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Abstract

This paper is intended as an expository review of variance components.

Part I discusses the models underlying variance component analysis, describing
them by means of illustrative examples in biology rather than just through their
mathematical definitions. Part II deals with balanced data (equal subclass num-
berﬁ)and is mainly concerned with the analysis of variance method of estimating
variance components from such data. Discussion of its properties includes con-
sideration of unbiased estimators, negative estimates, minimum variance, and the
consequences of normality assumptions. Definition of interactions in mixed
models is also considered. Part III deals with methods of estimating variance

components from unbalanced data (unequal subclass numberszw;>

B

c;jfhe analysis of variance method, adjusting for bias with mixed models,
the fitting constants method, analysis of means methods, symmetric sums, maximum
likelihood and best quadratic unbiased estimation. Specific results for a few
easy cases are quoted, as a point of departure for discussing development of
more general (and often lengthy) results, to which references are given. Comment
is also made on several other topics relating to variance component estimation,
such as the many quadratic forms available and the designing of experiments for
this purpose, the plotting of the likelihood function and the dispensing with

mean unbiasedness as an estimation criterion.
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TOPICS IN VARIANCE COHPONENT ESTIMATION}/

S. R. Searle?

Texas A& University, College Station, Texas

and Cornell University, Ithaca, N.Y.

Introduction

Variance component models are described in many places; among them Eisenhart
(19471, Crump (1946 and 1951], Plackett [1960], and Sheffé [1959] ccme particu-
larly to mind. Although these descriptions vary in their mathematical content,
with consequent variation in their appeal to biologists, they are mostly ccncerned
with the mathematics of the models rather than with interpretive illustration
thereof. Since biology is a discipline wherein variance components models have
widespread application it is apposite to begin a survey of topics in variance
component estimation by describing the underlying models in terms of examples
that may have some appeal to biologists. Such is the purpose of Part I of this
paper. It attempts to describe variance component models by means of illustrative
examples presented alongside familiar analysis of variance situations. Emphasis
is placed not upon mathematical details but on the meaning and use of different
models. General analysis of variance procedures and their associated statistics

are assumed known, and attention is directed to the meaning of variance components.

;/ Paper BU-197 in the Biometrics Unit and number 586 in the Department of Plant
Breeding and Biometry, Cornell University, Ithaca, N.Y.

2/ On leave from Cornell, 1968-9.
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Parts II and III of the article survey some of the procedures used for esti-
mating variance components from balanced and unbalanced data, respectively, with
discussion of some of the problems associated with these procedures and the pro-
gress that has been made towards solving them. A few explicit results are given
in detail, mostly of easy cases. They provide a framework for discussing more
general results, many of which are quite lengthy and to which reference only is

given.

Crump [1951] so well summarized the status of variance components at that
time that only the progress made since then is mentioned here in any detail. The
reader is referred to Crump {1951] for a more complete discussion of the state of

the art prior to the fifties.

PART I: MODELS

l, Fixed effects models

One experiment traditionally carried out in agricultural research concerns
testing the efficacy of nitrogen (N), potash (P) and potassium (K) on crop yield,
tomatoes, say. Suppose an experiment of this kind involved 24 plants, with each of
6 plants receiving one of the fertilizers and 6 getting no fertilizer at all, these
being considered as control. The 4 different kinds of fertilizer (including none)
will be referred to as treatments N, P, K and C (for control). The skeleton

analysis of variance for this experiment is shown in Table 1.
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Table 1

Skeleton analysis of variance for experiment of
L fertilizer treatments each used on 6 plants

Source of Degrees of

variation freedom
Treatments 3
Error 20
Total 23

The equaticn of g model for this analysis is

where Vi is the j'th observation (j =1, 2, ..., 6) on the i'th treatment
(i =N, P, K or C) with p being a general mean yield, ti being the effect of

fertilizer i on yield, and e,, being an error term representing the difference

id
between an observation yij and p + ti.

Experiments of this nature are often used for providing evidence of whether
or not fertilizer increases yield. In carrying out such an experiment, the
4 treatments (3 fertilizers and control) are L4 very specific treatments of inter-
est; and in using them we have no thought for any other fertilizers, for interest
lies solely in studying N, P and K in relation to each other and to no fertilizer.
This is the concept of fixed effects. Our conéentration is fixed upon just the
treatments in our experiment, upon these and no others. In this context the

treatment effects ti in the model (1) are called fixed effects, and the model is

correspondingly called the fixed effects model. It is often referred to as Model

I, so named by Eisenhart [1947].
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In any inference-making situation the mamner of obtaining data affects the
inferences that can be drawn from them. We therefore consider a sampling process
pertinent to the fixed model (1) in which the t's relate tc the 4 specific treat-
ments C, N, P and K. The data available are envisaged as being one of the many
possible sets of data involving these same treatments that could be derived in
repetitions of the experiment, repetitions in which the e's on each occasion would
be a random sample from a population of error terms that has zero mean and vari-
ance os. It is the randomness associated with obtaining the e's from a population
that leads to our being able to make inferences about the differences between the
ti's. We can also make inferences about the average differenﬁe among ail 4 treat-
ments, namely the average squared deviation from the mean, %‘Zl(ti - %.thi)z’ an
expression that can sometimes be conveniently thought of as ige varianz; among
the 4 t's; so, too, can inferences be made about og.

An expanded form of the above experiment would be when more than one variety
of tomatoe was tested in combination with the L fertilizers. Suppose, for example,
the 4 treatments were used on 6 plants of each of 3 varieties of tomatoe, early

ripening, mid-season and late ripening. A suitable model for yijk’ the yield of

the k'th plant of the j'th variety receiving the i'th treatment would be

v =p ottt vyt (tv)ij + e ik (2)

ijk
where p is a general mean, ti is the effect on yield due to the i'th treatment,

vj is the effect of the j'th variety, (tv)ij is the effect of the interaction
between the i'th treatment and the j'th variety, and €,k is the usual error term.
Just as treatment effects are fixed effects, so too are variety effects, the vj,

for in this experiment interest centers solely on the three varieties being used.

Thus both the ti and the '\r'j and their interactions are considered as fixed effects.
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2. Random effects models

Young et al [1965] report an experiment concerning the maternal ability of
mice, using the litter weight of ten-day=-old litters as a measure of maternal
ability. Suppose the experiment had been based on four dams (all of the one breed)
that had each had six litters. With the 24 litter weights we could carry out an

analysis of variance having the skeleton shown in Table 2.

Table 2

Skeleton analysis of variance for experiment
of 4 dams (mice) each having 6 litters

Source of Degrees of

variation freedom
Dams 3
Residual 20
Total 23

The equation of the model here is yij =pu + di + eij where yij is the weight of
the j'th litter of the i'th dam, di is the effect on litter weight due to the
litter being from the i'th dam, and eij is the deviation of yij from p + di.

Consider the di's and the dams they represent. The data relate to maternal
ability, a variable that is subject to biological variation from animal to animal.
In this context, prime interest in the experiment is unlikely to center cn only the
L female mice available in the laboratory. They are only a sample from a popu~-

lation of (female) mice.
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In comparing the mouse and fertilizer experiments, each mouse corresponds to
a fertilizer treatment; but whereas each fertilizer is something of interest, with
no thought for it being a sample from a population of fertilizers, each dam of
the mouse date is merely a sample (of one) from a population of mice. Nothing
important has conditioned our choosing any one mouse over another, and there is
no interest in differences between specific pairs of mice as there was in differ-
ences between pairs of fertilizers in the fertilizer experiment. In contrast,
our interest in the mouse experiment lies in the extent to which maternal ability
varies throughout the whole population of mice from which our 4 are deemed tc be
a random sample. It is to studying this variation that our model is directed.

The sampling process involved in obtaining the mice data is envisaged as
such that any one of many possible sets of data could be derived from repetitions
of the data=-gathering process. But now, in conceiving of repetitions, we do not
confine ourselves to always having the same L4 mice — we imagine getting a random
sample of 4 on each occasion frem the population of mice. And furthermore, for
whatever 4 mice we get on any occasion we envisage getting a random sample of e's
from a population of errors, along the same lines as in the fixed model. Thus
our concept of the error terms in the two cases is essentially the same. But
whereas in the fixed model we conceived of always having the same treatments, now,
in the case of the mice data, we think of taking a random sample of mice on each
occasion. Thus the di's of our data are a random sample from a population of di's.
Hence, so far as the data are concerned, the di's therein are random variables, or,

as they are usually called in this context, random effects. And the model is cor-

respondingly called the random effects model or the random model. Eisenhart [1947],

in his detailed discussion of fixed and random models called the random model

Model II, a name that continues to receive widespread use.
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In both models the error terms have the same characteristics — that they are
a random sample from a population that has zero mean and variance Gi. But, where-
as in the fixed effects model the t's represented effects of specific treatments,

in the random model the d's are a random sample from a population, assumed as

2
O'd.

we could define p¥ = p + E(di) and 5, =d,; - E(di) and write the model as

having a variance It is also assumed that the d's have zero mean. Otherwise

- = - = %
yig=mtdy tegs =t E(di) +d, E(di) HCTIE By + ey (3)

where E(bi) = 0 and the form of u* + &, + €55 is indistinguishable from p +d, +

eij' Thus the random model involving the d's is described as

Vig =ty ey (&)

and
where p is an overall mean,/di is the effect due to the i'th dam, this being a

random effect from a population of d's that has zero mean and variance os; and

the eij’s are random error terms from a population having zero mean and variance

ai. In this context inferences are sought about o2 and oi. These and u are the

d

parameters of the random model. Since, from (4), c§ = og + ci, the name "com-

ponents of variance'is given to cg

and is a component of 0;, the variance of an observation.

and 025 each is a variance in its own right,

Fixed effects models can involve several factors and their interactions. So
also can random effects models. An example arises in dairy cow breeding. Through
artificial insemination, bulls can sire offspring in many herds simultaneously.
When the females among these progeny calve and start to produce milk, analyses of
their milk yields can be made. A suitable model for yijk’ the yield of milk by

the k'th daughter of the i'th bull in the j'th herd is
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yijk =p + bi + hj + (bh)ij + eijk. (5)

In this model bi is the effect on yield of a cow's having been gired by the i'th
bull, hj is the effect of her being in the j'th herd, (bh)ij is the interaction

effect and ei.

jk is the customary error term. In this case all effects are con-

sidered random: the bulls on whom we have data are taken to be a random sample of
bulls from some population; the herds involved in the data are assumed to be a

random sample from a population of herds, and the interaction effects are assumed
to be random, too, and of course the error terms are also taken as random. All

these effects are assumed uncorrelated, with variances oﬁ, oﬁ, Ogh
are the components of variance of the model (5), from which o; = aﬁ + oﬁ + Oﬁh +
2

og They and u are the parameters about which we wish to make inferences.

and 02. These

3. Mixed models

Consider the tomatoe and fertilizer experiment again. Instead of having
three varieties of tomatoe suppose we have 20 replicate crosses of two varieties,
the early ripening and late ripening varieties. The equation of a model for data

from such an experiment would be

Vigg =M * b+ r + (tr)ij ek (6)

where ti is the effect on yield of the i'th treatment, rj is the effect of the
j'th replicate cross, (tr)ij is the interaction effect and eijk is the error term.
As before, the ti are fixed effects. However, the rj, representing the effects of

the replicate crosses between the two varieties, are random effects because they

represent just those crosses that happen to have been made for this experiment,
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the 20 crosses available from the infinite population of crosses that could be
made; and we assume these 20 to be a random sample from that infinite population.
Hence we have a model containing fixed effects ti and random effects rj. This
is called a mixed model: a model containing a mixture of both fixed effects and
random effects.

ifodel (6) includes effects (tr)ij for interactions between treatments and
replicates. Since the latter are being taken as a random it is reasonable that
these interactions also be treated as random. Thus the model has ti as fixed
effects and the , and (tr)ij as random effects having zero means and variances

2

o 2
r

tr

made about, are thus p and the ti and the variance components oi, o

and o< respectively. The parameters of the model, which inferences will be

2
tr

A second example of a mixed model is a mouse experiment involving three

and o=,
e

special diets, the object being to study the effect of these diets on litter

weight. In this case a suitable model for x.

.., the k'th litter weight on the
ijk’?

i'th dam when receiving diet j would be

Vs

ijk =pt dl + fJ + <df)ij + ele (7)

where d, is as before, fj is the effect of the j'th diet (feed), (df)ij is an
interaction and e 4k is an error term. The di are random effects, but the fj
representing the three diets are fixed effects; and the (df)ij-interactions

between the fixed and random effects are random. This is a mixed model, with

fixed effects fi and variance components 02, 02

2
1’ Udf and ae.
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4, Fixed or randcm?

Apart from the symbols used, equation (2) for the treatments-varieties
experiment is indistinguishable from (6), that for the treatments-replicates data.
But the models involved are different, because of the interpretation attributed
in (6) to the replicate crosses. Whereas varieties are considered fixed effects
in (2) the replicate crosses in (6) are considered as random. Similarly, equa-
tions (5) for the bulls-herds data and (7) for the dams-diets data have the same
formal appearance but their interpretations are not the same: in (5) both bulls
and herds are random but in (7) dams are random and diets fixed.

In the above examples the classification of effects as either fixed or random
appears to be quite straightforward. This is not always so. For example, consider
the herd effects in equation (5). Data of the nature envisaged there usually in-
volve numerous herds that are considered a random sample from some population of
herds. Were there to be just a few herds, five or six say, wherein the sole
interest concerning herds lay in just those 5 or 6, then the herd effects in the
model would more appropriately be taken as fixed and not random. Thus the context
of a model is the deciding factor in determining whether factors are fixed or
random.

Many situations arise where effects can be judged fixed in one context and
random in another. For example, consider the mouse experiment again. Suppose
three different laboratory technicians managed an experiment and that technician
effects were to be included in the model. If one object of the experiment was to
assess differences between the three technicians, with a view to deciding who was
the best, then the three technicians involved would be the only technicians of

interest. They would in no way be considered a random sample from a population
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of technicians and so technician effects would be considered as fixed. On the
other hand, a laboratory experiment has to be cared for by someone, and we might
reasonably agree that so far as the experiment itself is concerned there is little
interest in who the technician is. Any available technicians might well be con-
sidered as just & random sample of technicians and in this case all we want to do
is to assess the contribution to the general variability of the mouse data caused
by technicians. In this case the technician effects of the model would be con-
sidered random and a variance component attributable to technicians would be the
parameter of interest so far as technicians were concerned.

Year effects in studies of agricultural production are a good example of
something that might be considered either fixed, or random. Years themselves are
unlikely to be random, for they will probably be a group of consecutive years over
which data have been gathered. But the effects of years on yield may reasonably
be considered random — unless one is interested in comparing specific years for
some purpose, in which case the year effects will be fixed.

In deciding whether a set of effects is to be assumed fixed or random the
important question is that of inference: are inferences going to be drawn about
Just the treatments that occur in the data? "Yes" — then the treatments are to
be considered as fixed effects. "No" — then presumably inferences will be made
about some population of treatments, from which those in the data are presumed to
be a random sample; and so the treatment effects are considered random. Thus
when inferences will be confined to the effects in the data the effects are con~
sidered fixed; and when inferences will be made about a population of effects
from which those in the data are considered a random sample, then the effects are

taken as random.
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As soon as the effects in a model have been categorized as either fixed or
random, the model is then in one of three classes: fixed, random, or mixed. It
is a fixed model when all elements except the error terms are fixed effects.

It is a random model when all elements except p are random effects. And it is
a mixed model when, other than p or the error terms, some of the effects are
fixed and some are random. In point of fact, of course, all models having both
u and error terms are mixed models because p is a fixed effect and the errors
are random. However, the customary distinction between fixed, random and mixed
models is usually maintained.

Note that the assumption of randomness in a random effects model does not
carry with it the assumption of normality. Frequently this assumption is made,
as we shall see, but it is a separate assumption made subsequent to that of
assuming effects are random. Most estimation procedures for variance ccmponents
do not require normality, but when distributional properties of estimators are to

be investigated normality is usually assumed.

4.1 Finite populations

Random effectsoccurring in data are assumed to be a random sample from a
population of effects. Usually the population is considered infinite, as for
example, is the population of all possible crosses between two varieties of wheat:
they could be crossed an infinite number of times. However, the definition of
random effects does not necessitate that their population be infinite. It may
be finite. Furthermore, although finite it may be very large, indeed so large

as to be considered infinite for most practical purposes, e.g., all Holstein cows
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in the U,S.A. on May 1, 1970. Thus for random effects models the conceptual
populations can be of three kinds, depending on their size: infinite, or finite,
or finite but sc large as to be deemed infinite. Those that are infinite or
finite but large enough to be taken as infinite are the ones most frequently en-
countered, especially in biology.

Models having random effects with finite populations differ from those with
infinite populations largely through consequences of the definition of variance

in a finite population. For a population of effects ay fori=1,2, ..., N

N
having zero mean, I o = O, and the population variance is then defined by
i=1
N
02 = Zo?/(N ~-1). An easily derived consequence is £ Z a,a,, = -(N - 1)d°.
a i cjep 11 o}
i=1 ifi
R
If o, is a random effect from this population its variance is E(ai) =N~ Z ai =
i=1

(1 - N—l)qs; and the covariance between it and another random effect, oy is
E(ar,as) = -ag/N. Thus in models having random effects with finite populations
the effects are not uncorrelated as they are with infinite populations. The
consequences can be seen, for example, in Bennett and Franklin [1954, cf p.LOk].
They are discussed in greater detail by Wilk [1955] and by Wilk and Kempthorne

[1955, 1956, 1957] and also by Cornfield and Tukey [1956]. Seme of these papers
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are very much concerned with randomization theory and they all deal with bal-
anced data only. For unbalanced data, Gaylor and Hartwell [1969] show the effects
of having finite populations in the case of one particular nested classification,
and Searle and Fawcett [1970] give general rules for converting infinite popu-
lation situations into finite populations. These rules are applicable to nested
or crossed classifications or to a mixture of both, in either random or mixed
models.

A special case of a finite population is when the effects occurring in one's
data constitute the whole population of effects. This is often used (e.g. Wilk

and Kempthorne, loc cit) as a convenient representation of fixed effects.

PART II: BALANCED DATA
The dichotomy of balanced data and unbalanced data is now introduced.
Balanced data are those in which every one of the sub~most sub-classes of the
model has the same number of observations; i.e. equal numbers of observations
in all the subclasses. Opposingly, unbalanced data are those wherein the
numbers of observations in the subclasses of the model are not all the same,

i.e. unequal numbers of observations in the subclasses, including cases where
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there are no observations in some subclasses. Thus "unbalanced data'" refers
not only to situations where all subclasses have some data, namely filled sub-
classes, but also to cases where some subclasses are empty, with no data in them.
Since the estimation of variance components from unbalanced data is more compli-
cated than from balanced data, we deal with the two cases separately, discussing

balanced data first.

5. The analysis of variance method of estimaticn

Analysis of variance is traditionally employed in situations involving
fixed effects models, such as the simple experiment of testing 4 fertilizers

described above, the analysis for which is shown in Table 3.
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Table 3

Analysis of variance for experiment of
4 fertilizer treatments each used on 6 plants
(See Table 1.)

Source of Degrees of Sum of Mean Square
variation freedom Squares

Observed Value Expected Value

i

Between 3 SSB =6 = (S}i -y )2  MSB = SSB/3 % (ti-%Zti)e + o2
treatments i=1 ° i=1 €
L 6 _
Error 20 SSE= £ Z (y..-y. )®MSE = SSE/20
. . ij i.
i=1 j=1
Yy 6 -
Total 23 SST = Z £ (y.. -y )2
i=1 j=1 9 .
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The right-hand column of this table, frequently not shown in analyses of
variance cf fixed effecis models, contains expected values of the mean
squares of the analysis, Its first term, E(MSB),
involves the'fixed effects for treatments, the ti’ that are part of the model
(1) on which the analysis is based, Without this column of expected values the
prime purpose of 7., table is to summarize the calculations needed for obtain-
ing the F-statistic MSB/MSE for testing the hypothesis that all ti's are cqual.,
Hoviever, appending the column to the table highlights both the nature of the
F=test and the familiar procedure of estimating 02 by the

2rror mean squares
2 22 .
E(MSE) = oejand sO Oe = MSE (8)

is an unbiased estimator of 02.

An extension of the estimation procedure used in (8) leads to estimation
of variance components in random (and mixed) models generally., To demonstrate
this suppose we analyze the mouse data (4 dams with 6 litbters each) in the

manner of Table 3, as shown in Table b,

Table 4

Analysis of variance for experiment
of 4 dams each having 6 litters
(See Table 2)

Ma
Source of Degrees of Sum of Mean Square
o .. o o . 3

variation freedon pquares Observed Value Expected Value
Y ) o 2 2

Between dams 3 SSB = 6Z(yi -y ) MSB = 58B/3 60& + 07
i:l . o » C
b 6 5 5

Error : 20 SSE = I X(y, .~ ¥, ) MSE = S35/20 o~

izl j=1 9 . ¢

L 6 _

Total 23 SST = X Z(y. .~ -

~ ST = £ 2y v,
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The equation of the model for these data is (b): Vig = bt a, + e 43 and that

for the fertilizer experiment is (1): Vi = b b, o+ e In both cases u is a
. . . 2

mean and the c¢'s are random error terms with zero means and variances Oe and

zero covariances, However, in contrast to the ti of the fertilizer experiment

being fixed effects, the d., of the mice data are randecm effects with zero means,

i
. 2 . . . . .
variance Od and zero covariances voth with themselves and with the e's, The
A ] . . = P
effect of this in B(MSB) of Table 4 is to have a term in o) instead of the term
in the ti’s as in Table 3, This is the only feature that distinguishes Table b

from Table 3; and it arises solely because of the model, Table b relates to a

random model and Table 3 to a fixed model,

The tables can, of course, be made to leok =ven more alike, Tor, defining

L L
s2 = Bt - 26, /M)7/3
i=1 i=1
: . 2o 2 .. » L2 2
in Table 3 gives E(MSB) = 6st + 00, similar to E(MSB) = 60y + 9 value of
Table U4, Fafining and using si in this fashion

=4

&

; emphasiz? that the quadratic in the ti's in E(MSB) in the fixed

AN
effects model is tantamount to a sample variance of the treatment effects tl,
t2, t3 and th’ While this kind of relationship is true for balanced data it

does not hold for unbalanced data, More importantly, the one-to-one correspon-

2 2 . .
dence between s, and O, so illustrated does not always occur, even with balanced

£ a
con
data, in more complex experimental designs than the one considered here, It/
be oy
thereforeimisleading to use Sy in the belief that this apparent correspondence

5

. 2 . a2 . . . -
From Table 3 +the cstimator of v, is O = 1SE, as in equation (8). The

. . . R 2
sawe procedure applied to Teble U gives estinators of Oe and Qd:
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MS = 0 ncl 7t = (0O 4+ g R .
B o on MSB = 6 at % (9)

~ A2
lence 0§ = MSE and O = (18B ~ MSE)/6

)

The above example is the simplest illustration of estimating variance
components from balanced data by the analysis of variance method, so called
because of its reliance on the analysis of variance, It involves the following
steps: (i) Tn the analysis of variance appropriate to the model equate observed
mean squares to their cipected values; because these expected values are linear
functions of the unknown variance components, the resulbting equations will be a
set of simultaneous linear equations in the variance components, (ii) Solve the

equations established in (i): +the solutions are the estimators of the variance

components,

6. Random Models

Estimating variance components by the analysis of variance wethod is readily
achieved in any situation of crossed and/or nested classificatioas--any situation,
that is, vhich is one of balanced data and the random effects model, However
many lines there are in the analysis of variance table there will be the same
nunber of components to estimate, The equations obtained by equatinngbserved
rnean squares to the cxpected values will always be consistent, and so solutions
(the estimators) can always be found, Details of applying this method are given

in many places; e,g., Anderson and Bancroft (1952, Chapter 2?3, Schcffé'gl959,

2l

Chapters 7 and 8) and Graybill (1961, Chapters 16 and 17), to name but three,
The main step in the method is deriving the expected value of the mean square in
cach line of the analysis of wvariance tavle, The above references (and nany

others) contain the details of thege evpectabions for a wvariety of oxperimental

AT
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designs. In addition, when balanced data fall into none of the well-documented
’design% géneral rules of thumb are available for deriving the necessary expected
values, These rules, expressed in various ways, are to be found in Lum §195§),
Schultz {}955}, Henderson (1959) and Millman and Glass (1967). The Henderson
paper includes rules for determining what the lines in the analysis of variance
shall be, and what their degrees of freedom and sums of squares arej; and Millman
and Glass have a rule for writing down the compufing formula for each sum of
squares, These rules, it should be noted, épply whether the model be fixed,

mixed or random,

Although details of many specific cases are readily available in the litera-
ture we give two examples here, toth to indicate how the method operates and to

provide a basis for further discussion.

6.1 The l-way classification

In the general l-way classification (of which Table 4 is an example) we
suppose there are n observations in each of a classes, that yij is the j'th

observation in the i'th class, and that the equation of the model is

where 1 =1, 2, 400, @ and J =1, 2, s.., n. As usual, p is a general mean, the

. . . . 2
@, are random variables with zero means, zero covariances and variance 0a5 and

. . 2
the random error terms have gero means, zero covariances and variance O .

D

Covariances between the ai and eij are all assumed zero,
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The analysis of variance table uses the following terms

an a D a ) .2 )
T =Z2ZyS,, T =n3y = £y5 /o and T =oeany =y Jan. (10)
a i=l 1. i:l 1. th . o

This notation is introduced because it refers to the basic calculations required,
it sfupli?ies writing of the analysis of variance table and it extends directly
to unbalanced data, Tach T-term is a total uncorrected sum of squares with
subscript indicating the factor it refers to: o for the observations as they
stand, a for the w-Ffactor and,L for ;correction for the mean', The analysis of

variance is then as shown in Table 5.

Table 5

Analysis of variance for l-way classification,
random model, n observations in each of a classes

Source of Degrees of Sum of Mean Expectaed value
variation freedon squares square of mean square
Between classes a -1 SSB =T =T MSB = SSB/(a - 1) no- 4+ 9
a L & e
ENe 1 2
Error a(n - 1) 8B = T - T MSE = SSE/a(n - 1) Ge
Total an - 1 SST =T =T i

TFrom the last two columns the estimators of the variance components are, similar

to those of (9),

~2

O, =MSE and 62 = (MSB - MSE)/n. (11)
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6.2 The 2-way crossed classification

The general 2-way classification is typified by a treatments-by-blocks

situation, where the equation of the model is
Vigg =W Tyt Byt (B)y toesq (12)

with T treatments, i =1, 2, ..., T,and B blocks, j =1, 2, «.., Bpand n
observations in each treatment-by~block cell. The general mean is u, and the
Ty Bj and TBij are treatment, block and interaction effects respectively. The

) = 0@ for

are error terms in the usual way, with E(eijk) = 0 and var(eijk -

®ijk
all i, j and k, and all covariances zero. The familiar analysis of variance

table is shown in Table 6.

Table 6

Analysis of variance for 2-way classification data of
T treatments and B blocks, with n observations in
each treatment~block subclass

Source of Degrees of Sum of Squares Mean Square
variation freedom
T - -
Treatments T-1 S, = ZBu(y, -y )% MST = §_/(T-1)
T iee Yan T
i=1
B - Lo
Blocks B-1 S. = ZTn(y ., -y )® MSB = 8_/(B-1)
B oJe Ve B
J=1
T B

Interaction (T-1)(B-1) S b ¥ n(ii. -y. =y . +y )2 MSTB

(o] 4oy A3 Vi TL3e 7Y Spg/ (T-1) (B-1)
1= J=

T B n
Error TB(n-1) S.= £ £ E(y..-¥V.. )2 MSE = S_/TB(n-1)
B 41 j=1 k=1 30K A E
TB n
Total nTB-1 ; ; z yijk nTBy.'.

1] k=1
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Customary use of the word "treatments" implies that they are fixed effects.
However, the word is used generically here, simply to denote one of the classifi-
cations of the model (12): at one time we think of treatments as being fixed
effects and at another as random effects. "Blocks" is used in the same manner

for the other classification.

For the random model we think of both treatments and blocks being random.
An example is (5), the bulls-by-~herds illustration, in which bulls play the part
of treatments and herds are the blocks. With all effects except p assumed random

we have

E(Ti) = E(Bj) = E(TBij) =0, var(ri) = af, var(Bj) = cg and var(Tﬁij) = oiB, (13)

for all i and j; and all covariances between these terms and between them and

the e's are zero. Under these conditions expected values of the mean squares of

Table 6 are those shown in Table 7.

Table T

Expected values of mean squares of Table 6
Random model

E(MST) = Bno® + nol_ + o2
T 3B e

™ 2 2 2
E(MSB) TnoB +nog +oog
3 2 2
E(MSTB) noZ, + og
E(MSE) 0:

These familiar results can be found in many places, e.g., Anderson and Bancroft

[1952, p.316], Scheffé [1959, p. 24L] and Steel and Torrie [1960, p.lkk]. The
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analysis of variance method of estimating the variance components of the model
then involves equating mean squares to their expected values, and from Table T

this gives the following estimators:

82 = MSE , 82 = (MSB - MSTB)/Tn ,
e B (1%)
8% = (MSTB - MSE)/n, and o,f = (MST - MSTB)/Bn .

7. HMixed Models

The analysis of variance method of estimating variance components can also
be used for mixed models, with balanced data. Among the expected mean squares
there will be as many having no terms in the fixed effects as there are variance
components in the model, This is illustrated by a variation of the example just

considered.

7.1l The 2-way crossed classification

In the treatments-by-blocks example just discussed suppose that the treatment
effects are considered as fixed effects. The equation of the model is still (12),
and the assumptions in (13) still hold with the exception of E(Ti) = 0 and
var(Ti) = Ui which are no longer used because the 7.'s are now fixed effects. The
analysis of variance in Table 6 is also still appropriate with expected mean

squares as shown in Table 8.
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Table 8

Expected values of mean squares of Table 6
Mixed Model
with treatment effects, Tis fixed

I LURLE L AL
E(MSB) = Tnog + no_gtjB + Oi #*
E(MSTB) = n°$s o
E(MSE) = “i

2

#* The term ncT is discussed in the text.

Apart from the quadratic in the Ti‘s in E(MST) the entries in Table 8 are
the same as those for the random model, in Table 7. There is, however, the matter

of the term nofB in E(MSB). Depending on the definition of the random effects,

02_ does or does not occur in E(MSB). This is discussed in Section 7.2. The

3B

important thing is that, whether noZ®

$B
variance of the model can be estimated from MSB, MSTB and MSE, the three mean

n

occurs in E(MSB) or not, the components of

squares whose expected values contain no fixed effects. Thus, so far as these
mean squares are concerned, the analysis of variance method of estimating variance

components applies to this mixed model just as readily as to the random model.

7.2 Defining elements of the model

Variations in defining elements of (12) for the mixed model lead to variations

in the form of the expected mean squares shown in Table 8. First consider

Bn

E(MST) = 57—

(7, - T )2 + no?_ + ci , (15)

3B
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a result more frequently found in the form

o _ _Bn 2 2 2 1
E(MST) = To1 It nozy *+ og - (16)

The change from (15) to (16) arises when the T, of (12) are defined so that

_E T, = 0. This definition has not been used in deriving Table 8, nor is it neces-
::iy to use it. Nevertheless, if the T; are defined as deviations of treatment
effects from their mean, g T, = O applies and E(MST) takes the form of (16), with
the T; 80 defined. i=1 *

We now turn to the term noiB in E(MSB) of Table 8. Perusal of the literature
reveals the presence of this term in some places and its absence in others. For
example, Mood [1950, p.3kL], Steel and Torrie [1960, p.1lkk] and Kirk [1968, p.137]
are texts that include it, whereas Anderson and Bancroft [1952, p.339], Scheffé
[1959, p.269), Graybill [1961, p.398), Fryer [1966, p.334] and Snedecor and
Cochran [1967, p.367] exclude it. Mood and Graybill [1963] do not discuss the

topic.

Exclusion of no‘:fB from E(i4SB) of Table 8 can arise from the way in which
block effects are defined. If that for block j is defined as the effect of block
J plus the average interaction effect for that block averaged over treatments

then, as detailed in Henderson and Searle [1970], this leads to no®_ being absent

™
from E(MSB). But in that case 02 represents the variance not of the Bj but of
block effects defined as
1 T
By =By * Tifl(rs)ij - (17)

Thus when noﬁB is omitted from E(MSB) of Table 8, the term Tnog becomes Tna;, with

2 2 2
o =0< + ¢ T .
TB/

' B
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The preceding discussion relates to balanced data. Mixed models for unbalan-
ced data do not usually define block effects to include average interactions.
[To do so would involve, in expressions like (18), just those interactions cor-
responding to the Tj treatments occurring with block j.] Consequently, if in the
expression for E(MSB) with unbalanced data, given by Searle and Henderson [1961],
we put all the subclass numbers equal — i.e., reduce the unbalanced data case to
one of balanced data — then the 02 ~term in E(MSB) does not vanish identically

U=

but has the value nciB. Using a model for balanced data that omits nc?rB from

E(¥SB) in Table 8 therefore introduces a discontinuity as between unbalanced and

balanced data, as discussed by Hartley and Searle [1969]. For additional reasons
of conformity as between the random and mixed models with balanced data, i.e. for
conformity between Tables 7 and 8, Yates [1967] also prefers the model that puts

no?_  into E(MSB). For the general sake of consistency it therefore seems, to

0

this writer, more appropriate to use as the mixed model that which retains no2

B
in E(MSB) of Table 8.

7.3 Estimating fixed effects

Discussion of the mixed model for balanced data would be incomplete without
briefly indicating how to estimate the fixed effects of the model. Without em-
barking on a lengthy discussion of linear estimation generally, we write the model

as

y=x+17 (18)

where y is the vector of observations, B is the vector of fixed effects, X is the
incidence matrix of the fixed effects in the data and T is the vector of the sums

of random effects, including error terms, that occur in the elements of y. For
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when
estimating g er functions of its elements, two cases must be distinguished:/ v,

the variance-covariance matrix of y (i.e., of ﬂ) is known, and when it is not.

When V is known, generalized least squares applied to (18) yields normal
equations
XV Xy (19)

Solutions for éo provide the means of obtaining best linear unbiased estimators
of estimable functions in the usual way. [The symbol Qo is used to emphasize
that when g'Y-lg is singular, solutions to (19) are just solutions to the normal

equations and not necessarily estimators of the elements of B.]

The difficulty with (19) is that V is usually not known because its elements
are linear combinations of the variance components corresponding to the random
effects of the model. Therefore, in order to utilize (19), these components in
V must be replaced by estimates, which are obtainable as indicated in Section 7.1.

If the resulting value of V is called ? then the equations
r (e = vy (20)

can be solved to yield solutions BOO which, although not solutions to (19), would

be were V the true value of V. However, since ? is only an estimate of V, proper-
ties of Boo in terms of providing estimators of estimable functions of B are

unknown.

Sometimes it is unnecessary to use (20). This occurs when V is such that
its elements factor out of (19), which may then provide estimators of estimable
functions of B identical to those of the fixed effects model. An example of this

is the 2-way nested (hierarchical) classification having a model
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yijk =y + Bi + Yﬁj + eijk’ If the B-effects are fixed and the vy-effects are
random, then B of (18) involves (u + Bi)-terms, and T involves (Yij + eijk)-terms.
Simplification of (19) results in oi and og factoring out, leading to the best

linear unbiased estimator of u + By as‘ir:>éﬁ = y. , the same as in the fixed

i i..

effects model, This is for balanced data. For unbalanced data the estimator is

7 Ny
/,L}= ~_ N [ © t
p’ Lo

)
- 02 + 0%/n, o2 + ¢3/n, .
Joy e/ ijJ J Y e/ 1J

where there are Ni y-classes in the i-th p-class, and n,, observations in the

id
Jj-th y-class of the i-th g~class.,

8., TFixed effects models

The only variance in a fixed effects model is the error variance ci, whose
estimator is usually taken as 3§ = MSE. This poses no problem. Nevertheless,
the fixed model case of the treatments~by-blocks example merits brief discussion

for comparison with the random and mixed models cases just discussed.

The equation of the fixed effects model is (12), but none of the assumptions
in (13) are made, because the Ty, By and (TB)ij are all fixed effects. Table 6
is still the analysis of variance, but it has the expected mean squares shown in

Table 9.



Table 9

Expected values of mean squares of Table 6
Fixed effects model

Bn

E(MST) T o1

|}

how= - - 2 2
ifl[wi + (), -7, - (W) 1%+ o

B
: Tn - - A _ (= 2 2
Buss) =g_g Eley v (B) 5 -5, - () e

]

T B
E(MSTB) = Try(por) Z j':’l[(‘fﬁ)ij - (), - (@) 5 + (B) 17+ o
E(MSE) = ag

Table 9 has been derived without defining the effects of the model in such a way

as to imply what are so often called the "usual restrictions", namely

T B T B

£Tt, =0, ZB. =0, Z1B,, =0 for all j, and Z 1B,, = O for all i. (21)
i=1 * g=1 4 i=1 Y j=1 9
When the effects are defined so that (21) applies then the expected mean squares

of Table 9 simplify to more familiar forms. That for MST, for example, becomes

T
s ri + 62 . (22)

E(MST) = TBn
i=1

-1
The expectation in (22) differs from E(MST) of Table 9 because (21) is
assumed to hold in deriving (22) but not in deriving Table 9. Nevertheless, the

two expressions for E(MST) have the same meaning insofar as interpreting the F-
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statistic MST/MSE is concerned. This is so because it is possible to define the
effects of the model in such a way that (21) and (22) are satisfied and so that
the 7, in (22) has the same meaning as does Tt (?E)i. - [?. + (?E)_.] in E(MST)
of Table 9. Hence when interpreting the F-statistic MST/MSE it is immaterial
whether one uses the expected mean squares of Table 9 or those akin to (22) based
on (21). 1In both cases the interpretation is the same: MST/MSE is testing the
significance of treatment effects in the presence of interactions or, equivalently,
of treatment effects plus their average interaction effects. All this, of course,
has been well known for a long time, but bears repetition in terms of relating

the fixed effects model to the random and mixed models.

Defining elements of the model so that equations (21) are true has the con-
sequences just described only with balanced data. With unbalanced data (21) has
no such simplifying effects. This is because the sums of squares appropriate to
unvalanced data do not have expected values that involve means of effects in such
a simple manner as they are involved with balanced data. Scmetimes weighted re-
strictions are suggested but when some of the cells are empty, as is often the

case with unbalanced data, this has no simplifying effect on the expectation of
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mean squares either.

Differences in the expected values of the mean squares of Table 6 can be
noted for the three different models., With the random model (Table 7) every ex-
pectation is a linear function of variance components; for the mixed model (Table
8) some expectations involve only variance components whereas others involve
quadratic functions of the fixed effects as well, and for the fixed effects model

(Table 9) every expectation is the error variance plus a quadratic of fixed effects.

Surveying the many subtleties of analysis of variance models is not the pur-
pose of this paper, as is obvious from the preceding discussion of models and
expected values. (One author is reported as having at one stage 512 alternative
sets of assumptions about the 2-way classification!) The reader who wishes to
pursue these topics in detail has many opportunities to so do: Sheffé ([1959], for
example, provides a good entré to the relevant literature, which includes numerous
zapers in the late 1950's, especially those by M. B. Wilk and O. Kempthorne, J.
Cornfield and J. W. Tukey, and H. Scheffé himself. The references listed in these
papers will lead the interested reader to many others. He is to be cautioned,
however, that this literature deals largely with balanced data, giving little

attention to unbalanced data.

9. Distribution~free characteristics

Up to this point no mention has been made of distributional properties for
the random elements of our models, other than that they have zero means and co-

variances, and finite variances. Although the analysis of variance
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table for data from a fixed effects model is basically just a convenient summary
of the arithmetic involved in calculating F~statistics, the use of those
F-statistics in tests of hypotheses is founded upon normality assumptions.
However, expected values of mean squares in analysis of variance tables do not
use these normality assumptions, and so variance ccmponents estimators obtained
by the analysis of variance method of estimation do not, of themselves, depend
upon normality assumptions. The expected values apply to any distributions that
have zero means and covariances, and finite variances, and subject to this mild
requirement the analysis of variance method of estimation can therefore be used
regavdless of distributional properties. However, resulting estimators have limi-
ted properties: they are unbiased, they are minimum variance among the class of
quadratic unbiased estimators (see Harville [1969a]) but, they can also yield
negatire estimates and, even under normality assumptions, their distributions are

vnknown.

9.1 TUnbiasedness

Estimators of variance components derived by the analysis of variance method
from balanced data are always unbiased. This is so whether the model be random
or mixed. It is also a property of estimators obtained by the same method from
unbalanced data, but for random models only; for mixed models such estimators are
biased. We return to this point later, noting here that not even this simplest
of properties, unbiasedness, is universally true for analysis of variance esti-

mators of variance components.

Proof of unbiasedness of estimators from balanced data is simple. Suppose

m is the vector of mean squares and ga is the vector of compconents to be
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~

. . 2 . .
estimated, Then, if E(n) = PO" for some non-singular matrix P, we take m = PO

- s

as the equations for estimating 02. Hence
=P (23)

and

. 2 . . . .
i.e, 07 is unbiased, In a random model m is the vector of all mean squarecs in

=

the analysis of variance, whereas in a mixed model m is just those mean squares

1

whose expected values involve no fixed effects,

9.2 Sampling Variances

Sampling variances of variance components estimators involve relatively
fearsome formulae in all except the simplest of situationé, namely balanced data
and models that include normality assumptions. We therefore quote no reéults
here but-just indicate wvhere they can be found, Tor balanced data, without the
use of normality but including the case of sampling from finite populations for
the random effects, Tukey £l956j gives results for the 1- and 2-way classifica-
tions, the Latin Square and balanced incomplebte block designs, He also indicates
procedures for k-way classifications generally; and Tukey §l9575) sives
third moments of estimators of a l-way classification, Hooke C195Q} deals with
similar problems and, as ScheffeA(}959, p. 346) comments, "obtained some results
for the more realistic treatwent of interactions (rore realistic than independence
in the non-normal case), but they look discouragingly complicated", Quartilésn

. have also oveen looked at, in a mammer of speaking, lor situations that might be
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called partially normal — normally distributed error terms and non-normal random
effects. In this situation Roy and Cobb [1960] discuss replacing the random effects
by a "substitute variate" having k equally probable discrete values, which they
then show how to make inferences about. Theilr work is presaged by the thought

that whereas a variance however suitable it may be as a measure of dispersion for

the normal distribution "may be inappropriate for other distributions".

9.3 Minimum Variance

Variance component estimators obtained by the analysis of variance method are
minimum variance quadratic unbiased, as shown by Graybill and Hultquist {1961].
This means that among all estimators of 32 which are both quadratic functions of
the observations and unbiased, those derived by the analysis of variance method
have the smallest variance. Furthermore, this is true under fairly wide conditions,
and not just under the normality assumptions. When normality is assumed the esti-
mators are not just minimum variance quadratic unbiased but are minimum variance
unbiased, — i.e., from among all unbiased estimators they have minimum variance.
Graybill [1954 ] demonstrated this property for nested classifications and Graybill
and Wortham [1956] showed it for crossed classifications under normality, as does
Furukawa [1959]. The Graybill and Hultquist [1961] paper relaxes the normality
conditions. Harville {1969a and b] also considers the minimum variance property,

in terms of quadmissability, for unbalanced data in the l-way classification.

9.4 Negative estimates

Variance components are, by definition, positive. Despite this, estimates
obtained by the analysis of variance method can be negative. This can occur in
even the simplest of cases; for example, suppose data consist of the following

four observations in two classes.
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Tabl

5

e 10

Hypothetical data in 2 classes
J

Class 1 Classug
20 18
2 10
1, = 22 y2. = 28 Y.. o0
Then, as in (10)
T, %(222 + 282) = 63k,
2 ' ,
Ty = 50 /b = 625,
2 2
and T 202 + 22 + 187 + 107 = 828.
Table 5 for these data is then as shown in Table 11,
Table 11
Analysis of variance of hypolhetical data
Source at Sum of squares Mean Expected
Square Hean Square
Py 2 2
Retween classes 1 634 - 625 = 9 9 207 + Oe
. ; zal, : . 2
Error 2 828 ~ 634 = 194 a7 Oe
Total 3 = 203

828 . 625




lience, as in (11),

82 - 97 and 6° - 1

(9 - 97) = -hb,

Although this might appear to be a pathological example, it illustrates how
negative estimates can arisc from the analysis of variance method. There is
nothing intrinsic in the method to pre?ent it, This is so, not only in a simple
case such as this, but also in many-factored situations, both with balanced daa

and with unbalanced data,

-
To estimate a variance as negative is clearly embaiasslng. The question
therefore arises as Lo what can be done when this occurs. Several possibilities

exist, few of them satisfactory,

(i) Report the estimate obtained, and lsarn to live with it, like dandelions
in the lawn, It can be taken as evidence that the true value of the compcnent
is zero. This is unsatisfying when one wants to utilize an estimate of a sum of
variance components, one of which has a negative estimate, The estimated sum
including that component is then less than the sum without it. In the above

cxample ai = Si + 62 =~ Ll 4 97 = 53 < ai.

(ii) Accepting:a negative cstimate as evidence that the true value of the
corresponding ccomponent is zero suggests changing the estimate which is negativ
to be zero, This scems logical enough, bub as part of the estimation procedure

such truncation disturbs the properties of the estimates. For example, they are

no longer unbiased.

(iii) Taking 2 icn of a zero component could
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also lead to simply ignoring that component in the model, althcugh retaining the
factor so far as the lines in the analysis of variance table are concerned. This
would mean ignoring the component estimated as negative and re-estimating the
others. Thompson [1961 and 1962] gives rules for doing this, known as "pooling
minimal mean squares with predecessors”, and discusses applications of these rules

in Thompson and Moore [1963].

(iv) Interpreting a negative estimate as indication of a wrong model is
another possible course of action. Models require care in their specification,
as Anderson [1967] points out, and a negative variance component estimate might
be the signal to reconsider one's model, in terms of applicability to data and
their origin. One possibility 1s to consider models that have finite rather than
infinite populations (see Section 4.1). This is briefly discussed by Searle and
Fawcett [1970] for the l-way classification of Table 5. If 8; is negative,
imputing a finite population to the error terms leads to a positive estimator of

qé. However, this may not be a very reasonable assumption in many situations.
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In contrast to reconsidering one's model as a result of a negative variance
estimate, Nelder [195L4] suggests that at least for split plot and randomized
blocks designs, the randomization model indicates that there are situations when
a negative variance component could arise. This apparent inconsistency can be
an outcome of the correlation between plots in the same block being less than the

correlation between plots of different blocks.

(v) Estimation procedures other than the analysis of variance method are also

avallable alternatives whenever the latter yields negative estimates.

Bayes estimators, which are non-negative, have been suggested by Hill [1965,
1967] and by Tiao and Tan [1965, 1966] and Tiao and Box [1967]. An excellent
commentary on these and on Bayes estimation in general in the variance component

context is given by Harville [1969b].

Maximum likelihood estimators (e.g., Herbach [1959] and Thompson [1962]) are
also non-negative; these, like many of the Bayes estimators, are usually based on
assuming normality of the data, an assumption that is not required when using

analysis of variance estimators.

Federer [1968] has also suggested a non-negative estimator which, for q§ of
Table 5, is q; + n-lﬁiexp(—F) for F = MSB/MSE. Although non-negative, it is biased,
with a bias that tends to zero as F increases but which is also largest when Q;
is negative, namely when F < 1. Furthermore, as Harville [1969b] points out,

the estimator is not necessarily admissible.



(v) If, in one's ire at obtaining a negative estimate, all else fails then
perhaps the only course left is that of the statistician's last hope: collect
more data and repeat the analysis, either on the new data or on the new and old
pooled together. If the estimate from the pooled data is negative, that would

be additional evidence that the corresponding component has a true value of zero,

10 Normality Assumptions

We now introduce normality and follow its consequences in terms of distribu-

tional properties of variance components estimators,

The assumptions usually made are thal the e's and each set of random
effects in the model are normally distributed with zero means and variance-

covariance structure set out carlier (see Sections #,1 and 6.2)., Then, for the

¥

random model with balanced data, it can be shown that the sums of sQuares ia the
analysis of variance are distributed indepeundently of each other; and each sum

- - . . 4 : 2
of squares divided by the expected value of its mean square is a central y -

distribution with degrees of freedom equal to those shown in the analysis of

variance table, Thus if df, SS and MS are the terms in a line of the table
MS = SS/df : (2h)

and, independently of one another,

\-~.§§m ~ Xif; i o e o ""(l.;'f"""“" o I'IS ~ ng L (25)
E(MS) E(}S)

This is for the random model; for the mixed modcl, (25) will apply for all sums
of squares whose expected values do not involve fixed effects; those that do

. . . . 2
involve fixed effects will ve non-central x 's.
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10.1 Tests of hypotheses

Ixpected values of mean squares suggest which mean squares are the appro-
priate denominators for testing hypotheses that certain variance components are

zero, Thus in Table 6, MSTB/MSE is the appropriate F-statistic for testing the

2

hypothesis H:: UTB = 03 and MSB/MSTB is the F-statistic for testing

2 .
H ¢ OB = 0, In the random model all ratios of mean squares have central
F-distributions, because all sums of squares follow (25). In the mixed model

the same is true of ratios of those mean squares whose expected values contain

no fixed effects,

In some situations the table of expected values will not suggest in any

"obvious" fashiow Lk appropriate Ooominatoy for testing a hypothesis, TFor

. example, suppose that the expected value of a mean squére is kl'v'i' - k,aﬁg + o
+ ktci but that no other mean square in the analysis has expectation

kgcg + o0o ktOi. There would then be no "obvious" denominator for testing

the hypothesis H 2 Gi = 0, For situations such as this the Satterthwaite £19M9)
procedure for calculating a ratio that has approximately a central F-distribution

is as follows, Suppose Mi is one of the mean squares, with fi degrees of

freedom., And suppose

1l
>
Q

+}\-02+uua "‘)\O

E(MI‘ + o600 +1\’IS) l l 2 2 t IS

with

2 2
o ) o
Ke 5t e kt &

1

E(Mm + soe Mn)

for some set of constants Xi, i1=1, .00, £, and vhere no mean square occurs in

. both of these expectations. Then for testing the liypothesis H : 0]2_ =0
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Mr + ® o0 + ld
F = S , 1s approximately F

N{m + 4., + I"In P,q
(M + ... +1)2 (M + ... +M )2
r S Jui} n
where D= and q = = 2 .
2 R U Foae. I
(Mr/fr Foea. + Ms/fs) (Mm/fm 4n/fn)

The basis of this test is that the numerator and denominator of F are independent,
and each is distributed approximately as a multiple of a central x2. A more
general form of the test is also available, in using linear combinations of the

M's instead of simple sums of them. In that case ciMi is used in place of Mi’
where the c, are positive constants. In all cases p and g are not necessarily
integer~valued and interpolation is often  necessary when entering the F-table

for Fp,q' Properties of this Satterthwaite procedure have been considered by
Cochran [1951] and, more recently, by Gaylor and Hopper [1969], who give particular

attention to the case when mean squares are involved negatively.

10.2 Confidence intervals

The procedures just described also provide a method for obtaining approxi-
mate confidence intervals for linear functions of variances, more particularly for
linear functions of expected mean squares. The method is as follows, adapted from
Graybill [1961]. Define Xi,L and Xi,U as the lower and upper limits of a fraction

1 - o of the xﬁ distribution such that

P2, =x3=%x® )=1-qa. 26
0,1 = % = %0 (26)
Then, for any set of constants 1\, the approximate confidence interval on ERiE(Mi)

is, provided inMi >0,

nZ\ .M, n):)\iM:.L
P( L1 < oLEM.) =< -———-)=1-a
X2 1 1 2

n,U *n,L
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analogous to p and ¢ previously., Since n will seldom be an integer, Xn U and
b
*a L are obtained from tables using cither interpolation or the nearest (or next
2

largest) integer to n. Craybill (}OCI) sugpests that when n < 30 a correction

. . 2 2
provided by Welch (1956) be made to the values of A0 U and X 1, taken from the
=t

b

tables,
Another approxination is given by Bulmer (1957) for the situation where
E(Ml) -0+ 0° and E(M2) = 02.
His confidence interval for 0 is given by

Prx-/ze(l-‘ - Fl)(F + Ty - F2) ) o']
L m?*é) ol

o jle
S

vhere T' = Mg/Ml and Fl, F2 are the ower\a—p01nus ol the Ffl’fg and Ff,¢n

distributions respectively. This is also the approximation suggested by
Scheffe (1959, equation 7.,2.31). Other approximations, based on Taylor cxpan~
sions, have also been suggested; Bulmer (1957), Schcffe/(l95ﬁ) and Plackebt
ClQGCD give references, Approximate fiducial intervals have been ccnsidered

by Bross {1950).

The above resulbs all relate to intervals with approximate confidence
le_',!zzgs
coefficients, One case vhere the coefficients are/exact is for: the

. A Pl ' ) 2 . ) 2
error variance, because Ge = MSE has, apart frow a constant, a y -distribution
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on f degrees of freedom, say, and so a confidence interval on az is, from (25)

P[ SSE _ 2 ———-SSE] =1l-q,
2 € X2
X£,U £,L

where 2 _ and %2 . are defined as in (26).
Xf,L *£,U

Other cases of exact confidence coefficients arise in the l-way classification.
One of particular interest to biologists concerns the intra-class correlation,

qg/(qi + 02), a parameter often used in heritability studies by geneticists and

2

animal breeders. In this case, as shown in Table 5, E(MSB) = nof + o2 and

E(MSE) = 02, and from (25), with F = MSB/MSE, we have

o°F
= distributed as F

- ~1)?
@ + no2 a l)a(n 1)
04 e

the F-distribution on a - 1 and a(n - 1) degrees of freedom. Now define F, and

FU as the lower and upper limits which enclose 1 =~ ¢ of the F ~-distri-~

a-1l,a(n-1)
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bution; i.e.

02F : V
i ( F,oS s Se—ms 2 F) =1
rN "L e . nOa U
o

Then from this, as Graybill {1901, p. 379) indicales, an exact confidence

interval for the ratio Oi/(Gs + Oi) can be derived as
pL : e n I Il R N (27)
‘n '+ /P - o o a4+ /7 o« 1~
n '+ F/lL 1 ot 9% n o+ /IU 1
- , - ~ 22 2 . s .
Similarly a confidence interval for OQ/(OQ -+ Oe), the intra-class correlation, is
. F/F_ -1 0? T/ - 1
f- U 03 : ] l
P g ¥ g I R )
w~ A 0 g + /P - 1~
‘ n+1/1«U 1 vt % n 4 P/FL 1
and one for 02/02 is
o e
F/F_ - 1 o? F/F_ -1
.,_r U o L ' o)
1 - e | 21w (29)
- n o n -

,
as given in Scheffe 11959, p. 229].

o . 2 . . .
Confidence intervals for Oa in this case have also been considered, If

2
0, is known, they can be derived both from (29), and from

- aa
P( ._,ISE’E’;B,_,- < 02 + nOi < -..‘é:iig.. - ;o N (30)
Xa1,u - *a.1,L

2
B s N e K a Y -
being a multiple of the Yl

. . 2, . . 2
Both require knowing Oe in order to have a confidence iunkerval on Oc' To
¥

which originates from SSB ~distribution as in (25).
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overcome this difficulty, Williams [1962] has combined (29) and (30) to give an

2

interval on Od as
SSB(1 - F./F) ssB(1 - F_/F)
P[ - U/ < oé < . L j 21 -20 . (31)
MXa-1,U Ma-1,L

The extent to which the left-hand side of (31) exceeds 1 - 2a is discussed by
Williams; it depends upon incomplete gamma functions, and Williams comments that
the width of the interval "is often only slightly different from the 1 - o inter-

val" that can be derived from (30) when 02 is known.

It is clear from the form of (28), (29), and (31) that the limits of the
intervals therein can have negative values. In discussing the difficulty of inter-
preting negative bounds Williams [1962], in reference to (31), suggests that when
the lower limit is negative it should be put equal to zero; and when both limits
are zero, oé should be taken as zero. Séheffé [1959], in considering this problem
relative to (29) suggests leaving negative limits untouched even though several
ways of amending them are available. As he rightly says, leaving an interval esti~
mate like that from -5 to 2 is "stronger evidence that the true value of a non-

negative parameter is zero than that from" O to 2.

Simultaneous confidence intervals for all the variance components ratios
oi/oi available in a random model (balanced data) have recently been suggested
by Broemeling [1969a] with an additional example in Broemeling [1969b]. They

rely on a property of the F-statistics given by Kimball [1951].

10.3 Distributions of estimators

The analysis of variance method of estimation yields estimators of variance

components that are linear functions of mean squares. And under normality
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assumptions those mean squares are distributed independently as multiples of

central x®-variables, in accord with (24) and (25). Hence the variance component
estimators are linear functions of these xa-variables, scme of them with negative
coefficients. No closed form exists for the distribution of such functions;

furthermore, the coefficients are themselves functions of the population variance
components. For example, in @; = (MSB - MSE)/n of the l-way classification (Table
5), using (25) and xﬁ to mean a variable having the xZ-distribution with k degrees

of freedom, we have

2 2 2
no< + ¢ o
A2 _ MSB - MSE _ a e 2 _ e >
%~ n “n(a - 1) Xg-1 an(n ~ 1) Xa(n-l)' (32)

The exact form of the distribution in (32) cannot be derived because of the negative
coefficient of the second term. Furthermore, since both coefficients involve the
unknown variance components, they are unknown and this also contributes to the
distribution of Q; being unknown. For assumed values of the components, the

methods of Robinson [1965] or of Wang [1967] can be employed to obtain the distri-

butions.

The one exception to the general intractability of the distribution of

variance component estimators is, of course, that of the error variance:

g2

a2 . 2
0< = MSE ~ »
€ SSE XfSSE

where SSE has degrees of freedom fSSE'

Empirical evidence of the nature of the distribution of variance components
estimators has been reported by Leone et. al. [1966], for a single Lk-way nested
classification with 5 levels of the main classification and two each of the

others. Computer simulation of 1000 experiments of sampling from populations of
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kanown variances revealed considerable variavility in the estimators obtained,
Three different populations were used, normal, rectangular and exponential, each
with eight different sets of the four variance components involved. It is

suggesfed that Perason Type TII curves might be suitable for the distributions
of the estimators from the normal and rectangular populations. Discussion is
algo given of the iTrequency of negative cstimates: empirical evidence for all
three populations and analytic results for the normal indicate that in certain

circumstances negative estimates can be expected to occur 25% of the time.

Fi

—aess

Under normality assumptions, Zecne et al {1966) give a useful procedure
for deriving the probability of a negabive estimate in nested classifications,

Let us suppose that in the analysis of variance

2
(M) = k.95 4 k. O + ... o
' E(Ul) k07 + k0, + Fk A
/;nd EM,) = K 0° 4 + kO )
< i(M,, 205+ een e )
S - o N _‘d“(f_./'
Then - -
~2

llence

{. | (33)
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Example In the l-way classification (33) is

2
e

a
2 =
P(ca <0) = P[F

m] = P[Fa-l,a(n-l) < l/(l + np)]
e (04

a-1,a(n-1) <

where p = og/ci .

Calculation of (33) demands knowing the variance components that are being
estimated. However, for a series of arbitrary values of the components, (33) can
be calculated and used to provide some general indication of the probability of

obtaining a negative estimate.

It is clear that a result analogous to (33) could also be developed based

on the approximate F-statistic discussed in Section 10.1.

10.4 Sampling variances of estimators

Although distributions of the estimators are, to any practical extent, un-
obtainable, variances of the estimators can be derived. They do, of course,

involve the unknown ccmponents.

In general we write a variance component estimator as

a linear function of mean squares, its variance being
var(82) = Zkivar(Mi)

because the mean squares are independent;
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and because, as in (25), i, has a distribution that is a multiple of a ¥ (the

variance of which is twice its degrees of freedom),
= 2/p2 _ v )12
var(i,) = 2f[E(u4,)1%/£% = 2[E(,)]%/¢; (34)
so that the sampling variance of 92 is
var(3®) = 2Zk§[E(Mi)]2/fi . (35)

In this expression the terms [E(Mi)]2 are just squares of expected mean squares,
and as such are obtainable from analysis of variance tables like Table 5. They

are linear functions of the variance components.
Example In the l-way classification
8§ = MSE/a(n - 1) and q; = MSB/n - MSE/n

and so
N 2 2 2
) RO s e - L { ISR B

Hence, using Table 5,

o5t (no® + 02)2 o

A2y e > 2 a e .
var(oe) “aln - 1) and var(GG) 2 [ a -1 * a(n - 1) ]

=
v}

=]
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The procedure of (35) applies to any variance component estimator obtained
from balanced data by the analysis of variance method. It also extends to other
moments. Each estimator is a linear combination of multiples of independent xg—
variables and the r'th moment of any one of these combinations is a linear
function of the r'th moments of the x®-variables. The unknown components will,

of course, be involved in these linear functions, just as they are in (35) and

(36).

The mean squares in an analysis of variance of balanced data are, under
normality assumptions, independent. But estimators of variance components are

not. In the above example
A2 A2 )4-
cov(ce,qa) = ~var(MSE)/n = -2ae/an(n -1) .

Obtaining optimum~propertied estimators of these sampling variances and
covariances of variance component estimators is complicated by the fact that the
sampling variances and covariances are quadratic functions of the very variance
components being estimated. Unbiasedness is about the only property that can be
achieved. This is done by replacing [E(Mi)]z/fi in the expressions for the
variances and covariances by Mf/(fi + 2). Thus from (35)

R kiMi
ADY 11
var(6?) = 2L 75
1 1

is an unbiased estimator of var(62). The reason is as follows. By definition,

and from (34),
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var(Mi) = E(Mﬁ) - [E(Mi)]2 = 2[E(Mi)]2/fi )
so that
2\ _ » 2
EQE) = (1 + 2/£,)[E(M,)]% .
Hence
M2 (E(,)]®
E is an unbiased estimator of 1
£+ 2 £,

Example An unbiased estimator of var(Gg) in the l-way classification is,

from (36),

(n82 + 32) o
[0} e

+ e ]
a+ 1 a(n - 1) +2]1°

A ao _g_[
var(qz) ==

o]

10.5 Sufficiency

On the basis of the normality assumptions, the analysis of variance estima~
tors of variance components obtained from balanced data are based on minimal
sufficient statistics. For example, in the l-way classification it can be shown

that the likelihood of the sample of observation reduces to

exp - %[SSE L_8sA _ an(y - “)zj
02 02 + no® 02 + no®
e e x e 04

X Za(n- o
(2m) 2R (2) 2(n71) (g2 4 no2) "
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It is clear from this that SSE, SSB and y are a set of sufficient statisties, and
it is from SSE and SSB that Gg and 3: are derived. Graybill and Hultquist [1961]
establish wide conditions under which this kind of result is true generally for
analysis of variance estimators of variance components. They also consider the
property of completeness. Veeks and Graybill [1961, 1962] also consider minimal
sufficient statistics for balanced incomplete block designs, as do Kapadia and

Weeks [1963] for the interaction ease thereof.

10.6 Maximum likelihood

Initial establishment of the analysis of variance method of estimating vari-
ance components relied upon nothing more than its intuitive appeal of equating
observed mean squares to their expected values. The unbiased estimators so de-
rived have since been shown to have certain optimal conditions, especially under
normality assumptions. We might well ask, however, about the aptness of using the
method of maximum likelihood as a procedure for estimating variance components. In
the case of estimating parameters of a fixed effects model it leads in many cases
to the same estimators (under normality) as do the methods of least squares and
best linear unbiased estimation. One might hope, therefore, that with variance
components estimation it would lead to the analysis of variance estimators. But
such 1s not the case, because these estimators can take negative values. Thus they
cannot be maximum likelihood estimators since these would be derived by maximizing
the likelihood over the parameter space, which is non-negative so far as variance
components are concerned. Maximum likelihood estimators have therefore to be non-

negative.

Equating to zero the partial differentials of the likelihocd functions yields,
for balanced data, the same equations as can be used to obtain analysis of variance
estimators. However, to obtain maximum likelihood estimators, these equations have
to be considered in the light of requiring that such estimators have always to be

non-negative.
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Herbach [1959] has considered this problem in some detail as has also Thompson
[1962], who uses a restricted maximum likelihood procedure confined to just that
portion of the set of sufficient statistics which is location invariant. From
this he develops his procedure, mentioned in Section 9.4, of pooling minimal mean
squares with predecessors when the analysis of variance method yields negative
estimates. Indicative of results from these papers are those for the l-way clas-

sification. On defining

the estimators are, for 6 =20,

¥ = 6/n and 3 = MSE
(04 e
and for 6 <O,
2 =0 and 6 = 3ST/(an + A) .
(04 e

With A = O these results are Herbach's; with A = =1 they are Thompson's.
When a is relatively large,estimates derived from these estimators differ little
(save for using zero when 0 < 0) from the estimate derived from the analysis of

variance method, namely 6/n with A = =1,

Commenting on these results Robson [1965] suggests that an estimator for qi
having smaller mean square error is 6/n with \ = +1, an estimator which is also
considered by Zachs [1967]. Another estimator with uniformly still smaller mean
square error is given by Klotz and Milton [1967] and further considered by Klotz,
Milton and Zachs [1969). These authors also compare the mean square error of

these estimators numerically, for a variety of values of a, n and qi/ai.
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TOPICS IN VARIANCE COMPONENT ESTIMATION (continued)
S. R. Searle

PART III: UNBALANCED DATA

Estimating variance components from unbalanced data is not as séraightu
forward as from balanced data. This is so for two reasons. First, several methcds
of estimation are available (mest of which reduce to the analysis of varianée
method for balanced data), but no one of them has yet been clearly established as
superior to the others. Second, all the methods involve relatively cumbersome
algebra; discussion of unbalanced data can therefore easily deteriorate into a
welter of symbols, a situation we do our best (perhaps not successfully) to mini-

mize here.

It is probably safe to describe the Henderson [1953] paper as the foundation
paper dealing with variance component estimation from unbalanced data. The methods
there described have, accordingly, often been referred to as Henderson's Methods
1, 2, and 3. As described in Searle [1968], Method 1 is simply an analogue of
the analysis of variance method used with balanced data; Method 2 is designed to
correct a deficiency of Method 1 that arises with mixed models; and Method 3 is
based on the method of fitting constants so often used in fixed effects models.
Prior to the publication of these methods Winsor and Clark [194C] had utilized
the analysis of variance method in studying variation in the catch of plankton
nets, Eisenhart [1947] had clearly specified distinctions between fixed, random
and mixed models and Crump [1946, 1947 and 1951] had established sampling variances

of the variance component estimators in the l-way classification. Henderson [1953]
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however, greatly extended the estimation procedures, especially in describing
three different methods and in indicating their use in multi-way classifications.
Since then, a number of developments have been made. Variances of estimated com~
ponents have been considered by Tukey [195Ta], Searle [1956, 1958 and 196la],
Mahamunulu [1963], Blischke [1966 and 1968], Harville [1969c], Rohde and Tallis
[1969] and Low [1969), defects in Henderson's Method 2 have been demonstrated by
Searle [1968], and difficulties with the mixed model have been discussed by Searle
and Henderson [1961], Cunningham and Henderson [1968] and Thompson [1969]; and
other methods of estimation have been developed: maximum likelihood by Hartley
and Rao [1967] and large sample variances therefrom by Searle [1970], symmetric
sums by Koch [1967a and 1968) and best quadratic unbiased estimation by Townsend
[1968]. Net all of these developments have been applied to all of even the most
straightforward applications and some of them are more specialized than others.
What is even more importanti?%ZQanmparative studies have been made on the rela-

tive merits of the different methods; Bush and Anderson [1963], Anderson and

Crump [1967] and Kussmaul and Anderson [1967] are three such.

11. General quadratic forms

All currently available methods for estimating variance components from
unbslanced data use, in one way or another, quadratic forms of the observations.
Before describing the methods we therefore outline properties of quadratic forms

of observations coming from a general linear model. This is taken as

where y is a vector of observations, X is a matrix of known values, B8 is a
vector of parameters (including both fixed and random effects) and e is a

vector of the customary error terms. The vector of means and the variance-~
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covariance matrix are taken respectively as
E(y) =p and V = var(y) = E(y - iy =)t .

1ll.1 Expected values

The expected value under the above-mentioned model of the quadratic form

Yy is

E(y'ey) = tr(Qy) + u'qu (37)
where 'tr' represents the trace operation on a matrix, that of summing its diagonal
elements. This result is the basis of most methods of estimating variance compon-
ents from unbalanced data. The general methodology is to obtain expected values
of quadratic forms from (37) and to equate them to their observed values; i.e., to
equate E(X’@Y) to the observed X'QX' This is exactly what is done with mean
squares (which are quadratic forms of the observations) in the analysis of variance
method for balanced data. But, whereas with balanced data there is "obviously"
only one set of quadratic forms to use (the analysis of variance mean squares), and
they lead to estimators that have some optimal properties, there are many sets of
quadratics that can be used for unbalanced data. However, most of such sets lead
to estimators that have few optimal properties and no particular set of quadratics

has yet been established as more optimal than any other set.

Result (37) applies no matter what form of the model Yy =Xp + e is used: B
always includes all the effects in the model, be they fixed or random or a mixture
of both. In most situations we assume that E(e) = O, so that var(e) is E(ee') =
02;. In addition, when g is a vector of fixed effects, E(Be') = 8E(e') = 0; and
when 3 includes elements that are random effects they are assumed to have zero

mean and zero covariance with the elements in e; thus at all times we take



E(ge') = E(eg') = 0.

In a fixed effects model B is a vector of fixed effects, E(y) = X8 and V =

var(y) = var(e) = criIN , where there are N observations, i.e., y is N x 1. Then

(37) bpecomes

E(y'Qy) = 8'X'Q8 + 202 tr(Q).

In a mixed model B' can be partitioned as
- [ | 1 al
g (él Ba B - éK)

where Ql contains all the fixed effects of the model (including the mean) and where
the other p's each represent the set of random effects for the factors A, B, C,

.., K, these random effects having zero means and zero covariances with the
effects of any other set. [Although only single subscripts are used, interaction
effects and/or nested~factor effects are not excluded by this notation. They are
considered merely as factors, each identified by a single subscript rather than
the letters of the appropriate main effects; for example, AB-interaction effects

might be in the vector labeled QF.] Then, with X partitioned conformably with B,

K
¥ =%By + ZEByte (38)
) 9=A
. 2
E(y) = X8, and V =var(y) = I X var(B_ )X! + ¢ .
- =-1=1 = - 9=A"9 =0’-0 eEN

On making the usual assumption about the model +that the random effects in each

factor are uncorrelated and have the same variance, i.e., that
’

= g2 =
var(@e) = USINQ for § = A, B, «.., K

(37) then becomes
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K
E(y'Qy) = 2iX1¥%8 + egAagtr<g§e§g> + oZtr(Q) . (39)

In a random model, all effects are random except p, so that El =y and

X, = 1 and so from (39)

E(y'qy) = wo1'el +

. oStr(QxxL) + o2tr(Q) , (40)

fon

where the coefficient of uZ, namely 1'Ql, is the sum of all elements of Q.

(1 is a vector of 1's.)

11.2 Normality assumptions

Distributional properties of quadratic forms X'@X are mostly known only when
y is normally distributed N(p, V). The well-known theorem (e.g. Graybill, [1961])
then applies, that y'Qy has a non-central x2~-distribution if and only if QV is an
idempotent matrix. This theorem, however, has little use in the estimation of
variance components from unbalanced data because few of the quadratics involved
are such that QV is idempotent. Despite this, the variance of y'Qy is obtainable

as
var(y'ay) = 2tr(QV)® + hyu'Quon (k1)

and the covariance between two quadratics X'Qy and x‘gx is

cov(y'Qy, y'Ry) = 2tr(QVRV) + Lu'QVRu . (42)

These results hold provided Q and R are symmetric. (41) is a special case of a

more general result that the r'th cumulant of y'Qy is

2r-l

K (y'Qr) = 277 (r - 1) len(@)™ + xut (@)Y I
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No doubt (42) could be generalized in similar fashion.,

12. The analysis of variance method (Henderson's Method 1)

The analysis of variance method of estimating variance components is
essentially the only method used with balanced data, It is also the most
frequently used method with unbalanced data, although its application is not as
straightforvard and its deficiencies are more pronounced, Nevertheless, it is
likely to continue as an oft-used method and so considerable attention is devoted
tc it here., With balanced data the method consists of equating expected mean
squares to their expected values. Essentially the same procedure is used with
unbalanced data,as is now shoun iﬁ terms of an example, the 2-way crossed class-

ification with interaction,
The model for a levels of an A-factor crossed with b levels of a B-factor is

Vige =Bt oyt 3j + V&j * e (43)

where y.., 1is the k'th observation (for kX = 1, 2, ..., n..) in the i'th level of
ijk v > =2 A

the A-factor and the j'th level of the B-factor, where i =1, 2, ..., a and

"3 =1,2, ¢ee; b. Thus nij is the number of observations in the (ij)'th cell --

the i'th level of A and the j'th level of B, Since not all of the cells maf
contain observations vie leﬁ s represent the number that doj; i.e., s is the number
pf nij's for which nij > 0, Thus ab-s is the number of cells containing no data
(nij = 0), In (43),1p is a general mean, o is the effect due to the i'th level
of the A-factor, Bj is the effect due to the j'th level of the B~factor,'yij is
the interaction effect and eijk is the customary error term, In terms of (38) the
model (43) is
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yo=pl + X B + X8y + X8y + e

with QA’ Py and 9 being the vectors of effects corresponding respectively to
. have
the A and B-factors and to the AB-interactions, In random models these/variance

matrices GQIa, UéIb and QiBIS and covariances between different effects are all

ZEY0,

12.1 Analogous sums of squares

The analysis of variance of balanced data from the above model contains a

line for the A-factor, vhich has a sum of squares (see Toble 6)

a a y2 y2

* - -~ 2 .00 o8 ®
an(yfL -y )= Z = - .
. e s bn abn
i=1 A

i=1

The analagous term for unbalanced data is

a y2 y2
il. e
sA=Z____ - | (1)
=l 1 )

This is one of the terms used for estimating variance components by the analysis -
<

of variance method from unbalanced data: the computed value of SA

E(SA) vhich can be derived from (40). It will be a linear function of the

is equated to

variances involved., The other terms used, - all of them

analogies of the balanced data analysis of variance sums of squares, are

b .2 2
A y :
] = Y-‘.J.!. - (145)
B /L. n
j.:l 'J X .
K
a b 2 a 2 b 2
Y.. Y. y . y
1. 10' L] L] LR
oo ) P - P gl L o
n . n, . -n n



and

a b ij a b y2
-V ¥ {2 . \ “ij. L
(SSE = Z L Zyijk Z Zn- y ' (47)
i=1 j=1 k=1 - i=1 j=11ij
. 2 2 2 2 . . P
Estimators of OA’ OB’ OAB and Oe are . derived by equating each of

(44)-(4T7) to their expected values, which will be linear in the four variances.
Before looking at the form of these expected values, which are derived from (LO),

certain ~haracteristics of the S's are worin. notamg.

(i) Empty cells. Since nij is the number of observations in a cell it can, as.

menticned, be zero, The surmations in SAB and SSE that involve nij in the
denominator are therefore defined only for the (i, j) combinations for which nij'
is non-zero; i.e.)the summing is over only those cells having observations in

them, The possibility of zero denominators is thus removed. This is standard

practice in unbalanced data analysis,

(ii) Balanced data, It is clear that when the data are balanced, i.e. nij =n

for all 1 and j, then SA B

58,5 and SSE of (45)-(b7) also reduce to the familiar analysis of variance sums

of squares for balanced data,

reduces to an(S'ri -y )2. In similar fashion S

L

(iii) A negative 'sum of squares', Suppose S, is computed for the data of

AB
Table 11,

Table 11

5 observations in a row-by-column analysis

Row Column Row
1 2 Total

6 Y 10 .
2 6, U2 12 60

Column Total 5L 16 70
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From (46)

2

=62 4 12 488 4 12% L 10%/2 - 60%/3 - Su3/3 - 16%/2 + 70°/5 = -22,

SAB

i.e. SAB~iS negative, Thus SAB is not a sum of squareé; it is a quadratic form,-
but not positive semi-definite. Although this is not so with_ail S's of the

example this illustration shows that, in general, the analogies of balanced |
data analyses of variance sums of squares may not always be sums of squares in

unbalanced data, They might therefore be referred to as analogous sums of

squares,

(iv) Uncorrécted sums of squares.- Because, as has just been demonstrated, the

S's of unbalanced data estimation are not all positive semi-definite, it is
. convenient to deal with them in terms of uncorrected sums of squares, denoted

by T's, as introduced for balanced data in Section 6,1. Thus with

. a 2 b 2 a
e V.. o vV -y Zle.
A Lo 3 B L n 4 AB
i=1 i, =1 .5 i=1 j=1
a b n 2 '(h8)
s 5 opoy2 4T =2
T = 2 V. ors an P AR s
© i1 jak=1 I won
the S-terms of (4h)-(h7) are
SA =J.A-Tu and SB =TB~Tu,
. (49)
SAB = ?AB - ?A - TB + TL and SSE = To - ?AB'
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Although expected values of S's can be derived using expressions such as
(44 )-(47) directly in (40), they are obtained more easily by using (48) in (40),
and then (49), This is so because of the tractability of the matrices involved
in writing T's in the form X’QX' For example, that for TA is the direct (Kronecker)

sum of matrices (l/ni.)gn. , Where En. is a square matrix of order n.. with every
element unity. Indeed, a:.willlbe:sh:;n in {53), these matrices

enable one to write down the expected value of any T quite generally from (40).
Similarly, (41) and (42) can be used for deriving the variances and covariances

of the T's, and these, by means of (49), lead to variances of the S's which in

turn lead to variances of the variance component estimators. Thus the T's are a

convenient means of deriving the estimators and their properties.

12,2 Expected values

Indication of the nature of expected values of S's can be gained from E(SA)

which, for the customary random model described above, is

a b b
b¥ n§ a g nij z nz.j
- _5;=___l___'_>2 <“?J‘=l _d=1" )2
E(SA) - (n.. n % t\L o n J%B
o i=l l. L )
(50)
b a b
a % nij r z nij
5 j=1 - i=1l j=1 > 2 -
+ ( Z, n. n O * (a l)cﬁ '
i:l 10 L )

The most noticeable characteristic of this expression is the relative com-
plexity of the coefficients of the ¢®'s — especially compared to their counter-
parts in balanced data shown in Table 7, to which they simplify (after division by

a~1l to reduce SA to a mean square) when nij =n for all i and j.
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A second point about (50) is its non-zerc coefficient for every 02 in the

model, This contrasts with Table 7 where, for example, E(MST) has no term in ng
with unbalanced data from crossed classifications the expected value of every S
contains every variance component of the model. [With nested classifications this

is modified slightly in that an E(S)-term involves only the variance component of

the factor it pertains to and those of the factors nested within it.]

Numeric methods of obtaining coefficients of variance components in expected
values of S's are given by Hartley [1967] and extended by Rao [1968]. Gaylor et
al [1970] also show numeric procedures. Algebraic forms of these coefficients for
specific models are to be found in a variety of places. A selection of references

(with no attempt at completeness) is listed for convenience in Table 12.

Table 12

A selection of references to expected values of S~terms
("sums of squares") in random models with unbalanced data.

Classification References
1-way Graybill [1961, p. 351]
2-way, nested Graybill [1961, p. 354]
2-way, crossed, no interaction Graybill [1961, p. 359]
2-way, crossed, interaction Searle [1958]
3-way, nested Anderson and Baneroft [1952, p. 327]
3-way, crossed Blischke [1968]
k~way, nested Gates and Shiue [1962]

Finite populations
3-way, nested Gaylor and Hartwell [1969]

2, 3 & L-way nested and/or crossed Searle and Fawcett [1970]
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Of the references listed, that by Gates and Shiue [1962] is noteworthy because

it gives procedures for nested classifications of any order at all, and indicates
relationships between coefficients of the 02!s in the E(S)~terms. Gower [1962]
suggests somewhat the same thing, for a specific example, both papers making
reference to Ganguli [1941]. The Gaylor and Hartwell [1969] paper is also
important for it appears to be the first mention of analyzing unbalanced data
from finite populations; Bennett and Franklin [1954] had considered them for
balanced data, as had Cornfield and Tukey [1956] and Wilk and Kempthorne [1956].
General rules for changing to finite populations from infinite populations are

given by Searle and Fawcett [1970].

12.3 General results

In terms of the general model (38) the T-term ?A for a factor A in a random

model can be expressed in terms of y (Ai) and n(Ai) defined respectively as the

total and the number of the observations in the i'th level of the A-factor, Then

N
o Ly ()

T \
yan
11 nlay)

A" (51)

where NA is the number of levels of the A-~factor. On appropriately ordering the

elements in ¥ this is also

Np
T ' ith T
A= L QY wi Q= L (A {n(Ai) ’ (52)
i=1 i
X . +
Q, being the direct sum (denoted by X' ) of N, matrices [l/n(Ai)]gn(Ai) . Hence
from (40)
N
N )
K A & [n(Ai,ej)]Z
w2 V‘( T og=1 2) 2
E(TA) =m2+ () og) + Nyo0 (53)

9=A i=1 n(A;)
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the
vhere n(Ai,Gj) is the number of observations in the i'th level of /A-factor and

the j'th level of the 6-factor, With appropriate interpretation of n(Ai,Gj),

(53)

n(Ai) and NA)‘ - resultAapplies quite generally to any T in any random model,

Thus for To, the total sum of squares, it reduces to

K
E(T ) = Np +N T oo

2
g+ No

and for Tp, the correction for the mean, it becomes

E(T ) = M° & = { ) [ (6. )]2} 6/N + 02
6=A "j=1

2
Clearly the term Ny occurs in the expectation of every T. But because S's
involve only differences between T's, expectations of S's do not contain Nuz,

and their coefficients of Gz are correspondingly their “degrees of freedom".

When the number of observations in any set of data is N and the number of

sub-most cells having data in them is s, the within-cell sum of squares SSE has

expectation E(SSE) = (N - s)Oz. 'ghen,' " . on defining
s = vector of S's, but not SSE,
02 = vector of Oe's, but not Gi,
ansl f = vector of "degrees of freedom", the coefficients of Gi in E(s),

the expected values of all the S-terms involved in any random effects model can

be written as

n

i
i H
Re]

o |- . (54)
e

| et |
Q
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. . . 2 2
Hence the analysis of variance estimators of Ge and 0~ are

62 = SSE/(N - s) (55)
and
6% = (s - &%), (56)

In these equations the elements of P are the coefficients of the 02'3 (excluding
02) in equations like (50). Clearly, these elements are of such a nature that
there is no convenient explicit form for P-l and so the estimators are best left

in the form of (55) and (56). For any particular situation one first derives

2

E(s) and so obtains P from E(s) = po® 4 fo_ o

f (54). Then (55) and (56) are

used to obtain the estimators, These expressions are also useful in deriving

variances of the estimators, as indicated in Section 12,5,

In random models all variance component estimators obtained by the analysis

1
of variance method are unbiased. This is obviously so for Cg because E(SSE) =

(v - s)Oi in (55); and it is equally as clear for &2 because, from (56) and (5M4),

2
e

E(82) = g“l[E(E) - Ozf] = P“l[Pg2 + 0°F - 0§§] = 32.

This property of unbiasedness applies to all estimators from random models --

but not to those from mixed modeis, as is discussed in the next section,

An intaresting variation on a random model is one considered by Harville
afs
196795, wherein the analysis of variance estimators are biased. This is a
\
model where dependence is assumed between the random effects of the model and the

number of observations on them, Such a model is very realistic, for example, in

dairy hefd production, where the larger herds tend to be those with highest
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production., If this dependence is taken into account the usual variance esti-
mators are biased. Harville (1967b) discusses this situation for the l-way

classification and indicates the magnitude of the bias for a variety of situa-
tions. In doing so he assumes the bivariate distribution of the effects and |

their associated n's to be of a normal-Poisson form, Similar discussion of the

2-way classification is given by Harville [19687.

12,4 Mixed models

—

The expectation E(SA) given in (50) is based on (43) being a random model.
But suppose (43) were a mixed model with the ai's being fixed and not random

effects, The expectation would then be

b b
a Zn 13 z n2j
E(S ) = r Sn. o - (Z n. «. ) /n =L =L 2
i, i i, B
Li=y i=1 ) o B n
b ab
a X nza Tz nij
J=1 i 2 2
I ) N CIRE Y L 1)
1=l io noc

This is identical to (50) except for the first term which is now a function of
the fixed effects, stermming from the first term of (39). Furthermore, this

cccurs in expected values of all S-terms (save that of SSE).

More importantly, the function of the fixed effects is not the same from one

E(S) term to the next, For example, with the o 's fixed E(S ) of é«y)
b ( Xn, 1% 2 % n, o,
S i i joq Led
contains the term }; . M=

n

. n .
J=l 'J ’ .0

, which differs from the first

term in B(SA) of (57). Tnus E(sA - SB) does not get rid of the fixed effects

even though it does eliminate terms in p. This is true generally: in mixed
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models, expected values of the S's ccntain functions of the fixed effects fhat
cannot be eliminated by considering linear combinations of the S's. This means
that the equations E(s) = 892 + Oif of the random model take the form E(s) =

292 + cif + g in the mixed model, where g is a vector of quadratic funétions of"'
the fixed effects in the model. Hence gz cannot be estimated by this method;

i.e. the analysis of variance method as applied to unbalanced data (Henderson's

Method 1) cannot be used for mixed models. It yields biased estimators.,

Two obvious ways of overcoming the above difficulty involve deviants from
the true mixed model and must therefore be considered as unsatisfactory. ihe
first is to ignore the fixed effeéts and eliminate them from the model: what
remains is a random model for which variance components can be estimated, . The
second possibility is to assume the fixed effects are‘in fact random, and so
treat the model as if it were réndom; in the resulting estimation process
components for the fixed effect factors will be eétimated and can be ignored,
With each of these possibilities we deal with random models to which the esti-
mation process is eminently suited, but the estimators will, in both cases, be
biased‘because.their expectations under the true mixed model will not equal the
variance components of that model -- they will include functions (quadratics) of
the fixed effects. Despite this, if the models which these approximations inyoke
are in any way acceptable alternatives to the mixed model then the approximations
may be of some use. Furtherm§re, they utilize the relativél& easy arithmetic of "

he method, which is sometimes advantageous in face of the greater complexity of
analyses of mixed models that do yield unbiased estimators -- such as those

discussed in Sections 13 and 1k,
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12,5 Seampling variances of estimators
Distributions of estimators of variance components from unbalanced data are

unknown, except inasmuch as the estimators can sometimes be expressed as linear
combinations of independent non-central xz—variables, as discussed by PFarville
[19694]. Some progress has been mede in deriving sampling variances, however,

although they are considerably more complicated than with balanced data.

For y having an arbitrary distribution, the only results available appear to
be those of Hammersley [1949] and Tukey [1957a] for the l-way classification.
Hammersley considers infinite populations and Tukey, using polykays, deals with
both infinite and finite populations. Tukey also considers the effect of
weighting the group means in different ways in order to reduce the variance of the
between-group variance estimator. From a limited numerical study he concludes
that when the between component exceeds 50% (100%) of the within component in
moderately (substantially) unbalanced data, then equal weighting of the group
means rather than the customary weighting by group size seems to give a better
estimate of the between component. Under normality assumptions (that the random
effects in the model are normally distributed), Robertson [1962] suggests weight-

ing inversely proportional to the square of group size might be more appropriate.

Since most derivations of sampling variances have been made under normality
assumptions, further discussion is confined to this situation. Foremost is the
obvious result that with normality the residual sum of squares always has, apart

from a constant, a central x®-distribution. Hence

o2 20&

> and so v(Si) =5 -es . (58)

2 _ - ~ %2 =
82 = SSE/ (M - s) XN-s(N - s
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Just as with balanced data. This is the one exception to unknown sampling dis-

tributions.

For the l-way classification Crump [1951] and Searle [1956] give the vari-
ance of the between~group component estimator. Unfortunately both results contain

typographical errors. Crump's corrected formula (in his notation) is

L 2 3
20 < "n -y
@R el R il A B

where ny is the number of observations in the hfth group (h =1, 2, ..., a), with

- 2/(42 2 = - n2 - ;
= nhoe/(oe + n 0%) and n, = (n Znh/n.)/(a 1). The published version of
(59) omits the 1/n term from inside the squared bracket of the first term. And
Searle's corrected formula (in his notation) is
20h(N - 1) Lo202(N2 ~ 8 o (N2s + 32

)
vaz l £ + 2 + 6
( ) £2 (e - 1)(N = c) N(ec -~ 1)2 N3(e - 1)2 j (60)

where N 1s the number of observations, ¢ is the number of groups, 82 = Znﬁ,
= nd and £ = (N - 8,/N)/(c = 1). The error in the published form of (60) is

that of having 2 instead of 4 in the second term. The more familiar form of (60)is

)+ 2 2 2 2# 2 2 a
(02) - 20 N (N - 1)(c7- 1) . uceoAN . 2cA(N S, + 55 - 2NS
A [ ]

(N2 = 5,)3(N =~ c) N? -5, (¥2 - 5,)2

It was consideration of the l~way classification in Searle [1956] that led
to applying results like (41) and (42) to the variance component problem. These

results yield variances and covariances of the T's which, if
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we write t for the vector of T's, constitute the elements of the matrix var(t).
If the relationship between t and s {e.g. (49)] is represented as s = Ht, the

estimators in (56) become

82 = PH(ut - 32f) with s = vector of §'s

]

t

]

vector of T's and s = Ht .

Because 82 and each element of t have zero covariance, the covariance matrix of

2

9% is
var(8%) = §~1[§ var (t)H' + v(ﬁz)gg']gﬂl' , (61)
where v(Gi) is given by (58); and the vector of covariances between Gi and 9% is
cov(82, 82) = -PTMEv(82) . (62)

In these results H and g-l are not necessarily symmetric — indeed they seldcom

will be.

The difficult part of (61) is var(t). P comes from the estimation procedure
E(s) = ng + gci, and H represents the relationship between the S's and T's; but
var(t) is the matrix of variances and covariances of the T's that have to

be developed from (41) and (42). Writing the T's in the form of (52),
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it is easily shown for random effects models that the terms in g in (41) and
(+2) are, for all T's, 4uZ1'Vl. Hence, because T's are involved only as differ=
ences of each other in S's, the last terms of (41) and (42) can be neglected in

deriving variances and covariances of the T's to be used in Hvar(t)H' of (61).

Expressions for variances and covariances of T's, which, from (1) and (L2)
are quadratics in the unknown 02’3, have been developed for several specific
cases. The 2-way crossed classification with interaction is dealt with by Searle
[1958], and the 2-way nested classification by Searle [1961]; and the 3~way nested
classification is treated by idahamunulu [1963]. Blischke [1966] deals with a
specific 3-way classification and Blischke [1968] develops a general procedure
applicable to any r-way crossed classification. An appendix to this latter paper
contains specific expressions for var(t) of a 3-way crossed classification with
all interactions, involving a matrix of order 36 X 36, of the coefficients of the
squares and products of the 02!'s in the variances and covariances of the T's. In
an r-way crossed classification containing all interactions this matrix will be
of order 2°"3(2¥ + 1), values of which are 3, 10, 36, 136 and 528 for r = 1,2,3,k

and 5 respectively.
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The quadratics of the unknown variance components that are the elements of

var(t) are "messy" functions of the n,.'s of the data; for example, from Searle

13

[1958], the variance of of (48) is

A

2
n, n,.,.
A ( ij it )
- 5 2 2 2 2 ]2 - Jd i37i'J é} .
var(TA) 2{?[3 nij(ni.qA + ning + nichB + Ge)/ni. L ox

1 itk PPyr,

Although this expression can be expanded into a more computable form there appears
to be no way of simplifying it analytically. Consequently explicit expressions
for the variances and covariances of the estimated ¢2's cannot be derived from
(61) and (62); they must remain in that form. Implications of this are two~fold:

the effects of unbalancedness (of different values of the n,,'s) on the behaviour

i
of variances of variance component estimators cannot be studied, and (ii) these
variances, through being functions of the unknown variance components, can be
evaluated in any particular case only after allocating to those components a set
of numerical values. This can be done either by using estimated ¢%'s derived
from the data (hoping, presumably, that none of them are negative), or by using
any set or sets of arbitrary values that seem reasonable for the data at hand.

Neither of these possibilities givesestimates of var(?z) that have any known,

optimal properties.

The elements of (61) and (62) are linear functions of the squares and products
of the 0®'s. 1In this situation Mahamumulu [1963] has pointed out a method for

deriving unbiased estimators
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of the elements of var(32). It consists of replacing in (61) and (62) every

squared variance ?Z (including Gi) by 32 - G(ai) and every product of variances,
2 2 . . i} A2 A ~a 22 a2 . .
Y (also including error) by 9,9 - cov(OA, QB). Calling the resulting

expressions v§r(§2) and c5v(3§, §2), they are then equations in 0(32) and-—-

cav(gi, 3;), the solutions for which are unbiased'estimators of the variances

and covariances of the estimated 02‘s. For obtaining unbiased estimators
explicitly this is clearly an intractable procedure in anything but the simplest
case, Nevertheless, Ahrens (1965) has formulated it more succinctly. Suppose Hi o
v(ai) of (58), the different elements of var(éz) in (61) and the elements of
cov(az, §2) in (62) are arrayed as a vector v == of order 2r-1(2r + 1) in an

r-way cross-classification., Then if, in similar manner, the squareé and

products of the 0°1s are also arrayed ih a vector Y, the equations (58), (61)

and (62) can be written as

v = AY - " (63)

r"l(Zr + 1). [This is not the matrix referred to

where A is square of order 2
earlier in discussing var(t); there it was a case of writing the different
elements of var(E) as vector BY; B differ. - from A though having the same

order.] With this formulation an unbiased estimator of v is

i

7= (e a)Tay | (6

where Q is the vector of the squares and powers of the 32'5, the estimated 02'3.
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This procedure is similar to that of Section 10.4. It results from the fact that
by its definition & has expectation E(§) = v + y and so, by means of (63), the

expected value of § in (64) is y.

Example. For the l-way classification, (63) is

~ne LT
v(5%) X, 0 0 o
~ne ~ . 2,2
cov(cA, oi) = k, © 0 I
v(52) k k k o)+
R A i L3 % 5 1L A

where k, = 2/(N -~ c), as in (58), k, = 2/[£(1 - ¢)] and k k, and k. are the

3’ p)
coefficients of Ui, qzci and oi in (60). Then, by (64), unbiased estimators of
the sampling variances and covariance are

- - - -1 r T T
AN
¥(5=) 14k, 0 0 k, 0 0 8e
AA(B2 A2 = a202
cov(qA 5=) k, 1 0 k, 0 0 6} GA
¥(32) k k,  l+k k., k k &
. A - b 3 )+ 5-1 - 3 LL 5.4 - A ~
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e} /\h
kl(l+k5) 0 0 5y
1 n2A2
= k,_ (1+k_) 0 0 6262 (65)
(1+k ) (k) | 2 7 e
1 5 L,
i Ky -k k(1)) kg (L+ky) 11 3, )

It is clear that (64) can be used only after (58), (61) and (62) have been
written in the form of (63). Nested classifications, of which the above example
is the simplest case, provide a relatively easy opportunity for this, for then
the matrix P in (61) is triangular and, at least in simple cases, its inverse is
easily obtained, Hence (61) and (62) can be readily expressed in the form of (63),

from which (64) can be used. This is evident in the example.

Variances of variance component estimators appear, from the literature, to
have been used very little on actual data. This is probably so because of their
algebraic complexity. In one series of applications (e.g., Searle [1961b] and
Evans [1968]) the variance of the interaction component estimator in a 2-way
classification was very large. However, in the data used there was only a small
fraction of the possible subclasses (5 - 15%) that contained observations, with
those subclasses having an average of only 2 observations each. The paucity of

such data for estimating interaction variances seems clearly apparent. Nevertheless,
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the occurrence of such data highlights the need for improved methods of estimating

variance components.

The nature of the distribution of variance component estimators has been
studied through computer simulation by Leone et al [1968] for two special cases
of unbalanced data. They studied nested designs that could be described as embodye
ing planned unbalancedness, in contrast to the unbalancedness which is often fait
accompli in survey data. The designs used are those of the "staggered" and
"inverted" variety, as described by Bainbridge [1963]. The extent of the computer
simulation was identical to that used by the same workers, Leone ¢t al [1966], in
studying a single balanced nested classification as discussed in Section 10.3.
The main conclusion is that, for the specific designs studied, Pearson Type III
curves might be suitable for describing the distributions. However, the limited
degree of unbalancedness implicit in their designs precludes extrapolating con-

clusions to unbalanced data generally.

12.6 Synthesis

21S

The calculation, for any particular set of data, of coefficients of o
in expectations of S's and T's without first requiring the algebraic form of
these coefficients can be achieved by a method developed by Hartley [1967],
which he calls the method of ?!synthesis'. The method also applies to calculat-

ing coefficients of squares and products of 02!s in variances and covariances
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of quadratics. Furthermore, it applies not just to S's and T's but to any
homogeneous quadratic form in the observations, and it requires no distributional

properties of the model,

The method is easily described in terms of the general model (38) where,

for random models, the only fixed effect is u. Then, writing T, as in (52) and,

A
from X, of (38), defining §(9,j) as the j'th column of Xy, the method of synthesis
obtains the coefficient of cg in E(TA) as
N
k(o2,1,) = © T, [x(8,3)] . (66)
82°A L AT
J=1

Thus the method uses each column in X, as a column of data (all 0's and 1's) to

6

calculate TA’ and sums the results over all columns of X

is the coefficient of cg in E(TA).

g+ The sum, as in (66),

This numerical procedure has no recourse to explicit algebraic forms of the
coefficients. Since it applies to any quadratic form in the place of :A it can
be used directly on the S's, and so paraphrasing Hartley we can say: apply the

analysis of variance method in turn to each of the N, columns of X, used as data,

0 0

and for a particular quadratic Q(y) form the sum of the Q(y) over the N, analyses

6
of variance, to obtain k[og,Q(z)], the coefficient of og in E(Q(y) 1.
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X
Carrying out Z LN analyses of variance and summing them appropriately thus
gives the coefficiSZis of the 02's in the expected values of all the S's. Since
many of the !observations' in these analyses will be zero, any computer procedure
designed for this task should take account of this many-zeroed feature of the 'data'.

Furthermore, the non-zero elements of §(6,j) are all 1's, and this leads very

readily to showing the equivalence of (65) to the coefficient of cg in (53).

The method also extends to finding coefficients of products of ¢2's in

expected values of products of quadratic forms, This involves sums of the form

N, W
° 9

L L Tax(8,3) + x(e,3') I [x(0,5) + x(e,3")]
=1 3'=1

where a column of X, is added to one of g@, in all possible combinations, and

0
these sums are used as 'data' vectors in T, and T.. When the data are extensive

A B
and the g's have many columns (perhaps hundreds, as often occurs with random
models) these formulae, although computationally well suited to obtaining
coefficients numerically in specific situations, will nevertheless entail quite

sizeable computer time and facilities. Extensions of the method to general design

matrices and mixed models are considered by Rao [1968].

13 Adjusting for bias in mixed models (Henderson Method 2)

Mixed models involve dual estimation problems — estimating both fixed
effects and variance components. For the moment attention is directed to
estimating just the variance components. In some situations this is exactly

what might be done in practice, with genetic data, for example, time or year
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effects might be considered fixed and of 1little interest compared to the genétic
variance componenté. On the other hand, time trends may be of very real
interest in some data, in which case their estimation together with that of the
variance components’would be considered simultaneously., This dual estimation

problem is considered subsequently.

As indicated in Section 12,4 the analysis of variance method for mixed
models leads, with unb;lanéed data, to biased estimators of variance components,
The methnd known as Methbd 2 in Henderson (}953] is designed to correct this

~deficiency, It uses the data @o_first estimate fixed effects of the model and
then, using these estﬁﬁators to adjust the data, variance components are
estimated from -the ?djuéféa data, using the analysis of variance method. The
whole procedure is designed solthat the resulting variance component estimators
are not biased>by the presence of the fixed effeéts in the model, as they are
witﬁ analysis of variance estimatofs‘derived ffom the basic data, SQ far as the
cfiterion Qf unbiasedness is concérned, this is certainly achieved by Method 2.
But the- general method of analyzing data adjusted according to some estimator
of the fixed effects is open to criticism on other grounds: It cannot be
uniquely defined, and a simplified form of it, of which Henderson's Method 2 is
a special case, cannot be used vhenever the model includes interactions between

the fixed effects and the random effects,
The general approach of Method 2 can be considered in terms of the model
¥=“1'+).(.f5f+)£r9r+s

vhere all fixed effects other than p are represented by ?f’ and all random
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effects by B . As usual E(Br) = 0 and so E(BrB;) = V(Br), the variance-
covariance matrix of the random effects., The general effect of correcting thé_

data vector y according to an estimator of the fixed effects Bf is to suppose

that such an estimator 1s Bf = Ly for some matrix L so that the vector of
corrected data is z =y - gfgf. It can then te shown (Searle,[}96§b that the

model for z contains no terms in 9 provided L is a generalized inverse of gf.
Under this condition the analysis of variance method applied to y- X Bf, will
yield unbiased estimators of the variance components, However, the fact that L

a
has only to be/generallzed inverse of Xf indicates the arbitrariness of the
method. This lack of specificity means the method is not uniquely defined and

hence is impractical,

The model for 2=y - X 8 Jjust described contains no term in 3 An

A ~-f-f
wald b
additional restrlctlonk for the model to have the same term X Br as does the
model for y, as well as a ~ mean term pll vhere by is not necessarily

equal to p. For this to occur L need not be a generalized inverse of Xf but it

must satisfy three conditions:

XX . = O3 all row sums of XL equal; all rows of (§f - gfggf) equal, (57)

Although the non-unique condition on L, that X_IX_ = X_., has been replaced by

~fa-f — =f?

these 3 condltffns they too do not determine L uniquely. Furthermore, it has
(Cv cif ’

been shown’ that a consequence of them is that the model for y cannot contain
interactions between fixed and random effects, Whether such interactions are
considered fixed or random their existence leads to meaningless conclusions if

this simplified form of the general method is to be feasible, This is a severe

limitation on the method,
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Henderson's [1953] iethod 2 is a particular way of carrying out the simpler
form of the generalized method. It estimates Qf as éf = Ly with an L that satis-
fies (67) derived from assuming, temporarily and just for the purpose of esti-
mating Bes that p = O and that the random effects are fixed. Then éf is obtained

from the equations

B XX, XX B X1y
x| T = | T S R L (68)

1 1 ]

.B-r }.Sr}-(f )-gr}-(‘:r .B.r }Srz

It is the manner in which these are solved that leads to the solution being

éf = Ly with L satisfying (67)s« The essential part of the solution is picking a
generalized inverse of X'X by reducing it to full rank in such a way that in
striking out rows and columns from §'§ as many as possible are rows and columns
through §%§f' Details of this process, and the reasons for its satisfying (67)
are given in Searle [1968]. Having obtained L the variance components are esti-

~

mated by using the analysis of variance method on y - Ef@f’ Although

~

¥y - gféf - Krér is invariant to whatever solution of (68) is used for éf and ér’

this invariance does not apply to y - X The lack of unique specification of

er"
the method is thus readily apparent. Even though re~writing the model in some
full rank form leads (with different definitions of gf and gr) to a solitary

solution for (68), doing so does not supersede the underlying non full rank model
in terms of which the variance components are defined. Therefore discussion of
Method 2 in terms of a full rank model, as is done by Oktaba [1968] for example,

whilst appearing to avoid the lack of uniqueness of the method, does not really
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do so. Because the method has this deficiency, and alsc because it cannot be
used for models that contain interactions between fixed and random effects [a
deficiency of any method for which (67) is satisfied], its use is discouraged by

Searle [1968].

A variation on Henderson'’s Method 2 is to estimate the fixed effects by
‘temporarily assuming the random effects do not exist. Then éf is derived from
I¥Yg =Xt i i .=v~
ngfgf §fz, which removes the lack of uniqueness in z=y gfgf because
ty Y7t 49 4 s v \© s
gf(¥f§f).¥f is invariant to the choice of (ngf) . However, conditions (67) are
no longer satisfied and the computational advantages which they imply are not

gained.

14 The fitting constants method (Henderson's Method 3)

The third method described by Henderson [1953] is based on the method of
fitting constants traditionally used in fixed effects models. It uses reductions
in sums of squares due to fitting different sub=-groups of factors in the model,
using them in exactly the same manner as the S's are used in the analysis of
variance method, namely estimating the variance components by equating each com~
puted reduction to its expected value. We illustrate the method in terms of an

example, and then summarize the general case.

14.1 Reductions in sums of squares

In the earlier example of the 2~way classification random model with inter-
action, the four quadratics equated to their expected values in the analysis of
variance method are Sp» Sgs Spp end SSE shown as functions of T's in equations (49).

The fitting constants method also uses four quadratics, derived from fitting the

model
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. Vige =% ¥ % TR T Y4y T %5k
shovn in (43), and three sub-models

=u+Qa, +p, te

=y + ai + e and yijk N B i3k .

Yigk = H 7 C1gx0 Yigx 13k’

3

In fitting these models the total sum of squares is TO =T I y? Xk Just as in

J
(48). With each model there is a reduction in sum of squares, X'g(g’g)-g'z, due

to fitting the model. These reductions can be denoted by
R(u,A,B,AB), R(u), R(p,A) and R(p,A,B)

respectively, where the letters in parentheses indicate the factors fitted in

the respective models. [In this notation AB represents, as usual, A-by-B inter-

action.] By way of example, the last of the above models fits p, A~ and B-factors,
. and so the reduction is symbolized as R(u,A,B). Writing the model as y = Xb + e,

where b is the vector containing p, the a's and g's, we have R(u,A,B) =

g'g(g'g)-z'z for that X. The fitting constants method of estimating variance

components uses T and these R( )-reductions by equating certain differences

among them to their expected values, so setting up equations in the 02's whose

solutions are the estimators. These differences and their expectations are

indicated in Table 13.



-86-

Table 13

Fitting constants - method of estimating variance
components for a 2-way classification, random model,

Term : Definition Expectation
R(A,B,ABlp) = R(u,A,B,AB) - R(u) Linear in 0'2, 02, 02 and o°

: A’ B’ AB e
2(B,4B| _ . s 42 2
R(B,AB{u,A) = R(w,A,B,AB) - R(u,A) Linear in 95, 0, and O
R(AB|y,A,B i in oo 2

psA,B) = R(IJ':A:BaAB) - R(l—":A:B) Linear in GAB and O'e
SSE = T - R(p,A,B,AB) : _' (v - s)Gz
' Although for this example most of these reductions simplify in terms of

the T's defined earlier, their presentation in Table 13 is in accord with the
general application of the fitting constants method and illustrates properties
of the method that make it important, The last entry in Table 13 is SSE,
equal to the total sum of squares minus the reduction due to fitting the full
model. This is always used and it provides, as usual, the estimator of 02.
The second to last entrj, R(ABlu,A,B), is read as "the reduction due to AB
after taking account of ., A and B"; or, more correctly "the reduction due to
fitting p, A, B and AB, over and above that due to p, A and B", namely
R(@,A,ﬁ,AB) ~ R(u,A,B) as shown in the table, These are the kinds of terms
used generally in the fitting constants method. Others for the example are

shown in Table 13, and the general form is discussed below,

. The notation used here, R(AB|u,A,B) for example, is convenient and complete,
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It conveniently indicates what each term is, and it completely specifies each term
with no opportunity for confusion such as exists with other netations. For ex-
ample, does Ry, mean R(AB), R(u,AB), R(u,AB) - R(u), or R(ABJu,A,B)? The latter

notation carries no element of doubt,

Sub~models implied in any use of the R(.|.) notation must, in regard to re-

ductions in sums of squares, be different from each other and from the full model.

For example R(u,A,AB) cannot be used because it implies a model Yige =k toy

Jjk

Y:: t e,. which, so far as reduction in sum of squares is concerned, is indis-

iJ ijk
tinguishable from the full model, i.e. R(p,A,AB) = R(p,A,B,AB). Similarly
R(u,AB) = R(u,A,B,AB). Hence terms like R(B|u,A,AB) and R(A,B|u,AB) are identi=-

cally zero and never part of the estimation process.

1L.2 Expectations

Details of the expectations in Table 13 are not shown because they involve
cumbersome expressions for the coefficients of the o®'s. However, the general

form of the expectations merits emphasis.

All expectations are obtained under the full model. Thus although R(AB’u,A,B)

involves R(u,A,B) which comes from the model Vijg =W T Oyt Bj + e the ex~

i ijk’
pectation of R(AB|u,A,B) is obtained under the full model Yige SR YOyt Byt
s 4 + eijk' This is true of all expectations in Table 13 and applies generally
to the fitting constants method: expectations are always taken under the full

model.

Every R(.|.) term in Table 13 is the reduction for the full model minus that
for some sub-model; i.e., is R(u,A,B,AB) minus the R(.) for a sub-model. As a
result, each expectation contains 02 and just the o2's fer those factors which
precede the bar in R(.|.); e.g., the expectation of R(AB|u,A,B) involves only UKB

in addition to ci, and similarly R(B,AB|u,A) involves only cg, °§B and oi. This
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is true only for R(.!.) terms which are of the form just described, namely R(.)
for the full model minus the R(.) for a sub-model. Suppose the full model can be
described in terms of two vectors of factors g, and p,. Then R(él,ge) is the re-
duction for the full model, and the rule for expectations illustrated in Table 13
is that the expected value of R(Qelgl) = R(él,ge) - R(@l) always involves just oi
and the 0®'s of the factors in 22' This general result is proven and discussed in

Section 14.6. It is the basis of the results in Table 13.

The rule for the expected value of R(nggl) applies only when the full model,
under which the expected value is taken, is represented by 91’92‘ Thus it does
not apply to R(A!u,B) when the full model consists of p and A~-, B~ and AB-factors.
However, by expressing R(A!u,B) as the difference between two reductions to which

the rule does apply, its expectation is readily derived. Thus
R(Alu,B) = R(p,A,B) = R(u,B) = R(A,AB|u,B) -~ R(AB|u,A,B)

and expectations of the second pair of reductions can be derived from the rule.

Details of the expectations are derived from (70).

14.3 Estimation

In all cases ag is estimated as Gi = SSE/(N - s) just as in the analysis of
variance method. The other 02's are estimated by equating the calculated R(,|.)
terms to their expected values. And these equations are easily solved; they lead
to obtaining the 521s successively from each equation. For example, working up-
wards in Table 13

- 2 2 3 a2 _ % a2
E[R(AB|u,A,B)] = kyog, + K02 leads to  GFy [R(AB|u,A,B) k2ce]/kl.

where the k's are functions of the nij's given by (70). Similarly

2 _. - 2 A
6b = [R(B,AB|u,A) khaAB k50§]/k3.
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1L Calculation

The preceding discussion illustrates the general use of the R(.!.) notation,
applicable to any random model (and, as is shown in Seetion 14.6, to any mixed

model with but one minor, though important, amendment). Once the expectations
are

have been derived by the rule alluded to they /often more conveniently wused in
the form of a course,
/set of linearly independent functions of then. These will, of / yield the same

estimators. Thus for the 2-way classification of Table 13, linear combinations of
the terms therein that are more familiar than those terms themselves are the ex-

pressions shown in Table 1k.

Table 14

Terms that can be used for estimating variance components
by the fitting constants method, for a 2-way classification, random model.

Linear combination of Equivalent forms
terms in Table 13

R(u,A) - R(p) = T, = T,

R(k,A,B) - R(p,A) = R(u,A,B) - T,

R(u,A,B,AB) -~ R(u,A,B) = Thp ~ R(u,A,B)

SSE = T_ - R(u,A,B,AB) = T, - Tag
Total T - R(p) = T, - Tu

Introduction of the T-symbols defined in (48) arises from their equivalence to

certain reductions in sums of squares. For example, R(u) = Tu’ R(p,A) = T, and



R(u,A,B,AB)

TAB'

The only term of Table 14 that has tc be computed additional to the T's of
the analysis of variance method in (48) is R(u,A,B). Calculation of this and of
E[TAB - R(u,A,B)] is given for the mixed model in Searle and Henderson [1961].
The results given there for these two terms also apply to the random model — a
point not made in that paper. Because the formulae have since been corrected and
have, in any case, yet to be succinctly displayed in readily computable format,

they are repeated here in Table 15.
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Table 15

Computing formulae for the terms needed in the fitting constants
method of estimating variance components additional to those needed
in the analysis of variance method;

for the 2-way classification, mixed or random models,- -

To calculate R(M,A,B)ceaFﬂﬁ:

To calculate E[T,, - R(u,A,B)] conpute .

Forj l, ooo,ba 2

n..

n o, - Effii
*J n,
i=1 *

il

C..
Jdd°

a

e IR
Syl
i=1 il
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jradd’

®55t A3
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- Zn.

1=l lJ lo.

b
nr,
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BT, - R(u,A,B)]
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' 2 2
= (U - k)d ~8-b4 .
( k) g + (s b+1)o



-92-

or
Caleulations/fmulti-way classification data do not simplify as much as do those

of the 2-way case. Each reduction R(.) can be calculated as ¥’§(§’§)~§'y for the
appropriate value of X. A general difficulty with this is that it can involve
very large matrices, large because their order can equal the number of random
effects in the data. These effects may be very numerous, several hundreds or
thousands maybe, in which case the computing requirements are extensive. One fact
of slight assistance is that g(g'g)"g' is invariant to whatever generalized in-
verse of g'g is used for (g'g)_, and so the easiest one to compute can always be
used. The formulae of Table 15 for the 2-way classification are useful in this
respect because they provide a means of avoiding a large matrix. When one factor
has many more levels represented in the data than the other, a > > b say, the
procedures in Table 15 involve matrices whose order is only b ~ 1. This repre-
sents a considerable saving when, for example, a = 688 and b = 4 as it did in the

studies of Searle and Henderson [1960].

1.5 Too many equations

Table 13 contains no term R(u,B) = T, that corresponds to fitting the model
yijk =pn + Bj + eijk' Yet, by the specifications set out in Sections 1k.1 and

14.2, there is no reason why R(A,AB|u,B) = R(u,A,B,AB) = R(u,B) = Typ = Tp could

not be used: its expectation involves qz, OiB and oZ. With this available, one

can set up an alternative to Table 14, as shown in Table 16.
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Table 16

An alternative to Table 14

R(i,B) - R(p) = Tp - T,

R(“‘)‘A,B) - TB

R(H:A:B) - R(@:B)

R(M:A>B)AB) - R(H:A:B) T - R(MzA,B)

1]

AB
T, - R(u,A,B,AB) = T =~ Thy
Total T_ - R(p) = T - TL

With a fixed effects model the first two lines of Table 14 are, of course,
the two ways of looking at sums of squares for "A ignoring B' and "B adjusted
for A"; and those of Table 16 are for "B ignoring A" and "A adjusted for B".
The choice of which table to use then depends on the nature of one's data, But
with a random effects model, there appears to be no criteria for choosing
between Tables 14 and 16, With #ither of them the variance components can be

estimated by equating the lines therein to their expected values. And the

resulting estimators for Qi and 0§ will differ, depending on which table is
used, (The estimators of Oz and Qig will be the same, because in both tables

the last two lines are the same, identical to the last two in Table 13 which,

. A2 22
we have seen, determine OAB and Oe.)

This is an unsolved difficulty with the fitting constants method: it can
yield more equations than there are components to be estimated, and it provides

no guidance as to vhich equations are to be used, Tables 14 and 16 have the
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property of "adding up" to the total corrected sum of squares, in the manner of

an analysis of variance table. This, on the face of it, may seem to recommend
either of them as a reasonable set of quadratics to use, if only on the grounds
that both of these tables reduce to the familiar analysis ef variance (Table 6)

for balanced data., Other possibilities stem from using parts of both tables. The
analysis of variance method, for example, uses the first lines of each table, their
last line, and TAB - TA

too, "add up" and also reduce to Table 6 for balanced data. In contrast to these

- Tyt TH. These are the terms in equation (49) and they

possibilities, Harville [1967a] suggests using the second lines of the two tables
and their last two lines; these de not "add up" for unbalanced data, but they do
for balanced data when they then also simplify to Table 6. Low [1964] follows

the same course of action in the case of the 2-way classification without inter-

action, in which he suggests using R(u,A|B), R(p,BJA) as well as the customary

. SSE.

In general, the problem remains unsolved, as to which of the several quad-
ratics that the fitting constants method provides should be used, It is a
problem that is encountered not only with unbalanced data generally, but also with
special cases thereof, such as the balanced incomplete block designs considered in
this context by Lew [1969] and Harville [1969c]. One possible deliverance from
the dilemma, suggested by Robsen [1957], is to apply 'least squares'. If the
calculated reductions are arrayed in a vector r, and E(r) = égz, then r = é@z are
the equations we would like to have solved for the estimated ¢®'s. When we have
more reductions in r than there are variance components to be estimated we will

usually find that the equations r = é@z are not consistent.}/ However, so long

}/ Thanks go to D. A. Harville for bringing this to my attention.
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as attention is confinec te reductions that are linearly independent, A will have
full row column rank and the 'least squares' estimate of 92 tc be derived from

these equations would be ?2 = (A'é)—lé’g.

14 .6 General results

General properties of the fitting constants method as detailed in Searle

(1968] are now outlined. The general model y = XB + e is taken

v A e )
Vo= gy a2t e (69,

where the partitioning simply divides g into two groups of effects, él and @2,
with no thought for whether the groups represent fixed or random effects. The
only condition on the partitioning is the obvious one that no factor is tc have

some effects in and others in 32; every factor is wholly in él or ég' It has

21

then been shown (loc cit) that, where R(Ql) is the reduction in sum of squares

due to fitting the sub-model y = X,3., + e, the expected value of R(B.|B,) —
- -1=1 =7 =2 =1

reduction due to @? after accounting for 51 ~ is

ER(8,l8,) = EIR(B;,8,) - R(p,)]

er{xy [T - X, (0 XX B8y} + 2le(x) - x(x)] - (700

In this result r(X) and r(gl) are the ranks of X and X, and (X!X,) is a

1 -1-1-

generalized inverse of gi&l.

The importance of (70) is that the only Q-term involved is @2; i.e., the
expectation of R(ég‘@l) is a function simply ef E(@2§é> and ci. It invelves
neither E(ngi) nor E(@lgé). This is important because {7C) has been derived

without any assumptions on the form of E(BB'), i.e., g can contain fixed or random
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effects. Consequently, if the 3-vector of one's model can be partitioned into

two parts 8, and B, where B contains just random effects, then ER(@Q[QI) as given

2
in (70) contains only Gi and the variance components relating to those random
effects. This is the reason for being able to write the expectations in Table 13
in the manner shown. Note however, as indicated in the discussion fcllowing Table
(13), that (70) applies only to a difference between reductions that consists of
the reduction for fitting the full mcdel minus a reduction for fitting a sub-

model. Then ci and the variance components that are not in the sub-model are

invalved in the expected value of R(.}.).

The result in (70) is particularly pertinent in mixed models because, when
él represents all the fixed effects, ER(leél) contains no terms due to these

fixed effects; the expectation is solely a function of og

and the variances of the
random effects in 92' This is the value of the fitting constants method of esti-
mating variance components in the mixed model: it yields estimators of the vari-
ance components unaffected by the fixed effects. (70) is also the reason why the
results of Searle and Henderson (1961) concerning Tp - R(u,A,B) = R(AB|u,A,B)
apply equally as well to a random as to a mixed model. By (70), the last three
lines of Table 13 have the expectations shown there whether the A-effects are
fixed or random. Hence in the mixed model, with the A-effects fixed, the variance
components can be estimated from the last three lines of Table 13, equivalent to

the last three lines of Table 14, the difficult portions of which are computed

according to Table 15.

In general, the fact that (70) involves only E(égéé) implies that E[R(leél)]
has no terms arising from any covariance between the elements of g, and B,. Hence,

even if the model is such that terms in B, are correlated with terms in 32 the
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expectation in (70) does not involve this correlation — it depends solely on the

second moments of the elements in 92 (and on Ui).

A general advantage of the fitting constants method would seem to be that in
using it we are dealing with terms that are sums of squares — positive semi-
definite quadratic forms in the observations that are known to have certain opti-
mum properties in fixed effects models. One might hope that these optimum pro-
perties would caryy over to some extent to random effects and mixed models, al-
though to what extent they do so is unknown. One particular advantage of the
method lies in its appropriateness for the mixed model, for which it yields vari-
ance component estimators that are unaffected and uncomplicated by the fixed
effects. It is therefore the preferred method for mixed models. As already
mentioned, its disadvantage is that it involves matrices that can be very large
in models having large numbers of effects in them. This can be a difficulty not
only in calculating reductions in sums of squares but also in deriving their
expectations from (70). One instance of a simplification is the case discussed
by Cunningham [1969], of having just one random effects factor in a mixed model.

He shows, in effect, that for this case (70) reduces to

ER(QQ[gl) = [tr(K) + sm(§)]o§2 + (q - l)ci

for appropriate choice of K, where sm(X) is 1'Kl, the sum of the elements of K,

and g is the number of levels of the random effects.

A variation of Henderson's Method 2 mentioned at the end of Section 13 is to
use the analysis of variance method on the adjusted observations z =Yy - Xféf

where gf = (K%Ef)“géz. Another variation is to use the fitting constants method
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on this z. As indicated by Zelen [1968], this is equivalent to the fitting con-

stants method used directly on y, (see, e.g., Searle [1969]).

14.7 Sampling variances of estimators

Variance component estimators derived by the fitting constants method of
estimation are linear combinations of reductions in sums of squares due to fitting
different models to the data. Each reduction can be expressed in the form
X'g(g’g)-g’y for an appropriate {-matrix and hence its sampling varlance can be
derived from application of (41), and the sampling covariance between any two
reductions can be derived from (42). 1In this way the sampling variance of linear
combinations of these reductions can be obtained. The details are somewhat
lengthy,involving considerable matrix manipulation. Low [1964], for the 2-way
classification without interaction, random model, has derived sampling variances
of variance component estimators obtained from R(A|u,B) and R(B]u,A) and SSE.
Harville [1969c], for the same model but with interaction, provides the means for
obtaining the variance of R(u,A,B) ef Tables 14 and 16 and its covariances with
other terms in those Tables. He then applies these results to the case of bal-
anced incomplete block designs. For mixed models, Rohde and Tallis [1969] give
matrix expressions for cases involving one or two random effects factors and
indicate how the results can be extended to include in the model interactions

among the random effects.

15. Analysis of means methods

Data sometimes have every cell containing at least one observation. In such

circumstances two methods of estimating variance components are available that
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cannot be used when any of the cells are empty. Both methods use sums of squares
of the cell means, equating them to their expected values and estimating the
error variance from the within-cell mean square in the usual way. One method
uses weighted sums of squares of cell means and the other uses unweighted sums.

The two methods are illus~
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alveoid 20
trated below in terms of the 2-way classification examplebdlscussed

The unweighted means method uses the cell means (all n; 5 > 0) as if they

were single observations, Thus, with the model for the data being

yijk =y + Oli -+ Bj + Yij + eijk’
. 2 2 2 ps
the variances OA’ OB and QAB are estimated from sums of squares of
n .
- 1J
X., =Y. =2Y¥

as if they were single observations; and 02 is estimated from the within-cell
mean square of the yijk's' The four terms used, and their expectations, are

shown in Table 17.

Table: 17

Terms used in the unweighted means method of estimating variancé

components from 2-way classification data, random or mixed models, with all nij > 0.
+ *
Term ) Expectation
. ' SOA
‘ = 32 ( u o\ 2 2 2
ssA, = b2§x ..) B\ T bo, + Opp + 1 OO
b SSB
ez - % )P (.._..11..) - 02 c
59B, = aX(x ;- X ) A\ = a% * %p * nh
J=1 "7
ab ’ SSAB :
= = 2 u 2 2
U933 ij” %, vJ .o _a-l b-1 | A ™he
. 2 (NSSE ’ 2
Py N = o
SSE =1r% 273 - ¥4, E(22 ab> 2
ijk .
. b ;. - ab
+ Means: X.. = &i, s ii = Tx, /b X Zk /a and X =2 % ) /ab
S O N SRS S ES
ab
% Ly > 1
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Estimators are deri&cd from Table 17 by the usual process of equating
observed values of its terms to their expectations, Known as the method of
unweighted means it has been used, for example, by Mostafa (1967) in discussing
the efficiency of designs wherein all the nij's are either 1 or 2., In general -
application the method has the great advantage of being easy to compute; but
it does demand that every cell have at least one observation., Other points of
interest evident from Table 17 are as follows. (i) Its terms do not "add up"
in the analysis of variance seusej the first three ferms SSAu, SSBu and SSAB,u
2dd to T T xij - i?‘/ab, but all four do not add to © I Z yijk - f“/n”.

(ii) The terms do not provide any F-tests of hypotheses because, under normality;

none of the first three terms have xgudistributions. (iii) Three of the four

terms can be used in mixed models: for example, if the A-effects are fixed theé
2 2

a
°s> “AB

SSB,, derived from X . =-X , contains no o, terms, since both X and X

L] o e . e

- 2 . . Y
last three terms provide estimators of and Oé‘ This is so because

b
contain @ = T ai/b arising from the fact that every cell in the data contains
L] j l

observations,

i

The weighted means analysis uses weighted sums of squares of the ii and
¢

X 3 in place of SSAu and SSBu in the above table, These terms and their

expected values are shown in Table 18,
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Table 18

Terms used in the weighted means method of estimating variance
components from 2-way classification data, random or mixed models,
vith all nij > 0,

These terms are used in combination
with SSABu and SSE of Table 17.

*
Term Expectation
a SSAw 1/ 2
= Th - i = - 7 o 0 c
SSA_ IEI (x X(l)) , E(a — = Ijb\zw ™ /2& ) (bo + ) +
b SSB
_ - - 2 (, W ) _ 1 ( Loyl g2 4 o2 i
SS‘Bw —jEZJ(X-J - X(Q)) E 5= 1) " B-i)a ij Zvj/ij)(a 5+ AB) + N
b -1 .
. - (L _L) %,y = TW.%
*¥1ow, o= \z jfinij , and *(1) = Zwixi./ﬁwi.
1 2 ~l, and X, = Iv.X ./%v..
VJ. = (-—é EB——\) (2) d d d
a  i=1"4ij"
Highlights of this table are as follows. (i) In no way do its

terms, together with SSABu and SSE of Table 17, "add up" in the analysis of

variance sense. (ii) Under conditions of normality

‘SSA N - ab SSBw N - ab
w . and hd P
SSE a-1 SSE b -1 !

provide, in the fixed model, exact F-tests concerning the o- and B-effects.

This was the context in vhich these weighted sums of squares were first

suggested by Yates (1934), who also nentlons the unweighted means analys1s as

* Tables 17 cnd 18

providing approximate F-tccts. Thei: use/ln variance compcnents estimaticn is
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more recent. (iii) In mixed models, with the A-effects fixed, the terms SSBW,

SSAB and SSE can be used to estimate 0z,

2 2
B qAB and ae.

Extension of these methods of multi-way classifications is clear, particular-
ly for the unweighted means method which is easy to compute. For balanced data,

both methods reduce to the analysis of variance method.

16. Symmetric sums methods

Estimation of variance components by utilizing symmetric sums of products
of observations has been suggested by Koch [1967a]. The method is based on ex~
pected values of products of observations being functions of the components, and
therefore sums of these products (and hence means of them) provide unbiased esti-
mators of the components. Such estimators are relatively easy to compute. They
are also unbiased and consistent, and are identical to the analysis of variance
estimators in the case of balanced data. However, they have a singular disad-
vantage: their variances are functions of the general mean p. This deficiency
is overcome by Koch [1968] who suggests that symmetric sums of squares of differ-

ences should be used instead of symmetric sums of products

The method is easily illustrated in terms of the familiar l-way classification,

i

E(eij) = oi for all i and j, and all covariances zero. Expected values of squared

random model, where Vij =R POy tegy, with E(ai) = E(eij) =0, E(ai) = ai and

differences of observations are:
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- fcz 2 . = O] . 1.
E(yij Ji,j,) 202 when i = i' and j £ j';

1

2 : 21
2(o§ + oA) when i £ 1

These provide estimators

n, n

a i i y a

22 = £ £ £ (y..~¥.a0% Zn.(n, -1)
e =1 j=1 j'#j ij ij i=1 ivi
and
n., n.,
a a2 1 1 a a
202+33) =2 £ £ Z (y..~=Y:3.)¥ £ E nn,,

A - ij itJ i=1 i'#i i'i

i=1 i'Ai j=1 j'=1

which are unbiased, have variances not dependent on p, and for balanced data

(ni = n for all i) they are identical to the analysis of variance estimators.

In giving details of applying this method to specific cases, Koch [1968]
discusses certain nearly-balanced situations, and Koch [1967b] presents a method

for estimating u unbiasedly, based on an unbiased estimator of uz.

17. Infinitely many quadratics

Indication has already been given of the many quadratic forms that can be
used for estimating variance components from unbalanced data. Indeed, infinitely
many quadratics are available for equating observed values of expected values and

solving the resulting equations to get variance components estimators.
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Although this is a widely used procedure it is one which imposes nc conditions on
the quadratics to be used, which sets up no criteria for deriving them, and which
provides no rationale for determining what sets of quadratics are in any sense
optimal. These are grave shortcomings, albeit ones that are not easily overcome,
because of the algebraic complexity of unbalanced data. The only universal out-

come of the procedure is that it provides unbiased estimators.

The sets of quadratics involved in each of the methods discussed above have
been selected solely because they seemed "reasonable" in one way or another. The
methods could therefore be compared on what constitutes ''reasonableness” in each
case, although this would make no comparison of the properties of the specific
estimators that result from the different methods. The simplest comparison of
this sort would be of sampling variances, except that this becomes buried in alge-
braic complexity. Harville [1969a], in considering such comparisons,has defined
a quadratic estimator as being inquadmissible if some other quadratic estimator
exists having the same expectation and a smaller or equal sampling variance for
all points in the parameter space, with the sampling variance being strictly smal-
ler for at least one such point. He then derives conditions, for the l-way class~-
ification, for an estimator to be quadmissible and shows that the analysis of vari-

ance estimator of 02 is quadmissible.

Comparison of sampling variances of different estimators is difficult not
only because the variances are in any way tractable only if normality is assumed
but also, just as with balanced data, because the variances themselves involve the
true variance components, as is evident in (60). Attempting to study the behaviour
of such variances in terms of their being functions of the total number of obser-
vations, the number of levels of each factor, the number of observations in each
cell, and as functions of the variance components — to do this is no small task,
let alone to compare them with equally as complex functions that are variances of

other estimators. Analytic comparison of different estimators by way of their
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sampling variances therefore presents great difficulties. One instance of success
is that by Harville [1969c] who develops explicit expressions for the differences
between variances of analysis of variance estimators and fitting constants esti-
mators for balanced incomplete block designs. Since these are functions of the
variance components they can only be compared for specified values of those com~

ponents.

It is interesting to note, I believe, how serious is the consequence of some-
thing that otherwise seems relatively insignificant — namely, of data being un-
balanced rather than balanced. The change from one to the other might, on the
surface, appear relatively small and yet it brings with it enormous changes in the
tractability of methods and the properties of estimators. Not that everything is
settled with balanced data, but at least the situation there is considerably sim-

pler than that of unbalanced data.

Analytic comparison of estimators appearing to be so fruitless enforces re=-
course to numerical comparison. Unfortunately, results are difficult and costly
to attain in this connection. A special form of the l-way classification has been
considered by Kussmaul and Anderson [1967] in which the compositing of samples in
a 2-way nested classification is envisaged. As a result, the j-th observation in
the i-th class is deemed to be an average of the nij observations "that the sample
would have provided separately” had it not been composited prior to measurement.
In this situation three methods of estimating the between-class variance component
are compared numerically for a variety of nij-values and for various values of the
ratio of the variance components. Comparison of the analysis of variance method
of estimation with the unweighted means method has also been made for the between-
class component of a l-way classification, by Crump and Anderson [1967]. They
found that the unweighted means estimator appears, for very unbalanced data, to be

poorer (have larger variance) than the analysis of variance estimator for small
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values of p = qﬁ/ai, but that it is superior (has smaller variance) for large p.
Studies of the 2~way classification, with interaction, made by Bush and Anderson
[1963] compare the analysis of variance method, the fitting constants method and
the weighted means method, making comparisons by way of the variances of the
different estimators. This was done for several sets of nij-values representing
what might be called not wholly unbalanced data but designed unbalancedness. For
example, in a case of 6 rows and 6 columns, three of the designs used were those

shown in Table 19.

Table 19

Values of nij in three of the 6 X 6 designs used
by Anderson and Bush [1963]

S22 C18 L2k
210000 111000 110000
121000 111000 110000
012100 0611100 210000
001210 001110 120000
6000121 000111 112111
000012 000111 112111
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Designs of this nature were used to compare both the estimation procedures and
the designs themselves, using a variety of values of the true components. The
results indicate, at least for the designs used, that when the error variance is
considerably larger than other components in the model then the analysis of vari-
ance method yields estimators with the smallest variances; otherwise the fitting

constants method does.

Comparisons of the nature just discussed involve no mean effort. Yet, in
terms of unbalanced data generally, the examples used are, by necessity, finite
in extent. This highlights one of the great difficulties of numerical comparisons:
designing sets of ni.—values in such a way as to provide not only valid compari-
sons, but valuable ones, valuable in the sense of being informative about unbalanced
data generally. For example, in the l-way classification there are infinitely

many sets of n, -values that could be used in (60) for studying the behaviour of

2
%

and 02. The difficulty is to plan a series of these values that "covers the field"

v(ﬁz) — and each such set could be used in combination with varying values of

in such a way as to provide a basis for drawing general conclusions. This diffi-
culty is magnified, of course, when one comes to consider 2-way and higher-order
classifications. Comparative studies of properties of estimators, either analytic

or numeric, are therefore no easy task.

Aside from numerical comparisons, the grounds on which "reasonableness" was
judged appropriate in establishing different estimation methods can be summarized
as follows. The analysis of variance method commends itself because it is the ob-
vious analogue of the analysis of variance of balanced data, and it is easy to use,

but some of its terms are not sums of squares, and it gives unbiased estimators in
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mixed models. The generalized form of Henderson's .iethod 2 makes up for this
deficiency, but is not uniquely defined and his specific definition of it cannot
be used when there are interactions between fixed and random effects. The fitting
constants method uses sums of squares that have non-central xZ-distributions in
the fixed effects model, and it gives unbiesed estimators in mixed models; but it
can involve more quadratics than there are components to be estimated; and it can
also involve extensive computing. The symmetric sums method is easy to compute,
it utilizes all possible products of the observations and their means. Little
more than this can, at this time, be said by way of comparing the methods. Host
of them give unbiased estimators and all of them reduce to the analysis of vari-
ance method for balanced data, — but they can all produce negative estimates. The

general problem of comparison still awaits thorough investigation.

18. Maximum likelihood methods

Maximum likelihood is best considered from the point of view that all models
are mixed models, as is certainly so for models containing a general mean p (a
fixed effect) and error terms e that are random. Although the fitting constants
method of estimating variance components gives unbiased estimators with mixed
models it gives no guidance on estimating the fixed effects of the model. Were
the variance components known there would, of course, be no problem in estimating
the fixed effects. They would come from the normal equations K'Y-lgé = X'Y—IX
of the generalized least squares procedure, where V is the variance-covariance

matrix of y, its elements being functions of the (assumed known) variance
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components. However, when these components are unknown, as is usually the case,
there exists the dual problem of estimating both the fixed effects and the vari-

ance components.

Two possible courses of action exist: (i) to do the estimation in two stages,
by first estimating the variance components with the fitting constants method and
then using the resulting estimates in place of the true components in V, in
the generalized least squares equations; or (ii) to estimate the fixed effects and
the variance components simultaneously, with one unified procedure such as maximum
likelihood. Although in both cases recourse has usually to be made to iterative
procedures, for which the computing requirements can be extensive, some progress

has been made analytically, the results of which are now summarized.

18.1 Estimating fixed effects

We write the model as
Y=X8+2Zute (71)

where 8 is the vector of fixed effects, p is the vector of random effects, X and
Z are the corresponding design matrices and e is the vector of random error terms.
Means of, and covariances between the random effects and the error terms are assum-

ed to be zero, with variance-covariance matrices var(u) = D and var(e) = R. Then
= 2 < 8

v =var(y) =2' +R, (72)

with which the generalized least squares normal equations are

X = 1Y - (73)

By nature, V is positive semi-definite and usually non-singular, and so we assume

-1 . . S . . .
V ~ exists. These equations can also be derived by the method of maximum likeli=-
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hood, on assuming normality and V known, in which case @ would be referred to as

a maximum likelihood solution.

Calculation of (73) involves Y'l, 2 matrix of order N, the number of
observations, which may be very large, perhaps many thousands. In the fixed
effects case V usuelly has the form ci} or, with a little more generality, it
may be diagonal: in either case, inversion is simple. But in general,

V =ZDZ' + R of (72) is not diagonal, even if D and R are, and so Y—l is not

necessarily easy to compute. However, as indicated in Henderson et al [1959],

. . -1
a set of equations alternative to (73) and not involving v, is

xR XRTZ 5 xEly
~ | - (74)
ZEX 2T ADT | | v 2R Yy

Y

On eliminating u from these equations and utilizing V from (72) the resulting
equation simplifies to (73). The value of (74) however, is that it does not
require the inverse of Y, but needs only the inverse of P and g, both of
which are often diagonal. In that case, even though (74) involves more
equations than (73) they are fewer than N, the order of V, whose inverse is

needed in (73). Hence (Th) is often easier to solve than (73).

The format of equetions (T4) is easily described. They are simply the
normal equations for the fixed model (i.e., assuming u is a vector of fixed

effects) with the inverse of the variance-covariance matrix of the random

~N ~

effects added to the sub-matrix that is the coefficient of u in the "u-equations”
- i.e., Q—l added to Z'§°l§, as in (T4). This is patently simple, particularly

in certain special cases, For example, taking R, the variance-covariance
~  form
matrix of the error terms,in its frequently-assumed/R = UeEN simplifies (74) to
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A
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Furthermore, D is oftem diagonal of the form

D = disg {oCI, } for 5 = A, B, ..., K,
9

[ 2
o
P

in which case oriD“l requires just adding di/cg to appropriate diagonal elements

of 2'Z « In particular, if there is only one randcm factor the equations become

1™ >

l—x'x X'Z ‘ X'y (
T ! = . 75)

o >
[ SE—
]

S

<
j

i
- -

This formulation of the maximum likelihood estimator is, of course, only
applicable when the variance components are known, although in most models only
their values relative to that of the error variance are required as for example,
in (75). However, in combination with methods for estimating variance components
independent of the fixed effects, such as the fitting constants method, (74) and
its simplified forms provide a means of setting up iterative procedures for
estimating both the fixed effects and the variance components of a mixed model.
An example of these procedures is considered by Cunningham and Henderson [1968]

with a correction given by Thompson [1969].

The origin of equations (74) is the joint density function of y and u .

- -

On the basis of normality this density is
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£(y,u) = glylw)n(u)
s oo 1= Liv - : o loply
=Cexp |- 5y - e - 2R Ty - Xg - Zu) exp - WD Uy

vhere C is & constant. Maximization of this witk respect to g and u leads at

once to (7k4).

In many situations not only is the solution of (7k) for B of interest,
but so also is that for u , even though u is & vector of random variables.

~

This is so because u is the estimator of the conditional mean of u given y ,

i.e., u = E(uly), and is, as mentioned in Henderson et al [1959], the
"estimated genetic merit" used by animal breeders. In their case u is a vector

of genetic merit values of a series of animals from whom y is the vector of

production records, and the problem is to use y to get estimated values of u

N

in order to decide which animals are best in some sense, In this context u

has been used extensively.

18.2 Fixed effects and variance components

Maximum likelihood equations for estimating variance corponents from
unbalanced data cannot be solved explicitly even when ignoring the requirement
that the variance component estimators be positive. Writing down the equations
for just the simplest case, the l-way classification, will socon convince the
reader?gheir intractability. They involve, for example, terms like

~2 2N . . ~2 ~2 .
z ni/(oe + nicA) in equations that have to be solved for o_ and o, . Explicit
i

maximum likelihood estimators must therefore be despaired of. However, a general

set of equations is given by Hartley and Rzo [1967]. They vrite the model as

g
)]
1<
1o
+
1N
Ve
+
(K

5

? ™M=
=g
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vhere the sum of the terms 2, u is Zu of (71), with u_ being the vector of

effects for the levels of the random factor : . Then, on defining

K
z.7!

2 2 < P
Yo = Ug/de for 6 = A, B, +.., Kand H = I+ ;A\e-e‘e

9
and assuming normality, the equations for the maximum likelihood estimators

turn out to be

XE T =Xy, (76)
oF = (y - x2)'E Ny - x8)/w (77)

and
tr(g‘lgegé = (y - gé)'ﬁ‘lgeg'g'l(y - gé)/oﬁ for ¢ =4, B, +.., K. (78)

These are the equations that have to be solved for the elements of B , the error

variance estimator oi and the variance conponents inherent in ﬁ . Hartley and
Rao [1967] indicate how this can be achieved, either by a method of steepest
ascent, or by obtaining an alternative form for (78), which are the difficult
equations to handle., (76) and (77) are, of course, recognizable as the familiar
maximum likelihood equations for the fixed effects and the error
variance; and they are easily solved if values of the ;a's are available for ﬁ .
Thus is iteration established via equations (76), (77) and (78). It is further
shown in the Hartley-Rao paper that if (é', ;,g') provides the global maximum
of the likelihood then it is weakly consistent, as it also is if the starting

value of the steepest ascent method is a weakly consistent estimator. Asymptotic

efficiency is also established.
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18.3 Large sample variances

Although the maximum likelihood estimators of variance components canncot
be obtained explicitly, a general expression for their variances can be derived.
To show this we revert to the model y = XB + e where 8 is the vector of fixed
effects and, as in (71), € = Zu + e with E(¢)== O and var(e) = V. Then, on the
basis of normality - i.e., of assuming € ~ N(Q,Y), the variance-covariance
matrix of the large sample maximum likelihood estimators of the p elements of
B and the q variance components is minus the inverse of the expected value of

the Hesslan matrix of the logarithm of the likelihood with respect to these p + g
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perameters, sce Jald [1945]. Simplification of this matrix by Sesrle [1970]
shows thet the variance-covariance matrix of the lerge sauple meximur likelihood
(M.L.) estirators of the variance components is

~e ’ - -1 -1 .. -
var(ga) = E{tr(y lYiY Yj)} for i, =1, &, eee, Q, (79)

where Yi and Yj are the partial differentials of Y with respect to oi and 0?,
for i and j =1, 2, ..., q, there being q variance components (including oi)
in the model. It is interesting to see thai (79) 1is free of the fixed effects
of the model and is solely a function of the variance-covariance matrix Y of
the observations y. Since V in turn depends only on the occurrence of the ran-
dom effects in the model we see that no matter what the fixed effects are, nor

~

2
hov they occur, they in no way affect var(oc ).

Two results concommitant with (79) eare, firstly, that
cov(é,ge) =0 ;
i.e., covariances between large sample M.L. estimators of fixed effects and
variance components are zero. Since under conditions of normality the mean of
a sample and its sum of squares are independent, this result is not surprising.
A second result is that the variance-covariance matrix of the large sample M.L.
estimators of the fixed effects is
var(e) = (V)
This corresponds to the M.L. solutions g in (73), and is therefore no surprise
either. Nevertheless, it is interesting to observe from this that even with
unbalanced data from any mixed model, the variance-covariance natrix of the M.L.
estimators of the fixed effects is exactly as it would be were the variance

components known and did not have to be estimated simultaneously with the fixed

effects.
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One difficulty in applying (79) to specific cases is that it requires the
inverse matrix Y~l, vhich is not always readily amenable to an analytic forn,
es for example in the 2-way crossed classification random model either with or
without interaction. Having unbalanced data is what makes the inverse so

terms
intractable. A second difficulty with (79) is that even if the/ tr(y’]yiy’lyj)
can be obtained they are usually of such nature that the matrix inversion

required in (79) precludes deriving analytic forms of the variances of the
individual components. One application of (79) is to the 2-way nested classifica-
tion by Searle [1970], where explicit expressions for the elements of (79) before

inversion have been obtained. The first of the difficulties just described has

been overcome in this case but the second has not.

19. Best quadratic unbiased estimation

The analogue for variance components of best linear unbiased estimation of
fixed effects is best quadratic unbiased estimation. This presents no problem
with balanced data because the analysis of variance method estimators are un-
biased and have minimum variance properties as discussed in Section 9. But
with unbalanced data, estimators that are uniformly best do not yet exist.
However, some initial progress has been made on this problem by Townsend [1968],
who obtains best (but not uniformly best) quadratic unbiased estimators for the
l-way classification with ¢ = 0. This is achieved by letting the desired
estimators of oi and oi be y'Py and y'Qy respectively and, for oi = tr(gy) and
oi = tr(QV), deriving P and Q such that 2tr(gy)2 and 2tr(9Y)2 are minimized,

V being the variance-covariance matrix of the observation vector ye After

lengthy algebraic manipulation, with
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™
j
Q
Q
.

a
r = >J L ) + N - a,
1011+ n.0)
a 2 e
n, n
5 = ji 5 and t = E: =
;21 (1 + n.p) 1o (1 + n.p)

the estimators turn out to be

& rn t y2 a ni a
A2 . - N . /. _2 -
oC = 1 - EZ = 5 nl + s (Z z yi. - Zngl );
rs -t S (L+ae)” i=1 j=1 Y i=3 * /S
and & r t 2 a n, a
~p 1 oy - i, / 2 -2\
Oy = 5. 5. - \E ZVy5c- Engys }J‘
rs - t 1;1(1 + nip) i i=1 j=1 "9 i=1 )

These estimators are functions of p = qi/ai and not of the components individu-
ally. Furthermore, their variances are identical to those of the large sample
maximum likelihood estimators; and their limits as p — O arc the estimators
given by Koch [1967a]. And the limit as p = « of ;i is the analysis of

. . 2
variance estimator of ae.

Analytic comparison of these estimators with those obtained from the
analysis of variance method is intractable, and so Townsend [1968] made
numerical comparisons over a range of values of p both for the actual BQUE's
(assuming p known) and for an approximate BQUE using a prior estimate or guess,
0y for p in the estimation procedure. Indications are that, in certain
situations, considerable reduction in the variance of estimates of 62 can be

A
achieved if the approximate BQUE is used rather than the ANOVA estimator.
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Furthermore, this advantage can be had even when rather inaccurate prior
estimates (guesses) of p are used as Py The reduction in variance appears to
be greatest when the data are severely unbalanced and p is either small or
large, and it appears smallest for values of p that are moderately small. For
some sets of data there is actually no reduction in variance, when the ANOVA
estimator is a BQUE for some specific p. A full discussion of these estimators

and approximations to them for the model with p # 0 are to be found in Townsend

[19687.

20. Designing experiments to estimate variance components.

Herzberg and Cox {1969], in an extensive review and bibliography of the
design of experiments comment that '"relatively little work has been done" on
designing experiments for the purpose of estimating variance components. This
is borne out by their bibliography of approximately 800 publications since 1957
which they have classified in nine overlapping groups according to subject
matter: less than 3% are clessed as dealing with designs for estimating
variance components, more than half of which are concerned with genetics,
mostly the diallel cross. Despite this, a need for designing experiments with
this object in mind is highlighted by Anderson [1960a], who points out that in
using the analysis of variance method of estimation in balanced nested designs
the degrees of freedom for the innermost classifications are increasingly
larger than those for the outermost classifications. Designs that rectify
this imbalance are, for example, the "staggered’' designs of Bainbridge [1963],
which incorporate what may be called planned unbalancedness so as to meke the
degrees of freedom more nearly uniform. Examples and discussion of these designs

is also to be found in Anderson [1960b].



-117-

Optimal designs for the l-way classification randon .iodel are considered
by Anderson and Crump [1967]. For a given number of observations N they suggest
how to determine an optimuwr number of classes ¢, and then show that var(;§) of
(60) is minimized if p + 1 observations are made in each of r classes and p in
the remaining ¢ - r, such that N = cp + r for r positive and less than c.
Kussmaul and Anderson [1967] in discussing their compositing of samples, outlined
above in Section 17, consider optimal designs for a given cost structure. 1In
this context they write.'good designs for such general estimation purposes are
extremely difficult to specify analytically”, a comment that is also pertinent
to the Anderson end Crump [1967] paper. Both papers show results of numerical
studies of a number of different designs.

A limited form of planned unbalancedness is also considered by Mostafa
[1967] for the 2-wey classification with interaction. This involves having 2

observations in some cells and one in each of the others.

21. Other methods and ideas

2l.1 Bayes estimation

The main papers dealing with Bayes procedures for variance component
estimation are those by Hill [1965, 1967], Tiao and Ten [1965, 1966] and Box
and Tiao [1967]. The latter deals with the 2-way nested classification whereas
the other four are concerned with the l-way case. They are comprehensively
reviewed by Harville [1969b], to which the reader is directed for an exhaustive
summary.

One problem of variance component estimation to which Bayes procedures pay
particular attention is that of negative estimates. In this regard, Hill [1965]

in sunmarizing his results writes '"Bayesianly speaking, a large negative
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unbiased estimate of the between variance component indicates an uninformative
experiment in which the effective likelihood for that variance component is
extremely flat, instead of strong evidence that the variance component is nearly
zero." Hill indicates (op c¢it, p. 817) that when gi

to carefully assess the prior'", although in discussing a hyothetical numerical

<< 0, it "becomes crucial

example he warns (p. 821) that in "any real problem the prior can always be
assessed, although perhaps with difficulty." In this connection Tiao and Tan
[1965 and 1966] use 'non-informative' priors, a procedure which Kempthorne [1968]
finds unsatisfying. Evidently, just as with other applications of Bayesian
estimation, so with variance components, both protaganists and adversaries can
readily be found. Unfortunately, their arguments so often generate '"more heat

than light", as Harville [1969b] so aptly puts it.

21.2 Plotting the likelihood.

Although maximum likelihood estimators (for unbalanced date) cannot be
derived, use of the likelihood function can be mede by plotting its value (for
a given set of nij's) over & range of values of the variance components.
Kempthorne [1968] indicates that investigations of this nature are currently
in progress and that when the usual estimate is negative "the likelihood
function seems quite informative ... and points towards zero as the value of
the variance component.'" However, he goes on farther to say that there are
"no particularly compelling ways of interpreting the likelihood function,
except in simple cases for which we can pick out aspects such as the point of
maximum and can construct statistical tests using them." But such processes
"seem totally non-viable with the cases that ... animal breeders usually meet,'

meaning, presumably, cases of badly unbalanced data.
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. 21.3 Sequential estimation.

Sequential procedures for testing hypotheses about variance components are
also to be found in the literature, although not to any great extent. Birnbaum
[1958] gives a general sequential sampling method for comparing variances (by
means of their ratio) of two normal populations. Adaptation to variance compo-
nents in the balanced l-way classification is indicated. Savings appear to be
small in terms of numbers of observations needed in order to have efficiency
equivalent to that of the usual F-test. Sequential probability ratio tests of
hypotheses have also been suggested by Ghosh [1965, 1967]. Industrial
environments may well be suited to the use of such tests, where balanced data
may be readily obtainable sequentially as outflow of one or more machine
processes, However, this situation seems less likely to occur in a biological

environment.

21.4 Other models.

Most comparative studies of variance component estimators are made on the
basis of normality assumptions. The relative intractability of results even
in this case discourages extensive studies of non-normal models. Nevertheless,
in this situation Hemmersley [1949] and Tukey [19572] have looked at the l-way
classification in some detail, and Harville [1969a] discusses the form of quad-
missible estimators. Atiqullah [1962] considers variances of variance components
estimators for the mixed model having one random factor (balanced data), and
Kelleher and Robinson [1958] report comparative studies of estimates obtained
from corn breeding experiments over a period of years. They conclude that their
results show no departure from the underlying normality assumptions.

Another departure from the usual model is dealt with by Harville [1967b,

. 1968] who uses models in which the numbers of observations are taken as random
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variables. liarginal distributions of the random effects are assumed normal,
with the conditional distribution of the n's, given the effects, being a Poisson
distridution. These models are appropriate to situations where the number of
observations in a class depends on the magnitude of that class effect; e.g.,
in the artificial breeding of dairy cattle, bulls that sire high-yielding
daughters are apt to have more daughters than those who leave low-yielding
daughters. The absolute value of the bias of equal-weights estimators in such
cases is found by Harville to be generally less than that of analysis of variance

estimators.,

2l1.5 Harmonic components.

Variance components for factors of a model that are largely time periods
have been considered by Lawton and Jackson [1969] and Jackson and Lawton [1969].
These authors consider nested classification random models, with bal anced data,
as asymptotic stationary random processes for which they derive the asymptotic
spectrum and hence what they call harmonic variance components. These are
described as "representing the amount of variability due to cyclic patterns of
the various periods," and they appear to be best suited to such time-defined
factors as, for example, weeks, days within weeks, shifts within days and hours
within shifts, in an industrial situation. The linear relationship of such
components to those defined in the usual analysis of variance context is shown,

and numerical examples given.

21.6 Dispensing with unbiasedness.

Most current methods of variance component estimation yield estimators
that are mean unbiased. This property has been righteously adopted from linear
estimation, - but for the variance components situation it can be questioned, or

at least amended. As Kempthorne [1968] points out, unbiasedness in estimating
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the fixed effects of a rodel "...leads to residuals which do not contain

. systematic effects and is therefore valuable...and is fertile mathematically
in that it reduces the class of candidate statistics (or estimates)." But
"...in the variance component problem, it does not lead to a fertile smaller
class of statistics." Furthermore, in linear estimation, we usually conceive
of repetitions of data and associated repetitions of estimates. But with un-
balanced data from random models this is often not the case - more data, yes,
but not necessarily with the same pattern of unbalancedness. Any replications
of data cannot, therefore, altogether be thought of as mere re-samplings of data
already available. The concept of mean unbiasedness is therefore not necessarily
pertinent. Furthermore, random model data are often so voluminous in extent
that additional data may effectively be unavailable or, if available they may
only be obtainable from different populations. This demands contentment with

' the data already available, and conceiving of repetitions of data is no longer
permitted., It may therefore be reasonable to dispense with the mean unbiased-
ness property of present estimation procedures, perhaps replacing it by one of
modal unbiasedness, as hinted at in Searle [1968, discussion]. It would mean
developing a variance component estimator for which the probability distribu-
tion had its (only) mode at the population value of the parameter. Such a
development would maximize the probability of the estimator being close to its
parameter, rather than minimizing the probability of being far away from it, as
Eisenhart [1968] points out. Harville [1969b] doubts if estimators satisfying
the modal unblasedness criterion exist and questions, on decision-theoretic
grounds, the justification of such a criterion prefering to use an appropriate

loss function.
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If abandonment of traditional methods of estimation were to be considered, the
use of range by Ghosh [1965] in developing tests of hypotheses concerning ratios
of variances could prompt speculation on using range statistics for developing
estimation methods. Whilst resulting estimators might be expected to have less
attractive properties than those of current estimators they night, if not very
much less attractive, be worthwhile, since current estimators are difficult to
compute from unbalanced data, and have few optimal properties. Of course, the
development of such estimation methods, even if appropriate, might well be no

easy task.
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