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differences or harmful side effects. In this paper we review and critique
various statistical approaches that have been proposed for the design and
analysis of sequential experiments in medical applications. We discuss group
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Bayesian procedures. The role that a statistical stopping rule should play
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1. INTRODUCTION

There are many reasons for interim analyses of medical studies. First
they are necessary to ensure protocol adherence, to confirm that eligibility
requirements are being met, to check on compliance, and on important design
assumptions such as the sample variance or control group event incidence
rates. Second they are important for economic reasons, particularly in
pharmaceutical industry trials; they enable informed management decisions to
be made concerning the allocation of limited research and development funds.
Third, and most important are the ethical reasons that subjects should not be
exposed to unsafe, inferior or ineffective treatment regimens. Even in
negative trials it is important from the ethical standpoint to terminate a
trial as soon as possible so that resources can be allocated to study the

next most promising treatment waiting to be tested.

In pharmaceutical trials, interim reviews are carried out one or more
times during the course of the study. Similarly in long-term clinical trials
sponsored by the U.S. National Institutes of Health, the data are reviewed by
independent monitoring committees or "Policy Advisory Boards''. Typically such
committees meet approximately semi-annually and consist of clinicians, a
statistician and an ethicist. Another example is the Agent Orange study (USAF
Project Ranch Hand II), a prospective epidemiological study, for which it has
been mandated that reports be made to the U.S. Congress annually for twenty

years.

The theory and application of sequential analysis have always been the



source of controversy since the subject was first developed. In particular
there have been the discussions stimulated by Barnard (1949), by Anscombe
(1963) and by Armitage (1963) following publication of the latter's book, by
Cornfield (1966a,b, 1969), and more recently by Dupont (1983). An earlier
review of applications to medical trials was given by Gail (1982). In the
last six or seven years there has been renewed interest in sequential
statistical methodology and its application to medical trials in particular.
In the frequentist paradigm, there have been the ideas of stochastic
curtailment (Halperin et al. 1982) and repeated confidence intervals (Jennison
and Turnbull 1984,1989,1990a). For the Bayesian approach, there has been
development of applications (Berry 1985), the elicitation of priors from
clinicians (Freedman and Spiegelhalter 1983) and the use of priors in the
ethical assignment of subjects to treatment in a clinical trial (Kadane

1986) .

The question that underlies the fundamental argument can be expressed in
the following form: Should the statistical analysis of the data be affected
by ("'adjusted" for) the knowledge that interim data reviews have been
performed in the past or that further reviews might be undertaken in the
future? Proponents of the likelihood principle who take a ''conditional"
perspective (Berger 1985 p.28) would answer 'no'' to this question. For them
inference would be based solely on the likelihood function. Dupont (1983)
also answers negatively and argues that the unadjusted fixed sample size P-
value can be used as the most credible and '"objective measure of the strength
of the evidence justified by the data'. For Bayesian statisticians, who

believe in the likelihood principle, the design plays no role in the analysis



(see e.g. Berry 1987, p-121). But adherents of the repeated sampling
principle (Cox and Hinkley 1974, p. 45), so called ''frequentists', argue that
adjustments should be made in the analysis of data to guard against the
undesirable consequences of unfortunate, ''biased" or "manipulated'' sequential
designs upon the repeated sampling properties of inferential procedures. We
shall argue that stopping rules are often complex and subjective, involving
both statistical and non-statistical issues. In the absence of a rigidly
enforced mathematical stopping rule, it is not clear how such adjustments are
to be made. No investigator can specify what might have happened under all
contingencies. Indeed, Berger (1980, p 354) asserts that ''in a very strict
sense one wonders how the classical statistician can do any analysis
whatsoever'. These difficulties are addressed in Sections 4 and 5, where we
discuss more ''flexible' frequentist approaches in which inferences based on

repeated sampling criteria can be made independently of the stopping rule.

The underlying problem is really one of how to incorporate a
multiplicity of analyses. Cornfield (1966b) used the term ''sampling to a
foregone conclusion' referring to the result pointed out by Armitage,
McPherson and Rowe (1969) that, without adjustment, a true hypothesis will be
always rejected if sampling continues long enough. This phenomenon is also
called the "multiple looks problem', the "optional sampling bias'" and the
"over—interpretation of interim results'. The effect on the false positive
error rate of repeatedly applying significance tests on accumulating data is
indicated in Table 1, derived from Table 10.1 of Pocock (1983). Here the
problem is that of testing a normal mean with known variance, observations

are available in K groups of size g and after each group, a two-sided test of



level 0.05 is performed. Table 1 shows the probability under the null

hypothesis that at least one of the K tests is significant.

Table 1: Repeated significance tests on accumulating data

No. of tests K Overall null probability of

rejecting HO

1 0.05
R 0.08
3 0.11
4 0.13
5 0.14
10 0.19
20 0.25
50 0.32
o 1

Clearly the probability of obtaining a 'significant' result (P<0.05 say)
from at least one of the K interim analyses is much greater than 0.05 and
indeed approaches unity as K tends to infinity. Hence, using an unadjusted P-
value <0.05 as the stopping criterion can lead to highly inflated Type I

error probabilities.



As another example of the same phenomenon, consider an experimenter who
finds upon conclusion of the trial that the results are almost but not quite
statistically significant. He might then decide to take a few more
observations in order to "obtain'' significance. Suppose response is normal
with known variance, as above, the initial sample size is 10, and an extra R
observations are taken if 0.10>P>0.05 after results from the first 10 are
analyzed. If an unadjusted P-value of 0.05 is used for significance, then a

calculation shows that the Type I error rate is inflated to 0.067.

It may well have been such concerns about the effects that data
dependent sampling can have on frequentist analyses that prompted the U.S.
FDA to publish regulations requiring that pharmaceutical companies, when
submitting New Drug Applications (NDA's) "'should assess .... the effects of
any interim analyses performed" (Federal Register #314.125, February 1985).

This statement was further elaborated by FDA in their Guideline (1988, p-64):

"The process of examining and analyzing data accumulating in a clinical
trial, either formally or informally, can introduce bias. Therefore, all
interim analyses, formal or informal, by any study participant, sponsor
staff member, or data monitoring group should be described in full even
if treatment groups were not identified. The need for statistical
adjustment because of such analyses should be addressed. Minutes of
meetings of the data monitoring group may be useful (and may be

requested by the review division)."

The Guideline also proposed that the plan for interim analyses appear on the



protocol cover sheet for the NDA. The Guideline did not go on to specify the
method of adjustment. Writing with a "perspective from the pharmaceutical
industry', Enas et al. (1989) claimed that there was a need to distinguish
between monitoring or ''administrative' looks and interim analyses. For the
former they claim there is no possibility of stopping the trial and hence no
adjustment need be made. Anbar (private communication) has referred to this
as ''seeing how the roast is doing without taking it out of the oven'. It is
worthwhile noting that the FDA (1985) also requires periodic monitoring and
reporting of adverse drug experiences in Phase IV (post-marketing

surveillance) trials.

In the next section we describe frequentist group sequential hypothesis
tests with formal statistical stopping rules. Methods of obtaining point and
interval estimates upon termination are also discussed. These terminal
inferences rely on strict adherence to the specified stopping rule and
problems arise otherwise. Another shortcoming of this class of procedures is
that they do not provide any information such as point or interval estimates
about the parameters of interest at intermediate stages prior to stopping;
only the stop/continue decision is available at such stages. In Section 3, we
turn our attention to procedures based on Bayesian theory. It is well known
that posterior distributions are not affected by data dependent sampling,
thus inferences on termination do not depend on the stopping rule and simply
computed interval estimates are available at intermediate stages. However we
feel that these procedures have some disadvantages of their own and, in
Sections 4 and 5, we return to the frequentist domain and the methods of

stochastic curtailment and repeated confidence intervals, which may offer a



frequentist solution to these problems.

We illustrate the discussion by considering a single sample of normally
distributed response variables with unknown mean © and known variance 02,
where sequential tests are based on the cumulative sums of observations
recorded to date. However, sequences of test statistics with the same joint
distribution as these sums arise quite generally, for example, in a placebo-
controlled comparative trial where test statistics are based on differences
between the sample means in the two treatment groups. The same basic methods
can also be applied in trials with other types of response, for example,
survival data (where the sequence of logrank statistics is approximately
jointly normal), binary data, stratified 2X2 tables, or problems with
covariates (cf. Jennison and Turnbull, 1989). Variations on the basic methods
have also been developed for normal response with unknown variance and
multivariate endpoints (cf. Jennison and Turnbull, 1990b). For general
considerations concerning the statistical design of clinical trials, we refer
the reader to the books of Pocock (1983), Whitehead (1983) and Friedman,

Furberg and DeMets (1985).



2. THE CLASSICAL APPROACH

Consider the following ''prototype' problem. At the k'th interim analysis
we have accumulated n(k) observations Xi’XZ’ .es ’Xn(k) assumed independently
normally distributed with unknown mean © and known variance 02. If we have
equal groups of size g then n(k)=kg; if g=1, we have the fully sequential
case. We define the observed mean in(k)z Y Xi/n(k), where the sum is taken
over all n(k) observations in the first k groups. Also we define the
standardized variate Zk = in(k>4n(k)/c. The 3zk;k21; are multivariate
normally distributed with means &ln(k)/o, unit variances and
corr(Zk,Zk,) ={(n(k)/n(k')) for k<k'. We can also define “standardlzed”
partial sums S, = ¥ X, /0 =1 Jn(k) Note that the §Sk,k>1§ form a dlscretlzed
standard Brownian motion process with drift 8/c, i.e. they have the same
joint distribution as the values of a Brownian motion with this drift
observed at times n(k), k>1. If there is a planned upper limit N on the total
number of observations, Lan and Wittes (1988) find it more convenient to work
with a quantity they call the B-value given by Bk= Sk/JN; however we shall

continue to work with EZkE and §Sk§.

Before we can describe a group sequential test we must first decide on
the hypotheses to be tested. We can distinguish between 3 situations. First,
in a 2-sided problem, we test null HO: 6 = 0 versus le 6 Z 0. We may
substitute for H1: 6 = +5, where & is some medically significant difference.
Of course we can easily substitute some given value for ©® other than zero in

HO'



In a one sided problem the hypotheses are of the form:

HO: 8 < 0 versus H1: 6>0

or
HO: 6 =0 versus le 8 =A

or
HO: 8 =—-5 versus H1: 0=25

Finally, in a bioequivalence problem, we have:

HO: 8 # 0 versus le 8=20

or
HO: 6 & (-5,8) versus le 6 € (-5,8).

This formulation is appropriate in pharmaceutical trials when the object is
to demonstrate that one compound is a valid substitute for another. In this
problem the null hypothesis is placed outside an interval containing 0, the
parameter value at equivalence, in order that the type I error rate is the

probability of wrongly declaring bioequivalence.

When testing a new treatment with a standard or control, it is often the
case that the one-sided situation is more natural than the two-sided; for
further discussion see Lan and Friedman (1986). However, the best known
group sequential tests are two-sided, so we shall start by discussing them.
We also start by assuming that the maximum number of interim looks is fixed,

K say. Later we shall relax the assumption of having to prespecify K.



2.1 Two-sided tests

A group sequential test involves the specification of boundary values
§c1,...,cK§ such that the trial stops at the first stage k that lel 2cy and

the hypothesis H_ :6=0 is rejected in favor of the two-sided alternative. If

0
this does not happen by stage K then H0 is accepted. (Some variations, e.g.
Schneiderman and Armitage (1962), Gould and Pecore (1982), Whitehead and
Stratton (1983), Emerson and Fleming (1989), allow early stopping for H0 also
by placing an "inner wedge' in the boundary.) The constants ick; k=1,...,K3
are chosen to control the Type I error probability, i.e.

Pr[llezc or .... or IZKlch] = o . (2.1)

1

This can alternately be defined in terms of the standardized partial sums or

S-values:

Pr[131|201 or .... Or lSKlch] = o

where cé=ck4n(k) for 1<k<K. The nominal significance level at the k'th
analysis is defined to be the marginal probability ak=Pr[lelzck]. This

should not be confused with:

m = PriZy1<e . sl g1<ey 4y 13120, ]

10



for k>1, which is the probability of stopping at stage k and rejecting HO.

Since m,+....+n,=a, %, is sometimes termed ''the error spent at stage k''.

1 K k
Clearly there is a one to one correspondence between any pair of the four
sets of constants §ck§, Ec’ki, §mk§ and Enki 1<k<K; a group sequential test
can be specified by giving any one of these sets. There are of course many
ways of choosing these constants subject to the error probability constraint

(2.1). We first discuss some of the better known suggestions in the equal

group size case.

Armitage, McPherson and Rowe (1969) proposed use of repeated
significance tests in which € =Co= -oeen Cy= c(K,a), say, or equivalently

O, =0, enen o,=', say. This paper and later work, McPherson and Armitage

K
(1971) and Armitage (1975), dealt with fully sequential tests; although their
results can be applied to the group sequential problem by treating the group
means as single observations, they do not include the low values of K
typically used in group sequential studies. McPherson (1974) and Pocock
(1977) specifically address the group sequential problem and tabulate values
of o' for o=0.01 and 0.05 and K=2,3,...,10. Pocock also provides a table of
constants which can be used to calculate the value of the common group size g

needed to obtain power 1-8=0.5, 0.75, 0.9, 0.95 or 0.99 at a specified non-

zero value of & for given o, K and 0.

0'Brien and Fleming (1979) proposed a boundary which was constant on the
S scale, i.e. ci=cé= ..... ck= c'(K,x), say. This test rejects H0 after the
k'th group if lelzc'/J(kg). The authors give tables of c'=c'(K,x) necessary

to carry out their procedure. Jennison and Turnbull (1989, Table 1) provide

11



a convenient source for constants needed to implement the Pocock (1977) or

0'Brien and Fleming (1979) procedures.

To compare the two procedures, as a simple example, suppose 02=2 and a
group sequential test with at most 4 equal size groups is required for
testing HO: 6=0 against the two-sided alternative 620. A type I error «=0.05
is allowed and power 1-8=0.9 is to be guaranteed at 6=10.5. Using the
standard formula (e.g. Bowker and Lieberman 1972, p-193) we find that the

R . g4

usual fixed sample size test requires a total of 2(1.96+1.28)2/0.5
subjects. From Tables 1 and 2 of Pocock (1977) for K=4, we obtain the
constant c¢=R.361 and group size g = 2(1.763/0.5)2 = 24.9, i.e. 25
observations. Since there are at most 4 groups, the maximum number of
subjects that may be needed is 100. The test rejects H0 at stage k (1<k<4)

if 12, 1>2.361, corresponding to a two-sided significance level of 0.0182. The

k
corresponding 0'Brien and Fleming procedure rejects Hj if IZklzc'/J(kg), where
c'=4.048lg and to achieve the same power 0.9 at 181=0.5 we must take g=R%,

for a maximum sample size of 88. The fact that the maximum sample size of
this last test is only 4 more than the fixed sample test is a desirable
feature, as is the fact that the final cutoff value for IZKI, namely Cx=
2.024, is close to the corresponding familiar 1.96 value for the fixed sample
test. This is of definite practical advantage when explaining final results

to the clinicians involved. Then it is unlikely that the awkward situation
arises whereby an unadjusted P-value is less than 5%, say, yet according to
the sequential test the result cannot be declared significant. On the other

hand, the Pocock-type test has the advantage of much lower expected sample

sizes (ASN's) at alternatives where power is reasonably high (Pocock 1982).

12



In our example when 161=0.5, the ASN for the Pocock-type procedure is 58.8
compared with 65.6 for the 0'Brien and Fleming procedure; this despite the
larger group size required for the former procedure. When 161=1, the ASN's
are 28.1 and 39.7, respectively (Jennison and Turnbull 1990a). Pocock (1982)
argued that comparisons of ASN's at high values of 1-8 are most important,
since the ethical imperative to reach an early decision is greatest when [0l

is large.

Even stricter requirements for early stopping have been suggested by
Haybittle (1971) and Peto et al. (1976). These authors recommend using
€47 -+ %-1
only if IZk523. A fixed sample level « test may then be employed at the final

=3, i.e. stopping to reject H0 before the final group of subjects

analysis or a small correction included if desired. Other families of two-—
sided group sequential tests have been proposed by Fleming, Harrington and
0'Brien (1984) and by Wang and Tsiatis (1987). Further comparisons are shown

in Jennison and Turnbull (1990a).

2.2 Unequal and unpredictable group sizes

The implementation (cutoff values, nominal levels) of the tests
described so far in this section depends on the assumption of equal group
sizes, n(k)= kg for some g. However, in practice the group sizes may be
unequal or even unpredictable. In a clinical trial studying survival, the
analog of group size is the number of deaths between analyses (see e.g.

Jennison and Turnbull, 1989). If, as is often the case, interim analyses take

13



place at equally spaced intervals in calendar time, the numbers of deaths

between analyses will be both unequal and unpredictable.

Pocock (1977) suggested that small variations in group sizes might be
ignored and the nominal significance levels §mk§ appropriate to equally sized
groups employed at each analysis. Slud and VWei (1982) presented an exact
solution to this problem in which the total Type I error is partitioned
between analyses. For a study with K analyses, probabilities nl,....,nK,
summing to «, are specified and critical values for the statistics Zk (1<k<K)
found, such that the unconditional probability of wrongly rejecting H0 at
analysis k is equal to nk. These critical values are calculated successively
using numerical integration; the k'th value depends on n(1),....,n(k) but not

on the as yet unobserved n(k+1),....,n(K).

A similar approach is proposed by Lan and DeMets (1983). Whereas Slud
and Wei specify the probabilities R at the outset, Lan and DeMets
spend Type I error at a prespecified rate. Before implementing the Lan and
DeMets method, a maximum sample size Nmax must be determined: this could be
the sample size needed to achieve a certain power or an estimate of the
maximum accrual that will eventually be achieved. The Type I error is then
partitioned according to an 'error spending' or 'use' function, f(t), where f
is nondecreasing, f(0)=0 and f(t)=« for t>1. The error allocated to analysis
k is = f(n(k)/NmaX) - f(n(k-l)/NmaX) for k21, and critical values for the Z,
are computed as in Slud and Wei's method. Lan and DeMets (1983) and Kim and
DeMets (1987a) propose a variety of functions f(t). One convenient family of

functions, namely f(t) = min[atp,m] for p>0, provides a good range of Lan and

14



DeMets procedures and includes boundaries roughly the same as the Pocock and
the O'Brien and Fleming tests at p=0.8 and p=3, respectively. Note that the
Lan and DeMets method has flexibility in that the number of analyses K need
not be fixed in advance, although it is necessary to specify Nmax and this
may be troublesome, especially in a survival study, where number of deaths
plays the role of sample size. As pointed out by Fleming et al. (1984), it is
possible to get around the problem of specifying K in the Slud and Wei
approach or of specifying Nmax in the Lan and DeMets approach by altering, at
some intermediate stage k, the probabilities 3ni,izk+1§ or the use function
f(t) (¢t > n(k)/Nmax)’ However such modification of the design is allowable
only on the basis of the observed values n(1), n(R),... or of factors
independent of the observed responses Zl’ZZ’ ..... . Otherwise, Lan and DeMets
(1989) using simulations and Jennison and Turnbull (1990) with some numerical
calculations have shown that Type I error rates of either procedure can be
affected but only slightly. In general, modifications to the design, even if
statistically legitimate, are discouraged because of the threat to the

credibility of study results and interpretation.

2.3 One-sided tests

In clinical trials designed to assess whether a new therapy is better
than a standard, it is more natural to consider a one-sided formulation,
testing hypotheses HO:GgO against H1:6>0. DeMets and Ware (1980) propose
group sequential tests with Type I error o when 6=0 and power 1-8 at a
specific positive value of 6. They consider two methods which are

modifications of two-sided repeated significance tests and a third motivated

15



by Wald's (1947) sequential probability ratio test. In a subsequent paper,
DeMets and Ware (1982) propose tests with more stringent requirements for
early stopping based on the O'Brien and Fleming (1979) two-sided test. A
common feature of DeMets and Ware's methods is their lack of symmetry: this
gives rise to additional parameters in the test boundaries and apparent
arbitrariness in the choice of tests. However upon reformulation some
symmetry is possible. If we can specify parameter values 90 and 61, such that
the desired operating characteristic curve of the test passes through the
points (80,1—a) and (el,a), the problem is then symmetric about (60+81)/2.
Mathematically there is no loss of generality in considering (80+81)/2 = 0,
in which case we are testing H0:8=—50 versus H1:e=+6o with size o and power
1-o where 6=(61~90)/20; tests between these hypotheses are easily transformed
back to the original problem. Of course some problems are intrinsically
asymmetric, since early stopping may only be appropriate under one
conclusion. Gould (1983) remarks that, in trials for non-life-threatening
conditions, early stopping for negative results is desirable but if interim
findings suggest positive efficacy of a new therapy, a trial should continue
to completion in order to provide adequate information on secondary
endpoints, safety and subgroups. Similarly, if the response variable of

interest is a safety outcome, early stopping might only be desirable for

negative results.

¥hitehead and Stratton (1983) describe a one-sided test with a
triangular continuation region when plotted on the S scale. For our prototype
example with hypotheses in terms of & as defined in the previous paragraph,

the test rejects HO at analysis k if SkZa - &n(k)/4 and accepts HO if Skg—

16



a + on(k)/4. If we take groups of equal size g and set a = a(g) = -
(2/8)1og(Rx)-0.5834g, then the test will have the specified size « and power
1-o. The term 0.5834g is needed to correct the continuous monitoring boundary
for the effects of overshoot (Siegmund 1979). For a given maximum number of
groups K, the required group size g can be found by solving the quadratic
equation a(g) - gkd/4 = -a(g)+gkd/4, which ensures that a decision will be

reached at analysis K.

Jennison (1987) considers the problem of determining the optimal
continuation region for this problem. For specified group size, g, and
maximum number of analyses, K, Jennison derives tests which minimize an
objective function amongst all such group sequential tests with the specified
K and g and which meet the size and power requirements (o, 1-o at HO, Hl’
respectively). Four alternative objective functions are considered: ASN's at
8 = 0, 50, 250 and the arithmetic average of the ASN's at 6=i80/2 for
i=0,...,4. The value of the objective function for any one test is obtained
by numerical integration and the minimization is by a numerical search over
the space of possible boundary vectors. The optimal regions are roughly
"pear—-shaped''; the critical values for lSkl are first increasing and then
decreasing. Emerson and Fleming (1989) have developed a one parameter family
of symmetric designs with boundaries which are almost fully efficient when

compared to the optimal tests of Jennison (1987).
One-sided tests can also be derived from repeated confidence intervals

as can bioequivalence tests. These will be briefly described in Section 5. A

full discussion appears in Jennison and Turnbull (1989).

17



2.4 Analysis following a group sequential test

Upon termination of a sequential study, a more complete analysis is
usually required than a simple accept/reject decision of a hypothesis test.
In this section we describe frequentist methods for calculating confidence
intervals, significance levels and point estimates. Let us suppose that the
procedure has terminated at stage T with a total of n(7) observations. We
first note that it is inappropriate to draw inferences conditional on the
" sample size n(7) because 7 is not ancillary —— the parameter of interest ©
can have a dramatic effect on 7. The sequence $n(1),n(2),....% is ancillary
to © as long as the value of each n(k) (k>R) is not influenced by previous
observations Zi””’Zk—l’ as discussed in Section 2.2. Inference will
therefore be made conditionally on the realization of the sequence
$n(1),n(R),...3. If early termination occurs, later values of the sequence
are unobserved but we shall see that it is still possible to calculate

confidence intervals and significance levels in this case.

The problem of constructing confidence intervals following a sequential
test was first studied in the context of binomial response variables. Early
work was presented by Armitage (1958) and more recently there have been
papers by Jennison and Turnbull (1983), Atkinson and Brown (1985), Chang and
0'Brien (1986) and Duffy and Santner (1987). Although analogous, the problem
of calculating the interval for our prototype example with a normal response
variable is more difficult because of the continuous nature of the sample
space. An analytic treatment is possible for certain fully sequential tests:

Siegmund (1978, 1985) derives confidence intervals following repeated

18



significance tests and truncated sequential probability ratio tests;
¥hitehead and Jones (1979) derive confidence intervals following the
triangular test described in the previous section. For group sequential
tests, direct numerical computation allows a more general treatment. Tsiatis,

Rosner and Mehta (1984) present the basic methodology, which we now describe.

A general group sequential boundary with K stages can be described by K
pairs §(ak,bk); 1<k<K} denoting upper and lower boundary values. For
k=1,....,K, early termination takes place at stage k if Zkgak or Zkzbk,
otherwise the study continues until stage K. At the final stage, for a two-
sided test aK<bK whilst aK=bK for a one-sided test. The sample space @
consists of all possible final values (T,ZT). We first define an ordering of
the sample space in a counter-clockwise sense around the continuation region,
in which higher values of (T,ZT) are typical of higher values of 6. We write
(k',z')>(k,z) to denote that (k',z') is higher than (k,z) in this ordering. A

convenient choice (Siegmund 1978, Jennison and Turnbull 1983, Tsiatis et al.

1984) defines (k',z')>(k,z) if one of the following conditions hold:

(i) k'=k and z'2z ,
(ii) k'<k and Z’Zbk, .
(iii) k'>k and z <a

k
With this ordering and using a monotonicity result of Bather (1988),
the (1-o) level confidence interval for ©, when (T,ZT) takes the value

* L 3
(k ,z ), is (8 ) where

L’ %y
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o/2

Pri(s,2.) > (K .z )1e=6}

and (2.2)

i

* *
PrE(T,ZT) < (k ,z )18=8U§ o/R.
These probabilities can be computed using numerical integration and solutions
GL and GU found by, for example, a bisection search.

Tsiatis et al. (1984) note that this procedure depends only on the
values of boundary points prior to stopping. Thus if the sequence
$n(1),n(R),...% is not known in advance and a Slud and Wei (1982) or Lan and
DeMets (1983) method is used to calculate boundary points (ak,bk), a
confidence interval for © can still be calculated when the study terminates
early and the subsequent group sizes are unobserved. More details are given

in Kim and DeMets (1987b).

Other approaches to the problem are possible. For example, an ordering
of sample outcomes could be based on the maximum likelihood estimator in(T)'
Rosner and Tsiatis (1988) and Chang (1989) obtain confidence sets by
inverting families of tests for which the ordering of the sample space
depends on the value of © being tested. A drawback of these other approaches

is the dependence of the confidence interval on boundary points following

termination, which precludes their use when group sizes are unpredictable.

The derivation of significance levels following a sequential test
parallels that of confidence intervals. An ordering of the sample space 1is
specified and the significance level for H0:9=80 is defined to be the

probability, under HO’ of an observation as extreme or more extreme than that
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actually observed, with the usual interpretation of "extreme'' for one-sided
and two-sided significance levels. For example, we can use the ordering of
Tsiatis et al. (1984) in our normal prototype problem and define a one-sided
P-value as Pr§(7,ZT) > (k*,z*)16=eo§ where (k*,z*) denotes the observed
outcome. Note this can be calculated for any value of 60, not necessarily the
null value for which the test was originally designed. As in the non-
sequential case, the set of values of 80 with two-sided significance values
greater than o forms the corresponding 1-« confidence interval for 6.
Analytic formulae for significance levels following certain fully sequential
tests have been obtained by Siegmund (1978, 1985) and by Whitehead and Jones
(1979). The group sequential problem has been studied numerically by
Fairbanks and Madsen (1982) for normal response and by Madsen and Fairbanks

(1983) for exponentially distributed response.

For the final topic in this section, we consider point estimation upon
termination of a sequential test. It is well-known that the maximum
likelihood estimate (MLE), here in(T)’ can have substantial bias (Siegmund
1985). In fact it can happen that the sample mean in(f) is not even contained
in a final confidence interval (Tsiatis et al. 1984, Table 2). Whitehead
(1983, Sec 5.3) notes that a lower (or upper) 50% confidence limit for © is a
median unbiased estimator of © and this can be found by solving (R.2) with
®=1. The problem of finding a mean unbiased estimator is more difficult. Let
8 denote the MLE of 6 and suppose E(8) = ©+b(8). Whitehead (1986) evaluates
the bias function b(8) analytically for the sequential probability ratio test
and the previously described triangular test and he proposes a less biased

estimator §’ obtained by solving 9=09- b(%). The performance of this
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estimator is studied by Skovlund and Walloe (1989). For group sequential
tests, direct computation of b(8) by numerical integration is possible and
the same method of bias reduction can be applied; Chang, Wieand and Chang
(1989) apply this idea to reduce the bias of the sample proportion following

a group sequential Phase II trial.

2.5 Discussion

It should be noted that the validity of all the techniques described in
this section depend crucially a rigid adherence to a precisely specified
stopping rule. No provision is made for the possibility that the trial is
terminated for some reason either before or after the prescribed stopping
time. Nor do the methods provide any information at times prior to stopping
other than that in the decision to continue sampling. In practice the
decision to stop a trial can be a complex process. Meier (1975) claims it is
political rather than medical, legal or statistical. The report of the
Coronary Drug Project (1981) states that "statistical tools are .... at best
red flags ... and can never be used as hard and fast decision rules'.
Considerations for terminating a trial include: side-effects, toxicity;
risk/benefit analysis; credibility; ethics; need for balance over covariates;
consistency of conclusions over primary and secondary end points; subgroups;
new information from other studies; as well as statistical evidence
concerning the primary outcome. This is not to say that group sequential
tests are not useful in practice; on the contrary there are examples where

they have been applied successfully. For example, the BHAT study (DeMets
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1984) was stopped at the sixth of seven planned study reviews and more
recently the AZT trial for AIDS (Fischl et al. 1987, Barnes 1986) stopped
early at the third of four interim analyses. In both cases an O0'Brien/Fleming
boundary had been crossed, but the investigators made it clear that many
other factors entered into making the termination decision. Clearly there
will be situations where the non-statistical considerations will play a
strong role. It may be decided to overrun, continuing a trial even though a
stopping boundary has been crossed. Indeed, in one recent pharmaceutical
trial, the investigator and data monitoring committee were overruled by
management who required a trial to continue to the planned conclusion because
they felt more safety data were needed to convince the FDA in their New Drug
Application. In the remaining sections we discuss more flexible statistical

methods which permit analyses that are independent of the stopping rule.
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3. THE BAYESIAN APPROACH

The case for application of the likelihood principle and the Bayesian
approach to the statistical design and analysis of clinical trials has been
eloquently advocated by Berry (1987), Berger and Berry (1988a) and by
Spiegelhalter and Freedman (1988). In the "standard'' Bayesian approach, a
prior n(8) is chosen for © and inference is based on the posterior
distribution of © given the data. For our prototype problem, it is common to
choose a conjugate normal prior distribution N(p,vz), where p and vz are the
specified prior mean and variance of ©, respectively. In this case, the

posterior distribution for © after n observations (Lindley 1965, p.3) is:

(3.1)

§n0~2+pv_2 1
M

nc—2+v~2 ncr-z-w”2 ]

where X is the current observed mean. The limiting case as 1@ gives a ''non-
informative" or ''objective' improper uniform prior and the posterior
distribution for © reduces to N(i,cz/n). Later we will discuss further the

choice of the prior.

Using the posterior distribution (3.1), it is easy to construct a

Bayesian interval estimate [BL,BU], satisfying

Pre <6<gy | X1 =0.95,

say (Lindley 1965, p.15). Unlike the frequentist intervals of Section R.4,

which condition on parameter values rather than the observed data X, the
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construction of such an interval at termination, or at any interim analysis,
does not depend on the sampling scheme used to obtain the data. The
likelihood principle (Berger 1985) is satisfied. The same comments apply to
Bayesian P-values (Lindley 1965, p.58) of the type Pr[e<0|X], evaluated via
(3.1). Hence the techniques for inference upon termination are much more

straightforward with the Bayesian approach.

The problem of design and, in particular, the stopping decision is more
complicated. There are essentially two Bayesian approaches. The first is the
decision theoretic approach, originally considered by Anscombe (1963) and
Colton (1963). These authors assumed a finite patient horizon, i.e. a fixed
total number of patients in the trial or whose treatment would be determined
by the trial, and assigned costs and utilities to various decisions and
outcomes. According to Berry (1987, p-121) : "The decision makers must assess
the consequences of continuing and of stopping, and they must weigh these
using the current distribution of 6. The solution will typically involve
dynamic programming. However, because it is difficult to quantify the
horizon and the costs (as well as the prior), the models have been severely
criticized by Peto (1985) and others as being unrealistic and the methods
appear to have found no application in practice. Further papers on the topic

include Chernoff and Petkau (1981), Iglewicz (1983) and Bather (1985).

There is, however, a particularly illuminating aspect to the Bayesian
decision theoretic formulation of the stopping decision problem. This
concerns reconciliation of the Bayesian and frequentist procedures. Complete

class theorems exist for sequential problems where "]oss" is equal to the sum
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of sampling cost plus cost of an incorrect terminal decision (Brown et al.,
1980) Broadly these theorems state that the class of admissible procedures,
assessed in terms of operating characteristic and expected sample size
functions, is the class of Bayes rules for all possible priors and the same
form of loss function. The frequentist can thus be reassured that a good
classical sequential test will perform well by Bayesian decision theoretic
criteria. Conversely, the Bayesian should be content with an admissible
frequentist procedure unless the implicit prior or loss structure is

unreasonable.

The second Bayesian approach to the design problem does not require
specification of any loss function or cost of sampling, but is based only on
the posterior distribution (3.1) of 6. For example, one might stop a trial
early if, at some intermediate stage, Pr[8<0[i] < 0.05, say. Rules similar to
this have been proposed by Mehta and Cain (1984), Berry (1985), and Freedman
and Spiegelhalter (1989). As noted earlier, the sequential design does not
affect Bayesian inference on termination and, on stopping early under the
above rule, there is no dispute that the posterior probability that © is
negative is less than or equal to 0.05. However, the frequentist properties
of such procedures can be quite surprising. Suppose we use a sequential
design with a maximum of K stages and early stopping at stage k<K if Pr[9<0|i
n(k)] < 0.05. Let 7 (<K) denote the stage at which termination occurs. If o
represents the efficacy of a drug relative to placebo, one might wish to
conclude that the drug is effective if Pr[9<0|fn(T)] < 0.05. If we use the
non-informative prior, this design becomes equivalent to stopping early at

stage k<K if in(k) > 1.6450/4n(k). We conclude the drug is effective if X
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(1) > 1.6450/4n(7) and, in such cases, the posterior probability that the
drug is not effective (6<0) is at most 0.05. On the other hand, the

frequentist measure
Pr[Conclude drug is effective|8]

depends on both © and the maximum number of stages K. Values at &=0, the
frequentist "Type I error' of the procedure, are 0.05 for k=1, 0.08 for K=2,
0.13 for K=5, 0.17 for K=10 and 0.31 for K=100. Under a proper N(O,ZGZ) prior
and with groups of size 1, these probabilities become 0.0%3, 0.05, 0.09, 0.14
and 0.28, respectively. For priors concentrated more closely around zero,
these probabilities are much lower (see Freedman and Spiegelhalter 1989). The
conclusion is clear: whereas inferences conditional on in(T) but integrated
over the prior distribution for © do not require adjustment for sequential
sampling, frequentist properties conditional on © depend crucially on the
sampling rule. Despite the arguments of Anscombe (1963), our view is that,
from a practical standpoint, frequentist properties at specific values of ©
remain important. First, they are appropriately of interest to regulatory
bodies performing routine reviews of experimental studies. Second, they
allow individuals with different personal priors to assess whether or not a
proposed study design will provide adequate protection against an incorrect
conclusion. A third point concerns the misspecification of the prior.
Rosenbaum and Rubin (1984) have shown that data dependent stopping can
greatly increase the sensitivity of Bayes posterior intervals to such
misspecification. Given this sensitivity, we would recommend inspection of

the frequentist properties of inferences or decisions, conditionally on 8,
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for any procedure as a sensible precaution.

A focal point of the discussion between Bayesians and frequentists has
been the issue of ''sampling to a foregone conclusion' (Cornfield 1966b). It
is well-known that, under repeated application of a significance test on
accumulating data, a true null hypothesis will eventually be rejected with
probability one. The results of Table 1 show the smaller but important
increases in overall error probability for a finite number of repeated tests
and illustrate the need to "adjust' the usual frequentist confidence
intervals and P-values if a sequential stopping rule is used. Although the
Bayes posterior interval is valid without reference to the sampling rule, its
frequentist properties can suffer the same problem of sampling to a foregone
conclusion. Suppose, for example, we have a non-informative prior and
conduct a sequential study with a maximum of K stages and early stopping at
stage k<K if Iin(k)‘ > 1.960/4n(k). Let 7 (1<7<K) denote the stage at which
stopping occurs. The 95% Bayes posterior interval for © on termination is [i
n(T)i1.960/4n(7)] which coincides with the unadjusted 95% frequentist
confidence interval. If =0, certainly a value of interest, the probability
that the Bayes interval fails to include the true value is equal to the entry
in the right hand column of Table 1. In an open ended procedure K=o and the
probability of error under 6=0 is one. Berry (1985, 1988) states that
sampling to a foregone conclusion is not a threat to the Bayesian approach
because the rule takes an infinite expected number of stages to terminate.
However, the error rates at just K=5 or 10, for example, are still well in
excess of 0.05. Thus a Bayesian procedure can have very poor frequentist

properties and this should be unsettling even for a Bayesian.
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Cornfield (1966a,b) recognized this problem and reflected that "if one
is concerned about the high probability of rejecting HO’ it must be because
some probability of its truth is being entertained.' Hence he used a mixed

prior with discrete mass p assigned to ©=0. The prior is:

HO: =20 with prob. p
Hp: 0~ N(0,v%) with prob. 1-p

Using this prior in our prototype problem, the posterior odds in favor of H0

are defined to be

Pr(HOldata) s
= Pr(ETdata) | T RBO

where, recalling Z, = Xn(k)4n(k)/c,

2 2 Z
RBO = [1 + 0 l;zv ] P - [ 231+[o§/(n(k)vz)]§]

is the ratio of the posterior to the prior odds for HO, called the Relative
Betting Odds (Cornfield 1969) or the Bayes factor (Dickey, 1973). Suppose we
use our previous rule that stops if lel > 1.96. Then, upon stopping with

n(k) large, the posterior odds X are approximately equal to

o= Tg; [vin(k) /o] exp(-1.962/2) .
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Thus if the value of n(k) is sufficiently large upon stopping, the posterior
odds now favor HO not Hl' Hence such a procedure is not subject to the threat
of "sampling to a foregone conclusion’. Cornfield (1966b) went on to propose
a stopping rule based on parallel stopping boundaries for the RBO or,
equivalently, ». For such a procedure, using a standardized vertical Zk
scale, the stopping boundaries diverge with sample size, unlike the repeated
significance test or Pocock boundaries which are constant and unlike the
0'Brien and Fleming boundaries which become narrower with increasing sample

size.

Lachin (1981) has extended the Cornfield model to a composite null
hypothesis by replacing the discrete prior mass at =0 for HO’ by a

continuous prior supported on a small interval (-5,8).

Many Bayesians would be unhappy with the mixed prior approach of
Cornfield (see e.g. Spiegelhalter and Freedman 1988, p.461). However, if we
use the ''standard" Bayesian approach with a smooth prior, the procedure will
have poor frequentist properties as we have described above. Note that even
if the procedure is based on the RBO, the prior under H1 needs to be
specified. The choice of the prior is a concern under the Bayesian
approaches. This is particularly important in view of the sensitivity results
of Rosenbaum and Rubin (1984), mentioned earlier. Freedman and Spiegelhalter
(1983) and Kadane (1986) report success on eliciting priors from clinicians
but in general such quantification is difficult. The study of Gilbert, McPeek

and Mosteller (1977) revealed that experimenters were often overly optimistic
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about the potential benefits of an innovative therapy. Although these
findings were related to surgery and anaesthesia, this problem clearly
carries over to other fields and would be of particular concern in
pharmaceutical company trials —— see the remarks of LeCam (1984). There is
also something of a logical problem about the specification of the prior. If
the prior mean p for © is zero, as it is commonly taken to be (see the
examples of Cornfield (1966b), Berry (1985)), or if the prior concentrates
too much mass close to zero, one would certainly hesitate to embark on a
long, expensive trial if the same resources could be used elsewhere. Given
the positive biochemical, animal, Phase I and other initial exploratory
evidence necessary to justify such a trial, a prior mean away from zero would
be appropriate; as in the example of Hughes and Pocock (1988, p.1238). But,
in this case, it may be unethical to randomize subjects at all. Kadane

(1986) gives a good discussion of the ethical problem.

It might be suggested that posteriors for a range of prior distributions
be presented (Dickey 1973) or simply just the likelihood function with the
invitation that each reader or ''consumer" provide his or her own prior.
However, a scientific audience might find it hard to digest the resulting
presentation. Each member of the audience would have to pick the prior
closest to his or her own opinion and the previous comments about the dangers
of specification of the prior still apply. Now it is true that in most
studies, there is prior information that should be utilized, as well perhaps
as information from outside the trial that comes in while the trial is in
progress. The Bayesian approach requires quantifying this information and

melding it with the data, whereas, in a frequentist approach, data and prior
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opinion are combined less formally; the latter not needing to be quantified.
It is true that some subjective choices need be made in a frequentist
approach (Berger and Berry 1988b) but the problems do not seem so great. For
example, stopping boundaries can be written into the protocol in advance,
while in a Bayesian analysis, personal priors must be constructed by members

of an audience just before presentation of the results.

It might be claimed that some of the difficulties of the Bayesian
approach are overcome by using "mon-informative', ''reference' or ''objective"
priors. There are several problems with this approach. Without a positive
prior mass at HO, there is still the '"sampling to a foregone conclusion”
effect. Also, in location parameter problems where the noninformative prior
is uniform, it is unreasonable to suggest that the prior probability that ©
lies in an interval around 0 is the same as that of an equal width interval
centered at 1010, say. Furthermore there is no agreement on what the
appropriate noninformative prior should be in particular situations. The
choice of such a prior depends on the parametrization —— what is non-
informative for © can be quite informative for a function g(e). Using an
invariant Jeffreys (1961) prior can obviate that problem but this too can
lead to undesireable results —— see the example of Evans et al. (1986, Sec.
5). The Jeffreys prior can lead to paradoxical results in multi-dimensional
problems (Dawid et al. 1973). Reference priors also suffer from ambiguities
of definition when there may be several parameters of interest (Bernardo
1979). Even worse, since the prior construction methods of Jeffreys (1961)
and of Bernardo (1979) both depend on expectations taken over the sample

space (Fisher information in the former case, Kullback-Leibler distance
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between prior and posterior in the latter), the choice of prior will depend
on the stopping rule. This is a violation of the likelihood principle and
paradoxical in a Bayesian framework. If the stopping rule to be followed is

not known precisely, such priors cannot even be constructed.
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4. STOCHASTIC CURTAILMENT

This approach to early stopping evolved from the idea of simple
curtailment whereby an experiment could be terminated as soon as the result
was inevitable, e.g. Halperin and Ware (1974). The idea of stochastic

curtailment was proposed by Lan, Simon and Halperin (1982).

For testing a null hypothesis HO: 9=60, we first pick a 'reference’ test
T, say. This is typically a fixed sample size test with given size and power
against a specified alternative 61. However T could be a sequential or group
sequential test. At stage k, let Dk denote the accumulated data so far. In
our prototype example, Dk can be replaced by the sufficient statistic in(k) s
equivalently Zk or Sk. One can then ask for the probability, given ©, that T

will reject H0 upon completion. This probability is called the ''conditional

power' and is given by:

pk(e) = PB[T will reject HOI Dk] .

For k=0, we define this to be the usual (unconditional) power function of the
test. At each stage k, the conditional power can be plotted as a function of
6. Of particular interest are its values at 90, 61, and é, the MLE of © based
on the current data. In our prototype problem the conditional power is
easily expressed. Suppose T is a one-sided test of fixed sample size N which
rejects HO: 6=0 if ZK>Za’ Here n(X)=N and Zy is the upper «'th point of the
standard normal distribution. Then, since the conditional distribution of ZK
given Z, (1<k<K) is normal with mean ZkJ(n(k)/N) + 8(N-n(k))/(odN) and

variance (N-n(k))/N, the conditional power at analysis k (1<k<K) is given by:
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6) = 1-¢ [ —S =2 (4.1)
P ey

where

zdodN - nin
c = T , (4.2)

n=n(k), & is the standard normal cdf and @(zm)=1—a.

Figure 4.1 displays a typical conditional power curve (4.1) for a one-
sided problem, calculated at some intermediate stage overlaid on the original
power curve for test T (i.e. for k=0). Here «=0.05, o=1, N=214 so that the
reference test T has power 0.9 at 8=0.2. The conditional power curve is drawn
in for the situation when n=N/2 observations have been taken and the current
mean is in=-0.1. We see that the probability of rejecting HO if the
experiment goes to completion as planned has been reduced from 90% to

approximately 10% if e=0.2.

[Figure 4.1 about here. ]

The conditional power function is a useful device to communicate with
the clinical investigators. For example, it can be used to illustrate the
effects of low accrual, and can be used to aid the decision to abandon a
study if the conditional power appears poor. Lan et al. (1982) also argue
that the method can be used formally as a stopping rule. Consider the

following rule for the one-sided testing problem:
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Stop early to reject HO: if pk(eo) > ¥
Stop early to reject H1: if pk(el) < 1-Y!

where Y,Y' are some specified fractions, for example Y=Y'=0.8. From (4.1) and

setting 60=0, the stopping boundary becomes:
Stop early to reject HO if:

zZ,> ZMJ(N/n) + z1~Y4((N~n)/n). (4.3a)
Stop early to reject H1 if:
Z, < zad(N/n) - zl~Y,4((N-n)/n) -el(N-n)/(GJn) (4.3b)

where as before we have written n(k)=n. This stopping boundary is shown in
Figure 4.2 for N=214, 91=0.2, «=0.05 and Y=Y'=0.8. Now, of course, Type 1
error is inflated from that of the reference test, o, because of the multiple
looks effect. The exact Type I error, o', of the stochastically curtailed
procedure (SCP) with a given interim analysis schedule can be computed by
numerical integration; however Lan et al. (1982) showed that the error is no
more than o/Y. A simple argument can be used to prove this result. First it
can be easily shown that pk(e) is a martingale with respect to the filtration
defined by §D1,D2,.... 2. Let v denote the stopping time of the reference
test T (usually fixed). Then, if Y'=1, the stopping time of the SCP is given

by T = min} v, k:pk(90)>Y§. Now by the optional sampling theorem (e.g. Ross
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1983, p.231), we have:
By [p;(3)] = Eq [Pg(3)] = py(8y) = @
But, from the definition of 7, we have:

Eeo[pT(eo)] > Y Peo[ pk(eo) > Y for some k<v] = Yo

and hence o'<e/Y. If Y'<1, then clearly the actual level o'is reduced further

and so is still bounded above by /Y.

[Figure 4.2 about here. ]

A similar argument shows that, since we can stop early to reject the
alternative hypothesis H1:6=e1 when pk(61)<1—Y', the Type II error of the
stochastically curtailed procedure is no more than B/Y', where g is the Type
11 error of the reference test. ¥With these results in mind, we could design
our reference test to have size oY and power 1-gY', but then of course pk(e)

will refer to the new test.

We now consider the situation where the reference test is a fixed sample

two-sided test, rejecting HO: &=0 if lel > zm/z. The analog of (4.1) is:

- - c - 6 c'- 8
p(® = 172 [ 04[<N—n)‘1]] e 04[(N_n)-1]] *-

where
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z“/ZGJN - an

c = N —n and c¢'= " —n

~za/204N - an

We can use stochastic curtailment as a formal sequential rule by allowing

early stopping to reject H0 if pk(90)>Y. This SCP has size no more than o/Y.
The stopping boundary with N=84, 02=2, o=0.05, Y=0.8 is shown in Figure 4.3.
(This fixed sample reference test was also used in Section 2.1; it has power

0.9 when 6=+0.5.)

[Figure 4.3 about here. ]

If the reference test has size oY instead of o« then the procedure can be
compared directly with the two-sided tests of Section 2. On the standardized
7-scale, the boundaries start wide for small k and then converge, similar to
the OBF boundary (see Figure 4.3). However if the maximum number of looks K
is small, the boundaries are very wide and the test is quite conservative.

In fact, if v=0.5, the SCP is the continuous time version of the 0'Brien and
Fleming procedure. It also coincides with the test proposed by Samuel-Cahn
(1980) and is related to proposals of Chatterjee and Sen (1973), Davis (1978)
and Koziol and Petkau (1978). (See Halperin et al. 1982, p.322.) What is
gained from the conservatism is the ability to do unplanned interim analyses
at arbitrary, even data dependent, times. If the timing of the looks is fixed
in advance however, numerical methods can be used to obtain an exact value of

the Type I error which would lead to tighter stopping boundaries.

A criticism of this procedure is that it may be unreasonable to base our
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stopping criterion on a prediction which is based on 80 —— a value unlikely to
be true if we are considering stopping to reject HO. Choi, Smith and Becker
(1985), Spiegelhalter, Freedman and Blackburn (1986) and Choi and Pepple
(1989) proposed calculating the 'predictive power'', which is a weighted

average of the conditional power,

P= I p,(6) n(8ID,)de (4.5)

Here the weight function, %, is the current posterior for © given the

accumulated data and thus reflects our belief in the value of the parameter.

For our prototype normal problem, the calculations are particularly
simple if we choose the vague or non-informative prior. If n(k)=n at stage k,
the posterior distribution n(ele) = n(elin) is normal N(in,cz/n). The

"predictive' distribution of XN given Xn is:

h(x1X) = I £(x1X_,0) n(eIX )de

where f is the conditional density of XN given in and 6. Here f is normal
with mean (nin+(N—n)e)/N and variance cz(N—n)/Nz, and so the predictive
density h of XN is also normal with mean in and variance GZ(N—n)/(nN). Hence
the predictive power using a non-informative prior for the same one—sided

test considered earlier in this section is given by:

]

P =1- q»[ ° ] (4.6)
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with ¢ given as in (4.2). It can be seen that this expression is very
similar to that of the conditional power pk(é) given by (4.1) when © is
replaced by its MLE 6= in‘ However, the larger denominator in the argument of
% reflects the fact that 8 is an estimate of © rather than a hypothesized

true value.

As with the conditional approach, a formal stopping rule can be
constructed which has the form: Stop as soon as either Pk>Y or Pk<1~Y’ and
choose H1 or HO respectively. For our normal prototype problem, the stopping

criteria correspond to boundaries:

Stop early to reject Hj if: zZ,> za4(n/N) + zl_YJ((N—n)/N) (4.72)

Stop early to reject H1 if: Zk< ZQJ(R/N) - zl_Y,J((N—n)/N) (4.7b)

where recall n=n(k). These boundaries, for Y=Y'=0.8 and the same one—-sided
reference test T used in Figure 4.2, are displayed in Figure 4.4. Figures 5
and 6 of Armitage (1987) are analogous to our Figures 4.2 and 4.4 but it
should be noted that he uses the S and not the Z scale for the vertical axis
in his figures. Although these expressions (4.7a,b) appear similar to
(4.3a,b) they in fact give much narrower boundaries (Figure 4.4) than for the
conditional approach —— compare Figure 4.4 with Figure 4.2. Thus early
stopping is permitted much more readily. This is because the conditional
probabilities are based on the observed drift which could be extreme, rather
than a hypothesized value 80. The stopping region is ''pear-shaped” and it is
interesting to note that this is similar to those optimal regions in the

sense of Jennison (1987) as described in Section 2.3. Unlike the conditional
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power approach there is no easy adjustment for the multiple looks effect and
this is a serious concern in a frequentist approach. Using numerical
integration it would be possible to widen the boundaries and/or increase the

horizon N in Figure 4.4 so that the size of the test is preserved.
[Figure 4.4 about here.]

For a two-sided test, a stopping rule can be constructed by terminating
the trial early to reject HO if Pk exceeds a constant Y (¥>0.5). For the
prototype normal problem there is an expression analogous to (4.4) with in
replacing © and (N—n)—1+n—1 replacing (N—-n)“1 in each argument. Figure 4.5
shows the shape of the boundary for the same constants «=0.05, ¥=0.8, 02=2,
N=84 used to construct the boundary in Figure 4.3 which illustrated the
conditional approach. As in the one-sided problem, the continuation region is
much narrower earlier on than that of the conditional power approach (Figure
4.3) permitting early stopping more readily. Also there is no easy adjustment
that can be made to preserve frequentist error rates to counter the multiple

looks effect.
[Figure 4.5 about here.]

In summary, stochastic curtailment is a useful tool for communication
with the researcher answering questions on the effects of accrual and on the
likelihood of a reversal of an observed trend. Probability statements are
valid independently of the stopping rule. We have found the procedure

particularly useful in practice when used in conjunction with repeated
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confidence intervals which are to be described in the next section. However,
there are still some matters to be considered. First, the method may be
addressing the wrong question, because if we are contemplating early stopping
then the reference test T is not relevant. Perhaps we should stochastically
curtail the stochastically curtailed test, and so on. Second, as we have
mentioned before, the conditional power approach used as a stopping rule can
be very conservative although this conservatism does buy us the ability to
perform frequent looks at unplanned or data-dependent times. Third, although
the conditional power approach provides information about the likely
conclusion of the reference test, it does not give us direct information
about ©, such as would be provided by a confidence interval. ©. Of course we
have the Bayesian posterior intervals for © in the predictive approach but
then there is the problem of the specification of the prior, even if the
choice is the non-informative'' one as explained in Section 3. Finally, this
predictive approach is a '"hybrid'' one, involving a classical test T and a
prior distribution for ©. As such, neither Bayesian nor frequentist

statisticians may be satisfied.

Some interesting applications of stochastic curtailment have been
described by Andersen (1987), who considered the conditional approach with
exponential survival data, by Halperin et al. (1987) who considered
longitudinal data, and by Hilsenbeck (1988) who used the predictive approach

with binary data.
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THE REPEATED CONFIDENCE INTERVAL APPROACH

In this final section we outline the repeated confidence interval (RCI)
approach. Like the stochastic curtailment procedure (SCP), this approach
provides inferences independent of the stopping rule and can be used as a
guide for early termination of a trial either informally or as a formal
stopping rule. Unlike the conditional SCP approach, interval estimates of 6,
the parameter of interest, are provided at each interim look and these can be
of greater use in reporting interim results at scientific meetings and in
aiding the deliberations of a Monitoring Committee considering termination of
the trial. Confidence intervals have the usual advantages over P-values;
namely, they provide estimates of the magnitude of the treatment effect, and
reflect the power of the study more directly. They also obviate the need to
choose between one- and two-sided P-values, about which there has been recent

controversy (Peace 1988).

The multiple looks problem affects the construction of confidence
intervals in a manner analogous to the significance levels of hypothesis
tests. In our prototype problem, suppose we form the usual 95% confidence
interval for © based on observations available up to and including the k'th
analysis. This interval is given by [in(k) + 1.960/4(n(k))]. Suppose we
calculate this interval at each of K looks. For equal group sizes, the
probability that all K intervals so formed contain the true value of © is
simply the complement of the probability listed in Table 1 for that value of
K. As K increases, the simultaneous coverage probability falls substantially

below the nominal level 0.95.
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Repeated confidence intervals are defined as a sequence of intervals
3Ik§ such that the simultaneous coverage probability is maintained at some
level, 1-« say. If the maximum number of looks is fixed at K, then the
defining property is that:

Pe[ 6 € 1. for all k (1<k<K) ] > 1-o for all © (5.1)

k
Note that, because coverage probability is guaranteed simultaneously, the
probability that IT covers 6 for any stopping time T is also guaranteed to be
no less than 1-o. In fact, if a stopping rule is employed the confidence
intervals will be conservative. The idea of such "confidence sequences'' is
due to Robbins (1970) and it has been adapted to group sequential procedures

by Jennison and Turnbull (1984, 1983, 1989) and also by Lai (1984).

Repeated confidence intervals are formed by inverting a family of two-
sided group sequential tests. In our prototype normal example, the intervals

3Ik§ are given by:

_ €\ 0 _ €\ 0 _
Ik= (Xk(n)— mk)a Xk(n)+ mk)) = (@ K’ ek) »Say, (5.2)

for k>1. That they satisfy the requirement (5.1) follows directly from the
fact that the underlying test has level « and that the ﬁcki satisfy (2.1).
Note that boundary values icki of any of the group sequential tests described
in Section 2.1 can be selected; or, if the group sizes are unequal and

unpredictable, the methods of Section 2.2 can be employed to construct the
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fe 8-

The sequence of intersection sets N I. with Ij defined by (5.2) also
i<k

satisfy the defining property (5.1) for repeated confidence intervals.
However, the original sequence (5.2) is to be preferred because the intervals
are then functions of the sufficient statistics at each stage. This also
avoids the problem of possibly obtaining empty intervals, although the
probability of this occurring is very small -— for a discussion see Freeman

(1989).

If we ignored the fact that we were performing multiple analyses, the
fixed sample confidence interval would be [in(k) + za/20/4(n(k))]. A measure
of the cost of "snooping' at the data by performing interim analyses can be
constructed by examining the width of the final interval IK’ relative to that
of the fixed sample interval, assuming no interim analyses were to be
performed. This ratio is given by CK/Za/Z’ ¥We can see that performing interim
analyses and making the proper adjustment in the width of the final stated
interval does not involve a very great cost. For example, for 90% intervals
(¢=0.1) and a maximum of K=5 equal groups, the ratio of adjusted to
unadjusted width of the final interval is 2.12/1.645 = 1.29 for the Pocock
boundary, and only 1.75/1.645 = 1.07 for the OBF boundary. For K=10, these
ratios are 1.38 and 1.10, respectively (Jennison and Turnbull 1989, Table 2).
Using such information, group sizes can be chosen such that IK is of some
specified width. Note that although the OBF boundary based intervals are
narrower at the final planned analysis, the Pocock boundary based intervals

are narrower at early looks. Of course, if interim analyses are to be
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carried out, the fixed sample intervals are invalid, in a frequentist sense,

and some adjustment must be made.

RCI's can be used simply as data summaries at interim analyses.
However, as with stochastic curtailment, they can be used to help with the
decision to stop the trial. If the initial objective of a study is to test
HO: 6=0 against a two-sided alternative H1: 620, a stopping rule based on the
sequence of RCI's for © is to terminate with rejection of H0 at stage k if Ik
fails to contain 6=0, for k = 1,...,K, and to accept HO if the study continues
to stage K without rejecting HO. This is called the 'derived" test. In this
case it is easy to see that the original size o group sequential test upon
which the RCI's were based, (called the "parent' test), has been recovered
exactly. The RCI's can be considered as adjuncts to this test indicating
which other values of © are plausible given the data, both at intermediate
and final analyses. Furthermore the RCI's remain valid even if new
information on side-effects or from outside the trial make the original null
hypothesis no longer the one of interest (''moving the goalposts'). The RCI's

remain valid when it is decided to continue the trial despite the stopping

boundary having been reached.

RCI's can be used in a similar way for one-sided testing problems.
Suppose now the objective is to test HO: &=0 against le =% with error
probabilities at most « at ©=0 and ©=8. A stopping rule for this problem can
be defined in terms of 1-2« level RCI's. The study is terminated at stage k
to accept H0 if 8 <& or to accept H, if © >0; in order to ensure termination

k 1 k
at the K'th analysis, the group sizes should be chosen so that the final
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interval width chK/Jn(K) is no greater than &. It follows from the fact that
Pr§§k<e for all 1<k<K? and Pr3§k>8 for all 1<k<K} are both almost exactly
equal to o that error probabilities at 6=0 and 6=5 are no greater than «. In
fact, a small amount of conservatism occurs: if the true value of €=0 and
§k>0 for some k, a Type I error will not be made if ék,<6 for some k'<k and
thus the test has already terminated to accept HO. Note that this one-sided
derived test is different from the parent test, which was two-sided. Again,
the intention is that RCI's should be used to provide guidelines for
termination rather than a strict stopping rule. The RCI's continue to be
valid even if hypotheses change or the study continues past an interim
analysis at which the derived test calls for termination. It is, however, of
interest to study the properties of one-sided tests derived from RCI's when
the stopping rule is strictly applied, since a comparison with other one-
sided group sequential tests, such as those described in Section 2.3, allows
assessment of the statistical efficiency of this approach. Jennison and
Turnbull (1989) show that tests derived from either Pocock or OBF based RCI's
are highly efficient. Their conservatism is slight, with typical error
probabilities around 0.045 rather than 0.05. This conservatism is the price
that is paid for the flexibility gained. Yet the expected sample sizes of the
derived tests are within a few percent of the minimum possible over all tests

with the same group sizes, same number of looks K and same error

probabilities « (cf. Jennison 1987).
In addition to the one-sided and two-sided hypothesis testing problems,

a particularly useful application of tests derived from RCI's is in

bioequivalence testing, where it is desired to control the Type I error
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probability of rejecting the null hypothesis H0:9¢0 in favor of the
alternative H1:8=0. A derived test of this hypothesis can be constructed by
rejecting H0 only if at some stage the RCI is wholly contained in some
specified ''region of bioequivalence" (-6*,6*). Jennison and Turnbull (1989)

provide further details.

A theory of ''repeated P-values' can be developed analogously to that of
repeated confidence intervals. At the k'th analysis, a two-sided repeated P-
value for the null hypothesis HO: 8=80 is defined as Pk= max3o: eOEIkE, where
Ik is the current (1-«)-level RCI. In other words, Pk is that value of o for
which the k'th (1-«)-level RCI, Ik’ contains the null value, 80, as one of
its endpoints. The construction ensures that the overall probability under HO
of ever seeing a repeated P-value less than or equal to p is no more than p
for any 0<p<i, and equals p if all P-values are to be observed. Thus the
repeated P-value can be quoted with the usual interpretation yet with
protection against the multiple looks effect. These P-values should not be

confused with the significance levels described in Section 2.4 which are

valid only at termination of a followed stopping rule.

Meier (1975) has emphasized the distinction between decisions and
conclusions as first pointed out by Tukey (1960). The decision to stop or
continue a trial depends on ''so many complex elements that it may seem hard
to conceive of a broadly applicable theory for it", (Meier 1975, p. 524). On
the other hand, conclusions concerning treatment differences to be drawn from
the data are within the purview of statistical theory. Lai (1984, p. 2367)

expresses similar ideas when he describes a "separation principle' between
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inference concerning the primary ''scientific” objective of the study, and
stopping, which is related to information about a variety of ethical,
political and economic issues. Repeated confidence intervals, being valid
independent of a stopping rule, offer a frequentist theory with the
flexibility needed for interim monitoring of clinical trials; yet do not give
up much of the efficiency properties of conventional sequential statistical

methods.

Koepcke (1989 p.228S) and others have criticized RCIs for being too wide
when compared with confidence intervals constructed at termination of a group
sequential test, as described in Section 2.4. If the trial continues until
the final stage K, the OBF-based RCI is then only slightly wider than the
fixed sample interval; if stopping occurs earlier then the implication is
that the RCI was precise enough to convey the information about © needed for
that decision. In any case, in the absence of a rigidly followed stopping
rule, it will not be possible to construct a terminal confidence interval
using the methods of Section 2.4. (Likewise the bias of a point estimate
cannot be computed, and thus ¥ is the natural candidate for the center of
RCIs; Pocock and Hughes (1989) have suggested that confidence intervals be
shrunk towards the null value of the parameter.) It does appear
unnecessarily conservative to use the final RCI as a confidence interval on
termination since this allows for any stopping rule whatsoever; an
interesting compromise would be to consider confidence intervals which
guarantee their coverage probability if the stopping rule is in a particular

class.
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Another criticism of RCIs concerns the arbitrariness in the choice of
the sequence §ck§. This is reminiscent of the problem of constructing a
confidence interval upon termination (Section 2.4), where the absence of a
monotone likelihood ratio results in thr lack of a definitive choice of
method. We would recommend that the particular sequence Sckg be specified in
advance in the protocol and chosen according to considerations described in
Jennison and Turnbull (1989, Section 3.3). For example, if very early
stopping is thought undesirable and unlikely, the OBF-based RCIs should be

used, whereby relatively little error is spent in the early stages.

In summary, RCI's provide interval estimates at each interim analysis
"adjusted" for multiple looks. As such they may be reported as interim
estimates of treatment effect at scientific meetings without the threat of
over—interpretation. As with group sequential tests (GST's), they can be
applied with non-normal data (e.g. binary, survival or multivariate data) and
in the presence of covariates. RCI's can be used with unequal and
unpredictable group sizes using Slud and Wei (1982) or Lan and DeMets (1983)
proposals as the parent test. At interim analyses, RCI's can serve as an
adjunct to a group sequential test providing more than just the
"'stop/continue' information that the GST yields. RCI's are valid independent
of the stopping rule. If the stopping rule is not mathematically defined,
then the terminal RCI is valid whereas confidence intervals based on a rigid
rule, as described in Section 2.4, are not available. RCI's continue to be
valid even if a hypothesis is rejected by a formal GST and yet for some reason
the study continues. RCI's can be used as a basis for either an informal or

formal stopping rule; in the latter case, with careful choice of parent test,
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the derived sequential tests are highly efficient in the usual sense.

CONCLUSION

There is no doubt that the current interest in sequential trials arises
primarily from the demand for efficient, ethical and well-designed studies in
medical research. However, the deeper questions which appear to abound in
this area have caught statisticians' interests and revitalized long standing
questions concerning the fundamentals of comparative inference. The various
statistical approaches each have their advantantages but, as we have pointed
out, each has its own problems too. We anticipate increased use of Bayesian
methods for in-house studies, particularly in drug development programs.
However, we expect frequentist requirements to remain the fundamental basis
for confirmatory studies intended to demonstrate efficacy and safety to an

external audience.
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CAPTIONS FOR FIGURES 4.1 - 4.5

Figure 4.1 Comparison of conditional power curves. The solid line represents

the power function of a one-sided normal test of H0:6=0 with N=214
observations with variance 02=1, size o=0.05, and power 0.9 at 6=0.2. The
dashed curve represents the conditional power after N/2 = 107 observations

have been taken, assuming the current observed mean X =-0.1.

Figure 4.2 Stopping boundary for stochastically curtailed one-sided normal
test using the conditional approach. The reference test has N=R14
observations with variance 02=1, size o=0.05, and power 0.9 at 6=0.2. The

stopping criterion parameters are Y=Y'=0.8.

Figure 4.3 Stopping boundary for stochastically curtailed two-sided normal
test using the conditional approach. The reference test has N=84
observations with variance 02=2, size o=0.05, and power 0.9 at 6=+0.5. The

stopping criterion parameter is ¥=0.8.

Figure 4.4 Stopping boundary for stochastically curtailed one-sided normal
test using the predictive approach and a uniform prior. The reference test
has 214 observations with variance 02=1, size ®«=0.05, and power 0.9 at

6=0.2. The stopping criterion parameters are Y=Y'=0.8.

Figure 4.5 Stopping boundary for stochastically curtailed two-sided normal
test using the predictive approach and a uniform prior. The reference test
has N=84 observations with variance 02=2, size «=0.05, and power 0.9 at

6=10.5. The stopping criterion parameter is Y=0.8.
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