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Abstract 

This paper is intended as an expository review of variance components. 

Part I discusses the models underlying variance component analysis, describing 

them by means of illustrative examples in biology rather than just through their 

mathematical definitions. Part II deals with balanced data (equal subclass num-

bers)and is mainly concerned with the analysis of variance method of estimating 

variance components from such data. Discussion of its properties includes con-

sideration of unbiased estimators, negative estimates, minimum variance, and the 

consequences of normality assumptions. Definition of interactions in mixed 

models is also considered. Part III deals with methods of estimating variance 

components from unbalanced data (unequal subclass numbers):_) 

c;i~:-=:~~s~~'"':';-- ~a~~~~c:,~~~hod~ adjus~:~g f~: bias with mixed models, 

the fitting constants method, analysis of means methods, symmetric sums, maximum 

likelihood and best quadratic unbiased estimation. Specific results for a few 

easy cases are quoted, as a point of departure for discussing development of 

more general (and often lengthy) results, to which references are given. Comment 

is also made on several other topics relating to variance component estimation, 

such as the many quadratic forms available and the designing of experiments for 

this purpose, the plotting of the likelihood function and the dispensing with 

mean unbiasedness as an estimation criterion. 
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TOPICS IN VARIANCE COLIPONENT ESTLv:IATIONy 

2/ s. R. Searle~ 

Texas Afj-'i University, ~ollege Station, Texas 

and Cornell University, Ithaca, N.Y. 

Introduction 

Variance component models are described in many places; among them Eisenhart 

(194 7], Crump (1946 and 1951] 1 Plackett [1960], and Sheffe [1959] ccme particu-

larly to mind. Although these descriptions vary in their mathematical content, 

with consequent variation in their appeal to biologists, they are mostly concerned 

with the mathematics of the models rather than with interpretive illustration 

thereof. Since biology is a discipline wherein variance components models have 

widespread application it is apposite to begin a aurvey of topics in variance 

component estimation by describing the underlying models in terms of examples 

that may have some appeal to biologists. Such is the purpose of Part I of this 

paper. It attempts to describe variance component models by means of illustrative 

examples presented alongside familiar analysis of variance situations. Emphasis 

is placed not upon mathematical details but on the meaning and use of different 

models. General analysis of variance procedures and their associated statistics 

are assumed known, and attention is directed to the meaning of variance components. 

~ Paper BU-197 in the Biometrics Unit and number 586 in the Department of Plant 
Breeding and Biometry, Cornell University, Ithaca, N.Y. 

gf On leave from Cornell, 1968-9. 
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Parts II and III of the article survey some of the procedures used fer esti­

mating variance components from balanced and unbalanced data, respectively, with 

discussion of some of the problems associated with these procedures and the pro­

gress that has been made towards solving them. A few explicit results are given 

in detail, mostly of easy cases. They provide a framework for discussing more 

general results, many of which are ~uite lengthy and to which reference only is 

given. 

Crump [1951] so well summarized the status of variance components at that 

time that only the progress made since then is mentioned here in any detail. The 

reader is referred to Crump [1951] for a more complete discussion of the state of 

the art prior to the fifties. 

PART I: MODELS 

1. Fixed effects models 

One experiment traditionally carried out in agricultural research concerns 

testing the efficacy of nitrogen (N), potash (P) and potassium (K) on crop yield, 

tomatoes, say. Suppose an experiment of this kind involved 24 plants, with each of 

6 plants receiving one of the fertilizers and 6 getting no fertilizer at all, these 

being considered as control. The 4 different kinds of fertilizer (including none) 

will be referred to as treatments N, P, K and C (for control). The skeleton 

analysis of variance for this experiment is shown in Table 1. 
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Table 1 

Skeleton analysis of variance for experiment of 
4 fertilizer treatments each used on 6 plants 

Source of 
variation 

Treatments 

Error 

Total 

The equation of a model for this analysis is 

yi. = ~ + t. +e .. 
J ~ ~J 

Degrees of 
freedom 

3 

20 

23 

where y .. is the j 1 th observation (j = 1, 2, •.. , 6) on the i'th treatment 
~J 

(1) 

(i = N, P, K or c) with ~ being a general mean yield, t. being the effect of 
~ 

fertilizer i on yield, and eij being an error term representing the difference 

between an observation yij and ~ + ti. 

Experiments of this nature are often used for providing evidence of whether 

or not fertilizer increases yield. In carrying out such an experiment, the 

4 treatments (3 fertilizers and control) are 4 very specific treatments of inter-

est; and in using them we have no thought for any other fertilizers, for interest 

lies solely in studying N, P and K in relation to each other and to no fertilizer. 

This is the concept of fixed effects. OUr concentration is fixed upon just the 

treatments in our experiment, upon these and no others. In this context the 

treatment effects t. in the model (1) are called fixed effects, and the model is 
~ 

correspondingly called the fixed effects model. It is often referred to as Model 

I, so named by Eisenhart [1947]. 
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In any inference-making situation the manner of obtaining data affects the 

inferences that can be dra~m from them. We therefore consider a sampling process 

pertinent to the fixed model (l) in which the t's relate to the 4 specific treat-

ments c, N, P and K. The data available are envisaged as being one of the many 

possible sets of data involving these same treatments that could be derived in 

repetitions of the experiment, repetitions in which thee's on each occasion would 

be a random sample from a population of error terms that has zero mean and vari-

ance cr2 • It is the randomness associated with obtaining the e's from a population 
e 

that leads to our being able to make inferences about the differences between the 

t.'s. We can also make inferences about the average difference among all 4 treat-
1 4 4 

ments, namely the average s~uared deviation from the mean, t E (t. - i ~ t.) 2 , an 
. l 1 . l 1 1= 1= 

expression that can sometimes be conveniently thought of as the variance among 

the 4 t's; so, too, can inferences be made about cr~. 

An expanded form of the above experiment would be when more than one variety 

of tomatoe was tested in combination with the 4 fertilizers. Suppose, for example, 

the 4 treatments were used on 6 plants of each of 3 varieties of tomatoe, early 

ripening, mid-season and late ripening. A suitable model for y. 'k' the yield of 
1J 

the k'th plant of the j 1 th variety receiving the i'th treatment would be 

y. 'k ;;;;: IJ. + t. + v. + (tv) .. + e. 'k 
1J 1 J l.J 1J 

(2) 

where 1J. is a general mean, t. is the effect on yield due to the i'th treatment, 
1 

v. is the effect of the j 1 th variety, (tv) .. is the effect of the interaction 
J 1J 

between the i'th treatment and the j'th variety, and e. 'k is the usual error term. 
l.J 

Just as treatment effects are fixed effects, so too are variety effects, the v., 
J 

for in this experiment interest centers solely on the three varieties being used. 

Thus both the ti and the vj and their interactions are considered as fixed effects. 
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2. Random effects models 

Young et al (1965] report an experiment concerning the maternal ability of 

mice, using the litter weight of ten-day-old litters as a measure of maternal 

ability. Suppose the experiment had been based on four dams (all of the one breed) 

that had each had six litters. With the 24 litter weights we could carry out an 

analysis of variance having the skeleton shown in Table 2. 

The equation of 

the j 1 th litter 

Table 2 

Skeleton analysis of variance for experiment 
of 4 dams (mice) each having 6 litters 

Dams 

Source of 
variation 

Residual 

Total 

Degrees of 
freedom 

3 

20 

23 

the model here is y .. = ~ +d. + e .. where y.j is the weight of 
1J 1 1J 1 

of the i'th dam, d. is the effect on litter weight due to the 
1 

litter being from the i'th dam, and e .. is the deviation of y .. from~+ d .• 
1J 1J 1 

Consider the d.'s and the dams they represent, The data relate to maternal 
1 

ability, a variable that is subject to biological variation from animal to animal. 

In this contex~prime interest in the experiment is unlikely to center on only the 

4 female mice available in the laboratory. They are only a sample from a popu-

lation of (female) mice. 
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In comparing the mouse and fertilizer experiments, each mouse corresponds to 

a fertilizer treatment; but whereas each fertilizer is something of interest, with 

no thought for it being a sample from a population of fertilizers, each dam of 

the mouse data is merely a sample (of one) from a population of mice. Nothing 

important has conditioned our choosing any one mouse over another, and there is 

no interest in differences between specific pairs of mice as there was in differ-

ences between pairs of fertilizers in the fertilizer experiment. In contrast, 

our interest in the mouse experiment lies in the extent to which maternal ability 

varies throughout the whole population of mice from which our 4 are deemed to be 

a random sample. It is to studying this variation that our model is directed. 

The sampling process involved in obtaining the mice data is envisaged as 

such that any one of many possible sets of data could be derived from repetitions 

of the data-gathering process. But now, in conceiving of repetitions, we do not 

confine ourselves to always having the same 4 mice - we imagine getting a random 

sample of 4 on each occasion from the population of mice. And furthermore, for 

whatever 4 mice we get on any occasion we envisage getting a random sample of e's 

from a population of errors, along the same lines as in the fixed model. Thus 

our concept of the error terms in the two cases is essentially the same. But 

whereas in the fixed model we conceived of always having the same treatments, now, 

in the case of the mice data, we think of taking a random sample of mice on each 

occasion. Thus the d.'s of our data are a random sample from a population of d.'s. 
~ ~ 

Hence, so far as the data are concerned, the d.'s therein are random variables, or, 
~ 

as they are usually called in this context, random effects. And the model is cor-

respondingly called the random effects model or the random model. Eisenhart (1947], 

in his detailed discussion of fixed and random models called the random model 

Model II, a name that continues to receive widespread use. 
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In both models the error terms have the same characteristics - that they are 

a random sample from a population that has zero mean and variance cr2 • But, where­e 

as in the fixed effects model the t's represented effects of specific treatments, 

in the random model the d's are a random sample from a population, assumed as 

having a variance cr~. It is also assumed that the d 1 s have zero mean. Otherwise 

we could define ~* = ~ + E(di) and 5i = di - E(di) and write the model as 

y 2.J. = ~ + d. + e .. 
J._ lJ 

=~+E(d.) +d. -E(d.) +e .. =~~~+5. +e .. 
l l 1 1J 1 lJ 

(3) 

where E(5.) = 0 and the form of~*+ 5. +e .. is indistinguishable from~+ d. + 
1 1 lJ l 

e ..• Thus the random model involving the d's is described as 
lJ 

Y;J· = ~+d. + e .. 
.... l lJ 

(4) 

and 
where~ is an overall mean,/d. is the effect due to the i 1 th dam, this being a 

l 

random effect from a population of d's that has zero mean and variance cr2 · and 
d' 

the e .. 's are random error terms from a population having zero mean and variance 
lJ 

a~. In this context inferences are sought about cr~ and a~. 

parameters of the random model. Since, from (4), a; = ~ + 

These and ~ are the 

a2, the name "com­e 

ponents of variance"is given to a2 and cr2 ; each is a variance in its own right, 
d e 

and is a component of cr2 the variance of an observation. 
y' 

Fixed effects models can involve several factors and their interactions. So 

also can random effects models. An example arises in dairy cow breeding. Through 

artificial insemination, bulls can sire offspring in many herds simultaneously. 

When the females among these progeny calve and start to produce milk, analyses of 

their milk yields can be made. A suitable model for yijk' the yield of milk by 

the k'th daughter of the i 1 th bull in the j 1 th herd is 
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(5) 

In this model b. is the effect on yield of a cow's having been sired by the i'th 
~ 

bull; h. is the effect of her being in the j 1 th herd, (bh) .. is the interaction 
J ~J 

effect and e. 'k is the customary error term. In this case all effects are con­
~J 

sidered random: the bulls on whom we have data are taken to be a random sample of 

bulls from some population; the herds involved in the data are assumed to be a 

random sample from a population of herds, and the interaction effects are assumed 

to be random, too, and of course the error terms are also taken as random. All 

these effects are assumed uncorrelated, with variances a~ 1 a~, a~h and a~. These 

are the components of variance of the model (5), from which a~= a~ + a~ + a~h + 

a2 • They and~ are the parameters about which we wish to make inferences. 
e 

3. Mixed models 

Consider the tomatoe and fertilizer experiment again. Instead of having 

three varieties of tomatoe suppose we have 20 replicate crosses of two varieties, 

the early ripening and late ripening varieties. The equation of a model for data 

from such an experiment 1·rould be 

y. 'k = ~ + t. + r . + ( tr) . . + e. jk 
~J l. J ~J ~ 

(6) 

where t. is the effect on yield of the i 1 th treatment, r. is the effect of the 
~ J 

j 1 th replicate cross, (tr) .. is the interaction effect and e. 'k is the error term. 
~J ~J 

As before, the t. are fixed effects. However, the r., representing the effects of 
~ J 

the replicate crosses between the two varieties, are random effects because they 

represent just those crosses that happen to have been made for this experiment, 
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the 20 crosses available from the infinite population of crosses that could be 

made; and we assume these 20 to be a random sample from that infinite population. 

Hence we have a model containing fixed effects t. and random effects r .. This 
l J 

is called a mixed model: a model containing a mixture of both fixed effects and 

random effects. 

i:l!odel ( 6) includes effects ( tr) . . for interactions between treatments and 
lJ 

replicates. Since the latter are being taken as a random it is reasonable that 

these interactions also be treated as random. Thus the model has t. as fixed 
l 

effects and the r. and (tr) .. as random effects having zero means and variances 
J lJ 

cr2 and cr2 respectively. The parameters of the model, which inferences will be 
r tr 

made about, are thus ~ and the t. and the variance components a2
1 cr2t and cr2 • 

l r r e 

A second example of a mixed model is a mouse experiment involving three 

special diets, the object being to study the effect of these diets on litter 

weight. In this case a suitable model for x .. k' the k 1 th litter weight on the 
lJ 

i 1 th dam when receiving diet j would be 

(7) 

where d. is as before, f. is the effect of the j 1 th diet (feed), (df) .. is an 
l J lJ 

interaction and e .. k is an error term. The d. are random effects, but the f. 
lJ l J 

representing the three diets are fixed effects; and the (df) .. -interactions 
lJ 

between the fixed and random effects are random. This is a mixed model, with 

fixed effects fi and variance components a~, a~f and a~. 
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4. Fixed or random? 

Apart from the symbols used, equation (2) for the treatments-varieties 

experiment is indistinguishable from (6), that for the treatments-replicates data. 

But the models involved are different, because of the interpretation attributed 

in (6) to the replicate crosses. Whereas varieties are considered fixed effects 

in (2) the replicate crosses in (6) are considered as random. Similarly, equa­

tions (5) for the bulls-herds data and (7) for the damE-diets data have the same 

formal appearance but their interpretations are not the same: in (5) both bulls 

and herds are random but in (7) dams are random and diets fixed. 

In the above examples the classification of effects as either fixed or random 

appears to be quite straightforward. This is not always so. For example, consider 

the herd effects in equation (5). Data of the nature envisaged there usually in­

volve numerous herds that are considered a random sample from some population of 

herds. Were there to be just a few herds, five or six say, wherein the sole 

interest concerning herds lay in just those 5 or 6, then the herd effects in the 

model would more appropriately be taken as fixed and not random. Thus the context 

of a model is the deciding factor in determining whether factors are fixed or 

random. 

Many situations arise where effects can be judged fixed in one context and 

random in another. For example, consider the mouse experiment again. Suppose 

three different laboratory technicians managed an experiment and that technician 

effects were to be included in the model. If one object of the experiment was to 

assess differences between the three technicians, with a view to deciding who was 

the best, then the three technicians involved would be the only technicians of 

interest. They would in no way be considered a random sample from a population 
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of technicians and so technician effects would be considered as fixed. On the 

other hand, a laboratory experiment has to be cared for by someone, and we might 

reasonably agree that so far as the experiment itself is concerned there is little 

interest in who the technician is. Any available technicians might well be con-

sidered as just a random sample of technicians and in this case all we want to do 

is to assess the contribution to the general variability of the mouse data caused 

by technicians. In this case the technician effects of the model would be con-

sidered random and a variance component attributable to technicians would be the 

parameter of interest so far as technicians were concerned. 

Year effects in studies of agricultural production are a good example of 

something that might be considered either fixed, or random. Years themselves are 

unlikely to be random, for they will probably be a group of consecutive years over 

which data have been gathered. But the effects of years on yield may reasonably 

be considered random - unless one is interested in comparing specific years for 

some purpose, in which case the year effects will be fixed. 

In deciding whether a set of effects is to be assumed fixed or random the 

important question is that of inference: are inferences going to be drawn about 

just the treatments that occur in the data? "Yes" - then the treatments are to 

be considered as fixed effects. "No" -then presumably inferences will be made 

about some population of treatments, from which those in the data are presumed to 

be a random sample; and so the treatment effects are considered random. Thus 

when inferences will be confined to the effects in the data the effects are con~ . 
sidered fixed; and when inferences will be made about a population of effects 

from which those in the data are considered a random sample, then the effects are 

taken as random. 
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As soon as the effects in a model have been categorized as either fixed or 

random, the model is then in one of three classes: fixed, random, or mixed. It 

is a fixed model when all elements except the error terms are fixed effects. 

It is a random model when all elements except ~ are random effects. And it is 

a mixed model when, other than ~ or the error terms, some of the effects are 

fixed and some are random. In point of fact, of course, all models having both 

~ and error terms are mixed models because ~ is a fixed effect and the errors 

are random. However, the customary distinction between fixed, random and mixed 

models is usually maintained. 

Note that the assumption of randomness in a random effects model does not 

carry with it the assumption of normality. Frequently this assumption is made, 

as we shall see, but it is a separate assumption made subsequent to that of 

assuming effects are random. Most estimation procedures for variance components 

do not require normality, but when distributional properties of estimators are to 

be investigated normality is usually assumed. 

4.1 Finite populations 

Random effectsoccurring in data are assumed to be a random sample from a 

population of effects. Usually the population is considered infinite, as for 

example, is the population of all possible crosses between two varieties of wheat: 

they could be crossed an infinite number of tL~es. However, the definition of 

random effects does not necessitate that their population be infinite. It may 

be finite. Furthermore, although finite it may be very large, indeed so large 

as to be considered infinite for most practical purposes, e.g., all Holstein cows 
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in the u.s.A. on May 1, 1970. Thus for random effects models the conceptual 

populations can be of three kinds, depending on their size: infinite, or finite, 

or finite but so large as to be deemed infinite. Those that are infinite or 

finite but large enough to be taken as infinite are the ones most frequently en-

countered, especially in biology. 

Models having random effects with finite populations differ from those with 

infinite populations largely through consequences of the definition of variance 

in a finite population. For a population of effects a. fori= 1, 2, •.. , N 
1 

N 
having zero mean, ~ a. = O; and the population variance is then defined by 

i=l 1 

N 
~ a~/(N 

i=l 1 
1). An easily derived consequence is E ~ a.a. 1 = -(N - l)cr2 • 

i~i' 1 1 a 

1 N 
If a is a random effect from this population its variance is E(a2 ) = N- ~a~ = r r . 1 1 

l.= 

(1 - N-1 )a~; and the covariance between it and another random effect, as' is 

E(a ,a ) = -cr~/N. Thus in models having random effects with finite populations r s u. 

the effects are not uncorrelated as they are with infinite populations. The 

consequences can be seen, for example, in Bennett and Franklin [1954, cf p.404). 

They are discussed in greater detail by Wilk [1955] and by Wilk and Kempthorne 

[1955, 1956, 1957] and also by Cornfield and Tukey (l956]. Some of these papers 
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are very much concerned with randomization theory and they all deal with bal-

anced data only. For unbalanced data, Gaylor and Hartwell (1969] show the effects 

of having finite populations in the case of one particular nested classification, 

and Searle and Fawcett (1970] give general rules for converting infinite popu-

lation situations into finite populations. These rules are applicable to nested 

or crossed classifications or to a mixture of both, in either random or mixed 

models. 

A special case of a finite population is when the effects occurring in one's 

data constitute the whole population of effects. This is often used (e.g. Wilk 

and Kempthorne, loc cit) as a convenient representation of fixed effects. 

PART II: BALANCED DATA 

The dichotomy of balanced data and unbalanced data is now introduced. 

Balanced data are those in which every one of the sub-most sub-classes of the 

model has the same number of observations; i.e. equal numbers of observations 

in all the subclasses. Opposingly, unbalanced data are those wherein the 

numbers of observations in the subclasses of the model are not all the same; 

i.e. unequal numbers of observations in the subclasses, including cases where 
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there are no observations in some subclasses. Thus 11 unbalanced data" refers 

not only to situations where all subclasses have some data, namely filled sub-

classes, but also to cases where some subclasses are empty, with no data in them. 

Since the estimation of variance components from unbalanced data is more compli-

cated than from balanced data, we deal with the two cases separately, discussing 

balanced data first. 

5· Th~ anal¥sis of Vafiancx method of estimation 

Analysis of variance is traditionally employed in situations involving 

fixed effects models, such as the simple experiment of testing 4 fertilizers 

described above, the analysis for which is shown in Table 3· 



Source of 
variation 

Between 
treatments 

Error 

Total 

-1.6-

Table 3 

Analysis of variance for experiment of 
4 fertilizer treatments each used on 6 plants 

(See Table 1. ) 

Degrees of Sum of Mean Square 
freedom Squares 

Observed Value Expected Value 

4 4 
SSB = 6 E (Y. - )2 SSB/3 £ E (t.-~t.) 2 + 3 - y MSB = 

. 1 ~. 3. 1 l. - ~ 
~= ~= 

4 6 
20 SSE = E E (y .. - y. )2 iviSE = SSE/20 

i=l j=l ~J ~. 

4 6 
23 ( - )2 SST= E E y .. - y 

i=l j=l ~J 

a2 
e 
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The right·~ hand colurm of this table, frequently not shmm in analyses of 

variance cf fixed effects modelf:., contains expected values of the mean 

sq,uares of the analysis. Its first term, E(lilSB); 

involves the fixed effects for treatments, the t., that are part of the model 
' ~ 

(1) on 1·rhich the analysis is based. i-!ithout this column of expected values the 

prime purpose of i·li .:. table is to summarize the calculations needed fo~c obtain-

ing the F·4 statistic V1'3B/MSE for testing the hy"];Jotl1esis that all t. 's are eq,ual. 
~ 

Hov1ever, appendinc; the column to the table highlights both the nature of the 

F~test and the familiar procedure of estimating 

error mean square: 

is an unbiased estimator of o2• 
e 

o2 by the 
e 

(8) 

An extension of the estimation procedure used in (8) leads to estimation 

of variance components in random (and mixed) models generaD.y. To demonstrate 

this suppose >ve analyze the mouse data (4 dams with 6 litters each) in the 

manner of Table 3, as shown in Table 4. 

Table 4 

Analysis of variance for experiment 
of 4 dams each having G litters 

(See Table 2 ) 

Source of Decrees of Stun of 
Sq,uares 

Mean Square 

variation freedom 
Obf>erved Value Expected Value 

--~~-·- ·------·------~----~----~----·~------~---~-~---~~----

ll - - 2 
SSB = 66(y. - y ) 

i=l ~. • • 
Beti·reen dams 3 IviSB ;::: SSB/3 

Error 20 I't!SE - SSE/20 



The equation of the model for these data is (4): yij - p, + d. + e .. ; and that 
1 1J 

for the fertilizer e:q)eriment is (1): yij == 1-1 + t. + e .. • In both cases 1-1 is 
1 lJ 

mean and the e's are random error terms i'lith zero means and variances 02 and 
e 

zero cova:ciances. HoHever, in contrast to the t. of the fertilizer experiment 
l 

a 

being fixed effects, the d. of the mice data are random effects with zero means, 
1 

variance 0~ and zero covariances ooth v1ith themselves and >·lith the e' s9 The 
I') 

effect of this in E(HSB) of Table lf is to have a term in o~ j_nstead of the term 

in the t. 1 s as in Table 3. This is the only feature that distinguishes Table 4 
1 

from Table 3; and it arises solely because of the model. Table 4 relates to a 

random model and Table 3 to a fixed model. 

The tables can, of course, be made to look ~ven more alike. For, defining 

in Table 3 gives E(NSB) = 6s~ + 0~, similar to E(MSB) = 6o~ + o~ value of 

Table 4. 2 
[',::;f:i.ning and using s t in this fashion 
es 

emphasizl that the quadratic in the t. 's in E(IJ!SB) in the fixed 
~ 1 

effects model is tantamount to a sample variance of the treatment effects t 1 , 

t 2 , t 3 and t 4. Hhile this kind of relationship is true for balanced data it 

does not hold for unbaJ.anced data. I·:iore importantly, the one~to"~one correspon­

dence bct·Heen s~ and o~ so illustrated does not ohwys occur, even \·tith balanced 

data, in more complex experimental designs thon the one considered here. 
CCLV) 

It I . ,, 
be. 

therefore/misleading to use s 2t in the belief that this apparent correspondence 
t<... 

is universal. It is not. 

F T bl 3 J 1 ~. . f ·2 . o~2 ,.SE •rom a e c1c cs-..,J.mo.t.or o v ls == L• •,, as 
c c 

The 

S2Y;•e J?l'OCedure appl:i.ed to '1'0.blc ~~ (';ivcs <c::;tino.torG of ()2 1'.nd rl. e · d · 
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MSE "2 and MSB 6o2 .-2 
:::: 0 = + 0 , 

e d e 
( 9) 

"2 .... 2 
(USB HSE)/6 Hence 0 = ItiSE and 0 = -e d 

The above exmnple is the simplest illustrntion of estimating variance 

components from balanced data by the analysis of var1ance method, so called 

because of its reliance on the analysis of variance. It involves the :folloi·ling 

steps: ( i) In the analysis of variance appropriate to the model eq1J.ate observed 

mean squares to their c:::_pec'cc:d values; because these r:xpected value;; are linear 

£'unctions of the unlmmm va1·innce components, the :cesulU .. ng equations \·Jill be a 

set of simultaneous linear equatim1s in the variance components. (ii) Solve the 

equations established in (i): the soJ.utions are the estimators of the variance 

com:J!onents. 

6. Random Models 

Estimating variance components by the analysj_s of va:ciance wethocl is readily 

achieved in any situation of Cl'Ossed and/or nested classifications"~,·any situation, 

that is, 'ilhich is one of balanced data and the random effects model. Hm·:ever 

many lines there are in the analysis of variance table there \·Jill be the same 

number of components to estimate. The equations obtained by equatinc; observed \ 

mean squares to the expected values 1'/ill ah1ays be consistent, and so solutions 

(the estimators) can ahmys be found. Details of <:q)plying this method are given 

in many places; e.c;. Anderson and Bancroft [1952, Chapter 2~), Scheff( 0 .. 959, 

Chapters 7 and q] and Graybill (1.961, Chapters J.6 nnd 17,], to name but three. 

The main step in the me !~hod is deriving the expected value of the mean square in 

each line of the annlysis of variance to.ble. The o.bove :cefe:ccnces (and many 



designs. In addition, 1·1hen balanced data fall into none of the 1i!Cllwdocumented 

designs, general rules of thumb are available for deriving the necessa.L'Y expected 

values. These rules, expressed in various 1·mys, are to be found in J~wn (1954), 

Schultz (1955), Hend;:!l'son (1959] and Hillman and Glass [1967]. The Henderson 

paper includes rules for determining i·lhat the lines in the analysis of variance 

shaJ.l be, and what their degrees of freedom and sums of squares are; and l.Ullman 

and Glass have a rule for ln'iting do1m the computing formula for each sum of 

sque.res. These rules, it shouJ_d be noted, apply whether the model be fixed, 

ruixed ol' random. 

Although details of many specific cases are l'eadily available in the litera-

tu.::ce 1;le give tvro examples here) both to indicate hou the method operates and to 

provide a basis for further discussion. 

6.1 The l-1-ray classific:R.ti,SLJ: 

In the general 1··\·:ay class:i_fication (of 1·1hich Table '-f is an example) •lie 

suppose there are n observations in each of a classes, that yij is the j'th 

obse:cvation in the i 1 th class, and that the equation of the model is 

yl. J' = 1..1 + a. + e . . ' l l.] 

~:Jhere i = 1, 2, ••• , a and j = 1, 2, ••. , n. As usual, 1.1 is a general mean, the 

a. are random variables '>lith zero means, zero covariances and variance 
l 

the random error terms have zero means, zero covariances and variance 

Covaricmces betv1een the a. and e .. are all assumed zero. 
l lJ 

02• 
a' 

02 . e 

and 
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The analysis of variance tc-.ble uses the fo1la~ting terms 

a ~ 2 
T = 'f,L..yoo' 

0 0 1 0 llJ l= J= 
T 

a 
a -2 

= nl:: Yo 
i==l l. 

= 
a 2 
L: Yo /n 

i==l l. 

and 
-~2 

T - any 
2 = y /an. (10) . . 

This notation is introduced because it refers to the basic calculations required, 

it sii:np1:Lf'ies ·writing of the analysis of variance table anrl it extends directly 

to unbalanced data. Each T-.term is a total uncorrected su1n of squal'CS Hith 

S<J.b script indicating the factor it .refers to: o for the observations as they 

stand, a for the a,"fac·tor and ).L for 1 correction for the mean 1 • 'rhe analysis of 

variance is then as shO'>m in Table 5. 

Table 5 

Analysis of variance for 1-way classification, 
random model) n o1)servations in each of a classes 

Source of 
variac ion 

:Set·ueen classes 

Error 

Total 

Degrees of 
freedom 

a - 1 

a(n - 1) 

an- 1 

SSB 

SSE 

Sum of 
squares 

== T -a 

= T -
0 

T 
fJ, 

T 
a 

SST=~~~-~-
-----~·<·----· -·------· --. o P- I 

~lSB -

l1iSE = 

1-lean 
r3quare 

SSBj(a 

SSE/a(n 

-

-

Ex:Qcctcd value 
of metm sq_uare 

no2 
0 

l) + 
(jL 

a e 

l) 02 
e 

From the last tvro colurnns the estimators of the voriance components are, sirnilar 

to those of (9), 

.-.2 
0 

e 
MSE 

.-.2 
0 
a 

-- (UiSI3 ~ [elSE) /n. (11) 
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6.2 The 2-way crossed classification 

The general 2-way classification is typified by a treatments-by-blocks 

situation, where the equation of the model is 

(12) 

with T treatments, i = 1 1 2, •.. ,~and B blocks, j = 1, 2, ••. , B,and n 

observations in each treatment-by-block cell. The general mean is ~, and the 

~., p. and Tp .. are treatment, block and interaction effects respectively. The 
~ J ~J 

eijk are error terms in the usual way, with E(eijk) ~ 0 and var(eijk) ; a~ for 

all i, j and k, and all covariances zero. The familiar analysis of variance 

table is shown in Table 6. 

Source of 
variation 

Treatments 

Blocks 

Interaction 

Error 

Total 

Table 6 

Analysis of variance for 2-way classification data of 
T treatments and B blocks, with n observations in 

each treatment-block subclass 

Degrees of Sum of Squares 
freedom 

T 
T-1 ST ::;; !: Bn(Y. -y )2 MST 

i=l ~.. . .• 

B 
B-l SB :;::: !: Tn(Y . -y )2 MSB 

j=l •J. • •• 

T B 
(T-l) (B-l) STB !: - - - - 2 MSTB = !: n ( Y . . -y. -y . +y ) 

i=l . 1 ~J. ~. • • J • • •• J::;; 

T B n 
TB(n-1) SE r. - - )2 MSE ::;: !: !: (y. 'k -y .. 

i::;;l j=l k::;;l ~J ~J. 

T B n 
nTB-1 !: !: 2 -2 

!: y. 'k -nTBy 
.. k l ~J 
~ J :; 

Mean Square 

:;::: ST/(T-l) 

; si (B-l) 

= STB/ (T-l) (B-l) 

::;; SiTB(n-l) 
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Customary use of the word "treatments" implies that they are fixed effects. 

However, the word is used generically here, simply to denote one of the classifi-

cations of the model (12): at one time we think of treatments as being fixed 

effects and at another as random effects. 11 Blocks" is used in the same manner 

for the other classification. 

For the random model we think of both treatments and blocks being random. 

An example is (5), the bulls-by-herds illustration, in which bulls play the part 

of treatments and herds are the blocks. With all effects except ~ assumed random 

we have 

E(~1 ) = E(~.) = E(~s .. ) = o, var(T.) = a2 
J ~J ~ 'T' var(~.) =~and var('T~ .. ) = a2 (13) 

J ~ ~J 'TS' 

for all i and j; and all covariances between these terms and between them and 

thee's are zero. Under these conditions expected values of the mean squares of 

Table 6 are those shown in Table 7• 

Table 7 

Expected values of mean squares of Table 6 
Random model 

E(MST) = Bncr2 + ncr2 + a2 
'T 'T~ e 

E(IviSB) Tncr2 + ncr2 + a2 
~ ~~ e 

E(l·1STB) ncr2 + a2 
-rB e 

E(IviSE) a2 
e 

These familiar results can be found in many places, e.g., Anderson and Bancroft 

(1952, p.316), Scheffe [1959, p. 244] and Steel and Torrie [1960, p.l44]. The 
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analysis of variance method of estimating the variance components of the model 

then involves equating mean squares to their expected values, and from Table 7 

this gives the following estimators: 

o2 = MSE 1 e o~ = (Iv!SB - MSTB)/Tn , 

o~P "" (i:1STB - MSE)/n, and cr~ = (IIffiT - MSTB)/Bn 

7 • Nixed lviodels 

(14) 

The analysis of variance method of estimating variance components can also 

be used for mixed models, with balanced data. Among the expected mean squares 

there will be as many having no terms in the fixed effects as there are variance 

components in the model. This is illustrated by a variation of the example just 

considered. 

7.1 The 2-way crossed classification 

In the treatments-by-blocks example just discussed suppose that the treatment 

effects are considered as fixed effects. The equation of the model is still (12), 

and the assumptions in (13) still hold with the exception of E(~.) = 0 and 
~ 

var(~.) = cr2 which are no longer used because the ~. 1 s are now fixed effects. The 
~ ~ ~ 

analysis of variance in Table 6 is also still appropriate with expected mean 

squares as shown in Table 8. 
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Table 8 

Expected values of mean squares of Table 6 
Mixed Model 

with treatment effects, -r., fixed 
l. 

E(MST) Bn - )2 + ncr2 + = l E(-r. - 't' T - l. • 't'~ 

E (i\flSB) = Tncr2 + ncr2 + 
~ 't'l3 

E(MSTB) = ncr2 + 
't'i3 

E(MSE) = 

*The term na~13 is discussed in the text. 

a2 e 

cr2 "i~ 

e 

cr2 
e 

a2 e 

Apart from the quadratic in the -r. 1 s in E(MST) the entries in Table 8 are 
l. 

the same as those for the random model, in Table 7· There is, however, the matter 

of the term ncr~13 in E(r~B). Depending on the definition of the random effects, 

ncr2 does or does not occur in E(r~B). This is discussed in Section 7.2. The 
't"(3 

important thing is that, whether na~13 occurs in E(MSB) or not, the components of 

variance of the model can be estimated from MSB, ~illTB and MSE, the three mean 

squares whose expected values contain no fixed effects. Thus, so far as these 

mean squares are concerned, the analysis of variance method of estimating variance 

components applies to this mixed model just as readily as to the random model. 

7.2 Defining elements of the model 

Variations in defining elements of (12) for the mixed model lead to variations 

in the form of the expected mean squares shown in Table 8. First consider 

( ) Bn ( ; )2 2 2 E MST = T _ 1 ~ -ri - • + na't'l3 + cre , (15) 
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a result more frequently found in the form 

E(iviST) = Bn E 2 + na2 + a2 
T - 1 ~i ~~ e 

(16) 

The change from (15) to (16) arises when the~. of (12) are defined so that 
T l 

E -r. = 0. 
i::::l l 

This definition has not been used in deriving Table 8, nor is it neces-

sary to use it. Nevertheless, if the ~. are defined as deviations of treatment 
T l 

effects from their mean, E -r. = 0 applies and E(I4ST) takes the form of (16), with 
the~. so defined. i=l 1 

l 

We now turn to the term ncr~~ in E(MSB) of Table 8. Perusal of the literature 

reveals the presence of this term in some places and its absence in others. For 

example, Mood [1950, p.344), Steel and Terrie (1960, p.l44) and Kirk [1968, p.137] 

are texts that include it, whereas Anderson and Bancroft (1952, P·339], Scheffe 

[1959, p.269), Graybill [1961, P·398), Fryer [1966, P·334] and Snedecor and 

Cochran [1967, p.367] exclude it. Mood and Graybill [1963] do not discuss the 

topic. 

Exclusion of ncr~~ from E(41SB) of Table 8 can arise from the way in which 

block effects are defined. If that for block j is defined as the effect of block 

j plus the average interaction effect for that block averaged over treatments 

then, as detailed in Henderson and Searle [1970], this leads to ncr~~ being absent 

from E(MSB). But in that case a~ represents the variance not of the ~j but of 

block effects defined as 

l T 
~j' = ~ . + -T E ( ~~) . . • 

J i::::l lJ 
(17) 

Thus when ncr~~ is omitted from E(MSB) of Table 8, the term Tna~ becomes Tna~, with 
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The preceding discussion relates to balanced data. ~ixed models for unbalan-

ced data do not usually define block effects to include average interactions. 

[To do so would involve, in expressions like (18), just those interactions cor-

responding to the T. treatments occurring with block j.] Consequently, if in the 
J 

expression for E(MSB) with unbalanced data, given by Searle and Henderson (1961], 

we put all the subclass numbers equal- i.e., reduce the unbalanced data case to 

one of balanced data - then the a2 -term in E(MSB) does not vanish identically 
r~ 

but has the value na~~· Using a model for balanced data that omits na~~ from 

E(MSB) in Table 8 therefore introduces a discontinuity as between unbalanced and 

balanced data, as discussed by Hartley and Searle [1969]. For additional reasons 

of conformity as between the random and mixed models with balanced data, i.e. for 

conformity between Tables 7 and 8, Yates [1967] also prefers the model that puts 

na2 into E(~IDB). For the general sake of consistency it therefore seems, to 
T~ 

this writer, more appropriate to use as the mixed model that which retains na2 
T~ 

in E(MSB) of Table 8. 

7·3 Estimating fixed effects 

Discussion of the mixed model for balanced data would be incomplete without 

briefly indicating how to estimate the fixed effects of the model. Without em-

barking on a lengthy discussion of linear estimation generally, we write the model 

as 

(W) 

where ~ is the vector of observations, ~ is the vector of fixed effects, ~ is the 

incidence matrix of the fixed effects in the data and ] is the vector of the sums 

of random effects, including error terms, that occur in the elements of ~· For 
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when 
estimating ~ or functions of its elements, two cases must be distinguished:/ y, 

the variance-covariance matrix of~ (i.e., of ]) is known, and when it is not. 

When V is known, generalized least s~uares applied to (18) yields normal 

e~uations 

(19) 

Solutions for ~0 provide the means of obtaining best linear unbiased estimators 

of estimable functions in the usual way. [The symbol ~0 is used to emphasize 

that when ~~y-1~ is singular, solutions to (19) are just solutions to the normal 

equations and not necessarily estimators of the elements of~.] 

The difficulty with (19) is that y is usually not known because its elements 

are linear combinations of the variance components corresponding to the random 

effects of the model. Therefore, in order to utilize (19), these components in 

y must be replaced by estimates, which are obtainable as indicated in Section 7.1. 
A 

If the resulting value of y is called V then the equations 

(20) 

can be solved to yield solutions ~00 which, although not solutions to (19), would 

be were V the true value of v. 
A 

However, since y is only an estimate of ~' proper-

ties of ~00 in terms of providing estimators of estimable functions of ~ are 

unknown. 

Somettmes it is unnecessary to use (20). This occurs when V is such that 

its elements factor out of (19), which may then provide estimators of estimable 

functions of ~ identical to those of the fixed effects model. An example of this 

is the 2-way nested (hierarchical) classification having a model 
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y. 'k = ~ + ~- + y .. + e .. k. If the ~-effects are fixed and the y-effects are 
lJ l lJ lJ 

random, then~- of (18) involves (~+~.)-terms, and~ involves (y .. +e .. k)-terms. 
l - lJ lJ 

Simplification of (19) results in a2 and cr2 factoring out, leading to the best y e 

linear unbiased estimator of ~ + ~. as A = y. , the same as in the fixed 
l l 1 •• 

effects model. This is for balanced data. For unbalanced data the estimator is 

N. N. 

A= 
l yij. l 1 

\" '\' 
L t-. ' l cr2 + cr2/n. j cr2 + cr2/n .. j y e 1 y e 1J 

where there are Ni y-classes in the i-th ~-class, and nij observations in the 

j-th y-class of the i-th ~-class. 

8. Fixed effects models 

The only variance in a fixed effects model is the error variance cr2 , whose 
e 

estimator is usually taken as 82 = MSE. This poses no problem. Nevertheless, 
e 

the fixed model case of the treatments-by-blocks example merits brief discussion 

for comparison with the random and mixed models cases just discussed. 

The equation of the fixed effects model is (12), but none of the assumptions 

in (13) are made, because the T., ~- and (T~) .. are all fixed effects. Table 6 
l l lJ 

is still the analysis of variance, but it has the expected mean squares shown in 

Table 9. 



E(NST) 

E (i<!SB) 

E(MSTB) 

E(HSE) 

:::; 
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Table 9 

Expected values of ·mean squares of Table 6 
Fixed effects model 

T 
Bn -) - (-rf3) ]2 + cr2 ~ E [-r. + (-rf3 . - 'T 

- i=l ~ ~. e 

Tn B -=-- E [f3. + (-rf3). - 13 - (-rf3) F+ cr2 
B - 1 j=l J .J .. e 

T B n 
E E [ ( 1'13) •. - ( 1'13) . ( 1'13) . + ::;: 

(T-1) (B-1) -
i=l . 1 ~J ~. •J J= 

(-rl3) ]2 + cr2 
e 

Table 9 has been derived without defining the effects of the model in such a way 

as to imply what are so often called the "usual restrictions", namely 

B 
o, Et3. = 

j=l J 

T 
0 1 E -rt3 .. 

. 1 ~J 
~= 

B 
= 0 for all j, and L T~ .. 

. 1 ~J J= 
= 0 for all i. (21) 

When the effects are defined so that (21) applies then the expected mean squares 

of Table 9 simplify to more familiar forms. That for MST, for example, becomes 

E (iviST) 
T 

= Bn E -r~ + 0 2 
T - 1 i=l 1 e 

(22) 

The expectation in (22) differs from E(;:vJ.ST) of Table 9 because (21) is 

assumed to hold in deriving (22) but not in deriving Table 9. Nevertheless, the 

two expressions for E(HST) have the same meaning insofar as interpreting the F-
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statistic MST/MSE is concerned. This is so because it is possible to define the 

effects of the model in such a way that (21) and (22) are satisfied and so that 

the T. in (22) has the same meaning as does T. + (T~). - [T + (T~) ] in E(MST) 
~ ~ ~. . .. 

of Table 9. Hence when interpreting the F-statistic MST/MSE it is immaterial 

whether one uses the expected mean s~uares of Table 9 or those akin to (22) based 

on (21). In beth cases the interpretation is the same: l~T/MSE is testing the 

significance of treatment effects in the presence of interactions or, equivalently, 

of treatment effects plus their average interaction effects. All this, of course, 

has been well known for a long time, but bears repetition in terms of relating 

the fixed effects model to the random and mixed models. 

Defining elements of the model so that equations (21) are true has the con-

sequences just described only with balanced data. With unbalanced data (21) has 

no such simplifying effects. This is because the sums of squares appropriate to 

1u1oalanced data do not have expected values that involve means of effects in such 

a sL~ple manner as they are involved with balanced data. Sometimes weighted re-

strictions are suggested but when some of the cells are empty, as is often the 

case with unbalanced data, this has no simplifying effect on the expectation of 
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mean squares either. 

Differences in the expected values of the mean squares of Table 6 can be 

noted for the three different models. With the random model (Table 7) every ex­

pectation is a linear function of variance components; for the mixed model (Table 

8) some expectations involve only variance components whereas others involve 

quadr~tic functions of the fixed effects as well; and for the fixed effects model 

(Table 9) every expectation is the error variance plus a quadratic of fixed effects. 

Su~\'eying the many subtleties of analysis of variance models is not the pur­

pose of this paper, as is obvious from the preceding discussion of models and 

expected values. (One author is reported as having at one stage 512 alternative 

sets of assumptions about the 2-way classificationt) The reader who wishes to 

pursue these topics in detail has many opportunities to so do: Sheffe Ll959], for 

example, provides a good entre to the relevant literature, which includes numerous 

~ayers in the late 1950 1 s, especially those by M. B. Wilk and 0. Kempthorne, J. 

Cornfield and J. W. Tukey, and H. Scheffe himself. The references listed in these 

papers will lead the interested reader to many others. He is to be cautioned, 

however, that this literature deals largely with balanced data, giving little 

attention to unbalanced data. 

9. Distribution-free characteristics 

Up to this point no mention has been made of distributional properties for 

the random elements of our models, other than that they have zero means and co­

variances, and finite variances. Although the analysis of variance 
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table for data from a fixed effects model is basically just a convenient summary 

of the arithmetic involved in calculating F-statistics 1 the use of those 

F-statistics in tests of hypotheses is founded upon normality assumptions. 

However, expected values of mean squares in analysis of variance tables do not 

use these normality assumptions, and so variance components estimators obtained 

by the analysis of variance method of estimation do not, of thsnselves, depend 

upon normality assumptions. The expected values apply to any distributions that 

have zero means and covariances, and finite variances, and subject to this mild 

requi:r.e!ll.P.nt the analysis of variance method of estimation can therefore be used 

regf!;::-rlle~Js of distributional properties. However 1 resulting estimators have limi­

ted properties: they are unbiased, they are minimum variance among the class of 

quadratic unbiased estimators {see Harville [l969a]) but, they can also yield 

negat.:.Ye estimates and, even under normality assumptions, their distri'butions are 

9.1 Unbiasedness 

Estimators of variance components derived by the analysis of variance method 

from balanced data are always unbiased. This is so whether the model be random 

or mixed. It is also a property of estimators obtained by the same method from 

unbalanced data, but for random models only; for mixed models such estimators are 

biased. We return to this point later, noting here that not even this simplest 

of properties, unbiasedness, is universally true for analysis of variance esti­

mators of variance components. 

Proof of unbiasedness of estimators from balanced data is simple. Suppose 

m is the vector of mean squares and a2 is the vector of components to be 
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cstim8.ted. Then, if E(:;:;) == pa2 for some non-singular matrix f, 1·1e take ~ == P~2 

2 
as the equations for estimating a • Hence 

and 

-1 p m. (23) 

&2 . b" d i.e. lS un lase • In a random n;odel m is the vector of all mean squares in. 

the analysis of variance, v1hereas in a mixed model m is just those mean squares 

·v1hose expected values involve no fixed effects. 

9.2 ?ampling Variances 

Sampling variances of variance components estimators involve relatively 

fearsome formulae in all except the simplest of situations, namely balanced data 

and models that include normality assumptions, v!e therefore quote :1o results 

here but just indica.te vlhere they can be found. For balanced data, 11ithout the 

use of normality but includj_ng the case of sampling from finite populations for 

the ranclorn effects, Tukey (1956) gi vos results for the 1- and 2-1·JCJ.y classifica-

tions, the Latin Square and balanced incomplete block designs. He also indicate's 

procedures for.k~uay classifications generally; and 

third moments of estimators of a 1-·IJaY classification, Hool\e (195:"] ckals with 

similar problems and, as Scheffe [l959, p. 3l~6J cocments, ''obtained sorr.e :result~ 

for the more realistic tn:atment of inteToctions (core Tealistic than independence 

in the non-normal ca<-;e), but they look cliscouraL~il1c;ly COHil'llicat.ed". Quo:L'l::ill'S:\:' 

ltave i)l::;o oeen loo:.\:ed at, in a m·:tnneT of speakinc-;, for situations tho.t night be 



-34-

called partially normal - normally distributed error terms and non-normal random 

effects. In this situation Roy and Cobb (1960] discuss replacing the random effects 

by a 11 substitute variate" having k equally probable discrete values, which they 

then show how to make inferences about. Their work is presaged by the thought 

that whereas a variance however suitable it may be as a measure of dispersion for 

the normal distribution nmay be inappropriate for other distributions". 

9.3 Minimum Variance 

Variance component estimators obtained by the analysis of variance method are 

minimum variance quadratic unbiased, as shown by Graybill and Hultquist (1961). 

This means that among all estimators of ~ which are both quadratic functions of 

the observations and unbiased, those derived by the analysis of variance method 

have the smallest variance. Furthermore, this is true under fairly wide conditions, 

and not just under the normality assumptions. When normality is assumed the esti­

mators are not just minimum variance quadratic unbiased but are minimum variance 

unbiased, - i.e., from among all unbiased estimators they have minimum variance. 

Graybill (1954] demonstrated this property for nested classifications and Graybill 

and Wortham [1956] showed it for crossed classifications under normality, as does 

Furukawa [1959]. The Graybill and Hultquist (1961) paper relaxes the normality 

conditions. Harville (1969a and b] also considers the minimum variance property, 

in terms of quadmissability, for unbalanced data in the 1-way classification. 

9.4 Negative estimates 

Variance components are, by definition, positive. Despite this, estimates 

obtained by the analysis of variance method can be negative. This can occur in 

even the simplest of cases; for example, suppose data consist of the following 

four observations in two classes. 
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Table 10 

Hypothetical data in 2 clc-~,3ses 

Class l CJ.ass 2 

20 

2 10 

y 

Then, as in (10) 

T !(222 + 282 ) ··a 

~({, 0:: 502/4 :::: 625, 

Table 5 for these data is then as shovm in Table ll. 

Table ll 

Analysis of variance of hypoLhetical data 

----·-·--· ------
SauTee d:f 

Beh.Yeen classes 1 

Error 2 

S1J.m of squares 

634 - 625 = 9 

He an 
Square 

9 

0:: 50 

Expected 
l!ean Square 

2 _2 
20 + lJ 

CL e 



Hence, as in 

"2 
0 

e 

(ll)) 

97 
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and "2 
0 = ~(9 - 97) = -44. 

0' 

Although this miG;ht appear to be a pathological example, it illustrates hm·l 

negative estimates can arise; from the analysis of variance method. There is 

nothing intrinsic in the method to prevent it. This is so) not only in a simple 

case such as this, but also in many .. factored situations, both with baJ_anced da~~o. 

and vli th unbalanced data. 

T 
To estimate a variance as negative is clearly emba~assing. The question 

therefore arises as to v1hat can be done 1·1hen this occurs. Seve:cal possibilities 

exist, fe1·1 of them satisfactory. 

(i) Report the estimate obtained, and learn to live Hith it, like dandelions 

in the lmm. It can be taken as evidence that the true value of the component 

is zero. This is unsatisfying 11hen one \·W.nts to utilize an estimate of' a sum of 

varianee components, one of v1hich has a negative estimate. The estimated sum 

including that component is then less than the sum c·;ithou_t it. In the a.bove 

0"2 example 
y 

"2 "2 = 0 + 0 
0' e 

(ii) Accepting_:a negative estimate as evidence that the t:rue vah.te of the 

corresponding component is ze:co sue;gests changing the estimate 1ilhich is negati v; 

to be ze1:o. This seens logical enouc;h, but as part of the estimation procedure 

such truncation disturbs the properties of the estbHJtes. For exa;·:)plc, they arc 

no lone;er unbiased. 

(iii) 'l'::.kie;_s a r;cg2tive cstino.te cs irdicat:l.on of 'l zero coP:::_;onent coulci. 
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also lead to simply ignoring that component in the model, although retaining the 

factor so far as the lines in the analysis of variance table are concerned. This 

would mean ignoring the component estimated as negative and re-estimating the 

others. Th~mpson [1961 and 1962] gives rules for doing this, known as "pooling 

minimal mean squares with predecessors11 1 and discusses applications of these rules 

in Thompson and Moore [1963]. 

(iv) Interpreting a negative estimate as indication of a wrong model is 

another possible course of action. Models require care in their specification, 

as Anderson [1967] points out, and a negative variance component estimate might 

be the signal to reconsider one's model, in terms of applicability to data and 

their origin. One possibility is to consider models that have finite rather than 

infinite populations (see Section 4.1). This is briefly discussed by Searle and 

Fawcett [1970] for the 1-way classification of Table 5. If ~ is negative, 

imputing a finite population to the error terms leads to a positive estimator of 

However, this may not be a very reasonable assumption in many situations. 
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In contrast to reconsidering one's model as a result of a negative variance 

estimate, Nelder [1954] suggests that at least for split plot and randomized 

blocks designs, the randomization model indicates that there are situations when 

a negative variance component could arise. This apparent inconsistency can be 

an outcome of the correlation between plots in the same block being less than the 

correlation between plots of different blocks. 

(v) Estimation procedures other than the analysis of variance method are also 

available alternatives whenever the latter yields negative estimates. 

Bayes estimators, which are non-negative, have been suggested by Hill [1965, 

1967] and by Tiao and Tan [1965, 1966] and Tiao and Box [1967]. An excellent 

commentary on these and on Bayes estimation in general in the variance component 

context is given by Harville [1969b]. 

Maximum likelihood estimators (e.g., Herbach [1959] and Thompson [1962]) are 

also non-negative; these, like many of the Bayes estimators, are usually based on 

assuming normality of the data, an assumption that is not required when using 

analysis of variance estimators. 

' 
Federer [1968] has also suggested a non-negative estimator which, for a~ of 

Table 5, is a~+ n-la~exp(-F) for F = MSB/MSE. Although non-negative, it is biased~ 

with a bias that tends to zero as F increases but which is also largest when a 2 
a 

is negative, namely when F < 1. Furthermore, as Harville [1969b] points out, 

the estimator is not necessarily admissible. 
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( v) If, in one 1 s ire a.t obtaining a negative ee:;timatc, all else fails then 

perhaps the only course left is that of the statistician's last hope: collect 

r!'.ore clata and repeat the analysis, either on the new data or on the nei'T and old 

pooled together. If the estimate f:com the pooled data is negative, that >wuld 

be additional evidence that the co:crcsponding component has a true value of zer0. 

Ue now introduce e:.ormality and follmr its consequences in t.enns of distribu~ 

tional properties of variance components estimato:cs. 

The assuru1)tions usually made are that the e 1 s and each set of random 

effects in the model are normally distributed with zero means and variance-

covariance structv.re set out earlier (see Sections 6.1 nnd 6.2). Then, for the 

random model 1·iith bolanced data, it can be shmm that the s1Jrns of SlJ.uares j_n the 

analysis of variance are distributed inclepeudently of each other; and each sum 

2 
of squares divided by the expected value of its mean sqwn·e is a central x -

distribution vlith dec;rces of freedom equal to those shown in the analysis of 

variance table. Thus if df, SS and HS are the terms in a line of the table 

i>IS -- SS /elf 

and, independently of one 8nothcr, 

ss 2 
i.e. 

elf 2 .... _._...._ .... _ '( . __ .... _____ -">.....,. . ES ~ v 

E (i':iS) 
I df' 

E(liS) 
"-df • (25) 

This is for the ralldom model; for the 1-:1ixed model, (2)) ·Hill o.pply for aJ.J. sums 

of :'lqua:ces 'i·lhose czpec ted values do not involve fixed effects; those that do 

involve fixed effects llill be non-central x2 ' s. 



-40-

10.1 Tests of hypotheses 

Expected values of mean squares suggest which mean squares are the appro-

priate denominators for testing hypotheses that certain variance components are 

zero. Thus in 

hypothesis H:: 

Table 6, IVJSTB/MSE is the appropriate F-statistic for testing the 

cr~S = 0; and lvlSB/MSTB is the F-statistic for testing 

2 
H : a-13 = O. In the random model all ratios of mean squares have central 

F-distributions, because all sums of squares follmr (25). In the mixed model 

the same is true of ratios of those mean squares whose expected values contain 

no fixed effects. 

In some situations the table of expected values vrill not suggest in any 

"obvious11 fasllion Ll:8 approprit1. t:;:, ,,.· · .,,_~,.~,·i Do.tn:· for testing a hypothesis. For 

example, suppose that the expected.value of a mean square is k1v~ + k2cr~ + 

+ k o-2 but that no other mean square in the analysis has expectation 
t t 

There vrould then be no "obvious 11 denominator for testing 

2 
the hypothesis H : o-1 = 0. For situations such as this the Satterthwaite (1949) 

procedure for calculating a ratio that has approximately a central F-distribution 

is as follm,rs. Suppose Ivl. is one of the mean squares, with f. degrees of 
l l 

freedom. And suppose 

E(M + ••• + M ) r s + ••• + 

1vith 

E(M + u. + M ) = m n + ••• + 

for some set of constants A.. , i = 1, ••• , ~c, and vrhere no mean square occurs in 
l 

both of these expectations. Then for testing the hypothesis H 
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M + ••• +Ivf 
r s 

F =~----~ £.1 + + l.il 
m n 

1 is approximately F p,q 

(M + ..• + M ) 2 
r s 

P = and 
(lvi + ••. + Iv1 )2 

m n 
q = --~~-----~~--

(IvJ.2 /f + ••• + M2 /f ) r r s s 
(1'12/f + ••. + i.!P/f ) m m n n 

The basis of this test is that the numerator and denominator of F are independent, 

and each is distributed approximately as a multiple of a central x2 • A more 

general form of the test is also available, in using linear combinations of the 

M's instead of simple sums of them. In that case c .lvi. is used in place of M. , 
~ ~ 1 

where the c. are positive constants. 
l. 

In all cases p and q are not necessarily 

integer-valued and interpolation is often necessary when entering the F-table 

for F . 
p,q Properties of this Satterthwaite procedure have been considered by 

Cochran [1951] and, more recently, by Gaylor and Hopper [1969), who give particular 

attention to the case when mean squares are involved negatively. 

10.2 Confidence intervals 

The procedures just described also provide a method for obtaining approxi-

mate confidence intervals for linear functions of variances, more particularly for 

linear functions of expected mean squares. The method is as follows, adapted from 

Graybill [1961]. Define x2 1 and x2 U as the lower and upper limits of a fraction n, n, 

1 - a of the ~ distribution such that 

P(~2 ~ ~2 ~ ~2 ) = 1 - a . (26) ·n,L ·n ·n, U 

Then, for any set of constants A., the approximate confidence interval on ZA..E(M.) 
l. l. l. 

is, provided ZA..Ivi. > o, 
l. l. 

(
nDI.)-1. 

p l. l. 

2 
xn u 

J 

r:A .E(M.) 
l. l. 

nL:A..M.) 
~ l. l. = 

2 
xn,1 

1 - 0: 



¥7here 

2 
analoGous to p and q p:ccviously. Since n ·Hill seldom be an intct;er, xn U and 

' 2 x L are obtained f'l"om tables using either interpolation or the nearest (or next 
n, 

larc;est) integer to n. Graybill (19C:::() sugc;ests that v1hen n < 30 a co1·rection 

2 2 
provided by Uelch (1956.·) be made to the values of '' and Y. taken from the 

''n,U ·n,L 

tables. 

Another approxination is given by Bu1Iaer ("1951) for the situation Hhere 

His confidence interval for 0 is Given by 

{~F - F l~~) _:_:1__-_ F 2_)_ .S 

12 

el · _ _J 

uhere F = Jvi2/H1 and F1 , F2 are the lm·;er a-points of the Ff· f and F -
1' 2 f,c;n 

distributions respectively. This is also the approximation suggested by 

'( , Scheffe .1959, equation 7. 2. 31.;. Other approximaU.ons, based on T.cylor cxpa':J-

sions, have also been ::n.l.QJ~ested; Bulmer ("1957), Schcfi'e/ ().95~) and Plackett 

(196Q) give references. Approximate fiducial intervals have been ccnsider2d 

by Bross (l95Q1. 

The above l"esult.s all l"elate to intervals 1·1i'ch approximate confidence 
Qft.~!O'.JS 

coefficients. One case \·There the coefficients are/exact is for· the 
i\ 

error variance, because fi =ESE has, apart fro1.1 a constant, a x2-distl"ibution 
e 
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on f degrees of freedom, say, and so a confidence interval on cr2 is, from {25) e 

~ ~SEJ = 1 - a ' 
Xf L 

' 
where ~,Land ~,u are defined as in (26). 

Other cases of exact confidence coefficients arise in the 1-way classification. 

One of particular interest to biologists concerns the intra-class correlation, 

cr~(cr~ + a~), a parameter often used in heritability studies by geneticists and 

animal breeders. In this case, as shown in Table 5, E(~illB) 

E(MSE) and from (25), with F = HSB/i'1SE, we have 

distributed as F 1 ( l)' a- ,a n-

the F-distribution on a - 1 and a(n - 1) degrees of freedom. Now define F1 and 

FU as the lower and upper limits which enclose 1 - a of the F 1 ( l)-distri­
a- ,a n-



bution; i.e. 

< == 1 - Ct. 

Then from this, as Graybill (19(1, p. 379] inclica!;es, an exact confidence 

interval for tlH:; ratio o2 / ( o2 + o2 ) c:::m be de:ci vecl as 
e et e 

(27) 

Similarly a confidence interval for o2 j(o2 -~ o2 ), the intra-class correlation, is 
ex et e 

r FjF0 ~ 1 
P' ---"--· ----

i....n + F/F - l u 

and one for o2jo2 is 
at e 

rF/Fu - 1 
F· --......... -'"" __ 

L n 

F/FT - 1 .1 < ~·~--~~·-c- • 
n 

/ 
as given in Schcffc [J959, p. 229}. 

l - Ct (28) 

l - C< (29) 

Confidence intervals for o2 in this ca8e have also been considered. If 
Ct 

2 
o is lmmm, they can be cleri ved both from ( 29), and from e 

(30) 

uhich m:·irdniltes frow SSB "bsj_ng a rC:lJlti-o1e of the ,,2 ~di r·tribut·ion s.s in (25',·, ..__, ~ .... '"a ... l -- J -~ - -'- c.· 

Both require kno':!in;J o2 :i.n onlcl' to ho.ve a cunficl.cnc:c :Lnl;crval on o 2 To 
e a' 



-45-

overcome this difficulty, Hillia.ms [1962) has combined (29) and (30) to give an 

interval on a~ as 

P[ SSB(l
2

- FjF) 

nxa-1 u 
' 

- 20: • (31) 

The extent to which the left-hand side of (31) exceeds 1 - 2a: is discussed by 

Williams; it depends upon incomplete gamma functions, and Williams comments that 

the width of the interval "is often only slightly different from the 1 -a: inter-

val" that can be derived from (30) when o2 is known. e 

It is clear from the form of (28), (29), and (31) that the limits of the 

intervals therein can have negative values. In discussing the difficulty of inter-

preting negative bounds VJillia.ms (1962), in reference to (31), suggests that when 

the lower limit is negative it should be put equal to zero; and when both limits 

are zero, a~ should be taken as zero. Scheffe (1959], in considering this problem 

relative to (29) suggests leaving negative limits untouched even though several 

ways of amending them are available. As he rightly says, leaving an interval esti-

mate like that from -5 to 2 is "stronger evidence that the true value of a non-

negative parameter is zero than that from" 0 to 2. 

Simultaneous confidence intervals for all the variance components ratios 

a~/a2 available in a random model (balanced data) have recently been suggested 
~ e . 

by Broemeling (l969a] with an additional example in Broemeling (1969b]. They 

rely on a property of the F-statistics given by Kimball [1951]. 

10.3 Distributions of estimators 

The analysis of variance method of estimation yields estimators of variance 

components that are linear functions of mean squares. And under normality 
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assumptions those mean squares are distributed independently as multiples of 

central x2 -variables, in accord with (24) and (25). Hence the variance component 

estimators are linear functions of these x2 -variables, some of them with negative 

coefficients. No closed form exists for the distribution of such functions; 

furthermore, the coefficients are themselves functions of the population variance 

components. For example, in cr2 = (MSB - MSE)/n of the 1-way classification (Table a 

5), using (25) and x~ to mean a variable having the x2 -distribution with k degrees 

of freedom, we have 

na2 + a2 a2 
a e 2 

= n(a - 1) Xa-1 
e 2 

an(n- 1) Xa(n-1)' (32) 

The exact form of the distribution in (32) cannot be derived because of the negative 

coefficient of the second term. Furthermore, since both coefficients involve the 

unknown variance components, they are unknovm and this also contributes to the 

distribution of cr~ being urUcnown. For assumed values of the components, the 

methods of Robinson [1965] or of Wang [1967] can be employed to obtain the distri-

but ions. 

The one exception to the general intractability of the distribution of 

variance component estimators is, of course, that of the error variance: 

where SSE has degrees of freedom fSSE' 

Empirical evidence of the nature of the distribution of variance components 

estimators has been reported by Leone et. al. (1966], for a single 4-way nested 

classification with 5 levels of the main classification and two each of the 

others. Computer simulation of 1000 experiments of sampling from populations of 



kno>;m va:c-iances revcaJ.ed considerable var:Lo.IJil.i·'~Y in the e.stimatocs ~~~tainco, 

Three different puruJ.ations '•lerc used, normal., rcctanc:nlaL' and expor,er:tial, each 

11i.tl:l eight diffcl'ent sets of the four variance conponents involved. It is 

suggested that PC:Tason Type JII cul'ves might be suito.ble for the distributions 

of the estimators fl·on the norma.l and n::ctangulal' lJOpJlations. Di.scussion is 

also given of the -~·requency of negative estimates: eupirica.J_ evidence for all 

three popul:Jtio'ns J.nd 0naJytic results for the noTual indicate that in certain 

circunstances neg8.tive estimates can be expected to occ1.Jr 25~G of the U.rne. 

Under normality assunrptions, YJ2one et A.l (i9G6J give a useful procedure 

for deriving the probability of a ne~ative estimate in nested classifications. 

Le:t us suppose that in the anaJ.y;:;is of variance 

...,.,...--· 

('and 

'~..,..,~- ·~ .. -

Then 

Hence 

,rr~ 
·- -"I I 1' f' 

'--· 1'~2 
< (33) 



-48-

~~ In the 1-w-ay classification (33) is 

where p = rfj cr~ • 

Calculation of (33) demands knowing the variance components that are being 

estimated. However, for a series of arbitrary values of the components, (33) can 

be calculated and used to provide some general indication of the probability of 

obtaining a negative estimate. 

It is r!lear that a result analogous to (33) could also be developed based 

on the approximate F-statistic discussed in Section 10.1. 

10.4 Sampling variances of estimators 

Although distributions of the estimators are, to any practical extent, un-

obtainable, variances of the estimators can be derived. They do, of course, 

involve the unknown components. 

In general we ~~ite a variance component estimator as 

a linear function of mean squares, its variance being 

rk~ar(M.) 
~ l. 

because the mean squares are independent; 
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- and because, as in (25), .i\ has a distribution that is a multiple of a x2 (the 

variance of which is t>'lice its degrees of freedom), 

var(M.) = 2f[E(H.))2/f~ = 2[E(lvi.)]2 /f. 
~ ~ ~ ~ ~ 

(34) 

so that the sampling variance of a2 is 

var(a2 ) = 2Ek~[E(M.)]2/f .• 
~ ~ ~ 

(35) 

In this expression the terms [E(M.)]2 are just squares of expected mean squares, 
~ 

and as such are obtainable from analysis of variance tables like Table 5. They 

are linear functions of the variance components. 

~~ In the 1-way classification 

a~ = ivfSE/ a ( n - 1) and "a~ = MSB/ n - iYiSE/ n 

and so 

Hence, using Table 5, 

2a4 
("'2) e var o = ( l) e a n -

and var(a2) = g_ { [E(MSB)) 2 + [EfMSE))2 } • 
a 2 a - 1 a n - 1) n 

(36) 
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The procedure of (35) applies to any variance component estimator obtained 

from balanced data by the analysis of variance method. It also extends to other 

moments. Each estimator is a linear combination of multiples of independent x2 -

variables and the r'th moment of any one of these combinations is a linear 

function of the r'th moments of the x2 -variables. The unknown components will, 

of course, be involved in these linear functions, just as they are in (35) and 

(36). 

The mean s~uares in an analysis of variance of balanced data are, under 

normality assumptions, independent. But estimators of variance components are 

not. In the above example 

cov('O~,'O~) = -var(MSE)/n = -2a~/an(n - 1) • 

Obtaining optimum-propertied estimators of these sampling variances and 

covariances of variance component estimators is complicated by the fact that the 

sampling variances and covariances are quadratic functions of the very variance 

components being estimated. Unbiasedness is about the only property that can be 

achieved. This is done by replacing [E(M.)]2 /f. in the expressions for the 
~ . ~ 

variances and covariances by Ilf.Y (f. + 2). Thus from ( 35) 
~ ~ 

k.M~ 
== 2.E ~ ~ 

. f. + 2 
~ ~ 

is an unbiased estimator of var(a2 ). The reason is as follows. By definition, 

and from (34), 
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so that 

Hence 

M~ [E(I-1.) ]2 

--~~~2 is an unbiased estimator of ~ 
fi fi 

~ An unbiased estimator of var(cr2 ) in the 1-way classification is, 
a 

from (36) 1 

(nB2 + cr2 ) a4 
~r(cr2) = g_ [ a 1 e + ( e + 2] . a 2 a + a n - l) n 

10.5 Sufficiency 

On the basis of the normality assumptions, the analysis of variance estima-

tors of variance components obtained from balanced data are based on minimal 

sufficient statistics. For example, in the 1-way classification it can be shown 

that the likelihood of the sample of observation reduces to 
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It is clear from this that SSE, SSB and y are a set of sufficient statistics, and 

it is from SSE and SSB that o2 and o2 are derived. Graybill and Hultquist (1961] 
e a 

establish wide conditions under which this kind of result is true generally for 

analysis of variance estimators of variance components. They also consider the 

property of completeness. Weeks and Graybill [1961, 1962] also consider minimal 

sufficient statistics for balanced incomplete block designs, as do Kapadia and 

Weeks [1963) for the interaction ease thereof. 

10.6 Maximum likelihood 

Initial establishment of the analysis of variance method of estimating vari-

ance components relied upon nothing more than its intuitive appeal of equating 

observed mean squares to their expected values. The unbiased estimators so de-

rived have since been shown to have certain optimal conditions, especially under 

normality assumptions. We might well ask, however, about the aptness of using the 

method of maximum likelihood as a procedure for estimating variance components. In 

the case of estimating parameters of a fixed effects model it leads in many cases 

to the same estimators (under norw~lity) as do the methods of least squares and 

best linear unbiased estimation. One might hope, therefore, that with variance 

components estimation it would lead to the analysis of variance estimators. But 

such is not the case, because these estimators can take negative values. Thus they 

cannot be maximum likelihood estimators since these would be derived by maximizing 

the likelihood over the parameter space, which is non-negative so far as variance 

components are concerned. ~mximum likelihood estimators have therefore to be non-

negative. 

Equating to zero the partial differentials of the likelihood functions yields, 

for balanced data, the same equations as can be used to obtain analysis of variance 

estimators. However, to obtain maximum likelihood estimators, these equations have 

to be considered in the light of requiring that such estimators have always to be 

non-negative. 
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Herbach [1959] has considered this problem in some detail as has also Thompson 

[1962], who uses a restricted maximum likelihood procedure confined to just that 

portion of the set of sufficient statistics which is location invariant. From 

this he develops his procedure, mentioned in Section 9.4, of pooling minimal mean 

squares with predecessors when the analysis of variance method yields negative 

estimates. Indicative of results from these papers are those for the 1-way clas-

sification. On defining 

a - 1 
9 = lvlSB - l1SEJ a + ;\, 

the estimators are, for e ~ o, 

and for e < o, 

cr2 = 8/ n and a2 = I>ffiE 
a; e 

and cr2 = SST/(an +A) • e 

With A= 0 these results are Herbach's; with A= -1 they are Thompson's. 

When a is relatively large,estimates derived from these estimators differ little 

(save for using zero when e < 0) from the estimate derived from the analysis of 

variance method, namely 8/n with A = -1. 

Commenting on these results Robson [1965] suggests that an estil1ator for a2 
a; 

having smaller mean square error is 8/n with A = +1, an estimator which is also 

considered by Zachs [1967]. Another estimator with uniformly still smaller mean 

square error is given by Klotz and Milton [1967] and further considered by Klotz, 

Milton and Zachs [1969). These authors also compare the mean square error of 

these estimators numerically, for a variety of values of a, nand a2 /a2 • 
a; e 
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TOPICS IN VARIANCE CO~ONENT ESTIMATION (continued) 

s. R. Searle 

PART III: UNBAlANCED DATA 

Estimating variance components from unbalanced data is not as straight­

forward as from balanced data. This is so for two reasons. First, several methods 

of estimation are available (most of which reduce to the analysis of variance 

method for balanced data), but no one of them has yet been clearly established as 

superior to the others. Second, all the methods involve relatively cumbersome 

algebra; discussion of unbalanced data can therefore easily deteriorate into a 

welter of symbols, a situation we do our best (perhaps not successfully) to mini­

mize here. 

It is probably safe to describe the Henderson [1953] paper as the foundation 

paper dealing with variance component estimation from unbalanced data. The methods 

there described have, accordingly, often been referred to as Henderson's Methods 

1 1 2, and 3· As described in Searle [1968] 1 Method l is simply an analogue of 

the analysis of variance method used with balanced data; Method 2 is designed to 

correct a deficiency of Method l that arises with mixed models; and Method 3 is 

based on the method of fitting constants so often used in fixed effects models. 

Prior to the publication of these methods Winsor and Clark [1940] had utilized 

the analysis of variance method in studying variation in the catch of plankton 

nets, Eisenhart [1947] had clearly specified distinctions between fixed, random 

and mixed models and Crump [1946, 1947 and 1951] had established sampling variances 

of the variance component estimators in the l-way classification. Henderson [1953] 
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however, greatly extended the estimation procedures, especially in describing 

three di~~erent methods and in indicating their use in multi-way classifications. 

Since then, a number of developments have been made. Variances of estimated com-

ponents have been considered by Tukey [1957a], Searle [1956, 1958 and 196la], 

Mahamunulu [1963] 1 Blischke [1966 and 1968] 1 Harville [1969c], Rohde and Tallis 

[1969] and Low [1969]; defects in Henderson's Method 2 have been demonstrated by 

Searle [1968], and difficulties with the mixed model have been discussed by Searle 

and Henderson [1961] 1 Cunningham and Henderson [1968] and Thompson [1969]; and 

other methods of estimation have been developed: maximum likelihood by Hartley 

and Rao [1967] and large sample variances therefrom by Searle [1970], symmetric 

sums by Koch [1967a and 1968] and best quadratic unbiased estimation by Townsend 

[1968]. Not all of these developments have been applied to all o~ even the most 

straightforward applications and same of them are more specialized than others. 
cnly a 

What is even more important,/few comparative studies have been made on the rela-

tive merits of the different methods; Bush and Anderson [1963], Anderson and 

Crump [1967] and Kussmaul and Anderson [1967] are three such. 

11. General quadratic forms 

All currently available methods for estimating variance components from 

unbalanced data use, in one way or another, quadratic forms of the observations. 

Before describing the methods we therefore outline properties of quadratic forms 

of observations coming from a general linear model. This is taken as 

where l is a vector of observations, ! is a matrix of known values, ~ is a 

vector of parameters (including both fixed and random effects) and ~ is a 

vector of the customary error terms. The vector of means and the variance-
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covariance matrix are taken respectively as 

ll.l Expected values 

The expected value under the above-mentioned model of the quadratic form 

l'Sl is 

( 37) 

where 1 tr 1 represents the trace operation on a n~trix 1 that of summing its diagonal 

elements. This result is the basis of most methods of estimating variance compon-

ents from unbalanced data. The general methodology is to obtain expected values 

of quadratic forms from (37) and to equate them to their observed values; i.e., to 

equate E(l'~) to the observed l'~· This is exactly what is done with mean 

squares (which are quadratic forms of the observations) in the analysis of variance 

method for balanced data. But, whereas with balanced data there is "obviously" 

only one set of quadratic forms to use (the analysis of variance mean squares), and 

they lead to estimators that have some optimal properties, there are many sets of 

quadratics that can be used for unbalanced data. However, most of such sets lead 

to estimators that have few optimal properties and no particular set of quadratics 

has yet been established as more optimal than any other set. 

Result (37) applies no matter what form of the model l = ~~ + ~ is used: ~ 

always includes all the effects in the model, be they fixed or random or a mixture 

of both. In most situations we assume that E(~) = 0 1 so that var(~) is E(~~·) = 

In addition, ivhen ~ is a vector of fixed effects, E(f2~') = §E(~') = O· and _, 

when e includes elements that are random effects they are assumed to have zero 

mean and zero covariance vrith the elements in ~; thus at all times we take 
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E(~~~) ; E(~~·) = O. 

In a fixed effects model e is a vector of fixed effects, E(y) ~ ~ andy = 

var(~) = var(~) = a!~ , where there are N observations, i.e. 1 :[ is N X l. Then 

( 37) becomes 

In a mixed model ~~ can be partitioned as 

6' = (6' (_3A1 f)' - -1 -B 
... p' ) -K 

where ~l contains all the fixed effects of the model (including the mean) and where 

the other 6 1 s each represent the set of random effects for the factors A, B, c, 

... , K, these random effects having zero means and zero covariances with the 

effects of any other set. [Although only single subscripts are used, interaction 

effects and/or nested-factor effects are not excluded by this notation. They are 

considered merely as factors, each identified by a single subscript rather than 

the letters of the appropriate main effects; for example, AB-interaction effects 

might be in the vector labeled ~F.] Then, with ~ partitioned conformably with ~' 

K 

~ =-tl~l + e!A~e~e + e 

K 
and v = var(~) = E ~9var(~9 )~9 + cr~~ • 

8=A 

( 38) 

On making the usual assumption about the model that the random effects in each 

factor are uncorrelated and have the same variance, i.e., that 

for 8 =A, B, ••• , K, 

(37) then becomes 
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K 
= :31'x1•QX1i31 + I a2 tr(QX X') + a2 tr(Q) • 

- - -- - 9 --A-9 e -9=A -

In a random model, all effects are random except ~, so that ~l = ~ and 

! 1 = ~ and so from (39) 

where the coefficient of ~2 , namely ~'S!1 is the sum of all elements of ~· 

(~is a vector of 1 1 s.) 

ll.2 Normality assumptions 

(39) 

(40) 

Distributional properties of quadratic forms ~~~ are mostly known only when 

~ is normally distributed N(~, y). The well-known theorem (e.g. Graybill, [1961]) 

then applies, that ~·~ has a non-central x2 -distribution if and only if ~Y is an 

idempotent matrix. This theorem, however, has little use in the estimation of 

variance components from unbalanced data because few of the quadratics involved 

are such that ~Y is idempotent. Despite this, the variance of l'~ is obtainable 

as 

(41) 

and the covariance between two quadratics y 1Qy and y 1Ry is .. .,._ ---

These results hold provided Q and R are symmetric. (41) is a special case of a - .. 
more general result that the r'th cumulant of l'Sl is 
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No doubt (42) could be generalized in similar fashion. 

12. The anallli» of_y?-riange method (Henderson's Method 1) 

The analysis of variance method of estimating variance components is 

essentially the only method used vli th balanced data. It is also the most 

frequently used method with unbalanced data, although its application is not as 

straightforv1ard and its deficiencies are more pronounced. Nevertheless, it is 

likely to continue as an oft-used method and so considerable attention is devoted 

to it here. Hith balanced data the method consists of equating expected mean 

squares to their expected values. Essentially the same procedure is used '~<lith 

unbalanced data, as is no'd shown in terms of an exaraple, the 2-way crossed class-

ification with interaction. 

The model for a levels of an A-factor crossed vrith b levels of a B-factor is 

Y · "k = 1-" + o: · + ~ · + Y. · + · el. J"k lJ l J lJ 
(43) 

vlhere y .. , is the k' th observation (for k = 1, 2, ••• , n .. ) in the i 1 th level of 
lJK lJ 

the A-factor and the j 'th le~el of the B-factor, v1here i = 1, 2, ••• , a and 

j = 1, 2, ••• ' b. Thus n .. is the number of observations in the (ij)'th cell 
lJ 

the i'th level of A and the j'th level of B. Since not all of the cells may 

contain observations \·1e let s represent the number that do; i.e., s is the number 

of n .. 's for which n .. > 0. Tnus ab-s is the nTh"Dber of cells containing no data 
lJ lJ 

(n .. = o). In (43), iJ.. is a general mean, a. is the effect due to the i'th level 
lJ l 

of the A-factor, 13. is the effect due to the j'th level of the B-factor,· Y .. is 
J lJ 

the interaction effect and e .. k is the customary error term. In terms of (38) the 
lJ 

model (4 3) is 

-··---------- -----------~--. --- -~----------
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with ~A' ~B and ~C being the vectors of effects corresponding respectively to 
have 

the A and B-factors and to the AB-interactions. In random models thesejvariance 

matrices a 2r , o2r and o2 I and covariances betv1een different effects are all 
A-a B-b AB-s 

zero. 

12.1 Analogous sums of squares 

The analysis of variance of balanced data from the above model contains a 

line for the A-factor, vlhich has a sum of squares ( s~ ~ ·fv1.ble 6) 

a a 2 2 

Ibn{Y. )2 \ y. y - .~ ••• - y = /..... - • 1. •• . .. abn 
i=l 

. 1 bn 
1.:::: 

The analagous term for unbalanced data is 

a 2 2 
Ly. 

y 
SA = 2..!..!. ... (44) - --

. -l n. n 
1.= l.e •• 

This is one of the terms used for estimating variance components by the analysj_s . 

of variance method from unbalanced data: the computed value of SA is equated to 

E(SA) which can be derived from (40). It will be a linear function of the 

variances involved. The other terms used, · all of them 

analogies of the balanced data analysis of variance sums of square~ are 

b 2 2 
y . y 

SB = \'~ - -- ' L 
i=l 

n 
.j 

n 
•• 

(45) 

·., 

a b 2 a 2 b 2 

2 > yij~ '\ y. IY. y 

SAB = -- ...2:.!..!. ~ + -!_.!...!. (l.t6) 
L ' 

i==lj=l n .. i=l n. . ln . n 
l.J 1.. J= .J •• 
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and a b n .. a b 2 ~J 

SSE I \' I 2 I L. Yi.j. = yijk - • /__, 

i=l j=l k=l i=l j=lnij 

(47) 

Estimators of a!, o~, o!s and o! are _ derived by equating each of 

(44)-(47) to their expected values, v1hich will be linear in the four variances. 

Before looking at the form of these expected values, 1·1hich are derived from (4o), 

certain -::haracteristics of the S' s a.'te. ,,Jod:1. notts'lg. 

(i) Empty cells. Since n .. is the number of observations in a cell it can, as. 
~J 

mentioned, be zero. The summations in SAB and SSE that involve n .. in the 
~J 

denominator are therefore defined only for the (i, j) combinations for which n .. 
:LJ 

is non-zero; i.e.Jthe summing is over only those cells having observations in 

them. The possibility of zero denominators is thus removed. This is standard 

practice in unbalanced data analysis. 

(ii) Balanced data. It is clear that when the data are balanced, i.e. n .. = n 
:LJ 

for all i and j, then SA reduces to Thn(y. 
~ .. -- y . .. In similar fashion SB 

SSAB and SSE of (45)-(47) also reduce to the familiar analysis of variance sums 

of squares for balanced data~ 

(iii) A negative 'sum of squares'. Suppose S AB is cor,1puted for the data of 

Table 11. 

Table ll 

5 observations in a row-by-column analysis 

Row 

1 

2 
Column Total 

6, 

Column 

1 

6 
42 
54 

Row 

2 Total 

4 10 

12 60 
16 io 
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From (46) 

i.e. SAB is negative. Thus SAB is not a sum of squares; it is a quadratic form,­

but not positive semi-definite. Although this is not so with all S's of the 

example this illustration shows that, in general, the analogies of balanced 

data analyses of variance sums of squares may not ahmys be sums of squares in 

unbalanced data. They might therefore be referred to as analogous swns of 

squares. 

(iv) Uncorrected SllmS of squares. Because, as has just been demonstrated, the 

S's of unbalanced data estimation are not all positive semi-definite, it is 

e convenient to deal with them in terms of uncorrected sums of squares, denoted 

by T's, as introduced for balanced data in Section 6.1. Thus with 

a 2 a b 2 
= \ Yi •• 

L ' . 1 n. 

b 2 
\-y. 

T - ) •J• B- L--, 
\' \. Y .• 

= L - L2.l!.' 
i=1 j=1 nij ~= ~. 

a b n .. 
~ ~J 2 

T = E L: E y .. , 
0 i=1j=lk=l ~Jk 

tne S-terms of (44)-(lq) are 

-------- --------- ---------

. 1 n . 
J= ·J 

2 
y 

and T • • • 1-J.=n--, 

and 

and 

•• 

SSE = T - T • o AB 

. (48) 

(49) 
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Although expected values of S's can be derived using expressions such as 

(44)-(47) directly in (40) 1 they are obtained more easily by using (48) in (40), 

and then (49). This is so because of the tractability of the matrices involved 

in writing T1 s in the form~~~. For exampl~that for TA is the direct (Kronecker) 

sum of matrices (1/n. )J , where J is a square matrix of order n. with every 
~. -n. -n. ~. 

~. ~. 

element unity. Indeed, as will be: shown in (53), these lllatric.es 

enable one to write down the expected value of any T quite generally from (40). 

Similarly, (41) and (42) can be used for deriving the variances and covariances 

of the T's, and these, by means of (49), lead to variances of the S's which in 

turn lead to variances of the variance component estimators. Thus the T1 s are a 

convenient means of deriving the estimators and their properties. 

12.2 Expected values 

Indication of the nature of expected values of S's can be gained from E(SA) 

which, for the customary random model described above, is 

= (n -.. 
b 

a 
L: n~ 

i=l l.. 

n 

a L: n~. 
( .,..., . 1 ~J 

+ :L ..... J= __ 
n. 

i=l ~. 

a b 

b 
a !: n~. 

( '"'"' ·-1 ~J ., J-
L, n. -

i=l ~. 

~ 2: n~. 

b 
Z: n2 

j=l .j )a2 
n . B 

i=l j=l ~J ) 
n a~ + (a - l)a! • 

• • 

(50) 

The most noticeable characteristic of this expression is the relative com-

plexity of the coefficients of the a21 s- especially compared to their counter-

parts in balanced data shown in Table 7, to which they simplify (after division by 

a-1 to reduce SA to a mean square) when nij = n for all i and j. 
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A second point about (50) is its non-zero coefficient for every o2 in the 

model. This contrasts with Table 7 where, for example, E(MST) has no term in a~: 

with unbalanced data from crossed classifications the expected value of every S 

contains every variance component of the model. [With nested classifications this 

is modified slightly in that an E(S)-term involves only the variance component of 

the factor it pertains to and those of the factors nested within it.] 

Numeric methods of obtaining coefficients of variance components in expected 

values of S's are given by Hartley [1967] and extended by Rao [1968]. Gaylor et 

al [1970] also show numeric procedures. Algebraic forms of these coefficients for 

specific models are to be found in a variety of places. A selection of references 

(with no attempt at completeness) is listed for convenience in Table 12. 

Table 12 

A selection of references to expected values of S-terms 
C' sums of squares11 ) in random models with unbalanced data. 

Classification 

1-way 

2-way, nested 

2-way, crossed, no interaction 

2-way, crossed, interaction 

3-way, nested 

3-way, crossed 

k-way, nested 

Finite populations 
3-way, nested 

2, 3 ~ 4-way nested and/or crossed 

References 

Graybill [1961, P• 351] 

Graybill [1961, p. 354] 

Graybill [1961, p. 359] 

Searle [1958] 

Anderson and Bancroft [1952, p. 327] 

Blischke [1968] 

Gates and Shiue [1962] 

Gaylor and Hartwell [1969] 

Searle and Fawcett [1970] 



Of the references listed, that by Gates and Shiue [1962] is noteworthy because 

it gives procedures for nested cla!sifications of any order at all, and indicates 

relationships between coefficients of the cr21 s in the E(S)-terms. Gower [1962] 

suggests somewhat the same thing, for a specific example, both papers making 

reference to Ganguli [1941]. The Gaylor and Hartwell [1969] paper is also 

important for it appears to be the first mention of analyzing unbalanced data 

from finite populations; Bennett and Franklin [1954] had considered them for 

balanced data, as had Cornfield and Tukey [1956] and Vlilk. and Kempthorne [1956]. 

General rules for changing to finite populations from infinite populations are 

given by Searle and Fawcett [1970]. 

12.3 General results 

In terms of the general model (38) the T-term TA for a factor A in a random 

model can be expressed inter~ of y (Ai) and n(A.) defined respectively as the . ~ 

total and the number of the observations in the i 1 th level of the A-factor, Then 

N 
A [y (A.)]2 
\' . ~ 
'-' 

1=1 n(A.) 
l. 

(51) 

where NA is the number of levels of the A-factor. On appropriately ordering the 

elements in l this is also 

T = y'Q y 
A - -;A-

with Q = 'A 
i=l 

(52) 

~A being the direct sum (denoted byE+) of NA matrices [1/n(Ai)J~n(A.) • Hence 
~ 

from (40) 

Ne 
E [n(A., ej )]2 

. 1 l. ) J= ~~--------- cr2e + N a2 
A e ' n(A1 ) 

(53) 
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the 
v1here n(A., e.) is the number of observations in the i' th level of/A-factor and 

~ J 

the j'th level of the 8-factor. 
('S.~) 

n(Ai) and NA>'" _ result;,applies 

Vlith appropriate interpretation of n(A.,6.), 
~ J 

quite generally to any T in any random model. 

Thus for T , the total sum of squares, it reduces to 
0 

2 K 2 2 
E ( T ) = N~-~o + N L: o e + NO 

o 8=A e 

and for T , the correction for the mean, it becomes 
iJo 

2 K { Na 2} 2 
E(T!-lo) = NiJo +e:A j~l[n(8j)] o9jN + 

2 
Clearly the term N~-~o occurs in the expectation of every T. But because S's 

involve only differences between T's, expectations of S's do not contain N~-~o2 , 

and their coefficients of a2 are correspondingJ_y their "degrees of freedom". 
e 

Hhen the number of observations in any set of data is N and the number of 

sub-most cells having data in them is s, the within~cell sum of squares SSE has 

expectation E(SSE) = (N- s)o2 • 
e 

·then,· 

s :::: vector of S' s, but not SSE., 

2 2 2 
o = vector of o 's, but not o e , 

on defining 

f =vector of "degrees of freedom", the coefficients of a 2 in E(s), 
e -

the expected values of all the S-terms involved in any random effects model can 

be vlri t ten as 

----------------------
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Hence the analysis o:f variance estimators o:f a2 and a2 are 
e 

A2 
oe = SSE/(N - s) 

and 

(55) 

(56) 

In these equations the elements o:f P are the coefficients o:f the a2 's {excluding 

a;) in equations like (50). Clearly, these elements are of such a nature that 

there is no convenient explicit form for ~-l and so the estimators are best left 

in the form o:f (55) and (56). For any particular situation one :first derives 
. 2 2 

E(~) and so obtains~ from E(~) = ~~ + fae of (54). Then (55) and (56) are 

used to obtain the estimators. These expressions are also useful in deriving 

~ variances of the estlinators, as indicated in Section 12.5. 

In random models all variance component estimators obtained by the analysis 

of variance method are unbiased. --2 This is obviously so for o because E(SSE) = e 
2 --2 (N- s)oe in (55); and it is equally as clear for~ because, from (56) and (51+), 

E(~2) 

This property of unbiasedness applies to all estimators from random models 

but not to those from mixed models, as is discussed in the next section. 

An interesting variation on a random model is one considered by Harville 
I l'l~S J 

(l967b), wherein the analysis of variance estimators are biased. This is a 
j 1\ 

model where dependence is assumed beh1een the random effects of the model and the 

number of observations on them. Such a model is very realistic, for example, in 

dairy herd production, where the larger herds tend to be those with highest 
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production. If this dependence is taken into account tee usual variance esti-

mators are biased. HarviJ~e (1967b] discusses this situation for the 1-vmy 

classification and indicates the magnitude of the bias for a variety of situa-

tions. In doing so he assumes the bivariate distribution of the effects and 

their associated n's to be of a normal-Poisson form. Similar discussion of the 

2-way classification is given by Harville [1968T. 

12.4 Mixed models 

The expectation E(SA) given in (50) is based on (l13) being a random model. 

But suppose (43) were a mixed model with the a.'s being fixed and not random 
l. 

effects. The expectation -vrould then be 

' ra 2 a 2 .. 
E(SA) = . ~ n. a. - (~ n. Ct.) /n J + 

L· 1 1 " 1 . 1 1.. 1 •• 1.= 1.= 

a b 2 
~ L: n .. 

b 2 ( i j~ij 
.. n. 

i=l l.o 

i j l.J ) 2 2 
-::::--- 0aP + (a - l) 0 e" 

n 
•• 

b 2 
'E n . 

j==l .J) 2 
- (J 

n P 
•• 

(57) 

This is identical to (50) except for the first term -vrhich is now a function of 

the fixed effects, stemming from the first term of (39). Furthermore, this 

occurs in expected values of all S-terms (save that of SSE). 

More importantly, the function of the fixed effects is not the same from one 

E(S) term to the 

contail1s the term 

next. For example, 
a b ( 'E n . . a. )2 I. i::l l.J l. 

. 1 n . 
J= oJ 

•·lith the ai's fixed E(SB)) of {1'-1) 

( ~ n. a.)2 
. 1 J.. l. 
J.= 

n 
•• 

, lvhich differs from the first 

term in E(SA) of (57). T!1us E(SA - SB) does not get rid of the fixed effects 

even though it does eliminate terms in I.L• This is true generally: in mixed 
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models, expected values of the S's contain functions of the fixed effects that 

cannot be eliminated by considering linear combinations of the S's. This means 

that the equations E(~) = ~c:_2 + cr~! of the random model take the form E(~) = 

pcr2 + cr;! + 3- in the mi..xed model, where :! is a vector of quadratic functions of 

the fixed effects in the model. 
2 

Hence cr cannot be estimated by this method; 

i.e. the analysis of variance method as applied to unbalanced data (Henderson's 

Hethod 1) cannot be used for mixed models. It yields biased estimators. 

T1·1o obvious i·mys of overcoming the above difficulty involve deviants from 

the true mixed model and must therefore be considered as unsatisfactory. The 

first is to ignore the fixed effects and eliminate them from the model: what 

remains is a randor::~ model for which variance components can be estimated. The 

second possibility is to assQme the fixed effects are in fact random, and so 

treat the model as if it ·Here random; in the resulting estimation process 

components for the fixed effect factors will be estimated and can be ignored. 

vJith each of these possibilities we deal v1ith random models to which the esti-

mation process is eminently suited, but the estimators will, in both cases, be 

biased because their expectations under the true mixed model will not equal the 

variance components of that model they v1ill include functions (quadratics) of 

the fixed effects. Despite this, if the models vlhich these approximations invoke 

are in any way acceptable alternatives to the mixed model then the approximations 

may be of some use. Furthermore, they utilize the relatively easy arithn1etic of 

the method, which is sometimes advantageous in face of the greater complexity of 

analyses of mixed models that do yield unbiased estimators -- such as those 

discussed in Sections 13 and 14. 



-70-

12.5 Sampling varian(~t:s of esti.r.nt:Jrs 
Distributions of estimators of variance components frorr, unbalanced data are 

unknown, except inasmuch as the estimators can sometimes be expressed as linear 

combinations of independent non-central x 2 -variables, as discussed by Parville 

[l969d]. Some progress has been made in deriving sampling variances, however, 

although they are considerably more complicated than with balanced data. 

For ~ having an arbitrary distribution, the only results available appear to 

be those of Hammersley [1949] and Tukey [1957a] for the 1-way classification. 

Hammersley considers infinite populations and Tukey, using polykays, deals with 

both infinite and finite populations. Tukey also considers the effect of 

weighting the group means in different ways in order to reduce the variance of the 

between-group variance estimator. From a limited numerical study he concludes 

that when the between component exceeds 50% (lOo%) of the within component in 

moderately (substantially) unbalanced data, then equal weighting of the group 

means rather than the customary weighting by group size seems to give a better 

estimate of the between component. Under normality assumptions (that the random 

effects in the model are normally distributed), Robertson [1962) suggests weight-

ing inversely proportional to the square of group size might be more appropriate. 

Since most derivations of sampling variances have been made under normality 

assumptions, further discussion is confined to this situation. Foremost is the 

obvious result that with normality the residual sum of squares always has, apart 

from a constant, a central x2 -distribution. Hence 

~ 2~ 
~2 /( ) 2 ( e \ (A2) e ue ~ SSE N - s ~ XN-s N s) and so v oe ; N _ s (58) 
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just as with balanced data. This is the one exception to unknown sampling Qis-

tributions. 

For the 1-way classification Crump [1951] and Searle [1956] give the vari-

ance of the between-group component estimator. Unfortunately both results contain 

typographical errors. Crump's corrected formula (in his notation) is 

(59) 

where nh is the number of observations in the h'th group (h = 1, 2, ••. , a), with 

wh = ~a~/(a~ +~a~) and n0 = (n. - ~/n.)/(a - 1). The published version of 

(59) omits the 1/n term from inside the squared bracket of the first term. And . 
Searle's corrected formula (in his notation) is 

where N is the number of observations, c is the number of groups, s2 = ~' 

s3 =~~and f = (N- s2/N)/(c - 1). The error in the published form of (60) is 

that of having 2 instead of 4 in the second term. The more familiar form of (60)is 

2cr4N2 (N - 1)( c - 1) 4cr2 cr2N 
v(a~) = _e;;;.._ ______ + e A 

(N2 - s2 ) 2 (N - c) N2 - s2 

It was consideration of the l·way classification in Searle [1956] that led 

to applying results like (41) and {42) to the variance component problem. These 

results yield variances and covariances of the T' s >vhich, if 
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we write~ for the vector ofT's, constitute the elements of the matrix var(~). 

If the relationship between t and~ {e.g. (49)] is represented as ~ ~ ~~' the 

estimators in (56) become 

a2 = ~-l(~~ - cr!f) with s vector of S's 

t; vector of T1 s and s = Ht 

Because cr2 and each element of t have %ero covariance, the covariance matrix of 
e 

(61) 

where v(cr2 ) is given by (58); and the vector of covariances between cr2 and cr2 is 
e e 

(62) 

-1 In these results H and P are not necessarily symmetric - indeed they seldom 

will be. 

The difficult part of (61) is var(~). P comes from the estimation procedure 

E(~) = P~2 +!a~, and~ represents the relationship between the S's and T's; but 

var(!) is the matrix of variances and covariances of the T1 s that have to 

be developed from (41) and (42). Writing the T1 s in the form of (52), 



• 
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it is easily shovm for random effects models that the terms in ~ in (41) and 

(42) are, for all T's, 4~2±'Y1· Hence, because T's are involved only as differ­

ences of each other in S1 s, the last terms of (41) and (42) can be neglected in 

deriving variances and covariances of the Tts to be used in ~var(~)~ 1 of (61). 

Expressions for variances and covariances ofT's, which, from (41) and (42) 

are quadratics in the unknown a21 s 1 have been developed for several specific 

cases. The 2-way crossed classification with interaction is dealt with by Searle 

[1958], and the 2~way nested classification by Searle [1961]; and the 3-way nested 

classification is treated by i_,1ahamunulu [1963]. Blischke [1966] deals with a 

s~ecific 3-way clas~ification and Blischke [1968] develops a general procedure 

applicable to any r-way crossed classification. An appendix to this latter paper 

contains specific expressions for var(~) ef a 3-way crossed classification with 

all interactions, involving a matrix or order 36 X 36, of the coefficients of the 

squares and ~roducts of the a21 s in the variances and covariances of the T1s. In 

an r-way crossed classification containing all interactions this matrix will be 

r-1( r ) of order 2 2 + 1 1 values of which are 3, 10, 36, 136 and 528 for r = 11 2,3,4 

and 5 respectively. 
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The quadratics of the unknown variance components that are the elements of 

var(~) are "messy" functions of the n1 j 1 s of the data; for example, from Searle 

[1958], the variance of TA of (48) is 

,....., " (rn. jn.' .)2 
+'. J~ ~J 
~ 1.-J 

. i' .L • ni n . ' ~ ,..~ . ~ . 

Although this expression can be expanded into a more computable form there appears 

to be no way of simplifying it analytically. Consequently explicit expressions 

for the variances and covariances of the estimated cr2 's cannot be derived from 

(61) and (62); they must remain in that form. Implications of this are two-fold: 

the effects of unbalancedness (of different values of the n1j 1 s) on the behaviour 

of variances of variance component estimators cannot be studied, and (ii) these 

variances, through being functions of the unknown variance components, can be 

evaluated in any particular case only after allocating to those components a set 

of numerical values. This can be done either by using estimated ~ 1 s derived 

from the data (hoping, presumably, that none of them are negative), or by using 

any set or sets of arbitrary values that seem reasonable for the data at hand. 

Neither of these possibilities givesestimates of var(~2 ) that have any known, 

optimal properties. 

The elements of (61) and (62) are linear functions of the squares and products 

of the a2 's. In this situation Mahamumulu [1963] has pointed out a method for 

deriving unbiased estimators 



-75-

... 2 
of the elements of var(o ). It consists of replacing in (61) and (62) every -. 

4 2 ... 4 ... A2 
squared variance oA (including oe) by oA - v(oA) and every product of variances, 

0 2o2 (also · l d" ) b oA2~2 A (oA2 aA2) Call1"ng A B' 1nc u 1ng error y A ..... B - cov A' B • the resulting 

A c"'2 A ("'2 A2 eA~ressions var o ) and cov o , o ), they are then equations 
- e -

,. "'2) in v(o and----
A 

... ...2 ... 2 . 
cov(oA' oB)' the solutions for vlhich are unbiased estimators of the variances 

. . 2 
and covariances of the estimated o 's. ~or obtaining unbiased estimators 

explicitly this is clearly an intractable procedure in anything but the simplest 

case. 

v(cr2) 
e 

Nevertheless, Ahrens (1965) has formulated it more succinctly. Suppose ·l:1~..,;f 

of (58), the different elements of var(~2) in (61) and the elements of 

"'2 "'2 . 
cov(a , o ) in (62) are arrayed as a vector v -- of order 2r-l(2r + 1) in an 

e - -
r-way cross-classification. Then if, in similar manner, the squares and 

products of the o21 s are also arrayed in a vector J' the equations (58), (61) 

and (62) can be 1·1ritten as 

v = A'Y (63) 

~here A is square of order 2r-l(2r + 1). [This is not the matrix referred to 

earlier in discussing var(~); there it vras a case of v1l'iting the different 

elements of var(~) as vector ~_y; ~ differ..;. · from~ >though having the same 

order.] Hith this formulation an unbiased estimator of v is 

(64) 

"' · th t f th d f tl oA21 2 ' where :J1S e vee or o e squares an pov1ers o 1e s, the estimated o s. 
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This procedure is similar to that of Section 10.4. It results from the fact that 

by its definition~ has expectation E(y) = y + ~and so, by means of (63), the 

expected value of y in (64) is ~· 

Example. For the 1-way classification, (63) is 

., 
0 

0 

..l 

0 

0 

4 a 
e 

where k1 = 2/(N - c), as in (58), k2 z -2/[f(N - c)] and k3, k4 and k5 are the 

coefficients of a~ 1 a~cr= and cr~ in (60). Then, by (64), unbiased estimators of 

the sampling variances and covariance are 

-1 
04 'V(<J2) l+kl 0 0 kl 0 0 

e e 

cov(~, a:) :=: k2 1 0 k2 0 0 (J2~ 
e A 

v('O~) k3 k4 l+k5 k3 k4 k5 
..... 4 
crA 
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kl(l+k5) 0 0 
A4 cr e 

1 
k2(l+k5) 0 0 A282 (65) 

(l+kl)(l+k5) 
0 e A 

k3 - k2k4 k4(l+kl) k5(l+kl) 04 
A 

It is clear that (64) can be used only after (58), (61) and (62) have been 

written in the form of (63). Nested classifications, of which the above example 

is the simplest case, provide a relatively easy opportunity for this, for then 

the matrix P in (61) is triangular and, at least in simple cases, its inverse is 

easily obtained, Hence (61) and (62) can be readily expressed in the form of (63)~ 

from which (64) can be used. This is evid~t in the example. 

Variances of variance component estimators appear, from the literature, to 

have been used very little on actual data. This is probably so because of their 

algebraic complexity. In one series of applications (e.g., Searle [196lb] and 

Evans [1968]) the variance of the interaction component estimator in a 2-way 

classification was very large. However, in the data used there was only a small 

fraction of the possible subclasses (5 - 15%) that contained observations, with 

those subclasses having an average of only 2 observations each. The paucity of 

such data for estimating interaction variances seems clearly apparent. Nevertheless, 
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the occurrence of such data highlights the need for improved methods of estimating 

variance components. 

The nature of the distribution of variance component estimators has been 

studied through computer simulation by Leone et al [1968] for two special cases 

of unbalanced dat&. They studied nested designs that could be described as embody• 

ing planned unbalancedness~ in contrast to the unbalancedness which is often fait 

accompli in survey data. The designs used are those of the "staggered11 and 

11 inverted11 variety, as described by Bainbridge [1963]. The extent of the computer 

simulation was identical to that used by the same workers, Leone et al [1966], in 

studying a single balanced nested classification as discussed in Section 10.3. 

The main conclusion is that, for the specific designs studied, Pearson Type III 

curves might be suitable for describing the distributions. However, the limited 

degree of unbalancedness implicit in their designs precludes extrapolating con­

clusions to unbalanced data generally. 

12.6 SYp.thesis 

The calculation, for any particular set of data, of coefficients of cr2 's 

in expectations of S's and T's without first requiring the algebraic form of 

these coefficients can be achieved by a method developed by Hartley [1967], 

>·rhich he calls the method of 1 synthesis'. The method also applies to calculat­

ing coefficients of squares and products of cr21 s in variances and covariances 
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of ~uadratics. Furthermore, it a~plies not just to S1 s and TJs but to any 

homogeneous quadratic form in the observations, and it requires no distributional 

propertie~ of the model. 

The method is easily described in terms of the general model (38) where, 

for random models 1 the only fixed effect is ~· Then, writing TA as in (52) and, 

from ~e of (38), defining ~(e,j) as the j 1 th column of ~9 , the method of synthesis 

obtains the coefficient of ~ in E(TA) as 

Ne 
'\\" [ (c •)] = TA X v 1 J • 
'-' - (66) 

j=l 

Thus the method uses each column in ~e as a column of data (all 0 1 s and l's) to 

calculate TA' and sums the results over all columns of ~e· The sum, as in (66), 

is the coefficient of a~ in E(TA). 

This numerical procedure has no recourse to explicit algebraic forms of the 

coefficients. Since it applies to any quadratic form in the place of TA it can 

be used directly on the S's, and so paraphrasing Hartley we can say: apply the 

analysis of variance method in turn to each of the N9 columns of ~e used as data, 

and for a particular quadratic Q(~) form the sum of the Q(~) over the N9 analyses 

of variance, to obtain k[a~,Q(l)], the coefficient of a~ in E(Q(~)]. 
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K 
Carrying out L: H ~. analyses of variance and sU!llilling them appropriately thus 

e=A ':) 
gives the coefficients of the cr2 's in the expected values of all the S's. Since 

many of the 1 observations 1 in these analyses will be zero, any computer procedure 

designed for thi~ task should take account of this many~zeroed feature of the 'data'. 

Furthermore, the non-zero elements of ~(9 1 j) are aLl 1 1s, and this leads very 

readily to showing the equivalence of (65) to the coefficient of a~ in (53). 

The method also extends to finding coefficients of products of cr21 s in 

expected values of products of quadratic forms. This involves sums of the form 

N9 Ncp 
\' 'C'"' 
L L TA[~(e,j) + ~(~,j' )]TB[~(9,j) + ~(cp,j')] 

j::31 j 1 =l 

where a column of x_9 is added to one of X 1 in all possible combinations, and -cp 

these sums are used as 1 data' vectors in TA and TB. lilhen the data are extensive 

and the X's have many columns (perhaps hundreds, as often occurs with random ... 
models) these formulae, although computationally well suited to obtaining 

coefficients numerically in specific situations, will nevertheless entail quite 

sizeable computer time and facilities. Extensions of the method to general design 

matrices and mixed models are considered by Rao [1968]. 

13 Adjusting for bias in mixed models (Henderson Method 2) 

Iv!ixed models involve dual estimation problems - estimating both fixed 

effects and variance components. For the moment attention is directed to 

estimating just the variance components. In some situations this is exactly 

what might be done in practice; with genetic data, for example, time or year 
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variance components. On the other hand, time trends may be of very real 

interest in some data, in v:hich case their estimation together vTith that of the 

variance components vrould be considered simultaneously. This dual estimation 

problem is considered subsequently. 

As indicated in Section 12.4 the analysis of variance method for mixed 

models leads, with unbalanced data, to biased estimators of variance components. 

The metb'Jd knovm as Method 2 in Henderson (1953] is designed to correct this 

deficiency. It uses the data to first estimate fixed effects of the model and 

then, using these estimators to adjust the data, variance components are 
r 

estimated from -the ~djusted data, using the analysis of variance method.· The 

whole procedure is designed so that the resulting variance component estimators 

are not biased by the presence of the fixed effects in the model, as they are 

with analysis of variance estimators derived from the basic data. So far as the 

criterion of unbiasedness is concerned, this is certainly achieved by Hethod 2. 

But the- general method of analyzing data adjusted according to some estimator 

of the fixed effects is open to criticism on other grounds: It cannot be 

uniquely defined, and a simplified form of it, of •;~hich Henderson's Method 2 is 

a special case, cannot be used vThenever the model includes interactions betv;een 

the fixed effects and the random effects. 

The general approach of Hethod 2 can be considered in terms of the model 

vThere all fixed effects other than IJ. are represented by ~f' and all random 
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effects by 0 • As usual E(O ) = 0 and so E(S 0') = V(P ), the variance-
-r -r -r-r -r 

covariance matrix of the random effects. The general effect of correcting the 

data vector ~ according to an estimator of the fixed effects ~f is to suppose 

that such an estimator is ~f = Ly for some matrix L so that the vector of 

corrected data is ~ = ~ - ~f~f· It can then be shm·m (Searle, [196§) that the 

model for z contains no terms in ~f provided ~ is a generalized inverse of ~f" 

Under this condition the analysis of variance method applied to ~ - ~f2f' will 

yield unbiased estimators of the variance components. Hm1ever, the fact that L 
a 

has only to be/generalized inverse of ~f indicates the arbitrariness of the 

method. This lack of specificity means the method is not uniquely defined and 

hence is impractical. 

The model for ~ = l - ~f~f just described contains no term in ~f" An 
·-~/{J:,'I_-1 !:r·,'. 

additional restriction.! · ·for the model to have the same term X 13 as does the 
~ ~ -r-r 

model for ;y-, as 1·1ell as a mean term I-Ll! Hhere 1-11 is not necessarily 

equal to~· For this to occur L need not be a generalized inverse of ~f but_it 

must satisfy three conditions: 

~#-r = 9; all row sums of ~f'!1 equal; all rows of (~f - ~#-f) equal. (67) 

Although the non-unique condition on ~' that ~f~f = ~f' has been replaced by 

these 3 conditions 
(CtJ,cif") 

they too do not determine L uniquely. Furthermore, it has 
. '-~ .... ..,. 

been shovm ·that a consequence of them 
1\ 

is that the model for y cannot contain 

interactions between fixed and random effects. \·Jhether such interactions are 

considered fixed or random their existence leads to meaningless conclusions if _ 

e this simplified form of the general method is to be feasible. This is a severe 

limitation on the method. 

--------- -- --~ - ------
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Henderson's [1953] i·'lethod 2 is a particular way of carrying out the simpler 

form of the generalized method. It estimates ~f as ~f ~ ~~ with an ~ that satis­

fies (67) derived from assuming, temporarily and just for the purpose of esti­

mating ~f' that ~ : 0 and that the random effects are fixed. Then ~f is obtained 

from the equations 

x~x -1..--=r 

X' X -r-r ][ ::] [ X~] ~ ~~~ . 
-r-

It is the manner in which these are solved that leads to the solution being 

(68) 

~f ~ ~~with ~ satisfying (67). The essential part of the solution is picking a 

generalized inverse of ~~~by reducing it to full rank in such a way that in 

striking out rows and columns from X'X as many as possible are rows and columns - .. 
through ~~f· Details of this process, and the reasons for its satisfying (67) 

are given in Searle [1968]. Having obtained~ the variance components are esti­

mated by using the analysis of variance method on ~ - !f~f· Although 

~ - !f~f - ~r~r is invariant to whatever solution of (68) is used for ~f and ~r' 

this invariance does not apply to ~ ~ ~f~f· The lack of unique specification of 

the method is thus readily apparent. Even though re-writing the model in some 

full rank form leads (with different definitions of Xf and X ) to a solitary 
- -r 

solution for (68) 1 doing so does not supersede the underlying non full rank model 

in terms of which the variance components are defined. Therefore discussion of 

Method 2 in terms of a full rank model, as is done by Oktaba [1968] for example, 

whilst appearing to avoid the lack of uniqueness of the method, does not really 
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do so. Because the method has this deficiency, and also because it cannot be 

used for models that contain interactions between fixed and random effects [a 

deficiency of any method for which (67) is satisfied], its use is discouraged by 

Searle [1968]. 

A variation on Henderson's Method 2 is to estimate the fixed effects by 

temporarily assuming the random effect~ do not exist. Then ~f is derived from 

I - t • • • ~f~f~f = ~fl' wh~ch removes the lack of un~queness ~n ~=l·~f~f because 

~f(!~f)-~f is invariant to the choice of (!}!f)-. However, conditions (67) are 

no longer satisfied and the computational advantages which they imply are not 

gained. 

14 The fitting constants method (Henderson's Method 3) 

The third method described by Henderson [1953] is based on the method of 

fitting constants traditionally used in fixed effects models. It uses reductions 

in sums of squares due to fitting different sub-groups of factors in the model, 

using them in exactly the same manner as the S's are used in the analysis of 

variance method, namely estimating the variance components by equating each com~ 

puted reduction to its expected value. We illustrate the method in terms of an 

example, and then summarize the general case. 

14.1 Reductions in sums of squares 

In the earlier example of the 2"way classification random model with inter-

action, the four quadratics equated to their expected values in the analysis of 

variance method are SA' SB, SAB and SSE shown as functions ofT's in equations (49). 

The fitting constants method also uses four quadratics, derived from fitting the 

model 
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1 '"j 

shovm in (43), and three sub~odels 
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and yijk 

In fitting these models the total sum of squares is T ~ [ I Z 
0 

(48). With each model there is a reduction in sum of squares, 

to fitting the model. These reductions can be denoted by 

and R(~,A,B) 

yfjk just as in 

y 1X(X 1 X)-X 1y due - - - - - ~' 

respectively, where the letters in parentheses indicate the factors fitted in 

the respective models. [In this notation AB represents, as usual, A-by-B inter-

action.] By way of example, the last of the above models fits~, A- and B-factors, 

and so the reduction is symbolized as R(~ 1A,B). Writing the model as l ~ ~ + ~~ 

where b is the vector containing~~ the a's and ~'s, we have R(~ 1A,B) = 

l'~(~'~)-~'l for that ~· The fitting constants method of estimating variance 

components uses T and these R( )-reductions by equating certain differences 
0 

among them to their expected values, so setting up equations in the o2 's whose 

solutions are the estimators. These differences and their expectations are 

indicated in Table 13. 
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R(A,B,ABIIJ.) 

_R(B,AB I~J.,A) 

R(AB h.t.,A,B) 

SSE 
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Table 13 

Fitting constants . method of estimating variance 
components for a 2--vmy classification, random model. 

Definition Expectation 

= R(J.L·,A,B,AB) - R(J.L) Linear in 02 
A' 

02 
B' 

02 
AB 

and 

= R(~J.,A,B,AB) - R(~J.,A) Linear . 02 02 2 
J..n B' and <1 

AB e 

R(p.,A,B,AB) - R(~J.,A,B) Linear 
2 2 

= in o.AB and a 
e 

T - R(J.L,A,B,AB) 
2 

= (N - s)a 
0 e 

02 
e 

Although for this example most of these reductions simplify in terms of 

the T' s defined earlier, their presentation in Table 13 is in accord 1:lith the 

general application of the fitting constants method and illustrates prop~rties 

of the method that make it important. The last entry in •rable 13 is SSE, 

equal to the total sum of squares minus the reduction due to fitting the full 

model. 
2 

This is ahmys used and it provides, as usual, ~he estimator of o • e 

The second to last entr~, R(AB lt,,~.,A,B), is read as 11 the reduction due to AB 

after taking account of p., A and B"; or, more correctly n the reduction due to 

fitting 11' A, B and AB, over and above that due to 1.1.' A and B", namely 

' 
R(J.L,A,B,AB) .. R(J.L,A,B) as shoVIn in the table. These are the kinds of terms 

used generally in the fitting constants method. Others for the example are 

shovm in Table 13, and· the general form is discussed below. 

The notation used here, R(AB I!J.,A,B) for example, is convenient and complete, 

----------·--·· -·---------- .. ------- -···-··--··--····-·-··--·-----
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It conveniently indicates what each term is, and it completely specifies each term 

with no opportunity for confusion such as exists with other no~ations. For ex-

ample, does RAB mean R(AB) 1 R(~ 1AB), R(~ 1AB) - R(~), or R(ABf~ 1A,B)? The latter 

notation carries no element of doubt. 

Sub-models implied in any use of the R(.! .) notation must, in regard tore-

ductions in sums of squares, be different from each other and from the full model. 

For example R(~,A,AB) cannot be used because it implies a model y. 'k ~ ~ +a. + 
~J ~ 

yij + eijk which, so far as reduction in sum of squares is concerned, is indis-

tinguishable from the full model; i.e. R(~,A,AB) ~ R(~ 1A 1 B,AB). Similarly 

R(~,AB) ~ R(~ 1A 1 B 1AB). Hence terms like R(BI~,A,AB) and R(A,BI~,AB) are identi-

cally zero and never part of the estimation process. 

14.2 Expectations 

Details of the expectations in Table 13 are not shown because they involve 

cumbersome expressions for the coefficients of the cr2 's. However, the general 

form of the expectations merits emphasis. 

All expectations are obtained under the full model. Thus although R(ABf~,A,B) 

involves R(~ 1A,B) which comes from the model y. 'k = ~ + ai + ~. +e. 'k' 
~J J ~J 

pectation of R(ABI~,A,B) is obtained under the full model yijk = ~ + a1 

the ex-

+ ~. + 
J 

yij + eijk" This is true of all expectations in Table 13 and applies generally 

to the fitting constants method: expectations are always taken under the full 

model. 

Every R(.f.) term in Table 13 is the reduction for the full model minus that 

for some sub~odel; i.e., is R(~,A,B,AB) minus the R(.) for a sub-model. As a 

result, each expectation contains cr2 and just the cr2 's fer those factors which 
e 

precede the bar in R(. !-); e.g., the expectation of R(ABf~ 1A 1 B) involves only cr~B 

in addition to ~~ and similarly R(B,ABI~,A) involves only cr~, o~ and This 
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is true only for R(.!.) terms which are of the form just described, namely R(.) 

for the full model minus the R(.) for a sub-model. Suppose the full model can be 

described in terms of two vectors of factors ~l and ~E· Then R(~1 ,~2 ) is the re­

duction for the full model, and the rule for expectations illustrated in Table 13 

is that the expected value of R(~2 !e1 ) = R(e11e2 ) - R(e1 ) always involves just a; 
and the o2 1 s of the factors in e2 • This general result is proven and discussed in 

Section 14.6. It is the basis of the results in Table 13. 

The rule for the expected value of R(e2 1~1 ) applies only when the full model, 

under which the expected value is taken, is represented by ~1,e2 • Thus it does 

not apply to R(AI~,B) when the full model consists of ~and A-, B~ and AB-factors. 

However, by expressing R(AI~ 1B) as the difference between two reductions to which 

the rule does apply, its expectation is readily derived. Thus 

and expectations of the second pair of reductions can be derived from the rule. 

Details of the expectations are derived from (70). 

14.3 Estimation 

In all cases cr2 is estimated as B2 ; SSE/(N - s) just as in the analysis of 
e e 

variance method. The other cr21 s are estimated by equating the calculated R(. I·) 
terms to their expected values. And these equations are easily solved; they lead 

to obtaining the cr2 's successively from each equation. For example, working up-

wards in Table 13 

where the k 1 s are functions of then .. 's given by (70). Similarly 
~J 
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14.4 Calculation 

The preceding discussion illustrates the general use of the R(. l.) notation, 

applicable to any random model (and, as is shown in Section 14.6, to any mixed 

model with but one minor, though important, amendment). Once the expectations 

have been derived by the rule alluded to 
are 

they /often more conveniently used in 
the form of a 

/set of linearly independent functions of then. 
course, 

Tbese· will, of I yield the same 

estimators. Thus for the 2-way classification of Table 13, linear combinations of 

the terms therein that are more familiar than those terms themselves are the ex-

pressions shown in Table 14. 

Table 14 

Ter~ that can be used for estimating variance components 
by the fitting constants method, for a 2-way classification, random model. 

Total 

Linear combination of 
terms in Table 13 

R(~,A) - R(f.l) 

SSE ; T - R(f.l,A,B,AB) 
0 

T - T A f.l 

T 
0 

T 
0 

T 
f.l 

Equivalent forms 

Introduction of the T-symbols defined in (48) arises from their equivalence to 

certain reductions in sums of squares. For example, R(f.l) - Tf.l, R(f.l,A) = TA and 
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The only term of Table 14 that has to be computed additional to the T1 s of 

the analysis of variance method in (48) is R(~ 1A1 B). Calculation of this and of 

E(TAB - R(~ 1A,B)] is given for the mixed model in Searle and Henderson [1961]. 

The results given there for these two terms also apply to the random model - a 

point not made in that paper. Because the formulae have since been corrected and 

have, in any case, yet to be succinctly displayed in readily computable format, 

they are repeated here in Table 15. 
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Table 15 

Computing fonnulae for the terms needed in the fitting constants 
method of estimating variance components additional to those needed 

in the una~sis of variance method; 
for the 2-vmy classification, mixed or random models.~-

i 

To .calculate R(!J.,A,B) <:~r.;pe~f·-:. ··I 
I 

j = 1, ••• , b a 2 I 
Ln .. 

cJ.J"· = n . - ~J 
•J n. 

. , ~. 
~= .... 

To calculate E[TAB - R(~J.,A,B)] 

Fori= 1, ••• , a 
b 2 

A.. = En . ./n. 
~ . 1 ~J ~. 

J= 

c 1', ,, fi!':>'·L.'.: • -~ ... , ~~ ·- . 

c .. ' JJ 
For i = 1, • •• , a and j,j' = 1, ••• , b 

a 
r. = y . - E n .. y. 

J ·J. . 1 ~J ~ •• 
~= 

b 
(Check: E r. = 0) 

·j=l J 

2 = (n .. /n. )(A..; + n. - 2n .. ) 
l.J ~. ..... ~. ~J 

f ... ,= (n .. n .. ,/n. )(A..- n .. -n .. ,) 
~' J J l.J ~J ~ • ~ l.J l.J 

b 
(Check: E f ... , = 0) 

. 1 ~,JJ J= 

For j ~ j 1 = 1, 2, ••• , (b-1) ~F~o_r_~~·-=~1~,~·~·~·~,_a __ a~n~d~j~,J~·-·-=~l~,~·~·~·~'-(~b-l) 

{ } . -1 f jj'} 2 = cjj' and~ = 1c 

. -1 
Then t = r'C r 

B - - -

F. = {r ... ,} 
-~ ~,JJ 

a 1a 
Tnen k = Z A.. + tr(C- E F.) and 

i=l ~ - i=1-l. 

E[TAB - R(!J.,A,B)] 

. 2 2 
= (N - k)crAB + (s-a-b+l)cre. 
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/ or 
Calculations multi-way classification data do not sim~lify as much as do those 

of the 2-way case. Each reduction R(.) can be calculated as l1 ~(~ 1 ~)-~'y for the 

appropriate value of ~· A general difficulty with this is that it can involve 

very large matrices, large because their order can equal the number of random 

effects in the data. These effects may be very numerous, several hundreds or 

thousands maybe, in which case the computing requirements are extensive. One fact 

of slight assistance is that X(X'X)~X' is invariant to whatever generalized in-- - - -
verse of~~~ is used for (~ 1 ~)-, and so the easiest one to compute can always be 

used. The formulae of Table 15 for the 2-way classification are useful in this 

respect because they provide a means of avoiding a large matrix. When one factor 

has many more levels represented in the data than the other, a > > b say, the 

procedures in Table 15 involve matrices whose order is only b - l. This repre-

sents a considerable saving when, for example, a = 688 and b = 4 as it did in the 

studies of Searle and Henderson [1960). 

14.5 Too many equations 

Table 13 contains no term R(~ 1 B) = TB that corresponds to fitting the model 

Y = 11 + AJ. + e ijk ~ ~ ijk" Yet, by the specifications set out in Sections 14.1 and 

14.2, there is no reason why R(A,ABI~ 1 B) = R(~ 1A1 B,AB) - R(~,B) :TAB - TB could 

not be used: its expectation involves cr~, ~ and cr:. With this available, one 

can set up an alternative to Table 14, as shown in Table 16. 
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Table 16 

An alternative to Table 14 

R().J.,A,B) - R().J.,B) 

Total T - R().J.) 
0 

= T - T B ).1 

= R().J.,A,B) - TB 

= T - T 
0 ).1 

VJith a fixed effects model the first two lines of Table 14 are, of course, 

the t-v1o ways of looking at sums of squares for "A ignoring B' and "B adjusted 

for A"; and those of Table 16 are for "B ignoring A" and "A adjusted for B". 

The choice of vlhich table to use then depends on the nature of one's data. But 

with a random effects model, there appears to be no criteria for choosing 

bet-v1een Tables 14 and 16. Hith {:ither of them the va:riance components can be 

estimated by equating the lines therein to their expected values. And the 

resulting estimators for a! and o~ will differ, depending on vlhich table is 

2 2. 
used. (The estimators of oe and crAB ·will be the same, because in both tables 

the last two lines are the same, identical to the last t-v1o in Table 13 •·1hich, 

1'2 A2 
we have seen, determine oAB and a .) 

, e 

This is an unsolved difficulty with the fitting constants method: it can 

yield more equations than there are components to be estimated, and it provides 

e no guidance as to 1·1hich equations are to be used. Tables 14 and 16 have the 

----· .... -·-- ----·- ..... ·----
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.,.roperty of "adding up" to the total corrected sum of squares, in the manner of 

an analysis of variance table. This, on the face of it, may seem to recommend 

either of them as a reasonable set of quadratics to use, if only on the grounds 

that both of these tables reduce to the familiar analysis ef variance (Table 6) 

for balanced data. Other possibilities stem from using parts of both tables. The 

analysis of variance method, for example, uses the first lines of each table, their 

last line, and TAB - TA- TB + T~· These are the terms in equation (49) and they 

too, "add up" and also reduce to Table 6 for balanced data. In contrast to these 

possibilities, Harville [1967a] suggests using the second lines of the two tables 

and their last two lines; tbese de not "add up" for unbalanced data, but they do 

for balanced data when they then also simplify to Table 6. Low [1964] follows 

the same course ef action in the case of the 2-way classification without inter-

action, in which he suggests using R(~ 1AjB), R(~,BjA) as well as the customary 

SSE. 

In general, the problem remains unsolved, as to which of the several quad-

ratics that the fitting constants method provides should be used. It is a 

problem that is encountered not only with unbalanced data generally, but also with 

special cases thereof, such as the balanced incomplete block designs considered in 

this context by Le1v [1969] and Harville [1969c]. One possible deliverance from 

the dilemma, suggested by Robsen [1957] 1 is to apply 'least squares'. If the 

calculated reductions are arrayed in a vector ~~ and E(~) = ~~2 , then r = Aa2 are 

the equations we would like to have solved for the estimated a21 s. When we have 

more reductions in r than there are variance components to be estimated we will 

usually find that the equations r = Aa2 are not consistent.~ However, so long 

y Thanks go to D. A. Harville for bringing this to my attention. 
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as attention is confinec ~L reductions that are linearly independent, ~ will have 

full row column rank and the 'least squares' estimate of ~2 to be derived from 

.., I )-l these equations would be a' = \A'A A'r. 
~ - - -

14.6 General results 

General properties of the fitting constants method as detailed in Searle 

[1968] are now outlined. The general model l = ~~ ~ ~ is taken 

(69) 

'\·There the partitioning simply divides e into two groups of effects 1 ~l and ~2 , 

with no thought for whether the group& represent fixed or random effects. The 

only condition on the partitioning is the obvious one that no factor is tc have 

some effects in ~l and others in .~2 ;, every factor iS '\'Tholly in 2l or e2 . It haS 

then been shown (loc cit) that, where R(~1 ) is the reduction in sum of squares 

due to fitting the sub-model l = ~l~l + =' the expected value of R(~2 !~1)­

reduction due to 22 after accounting for ~l - is 

In this result r(~) and r(~1 ) are the ranks of ~ and !1 and (~1~1 )- is a 

generalized inverse of ~l~1 • 

The importance of (70) is that the only e-term involved is e2; i.e., the 

expectation of R(~2 !e1 ) is a function simply of E(e2e2) and a:. It involves 

neither E(e1~l) nor E(e1~2)· This is important because (70) has been derived 

without any assumptions on the form ::>f E(ef2'), i.e., ~ can contain fixed or random 
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effects. Conse~uently, if the 2-vector of one's model can be partitioned into 

two parts Ql and ~2 where 22 contains just random effects, then ER(~2 121 ) as given 

in (70) contains only o2 and the variance components relating to those random 
e 

effects. This is the reason for being able to write the expectations in Table 13 

in the manner shown. Note however, as indicated in the discussion following Table 

(13), that (70) applies only to a difference between reductions that consists of 

the reduction for fitting the full model minus a reduction for fitting a sub-

model. Then a2 and the variance components that are not in the sub-model are 
e 

involved in the expected value of R(.,.). 

The result in (70) is particularly pertinent in mixed models because, when 

~l represents all the fixed effects, ER(~2 !~1 ) contains no terms due to these 

fixed effects; the expectation is solely a function of a2 and the variances of the e 

random effects in ~2 • This is the value of the fitting constants method of esti­

mating variance components in the mixed model: it yields estimators of the vari-

ance components unaffected by the fixed effects. (70) is also the reason why the 

results of Searle and Henderson (1961) concerning TAB - R(~ 1A,B) = R(AB!~,A,B) 

apply e~ually as well to a random as to a mixed model. By (70), the last three 

lines of Table 13 have the expectations shown there whether the A-effects are 

fixed or random. Hence in the mixed model, with the A-effects fixed, the variance 

components can be estimated from the last three lines of Table 13, equivalent to 

the last three lines of Table 14, the difficult portions of which are computed 

according to Table 15. 

In general, the fact that (70) involves only E(~2~2) implies that E[R(~2 !~1 )J 

has no terms arising from any covariance between the elements of e1 and ~2 • Hence, 

even if the model is such that terms in ~l are correlated with terms in ~2 the 
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expectation in (70) does not involve this correlation - it depends solely on the 

second moments of the elements in ~2 (and on cr:). 

A general advantage of the fitting constants method would seem to be that in 

using it we are dealing with terms that are sums of squares - positive semi-

definite quadratic forms in the observations that are known to have certain opti-

mum properties in fixed effects models. One might hope that these optimum pro-

perties would car~ over to some extent to random effects and mixed models 1 al-

though to what extent they do so is unknown. One particular advantage of the 

method lies in its appropriateness for the mixed model, for which it yields vari-

ance component estimators that are unaffected and uncomplicated by the fixed 

effects. It is therefore the preferred method for mixed models. As already 

mentioned, its disadvantage is that it involves matrices that can be very large 

in models having large numbers of effects in them. This can be a difficulty not 

only in calculating reductions in sums of squares but also in deriving their 

expectations from (70). One instance of a simplification is the case discussed 

by Cunningham [1969] 1 of having just one random effects factor in a mixed model. 

He shows, in effect, that for this case (70) reduces to 

for appropriate choice of ~~ where sm(~) is ! 1 ~!, the sum of the elements of ~~ 

and q is the number of levels of the random effects. 

A variation of Henderson's Method 2 mentioned at the end of Section 13 is to 

use the analysis of variance method on the adjusted observations ~ = l - ~f~f 

where ~f = (~~f)-~}l• Another variation is to use the fitting constants method 
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on this :• As indicated by Zelen [1968], this is equivalent to the fitting con­

stants method used directly on~' (see, e.g., Searle [1969]). 

14.7 Sampling variances of estimators 

Variance component estimators derived by the fitting constants method of 

estimation are linear combinations of reductions in sums of squares due to fitting 

different models to the data. Each reduction can be expressed in the form 

l 1 ~(~ 1 ~)-~'y for an appropriate ~-matrix and hence its sampling variance can be 

derived from application of (41), and the sampling covariance between any two 

reductions can be derived from (42). In this way the sampling variance of linear 

combinations of these reductions can be obtained. The details are somewhat 

lengthy,involving considerable matrix manipulation, Low [1964), for the 2-way 

classification without interaction, random model, has derived sampling variances 

of variance component estimators obtained from R(A!~,B) and R(BI~ 1A) and SSE. 

Harville [l969c], for the same model but with interaction, provides the means for 

obtaining the variance of R(~,A,B) ef Tables 14 and 16 and its covariances with 

other terms in those Tables. He then applies these results to the case of bal­

anced incomplete block designs. F~r mixed models, Rohde and Tallis [1969] give 

matrix expressions for cases involving one or two random effects factors and 

indicate how the results can be extended to include in the model interactions 

~ong the random effects. 

15. Analysis of means methods 

Data sometimes have every cell containing at least one observation. In such 

circumstances two methods of estimating variance components are available that 
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cannot be used when any of the cells are empty. Both methods use sun1s of squares 

of the cell means, equating them to their expected values and estimating the 

error variance from the within-cell mean square in the usual way. One method 

uses weighted sums of squares of cell means and the other uses unweighted sums. 

The two methods are illus~ 



I j (.t -(l;:>_>::,{j 

trated below in terms of the 2-\·my classification example~ discussed._ 

The unweighted means method uses the cell means (all n .. > 0) as if they 
l.J 

were single observations. Thus, with the model for the data being 

Y. "k = 1.1 + a. + f3. + Y. . + e. "k' l.J J. J l.J l.J 

the variances o!, o~ and o~ are estimated from sums of squares of 

-
xij = y .. 

l.J. 

n .. 
l.J 

== E y .. k/niJ' 
k=l l.J 

as if they were single observations; and o2 is estimated from the within-cell 
e 

mean square of the yijk's. The four terms used, and their expectations, are 

shown in Table 17. 

Table 17 

Terms used in the um1eighted means method of estimating variance 
components from 2-way classification data, random or mixed models, with all n .. > o. 

l.J 

+ * Term Expectation 

a - )2 E(_:_'-~-) 2 2 2 
SSA = bE(x. - X =bOA +crAB + ~oe u . l 1.. •• a- 1 

1.= 

b 
)2 (SBu) 02 02 02 aE(x .- -SSB = X E b - 1 :: a B + + ~e u . 1 ·J •• AB 

J= -

ab 
)2 

SSAB 
02 02 = E E(x .. - - - -

E(( a-1) (b~l)J SSAB x. - X .j 
+X = AB 

+ ~e u . l '=ll.J l.o •• 1.= J-

SSE = E E E(y. 'k- Y .. )2 EGSSE ) ::: 02 
. . k l.J l.J. - ab e 
1. J 

-Neans: xl.. J. = Y .. ' ,lJ. 

--* ~ 
l a b 1 

=- E 'E -. ab. 1 . 1n .. 
J.= J= J.J 

b 
x. = L'x . ./b, 

J.. . lJ.J 
J= 

X • 
·J 

a 
= L'x . ./a 

. ll.J J.= 

a b 
and x = L: E x . .Jab. 

•• i=lj=l l.J 

-----·--------------- --·--------~-- ~----- ·------------·-· 
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Estimators are derived from Table 17 by the usual process of equating 

observed values of its terms to their expectations. Knovm as the method of 

unHeighted means it has_ been used, for example, by Hostaf'a (1967) in discussing 

the efficiency of designs 'lvherein all the n .. 's are either lor 2. !n genera1-­
~J 

application the method has the great advantage of' being easy to compute; but 

it does demand that every cell have at least one observation. Other :points of' 

interest evident from Table 17 are as follows. (i) Its terms do not. "add u:p" 

in the analysis of variance sense; the first three terms SSA , SSB and SS.AB 
u u u 

2 -2 I 2 -2 I a.dd to L: L: x .. - x ab, but all four do not add to L. 2: L: y1. J'k - y h • 
1J •• ••• •• 

(ii) The terms do not :provide any F-tests of hypotheses because, under normality; 

none of' the first three terms have x2-distributions. (iii) Three of the four 

terms can be used in mixed models: for example, if the A-effects are fixed the 

last three terms :provide estimators of' 
2 2 2 

oB' crAB and cre. This is so because 

SSB , derived from x . - x , contains no a. terms, since both x . and x 
u b ·J ~ ·J •• 

contain a = L: a.lb arising from the fact that every cell in the data contains 
• . l ~ 

J= 
observations. 

... 
The weighted means anulysis uses 1·1eighted sums of squares of the xi. and 

-x . in place of SSA and SSB in the above table. These terms and their 
·J u u 

expected values are shovm in Table 18. 

---- --------------. ~--··-~---------------------- .. ------ ··--- -··· -------------
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Table 18 

Terms used in the weighted means method of estimating variance 
components from 2-:l·:ay classification data, random or mixed models, 

with all n .. > o. 
1J 

These terms are used in combination 
with SSAB and SSE of Table 17. 

u 

* Term 

a 
(- - )2 SSA = L:v1. x. - x(l) w . 11 1. 

1= 

b 
(- - )2 SSB = '8.r. x . - x(2 ) 

w . lJ ·J J= 

* 
( 1 b l ) -1 

w. = - r-- ' 1 \2 . 1n .. 
J= 1J 

(1 a l ~ -1 
v. = - >.- ' 

J 2 . ~1n .. , a J..= 1J 

Expectation 

and - DT. x. /DN .• x(l) = 
1 1. 1 

and - rv .x .jrv .• x(2) = 
J .J J 

Highlights of this table are as follows. (i) In no way do its 

terms, together with SSAB and SSE of Table 17, 11 add up'' in the analysis of 
u 

variance sense. (ii) Under conditions of normality 

N- ab 
and 

SSE a- 1 

SSB 
vl 

SSE 

N- ab 

b - l 

provide, in the fixed model, exact F-tests concerning the o:- and f3-effect's. 

This •.ms the context in lillich these >leighted s1.:ns of ::;quares were first 

suggested by Yates (193~), 1·7ho also nentions the um1eighted means analysis as 
of Table::> lr( C<nd 18 

providing approximate F-tccts. The!": use/ in variance compcnents estinnticn is 
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(iii) In mixed models, with the A-effects fixed, the terms SSE , w 

SSABu and SSE can be used to estimate a~, a~B and cr~. 

Extension of these methods of multi-way classifications is clear, particular-

ly for the unweighted means method which is easy to compute. For balanced data, 

both methods reduce to the analysis of variance method. 

16. Symmetric sums methods 

Estimation of variance components by utilizing symmetric sums of products 

of observations has been suggested by Koch [1967a]. The method is based on ex-

pected values of products of observations being functions of the components, and 

therefore sums of these products (and hence means of them) provide unbiased esti-

mators of the components. Such estimators are relatively easy to compute. They 

are also unbiased and consistent, and are identical to the analysis of variance 

estimators in the case of balanced data. However, they have a singular disad-

vantage: their variances are functions of the general mean ~· This deficiency 

is overcome by Koch [1968] who suggests that symmetric sums of squares of differ-

ences should be used instead of symmetric sums of products 

The method is easily illustrated in terms of the familiar 1-way classification, 

random model, where yij = ~ + a 1 + eij' with E(ai) ~ E(eij) = o, E(a~) ~ ~ and 

E(e~.) = cr2 for all i and j, and all covariances zero. Expected values of squared 
~J e 

differences of observations are: 
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when i = i 1 and j ~ j 1 ; 

when i ~ i' . 

These provide estimators 

a n. ni a J. 

2<r2 = .L: I: t: (y .. - yij')2/ 2:n.(n. - 1) e i=l j:zl j I ~j l.J . 1 J. J. 
J.= 

and 

n. a a J. 
n., 

l. a a 
2(&2 + ~) = I: l: I: !: (y .. - y.,j, )2/ r .E n.n., e A i=l 11 -/=i . 1 . ' 1 l.J J. i::::l i'l=i l. J. J= J :::: 

which are unbiased, have variances not dependent on ~~ and for balanced data 

(n. = n for all i) they are identical to the analysis of variance estimators. 
l. 

In giving details of applying this method to specific cases, Koch [1968] 

discusses certain nearly-balanced situations, and Koch [1967b] presents a method 

for estimating ~ unbiasedly, based on an unbiased estimator of ~2 • 

17. Infinitely many quadratics 

Indication has already been given of the many quadratic forms that can be 

used for estimating variance components from unbalanced data. Indeed, infinitely 

many quadratics are available for equating observed values of expected values and 

solving the resulting equations to get variance components estimators. 
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Although this is a widely used procedure it is one which imposes no conditions on 

the quadratics to be used, which sets up no criteria for deriving them, and which 

provides no rationale for determining what sets of quadratics are in any sense 

optimal. These are grave shortcomings, albeit ones that are not easily overcome, 

because of the algebraic complexity of unbalanced data. The only universal out-

came of the procedure is that it provides unbiased estimators. 

The sets of quadratics involved in each of the methods discussed above have 

been selected solely because they seemed "reasonable" in one way or another. The 

methods could therefore be compared on what constitutes "reasonableness" in each 

case, although this would make no comparison of the properties of the specific 

estimators that result from the different methods. The simplest comparison of 

this sort would be of sampling variances, except that this becomes buried in alge-

braic complexity. Harville [1969a], in considering such comparisons,has defined 

a quadratic estimator as being inquadmissible if some other quadratic estimator 

exists having the same expectation and a smaller or equal sampling variance for 

all points in the parameter space, with the sampling variance being strictly smal-

ler for at least one such point. He then derives conditions, for the 1-way class-

ification, for an estimator to be quadmissible and shows that the analysis of vari­

ance estimator of a2 is quadmissible. e 

Comparison of sampling variances of different estimators is difficult not 

only because the variances are in any way tractable only if normality is assumed 

but also, just as with balanced data, because the variances themselves involve the 

true variance components, as is evident in (60). Attempting to study the behaviour 

of such variances in terms of their being functions of the total number of obser-

vations, the number of levels of each factor, the number of observations in each 

cell, and as functions of the variance components - to do this is no small task, 

let alone to compare them with equally as complex functions that are variances of 

other estimators . Analytic comparison of different estimators by Ttray of their 
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sampling variances therefore presents great difficulties. One instance of success 

is that by Harville [1969c] vho develops explicit expressions for the differences 

between variances of analysis of vaziance estimators and fitting constants esti-

mators for balanced incomplete block designs. Since these are functions of the 

variance components they can only be compared for specified values of those com-

ponents. 

It is interesting to note, I believe, how serious is the consequence of some-

thing that otherwise seems relatively insignificant -namely, of data being un-

balanced rather than balanced. The change from one to the other might, on the 

surface, appear relatively small and yet it brings with it enormous changes in the 

tractability of methods and the properties of estimators. Not that everything is 

settled with balanced data, but at least the situation there is considerably sim-

pler than that of unbalanced data. 

Analytic comparison of estimators appearing to be so fruitless enforces re-

course to numerical comparison. Unfortunately, results are difficult and costly 

to attain in this connection. A special form of the 1-way classification has been 

considered by Kussmaul and Anderson [1967] in which the compositing of samples in 

a 2-way nested classification is envisaged. As a result, the j-th observation in 

the i-th class is deemed to be an average of the n .. observations 11 that the sample 
~J 

would have provided separately" had it not been composited prior to measurement. 

In this situation three methods of estimating the between-class variance component 

are compared numerically for a variety of n .. -values and for various values of the 
l.J 

ratio of the variance components. Comparison of the analysis of variance method 

of estimation with the unweighted means method has also been made for the between-

class component of a 1-way classification, by Crump and Anderson [1967]. They 

found that the unweighted means estimator appears, for very unbalanced data, to be 

poorer (have larger variance) than the analysis of variance estimator for small 
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values of p = ~/a!, but that it is superior (has smaller variance) for large P• 

Studies of the 2~way cl~ssification, with interaction, made by Bush and Anderson 

[1963] compare the analysis of variance method, the fitting constants method and 

the veighted means method, making comparisons by way of the variances of the 

different estimators. This 1vas done for several sets of n .. -values representing 
~J 

what might be called not wholly unbalanced data but designed unbalancedness. For 

example, in a case of 6 rows and 6 columns, three of the designs used were those 

shown in Table 19. 

Table 19 

Values of n .. in three of the 6 X 6 designs used 
~J 

by Anderson and Bush [1963] 

S22 C18 124 

2 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 

1. 2 1 0 0 0 1 1 1 0 0 0 l 1 0 0 0 0 

0 l 2 1 0 0 0 l 1 l 0 0 2 l 0 0 0 0 

0 0 l 2 l 0 0 0 1 l 1 0 120000 

000121 0 0 0 1 1 l 1 1 2 l l l 

0 0 0 0 1 2 0 0 0 1 l 1 1 1 2 1 1 l 
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Designs of this nature Here used to compare both the estimation procedures and 

the designs themselves, using a variety of values of the true components. The 

results indicate, at least for the designs used, that when the error variance is 

considerably larger than other components in the model then the analysis of vari-

ance method yields estimators with the smallest variances; otherwise the fitting 

constants method does. 

Comparisons of the nature just discussed involve no mean effort. Yet, in 

terms of unbalanced data generally, the examples used are, by necessity, finite 

in extent. This highlights one of the great difficulties of numerical comparisons: 

designing sets of n .. -values in such a way as to provide not only valid compari­
~J 

sons, but valuable ones, valuable in the sense of being informative about unbalanced 

data generally. For example, in the 1-way classification there are infinitely 

many sets of n.-values that could be used in (60) for studying the behaviour of 
~ 

v(cr~) - and each such set could be used in combination with varying values of a~ 

and cr2 • The difficulty is to plan a series of these values that "covers the field" e 

in such a way as to provide a basis for drawing general conclusions. This diffi-

culty is magnified, of course, when one comes to consider 2-way and higher-order 

classifications. Comparative studies of properties of estimators, either analytic 

or numeric, are therefore no easy task. 

Aside from numerical comparisons 1 the grounds on 'vhich "reasonableness11 was 

judged appropriate in establishing different estimation methods can be summarized 

as follows. The analysis of variance method commends itself because it is the ob-

vious analogue of the analysis of variance of balanced data, and it is easy to use; 

but some of its terms are not sums of squares, and it gives unbiased estimators in 
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mixed models. The generalized form of Henderson's Aethod 2 makes up for this 

deficiency, but is not uniquely defined and his specific definition of it cannot 

be used when there are interactions between fixed and random effects. The fitting 

constants method uses sums of squares that have non-central x2 -distributions in 

the fixed effects model, and it gives unbiased estimators in mixed models; but it 

can involve more quadratics than there are components to be estimated; and it can 

also involve extensive computing. The symmetric sums method is easy to compute; 

it utilizes all possible products of the observations and their means. Little 

more than this can, at this time, be said by way of comparing the methods. l•Iost 

of them give unbiased estimators and all of them reduce to the analysis of vari-

ance method for balanced data, -but they can all produce negative estimates. The 

general problem of comparison still awaits thorough investigation. 

18. Maximum likelihood methods 

Maximum likelihood is best considered from the point of view that all models 

are mixed models, as is certainly so for models containing a general mean ~ (a 

fixed effect) and error terms e that are random. Although the fitting constants 

method of estimating variance components gives unbiased estimators with mixed 

models it gives no guidance on estimating the fixed effects of the model. Were 

the variance components known there would, of course, be no problem in estimating 

-1..~~ --1 the fixed effects. They would come from the normal equations ~'Y ~ = ~'Y ~ 

of the generalized least squares procedure, where y is the variance--covariance 

matrix of ~~ its elements being functions of the (assumed known) variance 
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components. Hovrever 1 vhen these components are unknown, as is usually the case, 

there exists the dual problem of estimating both the fixed effects and the vari-

ance oompon€nts. 

Two possible courses of action exist: (i) to do the estimation in two stages, 

by first estimating the variance components with the fitting constants method and 

then using the resulting estimates in place of the true components in y, in 

the generalized least squares equations; or (ii) to estimate the fixed effects and 

the variance components simultaneously, with one unified procedure such as maximum 

likelihood. Although in both cases recourse has usually to be made to iterative 

procedures, for which the computing requirements can be extensive, some progress 

has been made analytically, the results of which are now summarized. 

~8.1 Estimating fixed effects 

We write the model as 

(71) 

where ~ is the vector of fixed effects, ~ is the vector of random effects, ~ and 

~ are the corresponding design matrices and e is the vector of random error terms. 

Means of, and covariances between the random effects and the error terms are assum-

ed to be zero, with variance-covariance matrices var(~) ~ D and var(~) ~ R. Then 

V = var(~) ~ ZDZ' + R , (72) 

with which the generalized least squares normal equations are 

(73) 

By nature, y is positive semi-definite and usually non-singular, and so we assume 

V-l exists. These equations can also be derived by the method of maximum lil~eli-
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hood, on assuming normality and V known, in which case ~ would be referred to as 

a maximum likelihood solution. 

Calculation of (73) involves ~-l, a matrix of order N, the mlDber of 

observations, vThich may be very large, perhaps many thousands. In the fixed 

effects case V usually has the form a2I or, with a. little more generality, it 
e-

may be diagonal: in either case, inversion is simple. But in general, 

-1 y = ~P~' + ~ of (72) is not diagonal, even if p and ~ are, and so V is not 

necessarily easy to compute. However, as indicated in Henderson et al [1959], 
-1 

a set of equations alternative to (73) and not involving ~ , is 

[ ~ l = 

A 

~'f 1l 
~,!.t-1¥ 

(74) 

On eliminating u from these equations and utilizing V from (72) the resulting 

equation simplifies to (73). The value of (74) however, is that it does not 

require the inverse of v, but needs only the inverse of ~ and ~' both of 

which are often diagonal. In that case, even though (74) involves more 

equations than (73) they are fewer than N, the order of y_, whose inverse is 

needed in (73). Hence (74) is often easier to solve than (73). 

The format of equations (74) is easily described. They are simply the 

normal equations for the fixed model (i.e., assuming ~ is a vector of fixed 

effects) with the inverse of the variance-covariance matrix of the random 

effects added to the sub-matrix that is the coefficient of u in the "u-equations" 

- i.e., D-l added to ~' ~-~, as in (74). This is patently simple, particularly 

in certain special cases, For example, taking ~~ the variance-covariance 
form 

matrix of the error terms,in its frequently-assumeq/R = a~N simplifies (74) to 
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r 
., r ., 

A 

I X'X X'Z e X'y 

I i ::: 
I 

2 -l " I 1 

Z'X X' X + a D l u i ~'l e- - l 
1 !_ .;. 

Furthermore, D is ofte:a diagonal of the form 

r 2 1 
D == diag ~a IN J- for S = A, B, ••• , K, 
- l 8- 9 

2 -l 2 2 in -vrhich case a D requires just adding a /a,., to appropriate diagonal elements 
e- e u 

of Z'Z • In particular, if there is only one random factor the equations become 

X'Z 
(75) 

This formulation of the maximum likelihood estimator is, of course, only 

applicable when the variance components are known, although in most models only 

their values relative to that of the error variance are required as for example, 

in (75). Ho-vrever, in combination with methods for estimating variance components 

independent of the fixed effects, such as the fitting constants method, (74) and 

its simplified forms provide a means of setting up iterative procedures for 

estimating both the fixed effects and the variance components of a mixed model. 

An example of these procedures is considered by Cunninghar1 and Henderson [1968) 

with a correction given by Thompson [1969]. 

The origin of equations (74) is the joint density fUnction of y and u • 

On the basis of normality this density is 
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f(~,~) - g(ll~)h(~) 

,.. l 
= C exp ·L- -;s(Y 

c. -
Xp ,.. ' t R-1 ( 

~~) - ~ 
I l -l 

exp 1 - -2u 1 D u ! 
L - - - J 

'·:here C is e. c:onstant. Maxi~ization of this lvitt respect to 6 and u leads at 

once to (74). 

"' 
In many situations not only is the solution of (74) for e of interest, 

but so also is that for u , even though u is R vector of ran dot'-, variables. 

This is so because u is the estimator of the conditional mean of u given y 

i.e., u = E(~\;t) 1 and is, as ::'lentioned in Henderson et al [l959L the 

ttestimated genetic merit!\ used by animal breeders. In their case u is a vector 

of genetic merit values of a series of animals from whom y is the vector of 

production records, and the problem is to use ¥ to get estimated values of ~ 

in order to decide which animals are best in some sense. In this context u 

has been used extensively. 

18.2 Fixed effects and variance components 

Maximum likelihood equations for estimating variance co:,ponents frorc, 

unbalanced data cannot be solved explicitly even when ignoring the requirement 

that the variance component estimators be positive. Writing dmm the equations 

for just the simplest case, the 1-l·.ray classification, will soon convince the 

reader/their intractability. They involve, for example, terms like 

-2 -2 
E n./(o + n.aA) in equations 
. l e l 

-2 -2 
that have to be solved for cre and crA • Explicit 

l 

maximum 1 il\.elihood estimators must therefore be despaired of. Hm1ever, a general 

set of equations is given by Hartley and Rao [1967]. They urite the model as 

K 
¥. ::;: ~~ + E Z ,, u_ + e 

e==A- .-~:; 
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1·rhere the sur,, of the terms ~')~:0 is ~~ of (71) 1 Hith u. being the vector of 

effects for the levels of the random factor - Then, on defining ::c . 
2 2 K 

"\/.- == oefoe for 9 == A, B, ... ' K and H = ~N + "' "'Z Z' 1 c" ie 8 f' G=A - -c 

and assuming normality, the equations for the maximum likelihood estL~ators 

turn out to be 

(76) 

-
~~)/N (77) 

and 

for G = A, B, ••• 1 K. (78) 

These are the equations that have to be solved for the ele~ents of ~ 1 the error 

variance estimator ~2 and the variance conponents inherent in H 
e 

Hartley and 

Rao [1967] indicate how this can be achieved, either by a method of steepest 

ascent, or by obtaining an alternative form for (78), which are the difficult 

equations to handle. (76) and (77) are, of course, recognizable as the familiar 

maximum likelihood equations for the fixed effects and the error 

variance; and they are easily solved if values of the y9's are available for H. 

Thus is iteration established via equations (76), (77) and (78). It is further 

-
shmm in the Hartley-Rae paper that if(~', o,y_') provides the global maximum 

of the likelihood then it is weakly consistent, as it also is if the starting 

value of the steepest ascent method is a Heakly consistent estimator. Asymptotic 

efficiency is also established. 
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18.3 Large sample variances 

Although the maximum likelihood estimators of variance C0'"'lponents cannot 

be obtained explicitly, a general expression for their variances can be derived. 

To shmr this vre revert to the model l = ~~ + € where !3 is the vector of fixed 

effects and, as in (71), : = Zu + e withE(:)== 9 and var(~) = y. Then, on the 

basis of normality- i.e., of assuming: - N(~,y), the variance-covariance 

matrix of the large sample maximum likelihood estL~ators of the p elements of 

!3 and the q variance components is minus the inverse of the expected value of 

the Hessian matrix of the logarithm of the likelihood with respect to these p + q 



parameters, c:.ee -,Jald [194_)), Simplific:P.ticn or this rr,c.tr.:.x uy Sec::.rle (19'70] 

shows that the variance-covariance :natrix of the large sa.·tple ,a.ximur. likelibood 

(M. L.) est ic·::ators of the variance c:o•·:1ponents is 

for i,j = 1, 2, .•• , q, (79) 

2 2 
Hhere V. and V. are the partial differentials of y with respect to a. and a., 

-1. -J l J 

for i and j = 1, 2, ... , q, there being q variance components (including cl) 
e 

in the model. It is interesting to see that (79) is free of the fixed effects 

of the model and is solely a function of the variance- covariance matrix V of 

the observations y. Since V in turn depends only on the occurrence of the ran-

dom effects in the model we see that no u1.atter what the fixed effects are, nor 

-2 
hov1 they occur, they in no 'day affect var( a ) • 

TvlO results concommitant v1ith (79) are, firstly, that 

- -2 
cov(~,~ ) = 0 ; 

i.e., covariances betv1een large sample M.L. estimators of fixed effects and 

variance components are zero. Since under conditions of non:tality the mean of 

a sample and its sum of squares are independent, this result is not surprising. 

A second result is that the variance-covariance matrix of the large sample H.L. 

estimators of the fixed effects is 

var(~) = (~'Y-~f 1 • 
A 

This corresponds to the M.L. solutions e in (73), and is therefore no surprise 

either. Nevertheless, it is interesting to observe from this that even with 

unbalanced data from ~ mixed model, the variance-covariance natrix of the M.L. 

estimators of the fixed effects is exactly as it v10uld be Here the variance 

:;omponents known and did not have to be esti:nated simultaneously 1·rith the fixed 

effects. 
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One difficulty in applying (79) to specific cases is that it requires the 

inverse matrix y-1, vrhich is not always readily amenable to an analytic form, 

as for example in the 2-way crossed classification random t·1odel either with or 

vTithout interaction. Having unbalanced data is what makes the inverse so 
terms 

intractable. A second difficulty with (79) is that even if the/tr(v-lv.v-~.) 
- -1- -J 

ctm be obtained they are usually of such nature that the matrix inversion 

required in (79) precludes deriving analytic forms of the variances of the 

individual components. One application of (79) is to the 2-l·l'ay nested classifica-

tion by Searle [1970], where explicit expressions for the elements of (79) before 

inversion have been obtained. The first of the difficulties just described has 

been overcome 1n this e&se but the second has not. 

19. Best quadratic unbiased estimation 

The analogue for variance components of best linear unbiased estimation of 

fixed effects is best quadratic unbiased estimation. This presents no problem 

with balanced data because the analysis of variance method estimators are un-

biased and have minimum variance properties as discussed in Section 9· But 

with unbalanced data, estimators that are uniformly best do not yet exist. 

However, some initial progress has been made on this problem by Tovmsend [1968], 

who obtains best (but not uniformly best) quadratic unbiased estimators for the 

1-way classification with ~ = 0. This is achieved by letting the desired 

estimators of a~ and a! be ?'~?and l'~? respectively and, for a!= tr(~) and 

a! = tr(Sy), deriving ~ and~ such that 2tr(~y) 2 and 2tr(Sy) 2 are minimized, 

y being the variance-covariance matrix of the observation vector ~· After 

lengthy algebraic manipulation, "I'Tith 
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a 

\ 1 2 r = L ----......,... + N - a, 
i=1(1 +nip) 

s ;;:; andt 

the estimators turn out to be 

a 2 n. 
"'2 1 (I rni - t y, a ~ 2 a -2} ~. + s ( .E a = 2 2 .E y .. - .E n Y ' e n. j=l ~J i=l i i. J rs - t i=l(1 +nip) J. J.=l 

and a 2 n. 
"'2 1 (}: rn1 - t y, .a ~ 2 a 2 ,_ 

J.. (.E a A = 2 2 - t .E y .. - .E n.y. )} n. j=l J.J rs - t i:::'l (1 + nip) J. ~=1 i=l J. J.. 

2 2 
These estimators are functions of p = aA~ae and not of the components individu-

ally. Furthermore, their variances are identical to those of the large sample 

maximum likelihood estimators; and their limits as p - 0 arc the estimators 

given by Koch [1967a]. 

variance estimator of 

And the 

2 
a • e 

limit as p ..... co 
"'2 

of a is the analysis of e 

Analytic comparison of these estiinators with those obtained from the 

analysis of variance method is intractable, and so Townsend [1968] made 

numerical comparisons over a range of values of p both for the actual BQUE's 

(assuming p known) and for an approximate BQUE using a prior estimate or guess, 

p , for p in the estimation procedure. Indications are that, in certain 
0 

situations, considerable reduction in the variance of estimates of a! can be 

achieved if the approximate BQUE is used rather than the ANOVA estimator. 
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Furthermore, this advantage can be had even when rather inaccurate prior 

estimates (guesses) of p are used as p • The reduction in variance appears to 
0 

be greatest ·1-1hen the dat~ are severely unbalanced and p is either snall or 

large, and it appears smallest for values of p that are moderately srflall. For 

some sets of data there is actually no reduction in variance, 11hen the ANOVA 

estimator is a BQUE for some specific p. A full discussion of these estimators 

and approximations to them for the model with 1-l /= 0 are to be found in Townsend 

[1968]. 

20. Designing experiments to estimate variance components. 

Herzberg and Cox [1969], in an extensive review and bibliography of the 

design of experiments comment that "relatively little work has been done" on 

designing experiments for the purpose of estimating variance components. This 

is borne out by their bibliography of approximately 800 publications since 1957 

vrhich they have classified in nine overlapping groups according to subject 

matter: less than 3% are classed as dealing with designs for estimating 

variance components, more than half of which are concerned 11ith genetics, 

mostly the diallel cross. Despite this, a need for designing experiments with 

this object in mind is highlighted by Anderson [1960a], who points out that in 

using the analysis of variance method of estimation in balanced nested designs 

the degrees of freedom for the innennost classifications are increasingly 

larger than those for the outermost classifications. Designs that rectify 

this imbalance are, for example, the ';staggered" designs of Bainbridge [1963L 

which incorporate "i'lhat may be called planned unbalancedness so as to make the 

degrees of freedom more nearly uniform. Exmnples and discussion of these designs 

is also to be found in Anderson [1960b]. 
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Optimal designs for the l-vmy classification randot~ . 1.odel are considered 

by Anderson and Crmnp [1967]. For a given number of 

hovl to determine an optimurn number of classes c, and 

observations N they suggest 

"2 
then shm1 that var ( cr A) of 

( 60) is minimized if p + 1 observations are made in each of r classes and p in 

the remaining c - r 1 such that N = cp + r for r positive and less than c. 

Kussmaul and Anderson [1967] in discussing their compositing of samples, outlined 

above in Section 17, consider optimal designs for a given cost structure. In 

this context they >-lrite:"good designs for such general estirnation purposes are 

extremely difficult to specify analyticallY , a comment that is also pertinent 

to the Anderson and Crump [1967] paper. Both papers shov.r results of numerical 

studies of a number of different designs. 

A limited form of planned unbalancedness is also considered by Mostafa 

[1967] for the 2-l'lay classification with interaction. This involves having 2 

observations in some cells and one in each of the others. 

21. Other methods and ideas 

21.1 Bayes estimation 

The main papers dealing with Bayes procedures for variance component 

estimation are those by Hill [1965, 1967], Tiao and Tan [1965, 1966] and Box 

and Tiao [1967]. The latter deals with the 2-v;ay nested classification lvhereas 

the other four are concerned with the 1-vay case. They are comprehensively 

revie1.,red by Harville [1969b), to which the reader is directed for an exhaustive 

summary. 

One problem of variance component estimation to which Bayes procedures pay 

particular attention is that of negative estimates. In this regard, Hill [1965] 

in smnmarizing his results writes "Bayesianly speaking, a large negative 
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unbiased estimate of the between variance cm1ponent indicates an uninfornative 

experiment in i·lhich the effective likelihood for that variance component is 

extremely flat, instead of strong evidence that the variance component is nearly 

zero." "'2 
Hill indicates (.£12 ~~ p. 817) that when a A << 0, it "becomes crucial 

to carefully assess the prior", although in discussing a hyothetical numerical 

example he warns (p. 821) that in "any real problem the prior can always be 

assessed, although perhaps with difficulty." In this connection Tiao and Tan 

[1965 and 1966] use 'non-informative' priors, a procedure \'lhich Kempthorne [1968] 

finds unsatisfying. Evidently, just as with other applications of Bayesian 

estimation, so with variance components, both protaganists and adversaries can 

readily be found. Unfortunately, their arguments so often generate "more heat 

than light", as Harville [1969b] so aptly puts it. 

21.2 Plotting the likelihood. 

Although maximum likelihood estimators (for unbalanced date) cannot be 

derived, use of the likelihood function can be made by plotting its value (for 

a given set of n .. 's) over a range of values of the variance components. 
~J 

Kempthorne [1968] indicates that investigations of this nature are currently 

in progress and that ·when the usual estimate is negative "the likelihood 

function seems quite informative ••• and points towards zero as the value of 

the variance component." Houever, he goes on farther to say that there are 

"no particularly compelling ivays of interpreting the likelihood function, 

except in simple cases for which we can pick out aspects such as the point of 

maximum and can construct statistical tests using them." But such processes 

"seem totally non-viable with the cases that • • • ani.r1al breeders usually meet,' 

meaning, presumably, cases of badly unbalanced data. 



-119-

21.3 Sequential estimation. 

Sequential procedures for testing hypotheses about variance components are 

also to be found in the literature, although not to any great extent. Birnbaum 

[1958] gives a general sequential sarn.pling method for conparing variances (by 

means of their ratio) of hlO normal populations. Adaptation to variance compo­

nents in the balanced 1-vmy classification is indicated. Savings appear to be 

small in terms of numbers of observations needed in order to have efficiency 

equivalent to that of the usual F-test. Sequential probability ratio tests of 

hypotheses have also been suggested by Ghosh [1965, 1967]. Industrial 

environments may v7ell be suited to the use of such tests 1 uhere balanced data 

may be readily obtainable sequentially as ::mtflow of one or r.1ore machine 

processes. Hm~ever, this situation seems less likely to occur in a biological 

environment. 

21.4 Other models. 

Most comparative studies of variance component estimators are made on the 

basis of normality assumptions. The relative intractability of results even 

in this case discourages extensive studies of non-normal models. Nevertheless, 

in this situation Hammersley [1949] and Tukey [1957a] have looked at the 1-way 

classification in some detail, and Harville [1969a] discusses the form of quad­

missible estimators. Atiqullah [1962] considers variances of variance components 

estimators for the mixed model having one random factor (balanced data),and 

Kelleher and Robinson [1958] report comparative studies of estimates obtained 

from corn breeding experiments over a period of years. They conclude that their 

results shov7 no departure from the underlying normality assumptions. 

Another departure from the usual model is dealt with by Harville [1967b, 

1968] who uses models in 1-1hich the numbers of observations are taken as random 
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variables. f.larginal distributions of the random effects are assuned normal, 

with the conditional distribution of the n' s, given the effects, being a Poisson 

distrilfu.tion. These models are appropriate to situations l'lhere the number of 

observations in a class depends on the r!lagnitude of that class effect; e.g. 1 

in the artificial breeding of dairy cattle, bulls that sire high-yielding 

daughters are apt to have more daughters than those who leave lm-1-yielding 

daughters. The absolute value of the bias of equal-weights estimators in such 

cases is found by Harville to be generally less than that of analysis of variance 

estimators. 

21.5 Harmonic components. 

Variance components for factors of a model that are largely time periods 

have been considered by Lawton and Jackson [1969] and Jackson and Lawton [1969] •. 

These authors consider nested classification random models, with balanced data, 

as asymptotic stationary random processes for which they derive the asymptotic 

spectrum and hence what they call harmonic variance components. These are 

described as "representing the amount of variability due to cyclic patterns of 

the various periods," and they appear to be best suited to such tirne-defined 

factors as, for example, weeks, days within weeks, shifts uithin days and hours 

within shifts, in an industrial situation. The linear relationship of such 

components to those defined in the usual analysis of variance context is shown, 

and numerical examples given. 

21.6 Dispensing with unbiasedness. 

Most current methods of variance ccrotponent estimation yield estimators 

that are mean unbiased. This property has been righteously adopted from linear 

estimation, - but for the variance components situation it can be questioned, or 

at least amended. As Kempthorne [1968] points out, unbiasedness in estimating 
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the fixed effects of a nodel 11 ••• leads to residuals which do not contain 

systematic effects and is therefore valuable ••• and is fertile mathematically 

in that it reduces the class of candidate statistics (or estimates)." But 

" ••• in the variance component problem, it does not lead to a fertile smaller 

class of statistics.'' Furthermore, in linear estimation, we usually conceive 

of repetitions of data and associated repetitions of estimates. But 1vith un­

balanced data from random models this is often not the case - more data, yes, 

but not necessarily with the same pattern of unbalancedness. Any replications 

of data cannot, therefore, altogether be thought of as mere re-samplings of data 

already available. The concept of mean unbiasedness is therefore not necessarily 

pertinent. Furthermore, random model data are often so voluminous in extent 

that additional data may effectively be unavailable or, if available they may 

only be obtainable from different populations. This demands contentment with 

the data already available, and conceiving of repetitions of data is no longer 

permitted. It may therefore be reasonable to dispense \·rith the mean unbiased­

ness property of present est~nation procedures, perhaps replacing it by one of 

modal unbiasedness, as hinted at in Searle [1968, discussion]. It would mean 

developing a variance component estimator for which the probability distribu­

tion had its (only) mode at the population value of the parar.1eter. Such a 

development 1muld maximize the probability of the estimator being close to its 

parameter, rather than minimizing the probability of being far mvay from it, as 

Eisenhart [1968] points out. Harville [1969b] doubts if estimators satisfying 

the modal unbiasedness criterion exist and questions, on decision-theoretic 

grounds, the justification of such a criterion prefering to use an appropriate 

loss function. 
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If abandont~tent of traditional methods of estimation were to be considered, the 

use of range by Ghosh [1965] in developing tests of hypotheses concerning ratios 

of variances could prompt speculation on using range statistics for developing 

estimation methods. Whilst resulting estimators might be expected to have less 

attractive properties than those of current estimators they might, if not very 

much less attractive, be '\vorthwhile, since current estirnators are difficult to 

compute fran unbalanced data, and have fe-v.; optimal properties. Of course, the 

development of such estimation methods, even if appropriate, might well be no 

easy task. 
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