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In critical domains such as healthcare, finance, and criminal justice, merely

knowing what was predicted, and not why, may be insufficient to deploy a

machine learning model. This dissertation proposes new methods to open up

black-box models, with the goal of helping creators, as well as users, of machine

learning models increase their trust and understanding of the models.

The first part of this dissertation proposes new post-hoc, global explanations

for black-box models, developed using model-agnostic distillation techniques

or by leveraging known structure specific to the black-box model. First, we

propose a distillation approach to learn global additive explanations that de-

scribe the relationship between input features and model predictions, showing

that distilled additive explanations have fidelity, accuracy, and interpretability

advantages over non-additive explanations, via a user study with expert users.

Second, we work specifically on tree ensembles, leveraging tree structure to con-

struct a similarity metric for gradient boosted tree models. We use this similarity

metric to select prototypical observations in each class, presenting an alternative

to other tree ensemble interpretability methods such as seeking one tree that

best represents the ensemble or feature importance methods.

The second part of this dissertation studies the use of interpretability ap-

proaches to probe and debug black-box models in algorithmic fairness settings.

Here, black-box takes on another meaning, with many risk-scoring models for



high stakes decision such as credit scoring and judicial bail being proprietary

and opaque, not lending themselves to easy inspection or validation. We pro-

pose Distill-and-Compare, an approach to probe such risk scoring models by

leveraging additional information on ground-truth outcomes that the risk scor-

ing model was intended to predict. We find that interpretability approaches can

help uncover previously unknown sources of bias. Finally, we provide a con-

crete case study using the interpretability methods proposed in this dissertation

to debug black-box models, in this case, a hybrid Human + Machine recidivism

prediction model. Our methods revealed that human and COMPAS decision

making anchored on the same features, and hence did not differ significantly

enough to harness the promise of hybrid Human + Machine decision making,

concluding this dissertation on interpretability approaches for real-world set-

tings.
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defy categorization.

To all my friends before this PhD life who thought I was crazy to go back to

school, thank you. You are partly right. But now I can say that it was worth it.

You hosted me during my escapes from Ithaca and reminded me of life outside

of PhD. Thank you, Evelyn Yung, Alyssa Li, Kaiting Zhou, Karen Lu, Ling Tan,

Raghu Sudhakara, Eric Wu, and Raymond Lim.

To my summer friends who became lifelong friends, thank you. You made

our short time together memorable, and I continue to learn from you. Thank

you, Sabina Tomkins, Saumya Jetley, Adji Dieng, Himabindu Lakkaraju. To my

vi



Data Science for Social Good compatriots, your efforts continue to inspire me.

To my friends in the Bay Area, German Ros and Sören Künzel, thank you.
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CHAPTER 1

INTRODUCTION

In critical domains such as healthcare, finance, and criminal justice, merely

knowing what was predicted, and not why, may be insufficient to deploy a

machine learning model. This dissertation proposes new methods to open up

black-box models, with the goal of helping creators, as well as users, of machine

learning models increase their trust and understanding of the models.

Recent research in interpretability of machine learning models has largely

proceeded in two directions [94, 37]. First is the design of new model classes

claimed to be interpretable, e.g. decision rules, sparse linear models, etc. [95,

96, 89, 85, 59, 6]. However, in many real-world settings, the choice of model class

may be limited – a machine learning model may have already been deployed, or

external factors such as hardware specifications, legal constraints, stakeholder

preferences, etc. may place restrictions on the type of model that can be used

[151, 56, 100, 150]. Motivated by the need still for faithful and accurate explana-

tions in such settings, a second line of research developing “explanations” [37]

for predictions made by an already-trained model has received much attention.

These explanations can be “local” or “global”; the former explains the predic-

tion made for one observation [13, 114, 99, 125, 120, 142, 26], the latter aims to

explain the prediction function for an entire model [32, 66, 67, 115, 157, 87, 69].

Two chapters of this dissertation fall within this latter line of research, fo-

cusing on developing and refining post-hoc, global explanations for black-box

models. In Chapter 2, we develop a method using model-agnostic distillation

techniques [32, 25, 65] to learn global additive explanations that describe the re-

lationship between input features and model predictions. Unlike other global

1



explanation methods such as partial dependence [45], distillation allows us to

learn explanations in a discriminative manner, minimizing the fidelity error be-

tween the black-box model and the explanation while preserving the expla-

nation’s interpretability. We apply the method to fully-connected neural net-

works on semantically meaningful features. Developing post-hoc explanations

for black-box models comes with the unique challenge of evaluation and valida-

tion, where the generated explanation has to be evaluated against ground-truth,

which has to be derived from the black-box model. We designed synthetic ex-

periments with known ground-truth prediction functions to study the proposed

method. We also showed that additive explanations have interpretability ad-

vantages over non-additive explanations with a user study on expert users.

In Chapter 3, we move from model-agnostic model distillation techniques

to leveraging known structure specific to the black-box model, focusing on tree

ensembles such as random forests [19] and gradient boosted trees [47]. One out-

put from training a random forest that has received less attention is the prox-

imity matrix [19], an n-by-n matrix (n is the number of observations) describ-

ing the proportion of trees in the forest where a pair of observations end up in

the same terminal node. This similarity metric between observations is locally

adaptive in tree space [143] and reflects how the tree ensemble makes its predic-

tions based on the features. We extend the formulation of proximity matrices for

random forests to gradient boosted tree (GBT) models. Unlike random forests,

each tree in a GBT model does not contributes equally to the prediction func-

tion, hence we propose to weigh the contribution of individual trees differently,

and use the learned similarity metric to select prototypical observations in each

class. This method presents an alternative to other tree ensemble interpretabil-

ity methods such as seeking one tree that best represents the ensemble [14] or

2



feature importance methods [19, 158].

The remaining chapters in this dissertation study the use of interpretability

approaches to probe and debug black-box models in algorithmic fairness set-

tings. Here, black-box takes on another meaning, with many risk-scoring mod-

els for high stakes decision such as credit scoring and judicial bail [82] being

proprietary and opaque, not lending themselves to easy inspection or valida-

tion.

In Chapter 4, we develop a methodological extension to the global addi-

tive explanation method developed in Chapter 2 to probe risk scoring models,

by leveraging additional information on ground-truth outcomes that the risk

scoring model was intended to predict. The proposed approach, Distill-and-

Compare, was motivated by a desire to audit such models under realistic con-

ditions, without probing the model API (since it may not be released by the

model creators) or pre-defining features to audit (since bias may exist not just

in features such as race or gender, but in other seemingly innocuous features).

Demonstrating the method on COMPAS [8] and other data sets in the domains

of credit and recidivism, we uncovered a potential misrepresentation of risk by

COMPAS for younger and older individuals, the year where an online lender

likely overhauled its credit scoring model, and other interesting insights that

we had no prior indication of. We also proposed a statistical test to determine

if a data set is missing key features used to train the black-box model, and find

that the ProPublica data is likely missing key feature(s) used in COMPAS. An

ancillary contribution of this chapter is a new confidence interval estimate for a

class of tree-based additive models called Explainable Boosting Machine (EBM)1

1EBM is an implementation of GA2M, a type of interpretable model introduced in [95, 96, 24].
EBM can be found at https://github.com/microsoft/interpret. EBM was recently
renamed from iGAM. Since the paper that Chapter 4 is based on was published before the
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In Chapter 5, we provide a concrete case study using interpretability ap-

proaches to debug black-box models, in this case, a hybrid Human + Machine

recidivism prediction model. Previous work asked Mechanical Turk workers

to evaluate a subset of defendants in the COMPAS data for risk of recidivism,

and concluded that COMPAS predictions were no more accurate or fair than

predictions made by humans [39]. To probe this claim further, we attempted to

leverage differences between human and COMPAS decision making to create

more accurate hybrid models, but these hybrid models failed to improve sig-

nificantly over individual human or COMPAS decisions. Applying the meth-

ods proposed in this dissertation, we determined salient features that affected

individual decision making and characterized regions where human and COM-

PAS decision making agreed and disagreed. The analyses revealed that human

and COMPAS decisions anchored on the same features, supporting our findings

that human and COMPAS decision making did not differ significantly enough

to harness the promise of hybrid Human + Machine decision making in this

case, concluding this dissertation on interpretability approaches for real-world

settings.

renaming of iGAM to EBM, we retain the name iGAM throughout Chapter 4.
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CHAPTER 2

LEARNING AND EVALUATING GLOBAL ADDITIVE EXPLANATIONS

OF BLACK-BOX MODELS

2.1 Introduction

Recent research in interpretability has focused on developing local explanations:

given an existing model and a sample, explain why the model made a particular

prediction for that sample [114]. The accuracy and quality of these explanations

have rapidly improved, and they are becoming important tools in interpretabil-

ity. However, the human cost of examining multiple local explanations can be

prohibitive, and it is unclear whether multiple local explanations can be aggre-

gated without contradicting each other [115, 4].

In this paper, we are interested in global explanations: given an existing

model, describe the overall behavior of the model. We operationalize this goal

as describing the relationship between model inputs (features) and outputs (pre-

dictions), which is fundamental for several key tasks, such as understanding

which features are important or debugging unexpected relationships learned

by the model. As this task is most meaningful when each feature has semantic

meaning [33], we focus on tabular data in this paper.

Given the prediction function of a black-box model, F(x) and samples x con-

sisting of features xi, . . . , xp, we propose to use model distillation techniques

This chapter is based on material in [133].
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Figure 2.1: Given a black-box model and unlabeled samples (new unla-
beled data or training data with labels discarded), our ap-
proach uses model distillation to learn feature shapes that de-
scribe the relationship between features and model predictions.

[22, 65] to learn post-hoc global additive explanations of the form

F̂(x) = h0 +
∑

i

hi(xi) +
∑
i, j

hi j(xi, x j) +
∑
i, j

∑
j,k

hi jk(xi, x j, xk) + · · · (2.1)

to approximate the model’s prediction function F(x). Figure 2.1 illustrates the

approach. To summarize, the black-box model is treated as a teacher and dis-

tilled into a student (an additive model) that can be visualized as a set of feature

shapes {hi}, {hi j}, {hi jk}.

Individual feature shapes can then be examined to determine the relation-

ship between that feature and model predictions, the goal of our global expla-

nations.

Feature shapes are not a new concept. Partial dependence [45], a classic post-

hoc explanation method, and additive models learned directly on data [62] are

also visualized in the form of feature shapes. The advantage of our approach

over other additive explanations such as partial dependence (that is not learned

using model distillation) is that distillation explicitly minimizes the error be-

tween the black-box model and the explanation, hence increasing the fidelity
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of the learned explanation. Distilling or approximating a black-box model by a

interpretable model to serve as a global explanation is also not a new concept

[32, 48, 49, 118, 15, 87]. We show, with experiments on expert users (machine

learning model builders) that additive explanations have interpretability ad-

vantages over decision trees for certain model understanding tasks, and hence

can be a viable explanation alternative.

When learning and evaluating post-hoc explanations, some questions nat-

urally arise: how can we tell if the explanations are telling us something real

about the black-box? Our paper answers this question by designing ground-

truth explanations that we then show that our approach recovers.

The main contributions of this paper are:

• We learn global additive explanations for complex, non-linear models

such as neural nets by coupling model distillation with powerful addi-

tive models to learn feature shapes that directly describe the relationship

between features and predictions.

• We perform a quantitative comparison of our learned explanations to

other global explanation methods. We measure fidelity to the black-box

model as a function of the complexity of the explanation model, accu-

racy of the explanation on independent test data, and interpretability of

the explanation. The results suggest that overall, additive explanations

have higher fidelity with less complexity and have interpretability advan-

tages over decision trees and linear models for certain model understand-

ing tasks.

• Through a user study with expert users, we quantitatively measure how

interpetable different global models are and how much they help users
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understand black-box models.

2.2 Related Work

Global explanations. Neural nets and other black-box models have been ap-

proximated by interpretable models such as trees, rule lists [89, 6], decision sets

[85], etc. either via model distillation [32, 48] or model extraction [49, 118, 15, 87].

All of these approximated classifiers; there has been less work approximating

regression models. Craven and Shavlit [32] distilled a neural net into a decision

tree and evaluated the explanation in terms of fidelity, accuracy, and complexity.

Frosst and Hinton [48] also distilled a neural net into a soft decision tree. Nei-

ther evaluated interpretability of their explanations. In recent work, Lakkaraju

et al. [85] extracted decision set explanations customized to the features the user

is interested in.

Additive explanations. Several additive explanations, not learned via dis-

tillation, have been proposed [45, 128, 67, 99]. A common theme of these meth-

ods is that they decompose F into F̂ using numerical or computational methods

[128, 67] (e.g. matrix inversion, quasi Monte Carlo) which can be prohibitively

expensive with large n or p, or permute features and repeatedly query the black-

box model with the new data [45, 99], again a computationally expensive oper-

ation we avoid by learning explanations using distillation.

Feature attribution metrics. Several metrics have been proposed for fea-

ture importance for black-box models. These include permutation-based met-

rics [19], gradients/saliency ([126, 127, 12, 125]; also see [104] or [5] for a re-

view), or metrics based on variance decompositions [71] or game theory [33, 99].
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These metrics provide relative rankings of features but, as they do not character-

ize the full relationship between features and predictions, cannot answer ques-

tions such as “when feature xi increases by 1, how does the prediction change?”,

which our explanations are able to answer.

Evaluation of interpretability. There is no universal definition of inter-

pretability [37]; many recent papers evaluate interpretability in terms of how

a human uses the model to perform downstream tasks. These studies are typ-

ically performed on non-expert humans (e.g. Mechanical Turkers) [105, 111];

the exception is work mentioned above by Lakkaraju et al. [87] and concur-

rent work by Bastani et al. [15]; like us, they evaluate interpretability of global

explanations on expert users.

2.3 Our Approach

Our goal is to learn an explanation F̂ that (1) describes the relationship between

input features x1, . . . , xp and the model’s prediction function F; (2) approximates

prediction function F well.

2.3.1 Learning Global Additive Explanations

Treating the black-box model as a teacher, we use model distillation techniques

[22, 11, 65] to learn global additive explanations for the black-box model.

Black-box model: fully-connected neural nets. Our black-box models are

fully-connected neural nets (FNNs) with ReLU nonlinearities (see the next sec-
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tion for the training procedure). Note that our approach is not limited to neural

nets, but can also be applied to learn explanations for other black-box models

such as gradient boosted trees, random forests, etc. The most accurate nets we

trained were FNNs with 2-hidden layers and 512 hidden units per layer (2H-

512,512); nets with three or more hidden layers had lower training loss, but did

not generalize as well on our data sets. In some experiments we also used a

restricted-capacity model with 1 hidden layer of 8 units (1H-8). We obtain the

prediction function of the black-box model, F, by having the black-box model

label a set of training data.

Referring back to equation 2.1, additive explanations are determined by the

choice of metric L between F and its approximation F̂, degree d of highest order

components (e.g. d = 3 in equation 2.1), and type of base learner h. Learning

F̂ using model distillation is equivalent to choosing metric L that minimizing

||F − F̂||L, the empirical risk between the prediction function F and our global

additive explanation F̂ on the training data.

Our choice of two flexible, nonparametric base learners for h – splines [147]

and bagged trees – gives us two global additive explanation models F̂: Student

Bagged Additive Boosted Trees (SAT) and Student Additive Splines (SAS).

In addition, we include not just main components hi but also higher order com-

ponents hi j and hi jk to capture any interactions between features learned by the

black-box model F and increase the fidelity of the explanation F̂ to black-box

model F. Throughout this paper, we call SAT with second-order components

hi j SAT+pairs and similarly for SAS. To train SAT, SAS, and SAT+pairs, we find

optimal feature shapes {hi} and {hi j} that minimize mean square error between
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the black-box model F and the explanation F̂, i.e.

L(h0, h1, . . . , hp) =
1
T

T∑
t=1

‖F(xt) − F̂(xt)‖22

=
1
T

T∑
t=1

‖F(xt) − (h0 +

p∑
i=1

hi(xt
i)) −

∑
i, j

hi j(xt
i, x

t
j))‖

2
2, (2.2)

where F(x) is the black-box model’s output (scores for regression tasks and log-

its for classification tasks), T is the number of training samples, xt is the t-th

training sample, and xt
i is its i-th feature. The exact optimization details depend

on the choice of h (see the next section for the training procedure).

Training procedure and implementation details: neural nets

The neural net training was done using PyTorch. We use the Adam optimizer

[81] with default beta parameters, Xavier initialization [53], and early stopping

based on validation loss. For each depth, we use random search to find the op-

timal hyperparameters (number of hidden units, learning rate, weight decay,

dropout probability, batch size, enabling batch norm [70], etc) based on average

validation performance on multiple train-validation splits and random initial-

izations.

Training procedure and implementation details: student additive explana-

tions

For student additive explanations with tree base learners (SAT), we use cyclic

gradient boosting [23, 95] which learns the feature shapes in a cyclic manner.

As trees are high-variance, low-bias learners [63], when used as base learners

in additive models, it is standard to bag multiple trees [95, 96, 24]. We follow
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that approach here. The implementation we use is called Explainable Boosting

Machine (EBM)1.

For student additive explanations with spline base learners (SAS), we use cu-

bic regression splines trained using penalized maximum likelihood in R’s mgcv

library [148] and cross-validate the splines’ smoothing parameters.

2.3.2 Visualizing Global Additive Explanations

Our global additive explanations, SAT and SAS, can be visualized as feature

shapes (Figure 2.1). These are plots with the x-axis being the domain of in-

put feature xi and the y-axis being the feature’s contribution to the prediction

hi(xi). Feature shapes of SAT+pairs are heatmaps of xi and x j, with heatmap val-

ues being the two features’ interaction contribution to the prediction hi j(xi, x j).

As mentioned in Section 2.1, this way of representing the relationship between

features and model predictions has precedence in interpretability, with addi-

tive models learned directly on data [62] and other additive explanations (not

learned using model distillation) such as partial dependence [45] and Shapley

additive explanations [99] also visualized in the form of feature shapes.

Given that the visual complexity of additive explanations is similar – one

feature shape per feature – we compare our global additive explanations to par-

tial dependence and Shapley additive explanations in terms of fidelity (Section

2.4.2). However, an interesting question arises in terms of how to fairly compare

additive explanations and non-additive explanations such as distilled decision

trees, sparse linear models, etc., with each explanation having different repre-
1EBM is an implementation of GA2M, a type of interpretable model introduced in [95, 96, 24].

EBM can be found at https://github.com/microsoft/interpret.
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sentations and hence different visual complexity. We do so with a comparison

of fidelity, visual complexity, and interpretability in Sections 2.4.4 and 2.5.

2.4 Experimental Results

The motivation and intended use case of global explanations described in Sec-

tion 2.1 suggests the following criteria to evaluate our learned explanations:

1. Correctness: do learned explanations look like ground-truth explanations,

if available?

2. Fidelity: are learned explanations faithful to the black-box model?

3. Complexity: how does complexity affect the fidelity and interpretability

of learned explanations?

4. Interpretability: Can humans use the learned explanations to understand

the overall behavior of the black-box model?

2.4.1 Evaluating Correctness: Synthetic Data with Ground-

Truth Explanations

In this experiment, we simulate ground-truth descriptions of feature-prediction

relationships to see if our explanations can correctly recover them.

Setup. Inspired by [47], we designed an additive, highly nonlinear func-

tion combining components from synthetic functions proposed by [47], [66] and

[140]: F1(x) = 3x1 + x3
2 − π

x3 + exp(−2x2
4) + 1

2+|x5 |
+ x6 log(|x6|) +

√
2|x7| +max(0, x7) +
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Figure 2.2: Comparison of feature shapes for ground truth, SAT of a 2H-
512,512 black-box model, and SAT of a 1H-8 black-box model
for two features of synthetic function F1. Figure 2.16 at the end
of the chapter contains all the feature shapes.

x4
8 + 2 cos(πx8). Like [140], we set the domain of all features to be Uniform[-1,1].

Like [47], we add noise features to our samples that have no effect on F1(x) via

two noise features x9 and x10. We simulate 50,000 samples, and train two neural

nets, 2H-512,512 and 1H-8, to predict F1 from the ten features.

Performance of black-box model and explanations. The high-capacity 2H

neural net obtained a test accuracy RMSE of 0.14, while the low-capacity neu-

ral net obtained test accuracy RMSE of 0.48, more than 3x larger, showing that

function F1 is not trivial. We trained a SAT global additive explanation2 for each

neural net. SAT explanations are faithful, with a fidelity RMSE of 0.14 to the 1H

neural net, and a fidelity RMSE of 0.08 to the 2H neural net.

Does SAT explain the black-box model, or just the original data? A first

question one may have when learning post-hoc explanations of black-box mod-

els is whether the learned explanation is describing relationships encoded in the

black-box model or relationships in the original data.

2We also experimented with SAS and obtained very similar results. For brevity and simplic-
ity, in this section, we report only the results obtained by SAT.
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Figure 2.2 compares the feature shapes of our SAT explanation to function

F1’s analytic ground-truth feature shapes for two features, x4 and x6, of F1 (the

behavior for other features is similar). We make two observations. First, SAT’s

shapes for the 2H black-box model largely match the ground-truth shapes. Sec-

ond, SAT’s shapes for the 1H black-box model are notably different than the

shapes for the 2H model, and are also less similar to the ground truth shapes.

The differences in the SAT shapes for the 1H and 2H black-box models, com-

bined with the accuracy of the black-box models and the similarity of the expla-

nations to the ground truth, clearly indicate that the explanations explain the

black-box models and not the underlying data.

Does SAT’s feature shapes match the real behavior of the black-box

model?

We address this question two-ways. First, we directly measure the fidelity

of SAT explanations, and compare it with the accuracy of the black-box models:

the 2H black-box model has an accuracy of 0.14 RMSE, and its SAT explanation

has a fidelity of 0.08 RMSE; the 1H black-box model has an accuracy of 0.48

RMSE, and its SAT explanation has a fidelity of 0.14. The fidelity of the expla-

nations is significantly better than the black box models’ accuracies, indicating

that the explanations are faithful to the black-box models.

Second, we measure the black box model’s accuracy on samples belonging

to regions where the explanations and the ground truth agree or disagree3. If

3The areas of agreement and disagreement were estimated manually by comparing the 2H-
512,512 and 1H-8 feature shapes to ground truth feature shapes. Specifically, for the 2H model,
where most of the feature shapes agree with ground truth, we define the areas of disagreement
explicitly, and the areas of agreement by exclusion. For each feature shape, we defined area(s)
of disagreement: x4 ∈ {−0.1, 0.1}, x5 ∈ {−0.1, 0.1}, x6 ∈ {0.2, 0.4}, x7 ∈ {−0.1, 0.1}. Then, we op-
erationalized a rule to decide if a point falls in the agreement or disagreement region: it is
in disagreement if it falls in areas of disagreement on at least 3 of these features, and it is in
agreement if it falls in an area of disagreement in at most one feature. For the 1H model,
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Figure 2.3: Areas of agreement and disagreement with the ground truth of
SAT of a 2H-512,512 black-box model and SAT of a 1H-8 black-
box model feature shapes for two features of synthetic function
F1. The areas in yellow denote the areas of agreement for the
SAT 1H-8 model, and anything out of those areas is defined
to be in disagreement for that model. The areas in red denote
the areas of disagreement for the SAT 2H-512,512 model, and
anything out of those areas is defined to be in agreement. Note
that this is Figure 2.2 but with the areas of agreement and dis-
agreement explicitly circled.

the SAT feature shapes accurately represent the black-box model, then the black-

box model accuracy should be better on points sampled from areas of agreement

than on points sampled from areas of disagreement. We confirm this behavior

in Table 2.1: points sampled on the disagreement regions have lower accuracy

than points sampled from the agreement regions4.

How do interactions between features affect the feature shapes? We design

where most of the feature shapes disagree with ground truth, we define the areas of agree-
ment explicitly, and the areas of disagreement by exclusion. For each feature shape, we de-
fined area(s) of agreement: x4 ∈ {−0.55,−0.45} ∪ {0.45, 0.55}, x5 ∈ {−0.5,−0.4} ∪ {0.4, 0.5}, x6 ∈

{−0.75,−0.65} ∪ {−0.05, 0.05} ∪ {0.65, 0.75}, x7 ∈ {−0.8, 0.7} ∪ {−0.2,−0.1} ∪ {0.7, 0.8}. Then, we oper-
ationalized a similar rule to determine if a point falls in the agreement or disagreement region.
Note that the areas of agreement for 1H are typically narrower than the areas of disagreement
for 2H, hence the smaller area. Figure 2.3 explicitly circles the agreement and disagreement
areas of features x4 and x6 for 1H and 2H.

4Note that, for 2H, the explanation matches the ground truth on most points, hence the ac-
curacy of ‘All‘ is similar to the accuracy of ‘Agree‘. For 1H, the explanation does not match the
ground truth on most points, hence the accuracy of ‘All‘ is similar to the Accuracy of ‘Disagree‘.
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Model All Agree Disagree

2H-512,512 0.142 0.141 0.180

1H-8 0.483 0.407 0.489

Table 2.1: RMSE error of the 2H and 1H black-box models on all samples,
compared to the error on samples sampled from regions where
the explanation feature shapes “agree” or “disagree” with the
ground truth shape.

h i
(x

i)

x2 x4 x8

Figure 2.4: Comparison of feature shapes for SAT of a 2H-512,512 black-
box model of synthetic function F1, and SAT of a 2H-512,512
black-box model of synthetic function F2 for three features. x2

and x4 participate in interactions in F2, while x8 does not. Fig-
ure 2.17 at the end of the chapter contains all the feature shapes.

an augmented version of F1, F2(x) = F1(x) + x1x2 + |x3|
2|x4 | + sec(x3x5x6), which

introduces interactions for features x1 to x6, to investigate how interactions in

the black-box model’s predictions are expressed by feature shapes. We simulate

50,000 samples, and train a new 2H-512,512 neural net to predict F2 from the

ten features. This function is much harder to learn (the 2H model obtained an

RMSE of 0.21, compared to 0.14 of F1) and also harder for explanation models

(fidelity RMSEs of 0.35, compared to 0.08 RMSE of F1).

Figure 2.4 displays the feature shapes of the SAT explanations from F2 (in

purple) for two features with interactions (x4, x2) and a feature without inter-

actions (x8), and compares them with the shapes from F1 (in blue), already dis-

cussed in Figure 2.2. We first note how, for x8 (right), the shapes from F1 and F2
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match almost perfectly: the explanation model was not confused by the other

interactions and was able to accurately match the shape of x8. For x4 (left), the

part of the interactions that can be approximated additively by hi has “leaked”

into the hi feature shape, slightly changing its shape as expected.

An interesting case is x2, where, despite interacting with x1, its feature shape

has not changed and matches the feature shape from F1. This is less surprising

if we recall that feature shapes describe the expected importance of the feature,

learned in a data-driven fashion. The interaction term is x1x2, which, for x1 ∼

Uniform[-1,1], has an expected value of zero, and therefore does not affect the

feature shape. Similarly, for x4, the expected value of the interaction |x3|
2|x4 | when

x3 ∼ Uniform[-1,1] is 1/(2|x4| + 1), an upward pointing cusp, which leads to the

change noticed in Figure 2.4 (left).

Finally, plots of all the feature shapes can be found in the extended result

figures in Section 2.8, in Figures 2.16 and 2.17.

2.4.2 Evaluating Fidelity and Accuracy: Comparing Explana-

tions on Real Data

In this section, we quantitatively compare our global additive explanations to

other global explanations.

Setup. We selected five data sets: two UCI data sets (Bikeshare and Magic),

a Loan risk scoring data set from an online lending company5, the 2018 FICO

Explainable ML Challenge’s credit data set6, and the pneumonia data set ana-
5https://www.lendingclub.com/info/download-data.action
6https://community.fico.com/s/explainable-machine-learning-challenge
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Performance

Data n p Type 1H 2H

Bikeshare 17,000 12 Regression RMSE 0.60 0.38
Loan 42,506 22 Regression RMSE 2.71 1.91
Magic 19,000 10 Classification AUC 92.52 94.06
Pneumonia 14,199 46 Classification AUC 81.81 82.18
FICO 9,861 24 Classification AUC 79.08 79.37

Table 2.2: Performance of neural net black-box models. For RMSE, lower
is better. For AUC, higher is better.

lyzed by [24]. We train a 2H-512,512 neural net that we will use as the main

black-box model in this section (see Section 2.3 for training procedure). Table

2.2 presents the accuracy of the black-box model, as well as the accuracy of a

lower-capacity 1H-8 black-box model (provided for comparison purposes) and

additional details about the datasets.

Metrics. Lundberg and Lee [99] suggested viewing an explanation of a

model’s prediction as a model itself. With this perspective, we quantitatively

evaluate explanation models as if they were models. Specifically, we evalu-

ate not just fidelity (how well the explanation matches the black-box model’s

predictions) but also accuracy (how well the explanation predicts the original

label). Note that [99] and [114] evaluated local fidelity (called local accuracy by

[99]), but not accuracy. A similar evaluation of global accuracy was performed

by [78] who used their explanations (prototypes) to classify test data. We use

the feature shapes of additive explanations and distilled interpretable models

to predict on independent test data.

Baselines. We compare to two types of baselines: (1) Additive explanations

obtained by querying the black-box model (i.e. without distillation): partial

dependence (PD) [45], Shapley additive explanations [99] and gradient-based
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explanations [125]; (2) Interpretable models learned by distilling the black-box

model: trees and sparse linear models.

Training procedure and implementation details: baselines

Partial dependence [45] (PD) is a classic global explanation method that esti-

mates how predictions change as feature x j varies over its domain: PD(x j = z) =

1
T

∑T
t=1 F((xt

1, . . . , x
t
j = z, . . . , xt

p) where the neural net is queried with new data

samples generated by setting the value of their x j feature to z, a value in the

domain of x j. Plotting PD(x j = z) by z returns a feature shape. We implement

our own version of partial dependence by repeatedly setting xt
j for all points to

a, a value in the domain of x j, and then querying the neural net with these new

data samples.

Gradient-based explanations involves constructing the additive function G

through the Taylor decomposition of F, defining G(x) = F(0) +
∑p

i=1
∂F(x)
∂xi

xi, and

defining the attribution of feature i of value xi as ∂F(x)
∂xi

xi. This formulation is

related to the “gradient*input” method (e.g. [125]) used to generate saliency

maps for images.

Shapley additive explanations [99] is a state-of-the-art local explanation

method that satisfies several desirable local explanation properties [99]. Given

a sample and its prediction, Shapley additive explanations decompose the pre-

diction additively between features using a game-theoretic approach. We use

the python package by the authors of Shapley additive explanations.

Decision trees and sparse linear models were learned using the scikit-learn
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Figure 2.5: From local Shapley explanations to gSHAP, a global Shapley
feature shape we create by aggregating local Shapley explana-
tions.

Python package. Subgroup rules were learned using the Vikamine7 [10] pack-

age, as we needed to learn rules for regression problems and state-of-the-art rule

lists [89, 6] do not support regression. However, our results with Vikamine were

unsatisfying, and we only obtained reasonable results on the Bikeshare dataset.

Constructing global explanations from local explanations. Both Shapley

additive explanations and gradient-based explanations are local explanations

that we adapt to a global setting by averaging the local explanations at each

unique feature value. For example, the global attribution for feature “Tempera-

ture” at value 10 is the average of local attribution “Temperature” for all training

samples with “Temperature=10”. This is the red line passing through the points

in Figure 2.5. Applying this procedure to Shapley and gradient-based local at-

tributions, we obtain global attributions gGRAD and gSHAP that we can now

plot as feature shapes.

7http://www.vikamine.org/
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Accuracy Bikeshare Loan Magic Pneumonia FICO
Global Explanation RMSE RMSE AUC AUC AUC

Ours
SAT 0.98 ± 0.00 2.35 ± 0.01 90.75 ± 0.06 82.24 ± 0.05 79.42 ± 0.04
SAT+pairs 0.60 ± 0.00 2.13 ± 0.01 90.75 ± 0.06 82.23 ± 0.06 79.44 ± 0.04
SAS 0.98 ± 0.00 2.34 ± 0.00 90.58 ± 0.02 82.12 ± 0.04 79.51 ± 0.02

Other additive
methods

gGRAD 1.25 ± 0.00 6.04 ± 0.01 80.95 ± 0.13 81.88 ± 0.05 79.28 ± 0.02
gSHAP 1.02 ± 0.00 5.10 ± 0.01 88.98 ± 0.05 82.31 ± 0.03 79.36 ± 0.01
PD 1.00 ± 0.00 4.31 ± 0.00 82.78 ± 0.00 82.15 ± 0.00 79.47 ± 0.00

Other interpretable
methods

Decision Tree 0.60 ± 0.01 2.66 ± 0.02 91.44 ± 0.29 79.38 ± 0.38 78.19 ± 0.03
Sparse Linear 1.39 ± 0.00 3.45 ± 0.00 86.91 ± 0.01 82.06 ± 0.02 79.16 ± 0.01

Fidelity Bikeshare Loan Magic Pneumonia FICO
Global Explanation RMSE RMSE RMSE RMSE RMSE

Ours
SAT 0.92 ± 0.00 1.74 ± 0.01 1.78 ± 0.00 0.35 ± 0.00 0.15 ± 0.00
SAT+pairs 0.50 ± 0.00 1.47 ± 0.00 1.75 ± 0.00 0.30 ± 0.00 0.11 ± 0.00
SAS 0.92 ± 0.00 1.71 ± 0.00 1.75 ± 0.00 0.35 ± 0.00 0.14 ± 0.00

Other additive
methods

gGRAD 1.20 ± 0.00 5.93 ± 0.01 2.93 ± 0.01 0.43 ± 0.00 0.16 ± 0.00
gSHAP 0.96 ± 0.00 4.83 ± 0.00 2.15 ± 0.00 0.46 ± 0.00 0.16 ± 0.00
PD 0.94 ± 0.00 3.85 ± 0.00 3.17 ± 0.00 0.47 ± 0.00 0.16 ± 0.00

Other interpretable
methods

Decision Tree 0.47 ± 0.01 2.12 ± 0.02 1.33 ± 0.03 0.75 ± 0.01 0.44 ± 0.01
Sparse Linear 1.35 ± 0.00 2.87 ± 0.01 2.22 ± 0.00 0.49 ± 0.00 0.18 ± 0.00

Table 2.3: Accuracy and fidelity of global explanations for 2H black-box
models. Accuracy is RMSE for regression tasks and AUROC for
classification tasks; fidelity is always RMSE between the expla-
nation model’s predictions and the black-box model’s scores or
logits (see equation 2.2).

Results. Table 2.3 presents the fidelity and accuracy results for SAT and

SAS compared to the two types of baselines: (1) other additive explanations; (2)

other distilled interpretable models. We also include an augmented version of

SAT that includes pairwise interactions, denoted by SAT+pairs.

We draw several conclusions. First, SAT and SAS yield similar results in

all cases, both in terms of accuracy and fidelity, indicating that the particular

choice of the base learner did not matter for these data sets. Capturing pairwise

interactions (SAT+pairs) leads to improvements in some datasets (particularly

Bikeshare and Loan, the two regression tasks), while in the remaining datasets

the changes are not as remarkable. This suggests that the individual feature
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shapes already provide a faithful interpretation of the model.

Compared to other additive explanations such as gSHAP and PD, SAT and

SAS generally obtain better accuracy and fidelity. This is not surprising since

SAT and SAS were trained specifically to mimic the black-box model. In par-

ticular, SAT and SAS are superior to PD in all tasks and metrics. Compared to

other interpretable methods, SAS and SAT also obtain better results. Despite not

capturing interactions, SAS and SAT are non-linear models, and hence able to

model nonlinear relationships that sparse linear models cannot. Decision trees

are locally adaptive smoothers [21] better able to adapt to sudden changes in

input-output relationships, but that also gives them more capacity to overfit.

They excel on some datasets (e.g. Bikeshare), but are not as accurate on other

datasets (e.g. Pneumonia or FICO).

Figure 2.6 displays selected feature shapes for Magic and Loan. The feature

shapes produced by PD tend to be much too smooth, which hurts its fidelity and

accuracy. Second, in all cases, trees and splines have similar feature shapes and

obtain equal or better accuracy and fidelity than the other methods. This is not

surprising as the other methods are either local methods adapted to the global

setting (gSHAP, gGRAD), or are global explanations that are not optimized to

learn the teacher’s predictions (PD). For reference, gSHAP when used as a local

method (i.e. individual SHAP values, not global feature shapes) achieved a

lower RMSE of 0.37 compared to 1.02 on Bikeshare, and a lower RMSE of 1.99

compared to 5.10 on Loan, which is comparable to its 2H teacher’s RMSE on

test data (Table 2.2). Hence, methods such as gSHAP excel at local explanations

and should be used for those, but, to produce global explanations, global model

distillation methods optimized to learn the teacher’s predictions perform better.
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Figure 2.6: Example feature shapes for Magic data (left), and Loan data
(right). SAT and SAS tend to agree.

Accuracy Bikeshare Loan Magic Pneumonia FICO
Teacher Global Explanation RMSE RMSE AUC AUC AUC

1H-8

SAT 1.00 ± 0.00 2.82 ± 0.00 90.44 ± 0.05 82.01 ± 0.05 79.43 ± 0.02
SAS 1.00 ± 0.00 2.82 ± 0.00 90.43 ± 0.03 81.91 ± 0.06 79.56 ± 0.02

gGRAD 1.08 ± 0.00 2.84 ± 0.00 84.52 ± 0.67 81.63 ± 0.06 79.34 ± 0.05
gSHAP 1.04 ± 0.00 2.87 ± 0.00 89.94 ± 0.03 82.02 ± 0.02 79.49 ± 0.02
PD 1.00 ± 0.00 3.00 ± 0.00 85.11 ± 0.00 82.03 ± 0.00 79.46 ± 0.00

2H-512,512

SAT 0.98 ± 0.00 2.35 ± 0.01 90.75 ± 0.06 82.24 ± 0.05 79.42 ± 0.04
SAS 0.98 ± 0.00 2.34 ± 0.00 90.58 ± 0.02 82.12 ± 0.04 79.51 ± 0.02

gGRAD 1.25 ± 0.00 6.04 ± 0.01 80.95 ± 0.13 81.88 ± 0.05 79.28 ± 0.02
gSHAP 1.02 ± 0.00 5.10 ± 0.00 88.98 ± 0.05 82.31 ± 0.03 79.36 ± 0.01
PD 1.00 ± 0.00 4.31 ± 0.00 82.78 ± 0.00 82.15 ± 0.00 79.47 ± 0.00

Fidelity Bikeshare Loan Magic Pneumonia FICO
Teacher Global Explanation RMSE RMSE RMSE RMSE RMSE

1H-8

SAT 0.64 ± 0.00 1.15 ± 0.00 1.12 ± 0.00 0.30 ± 0.00 0.21 ± 0.00
SAS 0.64 ± 0.00 1.14 ± 0.00 1.11 ± 0.00 0.30 ± 0.00 0.21 ± 0.00

gGRAD 0.71 ± 0.00 1.54 ± 0.00 35.40 ± 4.47* 0.36 ± 0.00 0.24 ± 0.00
gSHAP 0.68 ± 0.00 1.28 ± 0.00 1.29 ± 0.00 0.38 ± 0.00 0.22 ± 0.00
PD 0.65 ± 0.00 1.37 ± 0.00 1.94 ± 0.00 0.38 ± 0.00 0.25 ± 0.00

2H-512,512

SAT 0.92 ± 0.00 1.74 ± 0.01 1.78 ± 0.00 0.35 ± 0.00 0.15 ± 0.00
SAS 0.92 ± 0.00 1.71 ± 0.00 1.75 ± 0.00 0.35 ± 0.00 0.14 ± 0.00

gGRAD 1.20 ± 0.00 5.93 ± 0.01 2.93 ± 0.01 0.43 ± 0.00 0.16 ± 0.00
gSHAP 0.96 ± 0.00 4.83 ± 0.01 2.15 ± 0.00 0.46 ± 0.00 0.16 ± 0.00
PD 0.94 ± 0.00 3.85 ± 0.00 3.17 ± 0.00 0.47 ± 0.00 0.16 ± 0.00

Table 2.4: Accuracy and fidelity of global explanations for 1H and 2H
black-box models. A reduced version of this table appeared in
Table 2.3. This table includes results with 1H black-box models.
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Finally, for completeness, we also present quantitative results using teacher

of lower capacity. In particular, instead of using a 2H neural net (2H-512,512),

we will use a neural net with only one hidden layer of 8 units (1H-8). In general,

the lower-capacity 1H neural nets are easier to approximate (i.e. better student-

teacher fidelity), but their explanations are less accurate on independent test

data. Students of simpler teachers tend to be less accurate even if they are faith-

ful to their (simple) teachers. One exception is the FICO data, where the fidelity

of the 2H explanations is better. Our interpretation is that many features in the

FICO data have almost linear feature shapes (see Figure 2.14 for a sample of fea-

tures), and the 2H model may be able to better capture fine details while being

simple enough that it can still be faithfully approximated. The accuracy of the

SAT and SAS for 1H and 2H neural nets are comparable, taking into account the

confidence intervals.

On the Magic data, the fidelity of the gGRAD explanation to the 1H neural

net (see * in Table 2.4) is markedly worse than other explanation methods. We

investigate the individual gradients of the 1H neural net with respect to each

feature. 99% of them have reasonable values (between -5.6 and 6). However,

3 are larger than 1,000 (with none between 6 and 1,000) and 13 are lower than

-1,000 (with none between -1,000 and -5.6), resulting in the ensuing gGRAD ex-

planation generating extreme predictions for several samples that are not faith-

ful to the teacher’s predictions. Because AUC is a ranking loss, accuracy (AUC)

is less affected than fidelity (RMSE) by the presence of these extreme values.

This shows that gGRAD explanations may be problematic when individual gra-

dients are arbitrarily large, e.g. in overfitted neural nets.
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2.4.3 Evaluating Correctness: Controlled Experiments on Real

Data

In this section we further validate global additive explanations on real data.

Although here we do not have an analytic solution for the ground-truth feature

shapes, we can still design experiments where we modify data in ways that will

lead to expected known changes to the ground-truth feature shapes and then

verify that these changes are captured in the learned feature shapes.

Label modification. On Bikeshare, we added 1.0 to the label (the number

of rented bikes) for samples where one of the features (humidity) is between 55

and 65. We then retrained a 2H neural net on the modified data, and applied our

approach to learn feature shapes from the 2H net. Ideally, the feature shapes of

that new neural net should be almost identical to those of the original net except

in that particular range of the humidity feature, where we should see an abrupt

“bump” that increases its feature shape value by one. Figure 2.7 displays the

feature shapes. Our method was able to recover the change to the label for the

neural net in the new feature shape.

Data modification: expert discretization. Sometimes features are trans-

formed before training. For example, in medical data, continuous variables

such as body temperature may be discretized by domain experts into bins such

as normal, mild fever, moderate fever, high fever, etc. In this experiment we

test if our additive explanation models can recover these discretizations from

the neural net without access to the discretized features. We train our student

additive models using as input features the original un-discretized features, but us-

ing as labels the outputs of a neural net that was trained on discretized features.

Our expectation is that if the student models are an accurate representation of
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Figure 2.7: Feature shape from label modification experiment on Bikeshare
data.

what the neural net learned from the discretized features, they will detect the

discretizations, even if they never have access to the discretized features or to

the internal structure of the neural-net teacher. We study the feature shapes of

two features in the Pneumonia data (Blood pO2 and Respiration Rate) in Figure

2.8, where we compare the feature shapes learned from teachers trained on the

original continuous data (dotted lines) with those from teachers trained on dis-

cretized features (solid lines). Recall that in both cases the student models only

saw non-discretized features to generate feature shapes. Our approach captures

the expected discretization intervals (in yellow) as described in [30].

2.4.4 Evaluating Fidelity as a Function of Explanation Com-

plexity

In the previous section we compared the fidelity and accuracy of SAT and SAS

to other additive explanations such as gGRAD, gSHAP, and PD. Because all
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Figure 2.8: Feature shapes from data modification experiment on Pneumo-
nia data.

these methods are additive they can be visualized in feature shapes. Models

such as trees and rules, however, may be interpretable but are not additive. In

this section we compare the fidelity of SAT explanations to sparse linear models

and trees of varying complexity, showing that the most faithful models with

low complexity may be different from the most faithful models with high

complexity. In Section 2.5 we then compare the interpretability of SAT to trees

and linear models via a user study, tying the complexity of the models with

their actual interpretability.

Figure 2.9 presents the fidelity8 of SAT and SAT+pairs compared to two other

interpretable distilled models, decision trees (DT) and sparse L1-regularized lin-

ear models (SPARSE), on three of the test problems: Bikeshare, Pneumonia and

Loan. The trees and linear models are trained using scikit-learn9.

We present results as a function of a model-specific parameter K that con-

8The accuracy plots present very similar patterns.
9We also tried to compare to rule lists. However, state-of-the-art rule lists [89, 6] do not

support regression, which is needed for distillation. We considered a slightly older subgroup
discovery algorithm [10] that supports regression but does not generate disjoint rules, but we
only achieved reasonable results on the Bikeshare dataset, hence we preferred not to report the
rules results. We however use these rules for our user study on Bikeshare in Section 2.5.
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Figure 2.9: Fidelity (RMSE) of different distilled interpretable models on
Bikeshare (left), Pneumonia (center) and Loan (right) data as
a function of model “complexity” K. In this case, we set K
as number of features for SAT and SPARSE, and tree depth
for DR. Other choices are possible. The lower the fidelity
RMSE, the more faithful the interpretable model to the black-
box model. Key: SAT, SAT+Pairs, DT, SPARSE.

trols the complexity of the model. For SPARSE, K represents the number of

features included in the model, controlled indirectly through the LASSO regu-

larization parameter α. For DT, K is the depth of the tree. We allow a tree of

depth K access to all features. Because of this, a tree of depth K might use fewer

than K features (continuous or multi-valued features might be split more than

once on some branches), exactly K features (e.g., if all features are Boolean), or
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more than K features (by splitting different features on different branches — the

most common case). For SAT and SAT+pairs, K is the number of features in-

cluded in the additive model. For SAT this is also the number of shape plots.

For SAT+pairs, which models pairwise interactions, the model will also include

shape plots that represent stronger pairwise interactions found between the K

features in the model. Note that trees of depth K can represent K-way interac-

tions, and that the model complexity of trees falls between K and 2K because

a binary tree of depth K has 2K leaves (2K rules), but the complexity is some-

what less than 2K because there is overlap in the rules resulting from the tree

structure.

Overall, SPARSE has the worst fidelity. On Bikeshare and Loan, SPARSE

is dominated by all other methods. On Pneumonia it is inferior to SAT and

SAT+pairs for all values of K, but has better or worse fidelity than trees de-

pending on K. Even though linear models may be interpretable, they often do

not have the complexity necessary to accurately represent most black-box mod-

els. Note that two explanation methods that use sparse linear models [114] and

rules [115] use them as local (not global) explanations, and only for classification

(not regression).

Trees perform well given enough features and depth. On Bikeshare, trees

outperform SAT by depth 7, and outperform SAT+pairs by a small amount for

depth 10 and greater, although at that point one has to consider up to 210 =

1024 different paths. We suspect the deep tree is able to benefit from higher

order interactions, whereas SAT+pairs is restricted to pairwise interactions to

maintain intelligbility. However, the user study in Section 2.5 suggests that trees

of this depth are no longer intelligible.
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Overall, the best model is SAT+pairs. On Bikeshare, where interactions are

important, SAT+pairs performs much better than SAT (which uses the same fea-

tures but does not model interactions between features), and outperforms shal-

low trees of depth 8 or less. On Pneumonia and Loan, both SAT and SAT+pairs

outperform SPARSE and trees of any depth. SAT+pairs consistently outper-

forms SAT on all three problems, by wide margin on Bikeshare, and small mar-

gins on Pneumonia and Loan.

In summary, our global additive explanations (SAT and SAT+pairs) have the

highest overall fidelity to the black-box models they are trained to explain, even

at low values of K. Trees sometimes exhibit high fidelity when given adequate

depth, but the results from the user study in the next section suggest that depth

greater than 5 or 6 hinders their intelligibility.

2.5 Evaluating Interpretability with Expert Users

We now describe the results from a user study to see if SAT additive explana-

tions can be understood and used by humans, comparing them to other inter-

pretable models (DT, SPARSE, RULES) distilled from the 2H-512,512 neural net.

We denote the complexity of the models by model-K. For example, a tree of

depth 4 would be denoted as DT-4, while a group of 5 rules would be denoted

as RULES-5. Table 2.5 presents quantitative results from the user study.

Study design. 50 subjects were recruited to participate in the study. These

subjects – STEM PhD students, or college-educated individuals who had taken

a machine learning course – were familiar with concepts such as if-then-else

structures (for trees and rule lists), reading scatterplots (for SAT), and interpret-
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ing equations (for sparse linear models). Each subject only used one explanation

model (between-subject design) to answer a set of questions covering common

inferential and comprehension tasks on machine learning models: (1) Rank fea-

tures by importance; (2) Describe relationship between a feature and the predic-

tion; (3) Determine how the prediction changes when a feature changes value;

(4) Detect an error in the data, captured by the model. The exact questions were:

1. What is the most important variable for predicting bike demand?

2. Rank all the variables from most important to least important for predict-

ing bike demand.

3. Describe the relationship between the variable Hour and predicted bike

demand.

4. What are variables for which the relationship between the variables and

predicted bike demand is positive?

5. The Hour is 11. When Temperature increases from 15 to 20, how does

predicted bike demand change?

6. There is one error in the data. Any idea where it might be? “Cannot find

the error” is an ok answer.

In the first stage, 24 of 50 subjects were randomly assigned to see output

from DT-4 or SAT-510. In the second stage, we experimented with smaller ver-

sions of trees and SAT using only the two most important features, Hour and

10 We considered DT and SAT first because they are the most accurate and faithful explana-
tions. We used DT-4 because that is the largest tree that is readable on letter-size paper, and that
does not lag too far behind the depth 6 tree in accuracy (RMSE: SAT 0.98, DT-6 1, DT-4 1.16). For
reference, we show the DT-6 tree in Figure 2.12. DT-4 used five features: Hour, Temperature,
Year, Working Day, Season (Figure 2.11), hence we select the corresponding five feature shapes
to display for SAT-5 (Figure 2.10).
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Temperature. 14 of 50 subjects were randomly assigned to see output from SAT-

2 or DT-2. In the last stage, the remaining 12 subjects were randomly assigned to

see output from one of the two worst performing models (in terms of accuracy

and fidelity): sparse linear models (SPARSE-2) and subgroup-rules (RULES-5).

The SAT-5 and DT-4 models shown to the users are in Figures 2.10 and 2.11.

MODEL 
The additive model below was trained to predict bike demand. Each plot describes a variable on the x-axis and predicted bike 
demand on the y-axis. Hour denotes hour-of-day, i.e. 0, 1, 2, … 23. Temperature is in Celsius. Year has 2 possible values: 2011, 
2012. Season has 4 possible values: Spring, Summer, Fall, Winter.  
 
 

 

 

Figure 2.10: Model output shown to SAT-5 subjects in user study

Can humans understand and use feature shapes? From the absolute mag-

nitude of the SAT feature shapes as well as Gini feature importance metrics for

the tree, we determined the ground truth feature importance ranking (in de-

creasing order): Hour, Temperature, Year, Season, Working Day. More SAT-5

than DT-4 subjects were able to rank the top 2 and all features correctly (75% vs.

58%, see Table 2.5).

When ranking all 5 features, 0% of the DT-4 and RULES-5 subjects were able

to predict the right order, while 45% of the SAT-5 subjects correctly predicted the

33



Fi
rs

ts
ta

ge
(n

=2
4)

Se
co

nd
st

ag
e

(n
=1

4)
T

hi
rd

st
ag

e
(n

=1
2)

Ta
sk

SA
T-

5
D

T-
4

SA
T-

2
D

T-
2

SP
A

R
SE

-2
R

U
LE

S-
5

R
an

ke
d

co
rr

ec
tl

y
to

p
2

fe
at

ur
es

75
%

58
%

10
0%

85
.7

%
83

.3
%

0%
R

an
ke

d
co

rr
ec

tl
y

al
l(

5)
fe

at
ur

es
45

%
0%

N
/A

N
/A

N
/A

0%
N

D
C

G
be

tw
ee

n
hu

m
an

ra
nk

in
g

of
to

p
5

fe
at

ur
es

0.
94
±

0.
13

0.
89
±

0.
11

N
/A

N
/A

N
/A

0.
27
±

0.
11

an
d

gr
ou

nd
-t

ru
th

fe
at

ur
e

im
po

rt
an

ce

D
es

cr
ib

ed
in

cr
ea

se
d

de
m

an
d

42
%

0%
29

%
0%

0%
33

%
du

ri
ng

ru
sh

ho
ur

D
es

cr
ib

ed
in

cr
ea

se
d

de
m

an
d

33
%

0%
29

%
0%

0%
33

%
du

ri
ng

m
or

ni
ng

s
an

d
af

te
rn

oo
ns

C
om

pu
te

ch
an

ge
in

pr
ed

ic
ti

on
33

%
25

%
14

%
10

0%
83

%
0%

w
he

n
fe

at
ur

e
ch

an
ge

s

C
au

gh
td

at
a

er
ro

r
33

%
8%

N
/A

N
/A

N
/A

0%

Ti
m

e
ta

ke
n

(m
in

ut
es

)
11

.7
±

5.
8

17
.5
±

14
.8

7.
2
±

3.
2

6.
2
±

2.
2

5.
2
±

3.
1

14
.9
±

8.
4

Ta
bl

e
2.

5:
Q

ua
nt

it
at

iv
e

re
su

lt
s

fr
om

us
er

st
ud

y.
Si

nc
e

SA
T-

2,
D

T-
2,

an
d

SP
A

R
SE

-2
on

ly
ha

d
tw

o
fe

at
ur

es
,t

he
ta

sk
to

ra
nk

fiv
e

fe
at

ur
es

do
es

no
ta

pp
ly

.S
in

ce
th

e
da

ta
er

ro
r

on
ly

ap
pe

ar
ed

in
th

e
ou

tp
ut

of
SA

T-
5,

D
T-

4,
an

d
R

U
LE

S-
5,

th
e

ot
he

r
su

bj
ec

ts
co

ul
d

no
th

av
e

ca
ug

ht
th

e
er

ro
r.

34



 
MODEL 

The tree below was trained to predict bike demand. The tree is using five variables: Hour, Temperature, Year, Season, Working day. 
Hour denotes hourofday, i.e. 0, 1, 2, … 23. Temperature is in Celsius. Year has 2 possible values: 2011, 2012. Season has 4 
possible values: Spring, Summer, Fall, Winter.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11: Model output shown to DT-4 subjects in user study

order of the 5 features, showing that ranking feature importance for trees is ac-

tually a very hard task. The most common mistake made by DT-4 subjects (42%

of subjects) was to invert the ranking of the last two features, Season and Work-

ing Day, perhaps because Working Day’s first appearance in the tree (in terms

of depth) was before Season’s first appearance (Figure 2.11). We also evaluate

the normalized discounted cumulative gain (NDCG) between the ground truth

feature importance and the user prediction, where we give relevance scores to

the feature in decreasing order (i.e., for 5 features, the most important feature

has a relevance score of 5, the second most important 4, etc). This gives us an

idea of how well the features were ranked, even if the ranking is not perfect. We

see how SAT-5 obtains a better score than DT-4, consistent with the previous

analysis. RULES-5 obtains a significant lower score.

When asked to describe, in free text, the relationship between the variable

Hour and the label, one SAT-5 subject wrote:

There are increases in demand during two periods of commuting hours: morning
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Figure 2.12: Tree of depth 6 (64 leaves), the least deep tree that matched
SAT’s fidelity. This uses the default tree visualizer in scikit-
learn.
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commute (e.g. 7-9 am) and evening commute (e.g. 4-7 pm). Demand is flat

during working hours and predicted to be especially low overnight,

whereas DT-4 subjects’ answers were not as expressive, e.g.:

Demand is less for early hours, then goes up until afternoon/evening, then goes

down again.

75% of SAT-5 subjects detected and described the peak patterns in the morn-

ings and late afternoons, and 42% of them explicitly mentioned commuting or

rush hour in their description. On the other hand, none of the DT-4 subjects dis-

covered this pattern on the tree: most (58%) described a concave pattern (low

and increasing during the night/morning, high in the afternoon, decreasing in

the evening) or a positively correlated relation (42%). Similarly, more SAT-5 sub-

jects were able to precisely compute the change in prediction when temperature

changed in value, and detect the error in the data – that spring had lower bike

demand whereas winter had high bike demand (bottom right feature shape in

Figure 2.10).

How do tree depth and number of feature shapes affect human perfor-

mance? We also experimented with smaller models, SAT-2 and DT-2, that used

only the two most important features, Hour and Temperature. As the models

are simpler, some of the tasks become easier. For example, SAT-2 subjects pre-

dict the order of the top 2 features 100% of the time (vs 75% for SAT-5), and DT-2

subjects, 85% of the time (vs 58% for DT-4). The most interesting change is in the

percentage of subjects able to compute the change in prediction after changing

a feature: only 25% for DT-4, compared to 100% for DT-2. Reducing the com-

plexity of the explanation made using it easier, at the price of reducing the fidelity
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and accuracy of the explanation. Another important aspect is the time needed to

perform the tasks: increasing the number of features from 2 to 5 increases the

time needed by the subjects to finish the study by 60% for the SAT model, but

increases it by 166% for the DT model, that is, interpreting a tree becomes much

more costly as the tree becomes deeper (and more accurate), and, in general,

subjects make more mistakes. SAT scales up more gracefully.

Remaining interpretable models: subgroup-rules and sparse linear mod-

els. These explanations were the least accurate and faithful. We found that

human subjects can easily read the (few) weights of SPARSE-2, establish fea-

ture importance, and compute prediction changes, and do so quickly – at 5.1

minutes on average, this was the fastest explanation to interpret. However, the

model is highly constrained and hid interesting patterns. For example, 100%

of the subjects described the relation between demand and hour as increasing,

and 83% predicted the exact amount of increase, but none were able to provide

insights like the ones provided by SAT-5 and DT-4 subjects.

RULES-5 was the second hardest explanation to interpret based on mean

time required to answer the questions: 14.9 minutes. Understanding non-

disjoint rules appears to be hard: none of the subjects correctly predicted the

feature importance order, even for just two features; none were able to compute

exactly the change in prediction when feature value changes, and none were

able to find the data error. The rules in RULES-5 are not disjoint because we

could not find a regression implementation of disjoint rules. However, 66% of

the subjects discovered the peak during rush hour, as that appeared explicitly

in some rules, e.g. “If hour=17 and workingday=yes then bike demand is 5”.

Fidelity vs. interpretability. Figure 2.13 presents detailed results for indi-

38



Figure 2.13: User study metrics, as proxies for interpretability, by fidelity
(RMSE) for different explanations. Each point is an individual
user in the user study. The metrics are time needed to finish
the study (top left), length of the description (top right), and
the NDCG of the ranked features (bottom). Key: SAT-5, DT-4,
SAT-2, DT-2, RULES-5, SPARSE-2

vidual users by model. On the left is the time needed to finish the study (left).

In the center is the length of the user’s written description of the relationship

between a feature and model predictions. On the right is the NDCG rank loss

of user ranking of feature importance compared to ground-truth feature im-

portance. All of these metrics can be considered interpretability metrics, when

defining interpretability as grounded in human tasks [37]. On the y-axis is fi-

delity (RMSE).

The plots show that there is a trade-off between fidelity and interpretbility

(as measured by time to complete, description length, and NDCG of feature
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rankings), but not all methods behave similarly. In general, the SPARSE-2 model

is easy to understand (users typically finish the study rapidly), but fidelity is

poor and it leads to short descriptions. On the other hand, SAT-5 and DT-4 have

much better fidelity and lead to more varied descriptions, but also took longer

to understand. DT-2 was faster to complete than DT-4, but the fidelity is lower

and the descriptions shorter. RULES-5 is better than SPARSE-2, but not as good

as SAT-5 or DT-4. SAT-5 offers a reasonable trade-off, being both faithful and

relatively easy to understand, while also leading to rich descriptions for many

users.

To summarize, global additive explanations: (1) allowed humans to perform

better (than decision trees, sparse linear models, and rules) at ranking feature

importance, pointing out patterns between certain feature values and predic-

tions, and catching a data error; (2) Additive explanations were also faster to

understand than big decision trees; (3) Very small decision trees and sparse lin-

ear models had the edge in calculating how predictions change when feature

values change, but were much less faithful and accurate.

2.6 Applications and Extensions

In this section we discuss applications of our approach and extensions to in-

clude higher-order interactions.
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2.6.1 Utility of Global Additive Explanations

Checking for monotonicity

h i
(x

i)

Figure 2.14: Checking for monotonicity in 3 of 16 features with expected
monotonically increasing or decreasing patterns in FICO data.
The feature on the left, “Months Since Most Recent Trade
Open”, was expected to decrease monotonically, but actually
increased monotonically.

Domains such as credit scoring have regulatory requirements that prescribe

monotonic relationships between predictions and some features [40]. For ex-

ample, the 2018 FICO Explainable ML Challenge11 encouraged participants to

impose monotonicity on 16 features. We use feature shapes to see if the func-

tion learned by the neural net is monotone for these features. 15 of 16 features

are monotonically increasing/decreasing as required. One feature, however,

“Months Since Most Recent Trade Open” was expected to decrease monotoni-

cally, but actually increased monotonically. This is true not just in our explana-

tions, but also in PD, gGRAD, and gSHAP (Figure 2.14). The two figures on the

right are two related features, “Months Since Oldest Trade Open” and “Number

of Trades Open in Last 12 Months”, both of which exhibit the expected mono-

tonically decreasing/increasing patterns. .

With the insight from the global explanations that the neural net may not be

11https://community.fico.com/s/explainable-machine-learning-challenge
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exhibiting the expected pattern for “Months Since Most Recent Trade Open”, we

perform a quick experiment to verify this in the neural net. We sample values of

this feature across its domain, set all data samples to this value (for this feature),

and obtain the neural net’s predictions for these modified samples. The majority

of samples (70%) had predictions that increased as this feature increased across

its domain, confirming that on average, the neural net exhibits a monotonically

increasing instead of decreasing pattern for this feature. Note that we could

not have checked for a monotonicity pattern (which is by definition a global

behavior) without checking and aggregating multiple local explanations.

Visualizing neural net training: from underfit to overfit.

Using additive models to peek inside a neural net creates many opportunities.

For example, we can see what happens in the neural net when it is underfit or

overfit; when it is trained with different losses such as squared, log, or rank loss

or with different activation functions such as sigmoid or ReLUs; when regu-

larization is performed with dropout [129] or weight decay; when features are

coded in different ways; etc. The video at https://youtu.be/ATNcgurNHhc

shows what is learned by a neural net as it trains on a medical dataset. The

movie shows feature shapes for five features before, at, and after the early-

stopping point as the neural net progresses from underfit to optimally fit to

overfit. We had expected that the main cause of overfitting would be increased

non-linearity (bumpiness) in the fitting function, but a significant factor in over-

fitting appears to be unwarranted growth in the confidence of the model as the

logits grow more positive or negative than the early-stopping shape suggests is

optimal.
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Figure 2.15: Visualizing working day, an important pairwise interaction in
the Bikeshare data.

2.6.2 Extending Global Additive Explanations to Include Inter-

actions

Functions learned by neural nets cannot always be represented with adequate

fidelity by the additive function F̂ in equation 2.1. We can improve F̂’s expres-

sive power by adding pairwise and higher-order components hi j, hi jk, and so on

to account for interactions between two or more input features. In Bikeshare,

RMSE decreases from 0.98 to 0.60 when we add pairwise interactions to the

student model. Figure 2.15 shows an interesting interaction between two fea-

tures: “Time of Day”, and “Working Day”. On working days, the highest bike

rental demand occurs at 7-9am and 5-7pm, but on weekends there is very low

demand at 7-9am (presumably because people are still sleeping) and at 5-7pm,

and demand peaks during midday from 10am-4pm. These two features also

form a three-way interaction with temperature. Whenever the teacher neural
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net learned these (and other) interactions, a global explanation method must

also incorporate interactions if it is to provide high-fidelity explanations of the

teacher model. Our approach is able to do so by adding higher-order compo-

nents hi j, hi jk, and so on to the global additive explanation F̂.

2.7 Conclusions

We presented a method for “opening up” complex models such as neural nets

trained on tabular data. The method, based on distillation with high-accuracy

additive models, has clear advantages over other global explanations that learn

additive explanations without distillation, and non-additive explanations such

as trees that do use distillation. The method will work with any black-box clas-

sification or regression model including random forests and boosted trees, but

is not designed for models such as CNNs trained on raw inputs such as images

where providing a global explanation in terms of input pixels is not meaning-

ful. Different kinds of explanations are useful for different purposes, and global

additive models do not aim to replace local explanations. The results of our ex-

periments and a user study on expert users (machine learning model builders)

suggest that distillation into high-performance additive models provides expla-

nations that have a strong combination of fidelity, low-complexity, and inter-

pretability.

2.8 Extended Result Figures
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Figure 2.16: Feature shapes for features x1 to x9 of F1 from Section 2.4.1.
The color represents different models and configurations, as
well as the ground truth shape: Ground truth, SAT-2H, SAS-
2H, SAT-1H, SAS-1H, where SAT-2H represents a SAT expla-
nation for a 2H black-box model. In a slight abuse of notation,
we include the specific h function in the x axis of the plot. No-
tice how x9, which is a noise feature that does not affect F1, has
been assigned an importance of approximately 0 throughout
its range. The feature shape of x10, another noise feature, is
very similar to x9 and hence not included here. Also, note
how the scales of the plots for features x5 and x6 are slightly
different, to allow a better visualization of the differences be-
tween models.
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Figure 2.17: Feature shapes for features x1 to x9 of F1 and F2 from Sec-
tion 2.4.1. The color represents different models and synthetic
functions: SAT-F1-2H, SAS-F1-2H, SAT-F2-2H, SAS-F2-2H. In
a slight abuse of notation, we include the specific h function in
the x axis of the plot. Notice how x9, which is a noise feature
that does not affect F2, has been assigned an importance of ap-
proximately 0 throughout its range. The feature shape of x10,
another noise feature, is very similar to x9 and hence not in-
cluded here. Also, note how the scales of the plots for features
x5 and x6 are slightly different, to allow a better visualization
of the differences between models.
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CHAPTER 3

TREE SPACE PROTOTYPES: ANOTHER LOOK AT MAKING TREE

ENSEMBLES INTERPRETABLE

3.1 Introduction

Ensembles of decision trees have been shown to perform well across a variety of

problems [25]. These models include models such as random forests (RF) [19]

and boosted trees, including gradient boosted trees (GBT) [45] and AdaBoost

[44]. However, while their component models - decision trees - are typically

considered interpretable [43], ensembles of hundreds or thousands of trees are

no longer as interpretable and hence may be less preferred in certain settings,

despite their predictive capabilities.

Current attempts to interpret tree ensembles include seeking one tree that

best represents a tree ensemble according to some metric [60, 157, 119], model-

agnostic (not exclusive to tree ensembles) explanations of predictions [114, 87]

and feature selection in tree ensembles using, for example, variable importance

measures [73, 158] or partial dependence plots [46] and variations [67, 133].

However, the interpretability of latter methods decreases as the number of fea-

tures (and hence number of feature importance measures or partial dependence

plots) increases.

Prototypes are representative observations that provide a condensed view

This chapter is based on material in [138].
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of the data set [17]. The value of prototypes, utilized in case-based reasoning

[116], has been discussed in studies of human decision making, cognition, and

understanding [79]. Moreover, prototypes may be especially useful when the

number of observations is too large, rendering inspection of individual obser-

vations cumbersome, or when representative observations have more meaning

than some linear combination of features.

In this paper, we propose a new approach towards interpreting tree ensem-

bles. We use an existing distance defined for RF models and extend the idea to

GBT models. Then, we utilize prototype selection methods to find prototypical

observations, as “seen” from the point of view of the tree ensemble. These pro-

totypes can be utilized in multiple ways to increase the interpretability of tree

ensembles - presented to a user such as a domain expert as representative ob-

servations for a class, utilized for classification in a nearest-prototype-classifier,

or as warm-start points for clustering.

Note that prototype selection is different from prototype generation – the

former selects observations present in the dataset; the latter generates new ob-

servations [50]. The two have distinct challenges; we focus on the former in this

paper since our goal is to generate a representative set of existing observations.

To the best of our knowledge, this is the first method to seek prototypes from

GBT models using the naturally-learned distance from the tree ensemble.

3.2 Background

In this section, we provide an overview of relevant technical background. First,

we introduce some notation we will use throughout the paper. We assume that
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we are given a training set of observations S , from which we will learn k proto-

types across q classes to better understand a classifier function c : S → [q] that

assigns each observation to one of q classes. To learn these k prototypes, we will

introduce a number of distance functions d : S 2 → R+ to attempt to capture how

the classifier represents differences between observations and classes.

3.2.1 Tree Ensemble Models

We broadly follow the notation of tree ensemble models in [63], adapting the

notation to our needs. Let t denote the total number of trees in the RF model.

The ith tree (i ∈ [t]) has some number τi of terminal nodes, each of which repre-

sents some region R j,i ( j ∈ [τi]) of the feature space. Each individual tree induces

a classifier

cTree
i (s) =

τi∑
j=1

α j,iI(s ∈ R j,i),

where α j,i is the predicted value in the jth terminal node of the ith tree (for

binary classification, this is just the proportion of observations in that terminal

node with label 1) and I is the indicator function. The RF classifier is the average

of this, taken over all trees:

cRF(s) =
1
t

t∑
i=1

cTree
i .

Next, we consider the GBT classifier, which is constructed iteratively:

cGBT
i (s) = cGBT

i−1 (s) + γicTree
i (s)

where the initial value cGBT
0 is initialized, depending on implementation, as zero,

the fraction of elements of S with label 1 in the case of binary classification, etc.
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γi is a step size, typically found using line-search. The GBT classifier then is the

one that incorporates all t trees:

cGBT(s) = cGBT
t (s).

RF Distance

Tree structure lends itself to a natural definition of proximity and distance be-

tween observations as “seen” by a tree, if we consider a pair of observations that

travel down the same path in a tree and end up in the same terminal node closer

than another pair of observations that do not end up in the same terminal node.

Definition 1. [20] The RF proximity of a pair of observations is an unweighted average

of the number of trees in the RF model in which the observations end up in the same

terminal node:

proximityRF(s, s′)

=
1
t

t∑
i=1

τi∑
j=1

I(s ∈ R j,i)I(s′ ∈ R j,i).

The RF distance between a pair of observations is then:

dRF(s, s′) = 1 − proximityRF(s, s′).

Since the regions {R j,i}
τi
j=1 partition the feature space, each point s ∈ S can be

in at most one region, and so the inner sum takes on value 0 or 1 for each tree.

Thus the proximity, as a convex combination of these, lies between 0 and 1, and

so does the distance function. It is easily confirmed that the proximity of a point

to itself is 1, and hence d(s, s) = 0, but it should be noted that d is not in general

a metric, but a pseudosemimetric as it does not satisfy the triangle inequality –
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as noted by [149], this it not uncommon in the metric learning literature, and in

fact, no locally adaptive distance (distance that varies across feature space [92])

can satisfy the triangle inequality [149].

Later, we will adapt the RF distance to construct a distance function for GBTs.

3.2.2 The k-Medoids Problem

The goal of the k-medoids clustering problem is to find a subset M ⊆ S of k medoids,

such that the sum distance from each object to the nearest medoid is minimized.

In the prototype selection literature, medoids have been taken as prototypes

[17], hence our interest in it. Formally, the k-medoids algorithm aims to find the

set M ⊆ S that minimizes the objective function

f (M) =
∑
s∈S

min
m∈M

d(s,m). (3.1)

This problem is known to be NP-hard [109]. However, [55] present a greedy

algorithm that starts with an empty set and repeatedly adds the single object

s ∈ S \ M that increases the value of a related function by the most, which they

show produces a reasonable approximation in polynomial time.

If the objects are labelled by a classifier, it is natural to only consider for each

object the medoids that belong to the same class. Thus, we define the q-classwise

k-medoids problem as finding the subset M ⊆ S of k medoids such that the sum

distance from each object to the nearest medoid belonging to the same class is

minimized, i.e. that minimizes

f (M) =
∑
s∈S

min
m∈M:c(m)=c(s)

d(s,m). (3.2)
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Even in the presence of multiple classes, it is possible to use the single-class

algorithm of [55] by applying it separately to every class in turn to generate k1,

. . ., kq prototypes for each class (
∑

i ki = k). However, it is not clear what the

right choice of ki for each class is, and one could easily wind up losing accuracy

by overprovisioning one compact class that would be adequately covered by a

small number of prototypes while not having sufficiently many prototypes for

another class whose points are spread into many clusters. With the naive choice

that k1 = . . . = kq = k/q, we call this the uniform greedy prototype selection

algorithm, and use it as one of our candidate methods.

However, it turns out that an analysis similar to that for the single-class

case can also be applied directly to the q-classwise objective function. Based

on this, we will introduce a greedy algorithm that operates on all classes in the

q-classwise k-medoids problem simultaneously. Since this algorithm in effect

chooses the class where adding another prototype yields the largest improve-

ment, we will call it adaptive in contrast with the uniform algorithm.

3.2.3 Submodular optimization

Optimization problems such as (3.2) are often approached using approximation

algorithms that are guaranteed to find solutions within some factor of the opti-

mum. One approach to the k-medoids problem [55, 103] is to identify a related

positive monotone submodular function and use a greedy search for a good ele-

ment of its domain, which is then guaranteed to be within a factor of (1− 1/e) of

the optimum for that function, where e is the Euler constant. We quickly review

the relevant result.
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Definition 2. A function f : P(S ) → R that maps subsets of S to reals is monotone

if f (X) ≤ f (Y) whenever X ⊆ Y . It is submodular if whenever X ⊆ Y , adding a

particular element s ∈ S to Y will not be more useful than adding it to X:

f (Y ∪ {s}) − f (Y) ≤ f (X ∪ {s}) − f (X).

Proposition 1. [106] Suppose f : P(S )→ R+ is a non-negative monotone submodular

function. Let T0 = ∅ and

Ti = Ti−1 ∪ arg max
s∈S

f (Ti−1 ∪ {s})

be the result of greedily maximizing f for i steps. Also, let

T ∗i = arg max
T⊂S :|T |=k

f (T )

be the set of size i that maximizes f . Then

f (Ti) ≥ (1 − 1/e) f (T ∗i ).

We will use this proposition to define a greedy algorithm on an appropri-

ate submodular function to find an approximate solution to the q-classwise k-

medoids problem (3.2).

3.3 Method

Our goal is to find prototypes for tree ensemble models such as RF and GBT,

as an alternative approach to interpreting tree ensembles. In this section, we

describe three methodological contributions of this paper: defining a distance
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function for GBT models, and two prototype selection algorithm that choose

a variable number of prototypes based on which class could benefit the most

from another prototype: one that exploits the submodular approximation guar-

antees of Proposition 1, and one that tries to directly optimize for accuracy on

the training set.

3.3.1 Constructing a Distance Function for GBT

Unlike the RF distance function in Definition 1, in GBT each tree is no longer

generated by an identical process. Hence, each tree can no longer be weighted

equally. We propose to weigh the contribution of each tree to the proximity

function by the size of its contribution to the overall prediction. Here, we mea-

sure size by the variance among the predictions made by cTree
i (s). This can be

seen as a measure of the L2 norm of cTree
i on the distribution of the training set.

gamma provides a correction to account for the quadratic approximation to the

loss that is used by gradient boosting. We thus arrive at the following definition:

Definition 3. The GBT proximity of a pair of observations is a weighted average of the

number of trees in the GBT model in which the observations end up in the same terminal

node:

proximityGBT(s, s′)

=

t∑
i=1

τi∑
j=1

wi∑t
i=1 wi

I(s ∈ R j,i)I(s′ ∈ R j,i),

where the ith tree’s weight wi is

wi = γ
2
i · Var{cTree

i (s) : s ∈ S }
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The GBT distance between a pair of observations is then:

dGBT(s, s′) = 1 − proximityGBT(s, s′).

While other choices of measures of the size of predictions in each tree can be

made, e.g. using the L1 norm, we do not pursue them here and focus instead on

demonstrating the properties of the chosen distance function.

3.3.2 Adaptive Greedy Submodular Prototype Selection

Algorithm 1: Adaptive greedy submodular prototypes

Input: Set of points S , distance function d : S 2 → [0, 1], class assignment

c : S → [q]

Output: Set of prototypes M, |M| = k

1 Create set of phantom examples P = {p1, . . . , pq} and set

d(pi, s) = d(s, pi) = 1 for all s

2 M ← ∅

3 for i=1 to k do

4 s∗ ← arg max
s∈S

[
f (P) − f (P ∪ M ∪ {s})

]
5 M ← M ∪ {s∗}

Our goal is to find a good approximately optimal solution for the q-classwise

k-medoids problem (3.2). We will achieve this by using a greedy algorithm on

an appropriate non-negative, monotone, submodular function (Prop. 1). How-

ever, the function (3.2) itself is not monotone submodular: in fact, adding more

prototypes to M decreases the value of f (M). This can be avoided by negating f ,
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but then the function will take non-positive values. Therefore, adapting an idea

of [55], we will define a related function g as

g(M) = f (P) − f (P ∪ M), (3.3)

where P is an appropriately chosen set of phantom exemplars, one from each class.

The resulting algorithm is listed as Algorithm 1. We want to derive a guarantee

on the approximation of this algorithm using Proposition 1; to that end, we first

need to show that g satisfies the necessary conditions.

Lemma 1. The objective function (3.3) is non-negative, monotone and submodular.

Proof. Observe that whenever X ⊆ Y , we have f (X) ≥ f (Y), since adding more

points to a set can only make the closest point to a given point closer. From this,

monotonicity and non-negativity is immediate, since f (P) ≥ f (P ∪ M).

To establish submodularity, we will show that the function f of (3.2) satisfies

f (Y) − f (Y ∪ {t}) ≤ f (X) − f (X ∪ {t})

whenever X ⊆ Y ⊆ S . The inequality of definition 2 then follows for g by plug-

ging into its definition (3.3).

For any point s ∈ S , define pM(s) to be the closest point to s in M of the same

class, that is,

pM(s) = arg min
m∈M:c(m)=c(s)

d(s,m).

Then we can rewrite f (M) as ∑
s∈S

d(s, pM(s)),

and it suffices to show that

d(s, pY(s)) − d(s, pY∪{t}(s))

≤ d(s, pX(s)) − d(s, pX∪{t}(s)).
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for all s ∈ S . Both sides of this inequality are non-negative (+), since adding

points can only shorten the distance to the closest point. Suppose pY∪{t}(s) ∈ Y .

Then it must be equal to pY(s), since the closest point is present in Y , and so the

first line is 0, and the inequality follows from (+).

Suppose instead pY∪{t}(s) < Y . Then it must be t. So pX∪{t}(s) = t as well

(as X ⊆ Y), and the inequality reduces to d(s, pY(s)) ≤ d(s, pX(s)). But this is

immediate, since Y ⊇ X and adding more points can only shorten the distance

to the closest point. �

By selecting the set of phantom exemplars P in such a fashion that d(p, s) ≥

d(s′, s) for all p ∈ P and s, s′ ∈ S , we ensure that f (T ∪P) = f (T ) for all nonempty

sets T ⊆ S . Hence, the set T ∗i that maximizes g among all sets of size i also

minimizes f among all such sets.

Let Ti be the result of running the greedy maximization algorithm on (3.3)

for i steps, and f be the original objective function (3.2). Then by Prop. 1 and

choice of P,

f (Ti) ≤ f (P) + (1 − 1/e)( f (T ∗i ) − f (P)),

i.e. the approximation Ti takes us 1 − 1/e of the way from f (P) to the optimum.

Crucially, this means that the approximation guarantee depends on f (P), i.e.

how good the phantom exemplars alone would be as a solution to the k-medoids

problem.
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3.3.3 Supervised Greedy Prototype Selection

Instead of optimizing the k-medoids value function f of equation (3.2), we can

instead directly pick prototypes, in a greedy fashion, that yield the best (train or

validation set) improvement in a classification accuracy metric. From Table 3.1,

the resulting algorithm beats the unsupervised k-medoids-derived approach in

terms of accuracy in several cases, but we do not know of any theoretical guar-

antees that it satisfies, as these accuracy metrics are not submodular. A listing

of this algorithm is given as Algorithm 2.

Algorithm 2: Supervised Greedy Prototypes

Input: Set of points S , distance function d : S 2 → [0, 1], class assignment

c : S → [q]

Output: Set of prototypes M, |M| = k

1 M ← ∅

2 for i=1 to k do

3 s∗ ← arg max
s∈S

[
balancedAccuracy(S ,M ∪ {s})

]
4 M ← M ∪ {s∗}

3.4 Related Work

Tree Ensemble Distance. While not mentioned in the original random forest

paper [19], Breiman defined the proximity matrix of a RF model in the documen-

tation accompanying his implementation of random forests [20]. RF proximity

has found a variety of applications, including clustering [124], outlier detection

[156], and multiple imputation to handle missing data [123, 130]. Less is known
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about the theoretical properties of the RF proximity matrix. The proximity be-

tween two observations can be expressed as a kernel [52, 97], and it is common

to take a function of 1 - proximity as RF distance [155, 149, 124], as we do in this

paper.

Prototype Selection. There is a long line of literature proposing proto-

type selection methods, also known as instance reduction, data summariza-

tion, exemplar extraction, etc. We point the reader to the taxonomy and re-

view by Garcia et al. [50], who suggest that prototype selection methods can be

grouped into three categories: condensation [61] , edition [146], or hybrid meth-

ods that remove both noisy and redundant points from the prototype selection

set. We briefly mention a few methods: a classic prototype selection method is

k-medoids clustering, for which different algorithms have been proposed, such

as the PAM algorithm [75] and submodular approaches [91, 55, 103] like the one

used in this paper. Prototype selection has also been cast as a set cover problem,

where a minimum number of prototypes are selected to maximally cover the

remaining observations [112, 17]. Recently, Kim et al. proposed a method based

on maximum mean discrepancy between observations to select prototypes [78],

a method later generalized by Khanna et al. to explain model predictions [77].

Implementations. While not many RF implementations provide the prox-

imity matrix or prototypes, the exception is the R randomForest package [90]

and RAFT, a random forest visualization tool by Cutler and Breiman [20]. In

their documentation, they described a prototype-finding procedure that is par-

tially implemented in the R randomForest package. For each class, the proce-

dure selects the observation with most of its l neighbors being of the same class,

then generates a prototype from the median feature values of its l neighbors.
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The procedure can be sensitive to the choice of l, a distinct parameter from k,

the number of prototypes desired. Since in this paper, we focus on selecting

prototypes from existing observations not generating new observations, plus

the implementation currently only generates one prototype1, we do not include

this method in our comparison but mention it for completeness.

3.5 Experiments and Analysis

In this section, we report the results of experiments to analyze the tree ensemble

distances and proposed prototype selection methods.

3.5.1 Experimental Setup

Datasets

We selected five classification datasets, four with tabular data and one consist-

ing of images – MNIST, for which we use digits 3 and 5, two commonly con-

fused classes2. The datasets had different levels of label imbalance.

Training Procedure

For all datasets, RF models with 1000 trees were trained using Python’s

scikit-learn package. The maximum tree depth was not restricted. Using

1The package documentation suggests that the method may be updated to generate
more prototypes. See https://cran.r-project.org/web/packages/randomForest/
randomForest.pdf

2https://ml4a.github.io/demos/confusion_mnist/
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the validation set, we cross-validate the number of features to consider when

looking for the best split, considering “sqrt”, “auto”, “0.33”, “0.5”, “0.7”, and

“7” as options, and take the option that minimizes validation loss. We similarly

train GBT models with scikit-learn. We modified the code to train GBTs

with one gamma multiplier per tree, as opposed to one gamma multiplier per

terminal node3. We set the number of trees to 200, and cross-validated the max-

imum depth (between 3 and 5) and the learning rate (0.1 or 0.01). We kept only

the first t trees, where t was cross-validated to minimize validation loss.

Metric

Because the datasets used in this paper are imbalanced, we use balanced accu-

racy as our primary metric of classification performance. Note that we do not

use ranking metrics such as AUC because nearest-neighbor classifiers do not

output scores. Balanced accuracy is defined as:

balancedAccuracy(S ,M)

=
1
q

∑
j∈[q]

#
{

s ∈ S j : c
(
arg min

m∈M
d(s,m)

)
= j

}
|S j|

,

where S j is the set of those points s ∈ S in class j.

3.5.2 Evaluating Prototypes: Nearest-Prototype Classifier

One way to validate that the selected prototypes are reasonable is to use them in

in a nearest-prototype classifier [17]. This evaluation is in line with recent ideas

3Despite one gamma per tree being a standard formulation for GBTs, it is not available in
scikit-learn.
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on evaluating explanations by checking their accuracy or fidelity on indepen-

dent test-data [114, 99, 133]. We use a 1-nearest-prototype classifier to classify

test-set data, and ask the following questions:

• Does a supervised distance derived from the tree ensemble models, im-

prove over an unsupervised distance on feature values?

• Does a prototype selection method improve over using every possible

point as a prototype?

Figure 3.1 illustrates test-set balanced accuracy as a function of the num-

ber of prototypes, for different data sets. To answer the first question, we ex-

amine the RF and GBT plots (left and center) compared to EUCLIDEAN plots

(right) in Figure 3.1. A fair comparison would be to hold the prototype selection

method constant (i.e. look at the same colored line across left to right). RF dis-

tance performed better than the unsupervised Euclidean distance; GBT distance

had more variable performance, sometimes performing better than RF distance,

sometimes performing worse than Euclidean distance. We defer an analysis of

the difference between the RF and GBT distances to the next section.

To answer the second question, we compare the performance of the three

prototype selection methods to the 1-NN method that does not select proto-

types, and instead uses all (training set) points as prototypes. A fair comparison

would be to hold the distance constant (i.e. look at the different colored lines in

the same plot). We found that the accuracy of the prototype selection method

varies according to the number of prototypes desired, k. This was particularly

noticeable for the k-medoids based methods, which are not supervised, com-

pared to greedily optimizing for balanced accuracy. This suggests that k should
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Figure 3.1: Test-set balanced accuracy as a function of k, the number of
prototypes. The black dashed line represents the original
model, and the dashed orange line represents the 1-NN base-
line using all training points (in other words, treating all train-
ing points as prototypes). Different prototype selection meth-
ods were used: supervised greedy (SG), uniform greedy sub-
modular (SM-U), adaptive greedy submodular (SM-A) (ours),
weighted adaptive greedy submodular (SM-WA) (ours).
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be tuned separately for each prototype selection method and is in line with the

results from [17] where the optimal number of prototypes was found to vary

significantly by selection method (from example, from 5 to 194 prototypes on

the Diabetes data).

After we validated the optimal k separately for each prototype selection

method, the differences in performance of different prototype selection meth-

ods became more evident. Table 3.1 presents the results. For all datasets, at least

one prototype selection method outperformed 1-NN, suggesting the value of

prototype selection for accuracy, besides interpretability (reducing the number

of observations that need to be shown to a user). SM-WA is competitive against

SM-U. Despite the lack of theoretical guarantees, SG had clear advantages on a

number of datasets, demonstrating the value of supervision.

3.5.3 Analysis: Tree Ensemble Distance by Tree Depth

We now study the learned tree ensemble distances to gain some intuition into

their behavior. Figure 3.2 illustrates the distribution of distances for RF and GBT

distances compared to Euclidean distance on one of the datasets, Breastcancer.

Since, unlike RF and GBT distances, it is not supervised distance, Euclidean

distance has no preference for the extremes of the distribution.

The distance derived from RF models is more “granular”, with less “clump-

ing”, than the distance derived from GBT models. Most default implementa-

tions of RF algorithms allow trees to grow to unrestricted depth [19], hence on

the same data set, trees in RF models tend to be deeper than trees in GBT mod-

els. This can be confirmed in Table 3.2, which presents statistics about tree depth

64



M
od

el
Br

ea
st

ca
nc

er
D

ia
be

te
s

T-
C

O
M

PA
S

R
H

C
M

N
IS

T
3-

5
C

A
LT

EC
H

25
6

G
-M

R
F

O
ri

gi
na

l
0.

90
0.

74
0.

60
0.

69
0.

99
0.

95
1-

N
N

0.
90

(3
41

)
0.

70
(4

60
)

0.
59

(6
00

)
0.

69
(3

44
1)

0.
99

(8
07

2)
0.

97
(1

29
)

SG
0.

87
(4

)
0.

74
(1

6)
0.

64
(3

2)
0.

68
(6

4)
0.

98
(3

2)
0.

95
(4

)
SM

-U
0.

91
(6

4)
0.

74
(6

4)
0.

57
(6

4)
0.

69
(6

4)
0.

98
(3

2)
0.

97
(6

4)
SM

-A
0.

92
(3

2)
0.

73
(6

4)
0.

58
(6

4)
0.

69
(6

4)
0.

98
(3

2)
0.

97
(6

4)
SM

-W
A

0.
92

(6
4)

0.
77

(6
4)

0.
56

(6
4)

0.
70

(6
4)

0.
98

(3
2)

0.
97

(6
4)

G
BT

O
ri

gi
na

l
0.

90
0.

71
0.

58
0.

71
0.

99
0.

91
1-

N
N

0.
89

(3
41

)
0.

69
(4

60
)

0.
51

(6
00

)
0.

67
(3

44
1)

0.
99

(8
07

2)
0.

91
(1

29
)

SG
0.

91
(8

)
0.

74
(3

2)
0.

73
(4

)
0.

70
(6

4)
0.

98
(3

2)
0.

91
(4

)
SM

-U
0.

89
(6

4)
0.

63
(6

4)
0.

68
(4

)
0.

67
(8

)
0.

97
(3

2)
0.

91
(6

4)
SM

-A
0.

89
(6

4)
0.

65
(6

4)
0.

54
(6

4)
0.

67
(4

)
0.

97
(3

2)
0.

88
(3

2)
SM

-W
A

0.
89

(6
4)

0.
63

(6
4)

0.
68

(4
)

0.
67

(8
)

0.
97

(3
2)

0.
91

(6
4)

EU
C

LI
D

EA
N

1-
N

N
0.

93
(3

41
)

0.
63

(4
60

)
0.

53
(6

00
)

0.
61

(3
44

1)
0.

96
(8

07
2)

0.
90

(1
29

)
SG

0.
92

(1
6)

0.
71

(3
2)

0.
58

(3
2)

0.
66

(6
4)

0.
93

(3
2)

0.
86

(1
6)

SM
-U

0.
92

(8
)

0.
64

(6
4)

0.
52

(6
4)

0.
59

(3
2)

0.
93

(3
2)

0.
88

(6
4)

SM
-A

0.
92

(8
)

0.
64

(6
4)

0.
53

(6
4)

0.
60

(6
4)

0.
93

(3
2)

0.
88

(6
4)

SM
-W

A
0.

93
(8

)
0.

64
(6

4)
0.

53
(6

4)
0.

58
(3

2)
0.

93
(3

2)
0.

82
(6

4)

Ta
bl

e
3.

1:
Be

st
nu

m
be

r
of

pr
ot

ot
yp

es
(a

cc
or

di
ng

to
tr

ai
n

lo
ss

/
ac

cu
ra

cy
)

an
d

te
st

ba
la

nc
ed

ac
cu

ra
cy

fo
r

di
ff

er
en

t
pr

ot
ot

yp
e

se
le

ct
io

n
m

et
ho

ds
:

su
-

pe
rv

is
ed

gr
ee

dy
(S

G
),

un
if

or
m

gr
ee

dy
su

bm
od

ul
ar

(S
M

-U
),

ad
ap

ti
ve

gr
ee

dy
su

bm
od

ul
ar

(S
M

-A
)(

ou
rs

),
w

ei
gh

te
d

ad
ap

ti
ve

gr
ee

dy
su

bm
od

-
ul

ar
(S

M
-W

A
)

(o
ur

s)
,

ag
ai

ns
t

th
e

1-
N

N
ba

se
lin

e
tr

ea
ti

ng
al

l
tr

ai
ni

ng
po

in
ts

as
pr

ot
ot

yp
es

.

65



GBT RF Depth

Dataset n Depth Min Mean Max Var

Breastcancer 569 4 2 3.4 5 0.59
Diabetes 768 3 5 7.0 10 0.9
T-COMPAS 1000 3 6 8.5 12 1.12
RHC 5736 3 11 14.7 21 1.41
MNIST 3-5 13454 4 12 16.3 23 1.98

Table 3.2: Statistics of RF and GBT models tree depth across different
datasets. n is the number of observations in the dataset. All RF
models had 1000 trees. All GBT trees had an optimal number of
trees (based on validation set loss) less than or equal to 200.

in RF and GBT models. Deeper trees have more terminal nodes. Hence, the

deeper the tree, the lower the probability of a pair of observations ending up in

the same terminal node, a possible explanation for the more granular behavior

of RF distance compared to GBT.

From Table 3.2, we also see that not so surprisingly, the larger the data set,

the deeper the RF trees, whereas the GBT trees have been restricted to depth 3

to 5.

Figure 3.2: Distribution of RF and GBT distance compared to Euclidean
distance on one of the datasets, Breastcancer.
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3.5.4 Visualizing Tree Ensemble Distance

As pointed out in the previous section, GBT distance can be quite different from

RF distance. Figure 3.3 uses the t-sne method [101] to visualize distances de-

rived from RF and GBT classifiers trained on MNIST. While the two classes –

the digits 3 and 5 – are clearly separable from Figure 3.3, agreeing with the good

performance of the RF and GBT classifiers at more than 98% balanced accuracy

(cf. Figure 3.1), both tree ensemble models appear to be learning different rep-

resentations, with the GBT model grouping points together in smaller and more

compact clusters than the RF model. Moreover, on this problem, the prototypes

selected for RF compared to GBT are different.

When the classifier’s performance is not as good, the separation between

classes is less clear, as can be seen in Figure 3.4, which visualizes the distances

derived from RF and GBT classifiers trained on the Turker-COMPAS dataset.

Here, RF has 0.60 balanced accuracy and GBT has 0.58 balanced accuracy (cf.

Table 3.1). Similar to before, the GBT distance groups points together in smaller

and more compact clusters than the RF model. For this dataset, there is more

overlap in prototypes selected by RF and GBT distances.

A natural next question may be the following: to what degree are differ-

ences between the GBT and RF distances caused by different tree depth, differ-

ent weights used in constructing the distance, or that different patterns in the

data are being learned by RF compared to GBT models? While the top right

corner of Figures 3.3 and 3.4 visualizes distances from GBT models trained to

default settings (short), and the bottom right corner of the same figures visual-

izes distances from RF models trained to default settings (unrestricted depth),

the bottom left corner visualizes RF models trained to the same depth as the cor-
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Figure 3.3: Visualization of dissimilarities using t-sne [101] for optimal
GBT with unweighted trees (top left), trees weighted by vg2

(top right), RF with short trees matching GBT depth of 3 (bot-
tom left), and optimal RF (bottom right) with mean depth 16 on
the MNIST (3 vs 5) dataset, using the adaptive greedy submod-
ular (SM-A) method. Red represents the digit 5, blue represents
the digit 3.

responding default GBT model on that dataset. While the short RF model has

smaller and more compact clusters than the default RF model, the RF and GBT

models of same depth can still be told apart.

The top left corner visualizes an unweighted distance function derived from

the same GBT model as in the top right corner. Note that the visualization in

the top right corner is of a weighted distance function. While the top left corner

in Figure 3.3 for MNIST looks more similar to the bottom right corner (default

RF model), in Figure 3.4 for the Turker-COMPAS data this is not the case.
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Figure 3.4: Visualization of dissimilarities using t-sne [101] for optimal
GBT with unweighted trees (top left), trees weighted by vg2

(top right), RF with short trees matching GBT depth of 3 (bot-
tom left), and optimal RF (bottom right) with depth 8. Different
colors represent different classes, and prototypes are marked
by their indices.

3.5.5 Comparing Prototype Selection Methods

Figure 3.5 displays the prototypes found by the adaptive greedy submodular k-

medoids prototype selection method (SM-A) compared to the prototypes found

by the supervised greedy method (SG) on MNIST. We see that the prototypes

selected by SM-A (left part of Figure 3.5) have good coverage of the space of

observations, which is not the case for SG (right part of Figure 3.5).

Consider the case of a single class 0 point deep in class 1 territory, with all

other class 0 points are already well-covered. As k-medoids (both uniform and
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adaptive flavors) does not consider distance to other classes or labels, k-medoids

would still want to turn that class 0 point into a prototype, even though that

would mean misclassifying the class 1 points near to it. In addition, even after

such a class 0 prototype has been placed, hence misclassifying the class 1 points

near to it, k-medoids, not being supervised, would not be aware of the sudden

dip in classification accuracy, to correct for the error in subsequent prototypes.

Figure 3.6 presents the prototypes found by the different methods when us-

ing RF distances on the CALTECH256 G-M data. First, even if we requested 16

prototypes, the supervised greedy algorithm found that only 3 prototypes were

necessary. These include canonical views of popular guitar models and a frontal

picture of a mandolin. These do not cover all representative guitars or man-

dolins, but are good enough to correctly classify most images. The submodular

methods select prototypes that ensure coverage, surfacing different poses and

shapes that are in many cases different from the archetypal ones. Interestingly,

both adaptive methods tend to select more mandolins than guitars, including

close-ups and people, not found in the guitar prototypes. Hence, the different

prototype methods selects different types of prototypes depending on whether

the objective function is optimizing for coverage or accuracy, which brings us

back to the question of what is a prototypical observation – we suspect this de-

pends on the setting in which the prototypes are to be used.

3.6 Discussion

Of the four prototype selection methods used in this paper, three – supervised

greedy, adaptive greedy submodular, weighted adaptive greedy submodular –
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Figure 3.5: Visualization of dissimilarities using t-sne [101] for optimal
RF with mean depth 16 on the MNIST (3 vs 5) dataset, using
the adaptive greedy submodular (SM-A) prototype selection
method (left) and supervised greedy (SG) (right) method. The
SM-A figure on the left already appeared in the bottom right of
Figure 3.3.

are able to select different number of prototypes for each class. Unlike uniform

greedy submodular which returns round(k/q) prototypes per class regardless of

class imbalance or distance behavior, these three methods pick the next proto-

type from the class that needs it the most, as measured by the objective function.

The ability to pick different number of prototypes by class could be advan-

tageous for interpretability purposes. We posit the following question:

A physician is trying to take aid from a black-box RF or GBT model

to diagnose a disease. The disease is a rare disease, hence there is

class imbalance. The majority of patients will not have this disease,

however the patients who do have this disease are not easily char-

acterized. If the physician only has a budget of k prototypes that

she can inspect before making a decision for this patient (as many

other patients are waiting to be seen), might surfacing several proto-

typical (and varied) patients with this disease be a better use of the
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Figure 3.6: 16 CALTECH256 G-M prototypes found using RF distances for
the studied prototype methods. First row: supervised greedy
(SG) (first sub-row: guitar, second sub-row: mandolin). Second
row: uniform greedy submodular (SM-U). Third row: adap-
tive greedy submodular (SM-A). Last row: weighted adaptive
greedy submodular (SM-WA).

physicians’ “attention” budget, rather than seeing an equal number

of prototypical patients with and without the disease?
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In conclusion, in this paper, we proposed a new approach for interpreting

tree ensembles, using an existing distance defined for RF models and extend-

ing the idea to GBT models. We also proposed two new prototype selection

methods to find prototypical observations, as “seen” from the point of view of

the tree ensemble. Our ultimate goal is to rank observations and surface pro-

totypical ones in a meaningful order to domain experts, stopping when their

“attention” budget is exhausted. Hence, we pursued submodular approaches

where adding the next prototype has diminishing returns and does not hurt the

existing selected prototypes. An alternative to unsupervised submodular proto-

type selection methods was presented by greedy supervised prototype selection

methods that performed well in several settings.
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CHAPTER 4

DISTILL-AND-COMPARE: AUDITING BLACK-BOX MODELS USING

TRANSPARENT MODEL DISTILLATION

4.1 Introduction

Risk scoring models have a long history of usage in criminal justice, finance,

hiring, and other critical domains [31, 98]. They are designed to predict a future

outcome, for example defaulting on a loan. Worryingly, risk scoring models

are increasingly used for high-stakes decisions, yet are typically proprietary or

opaque.

Several approaches have been proposed [64, 41, 2, 1, 33, 142] to audit black-

box risk scoring models: remove, permute, or obscure a protected feature, then

see how the the model’s predictions change after retraining the model or prob-

ing the model API with the transformed data. However, creators of proprietary

risk scoring models often do not provide unrestricted access to model APIs,

much less release the model form or training data. Moreover, approaches that

focus on one or two protected features defined in advance are less likely to de-

tect biases that are not a priori known.

In this paper, we study a more realistic setting where we only have a data set

labeled with the risk score (as produced by the risk scoring model), the ground-

truth outcome, and some or all features; we are not able to probe the model API

This chapter is based on material in [134].
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Figure 4.1: Distill-and-Compare audit approach on a loan risk scoring
model.

with new data. We call this data set the audit data. We add two potential compli-

cations: the audit data may not be the original training data, and the audit data

may not have all features used to train the risk scoring model. For example,

ProPublica obtained data for their COMPAS study [8] not from the company

that created COMPAS, but through a public records request to Broward County

(BC), a US jurisdiction that used COMPAS in their criminal justice system [7].

ProPublica may not have had access to all the features BC used for COMPAS.

We propose Distill-and-Compare, an approach to audit black-box risk scor-

ing models using audit data with both black-box risk scores and ground-truth

outcomes, without pre-defining feature regions to audit. First, we train a model

on the audit data to mimic the black-box model. Then we train another model

to predict outcomes (Section 4.2.1). To gain insight into the black-box model,

we uncover feature regions where the two models are significantly different

(Section 4.2.3), and ask “what could be happening in the black-box model, that
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could explain the differences we are seeing between the mimic and outcome

models?”. Finally, we use a statistical test (Section 4.2.2) to determine if the

black-box model used additional features we do not have access to (i.e. features

not in the audit data).

The contributions of this paper are: 1) We propose an approach to audit

black-box risk scoring models under realistic conditions. 2) We show the im-

portance of calibrating risk scores to remove audit data shift or scale post-

processing that may been introduced by creators of risk scoring models. 3) We

propose a statistical test to determine if the audit data is missing key features

used to train the black-box model. 4) We apply the approach to audit four risk

scoring models. 5) An ancillary contribution of this paper is a new confidence

interval estimate for iGAM1, a type of transparent model.

4.2 Audit Approach

Our goal is to gain insight into a black-box risk scoring model. We draw from

model distillation and comparison technique to develop our approach. Section

4.2.1 discusses related work.
1iGAM was an implementation of GA2M, a type of interpretable model introduced in [95,

96, 24]. iGAM was recently renamed Explainable Boosting Machine (EBM) and can be found at
https://github.com/microsoft/interpret. Since the paper that this chapter is based
on was published after the renaming of iGAM to EBM, we retain the name iGAM throughout
this chapter.
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4.2.1 Distill-and-Compare

Model distillation was first introduced to transfer knowledge from a large, com-

plex model (teacher) to a faster, simpler model (student) [22, 65, 11]. This was

done by running unlabeled samples (either new unlabeled data or training data

with labels discarded) through the teacher model to obtain the teacher’s out-

puts, then training the student model to mimic the teacher’s outputs. We draw

parallels to our setting, taking the risk scoring model to be the teacher and the

audit data to be unlabeled samples ran through the teacher (risk scoring model)

to obtain the teacher’s output (risk scores). We train the mimic model to mini-

mize mean squared error between the teacher and student, i.e.,

L(S , Ŝ ) =
1
T

T∑
t=1

(
S (xt) − Ŝ (xt)

)2
, (4.1)

where xt is the t-th sample in the audit data, S (xt) is the output of the teacher

model (risk scores) for sample xt, Ŝ (xt) is the output of the mimic model for

sample xt, and T is the number of samples. Throughout this paper, we will call

the teacher model the black-box model and the student model the mimic model.

Next, we leverage the ground-truth outcome information. We train our own

risk scoring model on the audit data to predict the ground-truth outcome, i.e.,

L(O, Ô) =
1
T

T∑
t=1

{
O(xt) log

(
P(Ô(xt) = 1)

)
+

(1 − O(xt)) log
(
P(Ô(xt) = 0)

)}
, (4.2)

where O(xt) ∈ {0, 1} is the ground-truth outcome for sample xt and Ô(xt) ∈ {0, 1}

is the output of the model for sample xt. Throughout this paper, we call this
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model the outcome model. Note that the outcome model is not a mimic model.

It is critical that both the mimic model and outcome model are trained us-

ing the same model class that allows for interpretation and comparison. Not

all model classes have the property that two models of that class can be com-

pared. For example, it is not obvious how to compare two decision trees, ran-

dom forests or neural nets. We want a model class that is as rich and complex as

possible so that the mimic model can be faithful to the black-box model and the

outcome model can accurately predict ground-truth outcomes. However, this

model class should still be transparent [37] so that we can examine its predic-

tions across different feature regions. In this paper, we use a particular trans-

parent model class, iGAM (Section 4.2.3); other choices are possible.

The risk score and the ground-truth outcome are closely related—the

ground-truth outcome is what the black-box risk scoring model was meant to

predict. If the black-box model is accurate and generalizes to the audit data, it

would predict the ground-truth outcomes in the audit data correctly; the con-

verse is true if the black-box model is not accurate or does not generalize to the

audit data.

Because both the mimic and outcome models are trained with the same

model class on the same audit data using the same features, the more faithful

the mimic model, and the more accurate the outcome model, the more likely it

is that observed differences between the mimic and outcome models stem from

differences between the black-box model and ground-truth outcomes. This al-

lows us to ask, “what could be happening in the black-box model, that could

explain the differences we are seeing between the mimic and outcome mod-

els?”. In addition, similarities between the mimic and outcome models (e.g., on
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COMPAS in Section 4.3.2, the Number of Priors feature is modeled very simi-

larly by the two models) increases confidence that the mimic model is a faithful

representation of the black-box model, and that any differences observed on

other features are meaningful.

Related Work

Several auditing approaches also use model distillation techniques to distill

black-box models when they cannot be queried or to understand them [1, 2].

Other approaches also train their own outcome models, then uncover feature

regions where the model is not accurate [154, 80, 3, 76]. Kim et al.’s iterative

procedure [80] not only uncovers such regions but also modifies the model to

improve accuracy in these regions. However, they require repeated calls to the

model; Agarwal et al. [3] and Kearns et al. [76] similarly require repeated calls

or knowledge of the model. Tramer et al. uncovered unexplained associations

between black-box outputs and protected features on audit data [139].

Our approach is different from the above, as we avoid repeated calls to the

black-box model API (that may not realistically be available), and instead utilize

information on both risk scores and outcomes already available in some data

sets in this domain (e.g. ProPublica COMPAS data). Some other approaches also

compare two models, but not risk scores and outcomes at the same time. Wang

et al. trained a model to predict outcomes and another to predict membership in

a protected feature region [145]. Chouldechova and G’Sell trained two different

outcome models then identified feature regions where the two models differed

[28].
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4.2.2 Testing for Missing Features

If the audit data is missing features used by the black-box model, the audit data

alone may be insufficient to audit the black-box model. We propose a statistical

test to check the likelihood of the audit data missing important features based

on the following observation:

If the black-box model used features that are missing from the audit data

but are useful for predicting the ground-truth outcome, the error between

the mimic model (learned on the audit data) and the risk score, ||Ŝ − S ||E,

should be positively correlated with the error between the outcome model

(learned on the audit data) and ground-truth outcome, ||Ô − O||E.

where E is an error metric. Since the test uses predictions from both the mimic

and outcome models, the test is performed after both models are trained. In Sec-

tion 4.3.4, we perform the test on all risk scoring models we audit in this paper,

to check if the audit results are significantly affected by missing features. Note

that this test does not require the mimic and outcome models to be transparent.

4.2.3 Comparing Mimic and Outcome Models

In this section, we provide technical details on how to train the mimic and out-

come models so that they are comparable.
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Choice of model class

As noted in Section 4.2.1, we train the mimic model and outcome model using

the same transparent model class—in this paper, iGAM [95, 96, 24]. We point

the reader to [95, 96, 24] to learn more about iGAMs and to [133] for a distillation

example where it was used as a student. Briefly, iGAM has the form

E[g(y)] = h0 +
∑

i

hi(xi) +
∑
i, j

hi j(xi, x j), (4.3)

where g is the logistic function for classification and identity function for re-

gression, h0 is the intercept, and the contribution of any one feature xi or pair of

features xi and x j to the prediction can be visualized in graphs such as Figure 4.4

(with hi(xi) on the y-axis) and Figure 4.7 (with regions colored by hi j(xi, x j)). For

classical GAMs [62], h(·) are fitted using splines; for iGAM, they are fitted us-

ing ensembles of shallow trees and centered for identifiability. Crucially, since

iGAM is an additive model, two iGAM models can be compared by simply tak-

ing a difference of their feature contributions h(·), which we exploit in Section

4.2.3 to detect differences between the mimic and outcome models.

Calibrating model inputs

Calibration is the process of matching predicted and empirical probabilities [34,

107]. If a risk score is well-calibrated, the relationship between the risk score and

empirical probabilities will be linear (e.g., COMPAS and Stop-and-Frisk in the

top row of Figure 4.2). While developing the method, we discovered that not

all risk scores exhibit the desired linear relationship with outcomes in the audit

data. For example, the Chicago Police risk score (third column of Figure 4.2) is

rather flat for risk scores less than 350, then exhibits a sharp kink upwards.
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One possible explanation for any nonlinear relationship is that the risk score

was well-calibrated on its original training data, but the audit data has a dif-

ferent distribution (data shift) [117]. Another possible explanation is post-

processing by model creators to reduce sensitivity in less important parts of

the risk score scale and enhance separation in more important parts of the scale

[93].

We make the reasonable assumption that risk scores should be monotonic

and well-calibrated [93] and use this assumption to undo scale post-processing

or audit data shift before training the mimic and outcome models. Specifically,

we learn a nonlinear transformation of the risk score (the blue line in Figure

4.2), similar to isotonic regression [107], to make the risk scores and outcomes

linearly related on a scale of choice. The mimic model is then trained with the

transformed risk scores as labels; the outcome model is trained with outcomes,

unchanged.

This pre-training calibration step is necessary to compare the mimic and out-

come models, as it makes their labels linearly related on a scale that their pre-

dicted labels will later be compared on. We select this scale to be logit prob-

ability (since the predicted outcomes are already on this scale), and perform

this calibration step for Chicago Police and Lending Club but not COMPAS and

Stop-and-Frisk, since the latter two already exhibit the desired linear relation-

ships.
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Figure 4.2: Empirical probability of positive outcomes (y-axis) vs. risk
score (x-axis) for COMPAS, Stop-and-Frisk, Chicago Police,
and Lending Club on probability scale (top row) and logit
probability scale (middle row). The risk score distribution is
in the bottom row. The red lines on the logit probability scale
(middle row) are best-fit straight lines. A good fit (COMPAS
and Stop-and-Frisk) suggests that the risk score and logit prob-
ability of outcomes (middle row) have a linear relationship. In
this case, the mimic model can be trained directly on the raw
risk score. When the relationship is not linear (Chicago Police
and Lending Club), the risk score must be calibrated. The blue
monotonic curves (middle row) are the nonlinear transforma-
tions learned during the calibration step. This transformation
is applied to the raw risk score to yield the transformed risk
score in Figure 4.3.

Detecting differences

To not mistake random noise for real differences between the mimic and out-

come models, we control potential sources of noise during the training process.

To avoid data sample-specific effects, we train the mimic and outcome models

83



lo
gi

t(
p)

Transformed Risk Score Transformed Risk Score

Figure 4.3: Logit empirical probability (y-axis) vs. transformed risk score
(x-axis). The red lines are best-fit straight lines. A good fit sug-
gests that the transformed risk score and logit probability of
outcomes now have a linear relationship. The mimic model
can now be trained on the transformed risk score.

on the same data sample. Let shi(xi) be feature xi’s contribution to the mimic

model, and similarly ohi(xi) for the outcome model. We calculate the difference

in feature xi’s contribution to the two models, shi(xi)−ohi(xi), and construct a con-

fidence interval for this difference to tell if it is statistically significant. One ancil-

lary contribution of this paper is a new method to estimate confidence intervals

for the iGAM model class, by employing a bootstrap-of-little-bags approach [122]

to estimate the variance of hi(xi) and shi(xi) − ohi(xi). See the next section for de-

tails. The resulting confidence intervals are the dotted lines in Figures 4.4–4.6.

A new confidence interval estimate for iGAM

It is not trivial to estimate confidence intervals for nonparametric learners such

as trees [102]; iGAM’s base learners are shallow trees. We employ a bootstrap-of-

little-bags approach originally developed for bagged models in [122] to estimate

the variance of feature xi’s contribution to the model, hi(xi), and difference in

feature xi’s contribution to the mimic and outcome models, shi(xi) − ohi(xi).
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Bootstrap-of-little-bags exploits two-level structured

cross-validation (e.g. 15% of data points are selected for the test set, with the

remaining 85% split into training (70%) and validation (15%) sets). Repeating

this inner splitting L times and outer splitting K times gives a total of KL bags

on which we train the model. Let hlk
i (xi) be feature xi’s contribution to the model

in the lth inner and kth outer fold. The variance of hi(xi) can then be estimated

as

V̂ar(hi(xi)) =
1
K

K∑
k=1

1
L

L∑
l=1

hkl
i (xi) −

1
KL

l∑
l=1

K∑
k=1

hkl
i (xi)

2

,

and its mean hi(xi) can be estimated by averaging hlk
i (xi) over KL bags.

We can now construct pointwise confidence intervals (CI) for feature con-

tributions to iGAM models. The 95% CI for feature xi’s contribution to the

model, hi(xi), is hi(xi) ± 1.96
√

V̂ar(hi(xi)) and the 95% CI for the difference in

feature xi’s contribution to the mimic and outcome models, shi(xi) − ohi(xi), is

shi(xi) − ohi(xi) ± 1.96
√

V̂ar(shi(xi)) + V̂ar(ohi(xi)) − 2Ĉov(shi(xi), ohi(xi)), with

Ĉov(shi(xi), ohi(xi)) also estimated using bootstrap-of-little-bags.

This variance estimate is conservative (meaning it overestimates true vari-

ability), however, given that we are trying to detect differences between the

mimic and outcome models, overestimating means we are less likely to mistake

random noise for real differences. For large K and L, consistency of this estimate

was established in [9].

Note that are pointwise, not uniform, CIs. That is, using the feature Age as

an example, these CIs capture the variability of the effect of Age at Age=50, not

the entire effect of Age. Uniform CIs can be constructed by adjusting the critical

value of the CI.
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4.3 Results

4.3.1 Validating the Audit Approach

In this section, we demonstrate Distill-and-Compare on risk scoring models

where we have some information on how they were trained, and check that

the approach can recover this information.

Stop-and-Frisk.

Using the New York Police Department’s Stop-and-Frisk2 data, Goel et al. [54]

proposed a simple risk scoring model for weapon possession: S = 3 × 1PS +

1 × 1AS + 1 × 1Bulge, where S is the risk score, PS denotes primary stop circum-

stance being presence of suspicious object, AS denotes secondary stop circum-

stance being sight of criminal activity, and Bulge denotes bulge in clothing [54].

Since we know the risk scoring model’s functional form, we can verify that the

mimic model correctly recovers these coefficients. We apply the risk scoring

model to label 2012 data (T=126,457, p=40) after following Goel et al.’s data pre-

processing steps [54].

Result. The mimic model recovers the coefficients (3, 1, 1) for the three features

used in the risk scoring model (PS , AS , Bulge) and 0 for the remaining features.

2http://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.
page
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Chicago Police “Strategic Subject” List.

The Chicago Police Department released arrest data3 from 2012 to 2016 that was

used to create a risk score for an individual being involved in a shooting incident

as a victim or offender. This data set contains 16 features, but only 8 are used

by the black-box model, which gives us an opportunity to test if Distill-and-

Compare can accurately detect which features are and are not used by a black-

box model.
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Figure 4.4: Eight features the Chicago Police says are used in their risk
scoring model. The COMPAS mimic model is in red, the out-
come model is in green.

We trained a mimic model, intentionally including all 16 features. Figure 4.4

shows the feature contributions of the mimic model (in red) and outcome model

(in green) for the 8 features the Chicago Police says were used by the black-box

model; Figure 4.5 shows the 8 features the Chicago Police says were not used in

their model.

Result. There is a striking difference between Figures 4.4 and 4.5: the mimic

3https://data.cityofchicago.org/Public-Safety/Strategic-Subject-List/
4aki-r3np
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Figure 4.5: Eight features the Chicago Police says are not used in their risk
scoring model.

model (in red) assigns importance to the features in Figure 4.4, but does not

assign any importance to the features in Figure 4.5. This agrees with Chicago

Police’s statement about which features were and were not used in the black-box

model. We also note that the outcome model (in green) does assign importance

to the unused features (Figure 4.5), suggesting that there is signal available in

the 8 unused features that the Chicago Police risk scoring model could have

used, but chose not to use. Race and sex are 2 of these 8 features, which the

Chicago Police especially emphasized are not used. These experiments show

that mimic models can provide insights into black-box models, and demonstrate

the advantages of using outcome information.

4.3.2 Auditing COMPAS

COMPAS, a proprietary score developed to predict recidivism risk, has been

the subject of scrutiny for racial bias [8, 83, 27, 31, 18, 36]. We do not know what

model class, input features or data were used to train COMPAS. As described
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in Section 4.1, the COMPAS audit data4 was collected by ProPublica; it is likely

different from the original COMPAS training data.

Figure 4.6 compares the COMPAS mimic model (in red) and outcome model

(in green) for four features: Age, Race, Number of Priors, and Gender. The

dotted lines are 95% pointwise confidence intervals. We observe the following:
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Age Race Number of Prior Counts Sex

Figure 4.6: Feature contributions of four features to the COMPAS mimic
model (in red) and outcome model (in green).

COMPAS agrees with ground-truth outcomes regarding the number of priors.

In the 3rd plot in Figure 4.6, the mimic model and outcome model agree on the

impact of Number of Priors on risk; their confidence intervals overlap through

most of its range.

COMPAS disagrees with ground-truth outcomes for some age and race

groups. The 1st and 2nd plots in Figure 4.6 show the effect of Age and Race

on the mimic and outcome models. The mimic model (red) and the outcome

model (green) are very similar between ages 20 to 70, and their confidence inter-

vals overlap. For ages greater than 70, there is evidence that the models disagree

as the confidence intervals do not overlap.

4https://github.com/propublica/COMPAS-analysis
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The mimic and outcome models are also different for ages 18 and 19: the

mimic model predicts low risk for young individuals, but we see no evidence to

support this in the outcome model, with risk appearing to be highest for young

individuals.

The mimic model predicts that African Americans are even higher risk, and

Caucasians lower risk, than the ground-truth outcomes suggest is warranted.

Note that the ground-truth outcomes might themselves be biased due to histor-

ical discrimination against African Americans.

Gender has opposite effects on COMPAS compared to ground-truth outcome.

In the 4th plot in Figure 4.6, we see a discrepancy between the mimic model

and outcome model on Gender. The mimic model predicts higher risk than

warranted by ground-truth outcomes for females, and conversely for males.

Using differences to gain insight into COMPAS. We now ask “what could be

happening in COMPAS, that could explain the differences we are seeing be-

tween the mimic and outcome models?”:

1. Some feature regions may be underrepresented in the black-box model’s

training data and/or the audit data. In this audit data, only 3% of samples

are between 18 and 20 years old, only 0.5% are older than 70 years old,

and only 19% are female, which makes learning accurate models in these

regions harder.

2. The black-box model may be deliberately simple for some feature regions.

For ages greater than 70, the outcome model has much wider confidence

intervals than the mimic model. The ground-truth outcomes are poten-

tially high-variance in this region, yet the black-box model’s scoring func-

90



tion may have been kept deliberately simple for extreme feature values

like this.

3. The black-box model may have a very different form than the transpar-

ent model class. The mimic model predicts low risk for young individ-

uals, but there is no evidence to support this in the outcome model. We

trained an iGAM model with interactions between pairs of features, and

observed strong interactions between very young age and other variables

such as Gender, Charge Degree, and Length of Stay. If COMPAS has a

more simple form and does not model interactions well, this may explain

why COMPAS needs to predict low risk for very young individuals (be-

cause it cannot otherwise predict a reduced risk via interactions of age

with other variables).

4. The black-box model may have used features missing from the audit data,

that interact with the non-missing features. We investigate this in Section

4.3.4.

While we cannot tell (without further investigation) the definitive reason that

explains a particular difference between the mimic and outcome models, this

has surfaced ideas about the black-box model and uncovered potentially prob-

lematic feature regions that we did not a priori know, but can now proceed to

investigate further.
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4.3.3 Auditing Lending Club

Lending Club, an online peer-to-peer lending company, rates loans it finances

on an A1-G5 scale. We use a subset of five years (2007-2011) of loans5 that have

matured, so that we have ground-truth on whether the loan defaulted. We do

not know what model class or input features Lending Club used to train their

risk scoring model. We believe the data sample we have is similar to the data

they would have used to train their models. According to Lending Club, their

models are refreshed periodically.
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Figure 4.7: Interaction between loan issue year and home ownership in
Lending Club mimic model (in red shades) and outcome model
(in green shades). Regions colored by hi j(xi, x j).

We use this Lending Club example to discuss an insight gained into the

black-box model from inspecting feature interactions in the transparent mod-

els. Figure 4.7 shows the interaction of loan issue year and home ownership

in the Lending Club mimic model (in red) and ground-truth outcome model

(in green). Having a home mortgage in 2007-2008 increases the loan default

risk more than having a home mortgage in 2009 and beyond. Recall that 2007-

2008 is around the time of the subprime housing crisis. Note the difference in

5https://www.lendingclub.com/info/download-data.action
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ranges between the two plots—the range goes up to 0.2 for the outcome model

(in green) whereas the range is much lower for the mimic model (in red). One

possible explanation for this difference is that the Lending Club risk scoring

model is updated conservatively (with some lag time), instead of being rapidly

updated as economic conditions and behavior change.

4.3.4 Which Audit Data Are Missing Features?

As black-box models may use additional features we do not have access to, we

developed a test (Section 4.2.2) to assess the impact missing features could have

on the audit. Table 4.1 provides 95% confidence intervals for three correlation

measures (linear and nonlinear) used in the test. If zero is in the confidence in-

terval, the error of the mimic model (trained on the audit data) is not correlated

with the error of the outcome model (also trained on the audit data). Then, it

is unlikely that the audit data is missing key feature(s) that are a) predictive of

outcomes (and hence will negatively affect the error of the outcome model if

missing); and b) used in the black-box model (and hence will negatively affect

the error of the mimic model if missing).

In Lending Club and Stop-and-Frisk we cannot distinguish these correla-

tions from zero, suggesting that no key features are missing from the audit

data. For Chicago Police, the confidence intervals contain 0 or are very close

to 0 (lower limit 0.01), hence there is little evidence of missing key features.

For COMPAS, there is evidence of positive correlation, indicating that the ProP-

ublica data may be missing key features used in the COMPAS model. This is

supported by the findings in Section 4.3.5 that no mimic models trained on the
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Table 4.1: Statistical test for likelihood of audit data missing key features
used by black-box model.

Risk Score Pearson ρ Spearman ρ Kendall τ

COMPAS [0.10, 0.13] [0.10, 0.14] [0.08, 0.10]

Lending Club [0.00, 0.03] [-0.01, 0.01] [-0.01, 0.01]

Stop-and-Frisk [0.00, 0.01] [-0.03, 0.01] [-0.02, 0.01]

Chicago Police [0.00, 0.01] [0.01, 0.03] [0.01, 0.02]

ProPublica data, however powerful (e.g., random forests), could mimic COM-

PAS well.

4.3.5 Fidelity and Accuracy

To quantitatively evaluate the audit approach, we report fidelity (how well the

mimic model predicts the black-box model’s risk scores, measured in RMSE)

and accuracy (how well the outcome model predicts the ground-truth out-

comes, measured in AUC) for all the risk scoring models we audit in Table 4.2.

For comparison, we also train linear models (a simpler model class than iGAM)

and random forests (more complex, but less interpretable).

For COMPAS, all model classes (linear model, iGAM, random forest) have

roughly equal fidelity and accuracy. Interestingly, none obtained RMSE lower

than 2 on a 1-10 scale. Comparing outcome model AUCs across different model

classes, iGAM’s results are generally comparable to (or slightly better than)

more complex random forests (Table 4.2). For the risk score mimic models, ran-

dom forests are competitive for Lending Club and Chicago Police. Linear mimic
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models are not far behind iGAMs for several risk scoring models (COMPAS,

Chicago Police, Stop-and-Frisk), suggesting that the black-box model’s func-

tional form might be very simple. We know this to be true for Stop-and-Frisk

from Section 4.3.1 where the model was a simple linear model.

4.3.6 Using Additional Data for Distillation

One possible reason why COMPAS is challenging to mimic may be that the

ProPublica data is missing key features. This agrees with the results of the sta-

tistical test in Section 4.3.4. Another possible reason is the small sample size

(less than 7,000 samples).

One advantage of using a model distillation approach to inspect black-box

models is that the approach may be able to benefit from additional unlabeled

data if the black-box model can be queried to label the additional data [22]. We

found an additional 3,000 individuals in the ProPublica data with COMPAS risk

scores but no ground-truth outcomes. Adding them to the training (not testing)

data for the mimic model and retraining the mimic model, we find marginal

improvement in the mimic model’s fidelity (from RMSE 2.0 to 1.98). Doing the

opposite—removing individuals from the training data in 1,000 increments—

decreased the mimic model’s fidelity only marginally (to RMSE 2.1, training on

only 1,000 individuals). These analyses suggest that for COMPAS, missing key

features is a more pressing issue than insufficient data.
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4.4 Discussion

Sometimes we are interested in detecting bias on features intentionally excluded

from the black-box model. For example, a credit risk scoring model is probably

not allowed to use race as an input. Unfortunately, not using race does not

prevent the model from learning to be biased. Racial bias in a data set is likely

to be in the outcomes — the labels used for learning; not using race as an input

feature does not remove the bias from the labels.

If race were uncorrelated with all other features (and combinations of fea-

tures) provided to the model, then removing race would prevent the model

from learning to be racially biased because it would not have any input features

on which to model this bias. Unfortunately, in any real-world, high-dimensional

data set, there is massive correlation among the features, and a model trained

to predict credit risk will learn to be biased from correlation of the excluded race

feature with other features that likely remain in the model (e.g., income or edu-

cation).

Hence, removing a protected feature like race or gender does not prevent a

model from learning to be biased. Instead, removing protected features make it

harder to detect how the model is biased, or correct the bias, because the bias is

now spread in a complex way among all the correlated features throughout the

model instead of being localized to the protected features. The main benefit of

excluding protected features like race or gender from the inputs of a machine

learning model is that it allows the group deploying the model to claim (incor-

rectly) that their model is not biased because it did not use these features.

When training a transparent model to mimic a black-box model, we inten-
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tionally include all features—even protected features like race and gender—

specifically because we are interested in seeing what the mimic model could

learn from them. If, when the mimic model mimics the black-box model, it does

not see any signal on the race or gender features and learns to model them as

flat (zero) functions, this suggests whether the black-box model did or did not

use these features, but also if the black-box model exhibits race or gender bias

even if race or gender were not used as inputs.

4.5 Conclusion

The Distill-and-Compare approach to auditing black-box models was motivated

by a realistic setting where access to the black-box model API is not available.

Instead, only a data set labeled with the risk score (as produced by the risk scor-

ing model) and the ground-truth outcome is available. The efficacy of Distill-

and-Compare increases when a model class that can be highly faithful to the

black-box model and highly accurate at predicting the ground-truth outcomes

is used, and when the audit data is not missing key features used in the black-

box model.

A key advantage of using transparent models to audit black-box models is

that we do not need to know in advance what to look for. Many current audit-

ing approaches focus on one or two protected features defined in advance, and

thus are less likely to detect biases that are not a priori known. The Distill-and-

Compare audit approach using transparent models can hence be most useful

for real-world, high-dimensional data with multiple, unknown sources of bias.
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CHAPTER 5

INVESTIGATING HUMAN + MACHINE COMPLEMENTARITY: A CASE

STUDY ON RECIDIVISM

5.1 Introduction

The criminal justice field has used forecasting tools to perform risk assess-

ment since the 1920s [51]. There is an ongoing debate whether AI systems, such

as risk assessment models, are superior to human judgment. Grove et al. found

that decisions made by expert humans such as judges can sometimes be highly

variable and biased by unobserved, irrelevant features not predictive of recidi-

vism [58].

In a recent study related to Human vs. Machine predictions of recidivism,

Dressel and Farid [39] asked Mechanical Turk workers to predict whether a de-

fendant would recidivate within two years (the same label predicted by COM-

PAS). They also ran a second variant of their study where defendants’ race was

revealed. They did not find Human and COMPAS accuracies to be signifi-

cantly different (COMPAS: 65.2%, Humans without defendant race information:

67.0%, and Humans with defendant race information: 66.5%).

Although the Dressel and Farid study demonstrated that the accuracy of

COMPAS and Human predictions were comparable [39], it was unclear whether

COMPAS and Humans were accurate on the same or disjoint sets of defendants.

Significant overlap would suggest that the Humans and COMPAS make similar

This chapter is based on material in [132].
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assessments; less overlap suggests that human reasoning differed from machine

analysis. Humans may have access to additional information or context not

available to algorithmic systems; machines may not be influenced by the same

biases that plague human judgment or may be better at using statistical signals

learned from large amounts of data.

While the Dressel and Farid study focused on an analysis of machine vs. hu-

man performance [39], the goal of several real-world implementations of recidi-

vism models is for such models to completement decision making by humans

such as judges, parole officers, etc. [16, 42].

In this paper, we study complementarity between human and machine deci-

sion making for recidivism prediction. Instead of focusing on the superiority (or

lack thereof) of algorithmic systems compared to human judgment, we explore

the similarities and differences between Human and COMPAS decisions, and

construct hybrid models that combine the strengths and weaknesses of human

and machine decision making.

Our contributions in this paper are:

• An understanding of how human and machine decisions differ, and how

and when they make errors.

• A characterization of agreement and disagreement between human and

machine decision making to better understand their complementarity.

• An investigation of hybrid models to leverage differences in human and

machine decision making.

Based on our findings, we discuss the potential of hybrid models and short-
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comings of existing data sets. We make recommendations for data collection

best practices for future study of hybrid decision making in the fairness domain.

5.2 Related Work

Humans and decision making. Dressel and Farid [39] were the first to compare

decisions made by COMPAS to non-expert humans (Mechanical Turkers); con-

sequently, our analysis is based on their data. Before that, Kleinberg et al. com-

pared decisions made by machine learning models to expert humans (judges)

[82]. Lakkaraju et al. [88] showed that analyses of recidivism based on human

decisions are further complicated by the “selective labels” problem, where ob-

servability of outcomes are affected by judges’ release decisions. Other work

incorporating human input or feedback in the fairness domain include investi-

gating human perception of which features are fair or otherwise [57].

Hybrid models. Investigations across different domains identify that hu-

mans and machines have weaknesses and complementary abilities, thus sug-

gesting benefits from hybrid models. In medicine, recent research showed that

existing machine learning models with lower accuracy rates than human ex-

perts can decrease expert error rates by 85% [144]. On challenging face recogni-

tion tasks, combining multiple expert opinions does not improve task accuracy,

however complementing an expert with a inferior face recognition system can

[110]. On the other hand, research on complementary computing demonstrated

how humans and machines can be more effective together in problem solving

[68] and image classification tasks [74].

Diagnosing errors. The key to aggregating machine and human analyses for
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improved performance is understanding where and how machines and humans

fail [84]. Various approaches have been proposed for understanding where ma-

chine errors come from. Lakkaraju et al. [86] defined unknown unknowns as

cases where the model is highly confident of its prediction but is wrong. We

adopt this definition and take agreement and disagreement as a measure of con-

fidence, hence our unknown unknowns are cases where COMPAS and Human

scores agree, yet are wrong. Ramakrishnan et al. learned models to predict blind

spots in reinforcement learning settings [113]. Nushi et al. used distillation of

black box model decisions to interpretable model classes to explain failures of

AI systems [108]. Similarly, Tan et al. used distillation to interpret black box

risk scoring models such as COMPAS [134]. We follow a similar approach of

utilizing interpretable machine learning models such as decision trees to ana-

lyze how machines and humans reason about recidivism, when and how their

decisions differ and how they can be aggregated.

5.3 Approach

5.3.1 Constructing Human Risk Score

Our goal in this paper was to compare algorithmic and human decision making

for complex decisions using recidivism predictions as our initial domain. [39]

provide data on both human predictions (from Mechanical Turk workers), and

algorithmic predictions (from COMPAS). One question is whether decisions

made by Mechanical Turk workers on this data are internally consistent, or, in

other words, whether different Turk workers assess risk similarly for the same
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defendant. Large agreement among Turk workers increases confidence that our

subsequent findings based on generating Human scores from Turk worker pre-

dictions generalize to Human decision making.

We found that on average, 80% of the Turk workers that assessed the same

defendant agreed with each other. This was a high level of agreement, par-

ticularly for Mechanical Turk, where spam labeling is commonly observed

[72]. Hence, we perform a majority aggregation of Turk workers’ predictions

to assemble a Human risk score for recidivism risk, h j. Specifically, we con-

struct h j by taking the mean prediction across the Turk workers for each de-

fendant: let hi j be Turk worker i’s prediction for defendant j where hi j ∈ {0, 1},

i = 1, . . . , 20, j = 1, . . . , 1000, we take h j =
∑

i hi j/2, dividing by two to scale h j

to 1-10, which is COMPAS’ scale. We constructed scores for both conditions

mentioned in the Introduction - a with-race Human score (HWR) for when Turk

workers were told the defendants’ race, and a no-race version (HNR).

For each score, we find the optimal cutoff point to binarize the score by

computing calibration, false positive, and false negative rates at various cut-

off points from 1 to 10. COMPAS, HNR, and HWR scores have approximately

equal accuracy, false positive, and false negative rates at the cutoff point of >= 5

(Figure 5.1). Hence, we chose this cutoff point for all three scores. Note that

Northpointe, the creator of COMPAS, also uses a >= 5 cut-off [18], and >= 5 is

implied by [39]’s use of a “wisdom-of-the-crowd” based majority rules criterion.
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Figure 5.1: Accuracies (left), false positive rates (center), and false negative
rates (right) for COMPAS and Human scores at different cutoff
points for binarizing the scores.

5.3.2 Partitioning by Agreement and Correctness

We now sketch our approach towards studying how COMPAS and Human

scores agree or disagree, and interact with ground truth. Table 5.1 describes

eight possible combinations of two binary risk scores and ground truth. These

eight combinations can be grouped into the four partitions illustrated in Table

5.1: Both correct, Both incorrect, Human correct, and COMPAS correct.

Comparing the level of agreement and correctness between the Human and

COMPAS scores, we found that almost 50% of the time, Humans and COMPAS

agree and are correct (Table 5.1). However, for the remaining 50% of defendants,

either one, or both scores were incorrect. This suggests that if error regions of

COMPAS and Humans do not perfectly overlap and can be characterized, then

decision-making processes can potentially be improved through utilizing the

complementary views of humans and machines.

When both risk scores agree and are correct, either score will return the same

prediction, hence it does not matter which is used (in terms of accuracy). The

space where both scores agree but are incorrect according to ground truth is a
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blind spot for COMPAS and Humans, also called unknown unknowns [86]. To

characterize the space of agreement or disagreement between COMPAS and

Human scores, we use clustering and decision trees. Table 5.1 summarizes our

findings of the features that characterize each case. Finally, when COMPAS

and Human scores disagree (Cases 3-6 in Table 5.1) we train hybrid risk scor-

ing models to see if they can leverage disagreement between the two scores to

improve on the accuracy of single scores.

5.3.3 Designing Hybrid Models

The simplest hybrid model is an average of two risk scores. We train a slightly

more sophisticated model - a weighted average hybrid model that learns the

optimal linear combination of two risk scores to predict ground truth.

If we had access to an oracle that can be queried to obtain ground truth re-

cidivism for any new observation, we can determine which of COMPAS or Hu-

man scores better predicts ground truth. However, test-time access to a ground

truth oracle is not realistic. Hence, we relax this assumption of oracle access at

test-time to only training-time, and train a binary classification model only on

observations where the two risk scores disagree to predict which risk score to

pick. In other words, this model predicts which score – COMPAS or Human –

to use for Cases 3-6 in Table 5.1 using features available at training time such

as defendant features, Turk worker features, COMPAS score, and Human score.

We call this an indirect hybrid model – indirect because the hybrid model takes

as input the prediction of which risk score is better, and outputs the desired

ground truth recidivism prediction. Figure 5.2 shows this model.
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FeaturesFeatures

Defendant features

Hybrid model Prediction:
Ground truth

Label: 
Ground truth 

Human features
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First-stage model Prediction:
Which score better

Label: 
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COMPAS or Human 

Human features
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Human score

Hybrid model

Prediction:
Ground truth

Figure 5.2: Schematic of indirect hybrid model that predicts whether to
use COMPAS or Human scores to predict ground truth recidi-
vism].
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Ground truth
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Human features

COMPAS score

Human score

Defendant features

First-stage model Prediction:
Which score better

Label: 
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COMPAS or Human 

Human features

COMPAS score

Human score

Hybrid model

Prediction:
Ground truth

Figure 5.3: Schematic of direct hybrid model that directly predicts ground
truth recidivism using COMPAS and Human scores as fea-
tures.

We also directly predict ground truth recidivism as a function of not just

features but also the two risk scores. Figure 5.3 shows this model.

We test the hybrid models against random and single score baselines. We

use two types of random baselines: random ground truth labels, and random

risk score. Single score baselines are COMPAS or Human scores on their own

(1-10 scale, or binarized at >=5), or models trained with defendant and Turk

worker features and the single score to predict ground truth.

All hybrid and single models in this paper were trained using the random

forest model class, a model class shown to perform well on many problems [25].
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We use area under the ROC curve (AUC) as our main accuracy measure, in

line with several papers measuring recidivism [29]. Besides AUC, we also re-

port balanced accuracy (Bal Acc), i.e., the mean classification accuracy across

classes. For error rates, we track false positives (FPR), false negatives (FNR),

false discovery (FDR), and false omission (FOR). Equations for these error rates

are below. Note that Kleinberg [83] and Choudechouva [27] showed the im-

possibility of satisfying several of these metrics simultaneously. These results

are reported in Section 5.7. All metrics are reported over ten 80%-20% train-test

splits to account for variability between test sets.

Definitions of Metrics

Given a binary label and a binary prediction, let FP denote the number of false

positives, FN denote the number of false negatives, TP denote the number of

true positives, and TN denote the number of true negatives.

Balanced accuracy

BalAcc =
1
2

( T P
T P + FN

+
T N

T N + FP

)

False positive rate (FPR)

FPR =
FP

FP + T N

False negative rate (FPR)

FPR =
FN

FN + T P
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False discovery rate (FDR)

FDR =
FP

FP + T P

False omission rate (FOR)

FOR =
FN

FN + T N

5.4 Analysis and Results

In this section, we report our findings of COMPAS and Human complemen-

tarity in terms of predictive performance and decision making, characterize the

space of COMPAS and Human agreement and disagreement, and discuss re-

sults from our hybrid models.

5.4.1 COMPAS vs. Humans: Predictive Performance

Across 1,000 defendants, Human scores have slightly higher means than COM-

PAS (mean HNR 5.1, HWR 5.2, COMPAS 4.6, all on 1-10 scale), and the Human

scores are more correlated with each other than with COMPAS (COMPAS and

HNR correlation 0.52, COMPAS and HWR 0.53, HNR and HWR 0.93).

Table 5.2 displays the predictive performance of COMPAS and Human

scores, on all defendants and by race (this is similar to Table 1 in [39] ’s find-

ings when evaluating accuracies of the three scores.

Table 5.3 presents predictive performance separated by recidivism status:

whether the defendant recidivated or not. Here, Humans were better at pre-
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Table 5.2: COMPAS and Human performance for ground truth recidivism
prediction.

Accuracy AUC

Race C HNR HWR C HNR HWR

All 0.65 0.66 0.66 0.70 0.71 0.71

Black 0.68 0.66 0.65 0.70 0.69 0.69

White 0.66 0.66 0.64 0.71 0.69 0.70

Other 0.65 0.60 0.66 0.64 0.65 0.65

dicting defendants who recidivate, while COMPAS was better at predicting de-

fendants who do not recidivate. In other words, on this data, Humans tended to

have higher true positive rates (and hence lower false negative rates) and COM-

PAS tended to have higher true negative rates (and hence lower false positive

rates).

We see similar effects for the level of agreement between risk scores, race,

and ground truth. COMPAS and Humans demonstrate higher levels of agree-

ment for correctly predicting that black defendants will recidivate, but their

level of agreement drops significantly for white or other race defendants who

recidivate. The opposite is true for defendants who do not recidivate. COMPAS

and Humans have higher levels of agreement for correctly predicting that white

and other race defendants will not recidivate, but this level of agreement drops

for black defendants who do not recidivate.
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Table 5.3: COMPAS and Human performance for ground truth recidivism
prediction, by recidivism status (this table is a refinement of Ta-
ble 5.2 by recidivism status). Left: defendants who do recidi-
vate. Right: defendants who do not recidivate. Only accuracies
are displayed because AUC cannot be calculated when ground
truth only has one value (“yes” for do recidivate, “no” for do not
recidivate).

Accuracy

Do recidivate Do not recidivate

Race C HNR HWR C HNR HWR

All 0.62 0.68 0.69 0.69 0.64 0.63

Black 0.74 0.74 0.70 0.61 0.55 0.59

White 0.60 0.50 0.59 0.69 0.75 0.68

Other 0.38 0.59 0.65 0.80 0.61 0.66

5.4.2 COMPAS vs. Humans: Decision Making

Which features are most important in COMPAS and Human decision making?

It is known that COMPAS scores can be predicted from only a few features,

in particular the “number of priors” and age [28, 6, 134]. In fact, Equivant

(formerly Northpointe, Inc.), the creator of COMPAS, clarified that the COM-

PAS risk assessment has only six inputs1 (exactly which features are used is

not known). To determine if Human decision making places more importance

on other features, we trained interpretable models to predict each of the three

scores. All three models saw the same set of features – age, race, sex, number of

juvenile misdemeanors, number of juvenile felonies, number of (non-juvenile)

priors, crime charge degree (misdemeanor or felony), and crime charge. First,

1http://www.equivant.com/blog/official-response-to-science-advances
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Figure 5.4: Explaining relationships between COMPAS and scores derived
from judgements of Human Turkers shown defendants’ race
(HWR) or not shown defendants’ race (HNR) and various fea-
tures. The larger the magnitude on the y-axis, the more impor-
tant the feature. “Number of priors”, with y-axis scale -3 to 6,
is the most important feature for all three scores, followed by
“age”.

we trained iGAM models, a type of additive model based on nonparametric

base learners [24]. Figure 5.4 illustrates the importance of four of these features

for predicting each score. Like COMPAS, the two most important features

in Human decision making are the “number of priors” and “age”. However,

Human scores place more weight on the “number of priors” and “charge de-
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gree” features than COMPAS, whereas age’s impact is similar for COMPAS and

Human scores. Decision trees trained to predict each of the three risk scores

confirm that “number of priors” is the most important feature, with every tree’s

root node splitting on this feature.
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Figure 5.5: Decision tree to explain differences between COMPAS and Hu-
man scores. Left: difference in scores derived from judgements
of Human Turk workers when and when not told of defen-
dants’ race (HWR - HNR). Center: difference in scores given
by COMPAS and Human Turk workers not told of defendants’
race (C - HNR). Right: difference in scores given by COMPAS
and Human Turk workers told of defendants’ race (C - HWR).

Including race when predicting these scores, even when the scores may not

have seen race, returns some interesting findings. Recall that HNR scores were

generated from Turk workers who were not told the defendants’ race. We con-

sidered the impact of race on Human recidivism predictions, by comparing the

importance of the race feature on HWR (green) and HNR (purple) scores in Fig-

ure 5.4. We find that black defendants were assessed to have slightly higher

recidivism risk by Turk workers when told of their race. The decision tree pre-

dicting the difference of HWR and HNR scores in Figure 5.5 also agreed with

this finding, returning a first split on race where white defendants were as-

signed slightly lower risk (-0.16) in the Human with-race condition, and black

and other race individuals were assigned slightly higher risk (+0.14). In con-
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trast, both decision trees predicting the difference between COMPAS and HWR

scores, as well as COMPAS and HNR scores, split on “number of priors” and

age but not race.

Hence, even though revealing race did not significantly affect the predic-

tive performance of Humans for ground truth, as found by [39], including race

appeared to slightly effect Humans’ perception of recidivism risk (magnitude

around +/- 0.15 on a 1-10 score scale). Note, however, that the set of Turk work-

ers in the no-race and with-race conditions were different; this effect may dimin-

ish or exacerbate if the experiment is re-run with the same set of Turk workers.

5.4.3 COMPAS + Humans: Characterizing Agreement and Dis-

agreement

We now determine the features that drive agreement or disagreement between

COMPAS and Human scores. To do so, we use two techniques – clustering and

decision trees. Specifically, we performed mean-shift clustering [35], a robust-

clustering method that avoids the need to specify an arbitrary number of clus-

ters, to cluster defendants in each of Cases 1-8 from Table 5.1. We also built a

multiclass decision tree to classify individuals into each of the eight cases. Fi-

nally, we assessed the distribution of features across the found clusters and tree

partitions. Figure 5.6 presents the decision tree. We elaborate on our findings

below. A summary of the feature characteristics is in Table 5.1.
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Characterizing the space of agreement

Easy calls: COMPAS and Humans agree, both correct. When we cluster defen-

dants in this region of correct agreement, two clusters emerge that map to the

two cases. The key separation between Cases 1 (COMPAS high, human high,

both correct) and 2 (COMPAS low, Human low, both correct) is the number of

priors, and to a lesser extent age. The average number of priors for defendants

in Case 1 is 7.9, and 0.34 for Case 2. The average age for defendants in Case 1

is 30.3, and 40.56 for Case 2. Consequently, these cases correspond to what one

might consider easy calls, i.e., defendants for whom the number of priors and

age alone provide sufficient information to predict recidivism accurately.

Unknown unknowns: COMPAS and Humans agree, but both incorrect.

Now we turn our attention to the region of wrong agreement - defendants

whose COMPAS and Human scores agree, yet fail to predict ground truth

(Cases 7 & 8). These defendants are very similar to defendants in other cases

– they are truly unknown unknowns. Effectively, defendants in Cases 7 & 8 are

exactly defendants for whom the number of priors and age alone are not dif-

ferent enough to distinguish them from defendants in other cases, despite these

defendants having fundamentally different ground truth labels. Because both

COMPAS and Human scores are over reliant on the number of priors and age,

both scores fail for defendants for whom these two features alone are not suffi-

cient to predict recidivism.
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Characterizing the space of disagreement

Our key finding for defendants for whom COMPAS and Human scores disagree

(Cases 3-6) mirrors our findings for the unknown unknowns. These defendants

had similar number of priors and age as defendants in other cases. In general,

the four cases in the space of disagreement could not be cleanly separated from

each other – Cases 3 and 6 were similar; Cases 4 and 5 were similar – and also

overlapped with the space of agreement. For example, defendants with low

COMPAS scores, high Human scores but did not recidivate (Case 4) tended to

have 1.5 to 5.5 priors and are younger than 32.5 years old. However, these de-

fendants significantly overlap with defendants in several other cases (Cases 1,

7, and 5 as seen in Table 5.1).

COMPAS score high, Human score low (Cases 3 & 6). The difference be-

tween Cases 3 and 6 is their ground truth label - defendants in Case 3 recidi-

vated, whereas defendants in Case 6 did not. According to the decision tree’s

partitions, defendants in Cases 3 and 6 tend to have < 0.5 priors. In fact, the

key distinguishing feature between Cases 3 and 6 is the type of crime that the

defendant was charged with. In addition, we found that some of the multiclass

trees we built to predict classification into the eight cases did not always have

terminal nodes with Case 6. Sometimes, Case 6 is combined with Case 3, indi-

cating that the features do not have sufficient signal to adequately distinguish

these two cases.

COMPAS score low, Human score high (Cases 4 & 5). The difference be-

tween Cases 4 and 5 is also their ground truth label - defendants in Case 4 did

not recidivate, whereas defendants in Case 5 did. Case 4 defendants tended to

have 1.5 to 5.5 priors and be older than 32.5 years old. Case 5 was not always
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present as a terminal node in our trees, and are very similar to defendants in

Case 4 and also Cases 1 and 7 (in the space of agreement).

5.4.4 COMPAS + Humans: Leveraging Disagreement to Build

Hybrid Models

Since defendants for whom COMPAS and Human scores disagree have the

highest possibility of benefiting from hybrid models, we build two separate sets

of hybrid models: (1) models on only the space of disagreement – 32% of defen-

dants in this data (cf. Table 5.4); (2) models on all defendants (cf. Table 5.5).

Hybrid methods tended to outperform single scores (or models trained on

features and single scores) by a small margin. In Table 5.4, the best performing

model (AUC 0.60) is a hybrid random forest predicting ground truth using fea-

tures, COMPAS, and Human (no-race condition) scores. This was better than

single risk scores (HNR 0.56, HWR 0.54, Compas 0.49), but comparable to a ran-

dom forest model trained on the original features plus the HNR scores (but not

with COMPAS), which obtained an AUC of 0.59.

Interestingly, despite the low AUC of COMPAS (0.49), combining it with

HNR did not degrade the hybrid model’s performance and in fact led to a small

AUC improvement of 0.01. However, this improvement is within the margin of

error.

Next, we examine these results by race. Table 5.7 presents these results for

blacks, Table 5.8 for whites, and Table 5.9 for other races. The trend is again

similar, where hybrid models tended to obtain slightly better results than their
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Table 5.4: Test-set performance of hybrid models trained on defendants
whose COMPAS and Human scores disagree. Best results in
cyan and bolded. See Table 5.6 for an extended version of this
table.

Type Model AUC

Hybrid

Best hybrid of C and HNR 0.60 ± 0.07

Best hybrid of C and HWR 0.58 ± 0.08

Best hybrid of C, HWR, HNR 0.58 ± 0.07

Single

Predict GT from features and HNR 0.59 ± 0.07

HNR (1-10 scale) 0.56 ± 0.05

Predict GT from features and HWR 0.54 ± 0.06

HWR (1-10 scale) 0.54 ± 0.04

Predict GT from features and C 0.51 ± 0.07

C (1-10 scale) 0.49 ± 0.06

None Predict GT from features 0.52 ± 0.07

Random

Randomly pick between C and HNR 0.55 ± 0.08

Randomly pick between C and HWR 0.54 ± 0.07

Randomly pick between C, HWR, HNR 0.54 ± 0.06

single-model counterparts, but improvements are typically within the margin

of error. Hybrid models for blacks had the best accuracy and error rates; single

models for other races (only 31 defendants) had the best accuracy and error

rates.

In general, the best hybrid models tended to leverage defendant and Human

worker features, plus both risk scores, to either directly or indirectly predict

ground truth recidivism. For the space of disagreement, the best hybrid models
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Table 5.5: Test-set performance of hybrid models trained on all defendants,
not just defendants for whom COMPAS and Human scores dis-
agree (see Table 5.4 for those results). Best results in cyan and
bolded. The benevolent oracle is the risk score best at predicting
ground truth, to provide an upper bound on the accuracy reach-
able on this data set of any hybrid COMPAS-Human model built
on the two risk scores. The adversarial oracle is the risk score
worse at predicting ground truth, to provide a lower bound. See
Table 5.10 for an extended version of this table.

Type Model AUC

Oracle
Benevolent oracle 0.85 ± 0.03

Adversarial oracle 0.57 ± 0.03

Hybrid

Best hybrid of C and HNR 0.74 ± 0.03

Best hybrid of C and HWR 0.74 ± 0.04

Best hybrid of C, HWR, HNR 0.73 ± 0.03

Single

HNR (1-10 scale) 0.72 ± 0.03

HWR (1-10 scale) 0.72 ± 0.03

C (1-10 scale) 0.71 ± 0.03

Predict GT from features and C 0.71 ± 0.03

Predict GT from features and HWR 0.71 ± 0.03

Predict GT from features and HNR 0.70± 0.03

None Predict GT from features 0.69 ± 0.02

Random

Randomly pick between C and HWR 0.73 ± 0.04

Randomly pick between C and HNR 0.72 ± 0.04

Randomly pick between C, HWR, HNR 0.71 ± 0.03

also tended to prefer HNR over HWR, particularly when evaluating races other

than whites. On the other hand, for the space of disagreement, hybrid models
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based on (weighted) averages of the COMPAS and human scores tend to un-

derperform models that incorporated defendant and Human worker features.

Notably, this is not the case for all defendants as the best performing hybrid

models for all defendants were the optimally weighted average models (Table

5.10).

We have shown that for defendants for whom COMPAS and Human scores

disagree, hybrid models can be more beneficial than single risk scores (even

when one of the scores is not as high performing as the other, as is the case for

COMPAS compared to Humans for this set of individuals), but, in general, the

improvements are marginal and, in many cases, within the margin of error.

5.5 Discussion

Our key finding is that Human and Machine decision making for recidivism

predictions does differ and we were able to characterize the space of how these

decisions relate to each other. Our exploration of a hybrid Human+Machine

model showed slight improvements in accuracy, but further iteration is required

to enhance this approach. From our analysis, the number of priors is a key

feature in both COMPAS and Human decision making. We saw that COMPAS

and Humans tended to agree (and were right) on defendants with a very high

or very low number of priors. We saw that the defendants that COMPAS and

humans agreed on (but were wrong) were truly unknown unknowns – there was

no discernable pattern in these cases. Unfortunately, they make up 19% of the

data, which bounds the maximal possible improvement from a hybrid model

on this data.
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When we focused on the 32% of defendants where COMPAS and Human

decisions disagree, our hybrid models started to exhibit some improvement,

though still within the margin of error. The cases in this region were also the

most uncertain, with single risk scores achieving between 0.49 and 0.56 AUC.

We saw that for this region of uncertainty, single risk scores could be further im-

proved by allowing them to see some amount of ground truth labels, alongside

defendant features. We saw that number of priors, once again, and age were

the two most important features to determine whether a defendant would fall

in Case 3-6, although separation between these four cases was often not clear.

Several reasons could explain why we were not getting better accuracy from

the hybrid models: 1) Ground truth labels are noisy. 2) Turk workers are not

experts. 3) Ground truth is inherently unpredictable or the features we have

do not present enough information to predict ground truth accurately. 4) Small

sample size.

5.5.1 Noisy Ground Truth Labels

One limitation of our hybrid models is possible noise (or bias) in the ground

truth labels in the ProPublica COMPAS data. The “primary” definition of recidi-

vism from the US Sentencing Commission . As we continue to develop machine

learning models for recidivism, we need to reevaluate the ground truth labels

we are collecting to ensure they are unbiased.
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5.5.2 Criminal Justice Expertise

It is important to note that the Human risk scores in our analyses were obtained

from Mechanical Turk workers. The ecological validity of using Turk workers

may be low, as they have no criminal justice experience, and the decisions they

are asked to make (whether a defendant recidivates or not) may have little re-

lation to the types of decisions they make in their day-to-day lives. Gathering

human data from judges, in actual legal settings, will help us further investi-

gate the potential of hybrid models in fairness domains. We need to gather

more quantitative and qualitative data on when judges and algorithmic systems

agree and disagree, and what additional information the judge may be using

to inform her decision. This could help hybrid models better discern when to

choose human judgment over algorithmic prediction to achieve better perfor-

mance overall.

5.5.3 Lacking Evidence About the World

We have two other hypotheses why our hybrid models only marginally improve

over the accuracy of COMPAS or Human scores alone despite the presence of

differences in COMPAS and Human reasoning. First, perhaps recidivism is an

unpredictable event with a lot of inherent uncertainty, and as such, the accuracy

of any model is limited. This is consistent with prior work that found similar

AUCs for commercial recidivism prediction systems [38]. Second, it could be

that the seven features included in this data are not sufficient to properly eval-

uate recidivism risk. This second explanation is likely, since the Turk worker

ratings are only based on those seven features (besides race). In a real world
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court setting, a judge has access to additional information that could be used

to inform their reasoning. This “private information” may be helpful, however

it remains to be seen if private information may also be detrimental to human

reasoning, as seen in [58] ), many defendants may appear similar when viewed

through the lens of only two features.

5.5.4 Small Sample Size

In our hybrid models trained on only the 340 defendants for which COMPAS

and Human scores disagreed, the improvements demonstrated were subsumed

by large margin of errors. This was also the case for further subgroups of races

(169 blacks, 114 whites, 31 other races). Repeating the Mechanical Turk experi-

ment and hybrid models on a larger sample of the original ProPublica COMPAS

data will provide more evidence as to whether human judgment can help ma-

chines in making recidivism predictions.

5.6 Conclusion

In complex settings, like a courtroom or hospital, it is unlikely that algorith-

mic systems will be making all decisions without input from human experts.

Our approach focused efforts on cases where humans and machines disagree as

a potential area to enhance decision making. Ultimately, we want to leverage

the best of both worlds: humans that glean subtle, interpersonal insights from

rich context, and machine algorithms that provide rigor and consistency. How-

ever, on this data set, our hybrid models only showed minor improvements in
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ground truth prediction of recidivism. An important next step will be to further

our investigation to include predictions made by judges in real-world settings

or explore our hybrid Human + Machine model approach on other domains or

datasets. We hypothesize that the richness of the real-world may provide better

context for enhanced hybrid Human + Machine models.

A key debate in recidivism predictions involves issues of bias and fairness,

particularly for false positive and false negative judgments. Although our work

uncovered a few aspects where race had an impact, it was not the primary fo-

cus of our work. We intend to look more closely at issues of bias and fairness

in future work, especially as we gather more real-world data. Although both

humans and algorithms can have inherent biases, if these biases are different, a

hybrid model has the potential to help overcome them.

5.7 Extended Result Tables
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Table 5.6: Extended result table for test-set performance of hybrid mod-
els trained on defendants whose COMPAS and Human scores
disagree. Best results in cyan and bolded. See Table 5.4 for a
reduced version of this table. Rows marked with ∗ are the rows
labeled as best in Table 5.4.

Type Model AUC Bal Acc FPR FNR FDR FOR

Hybrid Direct C HNR∗ 0.60 ± 0.07 0.56 ± 0.07 0.44 ± 0.13 0.45 ± 0.10 0.50 ± 0.10 0.39 ± 0.08

Hybrid Composed indirect C HWR∗ 0.58 ± 0.08 0.56 ± 0.08 0.37 ± 0.10 0.50 ± 0.10 0.47 ± 0.15 0.40 ± 0.10

Hybrid Direct C HWR HNR∗ 0.58 ± 0.07 0.55 ± 0.08 0.47 ± 0.14 0.43 ± 0.09 0.50 ± 0.09 0.40 ± 0.10

Hybrid Indirect C HWR∗ 0.58 ± 0.08 0.56 ± 0.08 0.37 ± 0.10 0.50 ± 0.10 0.47 ± 0.15 0.40 ± 0.10

Hybrid Composed indirect C HNR 0.56 ± 0.09 0.54 ± 0.06 0.45 ± 0.07 0.47 ± 0.09 0.52 ± 0.07 0.40 ± 0.08

Hybrid Indirect C HNR 0.56 ± 0.09 0.54 ± 0.06 0.45 ± 0.07 0.47 ± 0.09 0.52 ± 0.07 0.40 ± 0.08

Hybrid Direct C HWR 0.53 ± 0.06 0.52 ± 0.04 0.37 ± 0.09 0.58 ± 0.09 0.52 ± 0.14 0.44 ± 0.08

Hybrid Weighted average of C HNR 0.51 ± 0.05 0.50 ± 0.04 0.38 ± 0.25 0.63 ± 0.3 0.56 ± 0.22 0.43 ± 0.07

Hybrid Weighted average of C HWR HNR 0.50 ± 0.04 0.50 ± 0.05 0.23 ± 0.07 0.77 ± 0.13 0.58 ± 0.09 0.45 ± 0.11

Hybrid Weighted average of C HWR 0.47 ± 0.04 0.49 ± 0.03 0.39 ± 0.26 0.63 ± 0.26 0.56 ± 0.12 0.46 ± 0.11

Single Predict GT from features and HNR 0.59 ± 0.07 0.55 ± 0.06 0.44 ± 0.09 0.46 ± 0.10 0.51 ± 0.09 0.39 ± 0.07

Single HNR (1-10 scale) 0.56 ± 0.05 0.52 ± 0.02 0.55 ± 0.08 0.40 ± 0.08 0.54 ± 0.04 0.41 ± 0.07

Single Predict GT from features and HWR 0.54 ± 0.06 0.54 ± 0.05 0.35 ± 0.10 0.57 ± 0.08 0.49 ± 0.14 0.42 ± 0.09

Single HWR (1-10 scale) 0.54 ± 0.04 0.52 ± 0.03 0.54 ± 0.05 0.41 ± 0.04 0.53 ± 0.09 0.43 ± 0.10

Single Predict GT from features and C 0.51 ± 0.07 0.52 ± 0.05 0.41 ± 0.07 0.55 ± 0.08 0.52 ± 0.11 0.44 ± 0.10

Single C (1-10 scale) 0.49 ± 0.06 0.48 ± 0.01 0.40 ± 0.07 0.65 ± 0.08 0.59 ± 0.06 0.46 ± 0.04

Single C (binarized >=5) - 0.48 ± 0.01 0.40 ± 0.07 0.65 ± 0.08 0.59 ± 0.06 0.46 ± 0.04

Single HNR (binarized >=5) - 0.52 ± 0.01 0.60 ± 0.07 0.35 ± 0.08 0.54 ± 0.04 0.41 ± 0.06

Single HWR (binarized >=5) - 0.51 ± 0.03 0.63 ± 0.05 0.36 ± 0.05 0.54 ± 0.07 0.44 ± 0.12

None Predict GT from features 0.52 ± 0.07 0.51 ± 0.06 0.37 ± 0.07 0.61 ± 0.09 0.54 ± 0.13 0.45 ± 0.09

Random Randomly pick between C HNR 0.55 ± 0.08 0.52 ± 0.05 0.46 ± 0.06 0.50 ± 0.08 0.54 ± 0.07 0.42 ± 0.07

Random Randomly pick between C HWR 0.54 ± 0.07 0.52 ± 0.06 0.46 ± 0.06 0.49 ± 0.11 0.53 ± 0.14 0.43 ± 0.08

Random Randomly pick between C HWR HNR 0.54 ± 0.06 0.52 ± 0.06 0.50 ± 0.07 0.46 ± 0.08 0.53 ± 0.10 0.43 ± 0.11
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Table 5.7: Performance by subgroup (African-Americans) of hybrid mod-
els presented in Table 5.6. Best results in cyan and bolded.

Type Model AUC Bal Acc FPR FNR FDR FOR

Hybrid Direct C HNR 0.65 ± 0.06 0.58 ± 0.07 0.48 ± 0.15 0.35 ± 0.13 0.46 ± 0.11 0.37 ± 0.10

Hybrid Direct C HWR HNR 0.63 ± 0.07 0.59 ± 0.07 0.50 ± 0.15 0.32 ± 0.11 0.45 ± 0.09 0.36 ± 0.13

Hybrid Composed indirect C HWR 0.57 ± 0.12 0.58 ± 0.10 0.41 ± 0.15 0.43 ± 0.14 0.43 ± 0.17 0.41 ± 0.12

Hybrid Indirect C HWR 0.57 ± 0.12 0.58 ± 0.10 0.41 ± 0.15 0.43 ± 0.14 0.43 ± 0.17 0.41 ± 0.12

Hybrid Weighted average of C HNR 0.55 ± 0.06 0.51 ± 0.07 0.33 ± 0.19 0.64 ± 0.31 0.65 ± 0.21 0.42 ± 0.12

Hybrid Weighted average of C HWR HNR 0.55 ± 0.08 0.55 ± 0.08 0.12 ± 0.09 0.78 ± 0.15 0.35 ± 0.21 0.45 ± 0.15

Hybrid Composed indirect C HNR 0.53 ± 0.09 0.52 ± 0.07 0.54 ± 0.10 0.41 ± 0.07 0.52 ± 0.07 0.44 ± 0.13

Hybrid Indirect C HNR 0.53 ± 0.09 0.52 ± 0.07 0.54 ± 0.10 0.41 ± 0.07 0.52 ± 0.07 0.44 ± 0.13

Hybrid Direct C HWR 0.51 ± 0.07 0.51 ± 0.07 0.40 ± 0.14 0.57 ± 0.12 0.50 ± 0.17 0.48 ± 0.10

Hybrid Weighted average of C HWR 0.48 ± 0.09 0.49 ± 0.07 0.37 ± 0.27 0.65 ± 0.26 0.50 ± 0.16 0.51 ± 0.15

Single Predict GT from features and HNR 0.64 ± 0.06 0.56 ± 0.06 0.48 ± 0.13 0.39 ± 0.13 0.48 ± 0.10 0.39 ± 0.09

Single HNR (1-10 scale) 0.55 ± 0.07 0.56 ± 0.05 0.46 ± 0.09 0.42 ± 0.15 0.49 ± 0.08 0.39 ± 0.09

Single HWR (1-10 scale) 0.53 ± 0.08 0.53 ± 0.06 0.47 ± 0.08 0.47 ± 0.11 0.49 ± 0.13 0.46 ± 0.13

Single Predict GT from features and HWR 0.52 ± 0.08 0.53 ± 0.08 0.36 ± 0.15 0.57 ± 0.13 0.46 ± 0.17 0.46 ± 0.12

Single Predict GT from features and C 0.49 ± 0.11 0.50 ± 0.06 0.48 ± 0.12 0.52 ± 0.13 0.52 ± 0.13 0.49 ± 0.12

Single C (1-10 scale) 0.46 ± 0.06 0.44 ± 0.05 0.51 ± 0.10 0.60 ± 0.16 0.61 ± 0.09 0.51 ± 0.08

Single C (binarized >=5) - 0.44 ± 0.05 0.51 ± 0.10 0.60 ± 0.16 0.61 ± 0.09 0.51 ± 0.08

Single HNR (binarized >=5) - 0.56 ± 0.05 0.49 ± 0.10 0.40 ± 0.16 0.49 ± 0.08 0.39 ± 0.09

Single HWR (binarized >=5) - 0.51 ± 0.06 0.57 ± 0.11 0.42 ± 0.12 0.51 ± 0.11 0.48 ± 0.16

None Predict GT from features 0.49 ± 0.10 0.48 ± 0.10 0.42 ± 0.13 0.62 ± 0.12 0.54 ± 0.19 0.50 ± 0.11

Random Randomly pick between C HWR 0.59 ± 0.06 0.57 ± 0.07 0.47 ± 0.08 0.40 ± 0.13 0.46 ± 0.14 0.41 ± 0.11

Random Randomly pick between C HWR HNR 0.54 ± 0.07 0.53 ± 0.06 0.48 ± 0.09 0.47 ± 0.11 0.49 ± 0.11 0.46 ± 0.13

Random Randomly pick between C HNR 0.53 ± 0.13 0.50 ± 0.10 0.53 ± 0.11 0.47 ± 0.11 0.54 ± 0.07 0.46 ± 0.15
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Table 5.8: Performance by subgroup (whites) of hybrid models presented
in Table 5.6. Best results in cyan and bolded.

Type Model AUC Bal Acc FPR FNR FDR FOR

Hybrid Composed indirect C HWR 0.59 ± 0.09 0.55 ± 0.08 0.30 ± 0.14 0.61 ± 0.11 0.49 ± 0.21 0.39 ± 0.10

Hybrid Indirect C HWR 0.59 ± 0.09 0.55 ± 0.08 0.30 ± 0.14 0.61 ± 0.11 0.49 ± 0.21 0.39 ± 0.10

Hybrid Composed indirect C HNR 0.56 ± 0.2 0.52 ± 0.17 0.41 ± 0.16 0.56 ± 0.2 0.55 ± 0.19 0.42 ± 0.18

Hybrid Direct C HWR 0.56 ± 0.08 0.58 ± 0.09 0.31 ± 0.18 0.53 ± 0.17 0.45 ± 0.24 0.36 ± 0.12

Hybrid Indirect C HNR 0.56 ± 0.2 0.52 ± 0.17 0.41 ± 0.16 0.56 ± 0.2 0.55 ± 0.19 0.42 ± 0.18

Hybrid Direct C HNR 0.53 ± 0.17 0.52 ± 0.13 0.39 ± 0.11 0.57 ± 0.21 0.56 ± 0.17 0.42 ± 0.15

Hybrid Direct C HWR HNR 0.52 ± 0.19 0.50 ± 0.13 0.43 ± 0.14 0.56 ± 0.2 0.57 ± 0.17 0.44 ± 0.14

Hybrid Weighted average of C HWR 0.48 ± 0.11 0.48 ± 0.06 0.42 ± 0.28 0.61 ± 0.25 0.59 ± 0.19 0.45 ± 0.14

Hybrid Weighted average of C HWR HNR 0.46 ± 0.08 0.44 ± 0.05 0.36 ± 0.10 0.76 ± 0.19 0.72 ± 0.13 0.46 ± 0.11

Hybrid Weighted average of C HNR 0.44 ± 0.08 0.46 ± 0.06 0.47 ± 0.33 0.60 ± 0.3 0.55 ± 0.21 0.51 ± 0.21

Single Predict GT from features and HWR 0.59 ± 0.09 0.58 ± 0.08 0.32 ± 0.15 0.52 ± 0.12 0.46 ± 0.21 0.36 ± 0.1

Single Predict GT from features and C 0.56 ± 0.14 0.55 ± 0.12 0.34 ± 0.10 0.56 ± 0.23 0.53 ± 0.16 0.39 ± 0.14

Single HWR (1-10 scale) 0.56 ± 0.12 0.53 ± 0.11 0.60 ± 0.18 0.34 ± 0.18 0.55 ± 0.12 0.39 ± 0.22

Single Predict GT from features and HNR 0.53 ± 0.19 0.53 ± 0.15 0.41 ± 0.12 0.54 ± 0.22 0.55 ± 0.17 0.41 ± 0.17

Single HNR (1-10 scale) 0.53 ± 0.15 0.46 ± 0.10 0.67 ± 0.15 0.42 ± 0.16 0.59 ± 0.09 0.51 ± 0.25

Single C (1-10 scale) 0.52 ± 0.11 0.48 ± 0.09 0.35 ± 0.15 0.69 ± 0.17 0.60 ± 0.21 0.44 ± 0.10

Single C (binarized >=5) - 0.48 ± 0.09 0.35 ± 0.15 0.69 ± 0.17 0.60 ± 0.21 0.44 ± 0.10

Single HNR (binarized >=5) - 0.47 ± 0.07 0.72 ± 0.13 0.34 ± 0.14 0.58 ± 0.08 0.50 ± 0.24

Single HWR (binarized >=5) - 0.52 ± 0.09 0.65 ± 0.15 0.31 ± 0.17 0.56 ± 0.10 0.40 ± 0.21

None Predict GT from features 0.55 ± 0.14 0.55 ± 0.12 0.37 ± 0.11 0.53 ± 0.2 0.51 ± 0.16 0.39 ± 0.14

Random Randomly pick between C HNR 0.61 ± 0.14 0.57 ± 0.13 0.37 ± 0.11 0.49 ± 0.18 0.49 ± 0.14 0.38 ± 0.17

Random Randomly pick between C HWR HNR 0.54 ± 0.12 0.50 ± 0.14 0.54 ± 0.13 0.45 ± 0.18 0.57 ± 0.14 0.42 ± 0.17

Random Randomly pick between C HWR 0.49 ± 0.08 0.47 ± 0.08 0.47 ± 0.12 0.58 ± 0.13 0.61 ± 0.17 0.45 ± 0.09
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Table 5.9: Performance by subgroup (other races) of hybrid models pre-
sented in Table 5.6. Best results in cyan and bolded.

Type Model AUC Bal Acc FPR FNR FDR FOR

Hybrid Weighted average of C HNR 0.64 ± 0.33 0.58 ± 0.23 0.47 ± 0.33 0.38 ± 0.44 0.63 ± 0.34 0.22 ± 0.25

Hybrid Composed indirect C HNR 0.62 ± 0.32 0.59 ± 0.24 0.29 ± 0.26 0.53 ± 0.39 0.52 ± 0.38 0.29 ± 0.21

Hybrid Indirect C HNR 0.62 ± 0.32 0.59 ± 0.24 0.29 ± 0.26 0.53 ± 0.39 0.52 ± 0.38 0.29 ± 0.21

Hybrid Weighted average of C HWR HNR 0.50 ± 0.25 0.57 ± 0.21 0.58 ± 0.37 0.29 ± 0.3 0.52 ± 0.27 0.33 ± 0.37

Hybrid Weighted average of C HWR 0.49 ± 0.24 0.52 ± 0.14 0.64 ± 0.26 0.32 ± 0.39 0.59 ± 0.23 0.29 ± 0.37

Hybrid Direct C HWR HNR 0.46 ± 0.22 0.44 ± 0.22 0.47 ± 0.31 0.66 ± 0.35 0.74 ± 0.33 0.48 ± 0.29

Hybrid Direct C HNR 0.43 ± 0.22 0.48 ± 0.18 0.32 ± 0.28 0.72 ± 0.25 0.61 ± 0.42 0.39 ± 0.13

Hybrid Direct C HWR 0.43 ± 0.17 0.39 ± 0.16 0.37 ± 0.23 0.85 ± 0.16 0.72 ± 0.37 0.52 ± 0.15

Hybrid Composed indirect C HWR 0.39 ± 0.24 0.44 ± 0.18 0.41 ± 0.31 0.70 ± 0.31 0.68 ± 0.37 0.51 ± 0.25

Hybrid Indirect C HWR 0.39 ± 0.24 0.44 ± 0.18 0.41 ± 0.31 0.70 ± 0.31 0.68 ± 0.37 0.51 ± 0.25

Single HNR (1-10 scale) 0.65 ± 0.22 0.59 ± 0.16 0.60 ± 0.17 0.21 ± 0.25 0.58 ± 0.2 0.25 ± 0.27

Single Predict GT from features and HWR 0.50 ± 0.18 0.47 ± 0.16 0.3 ± 0.22 0.75 ± 0.19 0.57 ± 0.36 0.47 ± 0.18

Single Predict GT from features and HNR 0.47 ± 0.26 0.47 ± 0.19 0.31 ± 0.25 0.75 ± 0.27 0.67 ± 0.44 0.38 ± 0.11

Single HWR (1-10 scale) 0.44 ± 0.26 0.43 ± 0.22 0.71 ± 0.23 0.44 ± 0.28 0.59 ± 0.24 0.52 ± 0.34

Single Predict GT from features and C 0.36 ± 0.31 0.49 ± 0.2 0.3 ± 0.18 0.71 ± 0.37 0.67 ± 0.37 0.35 ± 0.2

Single C (1-10 scale) 0.33 ± 0.2 0.47 ± 0.14 0.21 ± 0.16 0.85 ± 0.17 0.67 ± 0.41 0.50 ± 0.21

Single C (binarized >=5) - 0.39 ± 0.17 0.35 ± 0.22 0.88 ± 0.25 0.88 ± 0.25 0.35 ± 0.14

Single HNR (binarized >=5) - 0.61 ± 0.17 0.65 ± 0.22 0.12 ± 0.25 0.65 ± 0.14 0.12 ± 0.25

Single HWR (binarized >=5) - 0.53 ± 0.14 0.79 ± 0.16 0.15 ± 0.17 0.50 ± 0.21 0.33 ± 0.41

None Predict GT from features 0.48 ± 0.39 0.54 ± 0.26 0.3 ± 0.2 0.62 ± 0.42 0.61 ± 0.42 0.32 ± 0.23

Random Randomly pick between C HWR HNR 0.36 ± 0.28 0.44 ± 0.2 0.53 ± 0.22 0.59 ± 0.29 0.64 ± 0.25 0.46 ± 0.25

Random Randomly pick between C HWR 0.32 ± 0.2 0.34 ± 0.14 0.35 ± 0.21 0.96 ± 0.09 0.86 ± 0.38 0.55 ± 0.16

Random Randomly pick between C HNR 0.3 ± 0.33 0.33 ± 0.24 0.51 ± 0.32 0.83 ± 0.22 0.75 ± 0.35 0.53 ± 0.22
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Table 5.10: Extended result table for test-set performance of hybrid models
trained on all defendants, not just defendants whose COMPAS
and Human scores disagree. Best results in cyan and bolded.
See Table 5.5 for a reduced version of this table. Rows marked
with ∗ are the rows labeled as best in Table 5.5.

Type Model AUC Bal Acc FPR FNR FDR FOR

Oracle Benevolent oracle 0.85 ± 0.03 0.81 ± 0.02 0.19 ± 0.04 0.19 ± 0.03 0.20 ± 0.04 0.18 ± 0.03

Oracle Adversarial oracle 0.57 ± 0.03 0.51 ± 0.02 0.50± 0.03 0.49 ± 0.05 0.53 ± 0.03 0.46 ± 0.04

Hybrid Weighted average of C HNR∗ 0.74 ± 0.03 0.65 ± 0.06 0.41 ± 0.21 0.29 ± 0.1 0.38 ± 0.06 0.30 ± 0.04

Hybrid Weighted average of C HWR∗ 0.74 ± 0.04 0.65 ± 0.06 0.40 ± 0.2 0.29 ± 0.11 0.36 ± 0.06 0.31 ± 0.05

Hybrid Direct C HWR HNR∗ 0.73 ± 0.03 0.66 ± 0.03 0.32 ± 0.05 0.36 ± 0.05 0.35 ± 0.05 0.34 ± 0.05

Hybrid Direct C HNR 0.72 ± 0.04 0.65 ± 0.03 0.34 ± 0.05 0.36 ± 0.06 0.38 ± 0.04 0.32 ± 0.04

Hybrid Direct C HWR 0.72 ± 0.03 0.65 ± 0.03 0.32 ± 0.06 0.38 ± 0.06 0.35 ± 0.06 0.35 ± 0.05

Single HNR (1-10 scale) 0.72 ± 0.03 0.66 ± 0.03 0.35 ± 0.04 0.32 ± 0.04 0.37 ± 0.03 0.30 ± 0.03

Single HWR (1-10 scale) 0.72 ± 0.03 0.66 ± 0.02 0.36 ± 0.04 0.31 ± 0.03 0.36 ± 0.04 0.32 ± 0.04

Single C (1-10 scale) 0.71 ± 0.03 0.65 ± 0.03 0.32 ± 0.03 0.38 ± 0.06 0.37 ± 0.03 0.33 ± 0.04

Single Predict GT from features and C 0.71 ± 0.03 0.64 ± 0.04 0.35 ± 0.04 0.36 ± 0.06 0.38 ± 0.04 0.33 ± 0.05

Single Predict GT from features and HWR 0.71 ± 0.03 0.67 ± 0.03 0.31 ± 0.05 0.36 ± 0.06 0.34 ± 0.05 0.33 ± 0.06

Single Predict GT from features and HNR 0.70± 0.03 0.64 ± 0.02 0.35 ± 0.04 0.37 ± 0.05 0.39 ± 0.03 0.33 ± 0.04

Single C (binarized >=5) - 0.65 ± 0.03 0.32 ± 0.03 0.38 ± 0.06 0.37 ± 0.03 0.33 ± 0.04

Single HNR (binarized >=5) - 0.66 ± 0.03 0.38 ± 0.04 0.30 ± 0.04 0.38 ± 0.03 0.30 ± 0.04

Single HWR (binarized >=5) - 0.66 ± 0.03 0.40 ± 0.04 0.28 ± 0.04 0.37 ± 0.04 0.31 ± 0.05

None Predict GT from features 0.69 ± 0.02 0.63 ± 0.03 0.37 ± 0.05 0.37 ± 0.06 0.40 ± 0.04 0.34 ± 0.04

Random Randomly pick between C HWR 0.73 ± 0.04 0.67 ± 0.03 0.34 ± 0.03 0.32 ± 0.03 0.35 ± 0.05 0.32 ± 0.04

Random Randomly pick between C HNR 0.72 ± 0.04 0.66 ± 0.04 0.33 ± 0.03 0.34 ± 0.05 0.36 ± 0.04 0.31 ± 0.04

Random Randomly pick between C HWR HNR 0.71 ± 0.03 0.67 ± 0.03 0.35 ± 0.03 0.31 ± 0.05 0.37 ± 0.03 0.30 ± 0.04
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Table 5.11: Performance by subgroup (African-Americans) of hybrid mod-
els presented in Table 5.10. Best results in cyan and bolded.

Type Model AUC Bal Acc FPR FNR FDR FOR

Oracle Benevolent oracle 0.85 ± 0.03 0.81 ± 0.03 0.23 ± 0.03 0.15 ± 0.04 0.18 ± 0.03 0.19 ± 0.05

Oracle Adversarial oracle 0.54 ± 0.07 0.49 ± 0.05 0.60± 0.08 0.42 ± 0.04 0.46 ± 0.05 0.56 ± 0.08

Hybrid Direct C HNR 0.73 ± 0.06 0.65 ± 0.05 0.47 ± 0.09 0.23 ± 0.08 0.34 ± 0.05 0.34 ± 0.1

Hybrid Weighted average of C HNR 0.73 ± 0.05 0.65 ± 0.07 0.48 ± 0.18 0.22 ± 0.09 0.33 ± 0.05 0.30 ± 0.14

Hybrid Direct C HWR HNR 0.72 ± 0.03 0.65 ± 0.03 0.44 ± 0.05 0.27 ± 0.06 0.30 ± 0.04 0.41 ± 0.07

Hybrid Weighted average of C HWR 0.72 ± 0.04 0.64 ± 0.06 0.47 ± 0.19 0.25 ± 0.1 0.30 ± 0.05 0.41 ± 0.07

Hybrid Weighted average of C HWR HNR 0.71 ± 0.05 0.62 ± 0.07 0.59 ± 0.24 0.17 ± 0.13 0.36 ± 0.07 0.23 ± 0.18

Hybrid Direct C HWR 0.70± 0.04 0.62 ± 0.02 0.47 ± 0.07 0.29 ± 0.06 0.32 ± 0.05 0.43 ± 0.05

Single Predict GT from features and HNR 0.71 ± 0.05 0.63 ± 0.04 0.49 ± 0.08 0.24 ± 0.08 0.35 ± 0.05 0.36 ± 0.1

Single HNR (1-10 scale) 0.71 ± 0.04 0.68 ± 0.04 0.39 ± 0.06 0.26 ± 0.05 0.30 ± 0.04 0.34 ± 0.07

Single Predict GT from features and C 0.70± 0.04 0.62 ± 0.04 0.49 ± 0.08 0.27 ± 0.06 0.32 ± 0.05 0.43 ± 0.08

Single HWR (1-10 scale) 0.70± 0.03 0.65 ± 0.03 0.43 ± 0.05 0.27 ± 0.04 0.29 ± 0.04 0.41 ± 0.05

Single C (1-10 scale) 0.69 ± 0.05 0.63 ± 0.04 0.43 ± 0.06 0.31 ± 0.07 0.34 ± 0.05 0.39 ± 0.07

Single Predict GT from features and HWR 0.69 ± 0.04 0.64 ± 0.04 0.45 ± 0.07 0.26 ± 0.06 0.30 ± 0.05 0.40 ± 0.07

Single C (binarized >=5) - 0.63 ± 0.04 0.43 ± 0.06 0.31 ± 0.07 0.34 ± 0.05 0.39 ± 0.07

Single HNR (binarized >=5) - 0.67 ± 0.04 0.41 ± 0.07 0.25 ± 0.05 0.32 ± 0.05 0.34 ± 0.07

Single HWR (binarized >=5) - 0.64 ± 0.03 0.48 ± 0.05 0.24 ± 0.05 0.31 ± 0.04 0.39 ± 0.07

None Predict GT from features 0.69 ± 0.04 0.62 ± 0.04 0.52 ± 0.06 0.23 ± 0.08 0.36 ± 0.05 0.36 ± 0.11

Random Randomly pick between C HWR 0.72 ± 0.04 0.66 ± 0.03 0.44 ± 0.04 0.24 ± 0.04 0.29 ± 0.04 0.38 ± 0.05

Random Randomly pick between C HNR 0.70± 0.04 0.65 ± 0.04 0.42 ± 0.05 0.27 ± 0.05 0.32 ± 0.04 0.36 ± 0.07

Random Randomly pick between C HWR HNR 0.70± 0.05 0.66 ± 0.04 0.42 ± 0.07 0.25 ± 0.05 0.32 ± 0.05 0.35 ± 0.08
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Table 5.12: Performance by subgroup (whites) of hybrid models presented
in Table 5.10. Best results in cyan and bolded.

Type Model AUC Bal Acc FPR FNR FDR FOR

Oracle Benevolent oracle 0.84 ± 0.04 0.8 ± 0.03 0.13 ± 0.06 0.28 ± 0.04 0.23 ± 0.07 0.16 ± 0.05

Oracle Adversarial oracle 0.55 ± 0.05 0.48 ± 0.05 0.42 ± 0.06 0.61 ± 0.09 0.63 ± 0.08 0.4 ± 0.07

Hybrid Weighted average of C HWR 0.75 ± 0.05 0.65 ± 0.06 0.34 ± 0.22 0.37 ± 0.14 0.46 ± 0.1 0.23 ± 0.1

Hybrid Weighted average of C HWR HNR 0.74 ± 0.05 0.57 ± 0.08 0.64 ± 0.36 0.21 ± 0.22 0.55 ± 0.09 0.23 ± 0.31

Hybrid Weighted average of C HNR 0.72 ± 0.03 0.62 ± 0.07 0.35 ± 0.23 0.4 ± 0.16 0.46 ± 0.1 0.26 ± 0.11

Hybrid Direct C HWR 0.70± 0.04 0.62 ± 0.05 0.21 ± 0.07 0.54 ± 0.1 0.43 ± 0.12 0.29 ± 0.06

Hybrid Direct C HWR HNR 0.70± 0.04 0.63 ± 0.04 0.21 ± 0.05 0.53 ± 0.08 0.44 ± 0.1 0.29 ± 0.06

Hybrid Direct C HNR 0.67 ± 0.05 0.62 ± 0.04 0.22 ± 0.04 0.55 ± 0.07 0.43 ± 0.1 0.31 ± 0.05

Single HWR (1-10 scale) 0.74 ± 0.05 0.67 ± 0.05 0.29 ± 0.07 0.38 ± 0.06 0.44 ± 0.08 0.24 ± 0.07

Single HNR (1-10 scale) 0.70± 0.04 0.62 ± 0.05 0.33 ± 0.04 0.43 ± 0.06 0.47 ± 0.05 0.29 ± 0.07

Single C (1-10 scale) 0.69 ± 0.06 0.63 ± 0.05 0.24 ± 0.05 0.50± 0.12 0.44 ± 0.1 0.29 ± 0.05

Single Predict GT from features and HWR 0.69 ± 0.05 0.63 ± 0.06 0.2 ± 0.06 0.54 ± 0.09 0.43 ± 0.12 0.29 ± 0.06

Single Predict GT from features and C 0.67 ± 0.05 0.63 ± 0.03 0.19 ± 0.05 0.55 ± 0.05 0.4 ± 0.09 0.3 ± 0.05

Single Predict GT from features and HNR 0.66 ± 0.06 0.61 ± 0.05 0.23 ± 0.07 0.56 ± 0.08 0.45 ± 0.11 0.32 ± 0.05

Single C (binarized >=5) - 0.63 ± 0.05 0.24 ± 0.05 0.50± 0.12 0.44 ± 0.1 0.29 ± 0.05

Single HNR (binarized >=5) - 0.63 ± 0.05 0.36 ± 0.04 0.38 ± 0.06 0.47 ± 0.05 0.27 ± 0.07

Single HWR (binarized >=5) - 0.66 ± 0.04 0.31 ± 0.07 0.36 ± 0.05 0.45 ± 0.07 0.24 ± 0.07

None Predict GT from features 0.65 ± 0.05 0.60± 0.05 0.22 ± 0.08 0.57 ± 0.08 0.44 ± 0.13 0.32 ± 0.05

Random Randomly pick between C HWR 0.73 ± 0.04 0.64 ± 0.03 0.26 ± 0.07 0.46 ± 0.05 0.45 ± 0.08 0.27 ± 0.06

Random Randomly pick between C HNR 0.72 ± 0.06 0.65 ± 0.06 0.25 ± 0.03 0.45 ± 0.09 0.42 ± 0.07 0.28 ± 0.06

Random Randomly pick between C HWR HNR 0.70± 0.03 0.65 ± 0.05 0.3 ± 0.05 0.4 ± 0.08 0.44 ± 0.07 0.27 ± 0.06
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Table 5.13: Performance by subgroup (other races) of hybrid models pre-
sented in Table 5.10. Best results in cyan and bolded.

Type Model AUC Bal Acc FPR FNR FDR FOR

Oracle Benevolent oracle 0.84 ± 0.12 0.82 ± 0.09 0.09 ± 0.1 0.27 ± 0.17 0.16 ± 0.17 0.14 ± 0.12

Oracle Adversarial oracle 0.48 ± 0.1 0.46 ± 0.1 0.45 ± 0.14 0.62 ± 0.17 0.70± 0.1 0.38 ± 0.17

Hybrid Weighted average of C HWR HNR 0.76 ± 0.15 0.74 ± 0.18 0.18 ± 0.12 0.33 ± 0.37 0.41 ± 0.32 0.14 ± 0.13

Hybrid Weighted average of C HNR 0.75 ± 0.15 0.68 ± 0.17 0.30 ± 0.27 0.34 ± 0.29 0.44 ± 0.27 0.25 ± 0.28

Hybrid Direct C HNR 0.69 ± 0.12 0.56 ± 0.17 0.30 ± 0.1 0.58 ± 0.28 0.62 ± 0.24 0.30 ± 0.16

Hybrid Direct C HWR 0.69 ± 0.15 0.59 ± 0.12 0.21 ± 0.14 0.61 ± 0.24 0.55 ± 0.3 0.29 ± 0.14

Hybrid Direct C HWR HNR 0.68 ± 0.08 0.58 ± 0.08 0.27 ± 0.09 0.58 ± 0.2 0.58 ± 0.21 0.28 ± 0.15

Hybrid Weighted average of C HWR 0.66 ± 0.07 0.62 ± 0.07 0.31 ± 0.12 0.44 ± 0.13 0.52 ± 0.17 0.25 ± 0.11

Single HNR (1-10 scale) 0.73 ± 0.16 0.69 ± 0.14 0.32 ± 0.17 0.31 ± 0.2 0.44 ± 0.19 0.21 ± 0.18

Single Predict GT from features and C 0.69 ± 0.12 0.56 ± 0.17 0.29 ± 0.08 0.59 ± 0.27 0.60 ± 0.21 0.30 ± 0.15

Single Predict GT from features and HNR 0.69 ± 0.14 0.60± 0.21 0.26 ± 0.13 0.54 ± 0.37 0.55 ± 0.3 0.29 ± 0.19

Single Predict GT from features and HWR 0.67 ± 0.14 0.65 ± 0.1 0.22 ± 0.12 0.48 ± 0.17 0.45 ± 0.19 0.25 ± 0.13

Single HWR (1-10 scale) 0.66 ± 0.07 0.61 ± 0.05 0.37 ± 0.1 0.41 ± 0.12 0.54 ± 0.14 0.26 ± 0.1

Single C (1-10 scale) 0.64 ± 0.11 0.61 ± 0.09 0.20 ± 0.1 0.57 ± 0.14 0.46 ± 0.13 0.28 ± 0.14

Single C (binarized >=5) - 0.61 ± 0.09 0.20 ± 0.1 0.57 ± 0.14 0.46 ± 0.13 0.28 ± 0.14

Single HNR (binarized >=5) - 0.71 ± 0.14 0.34 ± 0.17 0.24 ± 0.2 0.43 ± 0.19 0.18 ± 0.17

Single HWR (binarized >=5) - 0.64 ± 0.08 0.43 ± 0.11 0.30 ± 0.14 0.54 ± 0.11 0.23 ± 0.12

None Predict GT from features 0.68 ± 0.16 0.57 ± 0.21 0.32 ± 0.14 0.53 ± 0.35 0.59 ± 0.28 0.30 ± 0.19

Random Randomly pick between C HWR HNR 0.66 ± 0.13 0.60± 0.09 0.30 ± 0.11 0.51 ± 0.14 0.53 ± 0.14 0.28 ± 0.15

Random Randomly pick between C HNR 0.62 ± 0.24 0.63 ± 0.18 0.26 ± 0.17 0.48 ± 0.28 0.48 ± 0.28 0.26 ± 0.18

Random Randomly pick between C HWR 0.58 ± 0.14 0.55 ± 0.08 0.28 ± 0.12 0.61 ± 0.15 0.57 ± 0.12 0.32 ± 0.14
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CHAPTER 6

CONCLUSION

With the goal of helping creators as well as users of machine learning models

increase their trust and understanding of the models, this dissertation devel-

oped new interpretability approaches to open up black-box machine learning

models.

The first part of this dissertation proposed new post-hoc, global explanations

for black-box models, developed using model-agnostic distillation techniques

or by leveraging known structure specific to the black-box model. In Chap-

ter 2, we proposed a distillation approach to learn global additive explanations

that describe the relationship between input features and model predictions,

showing that distilled additive explanations have fidelity, accuracy, and inter-

pretability advantages over non-additive explanations, via a user study with

expert users. In Chapter 3, we worked specifically on tree ensembles, leverag-

ing tree structure to construct a similarity metric for gradient boosted tree mod-

els. We used this similarity metric to select prototypical observations in each

class, presenting an alternative to other tree ensemble interpretability methods

such as seeking one tree that best represents the ensemble or feature importance

methods.

The second part of this dissertation studied the use of interpretability ap-

proaches to probe and debug black-box models in algorithmic fairness settings.

In Chapter 4, we proposed Distill-and-Compare, an approach to probe such risk

scoring models by leveraging additional information on ground-truth outcomes

that the risk scoring model was intended to predict. We found that interpretabil-

ity approaches can help uncover previously unknown sources of bias. Finally, in
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Chapter 5, we provided a concrete case study using the interpretability methods

proposed in this dissertation to debug black-box models, in this case, a hybrid

Human + Machine recidivism prediction model. Our methods revealed that hu-

man and COMPAS decision making anchored on the same features, and hence

did not differ significantly enough to harness the promise of hybrid Human +

Machine decision making, concluding this dissertation on interpretability ap-

proaches for real-world settings.

We highlight one compelling reason to investigate the use of interpretable

models in algorithmic fairness settings. In settings where specific biases may not

be a priori known, interpretability approaches that do not require pre-defining

features to audit (since bias may exist not just in features such as race or gender,

but in other seemingly innocuous features) may be useful to suggest areas of

potential bias that did not previously come to mind but warrant more investi-

gation. For example, Distill-and-Compare suggested that COMPAS predicted

recidivism risk for younger and older age groups (feature regions that we had

not suspected of bias) to be significantly different than that for true recidivism

outcomes. This then allowed us to go back to the data and attempt to generate

possible explanations for this discrepancy that we could then further investi-

gate. When deploying this approach initially on the UCI German credit data1,

after training a transparent student model on the true outcome, we found our

error bars for the effect for native Germans much larger than that for foreign na-

tionals. A quick examination of the data revealed that the data comprises mostly

foreign nationals, with only a handful of German nationals, suggesting that this

data is drawn from a very specific population that likely is not representative of

the population one wishes to study when investigating possible bias in issuing

1https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+
data
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loans. Hence, interpretable methods for bias detection could be useful when

there are likely many sources of biases that may be a priori not known.

Several research directions remain to be explored in the field of interpretabil-

ity. To date, the definition of interpretability in machine learning is still the sub-

ject of debate. One such definition is axiomatic, with certain classes of machine

learning models considered to be interpretable, while others are not. Another

definition grounds interpretability in specific human tasks, where if the human

performs better at the task, then the explanation the human used to perform the

task must have been more interpretable. Yet another definition is couched in

terms of proxies or characteristics (e.g. sparsity, simplicity, etc.) that are easy

to evaluate without user studies. Recently, some research groups have started

recruiting Mechanical Turkers for user studies to probe the definitions of in-

terpretability, by varying interpretability proxies (e.g. number of features in a

linear model) and observing how Turkers performance on simplistic prediction

tasks change [111, 105]. However, there are fewer user studies with doctors or

judges who actually interact with machine learning models to make decisions,

perhaps due to the cost and effort of recruiting domain experts. It would be

interesting to conduct a large-scale user study on domain experts, performing

prediction tasks that they would naturally perform in the setting in which they

use machine learning models.

Finally, we close this dissertation by putting forward the viewpoint that in-

terpretability approaches should not be viewed as a panacea to all the problems

arising from training machine learning models on real-world data, with all of

its limitations and biases, but rather yet another useful tool in a responsible ma-

chine learning pipeline.
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APPENDIX A

PUBLICATIONS

Besides the papers on which the chapters of this dissertation are based on, the

following papers were produced during the course of this PhD:

• Xuezhou Zhang, Sarah Tan, Paul Koch, Yin Lou, Urszula Chajewska, Rich

Caruana. Axiomatic Interpretability for Multiclass Additive Models. In

KDD. 2019. [152]

• Yujia Zhang, Kuangyan Song, Yiming Sun, Sarah Tan, Madeleine Udell.

“Why Should You Trust My Explanation?” Understanding Uncertainty in

LIME Explanations. In ICML Workshop on AI for Social Good. 2019. [153]

• Sarah Tan, Susanna Makela, Daliah Heller, Kevin Konty, Sharon Balter,

Tian Zheng, James H. Stark. A Bayesian Evidence Synthesis Approach to

Estimate Disease Prevalence in Hard-To-Reach Populations: Hepatitis C

in New York City. Epidemics 23. 2018. [136]

• Sarah Tan. Interpretable Approaches to Detect Bias in Black-Box Models.

AAAI/ACM AIES Doctoral Consortium. 2018. [131]

• Skyler Seto, Sarah Tan, Giles Hooker, Martin T. Wells. A Double Para-

metric Bootstrap Test for Topic Models. In NIPS Symposium on Interpretable

Machine Learning. 2017. [121]

• Sarah Tan, Giles Hooker, Martin T. Wells. Probabilistic Matching: Incorpo-

rating Uncertainty to Correct for Selection Bias. In NIPS Workshop on Infer-

ence and Learning of Hypothetical and Counterfactual Interventions in Complex

Systems. 2016. [135]
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• Sarah Tan, David I. Miller, James Savage. Proximity Score Matching: Us-

ing the Random Forest Proximity Matrix for Matching in Causal Inference.

In NIPS Healthcare Workshop. 2015. [1 of 3 Student Paper Awards from

American Statistical Association’s SSPA section] [137]

• Ion B. Vasi, Edward T. Walker, John S. Johnson, Sarah Tan. “No Fracking

Way!” Documentary Film, Discursive Opportunity, and Local Opposition

against Hydraulic Fracturing in the United States, 2010 to 2013. American

Sociological Review 80 (5). 2015. [2 Best Paper Awards from American

Sociological Association’s CITAMS and CBSM sections] [141]
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