walker estimation. Define

p(h) =Y Witien/ ) ¥
F=0 j=0
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and then for the linear model (2.1) we have the consistency result

prr(h) £ p(h)

and a reasonably fast rate of convergence also ensues. This leads to consistency of Yule-Walker estimates
of autoregressive coefficients in an AR(p) model and allows for computation of a limit distribution for these
estimates.

For contrasting behavior we consider a simple bilinear process satisfying the recursion

(2.3) X = cXi1Zi-1+ 2y,
where the Z’s satisfy (2.2) and
(2.4) le|*/2E) 2, % < 1.

Under this condition (see Liu (1989)), there exists a unique stationary solution to the equations (2.3) given
by

X, = Z Cth(j),
j=0
where

) Zi, if j =0,
2.5 vy = a "
> t (Hlel Zt—z’) zZr, ifj>1

Define b, to be the 1 — n~! quantile of |Z4], i.e.
(2.6) b, = inf{z : P[|Z;| > 2] < n™'}.

In order to describe the basic result about acf’s of bilinear processes and also for later work on estimation,
we review rapidly some notation and concepts about point processes. For a locally compact Hausdorfl
topological space I, we let M,(TE) be the space of Radon point measures on E. This means m € Mp(E) is of
the form

€,

3
!
Nk

g=1
where z; € E are the locations of the point masses of m and €, denotes the point measure defined by
1, ifzed
et ={ e
0, ifz¢ A

We emphasize that we assume that all measures in M, ([E) are Radon which means that for any m € M, (E)
and any compact K C E, m(K) < co. On the space M,(IE) we use the vague metric p(-, -). Its properties
are discussed for example in Resnick (1987, Section 3.4) and Kallenberg (1983). Note that a sequence of
measures m,, € M,(E) converge vaguely to mg € My(E) if for any continuous function f : E — [0, 00) with
compact support we have my, (f) — mo(f) where m,(f) = fE f dm,,. The non-negative continuous functions
with compact support will be denoted by C}{;(E)

A Poisson process on [ with mean measure p will be denoted by PRM(u). The primary example of
interest in our applications is the case when [, = [~o00,00]™ \ {0}, where compact sets are closed subsets
of [~o0, co]™ which are bounded away from 0.

Here is the result from Davis and Resnick (1995) describing the behavior of the simple bilinear process.
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Theorem 2.1. Suppose {X;} is the bilinear process (2.3) where the marginal distribution F of the iid noise
{Z,} satisfies (2.2), the constant c satisfies (2.4) and by is given by (2.6). Suppose further that ¥ oo, €;, is
PRM(y) with p given by

p(de) = paz™* delp,c)(z) + glz|™* M el (- oo 0)(2),

and {Us 5, s > 1,k > 1} are iid with distribution F'.

(i) In Mp(Ey),
n 00 oo
Z€b;2Xi = szjgckws,ka

t=1 k=1s=1
where
152} Uy ifk>1,
Wer =141, ifk=1,
0, ifk<1.

(ii) In Mp(En1),

n

[ee [e¢]
Z Cbgz(Xg,Xg..l,... ,Xg_h) = Z Z €j;’)(ckws,k,6k—lws,k——1a-~~ 7ck—th,k-—h)'

t=1 k=1s=1

Furthermore, if 0 < a < 4, we have for any h = 1,2,... that
(par()yl=1,...,h)=> (Li,i=1,...,h)

in R”, where
oo 0o .4 2k—i X
23:1 Zk:} Js€ Ws,kWs,k-—z
e 04 2kA 2 ’
Yot ey JEFWE L

Contrast the random limits for (pg(1),l = 1,...,h) when {X;} is the bilinear process (2.3) with the
nonrandom limits obtained when {X,} is the linear process (2.1). This difference can lead to dramatic errors
if one models heavy tailed nonlinear data with a linear model. This contrast is demonstrated clearly with
simulated data. In Section 3 we present simple analyses of several real heavy tailed data sets to illustrate
the likelihood that linear models are unsuitable.

We simulated three independent samples (test;, ¢ = 1,2,3) of size 5000 from the bilinear process

L, = i=1,...,h

(11) Xt = .1Zt_1X1;_1+Zt, i = 0,:&1,:}:2,...,
where {Z,} are iid Pareto random variables,
PlZy >z]=1/x, x=>L
For contrast, we also simulated three independent samples of size 1500 of AR(2) data. The AR(2) is
Xt = 1.3X¢,_1 - 0.7Xt—2 + Zt,t = 0, :El, :i:Q, e

and the innovations have a Pareto distribution as for the bilinear example. The AR data sets were called
testar;, 1 = 1,2,3.

The erratic nature of the behavior of g for the bilinear model is illustrated in Figure 2.1 which graphs the

heavy tail acf for test;, i = 1,2, 3. The graphs look rather different reflecting the fact that we are basically
sampling independently three times from the non-degenerate limit distribution of the heavy tailed acf. If
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one were not aware of the non-linearity in the data, one would be tempted to model with a low order moving
average based for example on the left hand plot. Furthermore, partial autocorrelation plots and plots of the
AIC statistic as a function of the order of the model all show similar erratic behavior as one moves from
independent sample to independent sample. So failure to account for non-linearity means there is great
potential to be misled in the sorts of models one tries to fit.

testt tests tosts

teayldaf
eyl
teayldad

= 1 = [ 1

42
&
4

= o s zo 4 be) 15 B s vo is =0
tag Lag Lag

Figure 2.1. Heavy tailed ACF for 3 bilinear samples.

As a contrast, Figure 1.2 presents the comparable heavy tailed acf plots for the three independent AR
samples. Here, the pictures look identical reflecting the fact that we are sampling from an essentially
degenerate distribution.
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Figure 2.2. Heavy tailed ACF for 3 autoregressive samples.

3. Analysis of heavy tailed data sets.

We now present several examples of real data and make the argument that it is unlikely that the data can
be modelled as a linear model of the form (2.1). For each data set we note why we believe a heavy tailed
model is appropriate and why any sort of infinite order moving average is likely to be an inadequate model.

Given a particular data set, there are various methods of checking that a heavy tailed model is appropriate.
Such methods are reviewed in Resnick (1995). Suppose {X,,n > 1} is a stationary sequence and that

(3.1) PXi>az]=2"%L(z), = —o00

where I is slowly varying and « > 0. Consider the following techniques:

(1) The Hill plot. Let
Xy > Xy > > X
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be the order statistics of the sample Xi, ..., X,,. We pick k < n and define the Hill estimator (Hill, 1975) to
be
X

k
1 )
Hyp =~ log ———.
" kgggﬂwn

Note k is the number of upper order statistics used in the estimation. The Hill plot is the plot of

(k,Hy 1), 1<k <n)

and if the process is linear or satisfies mixing conditions then since Hg Lo lasn— 00, k/n — 0 the Hill
plot should have a stable regime sitting at height roughly «. See Mason (1982), Hsing (1991), Resnick and
Staricd (1995a), Rootzen et. al (1990), Rootzen (1996). In the iid case, under a second order regular variation
condition, Hy , is asymptotically normal with asymptotic variance 1/a?. (Cf. de Haan and Resnick, 1996).

(2) The smooHill plot. The Hill plot often exhibits extreme volatility which makes finding a stable regime
in the plot more guesswork than science and to counteract this, Resnick and Stiricd (1995b) developed a
smoothing technique yielding the smooHill plot: Pick an integer u (usually 2 or 3) and define

1 uk
Hip = ——— Hj,.

In the iid case when a second order regular variation condition holds, the asymptotic variance of smooHp,n
is less than than of the Hill estimator, namely:

12 log u
ikt & Rt Sl
a2u( u

)

(3) Alt plotting; Changing the scale. As an alternative to the Hill plot, it is sometimes useful to display
the information provided by the Hill or smooHill estimation as

{(0,H 0y ), 0<0<1,}

[n®lim

and similarly for the smooHill plot where we write [y] for the smallest integer greater or equal to y > 0. We
call such plots the alternative Hill plot abbreviated AltHill and the alternative smoothed Hill plot abbreviated
AltsmooHill. The alternative display is sometimes revealing since the initial order statistics get shown more
clearly and cover a bigger portion of the displayed space.

(4) Dyramic and static qq plots. As we did for the Hill plots, pick & upper order statistics
X(l) > X(g) > .. .X(k)

and neglect the rest. Plot

J .
(3.2) {(—log(1 — m)»logX(j))» 1<j <k}

If the data is approximately Pareto or even if the marginal tail is only regularly varying, this should be
approximately a straight line with slope=1/a. The slope of the least squares line through the points is
an estimator called the qqg-estimator (Kratz and Resnick, 1995). Computing the slope we find that the
qq-estimator is given by

AT (= log(gk) los(x) — £ Tina(— log(ky)) Hion
(3.4) a1, = — ) ,
L3h 1 (—log(5))? — (F Loia (— log(557))?
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There are two different plot/s\one can make based on the gq-estimator. There is the dynamic qg-plot
obtained from plotting {(k,1/a=1 n,1 < k < n} which is similar to the Hill plot. Another plot, the static
qq-plot, is obtained by choosing and fixing k, plotting the points in (3.2) and putting the least squares line
through the points while computing the slope as the estimate of a b,

The gg-estimator is consistent for the iid model if £ — oo and k/n — 0 and under a second order regular
variation condition and further restriction on k(n), it is asymptotically normal with asymptotic variance
2/02. This is larger than the asymptotic variance of the Hill estimator The volatility of the qqg-plot always
seems to be less than that of the Hill estimator.

We now consider several data sets and illustrate some features and describe problems encountered when
trying to fit MA(o0) models.

(i) ISDN2. This dataset consists of 4868 interarrival times of ISDN D-channel packets. The time series
plot and qq-plot giving evidence of heavy tails are shown in Figure 3.1.

isdnz=2 [o]e]
g
= e
=) ~
-~
-~
=
= = =
g
2 o
=
% g
|
w ] i
<> )
o |
(o] 1000 2000 BOOO 4000 5000 o =2 <3 (=] s

cuantiles of exponential

Figure 3.1. Tsplot of ISDN2 and qg-plot.

Hill plots given in Figure 3.2 indicate an « in the neighborhood of 1.2. The static qg-plot based on 1000
upper order statistics given in Figure 3.3 yields an « value of 1.136.

Hill plot ISDNZ2 AltHill
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fan] Lo
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I @ s 3
[ 2 “5 [Te
e L o
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G — B0
g 23
T F =

0.1 02 03 04 05 06 0.7
theta

Figure 3.2. Hill plots of ISDN2.
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The last two plots in Figure 3.3 give the acf of the first 1500 observations and the acf of the last 1500
observations in the data set. Note the two graphs are quite different which seems to rule out any sort of
ARMA model as a potential candidate to be fit to the data.

bystaddda

alphas=1.13 Series : isdnzeol{1:1500] Series : isdn2col[B3000:4500]

2
°

I T T Aot ot N & u'l.“f”'l'l”i”’."}' ]

& o s 1o s 2o 25 @0 o & o is 2o 25 @a
e

Figure 3.3. qq-plot and acf plots of ISDN2.
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(ii) Interar. This data set represents 176834 interarrivals of externally generated TCP packets to a server.
The recording period was one hour. Figure 3.4 give the time series plot and the qg-plot. Both show clear
evidence of heavy tails.

The
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Figure 3.4. Tsplot and qg-plot for interar.

Hill plots given in Figure 3.5 show a value of « in the neighborhood of 2.5 and the static qg-plot in

Figure 3.6 gives a value of o = 2.28.

Hilestmate o aoha

Hillestimate of alpha

Hill plot AdtHill
<
=
> =y
o
- B
]
o [
k=
o RN
s E P
o 1 O0O000 2000030000 4000050000 0.2 O.4a 0.6 O.8
nuMmber of order statistics theta
Altsmooklill AltHIl and Altsmookill
= =
-t 2. L2
=Y =
o =S
] 2 o
i k3
= R
o 5=

theta



The

WHY NON-LINEARITIES CAN RUIN THE HEAVY TAILED MODELER’S DAY 9

Figure 3.5. Hill plots for interar.
acf of the first 10,000 values does not remotely resemble the plot for 10,000 values taken in the middle

of the time series. These are the last two plots in figure 3.6.

et
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Figure 3.6. Static qg-plot and acf plots for interar.

(i1i) SILENCE. Consider a time series of length 1027 shown in Figure 3.7 which represents the off periods
between transmission of packets generated by a terminal during a logged-on session. The left graph in Figure
3.7 is the time series plot and the right graph is the static qg-plot using 500 upper order statistics giving
ample evidence of heavy tails. The estimate of & given by this plot is 0.6696.

The
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£
=
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Figure 3.7. Tsplot and static qq-plot of SILENCE.
Hill plots confirm the estimate of « given by the static gg-plot and give o ~ .64.
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Figure 3.8. Hill plots of SILENCE.
For the last graph, we split the data set into thirds and graphed the

pictures are obviously quite different.

Series : silencel1:300]

Series : silence[300:600]

acf for each piece separately. The

Series : silence[600:900]
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Figure 3.9. Acf plots of SILENCE.

4. Estimation for the simple bilinear process. We now consider the simple bilinear process given in
(2.3)

(4.1)

where in this section we assume Z; > 0 and the distribution of Z; has left endpoint

(4.2) l=inf{z >0: P[Z; < z]>0.

Xt = CX1_1Z1..1 + Zt

Further, we assume ¢ > 0 and (2.4) assumes the form

(4.3) PEZ? < 1,

In particular, this implies ¢®/21%/? < 1 or el < 1.
The next proposition gives consistent estimators for (e, [).

Proposition 4.1. Suppose {X;} is the bilinear process given in (4.1) and that (c,1) satisfy (4.2) and (4.3).
Suppose in addition that | > 0 and 0 < « < 4. Define

t n X
n= A\ X; and ¥ = L
m i:/\l ¢ and 7 t:/\z o
Then consistent estimators of (¢, ) are given by
. &
l=m(l-7), é=—r—x.
Ml =7) e=En TR

Note that 7 is the linear programming estimator studied by Davis and McCormick (1989) and Feigin and
Resnick (1992, 1994) for linear autoregressions.

Proof. Since Z; > | with probability 1, we have from (2.5) that a.s. for each ¢

X, Zz+chli~112

j=1
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Now we apply the Davis and Resnick (1995) result quoted as Theorem 2.1 in this paper. We have in
M, [I#,00]? (and therefore by Theorem 3.3 of Feigin, Kratz and Resnick (1994) in M, [I#,00)?) that

7

o oo
(4.4) Zeb;E(Xi,Xt-ﬂ = Z Zejg(ckws,k7ck~lws,k—l)'

t=2 k=1s=1
We seek to apply a map
(z,y) — 2/y

but in order to do this we must compactify the state space of the converging point processes. From (4.4) we
get for any large K > 0

i3 o0 oo
(4.5) Z Lp# <on? XK, 10116073 (X0, Xem) ™ Z Z L <2(ch = Wo poi K, 20,1165 2(F Wo kych =1 W, i)

t=2 kz=1s=1

and now applying the division map we get in M, [#, c0)

7 [e.0] o0
(4.6) Z Liwcozox, i<k, i=0,1]€Xe/X1o1 = ZZ Ly <ja(ch=iW, p_i <K, i=0,1]€cUq k1
t==2 k=1s=1

We now argue we can remove the truncation level K. In order to do this we must show by Billingsley, 1968,
Theorem 4.2 that for any 1 > 0 and any continuous function f with compact support in [0, c0)

n n
. . X X
im limsup P[] lyecpix,_ <k, i=o1/( X, 1) -> (5
- t=2

]
K—=00 n—co t=2

(4.7) t1)1 > 7] = 0.

t—
Suppose the compact support of f is contained in [0,6]. The probability in (4.7) is bounded by
Xt Xt X —1 Xt

LS K <@ Pl S K
b721> ,XH_]+n {b% > K, 5—

nP| <]

X .
§2nP[b—?j > K]
—(const) K¢,
as n — oo by Corollary 2.4 of Davis and Resnick (1995) and as K — oo the above
—0.

This shows that (4.6) holds with the truncation level K replaced by oo.
We thus conclude that in M, [0, c0)

n [e T
ZgXt/Xt—l = E : § :CCUs,k-l
t=2

k=1s=1
and applying the a.s. continuous function that maps the point measure into the minimum of the points

yields
n Xt
P o= > C U =cl.
t_/\z Xt—-l /\k s,k
= s,
Since it is also clear that
m = I#,

the desired consistency result follows. [

In a simulation experiment, we simulated a time series of length 5000 from the simple bilinear process
given in (4.1) with ¢ = .3 and { = .1. Our estimators yielded values of

(é,1) = (.317023,.1011468).
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5. Concluding remarks.

The estimator ¢ proposed in Proposition 4.1 for the simple bilinear process given in (4.1) is consistent but
it is not at all clear that there is an asymptotic distribution or even what the rate of convergence might be.
1t seems likely that if an asymptotic distribution exists, it will depend on the unknown parameters ¢ and «.
Other estimators need to be explored.

However the obvious priority must be to find a flexible parametric family which is large enough to fit
the abundance of heavy tailed data that exists but is tractable enough to yield excellent model selection
and estimation techniques. The point of emphasis of this paper is that any parametric family of stationary
processes which can be expressed as infinite order moving averages is not likely to satisfy the requirements of
adequately fitting existing heavy tailed data. The general bilinear model is one possible family of processes
that merits exploration.

The Hill estimator has been proven to be consistent for observations coming from a process which is iid
(Mason, 1982) or MA(oo) (Resnick and Stiricd, 1995a) or which satisfy mixing conditions (Rootzen, et al,
1990; Rootzen, 1995). The Hill estimator appears to work just fine for the simple bilinear process in (4.1).
Figure 5.1 displays the Hill plots for 5000 observations coming from (4.1) with ¢ = .1 and @ = 1. Since the
tail of X, satisfies

P[X; > z] ~ (const)P[Z} > z]

the correct answer that the Hill plots seek is 0.5.
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Figure 5.1. Hill plots for the simple bilinear process.

We intend to give some thought to showing directly that the Hill estimator can be applied successfully to
estimating the shape parameter when the underlying model is nonlinear.

REFERENCES

Billingsley, P., Convergence of Probability Measures, Wiley, New York, 1968.

Brockwell, P. and Davis, R., Time Serics: Theory and Methods, 2nd edition, Springer—Verlag, New York, 1991.

Crovella, M and Bestavros, A., Explaining world wide web traffic self-similarity, Preprint available as TR-95-015 from
{crovella,best }@cs.bu.edu (1995).

Cunha, Bestavros, A. and Crovella, M, Characteristics of www clieni-based iraces, Preprint available as BU-CS-95-010 from
{crovella,best }@cs.bu.edu.

Davis, R. and McCormick, W., Estimation for first-order autoregressive processes with positive or bounded innovations,
Stochastic Processes and their Applic. 31 (1989), 237-250.



WHY NON-LINEARITIES CAN RUIN THE HEAVY TAILED MODELER’S DAY 13

Davis, R. and Resnick, S., Limit theory for moving averages of random variables with regularly varying tail probabilities.,
Ann. Probability 13 (1985a), 179-195.

Davis, R. and Resnick, S., More limit theory for the sample correlation function of moving averages, Stochastic Processes
and their Applications 20 (1985b), 257-279.

Davis, R. and Resnick, 8., Limit theory for the sample covariance and correlation functions of moving averages, Ann. Statist.
14 (1986), 533-558.

Davis, R. and Resnick, S., Limit theory for bilinear processes with heavy tailed noise, Available as TR1140 at
ftp.orie.cornell.edu after changing directory to /ftp/pub/techreps. Also at http:www.orie.cornell.edu/trlist/trlist.html as
TR1140.ps.Z (1995).

Duffy, D., McIntosh, A., Rosenstein, M., and Willinger, W., Statistical analysis of CCSN/SS7 traffic data from working
CCS subnetworks, IEEE Journal on Selected Areas in Communications 12 (1994), 544-551.

Duffy, D., McIntosh, A., Rosenstein, M., and Willinger, W., Analyzing telecommunications traffic data from working common
channel signaling subnetworks, Proceedings of the 25th Interface, San Diego Ca (1993).

Feigin, P. and Resnick, S., Estimation for autoregressive processes with positive innovations, Stochastic Models 8 (1992),
479498,

Feigin, P. and Resnick, S., Limit distributions for linear programming time series estimators, Stochastic Processes and their
Applications 51 (1994), 135-166.

Feigin, P. and Resnick, S., Linear programming estimators and bootstrapping for heavy tailed phenomena, Forthcoming:
Advances in Applied Probability (1996).

Feigin, P., Kratz, M. and Resnick, S., Parameter estimation for moving averages with positive innovations, Technical Report
(1994).

Feigin, P. Resnick, S. and Stirici, Catalin, Testing for independence in heavy tailed and positive innovation time series,
Stochastic Models 11 (1995), 587-612.

Gabr, M. and Subba Rao, T., An Introduction to Bispectral Analysis and Bilinear Time Series Models, Lecture notes in
statistics v. 24, Springer- Verlag, New York :, 1984.

Haan, L. de and Resnick, S., On asymptotic normality of the Hill estimator, TR1155.ps.Z available at
http://www.orie.cornell.edu/trlist/trlist.html (1996).

Hill, B., 4 simple approach to inference about the tail of a distribution, Ann. Statist. 8 (1975), 1163-1174.

Hsing, T., On tail estimation using dependent data, Ann. Statist. 19 (1991), 1547-1569.

Kallenberg, O., Random Measures, Third edition, Akademie-Verlag, Berlin, 1983.

Kratz, M. and Resnick, S., The gg-estimator and heavy tails, Available as TR 1122.ps.Z at
http://www.orie.cornell.edu/trlist/trlist.html (1995).

Liu, J., On the existence of a general multiple bilinear time series, J. Time Series Analysis 10 (1989), 341-355.

Mason, D., Laws of large numbers for sums of exireme values, Ann. Probability 10 (1982), 754-764.

Meier-Hellstern, K., Wirth, P., Yan, Y., Hoeflin, D., Traffic models for ISDN data users: office autornation application,
Teletraffic and Datatraffic in a Period of Change. Proceedings of the 13th ITC (A. Jensen and V.B. Iversen, eds.), North
Holland, Amsterdam, The Netherlands, 1991, pp. 167-192.

Resnick, Sidney, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987.

Resnick, S., Heavy tail modelling and teletraffic data, Available by ftp from ftp.orie.cornell.edu as TR1134.ps.Z in directory
/ftp/pub/techreps or at http://www.orie.cornell.edu/trlist /trlist.html, Preprint (1995).

Resnick, S. and St#rici, C., Consistency of Hill’s estimator for dependent data, J. Applied Probability 32 (1995a), 139-167.

Resnick, S. and Stéricd, Citilin, Smoothing the Hill estimator, Technical report (1995b).

Rootzen, H., Leadbetter, M. and de Haan, L., Tail and gquantile estimation for sirongly mizing stationary sequences, Preprint,
Econometric Institute, EUR, PO Box 1738, 3000 DR, Rotterdam, Holland.

Rootzen, H., The tail empirical process for stationary sequences, Preprint 1995:9 ISSN 1100-2255, Studies in Statistical
Quality Control and Reliability, Chalmers University of Technology (1995).

Rosinski, Jan, On the structure of stationary stable processes, Ann. Probab. 28 (1995), 1163-1187.

Willinger, W., Taqqu, M., Sherman, R. and Wilson, D., Self-similarity through high—variebility: Statistical analysis of
ethernet LAN iraffic at the source level, Preprint (1995).

SIDNEY 1. REsNICK, CORNELL UNIVERSITY, SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING, ETC BuILD-
ING, ITHACA, NY 14853 USA

E-mail: sid@Qorie.cornell.edu



